human/src/gender/gender.ts

84 lines
2.9 KiB
TypeScript
Raw Normal View History

2021-02-08 17:39:09 +01:00
import { log } from '../log';
2020-11-18 14:26:28 +01:00
import * as tf from '../../dist/tfjs.esm.js';
2021-02-13 15:16:41 +01:00
import * as profile from '../profile';
2020-11-06 17:39:39 +01:00
2021-02-08 18:47:38 +01:00
let model;
2020-11-06 17:39:39 +01:00
let last = { gender: '' };
2020-12-11 16:11:49 +01:00
let skipped = Number.MAX_SAFE_INTEGER;
2020-11-06 21:35:58 +01:00
let alternative = false;
2020-11-06 17:39:39 +01:00
// tuning values
2020-11-06 21:35:58 +01:00
const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale
2020-11-06 17:39:39 +01:00
2021-02-08 17:39:09 +01:00
export async function load(config) {
2021-02-08 18:47:38 +01:00
if (!model) {
model = await tf.loadGraphModel(config.face.gender.modelPath);
alternative = model.inputs[0].shape[3] === 1;
2021-03-02 17:27:42 +01:00
if (config.debug) log(`load model: ${config.face.gender.modelPath.match(/\/(.*)\./)[1]}`);
2020-11-07 16:37:19 +01:00
}
2021-02-08 18:47:38 +01:00
return model;
2020-11-06 17:39:39 +01:00
}
2021-02-08 17:39:09 +01:00
export async function predict(image, config) {
2021-02-08 18:47:38 +01:00
if (!model) return null;
2020-12-11 16:11:49 +01:00
if ((skipped < config.face.gender.skipFrames) && config.videoOptimized && last.gender !== '') {
skipped++;
2020-11-06 19:50:16 +01:00
return last;
}
2020-12-11 16:11:49 +01:00
if (config.videoOptimized) skipped = 0;
else skipped = Number.MAX_SAFE_INTEGER;
2020-11-06 17:39:39 +01:00
return new Promise(async (resolve) => {
2020-11-13 22:13:35 +01:00
const resize = tf.image.resizeBilinear(image, [config.face.gender.inputSize, config.face.gender.inputSize], false);
2020-11-06 21:35:58 +01:00
let enhance;
if (alternative) {
enhance = tf.tidy(() => {
const [red, green, blue] = tf.split(resize, 3, 3);
const redNorm = tf.mul(red, rgb[0]);
const greenNorm = tf.mul(green, rgb[1]);
const blueNorm = tf.mul(blue, rgb[2]);
const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);
const normalize = grayscale.sub(0.5).mul(2); // range grayscale:-1..1
return normalize;
2020-11-06 21:35:58 +01:00
});
} else {
enhance = tf.mul(resize, [255.0]); // range RGB:0..255
2020-11-06 21:35:58 +01:00
}
2020-11-06 17:39:39 +01:00
tf.dispose(resize);
let genderT;
2021-02-08 18:47:38 +01:00
const obj = { gender: '', confidence: 0 };
2020-11-06 17:39:39 +01:00
if (!config.profile) {
2021-02-08 18:47:38 +01:00
if (config.face.gender.enabled) genderT = await model.predict(enhance);
2020-11-06 17:39:39 +01:00
} else {
2021-02-08 18:47:38 +01:00
const profileGender = config.face.gender.enabled ? await tf.profile(() => model.predict(enhance)) : {};
2020-11-06 17:39:39 +01:00
genderT = profileGender.result.clone();
profileGender.result.dispose();
profile.run('gender', profileGender);
}
enhance.dispose();
if (genderT) {
const data = genderT.dataSync();
2020-11-06 21:35:58 +01:00
if (alternative) {
// returns two values 0..1, bigger one is prediction
if (data[0] > config.face.gender.minConfidence || data[1] > config.face.gender.minConfidence) {
2020-11-06 21:35:58 +01:00
obj.gender = data[0] > data[1] ? 'female' : 'male';
obj.confidence = data[0] > data[1] ? (Math.trunc(100 * data[0]) / 100) : (Math.trunc(100 * data[1]) / 100);
2020-11-06 21:35:58 +01:00
}
} else {
// returns one value 0..1, .5 is prediction threshold
const confidence = Math.trunc(200 * Math.abs((data[0] - 0.5))) / 100;
if (confidence > config.face.gender.minConfidence) {
obj.gender = data[0] <= 0.5 ? 'female' : 'male';
2020-11-12 04:40:05 +01:00
obj.confidence = Math.min(0.99, confidence);
2020-11-06 21:35:58 +01:00
}
2020-11-06 17:39:39 +01:00
}
}
genderT.dispose();
last = obj;
resolve(obj);
});
}