cache invalidation improvements

pull/50/head
Vladimir Mandic 2020-11-06 13:50:16 -05:00
parent b65c824d88
commit db85fdb895
17 changed files with 178674 additions and 34028 deletions

View File

@ -56,9 +56,9 @@ export default {
skipFrames: 15, // how many frames to go without re-running the face bounding box detector, only used for video inputs
// if model is running st 25 FPS, we can re-use existing bounding box for updated face mesh analysis
// as face probably hasn't moved much in short time (10 * 1/25 = 0.25 sec)
minConfidence: 0.3, // threshold for discarding a prediction
minConfidence: 0.5, // threshold for discarding a prediction
iouThreshold: 0.3, // threshold for deciding whether boxes overlap too much in non-maximum suppression
scoreThreshold: 0.5, // threshold for deciding when to remove boxes based on score in non-maximum suppression
scoreThreshold: 0.8, // threshold for deciding when to remove boxes based on score in non-maximum suppression
},
mesh: {
enabled: true,
@ -80,13 +80,13 @@ export default {
},
gender: {
enabled: true,
minConfidence: 0.3, // threshold for discarding a prediction
minConfidence: 0.5, // threshold for discarding a prediction
modelPath: '../models/ssrnet-gender-imdb.json',
},
emotion: {
enabled: true,
inputSize: 64, // fixed value
minConfidence: 0.3, // threshold for discarding a prediction
minConfidence: 0.5, // threshold for discarding a prediction
skipFrames: 15, // how many frames to go without re-running the detector
modelPath: '../models/emotion-large.json', // can be 'mini', 'large'
},
@ -97,7 +97,7 @@ export default {
inputResolution: 257, // fixed value
outputStride: 16, // fixed value
maxDetections: 10, // maximum number of people detected in the input, should be set to the minimum number for performance
scoreThreshold: 0.5, // threshold for deciding when to remove boxes based on score in non-maximum suppression
scoreThreshold: 0.8, // threshold for deciding when to remove boxes based on score in non-maximum suppression
nmsRadius: 20, // radius for deciding points are too close in non-maximum suppression
},
hand: {
@ -106,9 +106,9 @@ export default {
skipFrames: 15, // how many frames to go without re-running the hand bounding box detector, only used for video inputs
// if model is running st 25 FPS, we can re-use existing bounding box for updated hand skeleton analysis
// as the hand probably hasn't moved much in short time (10 * 1/25 = 0.25 sec)
minConfidence: 0.3, // threshold for discarding a prediction
minConfidence: 0.5, // threshold for discarding a prediction
iouThreshold: 0.3, // threshold for deciding whether boxes overlap too much in non-maximum suppression
scoreThreshold: 0.5, // threshold for deciding when to remove boxes based on score in non-maximum suppression
scoreThreshold: 0.8, // threshold for deciding when to remove boxes based on score in non-maximum suppression
enlargeFactor: 1.65, // empiric tuning as skeleton prediction prefers hand box with some whitespace
maxHands: 10, // maximum number of hands detected in the input, should be set to the minimum number for performance
detector: {

View File

@ -16,7 +16,7 @@ const ui = {
busy: false,
facing: true,
useWorker: false,
worker: 'worker.js',
worker: 'demo/worker.js',
samples: ['../assets/sample6.jpg', '../assets/sample1.jpg', '../assets/sample4.jpg', '../assets/sample5.jpg', '../assets/sample3.jpg', '../assets/sample2.jpg'],
drawBoxes: true,
drawPoints: false,
@ -29,45 +29,6 @@ const ui = {
modelsWarmup: true,
};
// configuration overrides
const config = {
backend: 'webgl',
profile: false,
deallocate: false,
wasm: { path: '../assets' },
async: true,
filter: {
enabled: true,
width: 0,
height: 0,
brightness: 0,
contrast: 0,
sharpness: 0,
blur: 0,
saturation: 0,
hue: 0,
negative: false,
sepia: false,
vintage: false,
kodachrome: false,
technicolor: false,
polaroid: false,
pixelate: 0 },
videoOptimized: true,
face: {
enabled: true,
detector: { maxFaces: 10, skipFrames: 15, minConfidence: 0.3, iouThreshold: 0.3, scoreThreshold: 0.5 },
mesh: { enabled: true },
iris: { enabled: true },
age: { enabled: true, skipFrames: 15 },
gender: { enabled: true },
emotion: { enabled: true, minConfidence: 0.3, useGrayscale: true },
},
body: { enabled: true, maxDetections: 10, scoreThreshold: 0.5, nmsRadius: 20 },
hand: { enabled: true, skipFrames: 15, minConfidence: 0.3, iouThreshold: 0.3, scoreThreshold: 0.5 },
gesture: { enabled: true },
};
// global variables
let menu;
let menuFX;
@ -218,7 +179,7 @@ function webWorker(input, image, canvas) {
});
}
// pass image data as arraybuffer to worker by reference to avoid copy
worker.postMessage({ image: image.data.buffer, width: canvas.width, height: canvas.height, config }, [image.data.buffer]);
worker.postMessage({ image: image.data.buffer, width: canvas.width, height: canvas.height }, [image.data.buffer]);
}
// main processing function when input is webcam, can use direct invocation or web worker
@ -242,10 +203,10 @@ function runHumanDetect(input, canvas) {
// perform detection in worker
webWorker(input, data, canvas);
} else {
human.detect(input, config).then((result) => {
human.detect(input).then((result) => {
if (result.error) log(result.error);
else drawResults(input, result, canvas);
if (config.profile) log('profile data:', human.profile());
if (human.config.profile) log('profile data:', human.profile());
});
}
}
@ -260,9 +221,9 @@ async function processImage(input) {
const canvas = document.getElementById('canvas');
image.width = image.naturalWidth;
image.height = image.naturalHeight;
canvas.width = config.filter.width && config.filter.width > 0 ? config.filter.width : image.naturalWidth;
canvas.height = config.filter.height && config.filter.height > 0 ? config.filter.height : image.naturalHeight;
const result = await human.detect(image, config);
canvas.width = human.config.filter.width && human.config.filter.width > 0 ? human.config.filter.width : image.naturalWidth;
canvas.height = human.config.filter.height && human.config.filter.height > 0 ? human.config.filter.height : image.naturalHeight;
const result = await human.detect(image);
drawResults(image, result, canvas);
const thumb = document.createElement('canvas');
thumb.className = 'thumbnail';
@ -280,7 +241,7 @@ async function processImage(input) {
// just initialize everything and call main function
async function detectVideo() {
config.videoOptimized = true;
human.config.videoOptimized = true;
document.getElementById('samples-container').style.display = 'none';
document.getElementById('canvas').style.display = 'block';
const video = document.getElementById('video');
@ -304,7 +265,7 @@ async function detectVideo() {
// just initialize everything and call main function
async function detectSampleImages() {
document.getElementById('play').style.display = 'none';
config.videoOptimized = false;
human.config.videoOptimized = false;
const size = Math.trunc(ui.columns * 25600 / window.innerWidth);
ui.baseFont = ui.baseFontProto.replace(/{size}/, `${size}px`);
ui.baseLineHeight = ui.baseLineHeightProto * ui.columns;
@ -324,49 +285,49 @@ function setupMenu() {
document.getElementById('play').addEventListener('click', () => btn.click());
menu.addHTML('<hr style="min-width: 200px; border-style: inset; border-color: dimgray">');
menu.addList('Backend', ['cpu', 'webgl', 'wasm', 'webgpu'], config.backend, (val) => config.backend = val);
menu.addBool('Async Operations', config, 'async');
menu.addBool('Enable Profiler', config, 'profile');
menu.addBool('Memory Shield', config, 'deallocate');
menu.addList('Backend', ['cpu', 'webgl', 'wasm', 'webgpu'], human.config.backend, (val) => human.config.backend = val);
menu.addBool('Async Operations', human.config, 'async');
menu.addBool('Enable Profiler', human.config, 'profile');
menu.addBool('Memory Shield', human.config, 'deallocate');
menu.addBool('Use Web Worker', ui, 'useWorker');
menu.addHTML('<hr style="min-width: 200px; border-style: inset; border-color: dimgray">');
menu.addLabel('Enabled Models');
menu.addBool('Face Detect', config.face, 'enabled');
menu.addBool('Face Mesh', config.face.mesh, 'enabled');
menu.addBool('Face Iris', config.face.iris, 'enabled');
menu.addBool('Face Age', config.face.age, 'enabled');
menu.addBool('Face Gender', config.face.gender, 'enabled');
menu.addBool('Face Emotion', config.face.emotion, 'enabled');
menu.addBool('Body Pose', config.body, 'enabled');
menu.addBool('Hand Pose', config.hand, 'enabled');
menu.addBool('Gesture Analysis', config.gesture, 'enabled');
menu.addBool('Face Detect', human.config.face, 'enabled');
menu.addBool('Face Mesh', human.config.face.mesh, 'enabled');
menu.addBool('Face Iris', human.config.face.iris, 'enabled');
menu.addBool('Face Age', human.config.face.age, 'enabled');
menu.addBool('Face Gender', human.config.face.gender, 'enabled');
menu.addBool('Face Emotion', human.config.face.emotion, 'enabled');
menu.addBool('Body Pose', human.config.body, 'enabled');
menu.addBool('Hand Pose', human.config.hand, 'enabled');
menu.addBool('Gesture Analysis', human.config.gesture, 'enabled');
menu.addHTML('<hr style="min-width: 200px; border-style: inset; border-color: dimgray">');
menu.addLabel('Model Parameters');
menu.addRange('Max Objects', config.face.detector, 'maxFaces', 1, 50, 1, (val) => {
config.face.detector.maxFaces = parseInt(val);
config.body.maxDetections = parseInt(val);
config.hand.maxHands = parseInt(val);
menu.addRange('Max Objects', human.config.face.detector, 'maxFaces', 1, 50, 1, (val) => {
human.config.face.detector.maxFaces = parseInt(val);
human.config.body.maxDetections = parseInt(val);
human.config.hand.maxHands = parseInt(val);
});
menu.addRange('Skip Frames', config.face.detector, 'skipFrames', 0, 50, 1, (val) => {
config.face.detector.skipFrames = parseInt(val);
config.face.emotion.skipFrames = parseInt(val);
config.face.age.skipFrames = parseInt(val);
config.hand.skipFrames = parseInt(val);
menu.addRange('Skip Frames', human.config.face.detector, 'skipFrames', 0, 50, 1, (val) => {
human.config.face.detector.skipFrames = parseInt(val);
human.config.face.emotion.skipFrames = parseInt(val);
human.config.face.age.skipFrames = parseInt(val);
human.config.hand.skipFrames = parseInt(val);
});
menu.addRange('Min Confidence', config.face.detector, 'minConfidence', 0.0, 1.0, 0.05, (val) => {
config.face.detector.minConfidence = parseFloat(val);
config.face.emotion.minConfidence = parseFloat(val);
config.hand.minConfidence = parseFloat(val);
menu.addRange('Min Confidence', human.config.face.detector, 'minConfidence', 0.0, 1.0, 0.05, (val) => {
human.config.face.detector.minConfidence = parseFloat(val);
human.config.face.emotion.minConfidence = parseFloat(val);
human.config.hand.minConfidence = parseFloat(val);
});
menu.addRange('Score Threshold', config.face.detector, 'scoreThreshold', 0.1, 1.0, 0.05, (val) => {
config.face.detector.scoreThreshold = parseFloat(val);
config.hand.scoreThreshold = parseFloat(val);
config.body.scoreThreshold = parseFloat(val);
menu.addRange('Score Threshold', human.config.face.detector, 'scoreThreshold', 0.1, 1.0, 0.05, (val) => {
human.config.face.detector.scoreThreshold = parseFloat(val);
human.config.hand.scoreThreshold = parseFloat(val);
human.config.body.scoreThreshold = parseFloat(val);
});
menu.addRange('IOU Threshold', config.face.detector, 'iouThreshold', 0.1, 1.0, 0.05, (val) => {
config.face.detector.iouThreshold = parseFloat(val);
config.hand.iouThreshold = parseFloat(val);
menu.addRange('IOU Threshold', human.config.face.detector, 'iouThreshold', 0.1, 1.0, 0.05, (val) => {
human.config.face.detector.iouThreshold = parseFloat(val);
human.config.hand.iouThreshold = parseFloat(val);
});
menu.addHTML('<hr style="min-width: 200px; border-style: inset; border-color: dimgray">');
@ -382,22 +343,22 @@ function setupMenu() {
menuFX.addBool('Fill Polygons', ui, 'fillPolygons');
menuFX.addHTML('<hr style="min-width: 200px; border-style: inset; border-color: dimgray">');
menuFX.addLabel('Image Processing');
menuFX.addBool('Enabled', config.filter, 'enabled');
menuFX.addRange('Image width', config.filter, 'width', 0, 3840, 10, (val) => config.filter.width = parseInt(val));
menuFX.addRange('Image height', config.filter, 'height', 0, 2160, 10, (val) => config.filter.height = parseInt(val));
menuFX.addRange('Brightness', config.filter, 'brightness', -1.0, 1.0, 0.05, (val) => config.filter.brightness = parseFloat(val));
menuFX.addRange('Contrast', config.filter, 'contrast', -1.0, 1.0, 0.05, (val) => config.filter.contrast = parseFloat(val));
menuFX.addRange('Sharpness', config.filter, 'sharpness', 0, 1.0, 0.05, (val) => config.filter.sharpness = parseFloat(val));
menuFX.addRange('Blur', config.filter, 'blur', 0, 20, 1, (val) => config.filter.blur = parseInt(val));
menuFX.addRange('Saturation', config.filter, 'saturation', -1.0, 1.0, 0.05, (val) => config.filter.saturation = parseFloat(val));
menuFX.addRange('Hue', config.filter, 'hue', 0, 360, 5, (val) => config.filter.hue = parseInt(val));
menuFX.addRange('Pixelate', config.filter, 'pixelate', 0, 32, 1, (val) => config.filter.pixelate = parseInt(val));
menuFX.addBool('Negative', config.filter, 'negative');
menuFX.addBool('Sepia', config.filter, 'sepia');
menuFX.addBool('Vintage', config.filter, 'vintage');
menuFX.addBool('Kodachrome', config.filter, 'kodachrome');
menuFX.addBool('Technicolor', config.filter, 'technicolor');
menuFX.addBool('Polaroid', config.filter, 'polaroid');
menuFX.addBool('Enabled', human.config.filter, 'enabled');
menuFX.addRange('Image width', human.config.filter, 'width', 0, 3840, 10, (val) => human.config.filter.width = parseInt(val));
menuFX.addRange('Image height', human.config.filter, 'height', 0, 2160, 10, (val) => human.config.filter.height = parseInt(val));
menuFX.addRange('Brightness', human.config.filter, 'brightness', -1.0, 1.0, 0.05, (val) => human.config.filter.brightness = parseFloat(val));
menuFX.addRange('Contrast', human.config.filter, 'contrast', -1.0, 1.0, 0.05, (val) => human.config.filter.contrast = parseFloat(val));
menuFX.addRange('Sharpness', human.config.filter, 'sharpness', 0, 1.0, 0.05, (val) => human.config.filter.sharpness = parseFloat(val));
menuFX.addRange('Blur', human.config.filter, 'blur', 0, 20, 1, (val) => human.config.filter.blur = parseInt(val));
menuFX.addRange('Saturation', human.config.filter, 'saturation', -1.0, 1.0, 0.05, (val) => human.config.filter.saturation = parseFloat(val));
menuFX.addRange('Hue', human.config.filter, 'hue', 0, 360, 5, (val) => human.config.filter.hue = parseInt(val));
menuFX.addRange('Pixelate', human.config.filter, 'pixelate', 0, 32, 1, (val) => human.config.filter.pixelate = parseInt(val));
menuFX.addBool('Negative', human.config.filter, 'negative');
menuFX.addBool('Sepia', human.config.filter, 'sepia');
menuFX.addBool('Vintage', human.config.filter, 'vintage');
menuFX.addBool('Kodachrome', human.config.filter, 'kodachrome');
menuFX.addBool('Technicolor', human.config.filter, 'technicolor');
menuFX.addBool('Polaroid', human.config.filter, 'polaroid');
}
async function main() {

View File

@ -27,6 +27,7 @@ async function drawFace(result, canvas, ui, triangulation) {
}
// silly hack since fillText does not suport new line
const labels = [];
// labels.push(`${Math.trunc(100 * face.confidence)}% face`);
if (face.genderConfidence) labels.push(`${Math.trunc(100 * face.genderConfidence)}% ${face.gender || ''}`);
if (face.age) labels.push(`age: ${face.age || ''}`);
if (face.iris) labels.push(`iris: ${face.iris}`);

View File

@ -14,10 +14,9 @@ onmessage = async (msg) => {
busy = true;
// worker.postMessage({ image: image.data.buffer, width: canvas.width, height: canvas.height, config }, [image.data.buffer]);
const image = new ImageData(new Uint8ClampedArray(msg.data.image), msg.data.width, msg.data.height);
config = msg.data.config;
let result = {};
try {
result = await human.detect(image, config);
result = await human.detect(image);
} catch (err) {
result.error = err.message;
log('worker thread error:', err.message);

View File

@ -25,7 +25,7 @@ const options = {
key: fs.readFileSync('/home/vlado/dev/piproxy/cert/private.pem'),
cert: fs.readFileSync('/home/vlado/dev/piproxy/cert/fullchain.pem'),
root: '.',
default: 'index.html',
default: 'demo/index.html',
port: 8000,
monitor: ['package.json', 'config.js', 'demo', 'src'],
};
@ -114,7 +114,7 @@ function content(url) {
obj.stat = fs.statSync(obj.file);
// should really use streams here instead of reading entire content in-memory, but this is micro-http2 not intended to serve huge files
if (obj.stat.isFile()) obj.ok = true;
if (obj.stat.isDirectory()) {
if (!obj.ok && obj.stat.isDirectory()) {
obj.file = path.join(obj.file, options.default);
obj = content(obj.file);
}

117089
dist/demo-browser-index.js vendored

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -1,7 +1,7 @@
{
"inputs": {
"demo/browser.js": {
"bytes": 18066,
"bytes": 17412,
"imports": [
{
"path": "dist/human.esm.js"
@ -15,7 +15,7 @@
]
},
"demo/draw.js": {
"bytes": 7561,
"bytes": 7627,
"imports": []
},
"demo/menu.js": {
@ -23,7 +23,7 @@
"imports": []
},
"dist/human.esm.js": {
"bytes": 1277557,
"bytes": 3196136,
"imports": []
}
},
@ -31,28 +31,25 @@
"dist/demo-browser-index.js.map": {
"imports": [],
"inputs": {},
"bytes": 5529553
"bytes": 5557260
},
"dist/demo-browser-index.js": {
"imports": [],
"inputs": {
"dist/human.esm.js": {
"bytesInOutput": 1663845
},
"dist/human.esm.js": {
"bytesInOutput": 8716
"bytesInOutput": 3193996
},
"demo/draw.js": {
"bytesInOutput": 7451
"bytesInOutput": 7453
},
"demo/menu.js": {
"bytesInOutput": 12359
},
"demo/browser.js": {
"bytesInOutput": 16281
"bytesInOutput": 15694
}
},
"bytes": 1708774
"bytes": 3229624
}
}
}

95169
dist/human.esm.js vendored

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

124
dist/human.esm.json vendored
View File

@ -149,11 +149,11 @@
]
},
"package.json": {
"bytes": 3374,
"bytes": 3389,
"imports": []
},
"src/age/ssrnet.js": {
"bytes": 1746,
"bytes": 1766,
"imports": [
{
"path": "node_modules/@tensorflow/tfjs/dist/tf.node.js"
@ -277,7 +277,7 @@
]
},
"src/emotion/emotion.js": {
"bytes": 2767,
"bytes": 2778,
"imports": [
{
"path": "node_modules/@tensorflow/tfjs/dist/tf.node.js"
@ -304,7 +304,7 @@
]
},
"src/face/facemesh.js": {
"bytes": 2572,
"bytes": 2355,
"imports": [
{
"path": "node_modules/@tensorflow/tfjs/dist/tf.node.js"
@ -327,7 +327,7 @@
]
},
"src/face/facepipeline.js": {
"bytes": 14368,
"bytes": 14674,
"imports": [
{
"path": "node_modules/@tensorflow/tfjs/dist/tf.node.js"
@ -360,7 +360,7 @@
"imports": []
},
"src/gender/ssrnet.js": {
"bytes": 2003,
"bytes": 2015,
"imports": [
{
"path": "node_modules/@tensorflow/tfjs/dist/tf.node.js"
@ -513,178 +513,178 @@
"dist/human.esm.js.map": {
"imports": [],
"inputs": {},
"bytes": 5415919
"bytes": 5607938
},
"dist/human.esm.js": {
"imports": [],
"inputs": {
"empty:/home/vlado/dev/human/node_modules/node-fetch/browser.js": {
"bytesInOutput": 13
"bytesInOutput": 45
},
"empty:util": {
"bytesInOutput": 13
"bytesInOutput": 42
},
"empty:crypto": {
"bytesInOutput": 13
"bytesInOutput": 44
},
"node_modules/@tensorflow/tfjs-core/dist/tf-core.node.js": {
"bytesInOutput": 295162
"bytesInOutput": 1010341
},
"node_modules/@tensorflow/tfjs-layers/dist/tf-layers.node.js": {
"bytesInOutput": 238778
"bytesInOutput": 514491
},
"node_modules/@tensorflow/tfjs-converter/dist/tf-converter.node.js": {
"bytesInOutput": 115231
"bytesInOutput": 258962
},
"empty:/home/vlado/dev/human/node_modules/string_decoder/lib/string_decoder.js": {
"bytesInOutput": 13
"bytesInOutput": 52
},
"node_modules/@tensorflow/tfjs-data/dist/tf-data.node.js": {
"bytesInOutput": 52364
"bytesInOutput": 129585
},
"node_modules/@tensorflow/tfjs-backend-cpu/node_modules/seedrandom/lib/alea.js": {
"bytesInOutput": 990
"bytesInOutput": 2112
},
"node_modules/@tensorflow/tfjs-backend-cpu/node_modules/seedrandom/lib/xor128.js": {
"bytesInOutput": 755
"bytesInOutput": 1699
},
"node_modules/@tensorflow/tfjs-backend-cpu/node_modules/seedrandom/lib/xorwow.js": {
"bytesInOutput": 845
"bytesInOutput": 1897
},
"node_modules/@tensorflow/tfjs-backend-cpu/node_modules/seedrandom/lib/xorshift7.js": {
"bytesInOutput": 1001
"bytesInOutput": 2307
},
"node_modules/@tensorflow/tfjs-backend-cpu/node_modules/seedrandom/lib/xor4096.js": {
"bytesInOutput": 1164
"bytesInOutput": 2742
},
"node_modules/@tensorflow/tfjs-backend-cpu/node_modules/seedrandom/lib/tychei.js": {
"bytesInOutput": 880
"bytesInOutput": 1940
},
"node_modules/@tensorflow/tfjs-backend-cpu/node_modules/seedrandom/seedrandom.js": {
"bytesInOutput": 1614
"bytesInOutput": 4019
},
"node_modules/@tensorflow/tfjs-backend-cpu/node_modules/seedrandom/index.js": {
"bytesInOutput": 171
"bytesInOutput": 458
},
"node_modules/@tensorflow/tfjs-backend-cpu/dist/tf-backend-cpu.node.js": {
"bytesInOutput": 82510
"bytesInOutput": 272412
},
"node_modules/@tensorflow/tfjs-backend-webgl/dist/tf-backend-webgl.node.js": {
"bytesInOutput": 261415
"bytesInOutput": 561667
},
"node_modules/@tensorflow/tfjs/dist/tf.node.js": {
"bytesInOutput": 760
"bytesInOutput": 3025
},
"src/face/blazeface.js": {
"bytesInOutput": 3093
"bytesInOutput": 7123
},
"src/face/keypoints.js": {
"bytesInOutput": 1946
"bytesInOutput": 2768
},
"src/face/box.js": {
"bytesInOutput": 1006
"bytesInOutput": 2070
},
"src/face/util.js": {
"bytesInOutput": 1190
"bytesInOutput": 3017
},
"src/face/facepipeline.js": {
"bytesInOutput": 5577
"bytesInOutput": 13458
},
"src/face/uvcoords.js": {
"bytesInOutput": 16786
"bytesInOutput": 20584
},
"src/face/triangulation.js": {
"bytesInOutput": 9991
"bytesInOutput": 23309
},
"src/face/facemesh.js": {
"bytesInOutput": 1237
"bytesInOutput": 2420
},
"src/profile.js": {
"bytesInOutput": 620
"bytesInOutput": 1092
},
"src/age/ssrnet.js": {
"bytesInOutput": 877
"bytesInOutput": 1747
},
"src/gender/ssrnet.js": {
"bytesInOutput": 1007
"bytesInOutput": 2007
},
"src/emotion/emotion.js": {
"bytesInOutput": 1334
"bytesInOutput": 2612
},
"src/body/modelBase.js": {
"bytesInOutput": 433
"bytesInOutput": 900
},
"src/body/modelMobileNet.js": {
"bytesInOutput": 245
"bytesInOutput": 494
},
"src/body/heapSort.js": {
"bytesInOutput": 1042
"bytesInOutput": 1637
},
"src/body/buildParts.js": {
"bytesInOutput": 547
"bytesInOutput": 1752
},
"src/body/keypoints.js": {
"bytesInOutput": 1633
"bytesInOutput": 2277
},
"src/body/vectors.js": {
"bytesInOutput": 616
"bytesInOutput": 1408
},
"src/body/decodePose.js": {
"bytesInOutput": 1024
"bytesInOutput": 3773
},
"src/body/decodeMultiple.js": {
"bytesInOutput": 604
"bytesInOutput": 1990
},
"src/body/util.js": {
"bytesInOutput": 1062
"bytesInOutput": 2398
},
"src/body/modelPoseNet.js": {
"bytesInOutput": 846
"bytesInOutput": 2020
},
"src/body/posenet.js": {
"bytesInOutput": 474
"bytesInOutput": 903
},
"src/hand/box.js": {
"bytesInOutput": 1398
"bytesInOutput": 3555
},
"src/hand/handdetector.js": {
"bytesInOutput": 1812
"bytesInOutput": 4551
},
"src/hand/util.js": {
"bytesInOutput": 1005
"bytesInOutput": 3419
},
"src/hand/handpipeline.js": {
"bytesInOutput": 3055
"bytesInOutput": 8366
},
"src/hand/anchors.js": {
"bytesInOutput": 127001
"bytesInOutput": 256590
},
"src/hand/handpose.js": {
"bytesInOutput": 1105
"bytesInOutput": 2946
},
"src/gesture.js": {
"bytesInOutput": 1220
"bytesInOutput": 2270
},
"src/imagefx.js": {
"bytesInOutput": 11014
"bytesInOutput": 20097
},
"src/image.js": {
"bytesInOutput": 2365
"bytesInOutput": 4482
},
"config.js": {
"bytesInOutput": 1300
"bytesInOutput": 2230
},
"package.json": {
"bytesInOutput": 3005
"bytesInOutput": 3533
},
"src/human.js": {
"bytesInOutput": 7374
"bytesInOutput": 11852
},
"src/human.js": {
"bytesInOutput": 0
}
},
"bytes": 1277557
"bytes": 3196136
}
}
}

View File

@ -41,7 +41,7 @@
"scripts": {
"start": "node --trace-warnings --unhandled-rejections=strict --trace-uncaught --no-deprecation src/node.js",
"lint": "eslint src/*.js demo/*.js",
"dev": "node --trace-warnings --unhandled-rejections=strict --trace-uncaught --no-deprecation dev-server.js",
"dev": "npm install && node --trace-warnings --unhandled-rejections=strict --trace-uncaught --no-deprecation dev-server.js",
"build-iife": "esbuild --bundle --minify --platform=browser --sourcemap --target=es2018 --format=iife --external:fs --global-name=Human --metafile=dist/human.json --outfile=dist/human.js src/human.js",
"build-esm-bundle": "esbuild --bundle --minify --platform=browser --sourcemap --target=es2018 --format=esm --external:fs --metafile=dist/human.esm.json --outfile=dist/human.esm.js src/human.js",
"build-esm-nobundle": "esbuild --bundle --minify --platform=browser --sourcemap --target=es2018 --format=esm --external:@tensorflow --external:fs --metafile=dist/human.esm-nobundle.json --outfile=dist/human.esm-nobundle.js src/human.js",

View File

@ -14,12 +14,12 @@ async function load(config) {
}
async function predict(image, config) {
if ((frame < config.face.age.skipFrames) && last.age && (last.age > 0)) {
frame += 1;
return last;
}
frame = 0;
return new Promise(async (resolve) => {
if (frame < config.face.age.skipFrames) {
frame += 1;
resolve(last);
}
frame = 0;
const box = [[
(image.shape[1] * zoom[0]) / image.shape[1],
(image.shape[2] * zoom[1]) / image.shape[2],

View File

@ -17,12 +17,12 @@ async function load(config) {
}
async function predict(image, config) {
if ((frame < config.face.emotion.skipFrames) && (last.length > 0)) {
frame += 1;
return last;
}
frame = 0;
return new Promise(async (resolve) => {
if (frame < config.face.emotion.skipFrames) {
frame += 1;
resolve(last);
}
frame = 0;
const box = [[
(image.shape[1] * zoom[0]) / image.shape[1],
(image.shape[2] * zoom[1]) / image.shape[2],

View File

@ -18,26 +18,22 @@ class MediaPipeFaceMesh {
for (const prediction of (predictions || [])) {
// guard against disposed tensors on long running operations such as pause in middle of processing
if (prediction.isDisposedInternal) continue;
const confidence = prediction.confidence.arraySync();
if (confidence >= this.config.detector.minConfidence) {
const mesh = prediction.coords ? prediction.coords.arraySync() : null;
const annotations = {};
if (mesh && mesh.length > 0) {
for (const key in keypoints.MESH_ANNOTATIONS) {
if (this.config.iris.enabled || key.includes('Iris') === false) {
annotations[key] = keypoints.MESH_ANNOTATIONS[key].map((index) => mesh[index]);
}
const mesh = prediction.coords ? prediction.coords.arraySync() : null;
const annotations = {};
if (mesh && mesh.length > 0) {
for (const key in keypoints.MESH_ANNOTATIONS) {
if (this.config.iris.enabled || key.includes('Iris') === false) {
annotations[key] = keypoints.MESH_ANNOTATIONS[key].map((index) => mesh[index]);
}
}
results.push({
confidence: confidence || 0,
box: prediction.box ? [prediction.box.startPoint[0], prediction.box.startPoint[1], prediction.box.endPoint[0] - prediction.box.startPoint[0], prediction.box.endPoint[1] - prediction.box.startPoint[1]] : 0,
mesh,
annotations,
image: prediction.image ? tf.clone(prediction.image) : null,
});
}
if (prediction.confidence) prediction.confidence.dispose();
results.push({
confidence: prediction.confidence || 0,
box: prediction.box ? [prediction.box.startPoint[0], prediction.box.startPoint[1], prediction.box.endPoint[0] - prediction.box.startPoint[0], prediction.box.endPoint[1] - prediction.box.startPoint[1]] : 0,
mesh,
annotations,
image: prediction.image ? tf.clone(prediction.image) : null,
});
if (prediction.coords) prediction.coords.dispose();
if (prediction.image) prediction.image.dispose();
}

View File

@ -129,13 +129,19 @@ class Pipeline {
}
async predict(input, config) {
this.skipFrames = config.detector.skipFrames;
this.maxFaces = config.detector.maxFaces;
this.runsWithoutFaceDetector++;
if (this.shouldUpdateRegionsOfInterest()) {
const detector = await this.boundingBoxDetector.getBoundingBoxes(input);
this.runsWithoutFaceDetector += 1;
let useFreshBox = (this.detectedFaces === 0) || (this.detectedFaces !== this.regionsOfInterest.length);
let detector;
// but every skipFrames check if detect boxes number changed
if (useFreshBox || (this.runsWithoutFaceDetector > config.detector.skipFrames)) detector = await this.boundingBoxDetector.getBoundingBoxes(input);
// if there are new boxes and number of boxes doesn't match use new boxes, but not if maxhands is fixed to 1
if (config.detector.maxFaces > 1 && detector && detector.boxes && detector.boxes.length > 0 && detector.boxes.length !== this.detectedFaces) useFreshBox = true;
if (useFreshBox) {
// const detector = await this.boundingBoxDetector.getBoundingBoxes(input);
if (!detector || !detector.boxes || (detector.boxes.length === 0)) {
this.regionsOfInterest = [];
this.detectedFaces = 0;
return null;
}
const scaledBoxes = detector.boxes.map((prediction) => {
@ -159,7 +165,7 @@ class Pipeline {
this.updateRegionsOfInterest(scaledBoxes);
this.runsWithoutFaceDetector = 0;
}
const results = tf.tidy(() => this.regionsOfInterest.map((box, i) => {
let results = tf.tidy(() => this.regionsOfInterest.map((box, i) => {
let angle = 0;
// The facial bounding box landmarks could come either from blazeface (if we are using a fresh box), or from the mesh model (if we are reusing an old box).
const boxLandmarksFromMeshModel = box.landmarks.length >= LANDMARKS_COUNT;
@ -173,14 +179,19 @@ class Pipeline {
let rotatedImage = input;
let rotationMatrix = util.IDENTITY_MATRIX;
if (angle !== 0) {
// bug: input becomes disposed here when running in async mode!
rotatedImage = tf.image.rotateWithOffset(input, angle, 0, faceCenterNormalized);
rotationMatrix = util.buildRotationMatrix(-angle, faceCenter);
}
const boxCPU = { startPoint: box.startPoint, endPoint: box.endPoint };
const face = bounding.cutBoxFromImageAndResize(boxCPU, rotatedImage, [this.meshHeight, this.meshWidth]).div(255);
// The first returned tensor represents facial contours, which are included in the coordinates.
const [, flag, coords] = this.meshDetector.predict(face);
const [, confidence, coords] = this.meshDetector.predict(face);
const confidenceVal = confidence.dataSync()[0];
confidence.dispose();
if (confidenceVal < config.detector.minConfidence) {
coords.dispose();
return null;
}
const coordsReshaped = tf.reshape(coords, [-1, 3]);
let rawCoords = coordsReshaped.arraySync();
if (config.iris.enabled) {
@ -210,27 +221,21 @@ class Pipeline {
const transformedCoordsData = this.transformRawCoords(rawCoords, box, angle, rotationMatrix);
tf.dispose(rawCoords);
const landmarksBox = bounding.enlargeBox(this.calculateLandmarksBoundingBox(transformedCoordsData));
const confidence = flag.squeeze();
tf.dispose(flag);
if (config.mesh.enabled) {
const transformedCoords = tf.tensor2d(transformedCoordsData);
this.regionsOfInterest[i] = { ...landmarksBox, landmarks: transformedCoords.arraySync() };
const prediction = {
coords: transformedCoords,
box: landmarksBox,
confidence,
image: face,
};
return prediction;
}
const prediction = {
coords: null,
box: landmarksBox,
confidence,
confidence: confidenceVal,
image: face,
};
if (config.mesh.enabled) {
const transformedCoords = tf.tensor2d(transformedCoordsData);
this.regionsOfInterest[i] = { ...landmarksBox, landmarks: transformedCoords.arraySync() };
prediction.coords = transformedCoords;
}
return prediction;
}));
results = results.filter((a) => a !== null);
this.detectedFaces = results.length;
return results;
}
@ -270,11 +275,6 @@ class Pipeline {
}
}
shouldUpdateRegionsOfInterest() {
if (this.regionsOfInterest.length === 0) return true; // nothing detected, so run detector on the next frame
return (this.regionsOfInterest.length !== this.maxFaces) && (this.runsWithoutFaceDetector >= this.skipFrames);
}
calculateLandmarksBoundingBox(landmarks) {
const xs = landmarks.map((d) => d[0]);
const ys = landmarks.map((d) => d[1]);

View File

@ -14,12 +14,12 @@ async function load(config) {
}
async function predict(image, config) {
if ((frame < config.face.age.skipFrames) && last.gender !== '') {
frame += 1;
return last;
}
frame = 0;
return new Promise(async (resolve) => {
if (frame < config.face.age.skipFrames) {
frame += 1;
resolve(last);
}
frame = 0;
const box = [[
(image.shape[1] * zoom[0]) / image.shape[1],
(image.shape[2] * zoom[1]) / image.shape[2],