mirror of https://github.com/vladmandic/human
84 lines
2.8 KiB
TypeScript
84 lines
2.8 KiB
TypeScript
![]() |
import { log } from '../log';
|
||
![]() |
import * as tf from '../../dist/tfjs.esm.js';
|
||
![]() |
import * as profile from '../profile.js';
|
||
![]() |
|
||
![]() |
const models = { gender: null };
|
||
![]() |
let last = { gender: '' };
|
||
![]() |
let skipped = Number.MAX_SAFE_INTEGER;
|
||
![]() |
let alternative = false;
|
||
![]() |
|
||
|
// tuning values
|
||
![]() |
const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale
|
||
![]() |
|
||
![]() |
export async function load(config) {
|
||
![]() |
if (!models.gender) {
|
||
![]() |
models.gender = await tf.loadGraphModel(config.face.gender.modelPath);
|
||
![]() |
alternative = models.gender.inputs[0].shape[3] === 1;
|
||
![]() |
log(`load model: ${config.face.gender.modelPath.match(/\/(.*)\./)[1]}`);
|
||
![]() |
}
|
||
![]() |
return models.gender;
|
||
|
}
|
||
|
|
||
![]() |
export async function predict(image, config) {
|
||
![]() |
if (!models.gender) return null;
|
||
![]() |
if ((skipped < config.face.gender.skipFrames) && config.videoOptimized && last.gender !== '') {
|
||
|
skipped++;
|
||
![]() |
return last;
|
||
|
}
|
||
![]() |
if (config.videoOptimized) skipped = 0;
|
||
|
else skipped = Number.MAX_SAFE_INTEGER;
|
||
![]() |
return new Promise(async (resolve) => {
|
||
![]() |
const resize = tf.image.resizeBilinear(image, [config.face.gender.inputSize, config.face.gender.inputSize], false);
|
||
![]() |
let enhance;
|
||
|
if (alternative) {
|
||
|
enhance = tf.tidy(() => {
|
||
|
const [red, green, blue] = tf.split(resize, 3, 3);
|
||
|
const redNorm = tf.mul(red, rgb[0]);
|
||
|
const greenNorm = tf.mul(green, rgb[1]);
|
||
|
const blueNorm = tf.mul(blue, rgb[2]);
|
||
|
const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);
|
||
|
return grayscale.sub(0.5).mul(2);
|
||
|
});
|
||
|
} else {
|
||
|
enhance = tf.mul(resize, [255.0]);
|
||
|
}
|
||
![]() |
tf.dispose(resize);
|
||
|
|
||
|
let genderT;
|
||
![]() |
const obj = { gender: undefined, confidence: undefined };
|
||
![]() |
|
||
|
if (!config.profile) {
|
||
|
if (config.face.gender.enabled) genderT = await models.gender.predict(enhance);
|
||
|
} else {
|
||
|
const profileGender = config.face.gender.enabled ? await tf.profile(() => models.gender.predict(enhance)) : {};
|
||
|
genderT = profileGender.result.clone();
|
||
|
profileGender.result.dispose();
|
||
|
profile.run('gender', profileGender);
|
||
|
}
|
||
|
enhance.dispose();
|
||
|
|
||
|
if (genderT) {
|
||
|
const data = genderT.dataSync();
|
||
![]() |
if (alternative) {
|
||
|
// returns two values 0..1, bigger one is prediction
|
||
|
const confidence = Math.trunc(100 * Math.abs(data[0] - data[1])) / 100;
|
||
|
if (confidence > config.face.gender.minConfidence) {
|
||
|
obj.gender = data[0] > data[1] ? 'female' : 'male';
|
||
|
obj.confidence = confidence;
|
||
|
}
|
||
|
} else {
|
||
|
// returns one value 0..1, .5 is prediction threshold
|
||
|
const confidence = Math.trunc(200 * Math.abs((data[0] - 0.5))) / 100;
|
||
|
if (confidence > config.face.gender.minConfidence) {
|
||
|
obj.gender = data[0] <= 0.5 ? 'female' : 'male';
|
||
![]() |
obj.confidence = Math.min(0.99, confidence);
|
||
![]() |
}
|
||
![]() |
}
|
||
|
}
|
||
|
genderT.dispose();
|
||
|
|
||
|
last = obj;
|
||
|
resolve(obj);
|
||
|
});
|
||
|
}
|