2021-02-08 17:39:09 +01:00
|
|
|
import { log } from '../log';
|
2020-11-18 14:26:28 +01:00
|
|
|
import * as tf from '../../dist/tfjs.esm.js';
|
2021-02-13 15:16:41 +01:00
|
|
|
import * as profile from '../profile';
|
2020-11-13 22:13:35 +01:00
|
|
|
|
2021-03-11 16:26:14 +01:00
|
|
|
// original: https://github.com/sirius-ai/MobileFaceNet_TF
|
|
|
|
// modified: https://github.com/sirius-ai/MobileFaceNet_TF/issues/46
|
|
|
|
// download: https://github.com/sirius-ai/MobileFaceNet_TF/files/3551493/FaceMobileNet192_train_false.zip
|
2020-11-13 22:13:35 +01:00
|
|
|
|
2021-02-08 18:47:38 +01:00
|
|
|
let model;
|
2020-11-13 22:13:35 +01:00
|
|
|
|
2021-02-08 17:39:09 +01:00
|
|
|
export async function load(config) {
|
2021-02-08 18:47:38 +01:00
|
|
|
if (!model) {
|
|
|
|
model = await tf.loadGraphModel(config.face.embedding.modelPath);
|
2021-03-02 17:27:42 +01:00
|
|
|
if (config.debug) log(`load model: ${config.face.embedding.modelPath.match(/\/(.*)\./)[1]}`);
|
2020-11-13 22:13:35 +01:00
|
|
|
}
|
2021-02-08 18:47:38 +01:00
|
|
|
return model;
|
2020-11-13 22:13:35 +01:00
|
|
|
}
|
|
|
|
|
2021-03-11 19:31:36 +01:00
|
|
|
export function simmilarity(embedding1, embedding2, order = 2) {
|
2021-02-21 20:46:50 +01:00
|
|
|
if (!embedding1 || !embedding2) return 0;
|
2021-02-21 19:34:26 +01:00
|
|
|
if (embedding1?.length === 0 || embedding2?.length === 0) return 0;
|
2020-11-13 22:13:35 +01:00
|
|
|
if (embedding1?.length !== embedding2?.length) return 0;
|
2020-11-23 14:40:17 +01:00
|
|
|
// general minkowski distance
|
|
|
|
// euclidean distance is limited case where order is 2
|
2021-03-12 00:26:04 +01:00
|
|
|
const distance = embedding1
|
|
|
|
.map((val, i) => (Math.abs(embedding1[i] - embedding2[i]) ** order)) // distance squared
|
|
|
|
.reduce((sum, now) => (sum + now), 0) // sum all distances
|
|
|
|
** (1 / order); // get root of
|
2021-03-12 04:04:44 +01:00
|
|
|
const res = Math.max(Math.trunc(1000 * (1 - (50 * distance))) / 1000, 0);
|
2021-03-11 19:31:36 +01:00
|
|
|
return res;
|
2020-11-13 22:13:35 +01:00
|
|
|
}
|
|
|
|
|
2021-03-12 00:26:04 +01:00
|
|
|
export async function predict(input, config) {
|
2021-02-08 18:47:38 +01:00
|
|
|
if (!model) return null;
|
2020-11-13 22:13:35 +01:00
|
|
|
return new Promise(async (resolve) => {
|
2021-03-12 00:26:04 +01:00
|
|
|
const image = tf.tidy(() => {
|
|
|
|
const data = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); // input is already normalized to 0..1
|
2021-03-12 04:04:44 +01:00
|
|
|
const box = [[0.05, 0.15, 0.90, 0.85]]; // top, left, bottom, right
|
|
|
|
const crop = tf.image.cropAndResize(data, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]); // optionally do a tight box crop
|
|
|
|
// const norm = crop.sub(crop.min()).sub(0.5); // trick to normalize around image mean value
|
|
|
|
const norm = crop.sub(0.5);
|
2021-03-12 00:26:04 +01:00
|
|
|
return norm;
|
|
|
|
});
|
2021-02-08 18:47:38 +01:00
|
|
|
let data: Array<[]> = [];
|
2020-11-13 22:13:35 +01:00
|
|
|
if (config.face.embedding.enabled) {
|
|
|
|
if (!config.profile) {
|
2021-03-12 00:26:04 +01:00
|
|
|
const res = await model.predict({ img_inputs: image });
|
2021-03-11 19:31:36 +01:00
|
|
|
const scaled = tf.tidy(() => {
|
2021-03-12 00:26:04 +01:00
|
|
|
const l2 = res.norm('euclidean');
|
|
|
|
const scale = res.div(l2);
|
2021-03-11 19:31:36 +01:00
|
|
|
return scale;
|
|
|
|
});
|
2021-03-12 04:04:44 +01:00
|
|
|
data = scaled.dataSync(); // convert object array to standard array
|
2021-03-12 00:26:04 +01:00
|
|
|
tf.dispose(scaled);
|
2021-03-11 19:31:36 +01:00
|
|
|
tf.dispose(res);
|
2020-11-13 22:13:35 +01:00
|
|
|
} else {
|
2021-03-12 00:26:04 +01:00
|
|
|
const profileData = await tf.profile(() => model.predict({ img_inputs: image }));
|
2020-11-13 22:13:35 +01:00
|
|
|
data = [...profileData.result.dataSync()];
|
|
|
|
profileData.result.dispose();
|
|
|
|
profile.run('emotion', profileData);
|
|
|
|
}
|
|
|
|
}
|
2021-03-12 00:26:04 +01:00
|
|
|
image.dispose();
|
2020-11-13 22:13:35 +01:00
|
|
|
resolve(data);
|
|
|
|
});
|
|
|
|
}
|