human/src/embedding/embedding.ts

50 lines
1.9 KiB
TypeScript
Raw Normal View History

2021-02-08 17:39:09 +01:00
import { log } from '../log';
2020-11-18 14:26:28 +01:00
import * as tf from '../../dist/tfjs.esm.js';
2020-11-13 22:13:35 +01:00
import * as profile from '../profile.js';
// based on https://github.com/sirius-ai/MobileFaceNet_TF
// model converted from https://github.com/sirius-ai/MobileFaceNet_TF/files/3551493/FaceMobileNet192_train_false.zip
2021-02-08 17:39:09 +01:00
const models = { embedding: null };
2020-11-13 22:13:35 +01:00
2021-02-08 17:39:09 +01:00
export async function load(config) {
2020-11-13 22:13:35 +01:00
if (!models.embedding) {
2020-11-17 16:18:15 +01:00
models.embedding = await tf.loadGraphModel(config.face.embedding.modelPath);
log(`load model: ${config.face.embedding.modelPath.match(/\/(.*)\./)[1]}`);
2020-11-13 22:13:35 +01:00
}
return models.embedding;
}
2021-02-08 17:39:09 +01:00
export function simmilarity(embedding1, embedding2) {
2020-11-13 22:13:35 +01:00
if (embedding1?.length !== embedding2?.length) return 0;
2020-11-23 14:40:17 +01:00
// general minkowski distance
// euclidean distance is limited case where order is 2
const order = 2;
const distance = 10.0 * ((embedding1.map((val, i) => (val - embedding2[i])).reduce((dist, diff) => dist + (diff ** order), 0) ** (1 / order)));
return (Math.trunc(1000 * (1 - distance)) / 1000);
2020-11-13 22:13:35 +01:00
}
2021-02-08 17:39:09 +01:00
export async function predict(image, config) {
2020-11-13 22:13:35 +01:00
if (!models.embedding) return null;
return new Promise(async (resolve) => {
const resize = tf.image.resizeBilinear(image, [config.face.embedding.inputSize, config.face.embedding.inputSize], false);
// const normalize = tf.tidy(() => resize.div(127.5).sub(0.5)); // this is -0.5...0.5 ???
let data = [];
if (config.face.embedding.enabled) {
if (!config.profile) {
const embeddingT = await models.embedding.predict({ img_inputs: resize });
data = [...embeddingT.dataSync()]; // convert object array to standard array
tf.dispose(embeddingT);
} else {
const profileData = await tf.profile(() => models.embedding.predict({ img_inputs: resize }));
data = [...profileData.result.dataSync()];
profileData.result.dispose();
profile.run('emotion', profileData);
}
}
resize.dispose();
// normalize.dispose();
resolve(data);
});
}