human/src/embedding/embedding.ts

52 lines
2.1 KiB
TypeScript
Raw Normal View History

2021-02-08 17:39:09 +01:00
import { log } from '../log';
2020-11-18 14:26:28 +01:00
import * as tf from '../../dist/tfjs.esm.js';
2021-02-13 15:16:41 +01:00
import * as profile from '../profile';
2020-11-13 22:13:35 +01:00
2021-03-11 16:26:14 +01:00
// original: https://github.com/sirius-ai/MobileFaceNet_TF
// modified: https://github.com/sirius-ai/MobileFaceNet_TF/issues/46
// download: https://github.com/sirius-ai/MobileFaceNet_TF/files/3551493/FaceMobileNet192_train_false.zip
2020-11-13 22:13:35 +01:00
2021-02-08 18:47:38 +01:00
let model;
2020-11-13 22:13:35 +01:00
2021-02-08 17:39:09 +01:00
export async function load(config) {
2021-02-08 18:47:38 +01:00
if (!model) {
model = await tf.loadGraphModel(config.face.embedding.modelPath);
2021-03-02 17:27:42 +01:00
if (config.debug) log(`load model: ${config.face.embedding.modelPath.match(/\/(.*)\./)[1]}`);
2020-11-13 22:13:35 +01:00
}
2021-02-08 18:47:38 +01:00
return model;
2020-11-13 22:13:35 +01:00
}
2021-02-08 17:39:09 +01:00
export function simmilarity(embedding1, embedding2) {
2021-02-21 20:46:50 +01:00
if (!embedding1 || !embedding2) return 0;
2021-02-21 19:34:26 +01:00
if (embedding1?.length === 0 || embedding2?.length === 0) return 0;
2020-11-13 22:13:35 +01:00
if (embedding1?.length !== embedding2?.length) return 0;
2020-11-23 14:40:17 +01:00
// general minkowski distance
// euclidean distance is limited case where order is 2
const order = 2;
const distance = 10.0 * ((embedding1.map((val, i) => (val - embedding2[i])).reduce((dist, diff) => dist + (diff ** order), 0) ** (1 / order)));
return (Math.trunc(1000 * (1 - distance)) / 1000);
2020-11-13 22:13:35 +01:00
}
2021-02-08 17:39:09 +01:00
export async function predict(image, config) {
2021-02-08 18:47:38 +01:00
if (!model) return null;
2020-11-13 22:13:35 +01:00
return new Promise(async (resolve) => {
const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); // input is already normalized to 0..1
// const mean = resize.mean();
// const whiten = resize.sub(mean); // normalizes with mean value being at point 0
2021-02-08 18:47:38 +01:00
let data: Array<[]> = [];
2020-11-13 22:13:35 +01:00
if (config.face.embedding.enabled) {
if (!config.profile) {
2021-02-08 18:47:38 +01:00
const embeddingT = await model.predict({ img_inputs: resize });
2020-11-13 22:13:35 +01:00
data = [...embeddingT.dataSync()]; // convert object array to standard array
tf.dispose(embeddingT);
} else {
2021-02-08 18:47:38 +01:00
const profileData = await tf.profile(() => model.predict({ img_inputs: resize }));
2020-11-13 22:13:35 +01:00
data = [...profileData.result.dataSync()];
profileData.result.dispose();
profile.run('emotion', profileData);
}
}
resolve(data);
});
}