human/src/image/enhance.ts

34 lines
1.8 KiB
TypeScript
Raw Normal View History

2021-11-05 20:09:54 +01:00
/**
* Image enhancements
*/
2022-10-17 02:28:57 +02:00
import * as tf from 'dist/tfjs.esm.js';
2021-11-05 20:09:54 +01:00
import type { Tensor } from '../exports';
2021-11-06 15:21:51 +01:00
export async function histogramEqualization(inputImage: Tensor): Promise<Tensor> {
const squeeze = inputImage.shape.length === 4 ? tf.squeeze(inputImage) : inputImage;
2022-11-11 02:16:40 +01:00
const rgb = tf.split(squeeze, 3, 2);
const min: Tensor[] = [tf.min(rgb[0]), tf.min(rgb[1]), tf.min(rgb[2])]; // minimum pixel value per channel T[]
const max: Tensor[] = [tf.max(rgb[0]), tf.max(rgb[1]), tf.max(rgb[2])]; // maximum pixel value per channel T[]
// const absMin = await Promise.all(min.map((channel) => channel.data())); // minimum pixel value per channel A[]
// const minValue = Math.min(absMax[0][0], absMin[1][0], absMin[2][0]);
const absMax = await Promise.all(max.map((channel) => channel.data())); // maximum pixel value per channel A[]
const maxValue = Math.max(absMax[0][0], absMax[1][0], absMax[2][0]);
const maxRange = maxValue > 1 ? 255 : 1;
const factor = maxRange / maxValue;
2022-11-11 18:33:40 +01:00
let final: Tensor;
if (factor > 1) {
const sub = [tf.sub(rgb[0], min[0]), tf.sub(rgb[1], min[1]), tf.sub(rgb[2], min[2])]; // channels offset by min values
const range = [tf.sub(max[0], min[0]), tf.sub(max[1], min[1]), tf.sub(max[2], min[2])]; // channel ranges
// const fact = [tf.div(maxRange, absMax[0]), tf.div(maxRange, absMax[1]), tf.div(maxRange, absMax[1])]; // factors between
const enh = [tf.mul(sub[0], factor), tf.mul(sub[1], factor), tf.mul(sub[2], factor)];
const stack = tf.stack([enh[0], enh[1], enh[2]], 2);
final = tf.reshape(stack, [1, squeeze.shape[0] || 0, squeeze.shape[1] || 0, 3]);
tf.dispose([...sub, ...range, ...enh]);
} else {
final = tf.expandDims(squeeze, 0);
}
tf.dispose([...rgb, ...min, ...max, rgb, squeeze, inputImage]);
return final;
2021-11-05 20:09:54 +01:00
}