/** * Image enhancements */ import * as tf from 'dist/tfjs.esm.js'; import type { Tensor } from '../exports'; export async function histogramEqualization(inputImage: Tensor): Promise { const squeeze = inputImage.shape.length === 4 ? tf.squeeze(inputImage) : inputImage; const rgb = tf.split(squeeze, 3, 2); const min: Tensor[] = [tf.min(rgb[0]), tf.min(rgb[1]), tf.min(rgb[2])]; // minimum pixel value per channel T[] const max: Tensor[] = [tf.max(rgb[0]), tf.max(rgb[1]), tf.max(rgb[2])]; // maximum pixel value per channel T[] // const absMin = await Promise.all(min.map((channel) => channel.data())); // minimum pixel value per channel A[] // const minValue = Math.min(absMax[0][0], absMin[1][0], absMin[2][0]); const absMax = await Promise.all(max.map((channel) => channel.data())); // maximum pixel value per channel A[] const maxValue = Math.max(absMax[0][0], absMax[1][0], absMax[2][0]); const maxRange = maxValue > 1 ? 255 : 1; const factor = maxRange / maxValue; let final: Tensor; if (factor > 1) { const sub = [tf.sub(rgb[0], min[0]), tf.sub(rgb[1], min[1]), tf.sub(rgb[2], min[2])]; // channels offset by min values const range = [tf.sub(max[0], min[0]), tf.sub(max[1], min[1]), tf.sub(max[2], min[2])]; // channel ranges // const fact = [tf.div(maxRange, absMax[0]), tf.div(maxRange, absMax[1]), tf.div(maxRange, absMax[1])]; // factors between const enh = [tf.mul(sub[0], factor), tf.mul(sub[1], factor), tf.mul(sub[2], factor)]; const stack = tf.stack([enh[0], enh[1], enh[2]], 2); final = tf.reshape(stack, [1, squeeze.shape[0] || 0, squeeze.shape[1] || 0, 3]); tf.dispose([...sub, ...range, ...enh]); } else { final = tf.expandDims(squeeze, 0); } tf.dispose([...rgb, ...min, ...max, rgb, squeeze, inputImage]); return final; }