mirror of https://github.com/vladmandic/human
21 lines
1006 B
TypeScript
21 lines
1006 B
TypeScript
![]() |
/**
|
||
|
* Image enhancements
|
||
|
*/
|
||
|
|
||
|
import * as tf from '../../dist/tfjs.esm.js';
|
||
|
import type { Tensor } from '../exports';
|
||
|
|
||
|
export function histogramEqualization(input: Tensor): Tensor {
|
||
|
const channels = tf.split(input, 3, 2);
|
||
|
const min: Tensor[] = [tf.min(channels[0]), tf.min(channels[1]), tf.min(channels[2])];
|
||
|
const max: Tensor[] = [tf.max(channels[0]), tf.max(channels[1]), tf.max(channels[2])];
|
||
|
const sub = [tf.sub(channels[0], min[0]), tf.sub(channels[1], min[1]), tf.sub(channels[2], min[2])];
|
||
|
const range = [tf.sub(max[0], min[0]), tf.sub(max[1], min[1]), tf.sub(max[2], min[2])];
|
||
|
const fact = [tf.div(255, range[0]), tf.div(255, range[1]), tf.div(255, range[2])];
|
||
|
const enh = [tf.mul(sub[0], fact[0]), tf.mul(sub[1], fact[1]), tf.mul(sub[2], fact[2])];
|
||
|
const rgb = tf.stack([enh[0], enh[1], enh[2]], 2);
|
||
|
const reshape = tf.reshape(rgb, [1, input.shape[0], input.shape[1], 3]);
|
||
|
tf.dispose([...channels, ...min, ...max, ...sub, ...range, ...fact, ...enh, rgb]);
|
||
|
return reshape;
|
||
|
}
|