human/src/gear/ssrnet-gender.ts

106 lines
4.0 KiB
TypeScript
Raw Normal View History

2021-05-25 14:58:20 +02:00
/**
* Gender model implementation
*
* Based on: [**SSR-Net**](https://github.com/shamangary/SSR-Net)
*
* Obsolete and replaced by `faceres` that performs age/gender/descriptor analysis
2021-05-25 14:58:20 +02:00
*/
2021-09-27 19:58:13 +02:00
import { log, join } from '../util/util';
2020-11-18 14:26:28 +01:00
import * as tf from '../../dist/tfjs.esm.js';
2021-09-13 19:28:35 +02:00
import type { Config } from '../config';
import type { GraphModel, Tensor } from '../tfjs/types';
2021-09-27 19:58:13 +02:00
import { env } from '../util/env';
2020-11-06 17:39:39 +01:00
2021-09-17 17:23:00 +02:00
let model: GraphModel | null;
2020-11-06 17:39:39 +01:00
let last = { gender: '' };
2020-12-11 16:11:49 +01:00
let skipped = Number.MAX_SAFE_INTEGER;
2020-11-06 21:35:58 +01:00
let alternative = false;
2020-11-06 17:39:39 +01:00
// tuning values
2020-11-06 21:35:58 +01:00
const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale
2020-11-06 17:39:39 +01:00
// eslint-disable-next-line @typescript-eslint/no-explicit-any
export async function load(config: Config | any) {
2021-09-17 17:23:00 +02:00
if (env.initial) model = null;
2021-02-08 18:47:38 +01:00
if (!model) {
2021-08-17 14:51:17 +02:00
model = await tf.loadGraphModel(join(config.modelBasePath, config.face.gender.modelPath)) as unknown as GraphModel;
2021-06-07 02:34:29 +02:00
alternative = model.inputs[0].shape ? model.inputs[0]?.shape[3] === 1 : false;
if (!model || !model['modelUrl']) log('load model failed:', config.face.gender.modelPath);
else if (config.debug) log('load model:', model['modelUrl']);
} else if (config.debug) log('cached model:', model['modelUrl']);
2021-02-08 18:47:38 +01:00
return model;
2020-11-06 17:39:39 +01:00
}
// eslint-disable-next-line @typescript-eslint/no-explicit-any
export async function predict(image: Tensor, config: Config | any) {
2021-02-08 18:47:38 +01:00
if (!model) return null;
if ((skipped < config.face.gender.skipFrames) && config.skipFrame && last.gender !== '') {
2020-12-11 16:11:49 +01:00
skipped++;
2020-11-06 19:50:16 +01:00
return last;
}
skipped = 0;
2020-11-06 17:39:39 +01:00
return new Promise(async (resolve) => {
2021-09-17 17:23:00 +02:00
if (!model?.inputs[0].shape) return;
2021-03-11 16:26:14 +01:00
const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);
2020-11-06 21:35:58 +01:00
let enhance;
if (alternative) {
enhance = tf.tidy(() => {
const [red, green, blue] = tf.split(resize, 3, 3);
const redNorm = tf.mul(red, rgb[0]);
const greenNorm = tf.mul(green, rgb[1]);
const blueNorm = tf.mul(blue, rgb[2]);
const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);
2021-07-29 22:06:03 +02:00
const normalize = tf.mul(tf.sub(grayscale, 0.5), 2); // range grayscale:-1..1
return normalize;
2020-11-06 21:35:58 +01:00
});
} else {
enhance = tf.mul(resize, [255.0]); // range RGB:0..255
2020-11-06 21:35:58 +01:00
}
2020-11-06 17:39:39 +01:00
tf.dispose(resize);
let genderT;
2021-02-08 18:47:38 +01:00
const obj = { gender: '', confidence: 0 };
2020-11-06 17:39:39 +01:00
2021-04-25 19:16:04 +02:00
if (config.face.gender.enabled) genderT = await model.predict(enhance);
2021-07-29 22:06:03 +02:00
tf.dispose(enhance);
2020-11-06 17:39:39 +01:00
if (genderT) {
2021-03-21 19:18:51 +01:00
if (!Array.isArray(genderT)) {
2021-08-12 15:31:16 +02:00
const data = await genderT.data();
2021-03-21 19:18:51 +01:00
if (alternative) {
// returns two values 0..1, bigger one is prediction
if (data[0] > config.face.gender.minConfidence || data[1] > config.face.gender.minConfidence) {
obj.gender = data[0] > data[1] ? 'female' : 'male';
obj.confidence = data[0] > data[1] ? (Math.trunc(100 * data[0]) / 100) : (Math.trunc(100 * data[1]) / 100);
}
} else {
// returns one value 0..1, .5 is prediction threshold
const confidence = Math.trunc(200 * Math.abs((data[0] - 0.5))) / 100;
if (confidence > config.face.gender.minConfidence) {
obj.gender = data[0] <= 0.5 ? 'female' : 'male';
obj.confidence = Math.min(0.99, confidence);
}
2020-11-06 21:35:58 +01:00
}
2021-07-29 22:06:03 +02:00
tf.dispose(genderT);
2020-11-06 21:35:58 +01:00
} else {
2021-08-12 15:31:16 +02:00
const gender = await genderT[0].data();
2021-03-21 19:18:51 +01:00
const confidence = Math.trunc(200 * Math.abs((gender[0] - 0.5))) / 100;
2020-11-06 21:35:58 +01:00
if (confidence > config.face.gender.minConfidence) {
2021-03-21 19:18:51 +01:00
obj.gender = gender[0] <= 0.5 ? 'female' : 'male';
2020-11-12 04:40:05 +01:00
obj.confidence = Math.min(0.99, confidence);
2020-11-06 21:35:58 +01:00
}
2021-03-21 19:18:51 +01:00
/*
2021-08-14 17:16:26 +02:00
let age = (await genderT[1].argMax(1).data())[0];
const all = await genderT[1].data();
2021-03-21 19:18:51 +01:00
age = Math.round(all[age - 1] > all[age + 1] ? 10 * age - 100 * all[age - 1] : 10 * age + 100 * all[age + 1]) / 10;
2021-08-14 17:16:26 +02:00
const descriptor = await genderT[1].data();
2021-03-21 19:18:51 +01:00
*/
genderT.forEach((t) => tf.dispose(t));
2020-11-06 17:39:39 +01:00
}
}
last = obj;
resolve(obj);
});
}