mirror of https://github.com/vladmandic/human
improved caching and warmup
parent
b48047109b
commit
8df844cd7b
12
config.js
12
config.js
|
@ -26,7 +26,9 @@ export default {
|
|||
// must be disabled for images
|
||||
// basically this skips object box boundary detection for every n frames
|
||||
// while maintaining in-box detection since objects cannot move that fast
|
||||
|
||||
warmup: 'full', // what to use for human.warmup(), can be 'none', 'face', 'full'
|
||||
// warmup pre-initializes all models for faster inference but can take
|
||||
// significant time on startup
|
||||
filter: {
|
||||
enabled: true, // enable image pre-processing filters
|
||||
width: 0, // resize input width
|
||||
|
@ -69,7 +71,7 @@ export default {
|
|||
// false means higher performance, but incorrect mesh mapping if face angle is above 20 degrees
|
||||
maxFaces: 10, // maximum number of faces detected in the input
|
||||
// should be set to the minimum number for performance
|
||||
skipFrames: 20, // how many frames to go without re-running the face bounding box detector
|
||||
skipFrames: 11, // how many frames to go without re-running the face bounding box detector
|
||||
// only used for video inputs
|
||||
// e.g., if model is running st 25 FPS, we can re-use existing bounding
|
||||
// box for updated face analysis as the head probably hasn't moved much
|
||||
|
@ -99,7 +101,7 @@ export default {
|
|||
modelPath: '../models/age-ssrnet-imdb.json', // can be 'age-ssrnet-imdb' or 'age-ssrnet-wiki'
|
||||
// which determines training set for model
|
||||
inputSize: 64, // fixed value
|
||||
skipFrames: 41, // how many frames to go without re-running the detector
|
||||
skipFrames: 31, // how many frames to go without re-running the detector
|
||||
// only used for video inputs
|
||||
},
|
||||
|
||||
|
@ -108,7 +110,7 @@ export default {
|
|||
minConfidence: 0.1, // threshold for discarding a prediction
|
||||
modelPath: '../models/gender-ssrnet-imdb.json', // can be 'gender', 'gender-ssrnet-imdb' or 'gender-ssrnet-wiki'
|
||||
inputSize: 64, // fixed value
|
||||
skipFrames: 42, // how many frames to go without re-running the detector
|
||||
skipFrames: 41, // how many frames to go without re-running the detector
|
||||
// only used for video inputs
|
||||
},
|
||||
|
||||
|
@ -143,7 +145,7 @@ export default {
|
|||
rotation: false, // use best-guess rotated hand image or just box with rotation as-is
|
||||
// false means higher performance, but incorrect finger mapping if hand is inverted
|
||||
inputSize: 256, // fixed value
|
||||
skipFrames: 19, // how many frames to go without re-running the hand bounding box detector
|
||||
skipFrames: 12, // how many frames to go without re-running the hand bounding box detector
|
||||
// only used for video inputs
|
||||
// e.g., if model is running st 25 FPS, we can re-use existing bounding
|
||||
// box for updated hand skeleton analysis as the hand probably
|
||||
|
|
|
@ -37,7 +37,6 @@ const ui = {
|
|||
console: true,
|
||||
maxFPSframes: 10,
|
||||
modelsPreload: true,
|
||||
modelsWarmup: true,
|
||||
menuWidth: 0,
|
||||
menuHeight: 0,
|
||||
camera: {},
|
||||
|
@ -518,7 +517,7 @@ async function main() {
|
|||
status('loading');
|
||||
await human.load(userConfig); // this is not required, just pre-loads all models
|
||||
}
|
||||
if (ui.modelsWarmup && !ui.useWorker) {
|
||||
if (!ui.useWorker) {
|
||||
status('initializing');
|
||||
await human.warmup(userConfig); // this is not required, just pre-warms all models for faster initial inference
|
||||
}
|
||||
|
|
|
@ -4,7 +4,7 @@ import * as profile from '../profile.js';
|
|||
|
||||
const models = {};
|
||||
let last = { age: 0 };
|
||||
let frame = Number.MAX_SAFE_INTEGER;
|
||||
let skipped = Number.MAX_SAFE_INTEGER;
|
||||
|
||||
async function load(config) {
|
||||
if (!models.age) {
|
||||
|
@ -16,11 +16,12 @@ async function load(config) {
|
|||
|
||||
async function predict(image, config) {
|
||||
if (!models.age) return null;
|
||||
if ((frame < config.face.age.skipFrames) && config.videoOptimized && last.age && (last.age > 0)) {
|
||||
frame += 1;
|
||||
if ((skipped < config.face.age.skipFrames) && config.videoOptimized && last.age && (last.age > 0)) {
|
||||
skipped++;
|
||||
return last;
|
||||
}
|
||||
frame = 0;
|
||||
if (config.videoOptimized) skipped = 0;
|
||||
else skipped = Number.MAX_SAFE_INTEGER;
|
||||
return new Promise(async (resolve) => {
|
||||
/*
|
||||
const zoom = [0, 0]; // 0..1 meaning 0%..100%
|
||||
|
|
|
@ -5,7 +5,7 @@ import * as profile from '../profile.js';
|
|||
const annotations = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surpise', 'neutral'];
|
||||
const models = {};
|
||||
let last = [];
|
||||
let frame = Number.MAX_SAFE_INTEGER;
|
||||
let skipped = Number.MAX_SAFE_INTEGER;
|
||||
|
||||
// tuning values
|
||||
const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale
|
||||
|
@ -21,11 +21,12 @@ async function load(config) {
|
|||
|
||||
async function predict(image, config) {
|
||||
if (!models.emotion) return null;
|
||||
if ((frame < config.face.emotion.skipFrames) && config.videoOptimized && (last.length > 0)) {
|
||||
frame += 1;
|
||||
if ((skipped < config.face.emotion.skipFrames) && config.videoOptimized && (last.length > 0)) {
|
||||
skipped++;
|
||||
return last;
|
||||
}
|
||||
frame = 0;
|
||||
if (config.videoOptimized) skipped = 0;
|
||||
else skipped = Number.MAX_SAFE_INTEGER;
|
||||
return new Promise(async (resolve) => {
|
||||
/*
|
||||
const zoom = [0, 0]; // 0..1 meaning 0%..100%
|
||||
|
|
|
@ -4,7 +4,7 @@ import * as profile from '../profile.js';
|
|||
|
||||
const models = {};
|
||||
let last = { gender: '' };
|
||||
let frame = Number.MAX_SAFE_INTEGER;
|
||||
let skipped = Number.MAX_SAFE_INTEGER;
|
||||
let alternative = false;
|
||||
|
||||
// tuning values
|
||||
|
@ -21,22 +21,13 @@ async function load(config) {
|
|||
|
||||
async function predict(image, config) {
|
||||
if (!models.gender) return null;
|
||||
if ((frame < config.face.gender.skipFrames) && config.videoOptimized && last.gender !== '') {
|
||||
frame += 1;
|
||||
if ((skipped < config.face.gender.skipFrames) && config.videoOptimized && last.gender !== '') {
|
||||
skipped++;
|
||||
return last;
|
||||
}
|
||||
frame = 0;
|
||||
if (config.videoOptimized) skipped = 0;
|
||||
else skipped = Number.MAX_SAFE_INTEGER;
|
||||
return new Promise(async (resolve) => {
|
||||
/*
|
||||
const zoom = [0, 0]; // 0..1 meaning 0%..100%
|
||||
const box = [[
|
||||
(image.shape[1] * zoom[0]) / image.shape[1],
|
||||
(image.shape[2] * zoom[1]) / image.shape[2],
|
||||
(image.shape[1] - (image.shape[1] * zoom[0])) / image.shape[1],
|
||||
(image.shape[2] - (image.shape[2] * zoom[1])) / image.shape[2],
|
||||
]];
|
||||
const resize = tf.image.cropAndResize(image, box, [0], [config.face.gender.inputSize, config.face.gender.inputSize]);
|
||||
*/
|
||||
const resize = tf.image.resizeBilinear(image, [config.face.gender.inputSize, config.face.gender.inputSize], false);
|
||||
let enhance;
|
||||
if (alternative) {
|
||||
|
@ -51,7 +42,6 @@ async function predict(image, config) {
|
|||
} else {
|
||||
enhance = tf.mul(resize, [255.0]);
|
||||
}
|
||||
// const resize = tf.image.resizeBilinear(image, [config.face.age.inputSize, config.face.age.inputSize], false);
|
||||
tf.dispose(resize);
|
||||
|
||||
let genderT;
|
||||
|
|
|
@ -81,8 +81,8 @@ class HandDetector {
|
|||
const image = tf.tidy(() => input.resizeBilinear([config.hand.inputSize, config.hand.inputSize]).div(127.5).sub(1));
|
||||
const predictions = await this.getBoxes(image, config);
|
||||
image.dispose();
|
||||
if (!predictions || predictions.length === 0) return null;
|
||||
const hands = [];
|
||||
if (!predictions || predictions.length === 0) return hands;
|
||||
for (const prediction of predictions) {
|
||||
const boxes = prediction.box.dataSync();
|
||||
const startPoint = boxes.slice(0, 2);
|
||||
|
|
|
@ -35,7 +35,7 @@ class HandPipeline {
|
|||
this.landmarkDetector = landmarkDetector;
|
||||
this.inputSize = inputSize;
|
||||
this.storedBoxes = [];
|
||||
this.skipped = 1000;
|
||||
this.skipped = 0;
|
||||
this.detectedHands = 0;
|
||||
}
|
||||
|
||||
|
@ -84,16 +84,15 @@ class HandPipeline {
|
|||
}
|
||||
|
||||
async estimateHands(image, config) {
|
||||
this.skipped++;
|
||||
let useFreshBox = false;
|
||||
|
||||
// run new detector every skipFrames unless we only want box to start with
|
||||
let boxes;
|
||||
if ((this.skipped > config.hand.skipFrames) || !config.hand.landmarks || !config.videoOptimized) {
|
||||
if ((this.skipped === 0) || (this.skipped > config.hand.skipFrames) || !config.hand.landmarks || !config.videoOptimized) {
|
||||
boxes = await this.handDetector.estimateHandBounds(image, config);
|
||||
// don't reset on test image
|
||||
if ((image.shape[1] !== 255) && (image.shape[2] !== 255)) this.skipped = 0;
|
||||
this.skipped = 0;
|
||||
}
|
||||
if (config.videoOptimized) this.skipped++;
|
||||
|
||||
// if detector result count doesn't match current working set, use it to reset current working set
|
||||
if (boxes && (boxes.length > 0) && ((boxes.length !== this.detectedHands) && (this.detectedHands !== config.hand.maxHands) || !config.hand.landmarks)) {
|
||||
|
@ -103,7 +102,7 @@ class HandPipeline {
|
|||
if (this.storedBoxes.length > 0) useFreshBox = true;
|
||||
}
|
||||
const hands = [];
|
||||
// log(`skipped: ${this.skipped} max: ${config.hand.maxHands} detected: ${this.detectedHands} stored: ${this.storedBoxes.length} new: ${boxes?.length}`);
|
||||
// log('hand', `skipped: ${this.skipped} max: ${config.hand.maxHands} detected: ${this.detectedHands} stored: ${this.storedBoxes.length} new: ${boxes?.length}`);
|
||||
|
||||
// go through working set of boxes
|
||||
for (let i = 0; i < this.storedBoxes.length; i++) {
|
||||
|
|
38
src/human.js
38
src/human.js
|
@ -418,26 +418,42 @@ class Human {
|
|||
|
||||
async warmup(userConfig) {
|
||||
if (userConfig) this.config = mergeDeep(this.config, userConfig);
|
||||
const width = 256;
|
||||
const height = 256;
|
||||
const video = this.config.videoOptimized;
|
||||
this.config.videoOptimized = false;
|
||||
return new Promise((resolve) => {
|
||||
const img = new Image(width, height);
|
||||
const video = this.config.videoOptimized;
|
||||
this.config.videoOptimized = false;
|
||||
let src;
|
||||
let size;
|
||||
switch (this.config.warmup) {
|
||||
case 'face':
|
||||
size = 256;
|
||||
src = sample.face;
|
||||
break;
|
||||
case 'full':
|
||||
size = 1200;
|
||||
src = sample.body;
|
||||
break;
|
||||
default:
|
||||
size = 0;
|
||||
src = null;
|
||||
}
|
||||
const img = new Image(size, size);
|
||||
img.onload = () => {
|
||||
const canvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(width, height) : document.createElement('canvas');
|
||||
canvas.width = width;
|
||||
canvas.height = height;
|
||||
const canvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(size, size) : document.createElement('canvas');
|
||||
canvas.width = size;
|
||||
canvas.height = size;
|
||||
const ctx = canvas.getContext('2d');
|
||||
ctx.drawImage(img, 0, 0);
|
||||
const data = ctx.getImageData(0, 0, width, height);
|
||||
const data = ctx.getImageData(0, 0, size, size);
|
||||
const t0 = now();
|
||||
this.detect(data, config).then((warmup) => {
|
||||
log('Warmup', warmup);
|
||||
const t1 = now();
|
||||
log('Warmup', this.config.warmup, (t1 - t0), warmup);
|
||||
this.config.videoOptimized = video;
|
||||
resolve(warmup);
|
||||
});
|
||||
};
|
||||
img.src = sample.face;
|
||||
if (src) img.src = src;
|
||||
else resolve(null);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
|
2
wiki
2
wiki
|
@ -1 +1 @@
|
|||
Subproject commit 785bde4caa1a29d8bfe82a4ae987ffde1d9a0a73
|
||||
Subproject commit c4c8b30f6bf211ee267cf1884aaff9725f594631
|
Loading…
Reference in New Issue