import { log } from '../log'; import * as tf from '../../dist/tfjs.esm.js'; import * as profile from '../profile'; // original: https://github.com/sirius-ai/MobileFaceNet_TF // modified: https://github.com/sirius-ai/MobileFaceNet_TF/issues/46 // download: https://github.com/sirius-ai/MobileFaceNet_TF/files/3551493/FaceMobileNet192_train_false.zip let model; export async function load(config) { if (!model) { model = await tf.loadGraphModel(config.face.embedding.modelPath); if (config.debug) log(`load model: ${config.face.embedding.modelPath.match(/\/(.*)\./)[1]}`); } return model; } export function simmilarity(embedding1, embedding2) { if (!embedding1 || !embedding2) return 0; if (embedding1?.length === 0 || embedding2?.length === 0) return 0; if (embedding1?.length !== embedding2?.length) return 0; // general minkowski distance // euclidean distance is limited case where order is 2 const order = 2; const distance = 10.0 * ((embedding1.map((val, i) => (val - embedding2[i])).reduce((dist, diff) => dist + (diff ** order), 0) ** (1 / order))); return (Math.trunc(1000 * (1 - distance)) / 1000); } export async function predict(image, config) { if (!model) return null; return new Promise(async (resolve) => { const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); // input is already normalized to 0..1 // const mean = resize.mean(); // const whiten = resize.sub(mean); // normalizes with mean value being at point 0 let data: Array<[]> = []; if (config.face.embedding.enabled) { if (!config.profile) { const embeddingT = await model.predict({ img_inputs: resize }); data = [...embeddingT.dataSync()]; // convert object array to standard array tf.dispose(embeddingT); } else { const profileData = await tf.profile(() => model.predict({ img_inputs: resize })); data = [...profileData.result.dataSync()]; profileData.result.dispose(); profile.run('emotion', profileData); } } resolve(data); }); }