human/src/emotion/emotion.ts

80 lines
3.0 KiB
TypeScript

import { log } from '../log';
import * as tf from '../../dist/tfjs.esm.js';
import * as profile from '../profile';
const annotations = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'];
let model;
let last: Array<{ score: number, emotion: string }> = [];
let skipped = Number.MAX_SAFE_INTEGER;
// tuning values
const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale
const scale = 1; // score multiplication factor
export async function load(config) {
if (!model) {
model = await tf.loadGraphModel(config.face.emotion.modelPath);
log(`load model: ${config.face.emotion.modelPath.match(/\/(.*)\./)[1]}`);
}
return model;
}
export async function predict(image, config) {
if (!model) return null;
if ((skipped < config.face.emotion.skipFrames) && config.videoOptimized && (last.length > 0)) {
skipped++;
return last;
}
if (config.videoOptimized) skipped = 0;
else skipped = Number.MAX_SAFE_INTEGER;
return new Promise(async (resolve) => {
/*
const zoom = [0, 0]; // 0..1 meaning 0%..100%
const box = [[
(image.shape[1] * zoom[0]) / image.shape[1],
(image.shape[2] * zoom[1]) / image.shape[2],
(image.shape[1] - (image.shape[1] * zoom[0])) / image.shape[1],
(image.shape[2] - (image.shape[2] * zoom[1])) / image.shape[2],
]];
const resize = tf.image.cropAndResize(image, box, [0], [config.face.emotion.inputSize, config.face.emotion.inputSize]);
*/
const resize = tf.image.resizeBilinear(image, [config.face.emotion.inputSize, config.face.emotion.inputSize], false);
const [red, green, blue] = tf.split(resize, 3, 3);
resize.dispose();
// weighted rgb to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html
const redNorm = tf.mul(red, rgb[0]);
const greenNorm = tf.mul(green, rgb[1]);
const blueNorm = tf.mul(blue, rgb[2]);
red.dispose();
green.dispose();
blue.dispose();
const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);
redNorm.dispose();
greenNorm.dispose();
blueNorm.dispose();
const normalize = tf.tidy(() => grayscale.sub(0.5).mul(2));
grayscale.dispose();
const obj: Array<{ score: number, emotion: string }> = [];
if (config.face.emotion.enabled) {
let data;
if (!config.profile) {
const emotionT = await model.predict(normalize);
data = emotionT.dataSync();
tf.dispose(emotionT);
} else {
const profileData = await tf.profile(() => model.predict(normalize));
data = profileData.result.dataSync();
profileData.result.dispose();
profile.run('emotion', profileData);
}
for (let i = 0; i < data.length; i++) {
if (scale * data[i] > config.face.emotion.minConfidence) obj.push({ score: Math.min(0.99, Math.trunc(100 * scale * data[i]) / 100), emotion: annotations[i] });
}
obj.sort((a, b) => b.score - a.score);
}
normalize.dispose();
last = obj;
resolve(obj);
});
}