import { log } from '../log'; import * as tf from '../../dist/tfjs.esm.js'; import * as profile from '../profile'; const annotations = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']; let model; let last: Array<{ score: number, emotion: string }> = []; let skipped = Number.MAX_SAFE_INTEGER; // tuning values const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale const scale = 1; // score multiplication factor export async function load(config) { if (!model) { model = await tf.loadGraphModel(config.face.emotion.modelPath); log(`load model: ${config.face.emotion.modelPath.match(/\/(.*)\./)[1]}`); } return model; } export async function predict(image, config) { if (!model) return null; if ((skipped < config.face.emotion.skipFrames) && config.videoOptimized && (last.length > 0)) { skipped++; return last; } if (config.videoOptimized) skipped = 0; else skipped = Number.MAX_SAFE_INTEGER; return new Promise(async (resolve) => { /* const zoom = [0, 0]; // 0..1 meaning 0%..100% const box = [[ (image.shape[1] * zoom[0]) / image.shape[1], (image.shape[2] * zoom[1]) / image.shape[2], (image.shape[1] - (image.shape[1] * zoom[0])) / image.shape[1], (image.shape[2] - (image.shape[2] * zoom[1])) / image.shape[2], ]]; const resize = tf.image.cropAndResize(image, box, [0], [config.face.emotion.inputSize, config.face.emotion.inputSize]); */ const resize = tf.image.resizeBilinear(image, [config.face.emotion.inputSize, config.face.emotion.inputSize], false); const [red, green, blue] = tf.split(resize, 3, 3); resize.dispose(); // weighted rgb to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html const redNorm = tf.mul(red, rgb[0]); const greenNorm = tf.mul(green, rgb[1]); const blueNorm = tf.mul(blue, rgb[2]); red.dispose(); green.dispose(); blue.dispose(); const grayscale = tf.addN([redNorm, greenNorm, blueNorm]); redNorm.dispose(); greenNorm.dispose(); blueNorm.dispose(); const normalize = tf.tidy(() => grayscale.sub(0.5).mul(2)); grayscale.dispose(); const obj: Array<{ score: number, emotion: string }> = []; if (config.face.emotion.enabled) { let data; if (!config.profile) { const emotionT = await model.predict(normalize); data = emotionT.dataSync(); tf.dispose(emotionT); } else { const profileData = await tf.profile(() => model.predict(normalize)); data = profileData.result.dataSync(); profileData.result.dispose(); profile.run('emotion', profileData); } for (let i = 0; i < data.length; i++) { if (scale * data[i] > config.face.emotion.minConfidence) obj.push({ score: Math.min(0.99, Math.trunc(100 * scale * data[i]) / 100), emotion: annotations[i] }); } obj.sort((a, b) => b.score - a.score); } normalize.dispose(); last = obj; resolve(obj); }); }