mirror of https://github.com/vladmandic/human
534 lines
25 KiB
TypeScript
534 lines
25 KiB
TypeScript
/**
|
|
* Human main module
|
|
* @default Human Library
|
|
* @summary <https://github.com/vladmandic/human>
|
|
* @author <https://github.com/vladmandic>
|
|
* @copyright <https://github.com/vladmandic>
|
|
* @license MIT
|
|
*/
|
|
|
|
// module imports
|
|
import { log, now, mergeDeep, validate } from './util/util';
|
|
import { defaults } from './config';
|
|
import { env, Env } from './util/env';
|
|
import * as tf from '../dist/tfjs.esm.js';
|
|
import * as app from '../package.json';
|
|
import * as backend from './tfjs/backend';
|
|
import * as blazepose from './body/blazepose';
|
|
import * as centernet from './object/centernet';
|
|
import * as draw from './util/draw';
|
|
import * as efficientpose from './body/efficientpose';
|
|
import * as face from './face/face';
|
|
import * as facemesh from './face/facemesh';
|
|
import * as faceres from './face/faceres';
|
|
import * as gesture from './gesture/gesture';
|
|
import * as handpose from './hand/handpose';
|
|
import * as handtrack from './hand/handtrack';
|
|
import * as humangl from './tfjs/humangl';
|
|
import * as image from './image/image';
|
|
import * as interpolate from './util/interpolate';
|
|
import * as match from './face/match';
|
|
import * as models from './models';
|
|
import * as movenet from './body/movenet';
|
|
import * as nanodet from './object/nanodet';
|
|
import * as persons from './util/persons';
|
|
import * as posenet from './body/posenet';
|
|
import * as segmentation from './segmentation/segmentation';
|
|
import * as warmups from './warmup';
|
|
// type definitions
|
|
import type { Input, Tensor, DrawOptions, Config, Result, FaceResult, HandResult, BodyResult, ObjectResult, GestureResult, PersonResult, AnyCanvas } from './exports';
|
|
// type exports
|
|
export * from './exports';
|
|
|
|
/** **Human** library main class
|
|
*
|
|
* All methods and properties are available only as members of Human class
|
|
*
|
|
* - Configuration object definition: {@link Config}
|
|
* - Results object definition: {@link Result}
|
|
* - Possible inputs: {@link Input}
|
|
*
|
|
* @param userConfig - {@link Config}
|
|
* @returns instance of {@link Human}
|
|
*/
|
|
export class Human {
|
|
/** Current version of Human library in *semver* format */
|
|
version: string;
|
|
|
|
/** Current configuration
|
|
* - Defaults: [config](https://github.com/vladmandic/human/blob/main/src/config.ts#L262)
|
|
*/
|
|
config: Config;
|
|
|
|
/** Last known result of detect run
|
|
* - Can be accessed anytime after initial detection
|
|
*/
|
|
result: Result;
|
|
|
|
/** Current state of Human library
|
|
* - Can be polled to determine operations that are currently executed
|
|
* - Progresses through: 'config', 'check', 'backend', 'load', 'run:<model>', 'idle'
|
|
*/
|
|
state: string;
|
|
|
|
/** currenty processed image tensor and canvas */
|
|
process: { tensor: Tensor | null, canvas: AnyCanvas | null };
|
|
|
|
/** Instance of TensorFlow/JS used by Human
|
|
* - Can be embedded or externally provided
|
|
* [TFJS API]: {@link https://js.tensorflow.org/api/latest/}
|
|
*/
|
|
tf;
|
|
|
|
/** Object containing environment information used for diagnostics */
|
|
env: Env;
|
|
|
|
/** Draw helper classes that can draw detected objects on canvas using specified draw
|
|
* - canvas: draws input to canvas
|
|
* - options: are global settings for all draw operations, can be overriden for each draw method {@link DrawOptions}
|
|
* - face, body, hand, gesture, object, person: draws detected results as overlays on canvas
|
|
*/
|
|
draw: { canvas: typeof draw.canvas, face: typeof draw.face, body: typeof draw.body, hand: typeof draw.hand, gesture: typeof draw.gesture, object: typeof draw.object, person: typeof draw.person, all: typeof draw.all, options: DrawOptions };
|
|
|
|
/** Currently loaded models
|
|
* @internal
|
|
* {@link Models}
|
|
*/
|
|
models: models.Models;
|
|
|
|
/** Container for events dispatched by Human
|
|
* Possible events:
|
|
* - `create`: triggered when Human object is instantiated
|
|
* - `load`: triggered when models are loaded (explicitly or on-demand)
|
|
* - `image`: triggered when input image is processed
|
|
* - `result`: triggered when detection is complete
|
|
* - `warmup`: triggered when warmup is complete
|
|
* - `error`: triggered on some errors
|
|
*/
|
|
events: EventTarget | undefined;
|
|
/** Reference face triangualtion array of 468 points, used for triangle references between points */
|
|
faceTriangulation: number[];
|
|
/** Refernce UV map of 468 values, used for 3D mapping of the face mesh */
|
|
faceUVMap: [number, number][];
|
|
/** Performance object that contains values for all recently performed operations */
|
|
performance: Record<string, number>; // perf members are dynamically defined as needed
|
|
#numTensors: number;
|
|
#analyzeMemoryLeaks: boolean;
|
|
#checkSanity: boolean;
|
|
/** WebGL debug info */
|
|
gl: Record<string, unknown>;
|
|
// definition end
|
|
|
|
/** Constructor for **Human** library that is futher used for all operations
|
|
* @param userConfig - user configuration object {@link Config}
|
|
*/
|
|
constructor(userConfig?: Partial<Config>) {
|
|
this.env = env;
|
|
defaults.wasmPath = tf.version['tfjs-core'].includes('-') // custom build or official build
|
|
? 'https://vladmandic.github.io/tfjs/dist/'
|
|
: `https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${tf.version_core}/dist/`;
|
|
defaults.modelBasePath = env.browser ? '../models/' : 'file://models/';
|
|
defaults.backend = env.browser ? 'humangl' : 'tensorflow';
|
|
this.version = app.version; // expose version property on instance of class
|
|
Object.defineProperty(this, 'version', { value: app.version }); // expose version property directly on class itself
|
|
this.config = JSON.parse(JSON.stringify(defaults));
|
|
Object.seal(this.config);
|
|
if (userConfig) this.config = mergeDeep(this.config, userConfig);
|
|
this.tf = tf;
|
|
this.state = 'idle';
|
|
this.#numTensors = 0;
|
|
this.#analyzeMemoryLeaks = false;
|
|
this.#checkSanity = false;
|
|
this.performance = {};
|
|
this.events = (typeof EventTarget !== 'undefined') ? new EventTarget() : undefined;
|
|
// object that contains all initialized models
|
|
this.models = new models.Models();
|
|
// reexport draw methods
|
|
this.draw = {
|
|
options: draw.options as DrawOptions,
|
|
canvas: (input: AnyCanvas | HTMLImageElement | HTMLVideoElement, output: AnyCanvas) => draw.canvas(input, output),
|
|
face: (output: AnyCanvas, result: FaceResult[], options?: Partial<DrawOptions>) => draw.face(output, result, options),
|
|
body: (output: AnyCanvas, result: BodyResult[], options?: Partial<DrawOptions>) => draw.body(output, result, options),
|
|
hand: (output: AnyCanvas, result: HandResult[], options?: Partial<DrawOptions>) => draw.hand(output, result, options),
|
|
gesture: (output: AnyCanvas, result: GestureResult[], options?: Partial<DrawOptions>) => draw.gesture(output, result, options),
|
|
object: (output: AnyCanvas, result: ObjectResult[], options?: Partial<DrawOptions>) => draw.object(output, result, options),
|
|
person: (output: AnyCanvas, result: PersonResult[], options?: Partial<DrawOptions>) => draw.person(output, result, options),
|
|
all: (output: AnyCanvas, result: Result, options?: Partial<DrawOptions>) => draw.all(output, result, options),
|
|
};
|
|
this.result = { face: [], body: [], hand: [], gesture: [], object: [], performance: {}, timestamp: 0, persons: [], error: null };
|
|
// export access to image processing
|
|
// @ts-ignore eslint-typescript cannot correctly infer type in anonymous function
|
|
this.process = { tensor: null, canvas: null };
|
|
// export raw access to underlying models
|
|
this.faceTriangulation = facemesh.triangulation;
|
|
this.faceUVMap = facemesh.uvmap;
|
|
// set gl info
|
|
this.gl = humangl.config;
|
|
// include platform info
|
|
this.emit('create');
|
|
}
|
|
|
|
/** internal function to measure tensor leaks */
|
|
analyze = (...msg: string[]) => {
|
|
if (!this.#analyzeMemoryLeaks) return;
|
|
const currentTensors = this.tf.engine().state.numTensors;
|
|
const previousTensors = this.#numTensors;
|
|
this.#numTensors = currentTensors;
|
|
const leaked = currentTensors - previousTensors;
|
|
if (leaked !== 0) log(...msg, leaked);
|
|
};
|
|
|
|
/** internal function for quick sanity check on inputs @hidden */
|
|
#sanity = (input: Input): null | string => {
|
|
if (!this.#checkSanity) return null;
|
|
if (!input) return 'input is not defined';
|
|
if (this.env.node && !(input instanceof tf.Tensor)) return 'input must be a tensor';
|
|
try {
|
|
this.tf.getBackend();
|
|
} catch {
|
|
return 'backend not loaded';
|
|
}
|
|
return null;
|
|
};
|
|
|
|
/** Reset configuration to default values */
|
|
reset(): void {
|
|
const currentBackend = this.config.backend; // save backend;
|
|
this.config = JSON.parse(JSON.stringify(defaults));
|
|
this.config.backend = currentBackend;
|
|
}
|
|
|
|
/** Validate current configuration schema */
|
|
validate(userConfig?: Partial<Config>) {
|
|
return validate(defaults, userConfig || this.config);
|
|
}
|
|
|
|
/** Exports face matching methods {@link match#similarity} */
|
|
public similarity = match.similarity;
|
|
/** Exports face matching methods {@link match#distance} */
|
|
public distance = match.distance;
|
|
/** Exports face matching methods {@link match#match} */
|
|
public match = match.match;
|
|
|
|
/** Utility wrapper for performance.now() */
|
|
now(): number {
|
|
return now();
|
|
}
|
|
|
|
/** Process input as return canvas and tensor
|
|
*
|
|
* @param input - any input {@link Input}
|
|
* @param getTensor - should image processing also return tensor or just canvas
|
|
* Returns object with `tensor` and `canvas`
|
|
*/
|
|
image(input: Input, getTensor: boolean = true) {
|
|
return image.process(input, this.config, getTensor);
|
|
}
|
|
|
|
/** Segmentation method takes any input and returns processed canvas with body segmentation
|
|
* - Segmentation is not triggered as part of detect process
|
|
* @param input - {@link Input}
|
|
* @param background - {@link Input}
|
|
* - Optional parameter background is used to fill the background with specific input
|
|
* Returns:
|
|
* - `data` as raw data array with per-pixel segmentation values
|
|
* - `canvas` as canvas which is input image filtered with segementation data and optionally merged with background image. canvas alpha values are set to segmentation values for easy merging
|
|
* - `alpha` as grayscale canvas that represents segmentation alpha values
|
|
*/
|
|
async segmentation(input: Input, background?: Input): Promise<{ data: number[] | Tensor, canvas: AnyCanvas | null, alpha: AnyCanvas | null }> {
|
|
return segmentation.process(input, background, this.config);
|
|
}
|
|
|
|
/** Enhance method performs additional enhacements to face image previously detected for futher processing
|
|
*
|
|
* @param input - Tensor as provided in human.result.face[n].tensor
|
|
* @returns Tensor
|
|
*/
|
|
// eslint-disable-next-line class-methods-use-this
|
|
enhance(input: Tensor): Tensor | null {
|
|
return faceres.enhance(input);
|
|
}
|
|
|
|
/** Compare two input tensors for pixel simmilarity
|
|
* - use `human.image` to process any valid input and get a tensor that can be used for compare
|
|
* - when passing manually generated tensors:
|
|
* - both input tensors must be in format [1, height, width, 3]
|
|
* - if resolution of tensors does not match, second tensor will be resized to match resolution of the first tensor
|
|
* - return value is pixel similarity score normalized by input resolution and rgb channels
|
|
*/
|
|
compare(firstImageTensor: Tensor, secondImageTensor: Tensor): Promise<number> {
|
|
return image.compare(this.config, firstImageTensor, secondImageTensor);
|
|
}
|
|
|
|
/** Explicit backend initialization
|
|
* - Normally done implicitly during initial load phase
|
|
* - Call to explictly register and initialize TFJS backend without any other operations
|
|
* - Use when changing backend during runtime
|
|
*/
|
|
async init(): Promise<void> {
|
|
await backend.check(this, true);
|
|
await this.tf.ready();
|
|
}
|
|
|
|
/** Load method preloads all configured models on-demand
|
|
* - Not explicitly required as any required model is load implicitly on it's first run
|
|
*
|
|
* @param userConfig - {@link Config}
|
|
*/
|
|
async load(userConfig?: Partial<Config>): Promise<void> {
|
|
this.state = 'load';
|
|
const timeStamp = now();
|
|
const count = Object.values(this.models).filter((model) => model).length;
|
|
if (userConfig) this.config = mergeDeep(this.config, userConfig) as Config;
|
|
|
|
if (this.env.initial) { // print version info on first run and check for correct backend setup
|
|
if (this.config.debug) log(`version: ${this.version}`);
|
|
if (this.config.debug) log(`tfjs version: ${this.tf.version['tfjs-core']}`);
|
|
if (!await backend.check(this)) log('error: backend check failed');
|
|
await tf.ready();
|
|
if (this.env.browser) {
|
|
if (this.config.debug) log('configuration:', this.config);
|
|
if (this.config.debug) log('environment:', this.env);
|
|
if (this.config.debug) log('tf flags:', this.tf.ENV['flags']);
|
|
}
|
|
}
|
|
|
|
await models.load(this); // actually loads models
|
|
if (this.env.initial && this.config.debug) log('tf engine state:', this.tf.engine().state.numBytes, 'bytes', this.tf.engine().state.numTensors, 'tensors'); // print memory stats on first run
|
|
this.env.initial = false;
|
|
|
|
const loaded = Object.values(this.models).filter((model) => model).length;
|
|
if (loaded !== count) { // number of loaded models changed
|
|
await models.validate(this); // validate kernel ops used by model against current backend
|
|
this.emit('load');
|
|
}
|
|
|
|
const current = Math.trunc(now() - timeStamp);
|
|
if (current > (this.performance.loadModels as number || 0)) this.performance.loadModels = this.env.perfadd ? (this.performance.loadModels || 0) + current : current;
|
|
}
|
|
|
|
/** emit event */
|
|
emit = (event: string) => {
|
|
if (this.events && this.events.dispatchEvent) this.events?.dispatchEvent(new Event(event));
|
|
};
|
|
|
|
/** Runs interpolation using last known result and returns smoothened result
|
|
* Interpolation is based on time since last known result so can be called independently
|
|
*
|
|
* @param result - {@link Result} optional use specific result set to run interpolation on
|
|
* @returns result - {@link Result}
|
|
*/
|
|
next(result: Result = this.result): Result {
|
|
return interpolate.calc(result, this.config) as Result;
|
|
}
|
|
|
|
/** Warmup method pre-initializes all configured models for faster inference
|
|
* - can take significant time on startup
|
|
* - only used for `webgl` and `humangl` backends
|
|
* @param userConfig - {@link Config}
|
|
* @returns result - {@link Result}
|
|
*/
|
|
async warmup(userConfig?: Partial<Config>) {
|
|
const t0 = now();
|
|
const res = await warmups.warmup(this, userConfig);
|
|
const t1 = now();
|
|
this.performance.warmup = Math.trunc(t1 - t0);
|
|
return res;
|
|
}
|
|
|
|
/** Run detect with tensorflow profiling
|
|
* - result object will contain total exeuction time information for top-20 kernels
|
|
* - actual detection object can be accessed via `human.result`
|
|
*/
|
|
async profile(input: Input, userConfig?: Partial<Config>): Promise<Record<string, number>> {
|
|
const profile = await this.tf.profile(() => this.detect(input, userConfig));
|
|
const kernels: Record<string, number> = {};
|
|
for (const kernel of profile.kernels) { // sum kernel time values per kernel
|
|
if (kernels[kernel.name]) kernels[kernel.name] += kernel.kernelTimeMs;
|
|
else kernels[kernel.name] = kernel.kernelTimeMs;
|
|
}
|
|
const kernelArr: Array<{ name: string, ms: number }> = [];
|
|
Object.entries(kernels).forEach((key) => kernelArr.push({ name: key[0], ms: key[1] as unknown as number })); // convert to array
|
|
kernelArr.sort((a, b) => b.ms - a.ms); // sort
|
|
kernelArr.length = 20; // crop
|
|
const res: Record<string, number> = {};
|
|
for (const kernel of kernelArr) res[kernel.name] = kernel.ms; // create perf objects
|
|
return res;
|
|
}
|
|
|
|
/** Main detection method
|
|
* - Analyze configuration: {@link Config}
|
|
* - Pre-process input: {@link Input}
|
|
* - Run inference for all configured models
|
|
* - Process and return result: {@link Result}
|
|
*
|
|
* @param input - {@link Input}
|
|
* @param userConfig - {@link Config}
|
|
* @returns result - {@link Result}
|
|
*/
|
|
async detect(input: Input, userConfig?: Partial<Config>): Promise<Result> {
|
|
// detection happens inside a promise
|
|
this.state = 'detect';
|
|
return new Promise(async (resolve) => {
|
|
this.state = 'config';
|
|
let timeStamp;
|
|
|
|
// update configuration
|
|
this.config = mergeDeep(this.config, userConfig) as Config;
|
|
|
|
// sanity checks
|
|
this.state = 'check';
|
|
const error = this.#sanity(input);
|
|
if (error) {
|
|
log(error, input);
|
|
this.emit('error');
|
|
resolve({ face: [], body: [], hand: [], gesture: [], object: [], performance: this.performance, timestamp: now(), persons: [], error });
|
|
}
|
|
|
|
const timeStart = now();
|
|
|
|
// configure backend if needed
|
|
await backend.check(this);
|
|
|
|
// load models if enabled
|
|
await this.load();
|
|
|
|
timeStamp = now();
|
|
this.state = 'image';
|
|
const img = await image.process(input, this.config) as { canvas: AnyCanvas, tensor: Tensor };
|
|
this.process = img;
|
|
this.performance.inputProcess = this.env.perfadd ? (this.performance.inputProcess || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);
|
|
this.analyze('Get Image:');
|
|
|
|
if (!img.tensor) {
|
|
if (this.config.debug) log('could not convert input to tensor');
|
|
this.emit('error');
|
|
resolve({ face: [], body: [], hand: [], gesture: [], object: [], performance: this.performance, timestamp: now(), persons: [], error: 'could not convert input to tensor' });
|
|
return;
|
|
}
|
|
this.emit('image');
|
|
|
|
timeStamp = now();
|
|
this.config.skipAllowed = await image.skip(this.config, img.tensor);
|
|
if (!this.performance.totalFrames) this.performance.totalFrames = 0;
|
|
if (!this.performance.cachedFrames) this.performance.cachedFrames = 0;
|
|
(this.performance.totalFrames as number)++;
|
|
if (this.config.skipAllowed) this.performance.cachedFrames++;
|
|
this.performance.cacheCheck = this.env.perfadd ? (this.performance.cacheCheck || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);
|
|
this.analyze('Check Changed:');
|
|
|
|
// prepare where to store model results
|
|
// keep them with weak typing as it can be promise or not
|
|
let faceRes: FaceResult[] | Promise<FaceResult[]> | never[] = [];
|
|
let bodyRes: BodyResult[] | Promise<BodyResult[]> | never[] = [];
|
|
let handRes: HandResult[] | Promise<HandResult[]> | never[] = [];
|
|
let objectRes: ObjectResult[] | Promise<ObjectResult[]> | never[] = [];
|
|
|
|
// run face detection followed by all models that rely on face bounding box: face mesh, age, gender, emotion
|
|
this.state = 'detect:face';
|
|
if (this.config.async) {
|
|
faceRes = this.config.face.enabled ? face.detectFace(this, img.tensor) : [];
|
|
if (this.performance.face) delete this.performance.face;
|
|
} else {
|
|
timeStamp = now();
|
|
faceRes = this.config.face.enabled ? await face.detectFace(this, img.tensor) : [];
|
|
this.performance.face = this.env.perfadd ? (this.performance.face || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);
|
|
}
|
|
|
|
if (this.config.async && (this.config.body.maxDetected === -1 || this.config.hand.maxDetected === -1)) faceRes = await faceRes; // need face result for auto-detect number of hands or bodies
|
|
|
|
// run body: can be posenet, blazepose, efficientpose, movenet
|
|
this.analyze('Start Body:');
|
|
this.state = 'detect:body';
|
|
const bodyConfig = this.config.body.maxDetected === -1 ? mergeDeep(this.config, { body: { maxDetected: this.config.face.enabled ? 1 * (faceRes as FaceResult[]).length : 1 } }) : this.config; // autodetect number of bodies
|
|
if (this.config.async) {
|
|
if (this.config.body.modelPath?.includes('posenet')) bodyRes = this.config.body.enabled ? posenet.predict(img.tensor, bodyConfig) : [];
|
|
else if (this.config.body.modelPath?.includes('blazepose')) bodyRes = this.config.body.enabled ? blazepose.predict(img.tensor, bodyConfig) : [];
|
|
else if (this.config.body.modelPath?.includes('efficientpose')) bodyRes = this.config.body.enabled ? efficientpose.predict(img.tensor, bodyConfig) : [];
|
|
else if (this.config.body.modelPath?.includes('movenet')) bodyRes = this.config.body.enabled ? movenet.predict(img.tensor, bodyConfig) : [];
|
|
if (this.performance.body) delete this.performance.body;
|
|
} else {
|
|
timeStamp = now();
|
|
if (this.config.body.modelPath?.includes('posenet')) bodyRes = this.config.body.enabled ? await posenet.predict(img.tensor, bodyConfig) : [];
|
|
else if (this.config.body.modelPath?.includes('blazepose')) bodyRes = this.config.body.enabled ? await blazepose.predict(img.tensor, bodyConfig) : [];
|
|
else if (this.config.body.modelPath?.includes('efficientpose')) bodyRes = this.config.body.enabled ? await efficientpose.predict(img.tensor, bodyConfig) : [];
|
|
else if (this.config.body.modelPath?.includes('movenet')) bodyRes = this.config.body.enabled ? await movenet.predict(img.tensor, bodyConfig) : [];
|
|
this.performance.body = this.env.perfadd ? (this.performance.body || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);
|
|
}
|
|
this.analyze('End Body:');
|
|
|
|
// run handpose
|
|
this.analyze('Start Hand:');
|
|
this.state = 'detect:hand';
|
|
const handConfig = this.config.hand.maxDetected === -1 ? mergeDeep(this.config, { hand: { maxDetected: this.config.face.enabled ? 2 * (faceRes as FaceResult[]).length : 1 } }) : this.config; // autodetect number of hands
|
|
if (this.config.async) {
|
|
if (this.config.hand.detector?.modelPath?.includes('handdetect')) handRes = this.config.hand.enabled ? handpose.predict(img.tensor, handConfig) : [];
|
|
else if (this.config.hand.detector?.modelPath?.includes('handtrack')) handRes = this.config.hand.enabled ? handtrack.predict(img.tensor, handConfig) : [];
|
|
if (this.performance.hand) delete this.performance.hand;
|
|
} else {
|
|
timeStamp = now();
|
|
if (this.config.hand.detector?.modelPath?.includes('handdetect')) handRes = this.config.hand.enabled ? await handpose.predict(img.tensor, handConfig) : [];
|
|
else if (this.config.hand.detector?.modelPath?.includes('handtrack')) handRes = this.config.hand.enabled ? await handtrack.predict(img.tensor, handConfig) : [];
|
|
this.performance.hand = this.env.perfadd ? (this.performance.hand || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);
|
|
}
|
|
this.analyze('End Hand:');
|
|
|
|
// run object detection
|
|
this.analyze('Start Object:');
|
|
this.state = 'detect:object';
|
|
if (this.config.async) {
|
|
if (this.config.object.modelPath?.includes('nanodet')) objectRes = this.config.object.enabled ? nanodet.predict(img.tensor, this.config) : [];
|
|
else if (this.config.object.modelPath?.includes('centernet')) objectRes = this.config.object.enabled ? centernet.predict(img.tensor, this.config) : [];
|
|
if (this.performance.object) delete this.performance.object;
|
|
} else {
|
|
timeStamp = now();
|
|
if (this.config.object.modelPath?.includes('nanodet')) objectRes = this.config.object.enabled ? await nanodet.predict(img.tensor, this.config) : [];
|
|
else if (this.config.object.modelPath?.includes('centernet')) objectRes = this.config.object.enabled ? await centernet.predict(img.tensor, this.config) : [];
|
|
this.performance.object = this.env.perfadd ? (this.performance.object || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);
|
|
}
|
|
this.analyze('End Object:');
|
|
|
|
// if async wait for results
|
|
this.state = 'detect:await';
|
|
if (this.config.async) [faceRes, bodyRes, handRes, objectRes] = await Promise.all([faceRes, bodyRes, handRes, objectRes]);
|
|
|
|
// run gesture analysis last
|
|
this.state = 'detect:gesture';
|
|
let gestureRes: GestureResult[] = [];
|
|
if (this.config.gesture.enabled) {
|
|
timeStamp = now();
|
|
gestureRes = [...gesture.face(faceRes as FaceResult[]), ...gesture.body(bodyRes as BodyResult[]), ...gesture.hand(handRes as HandResult[]), ...gesture.iris(faceRes as FaceResult[])];
|
|
if (!this.config.async) this.performance.gesture = this.env.perfadd ? (this.performance.gesture || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);
|
|
else if (this.performance.gesture) delete this.performance.gesture;
|
|
}
|
|
|
|
this.performance.total = this.env.perfadd ? (this.performance.total || 0) + Math.trunc(now() - timeStart) : Math.trunc(now() - timeStart);
|
|
const shape = this.process?.tensor?.shape || [];
|
|
this.result = {
|
|
face: faceRes as FaceResult[],
|
|
body: bodyRes as BodyResult[],
|
|
hand: handRes as HandResult[],
|
|
gesture: gestureRes,
|
|
object: objectRes as ObjectResult[],
|
|
performance: this.performance,
|
|
canvas: this.process.canvas,
|
|
timestamp: Date.now(),
|
|
error: null,
|
|
get persons() { return persons.join(faceRes as FaceResult[], bodyRes as BodyResult[], handRes as HandResult[], gestureRes, shape); },
|
|
};
|
|
|
|
// finally dispose input tensor
|
|
tf.dispose(img.tensor);
|
|
|
|
// log('Result:', result);
|
|
this.emit('detect');
|
|
this.state = 'idle';
|
|
resolve(this.result);
|
|
});
|
|
}
|
|
}
|
|
|
|
/** Class Human as default export */
|
|
/* eslint no-restricted-exports: ["off", { "restrictedNamedExports": ["default"] }] */
|
|
export { Human as default };
|