mirror of https://github.com/vladmandic/human
580 lines
28 KiB
JavaScript
580 lines
28 KiB
JavaScript
import Human from '../dist/human.esm.js'; // equivalent of @vladmandic/human
|
|
// import Human from '../src/human'; // import sources directly
|
|
import Menu from './helpers/menu.js';
|
|
import GLBench from './helpers/gl-bench.js';
|
|
|
|
const userConfig = { backend: 'webgl' }; // add any user configuration overrides
|
|
|
|
/*
|
|
const userConfig = {
|
|
backend: 'humangl',
|
|
async: false,
|
|
profile: false,
|
|
warmup: 'full',
|
|
videoOptimized: false,
|
|
filter: { enabled: true },
|
|
face: { enabled: false,
|
|
mesh: { enabled: true },
|
|
iris: { enabled: true },
|
|
description: { enabled: true },
|
|
emotion: { enabled: true },
|
|
},
|
|
hand: { enabled: false },
|
|
gesture: { enabled: false },
|
|
body: { enabled: false },
|
|
// body: { enabled: true, modelPath: '../models/blazepose.json' },
|
|
// body: { enabled: true, modelPath: '../models/efficientpose.json' },
|
|
object: { enabled: true },
|
|
};
|
|
*/
|
|
|
|
const human = new Human(userConfig);
|
|
|
|
// ui options
|
|
const ui = {
|
|
baseBackground: 'rgba(50, 50, 50, 1)', // 'grey'
|
|
crop: true, // video mode crop to size or leave full frame
|
|
columns: 2, // when processing sample images create this many columns
|
|
facing: true, // camera facing front or back
|
|
useWorker: false, // use web workers for processing
|
|
worker: 'index-worker.js',
|
|
samples: ['../assets/sample6.jpg', '../assets/sample1.jpg', '../assets/sample4.jpg', '../assets/sample5.jpg', '../assets/sample3.jpg', '../assets/sample2.jpg'],
|
|
compare: '../assets/sample-me.jpg',
|
|
console: true, // log messages to browser console
|
|
maxFPSframes: 10, // keep fps history for how many frames
|
|
modelsPreload: true, // preload human models on startup
|
|
busy: false, // internal camera busy flag
|
|
menuWidth: 0, // internal
|
|
menuHeight: 0, // internal
|
|
camera: {}, // internal, holds details of webcam details
|
|
detectFPS: [], // internal, holds fps values for detection performance
|
|
drawFPS: [], // internal, holds fps values for draw performance
|
|
buffered: false, // experimental, should output be buffered between frames
|
|
drawWarmup: false, // debug only, should warmup image processing be displayed on startup
|
|
drawThread: null, // internl, perform draw operations in a separate thread
|
|
detectThread: null, // internl, perform detect operations in a separate thread
|
|
framesDraw: 0, // internal, statistics on frames drawn
|
|
framesDetect: 0, // internal, statistics on frames detected
|
|
bench: true, // show gl fps benchmark window
|
|
lastFrame: 0, // time of last frame processing
|
|
};
|
|
|
|
// global variables
|
|
const menu = {};
|
|
let worker;
|
|
let bench;
|
|
let lastDetectedResult = {};
|
|
|
|
// helper function: translates json to human readable string
|
|
function str(...msg) {
|
|
if (!Array.isArray(msg)) return msg;
|
|
let line = '';
|
|
for (const entry of msg) {
|
|
if (typeof entry === 'object') line += JSON.stringify(entry).replace(/{|}|"|\[|\]/g, '').replace(/,/g, ', ');
|
|
else line += entry;
|
|
}
|
|
return line;
|
|
}
|
|
|
|
// helper function: wrapper around console output
|
|
function log(...msg) {
|
|
const dt = new Date();
|
|
const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;
|
|
// eslint-disable-next-line no-console
|
|
if (ui.console) console.log(ts, ...msg);
|
|
}
|
|
|
|
function status(msg) {
|
|
// eslint-disable-next-line no-console
|
|
const div = document.getElementById('status');
|
|
if (div) div.innerText = msg;
|
|
}
|
|
|
|
const compare = { enabled: false, original: null };
|
|
async function calcSimmilariry(result) {
|
|
document.getElementById('compare-container').style.display = compare.enabled ? 'block' : 'none';
|
|
if (!compare.enabled) return;
|
|
if (!(result?.face?.length > 0) || (result?.face[0]?.embedding?.length <= 64)) return;
|
|
if (!compare.original) {
|
|
compare.original = result;
|
|
log('setting face compare baseline:', result.face[0]);
|
|
if (result.face[0].tensor) {
|
|
const enhanced = human.enhance(result.face[0]);
|
|
if (enhanced) {
|
|
const c = document.getElementById('orig');
|
|
const squeeze = enhanced.squeeze();
|
|
const norm = squeeze.div(255);
|
|
human.tf.browser.toPixels(norm, c);
|
|
enhanced.dispose();
|
|
squeeze.dispose();
|
|
norm.dispose();
|
|
}
|
|
} else {
|
|
document.getElementById('compare-canvas').getContext('2d').drawImage(compare.original.canvas, 0, 0, 200, 200);
|
|
}
|
|
}
|
|
const similarity = human.similarity(compare.original?.face[0]?.embedding, result?.face[0]?.embedding);
|
|
document.getElementById('similarity').innerText = `similarity: ${Math.trunc(1000 * similarity) / 10}%`;
|
|
}
|
|
|
|
// draws processed results and starts processing of a next frame
|
|
let lastDraw = performance.now();
|
|
async function drawResults(input) {
|
|
const result = lastDetectedResult;
|
|
const canvas = document.getElementById('canvas');
|
|
|
|
// update draw fps data
|
|
ui.drawFPS.push(1000 / (performance.now() - lastDraw));
|
|
if (ui.drawFPS.length > ui.maxFPSframes) ui.drawFPS.shift();
|
|
lastDraw = performance.now();
|
|
|
|
// draw fps chart
|
|
await menu.process.updateChart('FPS', ui.detectFPS);
|
|
|
|
// get updated canvas
|
|
if (ui.buffered || !result.canvas) {
|
|
const image = await human.image(input);
|
|
result.canvas = image.canvas;
|
|
human.tf.dispose(image.tensor);
|
|
}
|
|
|
|
// draw image from video
|
|
const ctx = canvas.getContext('2d');
|
|
ctx.fillStyle = ui.baseBackground;
|
|
ctx.fillRect(0, 0, canvas.width, canvas.height);
|
|
if (result.canvas) {
|
|
if (result.canvas.width !== canvas.width) canvas.width = result.canvas.width;
|
|
if (result.canvas.height !== canvas.height) canvas.height = result.canvas.height;
|
|
ctx.drawImage(result.canvas, 0, 0, result.canvas.width, result.canvas.height, 0, 0, result.canvas.width, result.canvas.height);
|
|
} else {
|
|
ctx.drawImage(input, 0, 0, input.width, input.height, 0, 0, canvas.width, canvas.height);
|
|
}
|
|
|
|
// draw all results
|
|
human.draw.face(canvas, result.face);
|
|
human.draw.body(canvas, result.body);
|
|
human.draw.hand(canvas, result.hand);
|
|
human.draw.object(canvas, result.object);
|
|
human.draw.gesture(canvas, result.gesture);
|
|
await calcSimmilariry(result);
|
|
|
|
// update log
|
|
const engine = human.tf.engine();
|
|
const gpu = engine.backendInstance ? `gpu: ${(engine.backendInstance.numBytesInGPU ? engine.backendInstance.numBytesInGPU : 0).toLocaleString()} bytes` : '';
|
|
const memory = `system: ${engine.state.numBytes.toLocaleString()} bytes ${gpu} | tensors: ${engine.state.numTensors.toLocaleString()}`;
|
|
const processing = result.canvas ? `processing: ${result.canvas.width} x ${result.canvas.height}` : '';
|
|
const avgDetect = Math.trunc(10 * ui.detectFPS.reduce((a, b) => a + b, 0) / ui.detectFPS.length) / 10;
|
|
const avgDraw = Math.trunc(10 * ui.drawFPS.reduce((a, b) => a + b, 0) / ui.drawFPS.length) / 10;
|
|
const warning = (ui.detectFPS.length > 5) && (avgDetect < 5) ? '<font color="lightcoral">warning: your performance is low: try switching to higher performance backend, lowering resolution or disabling some models</font>' : '';
|
|
document.getElementById('log').innerHTML = `
|
|
video: ${ui.camera.name} | facing: ${ui.camera.facing} | screen: ${window.innerWidth} x ${window.innerHeight} camera: ${ui.camera.width} x ${ui.camera.height} ${processing}<br>
|
|
backend: ${human.tf.getBackend()} | ${memory}<br>
|
|
performance: ${str(result.performance)}ms FPS process:${avgDetect} refresh:${avgDraw}<br>
|
|
${warning}<br>
|
|
`;
|
|
|
|
ui.framesDraw++;
|
|
ui.lastFrame = performance.now();
|
|
// if buffered, immediate loop but limit frame rate although it's going to run slower as JS is singlethreaded
|
|
if (ui.buffered) {
|
|
ui.drawThread = requestAnimationFrame(() => drawResults(input, canvas));
|
|
} else if (!ui.buffered && ui.drawThread) {
|
|
log('stopping buffered refresh');
|
|
cancelAnimationFrame(ui.drawThread);
|
|
ui.drawThread = null;
|
|
}
|
|
}
|
|
|
|
// setup webcam
|
|
async function setupCamera() {
|
|
if (ui.busy) return null;
|
|
ui.busy = true;
|
|
const video = document.getElementById('video');
|
|
const canvas = document.getElementById('canvas');
|
|
const output = document.getElementById('log');
|
|
const live = video.srcObject ? ((video.srcObject.getVideoTracks()[0].readyState === 'live') && (video.readyState > 2) && (!video.paused)) : false;
|
|
let msg = '';
|
|
status('setting up camera');
|
|
// setup webcam. note that navigator.mediaDevices requires that page is accessed via https
|
|
if (!navigator.mediaDevices) {
|
|
msg = 'camera access not supported';
|
|
output.innerText += `\n${msg}`;
|
|
log(msg);
|
|
status(msg);
|
|
ui.busy = false;
|
|
return msg;
|
|
}
|
|
let stream;
|
|
const constraints = {
|
|
audio: false,
|
|
video: { facingMode: ui.facing ? 'user' : 'environment', resizeMode: ui.crop ? 'crop-and-scale' : 'none' },
|
|
};
|
|
if (window.innerWidth > window.innerHeight) constraints.video.width = { ideal: window.innerWidth };
|
|
else constraints.video.height = { ideal: (window.innerHeight - document.getElementById('menubar').offsetHeight) };
|
|
try {
|
|
stream = await navigator.mediaDevices.getUserMedia(constraints);
|
|
} catch (err) {
|
|
if (err.name === 'PermissionDeniedError' || err.name === 'NotAllowedError') msg = 'camera permission denied';
|
|
else if (err.name === 'SourceUnavailableError') msg = 'camera not available';
|
|
else msg = `camera error: ${err.message || err}`;
|
|
output.innerText += `\n${msg}`;
|
|
status(msg);
|
|
log('camera error:', err);
|
|
ui.busy = false;
|
|
return msg;
|
|
}
|
|
if (stream) video.srcObject = stream;
|
|
else {
|
|
ui.busy = false;
|
|
return 'camera stream empty';
|
|
}
|
|
const track = stream.getVideoTracks()[0];
|
|
const settings = track.getSettings();
|
|
// log('camera constraints:', constraints, 'window:', { width: window.innerWidth, height: window.innerHeight }, 'settings:', settings, 'track:', track);
|
|
ui.camera = { name: track.label?.toLowerCase(), width: settings.width, height: settings.height, facing: settings.facingMode === 'user' ? 'front' : 'back' };
|
|
return new Promise((resolve) => {
|
|
video.onloadeddata = async () => {
|
|
video.width = video.videoWidth;
|
|
video.height = video.videoHeight;
|
|
canvas.width = video.width;
|
|
canvas.height = video.height;
|
|
canvas.style.width = canvas.width > canvas.height ? '100vw' : '';
|
|
canvas.style.height = canvas.width > canvas.height ? '' : '100vh';
|
|
ui.menuWidth.input.setAttribute('value', video.width);
|
|
ui.menuHeight.input.setAttribute('value', video.height);
|
|
// silly font resizing for paint-on-canvas since viewport can be zoomed
|
|
if (live) video.play();
|
|
// eslint-disable-next-line no-use-before-define
|
|
if (live && !ui.detectThread) runHumanDetect(video, canvas);
|
|
ui.busy = false;
|
|
// do once more because onresize events can be delayed or skipped
|
|
// if (video.width > window.innerWidth) await setupCamera();
|
|
status('');
|
|
resolve();
|
|
};
|
|
});
|
|
}
|
|
|
|
function initPerfMonitor() {
|
|
if (!bench) {
|
|
const gl = null;
|
|
// cosnt gl = human.tf.engine().backend.gpgpu.gl;
|
|
// if (!gl) log('bench cannot get tensorflow webgl context');
|
|
bench = new GLBench(gl, {
|
|
trackGPU: false, // this is really slow
|
|
chartHz: 20,
|
|
chartLen: 20,
|
|
});
|
|
bench.begin();
|
|
}
|
|
}
|
|
|
|
// wrapper for worker.postmessage that creates worker if one does not exist
|
|
function webWorker(input, image, canvas, timestamp) {
|
|
if (!worker) {
|
|
// create new webworker and add event handler only once
|
|
log('creating worker thread');
|
|
worker = new Worker(ui.worker, { type: 'module' });
|
|
// after receiving message from webworker, parse&draw results and send new frame for processing
|
|
worker.addEventListener('message', (msg) => {
|
|
if (msg.data.result.performance && msg.data.result.performance.total) ui.detectFPS.push(1000 / msg.data.result.performance.total);
|
|
if (ui.detectFPS.length > ui.maxFPSframes) ui.detectFPS.shift();
|
|
if (ui.bench) {
|
|
if (!bench) initPerfMonitor();
|
|
bench.nextFrame(timestamp);
|
|
}
|
|
if (document.getElementById('gl-bench')) document.getElementById('gl-bench').style.display = ui.bench ? 'block' : 'none';
|
|
lastDetectedResult = msg.data.result;
|
|
ui.framesDetect++;
|
|
if (!ui.drawThread) drawResults(input);
|
|
// eslint-disable-next-line no-use-before-define
|
|
ui.detectThread = requestAnimationFrame((now) => runHumanDetect(input, canvas, now));
|
|
});
|
|
}
|
|
// pass image data as arraybuffer to worker by reference to avoid copy
|
|
worker.postMessage({ image: image.data.buffer, width: canvas.width, height: canvas.height, userConfig }, [image.data.buffer]);
|
|
}
|
|
|
|
// main processing function when input is webcam, can use direct invocation or web worker
|
|
function runHumanDetect(input, canvas, timestamp) {
|
|
// if live video
|
|
const live = input.srcObject && (input.srcObject.getVideoTracks()[0].readyState === 'live') && (input.readyState > 2) && (!input.paused);
|
|
if (!live && input.srcObject) {
|
|
// stop ui refresh
|
|
if (ui.drawThread) cancelAnimationFrame(ui.drawThread);
|
|
if (ui.detectThread) cancelAnimationFrame(ui.detectThread);
|
|
ui.drawThread = null;
|
|
ui.detectThread = null;
|
|
// if we want to continue and camera not ready, retry in 0.5sec, else just give up
|
|
if (input.paused) log('camera paused');
|
|
else if ((input.srcObject.getVideoTracks()[0].readyState === 'live') && (input.readyState <= 2)) setTimeout(() => runHumanDetect(input, canvas), 500);
|
|
else log(`camera not ready: track state: ${input.srcObject?.getVideoTracks()[0].readyState} stream state: ${input.readyState}`);
|
|
clearTimeout(ui.drawThread);
|
|
ui.drawThread = null;
|
|
log('frame statistics: process:', ui.framesDetect, 'refresh:', ui.framesDraw);
|
|
log('memory', human.tf.engine().memory());
|
|
return;
|
|
}
|
|
status('');
|
|
if (ui.useWorker) {
|
|
// get image data from video as we cannot send html objects to webworker
|
|
const offscreen = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(canvas.width, canvas.height) : document.createElement('canvas');
|
|
offscreen.width = canvas.width;
|
|
offscreen.height = canvas.height;
|
|
const ctx = offscreen.getContext('2d');
|
|
ctx.drawImage(input, 0, 0, input.width, input.height, 0, 0, canvas.width, canvas.height);
|
|
const data = ctx.getImageData(0, 0, canvas.width, canvas.height);
|
|
// perform detection in worker
|
|
webWorker(input, data, canvas, userConfig, timestamp);
|
|
} else {
|
|
human.detect(input, userConfig).then((result) => {
|
|
if (result.performance && result.performance.total) ui.detectFPS.push(1000 / result.performance.total);
|
|
if (ui.detectFPS.length > ui.maxFPSframes) ui.detectFPS.shift();
|
|
if (ui.bench) {
|
|
if (!bench) initPerfMonitor();
|
|
bench.nextFrame(timestamp);
|
|
}
|
|
if (document.getElementById('gl-bench')) document.getElementById('gl-bench').style.display = ui.bench ? 'block' : 'none';
|
|
if (result.error) {
|
|
log(result.error);
|
|
document.getElementById('log').innerText += `\nHuman error: ${result.error}`;
|
|
} else {
|
|
lastDetectedResult = result;
|
|
if (!ui.drawThread) drawResults(input);
|
|
ui.framesDetect++;
|
|
ui.detectThread = requestAnimationFrame((now) => runHumanDetect(input, canvas, now));
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
// main processing function when input is image, can use direct invocation or web worker
|
|
async function processImage(input) {
|
|
return new Promise((resolve) => {
|
|
const image = new Image();
|
|
image.onload = async () => {
|
|
log('processing image:', encodeURI(image.src));
|
|
const canvas = document.getElementById('canvas');
|
|
image.width = image.naturalWidth;
|
|
image.height = image.naturalHeight;
|
|
canvas.width = human.config.filter.width && human.config.filter.width > 0 ? human.config.filter.width : image.naturalWidth;
|
|
canvas.height = human.config.filter.height && human.config.filter.height > 0 ? human.config.filter.height : image.naturalHeight;
|
|
const result = await human.detect(image, userConfig);
|
|
lastDetectedResult = result;
|
|
await drawResults(image);
|
|
const thumb = document.createElement('canvas');
|
|
thumb.className = 'thumbnail';
|
|
thumb.width = window.innerWidth / (ui.columns + 0.1);
|
|
thumb.height = thumb.width * canvas.height / canvas.width;
|
|
if (result.face && result.face.length > 0) {
|
|
thumb.title = result.face.map((a, i) => `#${i} face: ${Math.trunc(100 * a.faceConfidence)}% box: ${Math.trunc(100 * a.boxConfidence)}% age: ${Math.trunc(a.age)} gender: ${Math.trunc(100 * a.genderConfidence)}% ${a.gender}`).join(' | ');
|
|
} else {
|
|
thumb.title = 'no face detected';
|
|
}
|
|
const ctx = thumb.getContext('2d');
|
|
ctx.drawImage(canvas, 0, 0, canvas.width, canvas.height, 0, 0, thumb.width, thumb.height);
|
|
document.getElementById('samples-container').appendChild(thumb);
|
|
image.src = '';
|
|
resolve(true);
|
|
};
|
|
image.src = input;
|
|
});
|
|
}
|
|
|
|
// just initialize everything and call main function
|
|
async function detectVideo() {
|
|
document.getElementById('samples-container').style.display = 'none';
|
|
document.getElementById('canvas').style.display = 'block';
|
|
const video = document.getElementById('video');
|
|
const canvas = document.getElementById('canvas');
|
|
if ((video.srcObject !== null) && !video.paused) {
|
|
document.getElementById('play').style.display = 'block';
|
|
document.getElementById('btnStart').className = 'button button-start';
|
|
document.getElementById('btnStart').innerHTML = 'start<br>video';
|
|
status('paused');
|
|
video.pause();
|
|
} else {
|
|
const cameraError = await setupCamera();
|
|
if (!cameraError) {
|
|
document.getElementById('play').style.display = 'none';
|
|
for (const m of Object.values(menu)) m.hide();
|
|
status('');
|
|
document.getElementById('btnStart').className = 'button button-stop';
|
|
document.getElementById('btnStart').innerHTML = 'pause<br>video';
|
|
await video.play();
|
|
if (!ui.detectThread) runHumanDetect(video, canvas);
|
|
} else {
|
|
status(cameraError);
|
|
}
|
|
}
|
|
}
|
|
|
|
// just initialize everything and call main function
|
|
async function detectSampleImages() {
|
|
userConfig.videoOptimized = false; // force disable video optimizations
|
|
document.getElementById('play').style.display = 'none';
|
|
document.getElementById('canvas').style.display = 'none';
|
|
document.getElementById('samples-container').style.display = 'block';
|
|
log('running detection of sample images');
|
|
status('processing images');
|
|
document.getElementById('samples-container').innerHTML = '';
|
|
for (const m of Object.values(menu)) m.hide();
|
|
for (const image of ui.samples) await processImage(image);
|
|
status('');
|
|
}
|
|
|
|
function setupMenu() {
|
|
let x = [];
|
|
if (window.innerWidth > 800) {
|
|
// initial position of menu items, later it's calculated based on mouse coordinates
|
|
x = [`${document.getElementById('btnDisplay').offsetLeft - 50}px`, `${document.getElementById('btnImage').offsetLeft - 50}px`, `${document.getElementById('btnProcess').offsetLeft - 50}px`, `${document.getElementById('btnModel').offsetLeft - 50}px`];
|
|
} else {
|
|
// absolute minimum spacing for menus
|
|
x = ['0rem', '11rem', '21.1rem', '33rem'];
|
|
}
|
|
|
|
menu.display = new Menu(document.body, '', { top: `${document.getElementById('menubar').offsetHeight}px`, left: x[0] });
|
|
menu.display.addBool('perf monitor', ui, 'bench', (val) => ui.bench = val);
|
|
menu.display.addBool('buffered output', ui, 'buffered', (val) => ui.buffered = val);
|
|
menu.display.addBool('crop & scale', ui, 'crop', (val) => {
|
|
ui.crop = val;
|
|
setupCamera();
|
|
});
|
|
menu.display.addBool('camera facing', ui, 'facing', (val) => {
|
|
ui.facing = val;
|
|
setupCamera();
|
|
});
|
|
menu.display.addHTML('<hr style="border-style: inset; border-color: dimgray">');
|
|
menu.display.addBool('use 3D depth', human.draw.drawOptions, 'useDepth');
|
|
menu.display.addBool('draw with curves', human.draw.drawOptions, 'useCurves');
|
|
menu.display.addBool('print labels', human.draw.drawOptions, 'drawLabels');
|
|
menu.display.addBool('draw points', human.draw.drawOptions, 'drawPoints');
|
|
menu.display.addBool('draw boxes', human.draw.drawOptions, 'drawBoxes');
|
|
menu.display.addBool('draw polygons', human.draw.drawOptions, 'drawPolygons');
|
|
menu.display.addBool('fill polygons', human.draw.drawOptions, 'fillPolygons');
|
|
|
|
menu.image = new Menu(document.body, '', { top: `${document.getElementById('menubar').offsetHeight}px`, left: x[1] });
|
|
menu.image.addBool('enabled', human.config.filter, 'enabled', (val) => human.config.filter.enabled = val);
|
|
ui.menuWidth = menu.image.addRange('image width', human.config.filter, 'width', 0, 3840, 10, (val) => human.config.filter.width = parseInt(val));
|
|
ui.menuHeight = menu.image.addRange('image height', human.config.filter, 'height', 0, 2160, 10, (val) => human.config.filter.height = parseInt(val));
|
|
menu.image.addHTML('<hr style="border-style: inset; border-color: dimgray">');
|
|
menu.image.addRange('brightness', human.config.filter, 'brightness', -1.0, 1.0, 0.05, (val) => human.config.filter.brightness = parseFloat(val));
|
|
menu.image.addRange('contrast', human.config.filter, 'contrast', -1.0, 1.0, 0.05, (val) => human.config.filter.contrast = parseFloat(val));
|
|
menu.image.addRange('sharpness', human.config.filter, 'sharpness', 0, 1.0, 0.05, (val) => human.config.filter.sharpness = parseFloat(val));
|
|
menu.image.addRange('blur', human.config.filter, 'blur', 0, 20, 1, (val) => human.config.filter.blur = parseInt(val));
|
|
menu.image.addRange('saturation', human.config.filter, 'saturation', -1.0, 1.0, 0.05, (val) => human.config.filter.saturation = parseFloat(val));
|
|
menu.image.addRange('hue', human.config.filter, 'hue', 0, 360, 5, (val) => human.config.filter.hue = parseInt(val));
|
|
menu.image.addRange('pixelate', human.config.filter, 'pixelate', 0, 32, 1, (val) => human.config.filter.pixelate = parseInt(val));
|
|
menu.image.addHTML('<hr style="border-style: inset; border-color: dimgray">');
|
|
menu.image.addBool('negative', human.config.filter, 'negative', (val) => human.config.filter.negative = val);
|
|
menu.image.addBool('sepia', human.config.filter, 'sepia', (val) => human.config.filter.sepia = val);
|
|
menu.image.addBool('vintage', human.config.filter, 'vintage', (val) => human.config.filter.vintage = val);
|
|
menu.image.addBool('kodachrome', human.config.filter, 'kodachrome', (val) => human.config.filter.kodachrome = val);
|
|
menu.image.addBool('technicolor', human.config.filter, 'technicolor', (val) => human.config.filter.technicolor = val);
|
|
menu.image.addBool('polaroid', human.config.filter, 'polaroid', (val) => human.config.filter.polaroid = val);
|
|
|
|
menu.process = new Menu(document.body, '', { top: `${document.getElementById('menubar').offsetHeight}px`, left: x[2] });
|
|
menu.process.addList('backend', ['cpu', 'webgl', 'wasm', 'humangl'], human.config.backend, (val) => human.config.backend = val);
|
|
menu.process.addBool('async operations', human.config, 'async', (val) => human.config.async = val);
|
|
// menu.process.addBool('enable profiler', human.config, 'profile', (val) => human.config.profile = val);
|
|
// menu.process.addBool('memory shield', human.config, 'deallocate', (val) => human.config.deallocate = val);
|
|
menu.process.addBool('use web worker', ui, 'useWorker');
|
|
menu.process.addHTML('<hr style="border-style: inset; border-color: dimgray">');
|
|
menu.process.addLabel('model parameters');
|
|
menu.process.addRange('max objects', human.config.face.detector, 'maxFaces', 1, 50, 1, (val) => {
|
|
human.config.face.detector.maxFaces = parseInt(val);
|
|
human.config.body.maxDetections = parseInt(val);
|
|
human.config.hand.maxHands = parseInt(val);
|
|
});
|
|
menu.process.addRange('skip frames', human.config.face.detector, 'skipFrames', 0, 50, 1, (val) => {
|
|
human.config.face.detector.skipFrames = parseInt(val);
|
|
human.config.face.emotion.skipFrames = parseInt(val);
|
|
human.config.face.age.skipFrames = parseInt(val);
|
|
human.config.hand.skipFrames = parseInt(val);
|
|
});
|
|
menu.process.addRange('min confidence', human.config.face.detector, 'minConfidence', 0.0, 1.0, 0.05, (val) => {
|
|
human.config.face.detector.minConfidence = parseFloat(val);
|
|
human.config.face.gender.minConfidence = parseFloat(val);
|
|
human.config.face.emotion.minConfidence = parseFloat(val);
|
|
human.config.hand.minConfidence = parseFloat(val);
|
|
});
|
|
menu.process.addRange('score threshold', human.config.face.detector, 'scoreThreshold', 0.1, 1.0, 0.05, (val) => {
|
|
human.config.face.detector.scoreThreshold = parseFloat(val);
|
|
human.config.hand.scoreThreshold = parseFloat(val);
|
|
human.config.body.scoreThreshold = parseFloat(val);
|
|
});
|
|
menu.process.addRange('overlap', human.config.face.detector, 'iouThreshold', 0.1, 1.0, 0.05, (val) => {
|
|
human.config.face.detector.iouThreshold = parseFloat(val);
|
|
human.config.hand.iouThreshold = parseFloat(val);
|
|
});
|
|
menu.process.addBool('detection rotation', human.config.face.detector, 'rotation', (val) => {
|
|
human.config.face.detector.rotation = val;
|
|
human.config.hand.rotation = val;
|
|
});
|
|
menu.process.addHTML('<hr style="border-style: inset; border-color: dimgray">');
|
|
menu.process.addButton('process sample images', 'process images', () => detectSampleImages());
|
|
menu.process.addHTML('<hr style="border-style: inset; border-color: dimgray">');
|
|
menu.process.addChart('FPS', 'FPS');
|
|
|
|
menu.models = new Menu(document.body, '', { top: `${document.getElementById('menubar').offsetHeight}px`, left: x[3] });
|
|
menu.models.addBool('face detect', human.config.face, 'enabled', (val) => human.config.face.enabled = val);
|
|
menu.models.addBool('face mesh', human.config.face.mesh, 'enabled', (val) => human.config.face.mesh.enabled = val);
|
|
menu.models.addBool('face iris', human.config.face.iris, 'enabled', (val) => human.config.face.iris.enabled = val);
|
|
menu.models.addBool('face description', human.config.face.description, 'enabled', (val) => human.config.face.age.description = val);
|
|
// menu.models.addBool('face age', human.config.face.age, 'enabled', (val) => human.config.face.age.enabled = val);
|
|
// menu.models.addBool('face gender', human.config.face.gender, 'enabled', (val) => human.config.face.gender.enabled = val);
|
|
menu.models.addBool('face emotion', human.config.face.emotion, 'enabled', (val) => human.config.face.emotion.enabled = val);
|
|
menu.models.addHTML('<hr style="border-style: inset; border-color: dimgray">');
|
|
menu.models.addBool('body pose', human.config.body, 'enabled', (val) => human.config.body.enabled = val);
|
|
menu.models.addBool('hand pose', human.config.hand, 'enabled', (val) => human.config.hand.enabled = val);
|
|
menu.models.addHTML('<hr style="border-style: inset; border-color: dimgray">');
|
|
menu.models.addBool('gestures', human.config.gesture, 'enabled', (val) => human.config.gesture.enabled = val);
|
|
menu.models.addHTML('<hr style="border-style: inset; border-color: dimgray">');
|
|
menu.models.addBool('object detection', human.config.object, 'enabled', (val) => human.config.object.enabled = val);
|
|
menu.models.addHTML('<hr style="border-style: inset; border-color: dimgray">');
|
|
menu.models.addBool('face compare', compare, 'enabled', (val) => {
|
|
compare.enabled = val;
|
|
compare.original = null;
|
|
});
|
|
|
|
document.getElementById('btnDisplay').addEventListener('click', (evt) => menu.display.toggle(evt));
|
|
document.getElementById('btnImage').addEventListener('click', (evt) => menu.image.toggle(evt));
|
|
document.getElementById('btnProcess').addEventListener('click', (evt) => menu.process.toggle(evt));
|
|
document.getElementById('btnModel').addEventListener('click', (evt) => menu.models.toggle(evt));
|
|
document.getElementById('btnStart').addEventListener('click', () => detectVideo());
|
|
document.getElementById('play').addEventListener('click', () => detectVideo());
|
|
}
|
|
|
|
async function drawWarmup(res) {
|
|
const canvas = document.getElementById('canvas');
|
|
canvas.width = res.canvas.width;
|
|
canvas.height = res.canvas.height;
|
|
const ctx = canvas.getContext('2d');
|
|
ctx.drawImage(res.canvas, 0, 0, res.canvas.width, res.canvas.height, 0, 0, canvas.width, canvas.height);
|
|
await human.draw.all(canvas, res);
|
|
}
|
|
|
|
async function main() {
|
|
log('demo starting ...');
|
|
setupMenu();
|
|
document.getElementById('log').innerText = `Human: version ${human.version}`;
|
|
if (ui.modelsPreload && !ui.useWorker) {
|
|
status('loading');
|
|
await human.load(userConfig); // this is not required, just pre-loads all models
|
|
const loaded = Object.keys(human.models).filter((a) => human.models[a]);
|
|
log('demo loaded models:', loaded);
|
|
}
|
|
if (!ui.useWorker) {
|
|
status('initializing');
|
|
const res = await human.warmup(userConfig); // this is not required, just pre-warms all models for faster initial inference
|
|
if (res && res.canvas && ui.drawWarmup) await drawWarmup(res);
|
|
}
|
|
status('human: ready');
|
|
document.getElementById('loader').style.display = 'none';
|
|
document.getElementById('play').style.display = 'block';
|
|
log('demo ready...');
|
|
}
|
|
|
|
window.onload = main;
|
|
window.onresize = setupCamera;
|