Human: AI-powered 3D Face Detection & Rotation Tracking, Face Description & Recognition, Body Pose Tracking, 3D Hand & Finger Tracking, Iris Analysis, Age & Gender & Emotion Prediction, Gaze Tracking, Gesture Recognition
 
 
 
 
Go to file
Vladimir Mandic 77476652d2 new serve module and demo structure 2021-03-29 14:40:34 -04:00
.github update github templates 2021-03-18 11:58:46 -04:00
assets added face matching example to docs 2021-03-23 15:35:54 -04:00
demo new serve module and demo structure 2021-03-29 14:40:34 -04:00
models new module: face description 2021-03-21 14:18:51 -04:00
src new serve module and demo structure 2021-03-29 14:40:34 -04:00
wiki@df23c6e6fd new serve module and demo structure 2021-03-29 14:40:34 -04:00
.eslintrc.json enforce types 2021-03-17 20:16:40 -04:00
.gitignore fix box clamping and raw output 2021-03-17 14:35:11 -04:00
.gitmodules updated wiki 2020-11-07 09:42:54 -05:00
.markdownlint.json update badges 2021-03-08 15:06:56 -05:00
CHANGELOG.md new serve module and demo structure 2021-03-29 14:40:34 -04:00
CODE_OF_CONDUCT update github templates 2021-03-18 11:58:46 -04:00
CONTRIBUTING update contributing guide 2021-03-26 15:37:43 -04:00
LICENSE update github templates 2021-03-18 11:58:46 -04:00
README.md updated face description 2021-03-24 11:08:49 -04:00
SECURITY.md update github templates 2021-03-18 11:58:46 -04:00
TODO.md fix for seedrandom 2021-03-16 07:16:25 -04:00
favicon.ico refactored package file layout 2020-10-17 06:30:00 -04:00
human.service fix box clamping and raw output 2021-03-17 14:35:11 -04:00
package.json new serve module and demo structure 2021-03-29 14:40:34 -04:00
tsconfig.json new serve module and demo structure 2021-03-29 14:40:34 -04:00

README.md

Version Last Commit License GitHub Status Checks Vulnerabilities

Human Library

3D Face Detection & Rotation Tracking, Face Description & Recognition,
Body Pose Tracking, 3D Hand & Finger Tracking,
Iris Analysis, Age & Gender & Emotion Prediction,
Gesture Recognition


JavaScript module using TensorFlow/JS Machine Learning library

  • Browser:
    Compatible with CPU, WebGL, WASM backends
    Compatible with both desktop and mobile platforms
    Compatible with WebWorker execution
  • NodeJS:
    Compatible with both software tfjs-node and
    GPU accelerated backends tfjs-node-gpu using CUDA libraries

Check out Live Demo for processing of live WebCam video or static images


Project pages


Wiki pages


Additional notes


See issues and discussions for list of known limitations and planned enhancements

Suggestions are welcome!




Options

As presented in the demo application...

Options visible in demo


Examples


Training image:

Example Training Image

Using static images:

Example Using Image

Live WebCam view:

Example Using WebCam

Face Similarity Matching:

Face Matching

468-Point Face Mesh Defails:

FaceMesh




Example simple app that uses Human to process video input and
draw output on screen using internal draw helper functions

import Human from '@vladmandic/human';

// create instance of human with simple configuration using default values
const config = { backend: 'webgl' };
const human = new Human(config);

function detectVideo() {
  // select input HTMLVideoElement and output HTMLCanvasElement from page
  const inputVideo = document.getElementById('video-id');
  const outputCanvas = document.getElementById('canvas-id');
  // perform processing using default configuration
  human.detect(inputVideo).then((result) => {
    // result object will contain detected details
    // as well as the processed canvas itself
    // so lets first draw processed frame on canvas
    human.draw.canvas(result.canvas, outputCanvas);
    // then draw results on the same canvas
    human.draw.face(outputCanvas, result.face);
    human.draw.body(outputCanvas, result.body);
    human.draw.hand(outputCanvas, result.hand);
    human.draw.gesture(outputCanvas, result.gesture);
    // loop immediate to next frame
    requestAnimationFrame(detectVideo);
  });
}

detectVideo();




Default models

Default models in Human library are:

  • Face Detection: MediaPipe BlazeFace-Back
  • Face Mesh: MediaPipe FaceMesh
  • Face Description: HSE FaceRes
  • Face Iris Analysis: MediaPipe Iris
  • Emotion Detection: Oarriaga Emotion
  • Body Analysis: PoseNet

Note that alternative models are provided and can be enabled via configuration
For example, PoseNet model can be switched for BlazePose model depending on the use case

For more info, see Configuration Details and List of Models




Human library is written in TypeScript 4.3
Conforming to JavaScript ECMAScript version 2020 standard
Build target is JavaScript EMCAScript version 2018


For details see Wiki Pages
and API Specification


Downloads Stars Code Size