human/dist/tfjs.esm.js

4342 lines
1.0 MiB

/*
Human library
homepage: <https://github.com/vladmandic/human>
author: <https://github.com/vladmandic>'
*/
var SV=Object.create,Gh=Object.defineProperty,TV=Object.getPrototypeOf,AV=Object.prototype.hasOwnProperty,EV=Object.getOwnPropertyNames,DV=Object.getOwnPropertyDescriptor;var $V=r=>Gh(r,"__esModule",{value:!0});var Ut=(r,e)=>()=>(e||r((e={exports:{}}).exports,e),e.exports),Ge=(r,e)=>{for(var t in e)Gh(r,t,{get:e[t],enumerable:!0})},RV=(r,e,t)=>{if(e&&typeof e=="object"||typeof e=="function")for(let o of EV(e))!AV.call(r,o)&&o!=="default"&&Gh(r,o,{get:()=>e[o],enumerable:!(t=DV(e,o))||t.enumerable});return r},sc=r=>RV($V(Gh(r!=null?SV(TV(r)):{},"default",r&&r.__esModule&&"default"in r?{get:()=>r.default,enumerable:!0}:{value:r,enumerable:!0})),r);var RS=Ut(()=>{});var xT=Ut((gT,Vw)=>{(function(r,e,t){function o(i){var l=this,u=a();l.next=function(){var c=2091639*l.s0+l.c*23283064365386963e-26;return l.s0=l.s1,l.s1=l.s2,l.s2=c-(l.c=c|0)},l.c=1,l.s0=u(" "),l.s1=u(" "),l.s2=u(" "),l.s0-=u(i),l.s0<0&&(l.s0+=1),l.s1-=u(i),l.s1<0&&(l.s1+=1),l.s2-=u(i),l.s2<0&&(l.s2+=1),u=null}function n(i,l){return l.c=i.c,l.s0=i.s0,l.s1=i.s1,l.s2=i.s2,l}function s(i,l){var u=new o(i),c=l&&l.state,p=u.next;return p.int32=function(){return u.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&n(c,u),p.state=function(){return n(u,{})}),p}function a(){var i=4022871197,l=function(u){u=u.toString();for(var c=0;c<u.length;c++){i+=u.charCodeAt(c);var p=.02519603282416938*i;i=p>>>0,p-=i,p*=i,i=p>>>0,p-=i,i+=p*4294967296}return(i>>>0)*23283064365386963e-26};return l}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.alea=s})(gT,typeof Vw=="object"&&Vw,typeof define=="function"&&define)});var bT=Ut((yT,Gw)=>{(function(r,e,t){function o(a){var i=this,l="";i.x=0,i.y=0,i.z=0,i.w=0,i.next=function(){var c=i.x^i.x<<11;return i.x=i.y,i.y=i.z,i.z=i.w,i.w^=i.w>>>19^c^c>>>8},a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,i.next()}function n(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor128=s})(yT,typeof Gw=="object"&&Gw,typeof define=="function"&&define)});var _T=Ut((wT,Ww)=>{(function(r,e,t){function o(a){var i=this,l="";i.next=function(){var c=i.x^i.x>>>2;return i.x=i.y,i.y=i.z,i.z=i.w,i.w=i.v,(i.d=i.d+362437|0)+(i.v=i.v^i.v<<4^(c^c<<1))|0},i.x=0,i.y=0,i.z=0,i.w=0,i.v=0,a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,u==l.length&&(i.d=i.x<<10^i.x>>>4),i.next()}function n(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i.v=a.v,i.d=a.d,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorwow=s})(wT,typeof Ww=="object"&&Ww,typeof define=="function"&&define)});var vT=Ut((kT,jw)=>{(function(r,e,t){function o(a){var i=this;i.next=function(){var u=i.x,c=i.i,p,m,f;return p=u[c],p^=p>>>7,m=p^p<<24,p=u[c+1&7],m^=p^p>>>10,p=u[c+3&7],m^=p^p>>>3,p=u[c+4&7],m^=p^p<<7,p=u[c+7&7],p=p^p<<13,m^=p^p<<9,u[c]=m,i.i=c+1&7,m};function l(u,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],u.x=f,u.i=0,p=256;p>0;--p)u.next()}l(i,a)}function n(a,i){return i.x=a.x.slice(),i.i=a.i,i}function s(a,i){a==null&&(a=+new Date);var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.x&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorshift7=s})(kT,typeof jw=="object"&&jw,typeof define=="function"&&define)});var IT=Ut((CT,Uw)=>{(function(r,e,t){function o(a){var i=this;i.next=function(){var u=i.w,c=i.X,p=i.i,m,f;return i.w=u=u+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,i.i=p,f+(u^u>>>16)|0};function l(u,c){var p,m,f,d,h,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,d=-32;d<x;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;u.w=h,u.X=g,u.i=f}l(i,a)}function n(a,i){return i.i=a.i,i.w=a.w,i.X=a.X.slice(),i}function s(a,i){a==null&&(a=+new Date);var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.X&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor4096=s})(CT,typeof Uw=="object"&&Uw,typeof define=="function"&&define)});var ST=Ut((NT,Hw)=>{(function(r,e,t){function o(a){var i=this,l="";i.next=function(){var c=i.b,p=i.c,m=i.d,f=i.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,i.b=c=c<<20^c>>>12^p,i.c=p=p-m|0,i.d=m<<16^p>>>16^f,i.a=f-c|0},i.a=0,i.b=0,i.c=2654435769|0,i.d=1367130551,a===Math.floor(a)?(i.a=a/4294967296|0,i.b=a|0):l+=a;for(var u=0;u<l.length+20;u++)i.b^=l.charCodeAt(u)|0,i.next()}function n(a,i){return i.a=a.a,i.b=a.b,i.c=a.c,i.d=a.d,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.tychei=s})(NT,typeof Hw=="object"&&Hw,typeof define=="function"&&define)});var qw=Ut(()=>{});var TT=Ut((Vbe,cg)=>{(function(r,e){var t=this,o=256,n=6,s=52,a="random",i=e.pow(o,n),l=e.pow(2,s),u=l*2,c=o-1,p;function m(w,_,k){var D=[];_=_==!0?{entropy:!0}:_||{};var T=g(h(_.entropy?[w,b(r)]:w==null?x():w,3),D),R=new f(D),O=function(){for(var M=R.g(n),G=i,j=0;M<l;)M=(M+j)*o,G*=o,j=R.g(1);for(;M>=u;)M/=2,G/=2,j>>>=1;return(M+j)/G};return O.int32=function(){return R.g(4)|0},O.quick=function(){return R.g(4)/4294967296},O.double=O,g(b(R.S),r),(_.pass||k||function(M,G,j,U){return U&&(U.S&&d(U,R),M.state=function(){return d(R,{})}),j?(e[a]=M,G):M})(O,T,"global"in _?_.global:this==e,_.state)}e["seed"+a]=m;function f(w){var _,k=w.length,D=this,T=0,R=D.i=D.j=0,O=D.S=[];for(k||(w=[k++]);T<o;)O[T]=T++;for(T=0;T<o;T++)O[T]=O[R=c&R+w[T%k]+(_=O[T])],O[R]=_;(D.g=function(M){for(var G,j=0,U=D.i,H=D.j,q=D.S;M--;)G=q[U=c&U+1],j=j*o+q[c&(q[U]=q[H=c&H+G])+(q[H]=G)];return D.i=U,D.j=H,j})(o)}function d(w,_){return _.i=w.i,_.j=w.j,_.S=w.S.slice(),_}function h(w,_){var k=[],D=typeof w,T;if(_&&D=="object")for(T in w)try{k.push(h(w[T],_-1))}catch(R){}return k.length?k:D=="string"?w:w+"\0"}function g(w,_){for(var k=w+"",D,T=0;T<k.length;)_[c&T]=c&(D^=_[c&T]*19)+k.charCodeAt(T++);return b(_)}function x(){try{var w;return p&&(w=p.randomBytes)?w=w(o):(w=new Uint8Array(o),(t.crypto||t.msCrypto).getRandomValues(w)),b(w)}catch(D){var _=t.navigator,k=_&&_.plugins;return[+new Date,t,k,t.screen,b(r)]}}function b(w){return String.fromCharCode.apply(0,w)}if(g(e.random(),r),typeof cg=="object"&&cg.exports){cg.exports=m;try{p=qw()}catch(w){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)});var Kw=Ut((Gbe,AT)=>{var z4=xT(),B4=bT(),V4=_T(),G4=vT(),W4=IT(),j4=ST(),su=TT();su.alea=z4;su.xor128=B4;su.xorwow=V4;su.xorshift7=G4;su.xor4096=W4;su.tychei=j4;AT.exports=su});var vp=Ut(()=>{});var qP=Ut(()=>{});var KP=Ut(()=>{});var XP=Ut((gx,aC)=>{var lC=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(e){e=e||{};function t(){return J.buffer!=Ue&&nr(J.buffer),ut}function o(){return J.buffer!=Ue&&nr(J.buffer),mt}function n(){return J.buffer!=Ue&&nr(J.buffer),Xt}function s(){return J.buffer!=Ue&&nr(J.buffer),oo}function a(){return J.buffer!=Ue&&nr(J.buffer),jo}var i=typeof e!="undefined"?e:{},l,u;i.ready=new Promise(function(I,$){l=I,u=$});var c={},p;for(p in i)i.hasOwnProperty(p)&&(c[p]=i[p]);var m=[],f="./this.program",d=function(I,$){throw $},h=!1,g=!1,x=!1,b=!1;h=typeof window=="object",g=typeof importScripts=="function",x=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",b=!h&&!x&&!g;var w=i.ENVIRONMENT_IS_PTHREAD||!1;w&&(Ue=i.buffer);var _="";function k(I){return i.locateFile?i.locateFile(I,_):_+I}var D,T,R,O,M,G;if(x){g?_=vp().dirname(_)+"/":_=__dirname+"/",D=function($,B){return M||(M=require("fs")),G||(G=vp()),$=G.normalize($),M.readFileSync($,B?null:"utf8")},R=function($){var B=D($,!0);return B.buffer||(B=new Uint8Array(B)),fe(B.buffer),B},process.argv.length>1&&(f=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(I){if(!(I instanceof am))throw I}),process.on("unhandledRejection",hi),d=function(I){process.exit(I)},i.inspect=function(){return"[Emscripten Module object]"};var j;try{j=qP()}catch(I){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),I}global.Worker=j.Worker}else b?(typeof read!="undefined"&&(D=function($){return read($)}),R=function($){var B;return typeof readbuffer=="function"?new Uint8Array(readbuffer($)):(B=read($,"binary"),fe(typeof B=="object"),B)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(d=function(I){quit(I)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||g)&&(g?_=self.location.href:typeof document!="undefined"&&document.currentScript&&(_=document.currentScript.src),typeof r!="undefined"&&r&&(_=r),_.indexOf("blob:")!==0?_=_.substr(0,_.lastIndexOf("/")+1):_="",x?(D=function($,B){return M||(M=require("fs")),G||(G=vp()),$=G.normalize($),M.readFileSync($,B?null:"utf8")},R=function($){var B=D($,!0);return B.buffer||(B=new Uint8Array(B)),fe(B.buffer),B}):(D=function(I){var $=new XMLHttpRequest;return $.open("GET",I,!1),$.send(null),$.responseText},g&&(R=function(I){var $=new XMLHttpRequest;return $.open("GET",I,!1),$.responseType="arraybuffer",$.send(null),new Uint8Array($.response)}),T=function(I,$,B){var K=new XMLHttpRequest;K.open("GET",I,!0),K.responseType="arraybuffer",K.onload=function(){if(K.status==200||K.status==0&&K.response){$(K.response);return}B()},K.onerror=B,K.send(null)}),O=function(I){document.title=I});x&&typeof performance=="undefined"&&(global.performance=KP().performance);var U=i.print||console.log.bind(console),H=i.printErr||console.warn.bind(console);for(p in c)c.hasOwnProperty(p)&&(i[p]=c[p]);c=null,i.arguments&&(m=i.arguments),i.thisProgram&&(f=i.thisProgram),i.quit&&(d=i.quit);var q=Atomics.load,X=Atomics.store,oe=Atomics.compareExchange,Y;i.wasmBinary&&(Y=i.wasmBinary);var re=i.noExitRuntime||!0;typeof WebAssembly!="object"&&hi("no native wasm support detected");var J,ie,ue=!1,ae;function fe(I,$){I||hi("Assertion failed: "+$)}function de(I){var $=i["_"+I];return fe($,"Cannot call unknown function "+I+", make sure it is exported"),$}function xe(I,$,B,K,be){var he={string:function(Ur){var nc=0;if(Ur!=null&&Ur!==0){var xI=(Ur.length<<2)+1;nc=tc(xI),qe(Ur,nc,xI)}return nc},array:function(Ur){var nc=tc(Ur.length);return St(Ur,nc),nc}};function ye(Ur){return $==="string"?Ne(Ur):$==="boolean"?Boolean(Ur):Ur}var Te=de(I),wt=[],wr=0;if(K)for(var dr=0;dr<K.length;dr++){var Ba=he[B[dr]];Ba?(wr===0&&(wr=im()),wt[dr]=Ba(K[dr])):wt[dr]=K[dr]}var oc=Te.apply(null,wt);return oc=ye(oc),wr!==0&&ec(wr),oc}function we(I,$,B,K){B=B||[];var be=B.every(function(ye){return ye==="number"}),he=$!=="string";return he&&be&&!K?de(I):function(){return xe(I,$,B,arguments,K)}}function De(I,$,B){for(var K=$+B,be="";!($>=K);){var he=I[$++];if(!he)return be;if(!(he&128)){be+=String.fromCharCode(he);continue}var ye=I[$++]&63;if((he&224)==192){be+=String.fromCharCode((he&31)<<6|ye);continue}var Te=I[$++]&63;if((he&240)==224?he=(he&15)<<12|ye<<6|Te:he=(he&7)<<18|ye<<12|Te<<6|I[$++]&63,he<65536)be+=String.fromCharCode(he);else{var wt=he-65536;be+=String.fromCharCode(55296|wt>>10,56320|wt&1023)}}return be}function Ne(I,$){return I?De(o(),I,$):""}function ze(I,$,B,K){if(!(K>0))return 0;for(var be=B,he=B+K-1,ye=0;ye<I.length;++ye){var Te=I.charCodeAt(ye);if(Te>=55296&&Te<=57343){var wt=I.charCodeAt(++ye);Te=65536+((Te&1023)<<10)|wt&1023}if(Te<=127){if(B>=he)break;$[B++]=Te}else if(Te<=2047){if(B+1>=he)break;$[B++]=192|Te>>6,$[B++]=128|Te&63}else if(Te<=65535){if(B+2>=he)break;$[B++]=224|Te>>12,$[B++]=128|Te>>6&63,$[B++]=128|Te&63}else{if(B+3>=he)break;$[B++]=240|Te>>18,$[B++]=128|Te>>12&63,$[B++]=128|Te>>6&63,$[B++]=128|Te&63}}return $[B]=0,B-be}function qe(I,$,B){return ze(I,o(),$,B)}function it(I){for(var $=0,B=0;B<I.length;++B){var K=I.charCodeAt(B);K>=55296&&K<=57343&&(K=65536+((K&1023)<<10)|I.charCodeAt(++B)&1023),K<=127?++$:K<=2047?$+=2:K<=65535?$+=3:$+=4}return $}function St(I,$){t().set(I,$)}function Tt(I,$){return I%$>0&&(I+=$-I%$),I}var Ue,ut,mt,Pt,_o,Xt,oo,Rr,jo;function nr(I){Ue=I,i.HEAP8=ut=new Int8Array(I),i.HEAP16=Pt=new Int16Array(I),i.HEAP32=Xt=new Int32Array(I),i.HEAPU8=mt=new Uint8Array(I),i.HEAPU16=_o=new Uint16Array(I),i.HEAPU32=oo=new Uint32Array(I),i.HEAPF32=Rr=new Float32Array(I),i.HEAPF64=jo=new Float64Array(I)}var ko=i.INITIAL_MEMORY||16777216;if(w)J=i.wasmMemory,Ue=i.buffer;else if(i.wasmMemory)J=i.wasmMemory;else if(J=new WebAssembly.Memory({initial:ko/65536,maximum:2147483648/65536,shared:!0}),!(J.buffer instanceof SharedArrayBuffer))throw H("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),x&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");J&&(Ue=J.buffer),ko=Ue.byteLength,nr(Ue);var jr,br=[],no=[],$o=[],Dl=[],Oa=[],bn=!1,fi=!1;w||no.push({func:function(){Oh()}}),w&&(bn=!0);function Jp(){if(!w){if(i.preRun)for(typeof i.preRun=="function"&&(i.preRun=[i.preRun]);i.preRun.length;)kh(i.preRun.shift());Xu(br)}}function qu(){bn=!0,Xu(no)}function xy(){w||Xu($o)}function _h(){w||(fi=!0)}function so(){if(!w){if(i.postRun)for(typeof i.postRun=="function"&&(i.postRun=[i.postRun]);i.postRun.length;)yy(i.postRun.shift());Xu(Oa)}}function kh(I){br.unshift(I)}function yy(I){Oa.unshift(I)}var di=0,Pa=null,$l=null;function by(I){fe(!w,"addRunDependency cannot be used in a pthread worker"),di++,i.monitorRunDependencies&&i.monitorRunDependencies(di)}function wy(I){if(di--,i.monitorRunDependencies&&i.monitorRunDependencies(di),di==0&&(Pa!==null&&(clearInterval(Pa),Pa=null),$l)){var $=$l;$l=null,$()}}i.preloadedImages={},i.preloadedAudios={};function hi(I){i.onAbort&&i.onAbort(I),w&&console.error("Pthread aborting at "+new Error().stack),I+="",H(I),ue=!0,ae=1,I="abort("+I+"). Build with -s ASSERTIONS=1 for more info.";var $=new WebAssembly.RuntimeError(I);throw u($),$}function vh(I,$){return String.prototype.startsWith?I.startsWith($):I.indexOf($)===0}var Ku="data:application/octet-stream;base64,";function Ch(I){return vh(I,Ku)}var _y="file://";function Ih(I){return vh(I,_y)}var io="tfjs-backend-wasm-threaded-simd.wasm";Ch(io)||(io=k(io));function ky(I){try{if(I==io&&Y)return new Uint8Array(Y);if(R)return R(I);throw"both async and sync fetching of the wasm failed"}catch($){hi($)}}function Nh(){if(!Y&&(h||g)){if(typeof fetch=="function"&&!Ih(io))return fetch(io,{credentials:"same-origin"}).then(function(I){if(!I.ok)throw"failed to load wasm binary file at '"+io+"'";return I.arrayBuffer()}).catch(function(){return ky(io)});if(T)return new Promise(function(I,$){T(io,function(B){I(new Uint8Array(B))},$)})}return Promise.resolve().then(function(){return ky(io)})}function vy(){var I={a:fb};function $(ye,Te){var wt=ye.exports;if(i.asm=wt,jr=i.asm.F,ie=Te,!w){var wr=Ee.unusedWorkers.length;Ee.unusedWorkers.forEach(function(dr){Ee.loadWasmModuleToWorker(dr,function(){--wr||wy("wasm-instantiate")})})}}w||by("wasm-instantiate");function B(ye){$(ye.instance,ye.module)}function K(ye){return Nh().then(function(Te){return WebAssembly.instantiate(Te,I)}).then(ye,function(Te){H("failed to asynchronously prepare wasm: "+Te),hi(Te)})}function be(){return!Y&&typeof WebAssembly.instantiateStreaming=="function"&&!Ch(io)&&!Ih(io)&&typeof fetch=="function"?fetch(io,{credentials:"same-origin"}).then(function(ye){var Te=WebAssembly.instantiateStreaming(ye,I);return Te.then(B,function(wt){return H("wasm streaming compile failed: "+wt),H("falling back to ArrayBuffer instantiation"),K(B)})}):K(B)}if(i.instantiateWasm)try{var he=i.instantiateWasm(I,$);return he}catch(ye){return H("Module.instantiateWasm callback failed with error: "+ye),!1}return be().catch(u),{}}var Sh={8991:function(I,$){setTimeout(function(){pI(I,$)},0)}};function Cy(){Ee.initRuntime()}function Xu(I){for(;I.length>0;){var $=I.shift();if(typeof $=="function"){$(i);continue}var B=$.func;typeof B=="number"?$.arg===void 0?jr.get(B)():jr.get(B)($.arg):B($.arg===void 0?null:$.arg)}}function Yu(I,$){if(I<=0||I>t().length||I&!0||$<0)return-28;if($==0)return 0;$>=2147483647&&($=Infinity);var B=Atomics.load(n(),rc>>2),K=0;if(B==I){var be=Atomics.compareExchange(n(),rc>>2,B,0);if(be==B&&(--$,K=1,$<=0))return 1}var he=Atomics.notify(n(),I>>2,$);if(he>=0)return he+K;throw"Atomics.notify returned an unexpected value "+he}i._emscripten_futex_wake=Yu;function Iy(I){if(w)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in killThread!";n()[I+12>>2]=0;var $=Ee.pthreads[I];$.worker.terminate(),Ee.freeThreadData($),Ee.runningWorkers.splice(Ee.runningWorkers.indexOf($.worker),1),$.worker.pthread=void 0}function Ny(I){if(w)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cancelThread!";var $=Ee.pthreads[I];$.worker.postMessage({cmd:"cancel"})}function Sy(I){if(w)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cleanupThread!";n()[I+12>>2]=0;var $=Ee.pthreads[I];if($){var B=$.worker;Ee.returnWorkerToPool(B)}}var Ee={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var I=8,$=0;$<I;++$)Ee.allocateUnusedWorker()},initRuntime:function(){for(var I=Fl(228),$=0;$<228/4;++$)s()[I/4+$]=0;n()[I+12>>2]=I;var B=I+152;n()[B>>2]=B;for(var K=Fl(512),$=0;$<128;++$)s()[K/4+$]=0;Atomics.store(s(),I+100>>2,K),Atomics.store(s(),I+40>>2,I),Bh(I,!g,1),cI(I)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Ee.threadExitHandlers.length>0;)Ee.threadExitHandlers.pop()();w&&Qu()&&uI()},threadExit:function(I){var $=Qu();$&&(Atomics.store(s(),$+4>>2,I),Atomics.store(s(),$+0>>2,1),Atomics.store(s(),$+56>>2,1),Atomics.store(s(),$+60>>2,0),Ee.runExitHandlers(),Yu($+0,2147483647),Bh(0,0,0),w&&postMessage({cmd:"exit"}))},threadCancel:function(){Ee.runExitHandlers();var I=Qu();Atomics.store(s(),I+4>>2,-1),Atomics.store(s(),I+0>>2,1),Yu(I+0,2147483647),Bh(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var I in Ee.pthreads){var $=Ee.pthreads[I];$&&$.worker&&Ee.returnWorkerToPool($.worker)}Ee.pthreads={};for(var B=0;B<Ee.unusedWorkers.length;++B){var K=Ee.unusedWorkers[B];K.terminate()}Ee.unusedWorkers=[];for(var B=0;B<Ee.runningWorkers.length;++B){var K=Ee.runningWorkers[B],$=K.pthread;Ee.freeThreadData($),K.terminate()}Ee.runningWorkers=[]},freeThreadData:function(I){if(!!I){if(I.threadInfoStruct){var $=n()[I.threadInfoStruct+100>>2];n()[I.threadInfoStruct+100>>2]=0,sm($),sm(I.threadInfoStruct)}I.threadInfoStruct=0,I.allocatedOwnStack&&I.stackBase&&sm(I.stackBase),I.stackBase=0,I.worker&&(I.worker.pthread=null)}},returnWorkerToPool:function(I){Ee.runWithoutMainThreadQueuedCalls(function(){delete Ee.pthreads[I.pthread.threadInfoStruct],Ee.unusedWorkers.push(I),Ee.runningWorkers.splice(Ee.runningWorkers.indexOf(I),1),Ee.freeThreadData(I.pthread),I.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(I){n()[gI>>2]=0;try{I()}finally{n()[gI>>2]=1}},receiveObjectTransfer:function(I){},loadWasmModuleToWorker:function(I,$){I.onmessage=function(B){var K=B.data,be=K.cmd;if(I.pthread&&(Ee.currentProxiedOperationCallerThread=I.pthread.threadInfoStruct),K.targetThread&&K.targetThread!=Qu()){var he=Ee.pthreads[K.targetThread];he?he.worker.postMessage(B.data,K.transferList):console.error('Internal error! Worker sent a message "'+be+'" to target pthread '+K.targetThread+", but that thread no longer exists!"),Ee.currentProxiedOperationCallerThread=void 0;return}if(be==="processQueuedMainThreadWork")Tb();else if(be==="spawnThread")Rh(B.data);else if(be==="cleanupThread")Sy(K.thread);else if(be==="killThread")Iy(K.thread);else if(be==="cancelThread")Ny(K.thread);else if(be==="loaded")I.loaded=!0,$&&$(I),I.runPthread&&(I.runPthread(),delete I.runPthread);else if(be==="print")U("Thread "+K.threadId+": "+K.text);else if(be==="printErr")H("Thread "+K.threadId+": "+K.text);else if(be==="alert")alert("Thread "+K.threadId+": "+K.text);else if(be==="exit"){var ye=I.pthread&&Atomics.load(s(),I.pthread.threadInfoStruct+64>>2);ye&&Ee.returnWorkerToPool(I)}else if(be==="exitProcess")try{NV(K.returnCode)}catch(Te){if(Te instanceof am)return;throw Te}else be==="cancelDone"?Ee.returnWorkerToPool(I):be==="objectTransfer"?Ee.receiveObjectTransfer(B.data):B.data.target==="setimmediate"?I.postMessage(B.data):H("worker sent an unknown command "+be);Ee.currentProxiedOperationCallerThread=void 0},I.onerror=function(B){H("pthread sent an error! "+B.filename+":"+B.lineno+": "+B.message)},x&&(I.on("message",function(B){I.onmessage({data:B})}),I.on("error",function(B){I.onerror(B)}),I.on("exit",function(B){})),I.postMessage({cmd:"load",urlOrBlob:i.mainScriptUrlOrBlob||r,wasmMemory:J,wasmModule:ie})},allocateUnusedWorker:function(){var I=k("tfjs-backend-wasm-threaded-simd.worker.js");Ee.unusedWorkers.push(new Worker(I))},getNewWorker:function(){return Ee.unusedWorkers.length==0&&(Ee.allocateUnusedWorker(),Ee.loadWasmModuleToWorker(Ee.unusedWorkers[0])),Ee.unusedWorkers.length>0?Ee.unusedWorkers.pop():null},busySpinWait:function(I){for(var $=performance.now()+I;performance.now()<$;);}};function Ty(I,$){dI(I,$),ec(I)}i.establishStackSpace=Ty;function Ay(){return re}i.getNoExitRuntime=Ay;function Ey(I,$){return jr.get(I)($)}i.invokeEntryPoint=Ey;function Dy(I,$,B,K){hi("Assertion failed: "+Ne(I)+", at: "+[$?Ne($):"unknown filename",B,K?Ne(K):"unknown function"])}function $y(I,$){var B=_main(I,$)}var Rl;x?Rl=function(){var I=process.hrtime();return I[0]*1e3+I[1]/1e6}:w?Rl=function(){return performance.now()-i.__performance_now_clock_drift}:typeof dateNow!="undefined"?Rl=dateNow:Rl=function(){return performance.now()};function Ry(I){return n()[aI()>>2]=I,I}function Fy(I,$){if(w)return Ma(1,1,I,$)}function Oy(I,$){if(I==$)postMessage({cmd:"processQueuedMainThreadWork"});else if(w)postMessage({targetThread:I,cmd:"processThreadQueue"});else{var B=Ee.pthreads[I],K=B&&B.worker;if(!K)return;K.postMessage({cmd:"processThreadQueue"})}return 1}function Py(){hi()}function My(I,$,B){var K=Gy($,B);return Sh[I].apply(null,K)}function Ly(I,$){}function zy(I,$,B){if(I<=0||I>t().length||I&!0)return-28;if(h){if(Atomics.load(n(),I>>2)!=$)return-6;for(var be=performance.now(),he=be+B,ye=Atomics.exchange(n(),rc>>2,I);;){if(be=performance.now(),be>he)return ye=Atomics.exchange(n(),rc>>2,0),-73;if(ye=Atomics.exchange(n(),rc>>2,0),ye==0)break;if(Tb(),Atomics.load(n(),I>>2)!=$)return-6;ye=Atomics.exchange(n(),rc>>2,I)}return 0}else{var K=Atomics.wait(n(),I>>2,$,B);if(K==="timed-out")return-73;if(K==="not-equal")return-6;if(K==="ok")return 0;throw"Atomics.wait returned an unexpected value "+K}}function By(I,$,B){o().copyWithin(I,$,$+B)}function Vy(){return x?require("os").cpus().length:navigator.hardwareConcurrency}function Ma(I,$){for(var B=arguments.length-2,K=im(),be=B,he=tc(be*8),ye=he>>3,Te=0;Te<B;Te++){var wt=arguments[2+Te];a()[ye+Te]=wt}var wr=fI(I,be,he,$);return ec(K),wr}var Qp=[],em=[];function Gy(I,$){em.length=0;var B;for($>>=2;B=o()[I++];){var K=B<105;K&&$&1&&$++,em.push(K?a()[$++>>1]:n()[$]),++$}return em}function Wy(I,$,B){Qp.length=$;for(var K=B>>3,be=0;be<$;be++)Qp[be]=a()[K+be];var he=I<0,ye=he?Sh[-I-1]:mb[I];return ye.apply(null,Qp)}function jy(){return o().length}function Uy(I){try{return J.grow(I-Ue.byteLength+65535>>>16),nr(J.buffer),1}catch($){}}function Hy(I){var $=jy();if(I<=$)return!1;var B=2147483648;if(I>B)return!1;for(var K=1;K<=4;K*=2){var be=$*(1+.2/K);be=Math.min(be,I+100663296);var he=Math.min(B,Tt(Math.max(I,be),65536)),ye=Uy(he);if(ye)return!0}return!1}var Ye={inEventHandler:0,removeAllEventListeners:function(){for(var I=Ye.eventHandlers.length-1;I>=0;--I)Ye._removeHandler(I);Ye.eventHandlers=[],Ye.deferredCalls=[]},registerRemoveEventListeners:function(){Ye.removeEventListenersRegistered||(Dl.push(Ye.removeAllEventListeners),Ye.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(I,$,B){function K(ye,Te){if(ye.length!=Te.length)return!1;for(var wt in ye)if(ye[wt]!=Te[wt])return!1;return!0}for(var be in Ye.deferredCalls){var he=Ye.deferredCalls[be];if(he.targetFunction==I&&K(he.argsList,B))return}Ye.deferredCalls.push({targetFunction:I,precedence:$,argsList:B}),Ye.deferredCalls.sort(function(ye,Te){return ye.precedence<Te.precedence})},removeDeferredCalls:function(I){for(var $=0;$<Ye.deferredCalls.length;++$)Ye.deferredCalls[$].targetFunction==I&&(Ye.deferredCalls.splice($,1),--$)},canPerformEventHandlerRequests:function(){return Ye.inEventHandler&&Ye.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Ye.canPerformEventHandlerRequests())for(var I=0;I<Ye.deferredCalls.length;++I){var $=Ye.deferredCalls[I];Ye.deferredCalls.splice(I,1),--I,$.targetFunction.apply(null,$.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(I,$){for(var B=0;B<Ye.eventHandlers.length;++B)Ye.eventHandlers[B].target==I&&(!$||$==Ye.eventHandlers[B].eventTypeString)&&Ye._removeHandler(B--)},_removeHandler:function(I){var $=Ye.eventHandlers[I];$.target.removeEventListener($.eventTypeString,$.eventListenerFunc,$.useCapture),Ye.eventHandlers.splice(I,1)},registerOrRemoveHandler:function(I){var $=function(be){++Ye.inEventHandler,Ye.currentEventHandler=I,Ye.runDeferredCalls(),I.handlerFunc(be),Ye.runDeferredCalls(),--Ye.inEventHandler};if(I.callbackfunc)I.eventListenerFunc=$,I.target.addEventListener(I.eventTypeString,$,I.useCapture),Ye.eventHandlers.push(I),Ye.registerRemoveEventListeners();else for(var B=0;B<Ye.eventHandlers.length;++B)Ye.eventHandlers[B].target==I.target&&Ye.eventHandlers[B].eventTypeString==I.eventTypeString&&Ye._removeHandler(B--)},queueEventHandlerOnThread_iiii:function(I,$,B,K,be){var he=im(),ye=tc(12);n()[ye>>2]=B,n()[ye+4>>2]=K,n()[ye+8>>2]=be,Ab(0,I,637534208,$,K,ye),ec(he)},getTargetThreadForEventCallback:function(I){switch(I){case 1:return 0;case 2:return Ee.currentProxiedOperationCallerThread;default:return I}},getNodeNameForTarget:function(I){return I?I==window?"#window":I==screen?"#screen":I&&I.nodeName?I.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function qy(I){var $=it(I)+1,B=Fl($);return qe(I,B,$),B}function Ky(I,$,B,K){var be=im(),he=tc(12),ye=0;$&&(ye=qy($)),n()[he>>2]=ye,n()[he+4>>2]=B,n()[he+8>>2]=K,Ab(0,I,657457152,0,ye,he),ec(be)}function Xy(I,$,B,K){$=$?Ne($):"",Ky(I,$,B,K)}function Yy(I){return I>2?Ne(I):I}var Zy=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function Jy(I){I=Yy(I);var $=Zy[I]||(typeof document!="undefined"?document.querySelector(I):void 0);return $}function tm(I){return Jy(I)}function Th(I,$,B){var K=tm(I);if(!K)return-4;if(K.canvasSharedPtr&&(n()[K.canvasSharedPtr>>2]=$,n()[K.canvasSharedPtr+4>>2]=B),K.offscreenCanvas||!K.controlTransferredOffscreen){K.offscreenCanvas&&(K=K.offscreenCanvas);var be=!1;if(K.GLctxObject&&K.GLctxObject.GLctx){var he=K.GLctxObject.GLctx.getParameter(2978);be=he[0]===0&&he[1]===0&&he[2]===K.width&&he[3]===K.height}K.width=$,K.height=B,be&&K.GLctxObject.GLctx.viewport(0,0,$,B)}else if(K.canvasSharedPtr){var ye=n()[K.canvasSharedPtr+8>>2];return Xy(ye,I,$,B),1}else return-4;return 0}function Ah(I,$,B){return w?Ma(2,1,I,$,B):Th(I,$,B)}function Qy(I,$,B){var K=tm(I);return K?Th(I,$,B):Ah(I,$,B)}function eb(I){}function tb(I,$){}function rb(I){var $=I.getExtension("ANGLE_instanced_arrays");if($)return I.vertexAttribDivisor=function(B,K){$.vertexAttribDivisorANGLE(B,K)},I.drawArraysInstanced=function(B,K,be,he){$.drawArraysInstancedANGLE(B,K,be,he)},I.drawElementsInstanced=function(B,K,be,he,ye){$.drawElementsInstancedANGLE(B,K,be,he,ye)},1}function ob(I){var $=I.getExtension("OES_vertex_array_object");if($)return I.createVertexArray=function(){return $.createVertexArrayOES()},I.deleteVertexArray=function(B){$.deleteVertexArrayOES(B)},I.bindVertexArray=function(B){$.bindVertexArrayOES(B)},I.isVertexArray=function(B){return $.isVertexArrayOES(B)},1}function nb(I){var $=I.getExtension("WEBGL_draw_buffers");if($)return I.drawBuffers=function(B,K){$.drawBuffersWEBGL(B,K)},1}function sb(I){return!!(I.multiDrawWebgl=I.getExtension("WEBGL_multi_draw"))}var ft={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function($){ft.lastError||(ft.lastError=$)},getNewId:function(I){for(var $=ft.counter++,B=I.length;B<$;B++)I[B]=null;return $},getSource:function(I,$,B,K){for(var be="",he=0;he<$;++he){var ye=K?n()[K+he*4>>2]:-1;be+=Ne(n()[B+he*4>>2],ye<0?void 0:ye)}return be},createContext:function(I,$){var B=I.getContext("webgl",$);if(!B)return 0;var K=ft.registerContext(B,$);return K},registerContext:function(I,$){var B=Fl(8);n()[B+4>>2]=Qu();var K={handle:B,attributes:$,version:$.majorVersion,GLctx:I};return I.canvas&&(I.canvas.GLctxObject=K),ft.contexts[B]=K,(typeof $.enableExtensionsByDefault=="undefined"||$.enableExtensionsByDefault)&&ft.initExtensions(K),B},makeContextCurrent:function(I){return ft.currentContext=ft.contexts[I],i.ctx=La=ft.currentContext&&ft.currentContext.GLctx,!(I&&!La)},getContext:function(I){return ft.contexts[I]},deleteContext:function(I){ft.currentContext===ft.contexts[I]&&(ft.currentContext=null),typeof Ye=="object"&&Ye.removeAllHandlersOnTarget(ft.contexts[I].GLctx.canvas),ft.contexts[I]&&ft.contexts[I].GLctx.canvas&&(ft.contexts[I].GLctx.canvas.GLctxObject=void 0),sm(ft.contexts[I].handle),ft.contexts[I]=null},initExtensions:function(I){if(I||(I=ft.currentContext),!I.initExtensionsDone){I.initExtensionsDone=!0;var $=I.GLctx;rb($),ob($),nb($),$.disjointTimerQueryExt=$.getExtension("EXT_disjoint_timer_query"),sb($);var B=$.getSupportedExtensions()||[];B.forEach(function(K){K.indexOf("lose_context")<0&&K.indexOf("debug")<0&&$.getExtension(K)})}},populateUniformTable:function(I){for(var $=ft.programs[I],B=ft.programInfos[I]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},K=B.uniforms,be=La.getProgramParameter($,35718),he=0;he<be;++he){var ye=La.getActiveUniform($,he),Te=ye.name;B.maxUniformLength=Math.max(B.maxUniformLength,Te.length+1),Te.slice(-1)=="]"&&(Te=Te.slice(0,Te.lastIndexOf("[")));var wt=La.getUniformLocation($,Te);if(wt){var wr=ft.getNewId(ft.uniforms);K[Te]=[ye.size,wr],ft.uniforms[wr]=wt;for(var dr=1;dr<ye.size;++dr){var Ba=Te+"["+dr+"]";wt=La.getUniformLocation($,Ba),wr=ft.getNewId(ft.uniforms),ft.uniforms[wr]=wt}}}}},ib=["default","low-power","high-performance"];function ab(I,$){var B=$>>2,K=n()[B+(24>>2)],be={alpha:!!n()[B+(0>>2)],depth:!!n()[B+(4>>2)],stencil:!!n()[B+(8>>2)],antialias:!!n()[B+(12>>2)],premultipliedAlpha:!!n()[B+(16>>2)],preserveDrawingBuffer:!!n()[B+(20>>2)],powerPreference:ib[K],failIfMajorPerformanceCaveat:!!n()[B+(28>>2)],majorVersion:n()[B+(32>>2)],minorVersion:n()[B+(36>>2)],enableExtensionsByDefault:n()[B+(40>>2)],explicitSwapControl:n()[B+(44>>2)],proxyContextToMainThread:n()[B+(48>>2)],renderViaOffscreenBackBuffer:n()[B+(52>>2)]},he=tm(I);if(!he||be.explicitSwapControl)return 0;var ye=ft.createContext(he,be);return ye}function lb(I,$){return ab(I,$)}var Zu={mappings:{},buffers:[null,[],[]],printChar:function(I,$){var B=Zu.buffers[I];$===0||$===10?((I===1?U:H)(De(B,0)),B.length=0):B.push($)},varargs:void 0,get:function(){Zu.varargs+=4;var I=n()[Zu.varargs-4>>2];return I},getStr:function(I){var $=Ne(I);return $},get64:function(I,$){return I}};function Eh(I){return w?Ma(3,1,I):0}function Dh(I,$,B,K,be){if(w)return Ma(4,1,I,$,B,K,be)}function $h(I,$,B,K){if(w)return Ma(5,1,I,$,B,K);for(var be=0,he=0;he<B;he++){for(var ye=n()[$+he*8>>2],Te=n()[$+(he*8+4)>>2],wt=0;wt<Te;wt++)Zu.printChar(I,o()[ye+wt]);be+=Te}return n()[K>>2]=be,0}function ub(I){var $=Ee.threadExitHandlers.pop();I&&$()}function cb(I,$){Ee.threadExitHandlers.push(function(){jr.get(I)($)})}function Rh(I){if(w)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var $=Ee.getNewWorker();if($.pthread!==void 0)throw"Internal error!";if(!I.pthread_ptr)throw"Internal error, no pthread ptr!";Ee.runningWorkers.push($);for(var B=Fl(128*4),K=0;K<128;++K)n()[B+K*4>>2]=0;var be=I.stackBase+I.stackSize,he=Ee.pthreads[I.pthread_ptr]={worker:$,stackBase:I.stackBase,stackSize:I.stackSize,allocatedOwnStack:I.allocatedOwnStack,threadInfoStruct:I.pthread_ptr},ye=he.threadInfoStruct>>2;Atomics.store(s(),ye+(64>>2),I.detached),Atomics.store(s(),ye+(100>>2),B),Atomics.store(s(),ye+(40>>2),he.threadInfoStruct),Atomics.store(s(),ye+(80>>2),I.stackSize),Atomics.store(s(),ye+(76>>2),be),Atomics.store(s(),ye+(104>>2),I.stackSize),Atomics.store(s(),ye+(104+8>>2),be),Atomics.store(s(),ye+(104+12>>2),I.detached);var Te=lI(),wt=Te+40;Atomics.store(s(),ye+(172>>2),wt),$.pthread=he;var wr={cmd:"run",start_routine:I.startRoutine,arg:I.arg,threadInfoStruct:I.pthread_ptr,stackBase:I.stackBase,stackSize:I.stackSize};$.runPthread=function(){wr.time=performance.now(),$.postMessage(wr,I.transferList)},$.loaded&&($.runPthread(),delete $.runPthread)}function pb(I,$,B,K){if(typeof SharedArrayBuffer=="undefined")return H("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!I)return H("pthread_create called with a null thread pointer!"),28;var be=[],he=0;if(w&&(be.length===0||he))return mI(687865856,I,$,B,K);if(he)return he;var ye=0,Te=0,wt=0;$&&$!=-1?(ye=n()[$>>2],ye+=81920,Te=n()[$+8>>2],wt=n()[$+12>>2]!==0):ye=2097152;var wr=Te==0;wr?Te=hI(16,ye):(Te-=ye,fe(Te>0));for(var dr=Fl(228),Ba=0;Ba<228>>2;++Ba)s()[(dr>>2)+Ba]=0;n()[I>>2]=dr,n()[dr+12>>2]=dr;var oc=dr+152;n()[oc>>2]=oc;var Ur={stackBase:Te,stackSize:ye,allocatedOwnStack:wr,detached:wt,startRoutine:B,pthread_ptr:dr,arg:K,transferList:be};return w?(Ur.cmd="spawnThread",postMessage(Ur,be)):Rh(Ur),0}function Fh(I){if(w)return Ma(6,1,I);switch(I){case 30:return 16384;case 85:var $=2147483648;return $/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Ry(28),-1}w||Ee.initMainThreadBlock();var La,mb=[null,Fy,Ah,Eh,Dh,$h,Fh],fb={e:Dy,r:$y,x:Oy,b:Py,y:My,j:Ly,c:zy,d:Yu,f:Rl,p:By,z:Vy,u:Wy,q:Hy,v:Qy,i:eb,t:tb,w:lb,m:Eh,n:Dh,g:$h,o:Cy,a:J||i.wasmMemory,k:ub,l:cb,h:pb,s:Fh},iI=vy(),Oh=i.___wasm_call_ctors=function(){return(Oh=i.___wasm_call_ctors=i.asm.A).apply(null,arguments)},db=i._init=function(){return(db=i._init=i.asm.B).apply(null,arguments)},hb=i._register_tensor=function(){return(hb=i._register_tensor=i.asm.C).apply(null,arguments)},gb=i._dispose_data=function(){return(gb=i._dispose_data=i.asm.D).apply(null,arguments)},xb=i._dispose=function(){return(xb=i._dispose=i.asm.E).apply(null,arguments)},yb=i._Abs=function(){return(yb=i._Abs=i.asm.G).apply(null,arguments)},bb=i._Add=function(){return(bb=i._Add=i.asm.H).apply(null,arguments)},wb=i._AddN=function(){return(wb=i._AddN=i.asm.I).apply(null,arguments)},_b=i._ArgMax=function(){return(_b=i._ArgMax=i.asm.J).apply(null,arguments)},kb=i._AvgPool=function(){return(kb=i._AvgPool=i.asm.K).apply(null,arguments)},vb=i._BatchMatMul=function(){return(vb=i._BatchMatMul=i.asm.L).apply(null,arguments)},Cb=i._Ceil=function(){return(Cb=i._Ceil=i.asm.M).apply(null,arguments)},Ib=i._ClipByValue=function(){return(Ib=i._ClipByValue=i.asm.N).apply(null,arguments)},Nb=i._Conv2D=function(){return(Nb=i._Conv2D=i.asm.O).apply(null,arguments)},Ph=i._Conv2DBackpropInput=function(){return(Ph=i._Conv2DBackpropInput=i.asm.P).apply(null,arguments)},Mh=i._Cos=function(){return(Mh=i._Cos=i.asm.Q).apply(null,arguments)},rm=i._CropAndResize=function(){return(rm=i._CropAndResize=i.asm.R).apply(null,arguments)},Ju=i._Cumsum=function(){return(Ju=i._Cumsum=i.asm.S).apply(null,arguments)},Sb=i._DepthToSpace=function(){return(Sb=i._DepthToSpace=i.asm.T).apply(null,arguments)},om=i._DepthwiseConv2dNative=function(){return(om=i._DepthwiseConv2dNative=i.asm.U).apply(null,arguments)},Z=i._Equal=function(){return(Z=i._Equal=i.asm.V).apply(null,arguments)},se=i._Exp=function(){return(se=i._Exp=i.asm.W).apply(null,arguments)},ke=i._FlipLeftRight=function(){return(ke=i._FlipLeftRight=i.asm.X).apply(null,arguments)},at=i._Floor=function(){return(at=i._Floor=i.asm.Y).apply(null,arguments)},Yt=i._FloorDiv=function(){return(Yt=i._FloorDiv=i.asm.Z).apply(null,arguments)},zt=i._FusedBatchNorm=function(){return(zt=i._FusedBatchNorm=i.asm._).apply(null,arguments)},tt=i._FusedConv2D=function(){return(tt=i._FusedConv2D=i.asm.$).apply(null,arguments)},rt=i._FusedDepthwiseConv2D=function(){return(rt=i._FusedDepthwiseConv2D=i.asm.aa).apply(null,arguments)},Cr=i._Gather=function(){return(Cr=i._Gather=i.asm.ba).apply(null,arguments)},gi=i._GatherNd=function(){return(gi=i._GatherNd=i.asm.ca).apply(null,arguments)},xi=i._Greater=function(){return(xi=i._Greater=i.asm.da).apply(null,arguments)},Lh=i._GreaterEqual=function(){return(Lh=i._GreaterEqual=i.asm.ea).apply(null,arguments)},nm=i._LeakyRelu=function(){return(nm=i._LeakyRelu=i.asm.fa).apply(null,arguments)},vo=i._Less=function(){return(vo=i._Less=i.asm.ga).apply(null,arguments)},za=i._LessEqual=function(){return(za=i._LessEqual=i.asm.ha).apply(null,arguments)},zh=i._Log=function(){return(zh=i._Log=i.asm.ia).apply(null,arguments)},OB=i._LogicalAnd=function(){return(OB=i._LogicalAnd=i.asm.ja).apply(null,arguments)},PB=i._Max=function(){return(PB=i._Max=i.asm.ka).apply(null,arguments)},MB=i._MaxPool=function(){return(MB=i._MaxPool=i.asm.la).apply(null,arguments)},LB=i._Maximum=function(){return(LB=i._Maximum=i.asm.ma).apply(null,arguments)},zB=i._Mean=function(){return(zB=i._Mean=i.asm.na).apply(null,arguments)},BB=i._Min=function(){return(BB=i._Min=i.asm.oa).apply(null,arguments)},VB=i._Minimum=function(){return(VB=i._Minimum=i.asm.pa).apply(null,arguments)},GB=i._Multiply=function(){return(GB=i._Multiply=i.asm.qa).apply(null,arguments)},WB=i._Neg=function(){return(WB=i._Neg=i.asm.ra).apply(null,arguments)},jB=i._NonMaxSuppressionV3=function(){return(jB=i._NonMaxSuppressionV3=i.asm.sa).apply(null,arguments)},UB=i._NonMaxSuppressionV4=function(){return(UB=i._NonMaxSuppressionV4=i.asm.ta).apply(null,arguments)},HB=i._NonMaxSuppressionV5=function(){return(HB=i._NonMaxSuppressionV5=i.asm.ua).apply(null,arguments)},qB=i._NotEqual=function(){return(qB=i._NotEqual=i.asm.va).apply(null,arguments)},KB=i._OneHot=function(){return(KB=i._OneHot=i.asm.wa).apply(null,arguments)},XB=i._PadV2=function(){return(XB=i._PadV2=i.asm.xa).apply(null,arguments)},YB=i._Pow=function(){return(YB=i._Pow=i.asm.ya).apply(null,arguments)},ZB=i._Prelu=function(){return(ZB=i._Prelu=i.asm.za).apply(null,arguments)},JB=i._Prod=function(){return(JB=i._Prod=i.asm.Aa).apply(null,arguments)},QB=i._RealDiv=function(){return(QB=i._RealDiv=i.asm.Ba).apply(null,arguments)},eV=i._Relu=function(){return(eV=i._Relu=i.asm.Ca).apply(null,arguments)},tV=i._Relu6=function(){return(tV=i._Relu6=i.asm.Da).apply(null,arguments)},rV=i._ResizeBilinear=function(){return(rV=i._ResizeBilinear=i.asm.Ea).apply(null,arguments)},oV=i._Reverse=function(){return(oV=i._Reverse=i.asm.Fa).apply(null,arguments)},nV=i._RotateWithOffset=function(){return(nV=i._RotateWithOffset=i.asm.Ga).apply(null,arguments)},sV=i._Round=function(){return(sV=i._Round=i.asm.Ha).apply(null,arguments)},iV=i._Rsqrt=function(){return(iV=i._Rsqrt=i.asm.Ia).apply(null,arguments)},aV=i._ScatterNd=function(){return(aV=i._ScatterNd=i.asm.Ja).apply(null,arguments)},lV=i._SelectV2=function(){return(lV=i._SelectV2=i.asm.Ka).apply(null,arguments)},uV=i._Sigmoid=function(){return(uV=i._Sigmoid=i.asm.La).apply(null,arguments)},cV=i._Sin=function(){return(cV=i._Sin=i.asm.Ma).apply(null,arguments)},pV=i._Softmax=function(){return(pV=i._Softmax=i.asm.Na).apply(null,arguments)},mV=i._Sqrt=function(){return(mV=i._Sqrt=i.asm.Oa).apply(null,arguments)},fV=i._Square=function(){return(fV=i._Square=i.asm.Pa).apply(null,arguments)},dV=i._SquaredDifference=function(){return(dV=i._SquaredDifference=i.asm.Qa).apply(null,arguments)},hV=i._Step=function(){return(hV=i._Step=i.asm.Ra).apply(null,arguments)},gV=i._StridedSlice=function(){return(gV=i._StridedSlice=i.asm.Sa).apply(null,arguments)},xV=i._Sub=function(){return(xV=i._Sub=i.asm.Ta).apply(null,arguments)},yV=i._Sum=function(){return(yV=i._Sum=i.asm.Ua).apply(null,arguments)},bV=i._Tanh=function(){return(bV=i._Tanh=i.asm.Va).apply(null,arguments)},wV=i._Tile=function(){return(wV=i._Tile=i.asm.Wa).apply(null,arguments)},_V=i._TopK=function(){return(_V=i._TopK=i.asm.Xa).apply(null,arguments)},kV=i._Transpose=function(){return(kV=i._Transpose=i.asm.Ya).apply(null,arguments)},vV=i.__FusedMatMul=function(){return(vV=i.__FusedMatMul=i.asm.Za).apply(null,arguments)},Fl=i._malloc=function(){return(Fl=i._malloc=i.asm._a).apply(null,arguments)},sm=i._free=function(){return(sm=i._free=i.asm.$a).apply(null,arguments)},aI=i.___errno_location=function(){return(aI=i.___errno_location=i.asm.ab).apply(null,arguments)},lI=i._emscripten_get_global_libc=function(){return(lI=i._emscripten_get_global_libc=i.asm.bb).apply(null,arguments)},Qu=i._pthread_self=function(){return(Qu=i._pthread_self=i.asm.cb).apply(null,arguments)},uI=i.___pthread_tsd_run_dtors=function(){return(uI=i.___pthread_tsd_run_dtors=i.asm.db).apply(null,arguments)},Tb=i._emscripten_main_thread_process_queued_calls=function(){return(Tb=i._emscripten_main_thread_process_queued_calls=i.asm.eb).apply(null,arguments)},CV=i._emscripten_current_thread_process_queued_calls=function(){return(CV=i._emscripten_current_thread_process_queued_calls=i.asm.fb).apply(null,arguments)},cI=i._emscripten_register_main_browser_thread_id=function(){return(cI=i._emscripten_register_main_browser_thread_id=i.asm.gb).apply(null,arguments)},pI=i.__emscripten_do_dispatch_to_thread=function(){return(pI=i.__emscripten_do_dispatch_to_thread=i.asm.hb).apply(null,arguments)},mI=i._emscripten_sync_run_in_main_thread_4=function(){return(mI=i._emscripten_sync_run_in_main_thread_4=i.asm.ib).apply(null,arguments)},fI=i._emscripten_run_in_main_runtime_thread_js=function(){return(fI=i._emscripten_run_in_main_runtime_thread_js=i.asm.jb).apply(null,arguments)},Ab=i.__emscripten_call_on_thread=function(){return(Ab=i.__emscripten_call_on_thread=i.asm.kb).apply(null,arguments)},IV=i._emscripten_tls_init=function(){return(IV=i._emscripten_tls_init=i.asm.lb).apply(null,arguments)},Bh=i.__emscripten_thread_init=function(){return(Bh=i.__emscripten_thread_init=i.asm.mb).apply(null,arguments)},im=i.stackSave=function(){return(im=i.stackSave=i.asm.nb).apply(null,arguments)},ec=i.stackRestore=function(){return(ec=i.stackRestore=i.asm.ob).apply(null,arguments)},tc=i.stackAlloc=function(){return(tc=i.stackAlloc=i.asm.pb).apply(null,arguments)},dI=i._emscripten_stack_set_limits=function(){return(dI=i._emscripten_stack_set_limits=i.asm.qb).apply(null,arguments)},hI=i._memalign=function(){return(hI=i._memalign=i.asm.rb).apply(null,arguments)},gI=i.__emscripten_allow_main_runtime_queued_calls=9880,rc=i.__emscripten_main_thread_futex=11368;i.cwrap=we,i.PThread=Ee,i.PThread=Ee,i.wasmMemory=J,i.ExitStatus=am;var Vh;function am(I){this.name="ExitStatus",this.message="Program terminated with exit("+I+")",this.status=I}$l=function I(){Vh||Eb(),Vh||($l=I)};function Eb(I){if(I=I||m,di>0)return;if(w){l(i),postMessage({cmd:"loaded"});return}if(Jp(),di>0)return;function $(){Vh||(Vh=!0,i.calledRun=!0,!ue&&(qu(),xy(),l(i),i.onRuntimeInitialized&&i.onRuntimeInitialized(),so()))}i.setStatus?(i.setStatus("Running..."),setTimeout(function(){setTimeout(function(){i.setStatus("")},1),$()},1)):$()}i.run=Eb;function NV(I,$){if(!($&&re&&I===0)){if(!$&&w)throw postMessage({cmd:"exitProcess",returnCode:I}),new am(I);re||(Ee.terminateAllThreads(),ae=I,_h(),i.onExit&&i.onExit(I),ue=!0),d(I,new am(I))}}if(i.preInit)for(typeof i.preInit=="function"&&(i.preInit=[i.preInit]);i.preInit.length>0;)i.preInit.pop()();return w&&(re=!1,Ee.initWorker()),Eb(),e.ready}}();typeof gx=="object"&&typeof aC=="object"?aC.exports=lC:typeof define=="function"&&define.amd?define([],function(){return lC}):typeof gx=="object"&&(gx.WasmBackendModuleThreadedSimd=lC)});var ZP=Ut((xx,uC)=>{var cC=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(e){e=e||{};var t=typeof e!="undefined"?e:{},o,n;t.ready=new Promise(function(Z,se){o=Z,n=se});var s={},a;for(a in t)t.hasOwnProperty(a)&&(s[a]=t[a]);var i=[],l="./this.program",u=function(Z,se){throw se},c=!1,p=!1,m=!1,f=!1;c=typeof window=="object",p=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",f=!c&&!m&&!p;var d="";function h(Z){return t.locateFile?t.locateFile(Z,d):d+Z}var g,x,b,w,_,k;m?(p?d=vp().dirname(d)+"/":d=__dirname+"/",g=function(se,ke){return _||(_=require("fs")),k||(k=vp()),se=k.normalize(se),_.readFileSync(se,ke?null:"utf8")},b=function(se){var ke=g(se,!0);return ke.buffer||(ke=new Uint8Array(ke)),U(ke.buffer),ke},process.argv.length>1&&(l=process.argv[1].replace(/\\/g,"/")),i=process.argv.slice(2),process.on("uncaughtException",function(Z){if(!(Z instanceof Sb))throw Z}),process.on("unhandledRejection",bn),u=function(Z){process.exit(Z)},t.inspect=function(){return"[Emscripten Module object]"}):f?(typeof read!="undefined"&&(g=function(se){return read(se)}),b=function(se){var ke;return typeof readbuffer=="function"?new Uint8Array(readbuffer(se)):(ke=read(se,"binary"),U(typeof ke=="object"),ke)},typeof scriptArgs!="undefined"?i=scriptArgs:typeof arguments!="undefined"&&(i=arguments),typeof quit=="function"&&(u=function(Z){quit(Z)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(c||p)&&(p?d=self.location.href:typeof document!="undefined"&&document.currentScript&&(d=document.currentScript.src),r&&(d=r),d.indexOf("blob:")!==0?d=d.substr(0,d.lastIndexOf("/")+1):d="",g=function(Z){var se=new XMLHttpRequest;return se.open("GET",Z,!1),se.send(null),se.responseText},p&&(b=function(Z){var se=new XMLHttpRequest;return se.open("GET",Z,!1),se.responseType="arraybuffer",se.send(null),new Uint8Array(se.response)}),x=function(Z,se,ke){var at=new XMLHttpRequest;at.open("GET",Z,!0),at.responseType="arraybuffer",at.onload=function(){if(at.status==200||at.status==0&&at.response){se(at.response);return}ke()},at.onerror=ke,at.send(null)},w=function(Z){document.title=Z});var D=t.print||console.log.bind(console),T=t.printErr||console.warn.bind(console);for(a in s)s.hasOwnProperty(a)&&(t[a]=s[a]);s=null,t.arguments&&(i=t.arguments),t.thisProgram&&(l=t.thisProgram),t.quit&&(u=t.quit);var R;t.wasmBinary&&(R=t.wasmBinary);var O=t.noExitRuntime||!0;typeof WebAssembly!="object"&&bn("no native wasm support detected");var M,G=!1,j;function U(Z,se){Z||bn("Assertion failed: "+se)}function H(Z){var se=t["_"+Z];return U(se,"Cannot call unknown function "+Z+", make sure it is exported"),se}function q(Z,se,ke,at,Yt){var zt={string:function(vo){var za=0;if(vo!=null&&vo!==0){var zh=(vo.length<<2)+1;za=rm(zh),ie(vo,za,zh)}return za},array:function(vo){var za=rm(vo.length);return ue(vo,za),za}};function tt(vo){return se==="string"?re(vo):se==="boolean"?Boolean(vo):vo}var rt=H(Z),Cr=[],gi=0;if(at)for(var xi=0;xi<at.length;xi++){var Lh=zt[ke[xi]];Lh?(gi===0&&(gi=Ph()),Cr[xi]=Lh(at[xi])):Cr[xi]=at[xi]}var nm=rt.apply(null,Cr);return nm=tt(nm),gi!==0&&Mh(gi),nm}function X(Z,se,ke,at){ke=ke||[];var Yt=ke.every(function(tt){return tt==="number"}),zt=se!=="string";return zt&&Yt&&!at?H(Z):function(){return q(Z,se,ke,arguments,at)}}var oe=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Y(Z,se,ke){for(var at=se+ke,Yt=se;Z[Yt]&&!(Yt>=at);)++Yt;if(Yt-se>16&&Z.subarray&&oe)return oe.decode(Z.subarray(se,Yt));for(var zt="";se<Yt;){var tt=Z[se++];if(!(tt&128)){zt+=String.fromCharCode(tt);continue}var rt=Z[se++]&63;if((tt&224)==192){zt+=String.fromCharCode((tt&31)<<6|rt);continue}var Cr=Z[se++]&63;if((tt&240)==224?tt=(tt&15)<<12|rt<<6|Cr:tt=(tt&7)<<18|rt<<12|Cr<<6|Z[se++]&63,tt<65536)zt+=String.fromCharCode(tt);else{var gi=tt-65536;zt+=String.fromCharCode(55296|gi>>10,56320|gi&1023)}}return zt}function re(Z,se){return Z?Y(xe,Z,se):""}function J(Z,se,ke,at){if(!(at>0))return 0;for(var Yt=ke,zt=ke+at-1,tt=0;tt<Z.length;++tt){var rt=Z.charCodeAt(tt);if(rt>=55296&&rt<=57343){var Cr=Z.charCodeAt(++tt);rt=65536+((rt&1023)<<10)|Cr&1023}if(rt<=127){if(ke>=zt)break;se[ke++]=rt}else if(rt<=2047){if(ke+1>=zt)break;se[ke++]=192|rt>>6,se[ke++]=128|rt&63}else if(rt<=65535){if(ke+2>=zt)break;se[ke++]=224|rt>>12,se[ke++]=128|rt>>6&63,se[ke++]=128|rt&63}else{if(ke+3>=zt)break;se[ke++]=240|rt>>18,se[ke++]=128|rt>>12&63,se[ke++]=128|rt>>6&63,se[ke++]=128|rt&63}}return se[ke]=0,ke-Yt}function ie(Z,se,ke){return J(Z,xe,se,ke)}function ue(Z,se){de.set(Z,se)}function ae(Z,se){return Z%se>0&&(Z+=se-Z%se),Z}var fe,de,xe,we,De,Ne,ze,qe,it;function St(Z){fe=Z,t.HEAP8=de=new Int8Array(Z),t.HEAP16=we=new Int16Array(Z),t.HEAP32=Ne=new Int32Array(Z),t.HEAPU8=xe=new Uint8Array(Z),t.HEAPU16=De=new Uint16Array(Z),t.HEAPU32=ze=new Uint32Array(Z),t.HEAPF32=qe=new Float32Array(Z),t.HEAPF64=it=new Float64Array(Z)}var Tt=t.INITIAL_MEMORY||16777216,Ue,ut=[],mt=[],Pt=[],_o=[],Xt=!1;mt.push({func:function(){Nh()}});function oo(){if(t.preRun)for(typeof t.preRun=="function"&&(t.preRun=[t.preRun]);t.preRun.length;)ko(t.preRun.shift());Pa(ut)}function Rr(){Xt=!0,Pa(mt)}function jo(){Pa(Pt)}function nr(){if(t.postRun)for(typeof t.postRun=="function"&&(t.postRun=[t.postRun]);t.postRun.length;)jr(t.postRun.shift());Pa(_o)}function ko(Z){ut.unshift(Z)}function jr(Z){_o.unshift(Z)}var br=0,no=null,$o=null;function Dl(Z){br++,t.monitorRunDependencies&&t.monitorRunDependencies(br)}function Oa(Z){if(br--,t.monitorRunDependencies&&t.monitorRunDependencies(br),br==0&&(no!==null&&(clearInterval(no),no=null),$o)){var se=$o;$o=null,se()}}t.preloadedImages={},t.preloadedAudios={};function bn(Z){t.onAbort&&t.onAbort(Z),Z+="",T(Z),G=!0,j=1,Z="abort("+Z+"). Build with -s ASSERTIONS=1 for more info.";var se=new WebAssembly.RuntimeError(Z);throw n(se),se}function fi(Z,se){return String.prototype.startsWith?Z.startsWith(se):Z.indexOf(se)===0}var Jp="data:application/octet-stream;base64,";function qu(Z){return fi(Z,Jp)}var xy="file://";function _h(Z){return fi(Z,xy)}var so="tfjs-backend-wasm.wasm";qu(so)||(so=h(so));function kh(Z){try{if(Z==so&&R)return new Uint8Array(R);if(b)return b(Z);throw"both async and sync fetching of the wasm failed"}catch(se){bn(se)}}function yy(){if(!R&&(c||p)){if(typeof fetch=="function"&&!_h(so))return fetch(so,{credentials:"same-origin"}).then(function(Z){if(!Z.ok)throw"failed to load wasm binary file at '"+so+"'";return Z.arrayBuffer()}).catch(function(){return kh(so)});if(x)return new Promise(function(Z,se){x(so,function(ke){Z(new Uint8Array(ke))},se)})}return Promise.resolve().then(function(){return kh(so)})}function di(){var Z={a:io};function se(tt,rt){var Cr=tt.exports;t.asm=Cr,M=t.asm.g,St(M.buffer),Ue=t.asm.m,Oa("wasm-instantiate")}Dl("wasm-instantiate");function ke(tt){se(tt.instance)}function at(tt){return yy().then(function(rt){return WebAssembly.instantiate(rt,Z)}).then(tt,function(rt){T("failed to asynchronously prepare wasm: "+rt),bn(rt)})}function Yt(){return!R&&typeof WebAssembly.instantiateStreaming=="function"&&!qu(so)&&!_h(so)&&typeof fetch=="function"?fetch(so,{credentials:"same-origin"}).then(function(tt){var rt=WebAssembly.instantiateStreaming(tt,Z);return rt.then(ke,function(Cr){return T("wasm streaming compile failed: "+Cr),T("falling back to ArrayBuffer instantiation"),at(ke)})}):at(ke)}if(t.instantiateWasm)try{var zt=t.instantiateWasm(Z,se);return zt}catch(tt){return T("Module.instantiateWasm callback failed with error: "+tt),!1}return Yt().catch(n),{}}function Pa(Z){for(;Z.length>0;){var se=Z.shift();if(typeof se=="function"){se(t);continue}var ke=se.func;typeof ke=="number"?se.arg===void 0?Ue.get(ke)():Ue.get(ke)(se.arg):ke(se.arg===void 0?null:se.arg)}}function $l(){bn()}function by(Z,se,ke){xe.copyWithin(Z,se,se+ke)}function wy(){return xe.length}function hi(Z){try{return M.grow(Z-fe.byteLength+65535>>>16),St(M.buffer),1}catch(se){}}function vh(Z){var se=wy(),ke=2147483648;if(Z>ke)return!1;for(var at=1;at<=4;at*=2){var Yt=se*(1+.2/at);Yt=Math.min(Yt,Z+100663296);var zt=Math.min(ke,ae(Math.max(Z,Yt),65536)),tt=hi(zt);if(tt)return!0}return!1}var Ku={mappings:{},buffers:[null,[],[]],printChar:function(Z,se){var ke=Ku.buffers[Z];se===0||se===10?((Z===1?D:T)(Y(ke,0)),ke.length=0):ke.push(se)},varargs:void 0,get:function(){Ku.varargs+=4;var Z=Ne[Ku.varargs-4>>2];return Z},getStr:function(Z){var se=re(Z);return se},get64:function(Z,se){return Z}};function Ch(Z){return 0}function _y(Z,se,ke,at,Yt){}function Ih(Z,se,ke,at){for(var Yt=0,zt=0;zt<ke;zt++){for(var tt=Ne[se+zt*8>>2],rt=Ne[se+(zt*8+4)>>2],Cr=0;Cr<rt;Cr++)Ku.printChar(Z,xe[tt+Cr]);Yt+=rt}return Ne[at>>2]=Yt,0}var io={a:$l,d:by,e:vh,f:Ch,c:_y,b:Ih},ky=di(),Nh=t.___wasm_call_ctors=function(){return(Nh=t.___wasm_call_ctors=t.asm.h).apply(null,arguments)},vy=t._init=function(){return(vy=t._init=t.asm.i).apply(null,arguments)},Sh=t._register_tensor=function(){return(Sh=t._register_tensor=t.asm.j).apply(null,arguments)},Cy=t._dispose_data=function(){return(Cy=t._dispose_data=t.asm.k).apply(null,arguments)},Xu=t._dispose=function(){return(Xu=t._dispose=t.asm.l).apply(null,arguments)},Yu=t._Abs=function(){return(Yu=t._Abs=t.asm.n).apply(null,arguments)},Iy=t._Add=function(){return(Iy=t._Add=t.asm.o).apply(null,arguments)},Ny=t._AddN=function(){return(Ny=t._AddN=t.asm.p).apply(null,arguments)},Sy=t._ArgMax=function(){return(Sy=t._ArgMax=t.asm.q).apply(null,arguments)},Ee=t._AvgPool=function(){return(Ee=t._AvgPool=t.asm.r).apply(null,arguments)},Ty=t._BatchMatMul=function(){return(Ty=t._BatchMatMul=t.asm.s).apply(null,arguments)},Ay=t._Ceil=function(){return(Ay=t._Ceil=t.asm.t).apply(null,arguments)},Ey=t._ClipByValue=function(){return(Ey=t._ClipByValue=t.asm.u).apply(null,arguments)},Dy=t._Conv2D=function(){return(Dy=t._Conv2D=t.asm.v).apply(null,arguments)},$y=t._Conv2DBackpropInput=function(){return($y=t._Conv2DBackpropInput=t.asm.w).apply(null,arguments)},Rl=t._Cos=function(){return(Rl=t._Cos=t.asm.x).apply(null,arguments)},Ry=t._CropAndResize=function(){return(Ry=t._CropAndResize=t.asm.y).apply(null,arguments)},Fy=t._Cumsum=function(){return(Fy=t._Cumsum=t.asm.z).apply(null,arguments)},Oy=t._DepthToSpace=function(){return(Oy=t._DepthToSpace=t.asm.A).apply(null,arguments)},Py=t._DepthwiseConv2dNative=function(){return(Py=t._DepthwiseConv2dNative=t.asm.B).apply(null,arguments)},My=t._Equal=function(){return(My=t._Equal=t.asm.C).apply(null,arguments)},Ly=t._Exp=function(){return(Ly=t._Exp=t.asm.D).apply(null,arguments)},zy=t._FlipLeftRight=function(){return(zy=t._FlipLeftRight=t.asm.E).apply(null,arguments)},By=t._Floor=function(){return(By=t._Floor=t.asm.F).apply(null,arguments)},Vy=t._FloorDiv=function(){return(Vy=t._FloorDiv=t.asm.G).apply(null,arguments)},Ma=t._FusedBatchNorm=function(){return(Ma=t._FusedBatchNorm=t.asm.H).apply(null,arguments)},Qp=t._FusedConv2D=function(){return(Qp=t._FusedConv2D=t.asm.I).apply(null,arguments)},em=t._FusedDepthwiseConv2D=function(){return(em=t._FusedDepthwiseConv2D=t.asm.J).apply(null,arguments)},Gy=t._Gather=function(){return(Gy=t._Gather=t.asm.K).apply(null,arguments)},Wy=t._GatherNd=function(){return(Wy=t._GatherNd=t.asm.L).apply(null,arguments)},jy=t._Greater=function(){return(jy=t._Greater=t.asm.M).apply(null,arguments)},Uy=t._GreaterEqual=function(){return(Uy=t._GreaterEqual=t.asm.N).apply(null,arguments)},Hy=t._LeakyRelu=function(){return(Hy=t._LeakyRelu=t.asm.O).apply(null,arguments)},Ye=t._Less=function(){return(Ye=t._Less=t.asm.P).apply(null,arguments)},qy=t._LessEqual=function(){return(qy=t._LessEqual=t.asm.Q).apply(null,arguments)},Ky=t._Log=function(){return(Ky=t._Log=t.asm.R).apply(null,arguments)},Xy=t._LogicalAnd=function(){return(Xy=t._LogicalAnd=t.asm.S).apply(null,arguments)},Yy=t._Max=function(){return(Yy=t._Max=t.asm.T).apply(null,arguments)},Zy=t._MaxPool=function(){return(Zy=t._MaxPool=t.asm.U).apply(null,arguments)},Jy=t._Maximum=function(){return(Jy=t._Maximum=t.asm.V).apply(null,arguments)},tm=t._Mean=function(){return(tm=t._Mean=t.asm.W).apply(null,arguments)},Th=t._Min=function(){return(Th=t._Min=t.asm.X).apply(null,arguments)},Ah=t._Minimum=function(){return(Ah=t._Minimum=t.asm.Y).apply(null,arguments)},Qy=t._Multiply=function(){return(Qy=t._Multiply=t.asm.Z).apply(null,arguments)},eb=t._Neg=function(){return(eb=t._Neg=t.asm._).apply(null,arguments)},tb=t._NonMaxSuppressionV3=function(){return(tb=t._NonMaxSuppressionV3=t.asm.$).apply(null,arguments)},rb=t._NonMaxSuppressionV4=function(){return(rb=t._NonMaxSuppressionV4=t.asm.aa).apply(null,arguments)},ob=t._NonMaxSuppressionV5=function(){return(ob=t._NonMaxSuppressionV5=t.asm.ba).apply(null,arguments)},nb=t._NotEqual=function(){return(nb=t._NotEqual=t.asm.ca).apply(null,arguments)},sb=t._OneHot=function(){return(sb=t._OneHot=t.asm.da).apply(null,arguments)},ft=t._PadV2=function(){return(ft=t._PadV2=t.asm.ea).apply(null,arguments)},ib=t._Pow=function(){return(ib=t._Pow=t.asm.fa).apply(null,arguments)},ab=t._Prelu=function(){return(ab=t._Prelu=t.asm.ga).apply(null,arguments)},lb=t._Prod=function(){return(lb=t._Prod=t.asm.ha).apply(null,arguments)},Zu=t._RealDiv=function(){return(Zu=t._RealDiv=t.asm.ia).apply(null,arguments)},Eh=t._Relu=function(){return(Eh=t._Relu=t.asm.ja).apply(null,arguments)},Dh=t._Relu6=function(){return(Dh=t._Relu6=t.asm.ka).apply(null,arguments)},$h=t._ResizeBilinear=function(){return($h=t._ResizeBilinear=t.asm.la).apply(null,arguments)},ub=t._Reverse=function(){return(ub=t._Reverse=t.asm.ma).apply(null,arguments)},cb=t._RotateWithOffset=function(){return(cb=t._RotateWithOffset=t.asm.na).apply(null,arguments)},Rh=t._Round=function(){return(Rh=t._Round=t.asm.oa).apply(null,arguments)},pb=t._Rsqrt=function(){return(pb=t._Rsqrt=t.asm.pa).apply(null,arguments)},Fh=t._ScatterNd=function(){return(Fh=t._ScatterNd=t.asm.qa).apply(null,arguments)},La=t._SelectV2=function(){return(La=t._SelectV2=t.asm.ra).apply(null,arguments)},mb=t._Sigmoid=function(){return(mb=t._Sigmoid=t.asm.sa).apply(null,arguments)},fb=t._Sin=function(){return(fb=t._Sin=t.asm.ta).apply(null,arguments)},iI=t._Softmax=function(){return(iI=t._Softmax=t.asm.ua).apply(null,arguments)},Oh=t._Sqrt=function(){return(Oh=t._Sqrt=t.asm.va).apply(null,arguments)},db=t._Square=function(){return(db=t._Square=t.asm.wa).apply(null,arguments)},hb=t._SquaredDifference=function(){return(hb=t._SquaredDifference=t.asm.xa).apply(null,arguments)},gb=t._Step=function(){return(gb=t._Step=t.asm.ya).apply(null,arguments)},xb=t._StridedSlice=function(){return(xb=t._StridedSlice=t.asm.za).apply(null,arguments)},yb=t._Sub=function(){return(yb=t._Sub=t.asm.Aa).apply(null,arguments)},bb=t._Sum=function(){return(bb=t._Sum=t.asm.Ba).apply(null,arguments)},wb=t._Tanh=function(){return(wb=t._Tanh=t.asm.Ca).apply(null,arguments)},_b=t._Tile=function(){return(_b=t._Tile=t.asm.Da).apply(null,arguments)},kb=t._TopK=function(){return(kb=t._TopK=t.asm.Ea).apply(null,arguments)},vb=t._Transpose=function(){return(vb=t._Transpose=t.asm.Fa).apply(null,arguments)},Cb=t.__FusedMatMul=function(){return(Cb=t.__FusedMatMul=t.asm.Ga).apply(null,arguments)},Ib=t._malloc=function(){return(Ib=t._malloc=t.asm.Ha).apply(null,arguments)},Nb=t._free=function(){return(Nb=t._free=t.asm.Ia).apply(null,arguments)},Ph=t.stackSave=function(){return(Ph=t.stackSave=t.asm.Ja).apply(null,arguments)},Mh=t.stackRestore=function(){return(Mh=t.stackRestore=t.asm.Ka).apply(null,arguments)},rm=t.stackAlloc=function(){return(rm=t.stackAlloc=t.asm.La).apply(null,arguments)};t.cwrap=X;var Ju;function Sb(Z){this.name="ExitStatus",this.message="Program terminated with exit("+Z+")",this.status=Z}$o=function Z(){Ju||om(),Ju||($o=Z)};function om(Z){if(Z=Z||i,br>0||(oo(),br>0))return;function se(){Ju||(Ju=!0,t.calledRun=!0,!G&&(Rr(),jo(),o(t),t.onRuntimeInitialized&&t.onRuntimeInitialized(),nr()))}t.setStatus?(t.setStatus("Running..."),setTimeout(function(){setTimeout(function(){t.setStatus("")},1),se()},1)):se()}if(t.run=om,t.preInit)for(typeof t.preInit=="function"&&(t.preInit=[t.preInit]);t.preInit.length>0;)t.preInit.pop()();return om(),e.ready}}();typeof xx=="object"&&typeof uC=="object"?uC.exports=cC:typeof define=="function"&&define.amd?define([],function(){return cC}):typeof xx=="object"&&(xx.WasmBackendModule=cC)});var L3=Ut((M3,U0)=>{(function(r,e,t){function o(i){var l=this,u=a();l.next=function(){var c=2091639*l.s0+l.c*23283064365386963e-26;return l.s0=l.s1,l.s1=l.s2,l.s2=c-(l.c=c|0)},l.c=1,l.s0=u(" "),l.s1=u(" "),l.s2=u(" "),l.s0-=u(i),l.s0<0&&(l.s0+=1),l.s1-=u(i),l.s1<0&&(l.s1+=1),l.s2-=u(i),l.s2<0&&(l.s2+=1),u=null}function n(i,l){return l.c=i.c,l.s0=i.s0,l.s1=i.s1,l.s2=i.s2,l}function s(i,l){var u=new o(i),c=l&&l.state,p=u.next;return p.int32=function(){return u.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&n(c,u),p.state=function(){return n(u,{})}),p}function a(){var i=4022871197,l=function(u){u=String(u);for(var c=0;c<u.length;c++){i+=u.charCodeAt(c);var p=.02519603282416938*i;i=p>>>0,p-=i,p*=i,i=p>>>0,p-=i,i+=p*4294967296}return(i>>>0)*23283064365386963e-26};return l}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.alea=s})(M3,typeof U0=="object"&&U0,typeof define=="function"&&define)});var B3=Ut((z3,H0)=>{(function(r,e,t){function o(a){var i=this,l="";i.x=0,i.y=0,i.z=0,i.w=0,i.next=function(){var c=i.x^i.x<<11;return i.x=i.y,i.y=i.z,i.z=i.w,i.w^=i.w>>>19^c^c>>>8},a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,i.next()}function n(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor128=s})(z3,typeof H0=="object"&&H0,typeof define=="function"&&define)});var G3=Ut((V3,q0)=>{(function(r,e,t){function o(a){var i=this,l="";i.next=function(){var c=i.x^i.x>>>2;return i.x=i.y,i.y=i.z,i.z=i.w,i.w=i.v,(i.d=i.d+362437|0)+(i.v=i.v^i.v<<4^(c^c<<1))|0},i.x=0,i.y=0,i.z=0,i.w=0,i.v=0,a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,u==l.length&&(i.d=i.x<<10^i.x>>>4),i.next()}function n(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i.v=a.v,i.d=a.d,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorwow=s})(V3,typeof q0=="object"&&q0,typeof define=="function"&&define)});var j3=Ut((W3,K0)=>{(function(r,e,t){function o(a){var i=this;i.next=function(){var u=i.x,c=i.i,p,m,f;return p=u[c],p^=p>>>7,m=p^p<<24,p=u[c+1&7],m^=p^p>>>10,p=u[c+3&7],m^=p^p>>>3,p=u[c+4&7],m^=p^p<<7,p=u[c+7&7],p=p^p<<13,m^=p^p<<9,u[c]=m,i.i=c+1&7,m};function l(u,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],u.x=f,u.i=0,p=256;p>0;--p)u.next()}l(i,a)}function n(a,i){return i.x=a.x.slice(),i.i=a.i,i}function s(a,i){a==null&&(a=+new Date);var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.x&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorshift7=s})(W3,typeof K0=="object"&&K0,typeof define=="function"&&define)});var H3=Ut((U3,X0)=>{(function(r,e,t){function o(a){var i=this;i.next=function(){var u=i.w,c=i.X,p=i.i,m,f;return i.w=u=u+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,i.i=p,f+(u^u>>>16)|0};function l(u,c){var p,m,f,d,h,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,d=-32;d<x;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;u.w=h,u.X=g,u.i=f}l(i,a)}function n(a,i){return i.i=a.i,i.w=a.w,i.X=a.X.slice(),i}function s(a,i){a==null&&(a=+new Date);var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.X&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor4096=s})(U3,typeof X0=="object"&&X0,typeof define=="function"&&define)});var K3=Ut((q3,Y0)=>{(function(r,e,t){function o(a){var i=this,l="";i.next=function(){var c=i.b,p=i.c,m=i.d,f=i.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,i.b=c=c<<20^c>>>12^p,i.c=p=p-m|0,i.d=m<<16^p>>>16^f,i.a=f-c|0},i.a=0,i.b=0,i.c=2654435769|0,i.d=1367130551,a===Math.floor(a)?(i.a=a/4294967296|0,i.b=a|0):l+=a;for(var u=0;u<l.length+20;u++)i.b^=l.charCodeAt(u)|0,i.next()}function n(a,i){return i.a=a.a,i.b=a.b,i.c=a.c,i.d=a.d,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.tychei=s})(q3,typeof Y0=="object"&&Y0,typeof define=="function"&&define)});var Y3=Ut((X3,cy)=>{(function(r,e,t){var o=256,n=6,s=52,a="random",i=t.pow(o,n),l=t.pow(2,s),u=l*2,c=o-1,p;function m(w,_,k){var D=[];_=_==!0?{entropy:!0}:_||{};var T=g(h(_.entropy?[w,b(e)]:w==null?x():w,3),D),R=new f(D),O=function(){for(var M=R.g(n),G=i,j=0;M<l;)M=(M+j)*o,G*=o,j=R.g(1);for(;M>=u;)M/=2,G/=2,j>>>=1;return(M+j)/G};return O.int32=function(){return R.g(4)|0},O.quick=function(){return R.g(4)/4294967296},O.double=O,g(b(R.S),e),(_.pass||k||function(M,G,j,U){return U&&(U.S&&d(U,R),M.state=function(){return d(R,{})}),j?(t[a]=M,G):M})(O,T,"global"in _?_.global:this==t,_.state)}function f(w){var _,k=w.length,D=this,T=0,R=D.i=D.j=0,O=D.S=[];for(k||(w=[k++]);T<o;)O[T]=T++;for(T=0;T<o;T++)O[T]=O[R=c&R+w[T%k]+(_=O[T])],O[R]=_;(D.g=function(M){for(var G,j=0,U=D.i,H=D.j,q=D.S;M--;)G=q[U=c&U+1],j=j*o+q[c&(q[U]=q[H=c&H+G])+(q[H]=G)];return D.i=U,D.j=H,j})(o)}function d(w,_){return _.i=w.i,_.j=w.j,_.S=w.S.slice(),_}function h(w,_){var k=[],D=typeof w,T;if(_&&D=="object")for(T in w)try{k.push(h(w[T],_-1))}catch(R){}return k.length?k:D=="string"?w:w+"\0"}function g(w,_){for(var k=w+"",D,T=0;T<k.length;)_[c&T]=c&(D^=_[c&T]*19)+k.charCodeAt(T++);return b(_)}function x(){try{var w;return p&&(w=p.randomBytes)?w=w(o):(w=new Uint8Array(o),(r.crypto||r.msCrypto).getRandomValues(w)),b(w)}catch(D){var _=r.navigator,k=_&&_.plugins;return[+new Date,r,k,r.screen,b(e)]}}function b(w){return String.fromCharCode.apply(0,w)}if(g(t.random(),e),typeof cy=="object"&&cy.exports){cy.exports=m;try{p=qw()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return m}):t["seed"+a]=m})(typeof self!="undefined"?self:X3,[],Math)});var Z0=Ut((mBt,Z3)=>{var Yte=L3(),Zte=B3(),Jte=G3(),Qte=j3(),ere=H3(),tre=K3(),Hu=Y3();Hu.alea=Yte;Hu.xor128=Zte;Hu.xorwow=Jte;Hu.xorshift7=Qte;Hu.xor4096=ere;Hu.tychei=tre;Z3.exports=Hu});var IB=Ut(()=>{});var lm={};Ge(lm,{bin:()=>TI,browser:()=>FI,default:()=>FV,dependencies:()=>RI,description:()=>wI,devDependencies:()=>DI,jsdelivr:()=>CI,license:()=>EI,main:()=>kI,miniprogram:()=>SI,module:()=>vI,name:()=>yI,private:()=>_I,repository:()=>AI,scripts:()=>$I,types:()=>NI,unpkg:()=>II,version:()=>bI});var yI="@tensorflow/tfjs",bI="3.3.0",wI="An open-source machine learning framework.",_I=!1,kI="dist/tf.node.js",vI="dist/index.js",CI="dist/tf.min.js",II="dist/tf.min.js",NI="dist/index.d.ts",SI="dist/miniprogram",TI={"tfjs-custom-module":"dist/tools/custom_module/cli.js"},AI={type:"git",url:"https://github.com/tensorflow/tfjs.git"},EI="Apache-2.0",DI={"@babel/core":"^7.9.0","@babel/polyfill":"^7.10.4","@babel/preset-env":"^7.9.5","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@types/argparse":"^1.0.38","@types/jasmine":"2.8.7","@types/node":"~10.17.50","@types/shelljs":"^0.8.4","@types/yargs":"^15.0.7","clang-format":"~1.2.2",commander:"~2.14.1",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~4.2.0","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~4.1.1","karma-typescript-es6-transform":"^5.1.0","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-babel":"^4.4.0","rollup-plugin-terser":"~5.3.0","rollup-plugin-visualizer":"~3.3.2",shelljs:"~0.8.1","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"~1.0.0-pre.21"},$I={build:"tsc && yarn build-cli && yarn bundle","build-ci":"tsc && yarn build-cli && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-converter":"cd ../tfjs-converter && yarn && yarn build","build-converter-ci":"cd ../tfjs-converter && yarn && yarn build-ci","build-data":"cd ../tfjs-data && yarn && yarn build","build-data-ci":"cd ../tfjs-data && yarn && yarn build-ci","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-converter && yarn build-data && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-converter-ci && yarn build-data-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-cli":"tsc --project ./tools/custom_module/tsconfig.json && chmod +x ./dist/tools/custom_module/cli.js","run-custom-build":"ts-node -s ./tools/custom_module/cli.ts","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",test:"yarn && yarn build-deps && yarn build && karma start","test-dev":"karma start","test-tools":"ts-node --project ./tools/custom_module/tsconfig.json run_tools_tests.ts","test-ci":"./scripts/test-ci.sh"},RI={"@tensorflow/tfjs-backend-cpu":"3.3.0","@tensorflow/tfjs-backend-webgl":"3.3.0","@tensorflow/tfjs-converter":"3.3.0","@tensorflow/tfjs-core":"3.3.0","@tensorflow/tfjs-data":"3.3.0","@tensorflow/tfjs-layers":"3.3.0",argparse:"^1.0.10",chalk:"^4.1.0","core-js":"3","regenerator-runtime":"^0.13.5",yargs:"^16.0.3"},FI={"node-fetch":!1,util:!1,crypto:!1},FV={name:yI,version:bI,description:wI,private:_I,main:kI,module:vI,jsdelivr:CI,unpkg:II,types:NI,miniprogram:SI,bin:TI,repository:AI,license:EI,devDependencies:DI,scripts:$I,dependencies:RI,browser:FI};var um={};Ge(um,{browser:()=>JI,default:()=>OV,dependencies:()=>ZI,description:()=>MI,devDependencies:()=>XI,engines:()=>HI,jsdelivr:()=>BI,"jsnext:main":()=>WI,license:()=>KI,main:()=>zI,miniprogram:()=>UI,module:()=>jI,name:()=>OI,private:()=>LI,repository:()=>qI,scripts:()=>YI,sideEffects:()=>QI,types:()=>GI,unpkg:()=>VI,version:()=>PI});var OI="@tensorflow/tfjs-core",PI="3.3.0",MI="Hardware-accelerated JavaScript library for machine intelligence",LI=!1,zI="dist/tf-core.node.js",BI="dist/tf-core.min.js",VI="dist/tf-core.min.js",GI="dist/index.d.ts",WI="dist/index.js",jI="dist/index.js",UI="dist/miniprogram",HI={yarn:">= 1.3.2"},qI={type:"git",url:"https://github.com/tensorflow/tfjs-core.git"},KI="Apache-2.0",XI={"@bazel/bazelisk":"^1.3.0","@bazel/typescript":"^0.27.8","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"link:../tfjs-backend-cpu","@types/jasmine":"~3.0.0","@types/node":"~9.6.0","@types/node-fetch":"~2.1.2","clang-format":"~1.2.4",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"~4.2.0","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-jasmine":"~1.1.0","karma-typescript":"~4.1.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~5.3.0","rollup-plugin-visualizer":"~3.3.2",shelljs:"~0.8.3","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"~1.0.0-pre.21",yargs:"~13.2.2"},YI={"build-ci":"./scripts/enumerate-tests.js --ci && tsc && yarn bundle-ci && yarn build-test-snippets",build:"node ./scripts/enumerate-tests.js && tsc && yarn bundle",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-npm":"./scripts/build-npm.sh","build-deps":"yarn build && yarn build-cpu-backend","build-cpu-backend":"cd ../tfjs-backend-cpu && yarn && yarn build","build-cpu-backend-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build:bazel":"bazelisk build //...","build-test-snippets":"yarn tsc --project ./scripts/test_snippets/tsconfig.json","format-all":"clang-format -i -style=Google --glob=src/**/*.ts","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build && rollup -c && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-webworker":"karma start --worker","run-browserstack":"karma start --browserstack","test-bundle-size":"./scripts/test-bundle-size.js","test-node":"rimraf dist/ && yarn build-deps && yarn build && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-dev":"tsc && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_node.js","test-async-backends":"rimraf dist/ && yarn build && ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-async-backends-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-snippets":"yarn build && yarn build-cpu-backend && ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts","test-snippets-ci":"ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts"},ZI={"@types/offscreencanvas":"~2019.3.0","@types/seedrandom":"2.4.27","@types/webgl-ext":"0.0.30","node-fetch":"~2.6.1",seedrandom:"2.4.3"},JI={"node-fetch":!1,util:!1,crypto:!1,worker_threads:!1},QI=["./dist/index.js","./dist/engine.js","./dist/tensor.js","./dist/base_side_effects.js","./dist/flags.js","./dist/platforms/*.js","./dist/register_all_gradients.js","./dist/public/chained_ops/*.js","./dist/io/*.js"],OV={name:OI,version:PI,description:MI,private:LI,main:zI,jsdelivr:BI,unpkg:VI,types:GI,"jsnext:main":WI,module:jI,miniprogram:UI,engines:HI,repository:qI,license:KI,devDependencies:XI,scripts:YI,dependencies:ZI,browser:JI,sideEffects:QI};var cm={};Ge(cm,{browser:()=>gN,default:()=>PV,dependencies:()=>hN,description:()=>rN,devDependencies:()=>mN,jsdelivr:()=>sN,"jsnext:main":()=>lN,license:()=>pN,main:()=>nN,miniprogram:()=>cN,module:()=>uN,name:()=>eN,peerDependencies:()=>dN,private:()=>oN,scripts:()=>fN,types:()=>aN,unpkg:()=>iN,version:()=>tN});var eN="@tensorflow/tfjs-data",tN="3.3.0",rN="TensorFlow Data API in JavaScript",oN=!1,nN="dist/tf-data.node.js",sN="dist/tf-data.min.js",iN="dist/tf-data.min.js",aN="dist/index.d.ts",lN="dist/index.js",uN="dist/index.js",cN="dist/miniprogram",pN="Apache-2.0",mN={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.3.0","@tensorflow/tfjs-core":"3.3.0","@tensorflow/tfjs-layers":"3.3.0","@types/jasmine":"~2.5.53","@types/seedrandom":"^2.4.27","@types/utf8":"~2.1.6","clang-format":"~1.2.2","http-server":"~0.10.0",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~4.0.1","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~4.0.0","karma-typescript-es6-transform":"^5.0.2",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~5.3.0","rollup-plugin-visualizer":"~3.3.2","ts-node":"~7.0.0",tslint:"~5.11.0","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"^1.0.0-pre.23"},fN={build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-backend-cpu-ci","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-dev":"tsc && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-browsers":"karma start --browsers='Chrome,Firefox'","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/test_node.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts",lint:"tslint -p . -t verbose"},dN={"@tensorflow/tfjs-core":"3.3.0",seedrandom:"~2.4.3"},hN={"@types/node-fetch":"^2.1.2","node-fetch":"~2.6.1"},gN={fs:!1,"node-fetch":!1,string_decoder:!1,crypto:!1},PV={name:eN,version:tN,description:rN,private:oN,main:nN,jsdelivr:sN,unpkg:iN,types:aN,"jsnext:main":lN,module:uN,miniprogram:cN,license:pN,devDependencies:mN,scripts:fN,peerDependencies:dN,dependencies:hN,browser:gN};var pm={};Ge(pm,{default:()=>MV,description:()=>bN,devDependencies:()=>AN,jsdelivr:()=>NN,"jsnext:main":()=>CN,license:()=>wN,main:()=>kN,miniprogram:()=>TN,module:()=>IN,name:()=>xN,peerDependencies:()=>DN,private:()=>_N,scripts:()=>EN,types:()=>vN,unpkg:()=>SN,version:()=>yN});var xN="@tensorflow/tfjs-layers",yN="3.3.0",bN="TensorFlow layers API in JavaScript",wN="Apache-2.0 AND MIT",_N=!1,kN="dist/tf-layers.node.js",vN="dist/index.d.ts",CN="dist/index.js",IN="dist/index.js",NN="dist/tf-layers.min.js",SN="dist/tf-layers.min.js",TN="dist/miniprogram",AN={"@babel/polyfill":"^7.8.7","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.3.0","@tensorflow/tfjs-backend-webgl":"3.3.0","@tensorflow/tfjs-core":"3.3.0","@types/jasmine":"~2.5.53","clang-format":"~1.2.2","http-server":"~0.10.0",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"~4.2.0","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.2.0","karma-typescript-es6-transform":"^5.0.2",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~5.3.0","rollup-plugin-visualizer":"~3.3.2","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"^0.5.0",typescript:"3.5.3",yalc:"~1.0.0-pre.21"},EN={prep:"yarn install && yarn build-ci",build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-npm":"./scripts/build-npm.sh",format:"./tools/clang_format_ts.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts","run-browserstack":"karma start --browsers='bs_chrome_mac' --singleRun --reporters='dots,karma-typescript'",lint:"tslint -p . -t verbose"},DN={"@tensorflow/tfjs-core":"3.3.0"},MV={name:xN,version:yN,description:bN,license:wN,private:_N,main:kN,types:vN,"jsnext:main":CN,module:IN,jsdelivr:NN,unpkg:SN,miniprogram:TN,devDependencies:AN,scripts:EN,peerDependencies:DN};var mm={};Ge(mm,{default:()=>LV,description:()=>FN,devDependencies:()=>UN,jsdelivr:()=>BN,"jsnext:main":()=>PN,license:()=>WN,main:()=>ON,miniprogram:()=>VN,module:()=>MN,name:()=>$N,peerDependencies:()=>jN,repository:()=>GN,scripts:()=>HN,types:()=>LN,unpkg:()=>zN,version:()=>RN});var $N="@tensorflow/tfjs-converter",RN="3.3.0",FN="Tensorflow model converter for javascript",ON="dist/tf-converter.node.js",PN="dist/index.js",MN="dist/index.js",LN="dist/index.d.ts",zN="dist/tf-converter.min.js",BN="dist/tf-converter.min.js",VN="dist/miniprogram",GN={type:"git",url:"https://github.com/tensorflow/tfjs-converter.git"},WN="Apache-2.0",jN={"@tensorflow/tfjs-core":"3.3.0"},UN={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-replace":"^2.3.3","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.3.0","@tensorflow/tfjs-core":"3.3.0","@types/argparse":"^1.0.38","@types/deep-equal":"^1.0.1","@types/jasmine":"~2.8.6","@types/long":"~3.0.32","@types/node-fetch":"1.6.9",ajv:"~6.3.0",argparse:"^1.0.10","babel-core":"~6.26.3","babel-plugin-external-helpers":"~6.22.0","babel-preset-env":"~1.7.0","clang-format":"~1.2.2",copyfiles:"~1.2.0","deep-equal":"^1.0.1","jasmine-core":"~3.5.0","node-fetch":"~2.6.1",opn:"~5.1.0",protobufjs:"~6.8.6",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~5.3.0","rollup-plugin-visualizer":"~3.3.2","ts-morph":"^7.1.3","ts-node":"~8.8.2",tslint:"~5.8.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"~1.0.0-pre.21"},HN={build:"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle","build-ci":"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && yarn gen-json --test && yarn gen-kernel2ops && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/run_tests.ts","test-dev":"tsc && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts",lint:"tslint -p . -t verbose","make-version":"sh -c ./scripts/make-version","gen-doc":"ts-node -s ./scripts/gen_doc.ts","gen-json":"ts-node -s ./scripts/gen_json.ts","model-summary":"ts-node -s ./tools/model_summary.ts",pb2json:"ts-node -s ./tools/pb2json_converter.ts","build-pip-package":"yarn gen-json --test && cd python && ./build-pip-package.sh --test /tmp/tfjs-pips","run-python-tests":"yarn gen-json --test && cd python && ./run-python-tests.sh","gen-kernel2ops":"ts-node -s scripts/kernels_to_ops.ts --out metadata/kernel2op.json"},LV={name:$N,version:RN,description:FN,main:ON,"jsnext:main":PN,module:MN,types:LN,unpkg:zN,jsdelivr:BN,miniprogram:VN,repository:GN,license:WN,peerDependencies:jN,devDependencies:UN,scripts:HN};var zV=1e-7,BV=1e-4,Va=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},$s=class{refCount(e){return Uo("refCount")}incRef(e){return Uo("incRef")}timerAvailable(){return!0}time(e){return Uo("time")}read(e){return Uo("read")}readSync(e){return Uo("readSync")}numDataIds(){return Uo("numDataIds")}disposeData(e,t){return Uo("disposeData")}write(e,t,o){return Uo("write")}move(e,t,o,n,s){return Uo("move")}memory(){return Uo("memory")}floatPrecision(){return Uo("floatPrecision")}epsilon(){return this.floatPrecision()===32?zV:BV}dispose(){return Uo("dispose")}};function Uo(r){throw new Error(`'${r}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function qN(r){let e=r.length,t=0,o=0;for(;e>0;)o=Math.random()*e|0,e--,t=r[e],r[e]=r[o],r[o]=t}function VV(r,e){if(r.length!==e.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${r.length}Second array length was ${e.length}`);let t=r.length,o,n,s=0;for(;t>0;)s=Math.random()*t|0,t--,o=r[t],n=e[t],r[t]=r[s],e[t]=e[s],r[s]=o,e[s]=n}function ic(r,e,t){return Math.max(r,Math.min(e,t))}function GV(r){return r%2==0?r:r+1}function WV(r){let e=0;for(let t=0;t<r.length;t++)e+=r[t];return e}function jV(r,e){let t=Math.random();return e*t+(1-t)*r}function UV(r,e){let t=0;for(let o=0;o<r.length;o++){let n=Number(r[o])-Number(e[o]);t+=n*n}return t}function A(r,e){if(!r)throw new Error(typeof e=="string"?e:e())}function vt(r,e,t=""){A(Hr(r,e),()=>t+` Shapes ${r} and ${e} must match`)}function Ro(r){A(r!=null,()=>"The input to the tensor constructor must be a non-null value.")}function wn(r,e=[],t=!1){if(e==null&&(e=[]),Array.isArray(r)||sr(r)&&!t)for(let o=0;o<r.length;++o)wn(r[o],e,t);else e.push(r);return e}function ct(r){if(r.length===0)return 1;let e=r[0];for(let t=1;t<r.length;t++)e*=r[t];return e}function HV(r){return r.length===0}function Hr(r,e){if(r===e)return!0;if(r==null||e==null||r.length!==e.length)return!1;for(let t=0;t<r.length;t++)if(r[t]!==e[t])return!1;return!0}function ot(r){return r%1==0}function qV(r){if(Math.tanh!=null)return Math.tanh(r);if(r===Infinity)return 1;if(r===-Infinity)return-1;{let e=Math.exp(2*r);return(e-1)/(e+1)}}function KV(r){let e=Math.ceil(Math.sqrt(r));return[e,Math.ceil(r/e)]}function XV(r){let e=new Uint32Array(r);for(let t=0;t<r;++t)e[t]=t;return qN(e),e}function Ol(r,e){return e<=r.length?r:r+" ".repeat(e-r.length)}function YV(r,e=o=>0,t){return new Promise((o,n)=>{let s=0,a=()=>{if(r()){o();return}s++;let i=e(s);if(t!=null&&s>=t){n();return}setTimeout(a,i)};a()})}function ZV(r,e){let t=1,o=-1;for(let s=0;s<r.length;++s)if(r[s]>=0)t*=r[s];else if(r[s]===-1){if(o!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${o} and dim ${s}`);o=s}else if(r[s]<0)throw Error(`Shapes can not be < 0. Found ${r[s]} at dim ${s}`);if(o===-1){if(e>0&&e!==t)throw Error(`Size(${e}) must match the product of shape ${r}`);return r}if(t===0)throw Error(`Cannot infer the missing size in [${r}] when there are 0 elements`);if(e%t!=0)throw Error(`The implicit shape can't be a fractional number. Got ${e} / ${t}`);let n=r.slice();return n[o]=e/t,n}function Qt(r,e){let t=e.length;return r=r==null?e.map((o,n)=>n):[].concat(r),A(r.every(o=>o>=-t&&o<t),()=>`All values in axis param must be in range [-${t}, ${t}) but got axis ${r}`),A(r.every(o=>ot(o)),()=>`All values in axis param must be integers but got axis ${r}`),r.map(o=>o<0?t+o:o)}function Db(r,e){let t=[],o=[],n=e!=null&&Array.isArray(e)&&e.length===0,s=e==null||n?null:Qt(e,r).sort(),a=0;for(let i=0;i<r.length;++i){if(s!=null){if(s[a]===i&&r[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${r[i]}' is not 1`);(s[a]==null||s[a]>i)&&r[i]===1&&(t.push(r[i]),o.push(i)),s[a]<=i&&a++}r[i]!==1&&(t.push(r[i]),o.push(i))}return{newShape:t,keptDims:o}}function $b(r,e){let t=null;if(r==null||r==="float32")t=new Float32Array(e);else if(r==="int32")t=new Int32Array(e);else if(r==="bool")t=new Uint8Array(e);else throw new Error(`Unknown data type ${r}`);return t}function Rb(r,e){let t=null;if(r==null||r==="float32")t=new Float32Array(e);else if(r==="int32")t=new Int32Array(e);else if(r==="bool")t=new Uint8Array(e);else if(r==="string")t=new Array(e);else throw new Error(`Unknown data type ${r}`);return t}function Fb(r,e){for(let t=0;t<r.length;t++){let o=r[t];if(isNaN(o)||!isFinite(o))throw Error(`A tensor of type ${e} being uploaded contains ${o}.`)}}function Ob(r){return r==="bool"||r==="complex64"||r==="float32"||r==="int32"||r==="string"}function JV(r,e){return!(e==="complex64"||e==="float32"&&r!=="complex64"||e==="int32"&&r!=="float32"&&r!=="complex64"||e==="bool"&&r==="bool")}function sr(r){return r instanceof Float32Array||r instanceof Int32Array||r instanceof Uint8Array}function Wh(r){if(r==="float32"||r==="int32")return 4;if(r==="complex64")return 8;if(r==="bool")return 1;throw new Error(`Unknown dtype ${r}`)}function Pb(r){if(r==null)return 0;let e=0;return r.forEach(t=>e+=t.length),e}function _n(r){return typeof r=="string"||r instanceof String}function KN(r){return typeof r=="boolean"}function XN(r){return typeof r=="number"}function ac(r){return Array.isArray(r)?ac(r[0]):r instanceof Float32Array?"float32":r instanceof Int32Array||r instanceof Uint8Array?"int32":XN(r)?"float32":_n(r)?"string":KN(r)?"bool":"float32"}function Rs(r){return!!(r&&r.constructor&&r.call&&r.apply)}function lc(r,e){for(let t=e;t<r;++t)if(r%t==0)return t;return r}function Fs(r){let e=r.length;if(e<2)return[];let t=new Array(e-1);t[e-2]=r[e-1];for(let o=e-3;o>=0;--o)t[o]=t[o+1]*r[o+1];return t}function YN(r,e,t){let o=new Array;if(e.length===1){let n=e[0];for(let s=0;s<n;s++)o[s]=t[r+s]}else{let n=e[0],s=e.slice(1),a=s.reduce((i,l)=>i*l);for(let i=0;i<n;i++)o[i]=YN(r+i*a,s,t)}return o}function Pl(r,e){if(r.length===0)return e[0];let t=r.reduce((o,n)=>o*n);if(t===0)return[];if(t!==e.length)throw new Error(`[${r}] does not match the input size ${e.length}.`);return YN(0,r,e)}function fm(r,e){let t=uc(r,e);for(let o=0;o<t.length;o++)t[o]=1;return t}function uc(r,e){if(e==null||e==="float32"||e==="complex64")return new Float32Array(r);if(e==="int32")return new Int32Array(r);if(e==="bool")return new Uint8Array(r);throw new Error(`Unknown data type ${e}`)}function QV(r,e){let t=r.reduce((o,n)=>o*n,1);if(e==null||e==="float32")return Pl(r,new Float32Array(t));if(e==="int32")return Pl(r,new Int32Array(t));if(e==="bool")return Pl(r,new Uint8Array(t));throw new Error(`Unknown data type ${e}`)}function dm(r){r.forEach(e=>{A(Number.isInteger(e)&&e>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${r}].`)})}function eG(r,e,t){if(e===0)return 0;if(e===1)return r[0];let o=r[r.length-1];for(let n=0;n<r.length-1;++n)o+=t[n]*r[n];return o}function tG(r,e,t){if(e===0)return[];if(e===1)return[r];let o=new Array(e);for(let n=0;n<o.length-1;++n)o[n]=Math.floor(r/t[n]),r-=o[n]*t[n];return o[o.length-1]=r,o}function hm(r){return r&&r.then&&typeof r.then=="function"}var ZN="tfjsflags",jh=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,o){if(this.flagRegistry[e]={evaluationFn:t,setHook:o},this.urlFlags[e]!=null){let n=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${n}.`),this.set(e,n)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(hm(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=rG(this.global.location.search);ZN in e&&e[ZN].split(",").forEach(o=>{let[n,s]=o.split(":");this.urlFlags[n]=oG(n,s)})}};function rG(r){let e={};return r.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(t,...o)=>(nG(e,o[0],o[1]),o.join("="))),e}function nG(r,e,t){r[decodeURIComponent(e)]=decodeURIComponent(t||"")}function oG(r,e){if(e=e.toLowerCase(),e==="true"||e==="false")return e==="true";if(`${+e}`===e)return+e;throw new Error(`Could not parse value flag value ${e} for flag ${r}.`)}function W(){return Mb}var Mb=null;function JN(r){Mb=r}var Lb;function zb(){if(Lb==null){let r;if(typeof window!="undefined")r=window;else if(typeof global!="undefined")r=global;else if(typeof process!="undefined")r=process;else if(typeof self!="undefined")r=self;else throw new Error("Could not find a global object");Lb=r}return Lb}function sG(){let r=zb();return r._tfGlobals==null&&(r._tfGlobals=new Map),r._tfGlobals}function gm(r,e){let t=sG();if(t.has(r))return t.get(r);{let o=e();return t.set(r,o),t.get(r)}}var Os="Abs",yi="Acos",bi="Acosh",Fo="Add",kn="AddN",cc="All",pc="Any",vn="ArgMax",Ga="ArgMin",wi="Asin",_i="Asinh",ki="Atan",vi="Atanh",Ci="Atan2",Cn="AvgPool",mc="AvgPoolGrad",Wa="AvgPool3D",fc="AvgPool3DGrad",In="BatchMatMul",ja="BatchToSpaceND",dc="Bincount",QN="BroadcastTo",Ho="Cast",Nn="Ceil",qo="ClipByValue",hc="Complex",Ua="ComplexAbs",Ps="Concat",Sn="Conv2D",gc="Conv2DBackpropFilter",Tn="Conv2DBackpropInput",Ha="Conv3D",xc="Conv3DBackpropFilterV2",yc="Conv3DBackpropInputV2",An="Cos",Ii="Cosh",En="Cumsum",Ni="CropAndResize",bc="DenseBincount",Si="DepthToSpace",Dn="DepthwiseConv2dNative",wc="DepthwiseConv2dNativeBackpropFilter",_c="DepthwiseConv2dNativeBackpropInput",kc="Diag",qa="Dilation2D",xm="Dilation2DBackpropInput",ym="Dilation2DBackpropFilter",$n="RealDiv",Ti="Elu",vc="EluGrad",Ai="Erf",Ei="Equal",Rn="Exp",Ms="ExpandDims",Di="Expm1",Cc="FFT",Ka="Fill",$i="FlipLeftRight",Fn="Floor",On="FloorDiv",Pn="FusedBatchNorm",Ls="GatherV2",Ri="GatherNd",Fi="Greater",Mn="GreaterEqual",Ko="Identity",Ic="IFFT",Nc="Imag",Oi="IsFinite",Pi="IsInf",Mi="IsNan",Ln="LeakyRelu",Li="Less",zi="LessEqual",Sc="LinSpace",zn="Log",Bi="Log1p",Vi="LogicalAnd",Ml="LogicalNot",Ll="LogicalOr",eS="LogSoftmax",Xa="LRN",Tc="LRNGrad",Bn="Max",Vn="Maximum",Gn="MaxPool",Ac="MaxPoolGrad",Ya="MaxPool3D",Ec="MaxPool3DGrad",Dc="MaxPoolWithArgmax",Wn="Mean",jn="Min",Un="Minimum",Za="MirrorPad",Gi="Mod",$c="Multinomial",Hn="Multiply",zs="Neg",Wi="NotEqual",ji="NonMaxSuppressionV3",Ui="NonMaxSuppressionV4",Hi="NonMaxSuppressionV5",Bs="OnesLike",qn="OneHot",Vs="Pack",Kn="PadV2",dre="Pool",Xn="Pow",Yn="Prelu",qi="Prod",Ja="Range",Rc="Real",Ki="Reciprocal",Zn="Relu",Gs="Reshape",Qa="ResizeNearestNeighbor",Fc="ResizeNearestNeighborGrad",Jn="ResizeBilinear",Oc="ResizeBilinearGrad",Qn="Relu6",es="Reverse",ts="Round",rs="Rsqrt",Xi="ScatterNd",Ws="Select",Yi="Selu",js="Slice",os="Sin",Zi="Sinh",Ji="Sign",ns="Sigmoid",Qi="Softplus",ss="Sqrt",is="Sum",el="SpaceToBatchND",Us="SplitV",as="Softmax",ls="SquaredDifference",tl="Square",us="Sub",Pc="SparseToDense",ea="StridedSlice",ta="Tan",cs="Tanh",Oo="Tile",ra="TopK",Mc="Transform",ps="Transpose",Lc="Unique",Hs="Unpack",rl="UnsortedSegmentSum",qs="ZerosLike",Xo="Step",bm="FromPixels",oa="RotateWithOffset",Ks="_FusedMatMul",Xs="FusedConv2D",Ys="FusedDepthwiseConv2D";var zc=gm("kernelRegistry",()=>new Map),wm=gm("gradRegistry",()=>new Map);function _m(r,e){let t=Bb(r,e);return zc.get(t)}function Vb(r){return wm.get(r)}function Uh(r){let e=zc.entries(),t=[];for(;;){let{done:o,value:n}=e.next();if(o)break;let[s,a]=n,[i]=s.split("_");i===r&&t.push(a)}return t}function zl(r){let{kernelName:e,backendName:t}=r,o=Bb(e,t);zc.has(o)&&console.warn(`The kernel '${e}' for backend '${t}' is already registered`),zc.set(o,r)}function tS(r){let{kernelName:e}=r;wm.has(e)&&W().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${e}'`),wm.set(e,r)}function yre(r,e){let t=Bb(r,e);if(!zc.has(t))throw new Error(`The kernel '${r}' for backend '${e}' is not registered`);zc.delete(t)}function bre(r){if(!wm.has(r))throw new Error(`The gradient '${r}' for backend is not registered`);wm.delete(r)}function wre(r,e){Uh(r).forEach(o=>{let n=Object.assign({},o,{backendName:e});zl(n)})}function Bb(r,e){return`${e}_${r}`}var y={};Ge(y,{arraysEqual:()=>Hr,assert:()=>A,assertNonNegativeIntegerDimensions:()=>dm,assertNonNull:()=>Ro,assertShapesMatch:()=>vt,bytesFromStringArray:()=>Pb,bytesPerElement:()=>Wh,checkConversionForErrors:()=>Fb,clamp:()=>ic,computeStrides:()=>Fs,createScalarValue:()=>iG,createShuffledIndices:()=>XV,decodeString:()=>Vc,distSquared:()=>UV,encodeString:()=>ol,fetch:()=>lG,flatten:()=>wn,getArrayFromDType:()=>Rb,getTypedArrayFromDType:()=>$b,hasEncodingLoss:()=>JV,indexToLoc:()=>tG,inferDtype:()=>ac,inferFromImplicitShape:()=>ZV,isBoolean:()=>KN,isFunction:()=>Rs,isInt:()=>ot,isNumber:()=>XN,isPromise:()=>hm,isScalarShape:()=>HV,isString:()=>_n,isTypedArray:()=>sr,isValidDtype:()=>Ob,locToIndex:()=>eG,makeOnesTypedArray:()=>fm,makeZerosNestedTypedArray:()=>QV,makeZerosTypedArray:()=>uc,nearestDivisor:()=>lc,nearestLargerEven:()=>GV,now:()=>Bl,parseAxisParam:()=>Qt,randUniform:()=>jV,repeatedTry:()=>YV,rightPad:()=>Ol,shuffle:()=>qN,shuffleCombo:()=>VV,sizeFromShape:()=>ct,sizeToSquarishShape:()=>KV,squeezeShape:()=>Db,sum:()=>WV,tanh:()=>qV,toNestedArray:()=>Pl,toTypedArray:()=>Bc});function iG(r,e){return e==="string"?ol(r):Bc([r],e)}function aG(r,e){return r instanceof Float32Array&&e==="float32"||r instanceof Int32Array&&e==="int32"||r instanceof Uint8Array&&e==="bool"}function Bc(r,e){if(e==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(r)&&(r=wn(r)),W().getBool("DEBUG")&&Fb(r,e),aG(r,e))return r;if(e==null||e==="float32"||e==="complex64")return new Float32Array(r);if(e==="int32")return new Int32Array(r);if(e==="bool"){let t=new Uint8Array(r.length);for(let o=0;o<t.length;++o)Math.round(r[o])!==0&&(t[o]=1);return t}else throw new Error(`Unknown data type ${e}`)}function Bl(){return W().platform.now()}function lG(r,e){return W().platform.fetch(r,e)}function ol(r,e="utf-8"){return e=e||"utf-8",W().platform.encode(r,e)}function Vc(r,e="utf-8"){return e=e||"utf-8",W().platform.decode(r,e)}var Gb=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new rS)}profileKernel(e,t,o){let n,s=()=>{n=o()},a,i=Bl();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(s);else{s();for(let u of n)u.dataSync();a=Promise.resolve({kernelMs:Bl()-i})}if(W().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let u=0;u<n.length;u++){let c=n[u];c.data().then(p=>{uG(p,c.dtype,e)})}return{kernelName:e,outputs:n,inputs:t,timeMs:a.then(u=>u.kernelMs),extraInfo:a.then(u=>u.getExtraProfileInfo!=null?u.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:o,timeMs:n,inputs:s,extraInfo:a}=e;o.forEach(i=>{Promise.all([i.data(),n,a]).then(l=>{this.logger.logKernelProfile(t,i,l[0],l[1],s,l[2])})})}};function uG(r,e,t){if(e!=="float32")return!1;for(let o=0;o<r.length;o++){let n=r[o];if(isNaN(n)||!isFinite(n))return console.warn(`Found ${n} in the result of '${t}'`),!0}return!1}var rS=class{logKernelProfile(e,t,o,n,s,a){let i=typeof n=="number"?Ol(`${n}ms`,9):n.error,l=Ol(e,25),u=t.rank,c=t.size,p=Ol(t.shape.toString(),14),m="";for(let f in s){let d=s[f];if(d!=null){let h=d.shape||t.shape,g=h.length;m+=`${f}: ${g}D ${g>0?h:""} `}}console.log(`%c${l} %c${i} %c${u}D ${p} %c${c} %c${m} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function oS(r,e,t){let o={},n={};for(let l=0;l<e.length;l++)o[e[l].id]=!0;for(let l=0;l<r.length;l++){let u=r[l],c=u.inputs;for(let p in c){let m=c[p],f=!1;for(let d=0;d<e.length;d++)if(o[m.id]){u.outputs.forEach(h=>o[h.id]=!0),f=!0,n[u.id]=!0;break}if(f)break}}let s={};s[t.id]=!0;let a={};for(let l=r.length-1;l>=0;l--){let u=r[l],c=u.inputs;for(let p=0;p<u.outputs.length;p++)if(s[u.outputs[p].id]){for(let m in c)s[c[m].id]=!0,a[u.id]=!0;break}}let i=[];for(let l=0;l<r.length;l++){let u=r[l];if(n[u.id]&&a[u.id]){let c={};for(let m in u.inputs){let f=u.inputs[m];o[f.id]&&(c[m]=f)}let p=Object.assign({},u);p.inputs=c,p.outputs=u.outputs,i.push(p)}}return i}function nS(r,e,t,o){for(let n=e.length-1;n>=0;n--){let s=e[n],a=[];if(s.outputs.forEach(l=>{let u=r[l.id];u!=null?a.push(u):a.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let i=s.gradient(a);for(let l in s.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=t(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=s.inputs[l];if(!Hr(u.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(r[c.id]==null)r[c.id]=u;else{let p=r[c.id];r[c.id]=o(p,u),p.dispose()}}}}var sS=20,km=3,Wb=7;function iS(r,e,t,o){let n=Fs(e),s=cG(r,e,t,n),a=e.length,i=Hh(r,e,t,n,s),l=["Tensor"];return o&&(l.push(` dtype: ${t}`),l.push(` rank: ${a}`),l.push(` shape: [${e}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(`
`)),l.join(`
`)}function cG(r,e,t,o){let n=ct(e),s=o[o.length-1],a=new Array(s).fill(0),i=e.length,l=t==="complex64"?Cm(r):r;if(i>1)for(let u=0;u<n/s;u++){let c=u*s;for(let p=0;p<s;p++)a[p]=Math.max(a[p],vm(l[c+p],0,t).length)}return a}function vm(r,e,t){let o;return Array.isArray(r)?o=`${parseFloat(r[0].toFixed(Wb))} + ${parseFloat(r[1].toFixed(Wb))}j`:_n(r)?o=`'${r}'`:t==="bool"?o=aS(r):o=parseFloat(r.toFixed(Wb)).toString(),Ol(o,e)}function aS(r){return r===0?"false":"true"}function Hh(r,e,t,o,n,s=!0){let a=t==="complex64"?2:1,i=e[0],l=e.length;if(l===0){if(t==="complex64"){let h=Cm(r);return[vm(h[0],0,t)]}return t==="bool"?[aS(r[0])]:[r[0].toString()]}if(l===1){if(i>sS){let g=km*a,x=Array.from(r.slice(0,g)),b=Array.from(r.slice((i-km)*a,i*a));return t==="complex64"&&(x=Cm(x),b=Cm(b)),["["+x.map((w,_)=>vm(w,n[_],t)).join(", ")+", ..., "+b.map((w,_)=>vm(w,n[i-km+_],t)).join(", ")+"]"]}let h=t==="complex64"?Cm(r):Array.from(r);return["["+h.map((g,x)=>vm(g,n[x],t)).join(", ")+"]"]}let u=e.slice(1),c=o.slice(1),p=o[0]*a,m=[];if(i>sS){for(let h=0;h<km;h++){let g=h*p,x=g+p;m.push(...Hh(r.slice(g,x),u,t,c,n,!1))}m.push("...");for(let h=i-km;h<i;h++){let g=h*p,x=g+p;m.push(...Hh(r.slice(g,x),u,t,c,n,h===i-1))}}else for(let h=0;h<i;h++){let g=h*p,x=g+p;m.push(...Hh(r.slice(g,x),u,t,c,n,h===i-1))}let f=l===2?",":"";m[0]="["+m[0]+f;for(let h=1;h<m.length-1;h++)m[h]=" "+m[h]+f;let d=`,
`;for(let h=2;h<l;h++)d+=`
`;return m[m.length-1]=" "+m[m.length-1]+"]"+(s?"":d),m}function Cm(r){let e=[];for(let t=0;t<r.length;t+=2)e.push([r[t],r[t+1]]);return e}var lt=class{constructor(e,t,o){if(this.dtype=t,this.shape=e.slice(),this.size=ct(e),o!=null){let n=o.length;A(n===this.size,()=>`Length of values '${n}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=o||Rb(t,this.size),this.strides=Fs(e)}set(e,...t){t.length===0&&(t=[0]),A(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let o=this.locToIndex(t);this.values[o]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let n of e){if(n<0||n>=this.shape[t]){let s=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(s)}t++}let o=e[e.length-1];for(let n=0;n<e.length-1;++n)o+=this.strides[n]*e[n];return this.values[o]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let o=0;o<e.length-1;++o)t+=this.strides[o]*e[o];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let o=0;o<t.length-1;++o)t[o]=Math.floor(e/this.strides[o]),e-=t[o]*this.strides[o];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Zs().makeTensor(this.values,this.shape,this.dtype)}},Zs=null,Gc=null,pG=null;function lS(r){Zs=r}function uS(r){Gc=r}function cS(r){pG=r}var Ve=class{constructor(e,t,o,n){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=ct(e),this.strides=Fs(e),this.dataId=o,this.id=n,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Gc.buffer(this.shape,this.dtype,e)}bufferSync(){return Gc.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Pl(this.shape,e)}arraySync(){return Pl(this.shape,this.dataSync())}async data(){this.throwIfDisposed();let e=Zs().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(o=>Vc(o))}catch(o){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Zs().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Vc(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Zs().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Zs().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Gc.print(this,e)}clone(){return this.throwIfDisposed(),Gc.clone(this)}toString(e=!1){let t=this.dataSync();return iS(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Gc.cast(this,e)}variable(e=!0,t,o){return this.throwIfDisposed(),Zs().makeVariable(this,e,t,o)}};Object.defineProperty(Ve,Symbol.hasInstance,{value:r=>!!r&&r.data!=null&&r.dataSync!=null&&r.throwIfDisposed!=null});function F(){return gm("Tensor",()=>Ve)}F();var nl=class extends Ve{constructor(e,t,o,n){super(e.shape,e.dtype,e.dataId,n);this.trainable=t,this.name=o}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Hr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Zs().disposeTensor(this),this.dataId=e.dataId,Zs().incRef(this,null)}dispose(){Zs().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(nl,Symbol.hasInstance,{value:r=>r instanceof Ve&&r.assign!=null&&r.assign instanceof Function});var Yo={};Ge(Yo,{assertTypesMatch:()=>Xb,getTensorsInContainer:()=>Im,isTensorInList:()=>fG,makeTypesMatch:()=>We});var jb;(function(r){r.R0="R0",r.R1="R1",r.R2="R2",r.R3="R3",r.R4="R4",r.R5="R5",r.R6="R6"})(jb||(jb={}));var Ub;(function(r){r.float32="float32",r.int32="int32",r.bool="int32",r.complex64="complex64"})(Ub||(Ub={}));var Hb;(function(r){r.float32="float32",r.int32="int32",r.bool="bool",r.complex64="complex64"})(Hb||(Hb={}));var qb;(function(r){r.float32="float32",r.int32="float32",r.bool="float32",r.complex64="complex64"})(qb||(qb={}));var Kb;(function(r){r.float32="complex64",r.int32="complex64",r.bool="complex64",r.complex64="complex64"})(Kb||(Kb={}));var mG={float32:qb,int32:Ub,bool:Hb,complex64:Kb};function ir(r,e){if(r==="string"||e==="string"){if(r==="string"&&e==="string")return"string";throw new Error(`Can not upcast ${r} with ${e}`)}return mG[r][e]}function Vl(r){return ir(r,"int32")}function We(r,e){if(r.dtype===e.dtype)return[r,e];let t=ir(r.dtype,e.dtype);return[r.cast(t),e.cast(t)]}function Xb(r,e){A(r.dtype===e.dtype,()=>`The dtypes of the first(${r.dtype}) and second(${e.dtype}) input must match`)}function fG(r,e){return e.some(t=>t.id===r.id)}function Im(r){let e=[],t=new Set;return pS(r,e,t),e}function pS(r,e,t){if(r==null)return;if(r instanceof Ve){e.push(r);return}if(!dG(r))return;let o=r;for(let n in o){let s=o[n];t.has(s)||(t.add(s),pS(s,e,t))}}function dG(r){return Array.isArray(r)||typeof r=="object"}function Yb(r){return r.kernelName!=null}var Zb=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Gl=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Zb}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let o=e[t];if(await this.initializeBackend(o).success){await this.setBackend(o);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,o=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:o},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:o}=this.initializeBackend(e);if(!(o?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new Gb(this.backendInstance),!0}setupRegisteredKernels(){Uh(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Uh(e).forEach(o=>{o.disposeFunc!=null&&o.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let o=t.factory();if(o&&!(o instanceof $s)&&typeof o.then=="function"){let n=++this.pendingBackendInitId,s=o.then(a=>n<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(n<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(a.stack||a.message)),!1));return this.pendingBackendInit=s,{success:s,asyncInit:!0}}else return this.registry[e]=o,{success:!0,asyncInit:!1}}catch(o){return console.warn(`Initialization of backend ${e} failed`),console.warn(o.stack||o.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let o=e[t],{success:n,asyncInit:s}=this.initializeBackend(o);if(s||n)return{name:o,asyncInit:s}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let o=this.state.tensorInfo.get(t),n=o.backend,s=this.readSync(t),a=n.refCount(t);n.disposeData(t,!0),o.backend=e,e.move(t,s,o.shape,o.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let o=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");o=e}let n;return this.scopedRun(()=>this.startScope(o),()=>this.endScope(n),()=>(n=t(),n instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),n))}scopedRun(e,t,o){e();try{let n=o();return t(),n}catch(n){throw t(),n}}nextTensorId(){return Gl.nextTensorId++}nextVariableId(){return Gl.nextVariableId++}clone(e){let t=E.runKernel(Ko,{x:e}),o={x:e},n=a=>({x:()=>{let i="float32",l={x:a},u={dtype:i};return E.runKernel(Ho,l,u)}}),s=[];return this.addTapeNode(this.state.activeScope.name,o,[t],n,s,{}),t}runKernel(e,t,o){if(!(_m(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:o})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,o){let n=this.backend.numDataIds(),s=0;o.forEach(l=>{s+=l.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=n-t-s-a;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,o=[],n=this.isTapeOn(),s=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let l,u=Yb(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Yb(e)){let{kernelName:d,inputs:h,attrs:g}=e;this.backendName==null&&this.backend;let x=_m(d,this.backendName);A(x!=null,()=>`Cannot find registered kernel '${d}' for backend '${this.backendName}'`),i=()=>{let b=this.backend.numDataIds();l=x.kernelFunc({inputs:h,attrs:g,backend:this.backend});let w=Array.isArray(l)?l:[l];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(d,b,w);let _=w.map(k=>{if(k.rank!=null)return k;let{dataId:D,shape:T,dtype:R}=k;return this.makeTensorFromDataId(D,T,R)});if(n){let k=this.getTensorsForGradient(d,h,_);o=this.saveTensorsForBackwardMode(k)}return _}}else{let{forwardFunc:d}=e,h=g=>{!n||(o=g.map(x=>this.keep(this.clone(x))))};i=()=>{let g=this.backend.numDataIds();l=this.tidy(()=>d(this.backend,h));let x=Array.isArray(l)?l:[l];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(u,g,x),x}}let{inputs:c,attrs:p}=e,m=Yb(e)?null:e.backwardsFunc,f;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(f=this.profiler.profileKernel(u,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(f),t=f.outputs)}),n&&this.addTapeNode(u,c,t,m,o,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:u,bytesAdded:this.state.numBytes-s,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(d=>c[d]!=null?c[d].shape:null),outputShapes:t.map(d=>d.shape),kernelTimeMs:f.timeMs,extraInfo:f.extraInfo}),Array.isArray(l)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(o=>this.keep(this.clone(o)))}getTensorsForGradient(e,t,o){let n=Vb(e);if(n!=null){let s=n.inputsToSave||[],a=n.outputsToSave||[],i;n.saveAllInputs?(A(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(u=>t[u])):i=s.map(u=>t[u]);let l=o.filter((u,c)=>a[c]);return i.concat(l)}return[]}makeTensor(e,t,o,n){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");o=o||"float32",n=n||this.backend;let s=e;o==="string"&&_n(e[0])&&(s=e.map(l=>ol(l)));let a=n.write(s,t,o),i=new Ve(t,o,a,this.nextTensorId());if(this.trackTensor(i,n),o==="string"){let l=this.state.tensorInfo.get(a),u=Pb(s);this.state.numBytes+=u-l.bytes,l.bytes=u}return i}makeTensorFromDataId(e,t,o,n){o=o||"float32";let s=new Ve(t,o,e,this.nextTensorId());return this.trackTensor(s,n),s}makeVariable(e,t=!0,o,n){o=o||this.nextVariableId().toString(),n!=null&&n!==e.dtype&&(e=e.cast(n));let s=new nl(e,t,o,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let o=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(o=e.size*Wh(e.dtype)),this.state.numBytes+=o,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:o})),e instanceof nl||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let o=e.size*Wh(e.dtype);this.state.numBytes-=o}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,o=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(n=>n.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-o;for(let n of this.state.activeProfile.kernels)n.kernelTimeMs=await n.kernelTimeMs,n.extraInfo=await n.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,o,n,s,a){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:o,saved:s},l=Vb(e);l!=null&&(n=l.gradFunc),n!=null&&(i.gradient=u=>(u=u.map((c,p)=>{if(c==null){let m=o[p],f=uc(m.size,m.dtype);return this.makeTensor(f,m.shape,m.dtype)}return c}),n(u.length>1?u:u[0],s,a))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Im(e),o=new Set(t.map(s=>s.id));for(let s=0;s<this.state.activeScope.track.length;s++){let a=this.state.activeScope.track[s];!a.kept&&!o.has(a.id)&&a.dispose()}let n=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(s=>{!s.kept&&s.scopeId===n.id&&this.track(s)})}gradients(e,t,o,n=!1){if(A(t.length>0,()=>"gradients() received an empty list of xs."),o!=null&&o.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${o.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));A(s instanceof Ve,()=>"The result y returned by f() must be a tensor.");let a=oS(this.state.activeTape,t,s);if(!n&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[s.id]=o==null?hG(s.shape):o,nS(i,a,u=>this.tidy(u),gG);let l=t.map(u=>i[u.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(u=>{for(let c of u.saved)c.dispose()}),this.state.activeTape=null),{value:s,grads:l}})}customGrad(e){return A(Rs(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{A(t.every(i=>i instanceof Ve),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let o,n={};t.forEach((i,l)=>{n[l]=i});let s=(i,l)=>(o=e(...t,l),A(o.value instanceof Ve,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),A(Rs(o.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),o.value),a=(i,l)=>{let u=o.gradFunc(i,l),c=Array.isArray(u)?u:[u];A(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),A(c.every(m=>m instanceof Ve),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return c.forEach((m,f)=>{p[f]=()=>m}),p};return this.runKernelFunc({forwardFunc:s,backwardsFunc:a,inputs:n})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Bl(),o=await this.backend.time(e);return o.wallMs=Bl()-t,o}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Zb;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Gl.nextTensorId=0;Gl.nextVariableId=0;function hG(r){let e=fm(ct(r),"float32");return E.makeTensor(e,r,"float32")}function Jb(){let r=zb();if(r._tfengine==null){let e=new jh(r);r._tfengine=new Gl(e)}return JN(r._tfengine.ENV),lS(()=>r._tfengine),r._tfengine}var E=Jb();function gG(r,e){let t={a:r,b:e};return E.runKernel(Fo,t)}var Wl={};Ge(Wl,{isBrowser:()=>Qb,isMobile:()=>yG});function xG(){return typeof navigator!="undefined"&&navigator!=null}function yG(){if(xG()){let r=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(r)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(r.substr(0,4))}return!1}function Qb(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var ms=W();ms.registerFlag("DEBUG",()=>!1,r=>{r&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});ms.registerFlag("IS_BROWSER",()=>Qb());ms.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");ms.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));ms.registerFlag("PROD",()=>!1);ms.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>ms.getBool("DEBUG"));ms.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);ms.registerFlag("IS_TEST",()=>!1);ms.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);ms.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Ir(r,e){let t=r;if(sr(r))return e==="string"?[]:[r.length];if(!Array.isArray(r))return[];let o=[];for(;Array.isArray(t)||sr(t)&&e!=="string";)o.push(t.length),t=t[0];return Array.isArray(r)&&W().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&mS(r,o,[]),o}function mS(r,e,t){if(t=t||[],!Array.isArray(r)&&!sr(r)){A(e.length===0,()=>`Element arr[${t.join("][")}] is a primitive, but should be an array/TypedArray of ${e[0]} elements`);return}A(e.length>0,()=>`Element arr[${t.join("][")}] should be a primitive, but is an array of ${r.length} elements`),A(r.length===e[0],()=>`Element arr[${t.join("][")}] should have ${e[0]} elements, but has ${r.length} elements`);let o=e.slice(1);for(let n=0;n<r.length;++n)mS(r[n],o,t.concat(n))}function fS(r,e,t,o){if(r!=="string_or_numeric"){if(r==null)throw new Error("Expected dtype cannot be null.");if(r!=="numeric"&&r!==e||r==="numeric"&&e==="string")throw new Error(`Argument '${t}' passed to '${o}' must be ${r} tensor, but got ${e} tensor`)}}function v(r,e,t,o="numeric"){if(r instanceof Ve)return fS(o,r.dtype,e,t),r;let n=ac(r);if(n!=="string"&&["bool","int32","float32"].indexOf(o)>=0&&(n=o),fS(o,n,e,t),r==null||!sr(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string"){let l=r==null?"null":r.constructor.name;throw new Error(`Argument '${e}' passed to '${t}' must be a Tensor or TensorLike, but got '${l}'`)}let s=Ir(r,n);!sr(r)&&!Array.isArray(r)&&(r=[r]);let i=n!=="string"?Bc(r,n):wn(r,[],!0);return E.makeTensor(i,s,n)}function na(r,e,t,o="numeric"){if(!Array.isArray(r))throw new Error(`Argument ${e} passed to ${t} must be a \`Tensor[]\` or \`TensorLike[]\``);return r.map((s,a)=>v(s,`${e}[${a}]`,t,o))}var bG="__op";function S(r){let e=Object.keys(r);if(e.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${e.length} keys.`);let t=e[0],o=r[t];t.endsWith("_")&&(t=t.substring(0,t.length-1)),t=t+bG;let n=(...s)=>{E.startScope(t);try{let a=o(...s);return hm(a)&&console.error("Cannot return a Promise inside of tidy."),E.endScope(a),a}catch(a){throw E.endScope(null),a}};return Object.defineProperty(n,"name",{value:t,configurable:!0}),n}function wG(r,e){let t=v(r,"real","complex"),o=v(e,"imag","complex");vt(t.shape,o.shape,`real and imag shapes, ${t.shape} and ${o.shape}, must match in call to tf.complex().`);let n={real:t,imag:o};return E.runKernel(hc,n)}var Co=S({complex_:wG});function qr(r,e,t,o){if(o==null&&(o=ac(r)),o==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!sr(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(e!=null){dm(e);let n=ct(e),s=ct(t);A(n===s,()=>`Based on the provided shape, [${e}], the tensor should have ${n} values but has ${s}`);for(let a=0;a<t.length;++a){let i=t[a],l=a===t.length-1?i!==ct(e.slice(a)):!0;A(t[a]===e[a]||!l,()=>`Error creating a new Tensor. Inferred shape (${t}) does not match the provided shape (${e}). `)}}return!sr(r)&&!Array.isArray(r)&&(r=[r]),e=e||t,r=o!=="string"?Bc(r,o):wn(r,[],!0),E.makeTensor(r,e,o)}function Pr(r,e,t){let o=Ir(r,t);return qr(r,e,o,t)}var Nm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8};var qh=4;async function dS(r,e){let t=[],o=[],n=Array.isArray(r)?r.map(a=>a.name):Object.keys(r);for(let a=0;a<n.length;++a){let i=n[a],l=Array.isArray(r)?r[a].tensor:r[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let u={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async p=>{let m=await l.bytes(),f=m.reduce((g,x)=>g+x.length,0)+qh*m.length,d=new Uint8Array(f),h=0;for(let g=0;g<m.length;g++){let x=m[g],b=new Uint8Array(new Uint32Array([x.length]).buffer);d.set(b,h),h+=qh,d.set(x,h),h+=x.length}p(d)});o.push(c)}else o.push(l.data());e!=null&&(u.group=e),t.push(u)}let s=await Promise.all(o);return{data:_G(s),specs:t}}function Kh(r,e){let t={},o,n=0;for(let s of e){let a=s.name,i=s.dtype,l=s.shape,u=ct(l),c;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let m=Nm[p.dtype],f=r.slice(n,n+u*m),d=p.dtype==="uint8"?new Uint8Array(f):new Uint16Array(f);if(i==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){c=new Float32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=g*p.scale+p.min}}else if(p.dtype==="float16")o===void 0&&(o=kG()),c=o(d);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(i==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);c=new Int32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${a}': ${i}`);n+=u*m}else if(i==="string"){let p=ct(s.shape);c=[];for(let m=0;m<p;m++){let f=new Uint32Array(r.slice(n,n+qh))[0];n+=qh;let d=new Uint8Array(r.slice(n,n+f));c.push(d),n+=f}}else{let p=Nm[i],m=r.slice(n,n+u*p);if(i==="float32")c=new Float32Array(m);else if(i==="int32")c=new Int32Array(m);else if(i==="bool")c=new Uint8Array(m);else if(i==="complex64"){c=new Float32Array(m);let f=new Float32Array(c.length/2),d=new Float32Array(c.length/2);for(let x=0;x<f.length;x++)f[x]=c[x*2],d[x]=c[x*2+1];let h=Pr(f,l,"float32"),g=Pr(d,l,"float32");t[a]=Co(h,g),h.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${a}': ${i}`);n+=u*p}i!=="complex64"&&(t[a]=Pr(c,l,i))}return t}function _G(r){if(r===null)throw new Error(`Invalid input value: ${JSON.stringify(r)}`);let e=0,t=[];r.forEach(s=>{if(e+=s.byteLength,t.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let o=new Uint8Array(e),n=0;return t.forEach(s=>{o.set(new Uint8Array(s.buffer),n),n+=s.byteLength}),o.buffer}var ew=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function hS(r){return ew?Buffer.byteLength(r):new Blob([r]).size}function gS(r){if(ew)return Buffer.from(r).toString("base64");let e=new Uint8Array(r),t="";for(let o=0,n=e.length;o<n;o++)t+=String.fromCharCode(e[o]);return btoa(t)}function xS(r){if(ew){let o=Buffer.from(r,"base64");return o.buffer.slice(o.byteOffset,o.byteOffset+o.byteLength)}let e=atob(r),t=new Uint8Array(e.length);for(let o=0;o<e.length;++o)t.set([e.charCodeAt(o)],o);return t.buffer}function Wc(r){if(r.length===1)return r[0];let e=0;r.forEach(n=>{e+=n.byteLength});let t=new Uint8Array(e),o=0;return r.forEach(n=>{t.set(new Uint8Array(n),o),o+=n.byteLength}),t.buffer}function tw(r){let e="/";for(r=r.trim();r.endsWith(e);)r=r.slice(0,r.length-1);let t=r.split(e);return t[t.length-1]}function Js(r){if(r.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:r.modelTopology==null?0:hS(JSON.stringify(r.modelTopology)),weightSpecsBytes:r.weightSpecs==null?0:hS(JSON.stringify(r.weightSpecs)),weightDataBytes:r.weightData==null?0:r.weightData.byteLength}}function vG(){let r=t=>{let o=t<<13,n=0;for(;(o&8388608)==0;)n-=8388608,o<<=1;return o&=~8388608,n+=947912704,o|n},e=new Uint32Array(2048);e[0]=0;for(let t=1;t<1024;t++)e[t]=r(t);for(let t=1024;t<2048;t++)e[t]=939524096+(t-1024<<13);return e}function CG(){let r=new Uint32Array(64);r[0]=0,r[31]=1199570944,r[32]=2147483648,r[63]=3347054592;for(let e=1;e<31;e++)r[e]=e<<23;for(let e=33;e<63;e++)r[e]=2147483648+(e-32<<23);return r}function IG(){let r=new Uint32Array(64);for(let e=0;e<64;e++)r[e]=1024;return r[0]=r[32]=0,r}function kG(){let r=vG(),e=CG(),t=IG();return o=>{let n=new ArrayBuffer(4*o.length),s=new Uint32Array(n);for(let a=0;a<o.length;a++){let i=o[a],l=r[t[i>>10]+(i&1023)]+e[i>>10];s[a]=l}return new Float32Array(n)}}var Ct=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Ct.instance==null&&(Ct.instance=new Ct),Ct.instance}static registerSaveRouter(e){Ct.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Ct.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Ct.getHandlers(e,"save")}static getLoadHandlers(e,t){return Ct.getHandlers(e,"load",t)}static getHandlers(e,t,o){let n=[];return(t==="load"?Ct.getInstance().loadRouters:Ct.getInstance().saveRouters).forEach(a=>{let i=a(e,o);i!==null&&n.push(i)}),n}},yS=r=>Ct.registerSaveRouter(r),bS=r=>Ct.registerLoadRouter(r),wS=r=>Ct.getSaveHandlers(r),_S=(r,e)=>Ct.getLoadHandlers(r,e);var rw="tensorflowjs",ow=1,jl="models_store",sl="model_info_store";function kS(){if(!W().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let r=typeof window=="undefined"?self:window,e=r.indexedDB||r.mozIndexedDB||r.webkitIndexedDB||r.msIndexedDB||r.shimIndexedDB;if(e==null)throw new Error("The current browser does not appear to support IndexedDB.");return e}function nw(r){let e=r.result;e.createObjectStore(jl,{keyPath:"modelPath"}),e.createObjectStore(sl,{keyPath:"modelPath"})}var sa=class{constructor(e){if(this.indexedDB=kS(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((o,n)=>{let s=this.indexedDB.open(rw,ow);s.onupgradeneeded=()=>nw(s),s.onsuccess=()=>{let a=s.result;if(t==null){let i=a.transaction(jl,"readonly"),u=i.objectStore(jl).get(this.modelPath);u.onsuccess=()=>{if(u.result==null)return a.close(),n(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));o(u.result.modelArtifacts)},u.onerror=c=>(a.close(),n(u.error)),i.oncomplete=()=>a.close()}else{let i=Js(t),l=a.transaction(sl,"readwrite"),u=l.objectStore(sl),c=u.put({modelPath:this.modelPath,modelArtifactsInfo:i}),p;c.onsuccess=()=>{p=a.transaction(jl,"readwrite");let f=p.objectStore(jl).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});f.onsuccess=()=>o({modelArtifactsInfo:i}),f.onerror=d=>{u=l.objectStore(sl);let h=u.delete(this.modelPath);h.onsuccess=()=>(a.close(),n(f.error)),h.onerror=g=>(a.close(),n(f.error))}},c.onerror=m=>(a.close(),n(c.error)),l.oncomplete=()=>{p==null?a.close():p.oncomplete=()=>a.close()}}},s.onerror=a=>n(s.error)})}};sa.URL_SCHEME="indexeddb://";var vS=r=>W().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(sa.URL_SCHEME)?NG(r.slice(sa.URL_SCHEME.length)):null;Ct.registerSaveRouter(vS);Ct.registerLoadRouter(vS);function NG(r){return new sa(r)}function SG(r){return r.startsWith(sa.URL_SCHEME)?r.slice(sa.URL_SCHEME.length):r}var sw=class{constructor(){this.indexedDB=kS()}async listModels(){return new Promise((e,t)=>{let o=this.indexedDB.open(rw,ow);o.onupgradeneeded=()=>nw(o),o.onsuccess=()=>{let n=o.result,s=n.transaction(sl,"readonly"),i=s.objectStore(sl).getAll();i.onsuccess=()=>{let l={};for(let u of i.result)l[u.modelPath]=u.modelArtifactsInfo;e(l)},i.onerror=l=>(n.close(),t(i.error)),s.oncomplete=()=>n.close()},o.onerror=n=>t(o.error)})}async removeModel(e){return e=SG(e),new Promise((t,o)=>{let n=this.indexedDB.open(rw,ow);n.onupgradeneeded=()=>nw(n),n.onsuccess=()=>{let s=n.result,a=s.transaction(sl,"readwrite"),i=a.objectStore(sl),l=i.get(e),u;l.onsuccess=()=>{if(l.result==null)return s.close(),o(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),p=()=>{u=s.transaction(jl,"readwrite");let f=u.objectStore(jl).delete(e);f.onsuccess=()=>t(l.result.modelArtifactsInfo),f.onerror=d=>o(l.error)};c.onsuccess=p,c.onerror=m=>(p(),s.close(),o(l.error))}},l.onerror=c=>(s.close(),o(l.error)),a.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}},n.onerror=s=>o(n.error)})}};var ia="/",jc="tensorflowjs_models",CS="info",TG="model_topology",AG="weight_specs",EG="weight_data",DG="model_metadata";function IS(r){return{info:[jc,r,CS].join(ia),topology:[jc,r,TG].join(ia),weightSpecs:[jc,r,AG].join(ia),weightData:[jc,r,EG].join(ia),modelMetadata:[jc,r,DG].join(ia)}}function $G(r){let e=r.split(ia);if(e.length<3)throw new Error(`Invalid key format: ${r}`);return e.slice(1,e.length-1).join(ia)}function RG(r){return r.startsWith(aa.URL_SCHEME)?r.slice(aa.URL_SCHEME.length):r}var aa=class{constructor(e){if(!W().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=IS(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),o=JSON.stringify(e.weightSpecs),n=Js(e);try{this.LS.setItem(this.keys.info,JSON.stringify(n)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,o),this.LS.setItem(this.keys.weightData,gS(e.weightData));let s={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(s.signature=e.signature),e.userDefinedMetadata!=null&&(s.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(s.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(s)),{modelArtifactsInfo:n}}catch(s){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${n.modelTopologyBytes}, weightSpecsBytes=${n.weightSpecsBytes}, weightDataBytes=${n.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},o=JSON.parse(this.LS.getItem(this.keys.topology));if(o==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=o;let n=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(n==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=n;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let i=JSON.parse(s);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=xS(a),t}};aa.URL_SCHEME="localstorage://";var NS=r=>W().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(aa.URL_SCHEME)?FG(r.slice(aa.URL_SCHEME.length)):null;Ct.registerSaveRouter(NS);Ct.registerLoadRouter(NS);function FG(r){return new aa(r)}var iw=class{constructor(){A(W().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),A(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=jc+ia,o=ia+CS;for(let n=0;n<this.LS.length;++n){let s=this.LS.key(n);if(s.startsWith(t)&&s.endsWith(o)){let a=$G(s);e[a]=JSON.parse(this.LS.getItem(s))}}return e}async removeModel(e){e=RG(e);let t=IS(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let o=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),o}};var Uc="://",Kr=class{constructor(){this.managers={}}static getInstance(){return Kr.instance==null&&(Kr.instance=new Kr),Kr.instance}static registerManager(e,t){A(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Uc)&&(e=e.slice(0,e.indexOf(Uc))),A(e.length>0,()=>"scheme must not be an empty string.");let o=Kr.getInstance();A(o.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),o.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Xh(r){if(r.indexOf(Uc)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Kr.getSchemes().join(",")}`);return{scheme:r.split(Uc)[0],path:r.split(Uc)[1]}}async function SS(r,e,t=!1){A(r!==e,()=>`Old path and new path are the same: '${r}'`);let o=Ct.getLoadHandlers(r);A(o.length>0,()=>`Copying failed because no load handler is found for source URL ${r}.`),A(o.length<2,()=>`Copying failed because more than one (${o.length}) load handlers for source URL ${r}.`);let n=o[0],s=Ct.getSaveHandlers(e);A(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${e}.`),A(s.length<2,()=>`Copying failed because more than one (${o.length}) save handlers for destination URL ${e}.`);let a=s[0],i=Xh(r).scheme,l=Xh(r).path,u=i===Xh(r).scheme,c=await n.load();t&&u&&await Kr.getManager(i).removeModel(l);let p=await a.save(c);return t&&!u&&await Kr.getManager(i).removeModel(l),p.modelArtifactsInfo}async function TS(){let r=Kr.getSchemes(),e={};for(let t of r){let o=await Kr.getManager(t).listModels();for(let n in o){let s=t+Uc+n;e[s]=o[n]}}return e}async function AS(r){let e=Xh(r);return Kr.getManager(e.scheme).removeModel(e.path)}async function ES(r,e){return SS(r,e,!1)}async function DS(r,e){return SS(r,e,!0)}var $S=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(W().get("IS_BROWSER")){W().setPlatform("browser",new $S);try{Kr.registerManager(aa.URL_SCHEME,new iw)}catch(r){}try{Kr.registerManager(sa.URL_SCHEME,new sw)}catch(r){}}var OG={importFetch:()=>RS()},aw;var FS=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return W().global.fetch!=null?W().global.fetch(e,t):(aw==null&&(aw=OG.importFetch()),aw(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};W().get("IS_NODE")&&W().setPlatform("node",new FS);function ve(r,e="float32",t){return e=e||"float32",dm(r),new lt(r,e,t)}function PG(r,e){let t=v(r,"x","cast");if(!Ob(e))throw new Error(`Failed to cast to unknown dtype ${e}`);if(e==="string"&&t.dtype!=="string"||e!=="string"&&t.dtype==="string")throw new Error("Only strings can be casted to strings");let o={x:t},n={dtype:e};return E.runKernel(Ho,o,n)}var ne=S({cast_:PG});function MG(r){let t={x:v(r,"x","clone","string_or_numeric")};return E.runKernel(Ko,t)}var Po=S({clone_:MG});function OS(r,e=!1){console.log(r.toString(e))}Jb();var LG={buffer:ve,cast:ne,clone:Po,print:OS};uS(LG);var Nr={};Ge(Nr,{browserFiles:()=>LS,browserHTTPRequest:()=>VS,concatenateArrayBuffers:()=>Wc,copyModel:()=>ES,decodeWeights:()=>Kh,encodeWeights:()=>dS,fromMemory:()=>WS,getLoadHandlers:()=>_S,getModelArtifactsInfoForJSON:()=>Js,getSaveHandlers:()=>wS,http:()=>Jh,isHTTPScheme:()=>Zh,listModels:()=>TS,loadWeights:()=>zS,moveModel:()=>DS,registerLoadRouter:()=>bS,registerSaveRouter:()=>yS,removeModel:()=>AS,weightsLoaderFactory:()=>cw,withSaveHandler:()=>jS});var zG="model",BG=".json",VG=".weights.bin";function PS(r){return new Promise(e=>setTimeout(e)).then(r)}var il=class{constructor(e){if(!W().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(il.URL_SCHEME)&&(e=e.slice(il.URL_SCHEME.length)),(e==null||e.length===0)&&(e=zG),this.modelTopologyFileName=e+BG,this.weightDataFileName=e+VG}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let o=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:o};e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer);let s=window.URL.createObjectURL(new Blob([JSON.stringify(n)],{type:"application/json"})),a=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(a.download=this.modelTopologyFileName,a.href=s,await PS(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await PS(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Js(e)}}}};il.URL_SCHEME="downloads://";var MS=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((o,n)=>{let s=new FileReader;s.onload=a=>{let i=JSON.parse(a.target.result),l=i.modelTopology;if(l==null){n(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&o({modelTopology:l});let u=i.weightsManifest;if(u==null){n(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(u,t)}catch(d){n(d);return}let p=[],m=[],f=[];u.forEach(d=>{d.paths.forEach(h=>{m.push(h),f.push(null)}),p.push(...d.weights)}),u.forEach(d=>{d.paths.forEach(h=>{let g=new FileReader;g.onload=x=>{let b=x.target.result,w=m.indexOf(h);if(f[w]=b,f.indexOf(null)===-1){let _={modelTopology:l,weightSpecs:p,weightData:Wc(f),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(_.signature=i.signature),i.userDefinedMetadata!=null&&(_.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(_.modelInitializer=i.modelInitializer),o(_)}},g.onerror=x=>n(`Failed to weights data from file of path '${h}'.`),g.readAsArrayBuffer(c[h])})})},s.onerror=a=>n(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),s.readAsText(e)})}checkManifestAndWeightFiles(e,t){let o=[],n=t.map(a=>tw(a.name)),s={};for(let a of e)a.paths.forEach(i=>{let l=tw(i);if(o.indexOf(l)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${l}'`);if(o.push(l),n.indexOf(l)===-1)throw new Error(`Weight file with basename '${l}' is not provided.`);s[i]=t[n.indexOf(l)]});if(o.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${o.length}) and the number of weight files provided (${t.length}).`);return s}},WG=r=>W().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(il.URL_SCHEME)?GG(r.slice(il.URL_SCHEME.length)):null;Ct.registerSaveRouter(WG);function GG(r="model"){return new il(r)}function LS(r){return new MS(r)}function lw(r,e,t,o){a(r),t=t==null?0:t,o=o==null?1:o,i(t,o);let n=0,s=l=>(l.then(u=>{let c=t+ ++n/r.length*(o-t);return e(c),u}),l);function a(l){A(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){A(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),A(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),A(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(r.map(s))}async function uw(r,e){e==null&&(e={});let t=e.fetchFunc==null?W().platform.fetch:e.fetchFunc,o=r.map(p=>t(p,e.requestInit,{isBinary:!0})),n=0,s=.5,i=(e.onProgress==null?await Promise.all(o):await lw(o,e.onProgress,n,s)).map(p=>p.arrayBuffer()),l=.5,u=1;return e.onProgress==null?await Promise.all(i):await lw(i,e.onProgress,l,u)}async function zS(r,e="",t,o){return cw(a=>uw(a,{requestInit:o}))(r,e,t)}function cw(r){return async(e,t="",o)=>{let n=e.map(()=>!1),s={},a=o!=null?o.map(()=>!1):[],i=[];if(e.forEach((f,d)=>{let h=0;f.weights.forEach(g=>{let x="quantization"in g?g.quantization.dtype:g.dtype,b=Nm[x]*ct(g.shape),w=()=>{n[d]=!0,s[d]==null&&(s[d]=[]),s[d].push({manifestEntry:g,groupOffset:h,sizeBytes:b})};o!=null?o.forEach((_,k)=>{_===g.name&&(w(),a[k]=!0)}):w(),i.push(g.name),h+=b})}),!a.every(f=>f)){let f=o.filter((d,h)=>!a[h]);throw new Error(`Could not find weights in manifest with names: ${f.join(", ")}.
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=n.reduce((f,d,h)=>(d&&f.push(h),f),[]),u=[];l.forEach(f=>{e[f].paths.forEach(d=>{let h=t+(t.endsWith("/")?"":"/")+d;u.push(h)})});let c=await r(u),p={},m=0;return l.forEach(f=>{let d=e[f].paths.length,h=0;for(let _=0;_<d;_++)h+=c[m+_].byteLength;let g=new ArrayBuffer(h),x=new Uint8Array(g),b=0;for(let _=0;_<d;_++){let k=new Uint8Array(c[m+_]);x.set(k,b),b+=k.byteLength}s[f].forEach(_=>{let k=g.slice(_.groupOffset,_.groupOffset+_.sizeBytes),D=Kh(k,[_.manifestEntry]);for(let T in D)p[T]=D[T]}),m+=d}),p}}var jG="application/octet-stream",UG="application/json",Yh=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(A(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=W().platform.fetch,A(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&A(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let o=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:o};e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(n)],{type:UG}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:jG}),"model.weights.bin");let s=await this.fetch(this.path,t);if(s.ok)return{modelArtifactsInfo:Js(e),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(d){let h=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?h+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":h+=" Please make sure the server is serving valid JSON for this request.",new Error(h)}let o=t.modelTopology,n=t.weightsManifest,s=t.generatedBy,a=t.convertedBy,i=t.format,l=t.signature,u=t.userDefinedMetadata;if(o==null&&n==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,p;n!=null&&([c,p]=await this.loadWeights(n));let m={modelTopology:o,weightSpecs:c,weightData:p,generatedBy:s,convertedBy:a,format:i};l!=null&&(m.signature=l),u!=null&&(m.userDefinedMetadata=u);let f=t.modelInitializer;return f&&(m.modelInitializer=f),m}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[o,n]=HG(t),s=this.weightPathPrefix||o,a=[];for(let c of e)a.push(...c.weights);let i=[],l=[];for(let c of e)for(let p of c.paths)this.weightUrlConverter!=null?l.push(this.weightUrlConverter(p)):i.push(s+p+n);this.weightUrlConverter&&i.push(...await Promise.all(l));let u=await uw(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Wc(u)]}};Yh.URL_SCHEME_REGEX=/^https?:\/\//;function HG(r){let e=r.lastIndexOf("/"),t=r.lastIndexOf("?"),o=r.substring(0,e),n=t>e?r.substring(t):"";return[o+"/",n]}function Zh(r){return r.match(Yh.URL_SCHEME_REGEX)!=null}var BS=(r,e)=>{if(typeof fetch=="undefined"&&(e==null||e.fetchFunc==null))return null;{let t=!0;if(Array.isArray(r)?t=r.every(o=>Zh(o)):t=Zh(r),t)return Jh(r,e)}return null};Ct.registerSaveRouter(BS);Ct.registerLoadRouter(BS);function Jh(r,e){return new Yh(r,e)}function VS(r,e){return Jh(r,e)}var Qh=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},GS=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function WS(r,e,t,o){return arguments.length===1?r.modelTopology!=null||r.weightSpecs!=null?new Qh(r):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Qh({modelTopology:r})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Qh({modelTopology:r,weightSpecs:e,weightData:t,trainingConfig:o}))}function jS(r){return new GS(r)}var ZG={};Ge(ZG,{confusionMatrix:()=>US});function qG(r,e,t=!1,o=!1){let n=v(r,"a","matMul"),s=v(e,"b","matMul");[n,s]=We(n,s);let a={a:n,b:s},i={transposeA:t,transposeB:o};return E.runKernel(In,a,i)}var je=S({matMul_:qG});function KG(r,e,t=1,o=0){if(e<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${e}`);let s={indices:v(r,"indices","oneHot","int32")},a={depth:e,onValue:t,offValue:o};return E.runKernel(qn,s,a)}var fs=S({oneHot_:KG});function XG(r,e){let t=v(r,"x","transpose");if(e==null&&(e=t.shape.map((s,a)=>a).reverse()),A(t.rank===e.length,()=>`Error in transpose: rank of input ${t.rank} must match length of perm ${e}.`),e.forEach(s=>{A(s>=0&&s<t.rank,()=>`All entries in 'perm' must be between 0 and ${t.rank-1} but got ${e}`)}),t.rank<=1)return t.clone();let o={x:t},n={perm:e};return E.runKernel(ps,o,n)}var Ke=S({transpose_:XG});function YG(r,e,t){let o=v(r,"labels","confusionMatrix"),n=v(e,"predictions","confusionMatrix");A(t==null||t>0&&Number.isInteger(t),()=>`If provided, numClasses must be a positive integer, but got ${t}`),A(o.rank===1,()=>`Expected the rank of labels to be 1, but got ${o.rank}`),A(n.rank===1,()=>`Expected the rank of predictions to be 1, but got ${n.rank}`),A(o.shape[0]===n.shape[0],()=>`Mismatch in the number of examples: ${o.shape[0]} vs. ${n.shape[0]}. Labels and predictions should have the same number of elements.`),A(t>0&&Number.isInteger(t),()=>`numClasses is required to be a positive integer, but got ${t}`);let s=fs(ne(o,"int32"),t),a=fs(ne(n,"int32"),t),i=Ke(s),l=je(i,a);return ne(l,"int32")}var US=S({confusionMatrix_:YG});var eg={};Ge(eg,{fromPixels:()=>nW,fromPixelsAsync:()=>rW,toPixels:()=>oW});function HS(r,e,t){if(Ro(r),e!=null&&e.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let o=Ir(r,t);if(o.length!==3&&o.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return qr(r,e,o,t)}var Hc;function qS(r,e=3){if(e>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let t=!1,o=!1,n=!1,s=!1,a=!1,i=!1;if(r.data instanceof Uint8Array)t=!0;else if(typeof ImageData!="undefined"&&r instanceof ImageData)o=!0;else if(typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement)n=!0;else if(typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement)s=!0;else if(r.getContext!=null)a=!0;else if(typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${r.constructor.name}`);if(n){let d=2;if(n&&r.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(_m(bm,E.backendName)!=null){let d={pixels:r},h={numChannels:e};return E.runKernel(bm,d,h)}let[u,c]=n?[r.videoWidth,r.videoHeight]:[r.width,r.height],p;a?p=r.getContext("2d").getImageData(0,0,u,c).data:o||t?p=r.data:(s||n||i)&&(Hc==null&&(Hc=document.createElement("canvas").getContext("2d")),Hc.canvas.width=u,Hc.canvas.height=c,Hc.drawImage(r,0,0,u,c),p=Hc.getImageData(0,0,u,c).data);let m;if(e===4)m=new Int32Array(p);else{let d=u*c;m=new Int32Array(d*e);for(let h=0;h<d;h++)for(let g=0;g<e;++g)m[h*e+g]=p[h*4+g]}return HS(m,[c,u,e],"int32")}function JG(r){return r!=null&&r.data instanceof Uint8Array}function QG(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function eW(r){return r!=null&&r.width!==0&&r.height!==0}function tW(r){return QG()&&!(r instanceof ImageBitmap)&&eW(r)&&!JG(r)}async function rW(r,e=3){let t=null;if(W().getBool("WRAP_TO_IMAGEBITMAP")&&tW(r)){let o;try{o=await createImageBitmap(r,{premultiplyAlpha:"none"})}catch(n){o=null}o!=null&&o.width===r.width&&o.height===r.height?t=o:t=r}else t=r;return qS(t,e)}async function oW(r,e){let t=v(r,"img","toPixels");if(!(r instanceof Ve)){let u=t;t=ne(u,"int32"),u.dispose()}if(t.rank!==2&&t.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${t.rank}.`);let[o,n]=t.shape.slice(0,2),s=t.rank===2?1:t.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(t.dtype!=="float32"&&t.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${t.dtype}. Please use float32 or int32 tensors.`);let a=await t.data(),i=t.dtype==="float32"?255:1,l=new Uint8ClampedArray(n*o*4);for(let u=0;u<o*n;++u){let c=[0,0,0,255];for(let m=0;m<s;m++){let f=a[u*s+m];if(t.dtype==="float32"){if(f<0||f>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${f}.`)}else if(t.dtype==="int32"&&(f<0||f>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${f}.`);s===1?(c[0]=f*i,c[1]=f*i,c[2]=f*i):c[m]=f*i}let p=u*4;l[p+0]=Math.round(c[0]),l[p+1]=Math.round(c[1]),l[p+2]=Math.round(c[2]),l[p+3]=Math.round(c[3])}if(e!=null){e.width=n,e.height=o;let u=e.getContext("2d"),c=new ImageData(l,n,o);u.putImageData(c,0,0)}return t!==r&&t.dispose(),l}var nW=S({fromPixels_:qS});var tg={};Ge(tg,{prepareAndValidate:()=>KS});function KS(r,e){let t=r.shape.length,o=e.shape.length;if(t<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${t}.`);if(o<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${o}.`);if(e.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.shape[o-1]>t)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${e.shape[o-1]} vs. ${t}`);if(ct(r.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${r.shape}.`);let n=e.shape,s=n[n.length-1],a=1;for(let p=0;p<n.length-1;++p)a*=n[p];let i=r.shape,l=n.slice();l.pop();let u=1;for(let p=s;p<t;++p)u*=i[p],l.push(i[p]);let c=[...Fs(r.shape).map(p=>p/u),1].slice(0,s);return[l,a,u,c]}var rg={};Ge(rg,{calculateShapes:()=>XS,validateInput:()=>og,validateUpdateShape:()=>pw});function pw(r,e,t){let o=e.rank>1?e.shape[e.rank-1]:1,n=e.rank>1?e.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${t.shape}, indices.shape: ${e.shape}, shape: ${r}, sliceDim: ${o}, and batchDim: ${n}.`;if(t.rank<n)throw new Error(s+` update.rank < ${n}. `);if(r.length<o+(t.rank-n))throw new Error(s+` Output shape length < ${o+(t.rank-n)}`);if(t.rank!==n+r.length-o)throw new Error(s+` update.rank != ${n+r.length-o}`);for(let a=0;a<n;++a)if(t.shape[a]!==e.shape[a])throw new Error(s+` updates.shape[${a}] (${t.shape[a]}) != indices.shape[${a}] (${e.shape[a]}).`);for(let a=0;a<t.rank-n;++a)if(t.shape[a+n]!==r[a+o])throw new Error(s+` updates.shape[${a+n}] (${t.shape[a+n]}) != shape[${a+n}] (${r[a+n]})`)}function og(r,e,t){if(e.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${e.rank}.`);if(r.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${r.rank}.`);if(e.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${e.dtype}`);if(t.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${t}`);if(t.length===0){if(e.size===0)throw new Error(`Indices specified for empty output. indices shape: ${e.shape}`);if(r.size===0)throw new Error(`Updates specified for empty output. updates shape: ${r.shape}`)}pw(t,e,r)}function XS(r,e,t){let o=e.shape.length,n=o>1?e.shape[o-1]:1,s=t.length,a=1;for(let p=n;p<s;++p)a*=t[p];let i=n<1?1:n,l=ct(e.shape)/i,u=[...Fs(t.slice(0,n)),1],c=ct(t);return{sliceRank:n,numUpdates:l,sliceSize:a,strides:u,outputSize:c}}var er={};Ge(er,{assertParamsValid:()=>sW,computeFlatOffset:()=>aW,computeOutShape:()=>YS,getNormalizedAxes:()=>sT,isSliceContinous:()=>iW,maskToAxes:()=>ng,parseSliceParams:()=>mw,sliceInfo:()=>lW,startForAxis:()=>oT,startIndicesWithElidedDims:()=>eT,stopForAxis:()=>nT,stopIndicesWithElidedDims:()=>tT,stridesForAxis:()=>rT,stridesWithElidedDims:()=>ZS});function sW(r,e,t){let o=r.shape.length;A(o===e.length,()=>`Error in slice${o}D: Length of begin ${e} must match the rank of the array (${o}).`),A(o===t.length,()=>`Error in slice${o}D: Length of size ${t} must match the rank of the array (${o}).`);for(let n=0;n<o;++n)A(e[n]+t[n]<=r.shape[n],()=>`Error in slice${o}D: begin[${n}] + size[${n}] (${e[n]+t[n]}) would overflow input.shape[${n}] (${r.shape[n]})`)}function ng(r){let e=[],t=0;for(;r>0;)r&1&&e.push(t),r/=2,t++;return e}function YS(r,e,t){let o=[];for(let n=0;n<r.length;n++)o[n]=Math.ceil((e[n]-r[n])/t[n]);return o}function ZS(r,e,t,o){let n=[...r];for(let s=n.length;s<o.length;s++)n.push(1);for(let s=0;s<t;s++)s===0?n[e]=1:(n.splice(e,0,1),n.pop());return n}function JS(r,e,t){return t<=r?t:t-(e-1)}function QS(r,e){let t=[];for(let o=0;o<r;o++)t.push(e+o);return t}function sT(r,e,t,o,n,s,a,i,l){let u=r.length,c=new Array(u),p=new Array(u),m=new Array(u);if(e.length&&t>0){let f=e[0],d=t+1;c=eT(a,f,d,o,r),p=tT(i,f,d,n,r),m=ZS(s,f,d,r)}else for(let f=0;f<u;f++)c[f]=oT(a,o,s,r,f,l),p[f]=nT(i,n,s,r,f,l),m[f]=rT(s,f,l);return{begin:c,end:p,strides:m}}function eT(r,e,t,o,n){let s=[...n],a=QS(t,e);for(let i=0;i<s.length;i++)if(a.indexOf(i)>-1)s[i]=0;else{let l=JS(e,t,i),u=o[l];r&1<<l&&(u=0),s[i]=u}return s}function tT(r,e,t,o,n){let s=[...n],a=QS(t,e);for(let i=0;i<s.length;i++)if(a.indexOf(i)>-1)s[i]=Number.MAX_SAFE_INTEGER;else{let l=JS(e,t,i),u=o[l];r&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[i]=u}for(let i=0;i<s.length;i++){let l=n[i];s[i]<0&&(s[i]+=l),s[i]=ic(0,s[i],n[i])}return s}function rT(r,e,t){let o=r[e];return(t&1<<e||o==null)&&(o=1),o}function oT(r,e,t,o,n,s){let a=e[n],i=t[n]||1;(r&1<<n||s&1<<n||a==null)&&(i>0?a=Number.MIN_SAFE_INTEGER:a=Number.MAX_SAFE_INTEGER);let l=o[n];return a<0&&(a+=l),a=ic(0,a,l-1),a}function nT(r,e,t,o,n,s){let a=e[n],i=t[n]||1;(r&1<<n||s&1<<n||a==null)&&(i>0?a=Number.MAX_SAFE_INTEGER:a=Number.MIN_SAFE_INTEGER);let l=o[n];return a<0&&(a+=l),i>0?a=ic(0,a,l):a=ic(-1,a,l-1),a}function iW(r,e,t){let o=t.length;for(let n=0;n<t.length;n++)if(t[n]>1){o=n;break}for(let n=o+1;n<t.length;n++)if(e[n]>0||t[n]!==r[n])return!1;return!0}function aW(r,e){let t=r.length>0?r[r.length-1]:1;for(let o=0;o<r.length-1;o++)t+=r[o]*e[o];return t}function mw(r,e,t){let o,n=r.shape.length;typeof e=="number"?o=[e,...new Array(n-1).fill(0)]:e.length<n?o=e.concat(new Array(n-e.length).fill(0)):o=e.slice(),o.forEach(a=>{A(a!==-1,()=>"slice() does not support negative begin indexing.")});let s;return t==null?s=new Array(n).fill(-1):typeof t=="number"?s=[t,...new Array(n-1).fill(-1)]:t.length<n?s=t.concat(new Array(n-t.length).fill(-1)):s=t,s=s.map((a,i)=>a>=0?a:(A(a===-1,()=>`Negative size values should be exactly -1 but got ${a} for the slice() size at index ${i}.`),r.shape[i]-o[i])),[o,s]}function lW(r,e,t,o,n,s,a,i,l){let u=e.slice(),c=t.slice(),p=o;o==null&&(p=new Array(u.length));let m=ng(a);if(m.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(a!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(a!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=r.length-u.length,d=ng(i),h=r.slice();d.forEach(T=>{u[T]=0,c[T]=1,h.splice(T,0,1)});let{begin:g,end:x,strides:b}=sT(h,m,f,u,c,p,n,s,a);u=g,c=x,p=b;let w=ng(l);w.forEach(T=>{c[T]=u[T]+1,p[T]=1});let _=YS(u,c,p),k=_.filter((T,R)=>w.indexOf(R)===-1);return{nonStrided:p.every(T=>T===1),$begin:u,$end:c,$strides:p,size:_,newShape:h,outShape:k}}var Q={};Ge(Q,{Serializable:()=>sg,SerializationMap:()=>la,registerClass:()=>uo});var sg=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},la=class{constructor(){this.classNameMap={}}static getMap(){return la.instance==null&&(la.instance=new la),la.instance}static register(e){la.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function uo(r){A(r.className!=null,()=>"Class being registered does not have the static className property defined."),A(typeof r.className=="string",()=>"className is required to be a string, but got type "+typeof r.className),A(r.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),la.register(r)}var uW={};Ge(uW,{TEST_EPSILON_FLOAT16:()=>iT,encodeStrings:()=>aT,expectArrayBuffersEqual:()=>gW,expectArraysClose:()=>pW,expectArraysEqual:()=>fW,expectNumbersClose:()=>dW,expectPromiseToFail:()=>mW,expectValuesInRange:()=>hW,testEpsilon:()=>fw});var cW=.001,iT=.1;function pW(r,e,t){return t==null&&(t=fw()),dw(r,e,(o,n)=>hw(o,n,t))}function fw(){return E.backend.floatPrecision()===32?cW:iT}function dw(r,e,t){let o=!0;if((sr(r)||sr(e))&&(o=!1),sr(r)&&sr(e)&&(o=!0),o){let a=r.constructor.name,i=e.constructor.name;if(a!==i)throw new Error(`Arrays are of different type. Actual: ${a}. Expected: ${i}`)}if(Array.isArray(r)&&Array.isArray(e)){let a=Ir(r),i=Ir(e);if(!Hr(a,i))throw new Error(`Arrays have different shapes. Actual: [${a}]. Expected: [${i}]`)}let n=sr(r)?r:wn(r),s=sr(e)?e:wn(e);if(n.length!==s.length)throw new Error(`Arrays have different lengths actual: ${n.length} vs expected: ${s.length}.
Actual: ${n}.
Expected: ${s}.`);for(let a=0;a<s.length;++a){let i=n[a],l=s[a];if(!t(i,l))throw new Error(`Arrays differ: actual[${a}] = ${i}, expected[${a}] = ${l}.
Actual: ${n}.
Expected: ${s}.`)}}function mW(r,e){r().then(()=>e.fail(),()=>e())}function fW(r,e){let t=typeof e=="string"||typeof e=="number"||typeof e=="boolean"?[e]:e;return _n(r)||_n(r[0])||_n(e)||_n(e[0])?dw(r,t,(o,n)=>o==n):dw(r,e,(o,n)=>hw(o,n,0))}function dW(r,e,t){if(t==null&&(t=fw()),!hw(r,e,t))throw new Error(`Numbers differ: actual === ${r}, expected === ${e}`)}function hw(r,e,t){return!isFinite(r)&&!isFinite(e)?!0:!(isNaN(r)||isNaN(e)||Math.abs(r-e)>t)}function hW(r,e,t){for(let o=0;o<r.length;o++)if(r[o]<e||r[o]>t)throw new Error(`Value out of range:${r[o]} low: ${e}, high: ${t}`)}function gW(r,e){expect(new Float32Array(r)).toEqual(new Float32Array(e))}function aT(r){for(let e=0;e<r.length;e++){let t=r[e];Array.isArray(t)?aT(t):r[e]=ol(t)}return r}var jse="3.3.0";function Yse(){W().set("PROD",!0)}function Zse(){W().set("DEBUG",!0)}function Jse(){W().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function gw(r){W().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(r+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}cS(gw);function Qse(){E.disposeVariables()}function Zo(){return E}function Sm(){return E.memory()}function eie(r){return E.profile(r)}function V(r,e){return E.tidy(r,e)}function Ae(r){Im(r).forEach(t=>t.dispose())}function Et(r){return E.keep(r)}function tie(r){return E.time(r)}function xW(r){return E.setBackend(r)}function rie(){return E.ready()}function oie(){return E.backendName}function nie(r){E.removeBackend(r)}function sie(r){return E.findBackend(r)}function iie(r){return E.findBackendFactory(r)}function qc(r,e,t=1){return E.registerBackend(r,e,t)}function lT(){return E.backend}function aie(r,e){W().setPlatform(r,e)}function yW(r,e){let t=v(r,"a","add"),o=v(e,"b","add");[t,o]=We(t,o);let n={a:t,b:o};return E.runKernel(Fo,n)}var ee=S({add_:yW});function bW(r,e){let t=v(r,"a","floorDiv"),o=v(e,"b","floorDiv");[t,o]=We(t,o);let n={a:t,b:o};return E.runKernel(On,n)}var Ul=S({floorDiv_:bW});function wW(r,e){let t=v(r,"a","div"),o=v(e,"b","div");if([t,o]=We(t,o),t.dtype==="int32"&&o.dtype==="int32")return Ul(t,o);let n={a:t,b:o},s={};return E.runKernel($n,n,s)}var me=S({div_:wW});function _W(r,e){let t=v(r,"a","mul"),o=v(e,"b","mul");[t,o]=We(t,o);let n={a:t,b:o};return E.runKernel(Hn,n)}var P=S({mul_:_W});function kW(r){let e=v(r,"x","abs");if(e.dtype==="complex64"){let t={x:e};return E.runKernel(Ua,t)}else{let t={x:e};return E.runKernel(Os,t)}}var It=S({abs_:kW});function vW(r){let t={x:v(r,"x","acos")};return E.runKernel(yi,t)}var Tm=S({acos_:vW});function CW(r){let t={x:v(r,"x","acosh")};return E.runKernel(bi,t)}var Am=S({acosh_:CW});function IW(r){A(Array.isArray(r),()=>"The argument passed to tf.addN() must be a list of tensors"),A(r.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${r.length}`);let e=r.map((n,s)=>v(n,`tensors${s}`,"addN")),t=e[0];e.forEach(n=>{if(n.dtype!==t.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),e.forEach(n=>{if(!Hr(n.shape,t.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let o=e;return E.runKernel(kn,o)}var xw=S({addN_:IW});function NW(r,e=null,t=!1){let n={x:v(r,"x","all","bool")},s={axis:e,keepDims:t};return E.runKernel(cc,n,s)}var Hl=S({all_:NW});function SW(r,e=null,t=!1){let n={x:v(r,"x","any","bool")},s={axis:e,keepDims:t};return E.runKernel(pc,n,s)}var al=S({any_:SW});function TW(r,e=0){let o={x:v(r,"x","argMax")},n={axis:e};return E.runKernel(vn,o,n)}var ll=S({argMax_:TW});function AW(r,e=0){let o={x:v(r,"x","argMin")},n={axis:e};return E.runKernel(Ga,o,n)}var Em=S({argMin_:AW});function EW(r){let t={x:v(r,"x","asin")};return E.runKernel(wi,t)}var Dm=S({asin_:EW});function DW(r){let t={x:v(r,"x","asinh")};return E.runKernel(_i,t)}var $m=S({asinh_:DW});function $W(r){let t={x:v(r,"x","atan")};return E.runKernel(ki,t)}var Rm=S({atan_:$W});function RW(r,e){let t=v(r,"a","atan2"),o=v(e,"b","atan2");[t,o]=We(t,o);let n={a:t,b:o};return E.runKernel(Ci,n)}var Fm=S({atan2_:RW});function FW(r){let t={x:v(r,"x","atanh")};return E.runKernel(vi,t)}var Om=S({atanh_:FW});function OW(r,e,t,o,n="NHWC",s){let a=r[3],i=[...e,a],l=uT(n);return ql(r,i,t,s,o,null,null,l)}function yw(r,e,t,o,n,s,a="channelsLast"){let[i,l]=ig(e),u;if(a==="channelsLast")u=[i,l,r[3],r[3]];else if(a==="channelsFirst")u=[i,l,r[1],r[1]];else throw new Error(`Unknown dataFormat ${a}`);return ql(r,u,t,o,n,s,!1,a)}function PW(r,e,t,o,n,s,a="NDHWC"){let[i,l,u]=bw(e),c,p;if(a==="NDHWC")p="channelsLast",c=[i,l,u,r[4],r[4]];else if(a==="NCDHW")p="channelsFirst",c=[i,l,u,r[1],r[1]];else throw new Error(`Unknown dataFormat ${a}`);return cT(r,c,t,o,n,!1,p,s)}function ql(r,e,t,o,n,s,a=!1,i="channelsLast"){let[l,u,c,p]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,p]=r;else if(i==="channelsFirst")[l,p,u,c]=r;else throw new Error(`Unknown dataFormat ${i}`);let[m,f,,d]=e,[h,g]=ig(t),[x,b]=ig(o),w=Kc(m,x),_=Kc(f,b),{padInfo:k,outHeight:D,outWidth:T}=MW(n,u,c,h,g,w,_,s,i),R=a?d*p:d,O;return i==="channelsFirst"?O=[l,R,D,T]:i==="channelsLast"&&(O=[l,D,T,R]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:p,outHeight:D,outWidth:T,outChannels:R,padInfo:k,strideHeight:h,strideWidth:g,filterHeight:m,filterWidth:f,effectiveFilterHeight:w,effectiveFilterWidth:_,dilationHeight:x,dilationWidth:b,inShape:r,outShape:O,filterShape:e}}function cT(r,e,t,o,n,s=!1,a="channelsLast",i){let[l,u,c,p,m]=[-1,-1,-1,-1,-1];if(a==="channelsLast")[l,u,c,p,m]=r;else if(a==="channelsFirst")[l,m,u,c,p]=r;else throw new Error(`Unknown dataFormat ${a}`);let[f,d,h,,g]=e,[x,b,w]=bw(t),[_,k,D]=bw(o),T=Kc(f,_),R=Kc(d,k),O=Kc(h,D),{padInfo:M,outDepth:G,outHeight:j,outWidth:U}=LW(n,u,c,p,x,b,w,T,R,O,i),H=s?g*m:g,q;return a==="channelsFirst"?q=[l,H,G,j,U]:a==="channelsLast"&&(q=[l,G,j,U,H]),{batchSize:l,dataFormat:a,inDepth:u,inHeight:c,inWidth:p,inChannels:m,outDepth:G,outHeight:j,outWidth:U,outChannels:H,padInfo:M,strideDepth:x,strideHeight:b,strideWidth:w,filterDepth:f,filterHeight:d,filterWidth:h,effectiveFilterDepth:T,effectiveFilterHeight:R,effectiveFilterWidth:O,dilationDepth:_,dilationHeight:k,dilationWidth:D,inShape:r,outShape:q,filterShape:e}}function zW(r,e,t,o,n){o==null&&(o=ww(r,e,t));let s=r[0],a=r[1],i=Kl((s-e+2*o)/t+1,n),l=Kl((a-e+2*o)/t+1,n);return[i,l]}function BW(r,e,t,o,n,s){n==null&&(n=ww(r,e,o));let a=r[0],i=r[1],l=r[2],u=Kl((a-e+2*n)/o+1,s),c=Kl((i-e+2*n)/o+1,s),p=Kl((l-e+2*n)/o+1,s);return[u,c,p,t]}function ww(r,e,t,o=1){let n=Kc(e,o);return Math.floor((r[0]*(t-1)-t+n)/2)}function ig(r){return typeof r=="number"?[r,r,r]:r.length===2?[r[0],r[1],1]:r}function bw(r){return typeof r=="number"?[r,r,r]:r}function Kc(r,e){return e<=1?r:r+(r-1)*(e-1)}function MW(r,e,t,o,n,s,a,i,l){let u,c,p;if(typeof r=="number"){u={top:r,bottom:r,left:r,right:r,type:r===0?"VALID":"NUMBER"};let f=zW([e,t],s,o,r,i);c=f[0],p=f[1]}else if(r==="same"){c=Math.ceil(e/o),p=Math.ceil(t/n);let m=Math.max(0,(c-1)*o+s-e),f=Math.max(0,(p-1)*n+a-t),d=Math.floor(m/2),h=m-d,g=Math.floor(f/2),x=f-g;u={top:d,bottom:h,left:g,right:x,type:"SAME"}}else if(r==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((e-s+1)/o),p=Math.ceil((t-a+1)/n);else if(typeof r=="object"){let m=l==="channelsLast"?r[1][0]:r[2][0],f=l==="channelsLast"?r[1][1]:r[2][1],d=l==="channelsLast"?r[2][0]:r[3][0],h=l==="channelsLast"?r[2][1]:r[3][1];u={top:m,bottom:f,left:d,right:h,type:m===0&&f===0&&d===0&&h===0?"VALID":"EXPLICIT"},c=Kl((e-s+m+f)/o+1,i),p=Kl((t-a+d+h)/n+1,i)}else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:u,outHeight:c,outWidth:p}}function LW(r,e,t,o,n,s,a,i,l,u,c){let p,m,f,d;if(typeof r=="number"){p={top:r,bottom:r,left:r,right:r,front:r,back:r,type:r===0?"VALID":"NUMBER"};let g=BW([e,t,o,1],i,1,n,r,c);m=g[0],f=g[1],d=g[2]}else if(r==="same"){m=Math.ceil(e/n),f=Math.ceil(t/s),d=Math.ceil(o/a);let h=(m-1)*n+i-e,g=(f-1)*s+l-t,x=(d-1)*a+u-o,b=Math.floor(h/2),w=h-b,_=Math.floor(g/2),k=g-_,D=Math.floor(x/2),T=x-D;p={top:_,bottom:k,left:D,right:T,front:b,back:w,type:"SAME"}}else if(r==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},m=Math.ceil((e-i+1)/n),f=Math.ceil((t-l+1)/s),d=Math.ceil((o-u+1)/a);else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:p,outDepth:m,outHeight:f,outWidth:d}}function Kl(r,e){if(!e)return Math.trunc(r);switch(e){case"round":return Math.round(r);case"ceil":return Math.ceil(r);case"floor":return Math.floor(r);default:throw new Error(`Unknown roundingMode ${e}`)}}function Mo(r){let[e,t,o]=ig(r);return e===1&&t===1&&o===1}function kr(r,e){return Mo(r)||Mo(e)}function uT(r){if(r==="NHWC")return"channelsLast";if(r==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${r}`)}function VW(r,e){let o={x:v(r,"x","reshape","string_or_numeric")},n={shape:e};return E.runKernel(Gs,o,n)}var L=S({reshape_:VW});function GW(r,e,t,o,n){let s=v(r,"x","avgPool","float32"),a=1;A(kr(t,a),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${t} and dilations '${a}'`);let i=s,l=!1;s.rank===3&&(l=!0,i=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),n!=null&&A(ot(o),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${n} but got pad ${o}.`);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n},p=E.runKernel(Cn,u,c);return p=ne(p,s.dtype),l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var ua=S({avgPool_:GW});function WW(r,e,t,o,n,s="NDHWC"){let a=v(r,"x","avgPool3d","float32"),i=a,l=!1;a.rank===4&&(l=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),A(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),A(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),n!=null&&A(ot(o),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${n} but got pad ${o}.`);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n,dataFormat:s},p=E.runKernel(Wa,u,c);return p=ne(p,i.dtype),l?L(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Pm=S({avgPool3d_:WW});function jW(r,e=0){A(r.length>=1,()=>"Pass at least one tensor to concat");let t=na(r,"tensors","concat","string_or_numeric");if(t[0].dtype==="complex64"&&t.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),t.length===1)return Po(t[0]);let o=t,n={axis:e};return E.runKernel(Ps,o,n)}var Ze=S({concat_:jW});function UW(r){let t={x:v(r,"x","sigmoid")};return E.runKernel(ns,t)}var Xr=S({sigmoid_:UW});function HW(r,e,t){let o=v(r,"x","slice","string_or_numeric");if(o.rank===0)throw new Error("Slicing scalar is not possible");let n={x:o},s={begin:e,size:t};return E.runKernel(js,n,s)}var Re=S({slice_:HW});function qW(r){let t={x:v(r,"x","tanh")};return E.runKernel(cs,t)}var Qs=S({tanh_:qW});function KW(r,e,t,o,n,s){let a=v(r,"forgetBias","basicLSTMCell"),i=v(e,"lstmKernel","basicLSTMCell"),l=v(t,"lstmBias","basicLSTMCell"),u=v(o,"data","basicLSTMCell"),c=v(n,"c","basicLSTMCell"),p=v(s,"h","basicLSTMCell"),m=Ze([u,p],1),f=je(m,i),d=ee(f,l),h=d.shape[0],g=d.shape[1]/4,x=[h,g],b=Re(d,[0,0],x),w=Re(d,[0,g],x),_=Re(d,[0,g*2],x),k=Re(d,[0,g*3],x),D=ee(P(Xr(b),Qs(w)),P(c,Xr(ee(a,_)))),T=P(Qs(D),Xr(k));return[D,T]}var qle=S({basicLSTMCell_:KW});function XW(r,e,t){let o=v(r,"x","batchToSpaceND"),n=e.reduce((i,l)=>i*l);A(o.rank>=1+e.length,()=>`input rank is ${o.rank} but should be > than blockShape.length ${e.length}`),A(t.length===e.length,()=>`crops.length is ${t.length} but should be equal to blockShape.length ${e.length}`),A(o.shape[0]%n==0,()=>`input tensor batch is ${o.shape[0]} but is not divisible by the product of the elements of blockShape ${e.join(" * ")} === ${n}`);let s={x:o},a={blockShape:e,crops:t};return E.runKernel(ja,s,a)}var ca=S({batchToSpaceND_:XW});function pT(r){let e;return r.rank===0||r.rank===1?e=L(r,[1,1,1,r.size]):r.rank===2?e=L(r,[1,1,r.shape[0],r.shape[1]]):r.rank===3?e=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]):e=r,e}function YW(r,e,t,o,n,s){s==null&&(s=.001);let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;n!=null&&(u=v(n,"scale","batchNorm"));let c;o!=null&&(c=v(o,"offset","batchNorm")),A(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),A(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),A(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let m={x:pT(a),scale:u,offset:c,mean:i,variance:l},f={varianceEpsilon:s},d=E.runKernel(Pn,m,f);return L(d,a.shape)}var Jo=S({batchNorm_:YW});function ZW(r,e,t,o,n,s){let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;n!=null&&(u=v(n,"scale","batchNorm"));let c;return o!=null&&(c=v(o,"offset","batchNorm")),A(a.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${a.rank}.`),A(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),A(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&A(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Jo(a,i,l,c,u,s)}var _w=S({batchNorm2d_:ZW});function JW(r,e,t,o,n,s){let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;n!=null&&(u=v(n,"scale","batchNorm"));let c;return o!=null&&(c=v(o,"offset","batchNorm")),A(a.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${a.rank}.`),A(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),A(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&A(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Jo(a,i,l,c,u,s)}var kw=S({batchNorm3d_:JW});function QW(r,e,t,o,n,s){let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;n!=null&&(u=v(n,"scale","batchNorm"));let c;return o!=null&&(c=v(o,"offset","batchNorm")),A(a.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${a.rank}.`),A(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),A(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&A(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Jo(a,i,l,c,u,s)}var vw=S({batchNorm4d_:QW});function ej(r,e,t){let o=v(r,"x","bincount"),n=v(e,"weights","bincount");A(o.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${o.dtype}`),A(t>=0,()=>`size must be non-negative, but got ${t}.`),A(n.size===o.size||n.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${o.shape}, weights shape: ${n.shape}.`);let s={x:o,weights:n},a={size:t};return E.runKernel(dc,s,a)}var Cw=S({bincount_:ej});function tj(r,e){let t=v(r,"broadcastTo","x"),o=t.shape;if(e.some(u=>!(u>0)||u%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${e}].`);if(e.length<t.rank)throw new Error(`broadcastTo(): shape.length=${e.length} < input.rank=${t.rank}.`);if(e.length>t.rank){let u=t.shape.slice();for(;u.length<e.length;)u.unshift(1);t=L(t,u)}let n=t.shape,s=Array.from(e);for(let u=e.length-1;u>=0;u--)if(n[u]===e[u])s[u]=1;else if(t.shape[u]!==1)throw new Error(`broadcastTo(): [${o}] cannot be broadcast to [${e}].`);if(s.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Po(t);let i={x:t},l={reps:s};return E.runKernel(Oo,i,l)}var ul=S({broadcastTo_:tj});function rj(r){let t={x:v(r,"x","ceil")};return E.runKernel(Nn,t)}var Mm=S({ceil_:rj});function oj(r,e,t){let o=v(r,"x","clipByValue");A(e<=t,()=>`Error in clip: min (${e}) must be less than or equal to max (${t}).`);let n={x:o},s={clipValueMin:e,clipValueMax:t};return E.runKernel(qo,n,s)}var ar=S({clipByValue_:oj});function nj(r){return Ze(r,0)}var Iw=S({concat1d_:nj});function sj(r,e){return Ze(r,e)}var Nw=S({concat2d_:sj});function ij(r,e){return Ze(r,e)}var Sw=S({concat3d_:ij});function aj(r,e){return Ze(r,e)}var Tw=S({concat4d_:aj});function lj(r,e,t,o,n="NHWC",s=[1,1],a){let i=v(r,"x","conv2d"),l=v(e,"filter","conv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),A(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),A(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),a!=null&&A(ot(o),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);let p=n==="NHWC"?u.shape[3]:u.shape[1];A(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),A(kr(t,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`);let m={x:u,filter:l},f={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a},d=E.runKernel(Sn,m,f);return c?L(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Yr=S({conv2d_:lj});function uj(r,e,t,o,n="NWC",s=1,a){let i=v(r,"x","conv1d"),l=v(e,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1]])),A(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),A(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),a!=null&&A(ot(o),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`),A(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),A(kr(t,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${t} and dilation '${s}'`),A(n==="NWC",()=>`Error in conv1d: got dataFormat of ${n} but only NWC is currently supported.`);let p=L(l,[1,l.shape[0],l.shape[1],l.shape[2]]),m=L(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=Yr(m,p,[1,t],o,"NHWC",[1,s],a);return c?L(g,[g.shape[2],g.shape[3]]):L(g,[g.shape[0],g.shape[2],g.shape[3]])}var Xl=S({conv1d_:uj});function cj(r,e,t,o,n,s="NHWC",a){A(r.length===e.rank,()=>`Length of inShape (${r.length}) and rank of dy (${e.rank}) must match`);let i=r,l=e,u=!1;e.rank===3&&(u=!0,l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]),i=[1,r[0],r[1],r[2]]),A(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),A(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),A(t.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${t.rank}`);let c=s==="NHWC"?i[3]:i[1],p=s==="NHWC"?l.shape[3]:l.shape[1];A(c===t.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${t.shape[2]}.`),A(p===t.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${t.shape[3]}.`),a!=null&&A(ot(n),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`);let m={dy:l,filter:t},f={strides:o,pad:n,dataFormat:s,dimRoundingMode:a,inputShape:i},d=E.runKernel(Tn,m,f);return u?L(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Xc=S({conv2DBackpropInput_:cj});function pj(r,e,t,o,n,s){let a=v(r,"x","conv2dTranspose"),i=v(e,"filter","conv2dTranspose");return Xc(t,a,i,o,n,"NHWC",s)}var Yl=S({conv2dTranspose_:pj});function mj(r,e,t,o,n="NDHWC",s=[1,1,1]){let a=v(r,"x","conv3d"),i=v(e,"filter","conv3d"),l=a,u=!1;a.rank===4&&(u=!0,l=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),A(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),A(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),A(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),A(kr(t,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),A(n==="NDHWC",()=>`Error in conv3d: got dataFormat of ${n} but only NDHWC is currently supported.`);let c={x:l,filter:i},p={strides:t,pad:o,dataFormat:n,dilations:s},m=E.runKernel(Ha,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var Lm=S({conv3d_:mj});function fj(r,e,t,o,n){A(r.length===e.rank,()=>`Length of inShape (${r.length}) and rank of dy (${e.rank}) must match`);let s=r,a=e,i=!1;e.rank===4&&(i=!0,a=L(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]),s=[1,r[0],r[1],r[2],r[3]]);let l=s[4],u=a.shape[4];A(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),A(a.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${a.rank}`),A(t.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${t.rank}`),A(l===t.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${t.shape[3]}.`),A(u===t.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${t.shape[4]}.`);let c={dy:a,filter:t},p={pad:n,strides:o,inputShape:s},m=E.runKernel(yc,c,p);return i?L(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var ag=S({conv3DBackpropInput_:fj});function dj(r,e,t,o,n){let s=v(r,"x","conv3dTranspose"),a=v(e,"filter","conv3dTranspose");return ag(t,s,a,o,n)}var Yce=S({conv3dTranspose_:dj});function hj(r){let t={x:v(r,"x","cos")};return E.runKernel(An,t)}var pa=S({cos_:hj});function gj(r){let t={x:v(r,"x","cosh")};return E.runKernel(Ii,t)}var Zl=S({cosh_:gj});function xj(r,e=0,t=!1,o=!1){let s={x:v(r,"x","cumsum")},a={axis:e,exclusive:t,reverse:o};return E.runKernel(En,s,a)}var Jl=S({cumsum_:xj});function yj(r,e,t,o=!1){let n=v(r,"x","denseBincount"),s=v(e,"weights","denseBincount");A(n.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${n.dtype}`),A(n.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${n.rank}.`),A(t>=0,()=>`size must be non-negative, but got ${t}.`),A(s.size===n.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${n.shape}, weights shape: ${s.shape}.`);let a={x:n,weights:s},i={size:t,binaryOutput:o};return E.runKernel(bc,a,i)}var Aw=S({denseBincount_:yj});function bj(r,e,t="NHWC"){let o=v(r,"x","depthToSpace"),n=t==="NHWC"?o.shape[1]:o.shape[2],s=t==="NHWC"?o.shape[2]:o.shape[3],a=t==="NHWC"?o.shape[3]:o.shape[1];A(n*e>=0,()=>`Negative dimension size caused by overflow when multiplying
${n} and ${e} for depthToSpace with input shape
${o.shape}`),A(s*e>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${e} for depthToSpace with input shape
${o.shape}`),A(a%(e*e)==0,()=>`Dimension size must be evenly divisible by ${e*e} but is ${a} for depthToSpace with input shape ${o.shape}`);let i={x:o},l={blockSize:e,dataFormat:t};return E.runKernel(Si,i,l)}var zm=S({depthToSpace_:bj});function wj(r,e,t,o,n="NHWC",s=[1,1],a){let i=v(r,"x","depthwiseConv2d"),l=v(e,"filter","depthwiseConv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),A(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),A(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),A(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),a!=null&&A(ot(o),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);let p={x:u,filter:l},m={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a},f=E.runKernel(Dn,p,m);return c?L(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var ds=S({depthwiseConv2d_:wj});function _j(r){let t={x:v(r,"x","diag")};return E.runKernel(kc,t)}var Ppe=S({diag_:_j});function kj(r,e,t,o,n=[1,1],s="NHWC"){let a=v(r,"x","dilation2d"),i=v(e,"filter","dilation2d");A(a.rank===3||a.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${a.rank}.`),A(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),A(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=a,u=!1;a.rank===3&&(l=L(a,[1,a.shape[0],a.shape[1],a.shape[2]]),u=!0);let c={x:l,filter:i},p={strides:t,pad:o,dilations:n},m=E.runKernel(qa,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Bm=S({dilation2d_:kj});function vj(r,e){let t=r.length,o=[];for(let n=0;n<t;n++){let s=t-1-n,a=r[s]||1;(e[e.length-1-n]||1)>1&&a===1&&o.unshift(s)}return o}function _t(r,e){let t=[];for(let o=0;o<e.length;o++){let n=r[r.length-o-1],s=e.length-o-1,a=e[s];(n==null||n===1&&a>1)&&t.unshift(s)}return t}function Be(r,e){let t=[],o=Math.max(r.length,e.length);for(let n=0;n<o;n++){let s=r[r.length-n-1];s==null&&(s=1);let a=e[e.length-n-1];if(a==null&&(a=1),s===1)t.unshift(a);else if(a===1)t.unshift(s);else if(s!==a){let i=`Operands could not be broadcast together with shapes ${r} and ${e}.`;throw Error(i)}else t.unshift(s)}return t}function Cj(r,e){let t=v(r,"a","equal"),o=v(e,"b","equal");[t,o]=We(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(Ei,n)}var Io=S({equal_:Cj});function Ij(r,e,t){let o=v(e,"a","where"),n=v(t,"b","where"),s=v(r,"condition","where","bool"),a=Be(o.shape,n.shape),i=ul(o,a),l=ul(n,a);s.rank===1&&A(s.shape[0]===o.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&vt(s.shape,l.shape,"Error in where: ");let u={condition:s,t:i,e:l};return E.runKernel(Ws,u)}var Dt=S({where_:Ij});function Nj(r){let t={x:v(r,"x","zerosLike")};return E.runKernel(qs,t)}var Ce=S({zerosLike_:Nj});function Sj(r,e){let t=v(r,"a","div"),o=v(e,"b","div");[t,o]=We(t,o);let n=me(t,o),s=Ce(n),a=Io(o,s);return Dt(a,s,n)}var Vm=S({divNoNan_:Sj});function Tj(r,e){let t=v(r,"t1","dot"),o=v(e,"t2","dot");A((t.rank===1||t.rank===2)&&(o.rank===1||o.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${t.rank} and ${o.rank}.`);let n=t.rank===1?t.size:t.shape[1],s=o.rank===1?o.size:o.shape[0];if(A(n===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${n} and ${s}.`),t.rank===1&&o.rank===1){let a=L(t,[1,-1]),i=L(o,[-1,1]),l=je(a,i);return L(l,[])}else if(t.rank===1&&o.rank===2){let a=L(t,[1,-1]),i=L(o,[o.shape[0],o.shape[1]]),l=je(a,i);return L(l,[l.size])}else if(t.rank===2&&o.rank===1){let a=L(o,[-1,1]),i=je(t,a);return L(i,[i.size])}else{let a=L(o,[o.shape[0],o.shape[1]]);return je(t,a)}}var mT=S({dot_:Tj});function Aj(r){let t={x:v(r,"x","elu")};return E.runKernel(Ti,t)}var hs=S({elu_:Aj});function Ej(r){let e=v(r,"x","erf");A(e.dtype==="int32"||e.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),e.dtype==="int32"&&(e=ne(e,"float32"));let t={x:e};return E.runKernel(Ai,t)}var Gm=S({erf_:Ej});function Dj(r){let t={x:v(r,"x","exp")};return E.runKernel(Rn,t)}var Zt=S({exp_:Dj});function $j(r,e=0){let t=v(r,"x","expandDims","string_or_numeric");A(e<=t.rank,()=>"Axis must be <= rank of the tensor");let o={input:t},n={dim:e};return E.runKernel(Ms,o,n)}var lr=S({expandDims_:$j});function Rj(r){let t={x:v(r,"x","expm1")};return E.runKernel(Di,t)}var Wm=S({expm1_:Rj});function Fj(r,e){let t=v(r,"x","tile","string_or_numeric");A(t.rank===e.length,()=>`Error in transpose: rank of input ${t.rank} must match length of reps ${e}.`);let o={x:t},n={reps:e};return E.runKernel(Oo,o,n)}var Lo=S({tile_:Fj});function Oj(r,e,t,o="float32"){e==null&&(e=r);let n=ve([r,e],o),s=r<=e?r:e;for(let i=0;i<s;++i)n.set(1,i,i);let a=L(n.toTensor(),[r,e]);if(t==null)return a;if(t.length===1)return Lo(lr(a,0),[t[0],1,1]);if(t.length===2)return Lo(lr(lr(a,0),0),[t[0],t[1],1,1]);if(t.length===3)return Lo(lr(lr(lr(a,0),0),0),[t[0],t[1],t[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${t.length}D.`)}var Yc=S({eye_:Oj});function ma(r,e,t){let o={shape:r,value:e,dtype:t};return E.runKernel(Ka,{},o)}function Pj(r){let t={x:v(r,"x","floor")};return E.runKernel(Fn,t)}var gs=S({floor_:Pj});function Mj(r,e,t=0,o=0){let n=v(r,"x","gather"),s=v(e,"indices","gather","int32"),a={x:n,indices:s},i={axis:t,batchDims:o};return E.runKernel(Ls,a,i)}var Qo=S({gather_:Mj});function Lj(r,e){let t=v(r,"a","greater"),o=v(e,"b","greater");[t,o]=We(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(Fi,n)}var tr=S({greater_:Lj});function zj(r,e){let t=v(r,"a","greaterEqual"),o=v(e,"b","greaterEqual");[t,o]=We(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(Mn,n)}var co=S({greaterEqual_:zj});function Bj(r){let t={input:v(r,"input","imag")};return E.runKernel(Nc,t)}var Ql=S({imag_:Bj});function Vj(r){let t={x:v(r,"x","isFinite")};return E.runKernel(Oi,t)}var Ew=S({isFinite_:Vj});function Gj(r){let t={x:v(r,"x","isInf")};return E.runKernel(Pi,t)}var Dw=S({isInf_:Gj});function Wj(r){let t={x:v(r,"x","isNaN")};return E.runKernel(Mi,t)}var $w=S({isNaN_:Wj});function jj(r,e=.2){let o={x:v(r,"x","leakyRelu")},n={alpha:e};return E.runKernel(Ln,o,n)}var fa=S({leakyRelu_:jj});function Uj(r,e){let t=v(r,"a","less"),o=v(e,"b","less");[t,o]=We(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(Li,n)}var eu=S({less_:Uj});function Hj(r,e){let t=v(r,"a","lessEqual"),o=v(e,"b","lessEqual");[t,o]=We(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(zi,n)}var zo=S({lessEqual_:Hj});function Rw(r,e,t){if(t<=0)throw new Error("The number of values should be positive.");let o={start:r,stop:e,num:t};return E.runKernel(Sc,{},o)}function qj(r,e=5,t=1,o=1,n=.5){let s=v(r,"x","localResponseNormalization");A(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),A(ot(e),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${e}.`);let a=s,i=!1;s.rank===3&&(i=!0,a=L(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:a},u={depthRadius:e,bias:t,alpha:o,beta:n},c=E.runKernel(Xa,l,u);return i?L(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var jm=S({localResponseNormalization_:qj});function Kj(r){let t={x:v(r,"x","log")};return E.runKernel(zn,t)}var ur=S({log_:Kj});function Xj(r){let t={x:v(r,"x","log1p")};return E.runKernel(Bi,t)}var tu=S({log1p_:Xj});function Kde(r){return A(Rs(r),()=>"The f passed in grad(f) must be a function"),(e,t)=>{let o=v(e,"x","tf.grad","string_or_numeric"),n=t!=null?v(t,"dy","tf.grad"):null;return E.tidy(()=>{let{value:s,grads:a}=E.gradients(()=>r(o),[o],n);return n!=null&&vt(s.shape,n.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),lg(a),a[0]})}}function Xde(r){return A(Rs(r),()=>"The f passed in grads(f) must be a function"),(e,t)=>{A(Array.isArray(e),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let o=na(e,"args","tf.grads","string_or_numeric"),n=t!=null?v(t,"dy","tf.grads"):null;return E.tidy(()=>{let{value:s,grads:a}=E.gradients(()=>r(...o),o,n);return n!=null&&vt(s.shape,n.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),lg(a),a})}}function Yde(r){return A(Rs(r),()=>"The f passed in valueAndGrad(f) must be a function"),(e,t)=>{A(e instanceof Ve,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),A(t==null||t instanceof Ve,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:o,value:n}=E.gradients(()=>r(e),[e],t);return lg(o),{grad:o[0],value:n}}}function Zde(r){return A(Rs(r),()=>"The f passed in valueAndGrads(f) must be a function"),(e,t)=>{A(Array.isArray(e)&&e.every(n=>n instanceof Ve),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),A(t==null||t instanceof Ve,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let o=E.gradients(()=>r(...e),e,t);return t!=null&&vt(o.value.shape,t.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),lg(o.grads),o}}function Fw(r,e){A(Rs(r),()=>"The f passed in variableGrads(f) must be a function"),A(e==null||Array.isArray(e)&&e.every(u=>u instanceof nl),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let t=e!=null;if(!t){e=[];for(let u in E.registeredVariables)e.push(E.registeredVariables[u])}let o=t?e.filter(u=>!u.trainable):null,n=e.length;e=e.filter(u=>u.trainable),A(e.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${n} variables is trainable.`);let s=!0,{value:a,grads:i}=E.gradients(r,e,null,s);A(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),A(a.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${a.rank} tensor`);let l={};return e.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),o!=null&&o.forEach(u=>l[u.name]=null),{value:a,grads:l}}function po(r){return E.customGrad(r)}function lg(r){if(r.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function Yj(r){let t={x:v(r,"x","neg")};return E.runKernel(zs,t)}var He=S({neg_:Yj});function Zj(r){let t={x:v(r,"x","softplus")};return E.runKernel(Qi,t)}var xs=S({softplus_:Zj});function Jj(r){let e=v(r,"x","logSigmoid");return po(o=>({value:He(xs(He(o))),gradFunc:a=>P(a,Xr(He(o)))}))(e)}var Ow=S({logSigmoid_:Jj});function Qj(r,e=null,t=!1){let n={x:v(r,"x","max")},s={reductionIndices:e,keepDims:t};return E.runKernel(Bn,n,s)}var cr=S({max_:Qj});function e4(r,e){let t=v(r,"a","sub"),o=v(e,"b","sub");[t,o]=We(t,o);let n={a:t,b:o};return E.runKernel(us,n)}var ce=S({sub_:e4});function t4(r,e=null,t=!1){let o=v(r,"x","sum");o.dtype==="bool"&&(o=ne(o,"int32"));let n={x:o},s={axis:e,keepDims:t};return E.runKernel(is,n,s)}var ge=S({sum_:t4});function r4(r,e=-1){let t=v(r,"logits","logSoftmax");if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${t.rank} and axis was ${e}`);return po((n,s)=>{let a=!0,i=cr(n,e,!0),l=ce(n,i),u=ce(ne(l,"float32"),ur(ge(Zt(l),e,a)));return s([u]),{value:u,gradFunc:(p,m)=>{let[f]=m,d=!0,h=Zt(f);return ce(p,P(ge(p,e,d),h))}}})(t)}var ru=S({logSoftmax_:r4});function Pw(r,e){for(let t=0;t<r.length;++t)if(r[r.length-t-1]!==e-1-t)return!1;return!0}function fT(r,e,t){let o=r.length+e.length,n=[],s=0,a=0;for(let i=0;i<o;i++)t.indexOf(i)===-1?n.push(r[s++]):n.push(e[a++]);return n}function Mw(r,e){let t=[],o=r.length;for(let s=0;s<o;s++)e.indexOf(s)===-1&&t.push(r[s]);let n=e.map(s=>r[s]);return[t,n]}function en(r,e){let t=e.map(o=>1);return fT(r,t,e)}function o4(r,e,t){A(Pw(e,t),()=>`${r} supports only inner-most axes for now. Got axes ${e} and rank-${t} input.`)}function Lw(r,e){if(Pw(r,e))return null;let t=[];for(let o=0;o<e;++o)r.indexOf(o)===-1&&t.push(o);return r.forEach(o=>t.push(o)),t}function Um(r){return r.map((e,t)=>[t,e]).sort((e,t)=>e[1]-t[1]).map(e=>e[0])}function n4(r,e){let t=[];for(let o=e-r;o<e;++o)t.push(o);return t}function s4(r,e=null,t=!1){let o=v(r,"x","logSumExp"),n=Qt(e,o.shape),s=cr(o,n,!0),a=ce(o,s),i=Zt(a),l=ge(i,n),u=ur(l),c=ee(L(s,u.shape),u);if(t){let p=en(c.shape,n);return L(c,p)}return c}var ug=S({logSumExp_:s4});function i4(r,e){let t=v(r,"a","logicalAnd","bool"),o=v(e,"b","logicalAnd","bool");Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(Vi,n)}var hr=S({logicalAnd_:i4});function a4(r){let t={x:v(r,"x","logicalNot","bool")};return E.runKernel(Ml,t)}var da=S({logicalNot_:a4});function l4(r,e){let t=v(r,"a","logicalOr","bool"),o=v(e,"b","logicalOr","bool");Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(Ll,n)}var ou=S({logicalOr_:l4});function u4(r,e){let t=v(r,"a","logicalXor","bool"),o=v(e,"b","logicalXor","bool");return Be(t.shape,o.shape),hr(ou(r,e),da(hr(r,e)))}var dT=S({logicalXor_:u4});function c4(r,e,t,o,n){let s=v(r,"x","maxPool"),a=1,i=s,l=!1;s.rank===3&&(l=!0,i=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),A(kr(t,a),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${t} and dilations '${a}'`),n!=null&&A(ot(o),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${n} but got pad ${o}.`);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n},p=E.runKernel(Gn,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var ha=S({maxPool_:c4});function p4(r,e=[1,1,1],t,o,n,s="NDHWC"){let a=v(r,"x","maxPool3d"),i=a,l=!1;a.rank===4&&(l=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),A(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),A(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),n!=null&&A(ot(o),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${n} but got pad ${o}.`);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n,dataFormat:s},p=E.runKernel(Ya,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Hm=S({maxPool3d_:p4});function m4(r,e,t,o,n=!1){let a={x:v(r,"x","maxPoolWithArgmax")},i={filterSize:e,strides:t,pad:o,includeBatchInIndex:n},l=E.runKernel(Dc,a,i);return{result:l[0],indexes:l[1]}}var zw=S({maxPoolWithArgmax_:m4});function f4(r,e){let t=v(r,"a","maximum"),o=v(e,"b","maximum");[t,o]=We(t,o),t.dtype==="bool"&&(t=ne(t,"int32"),o=ne(o,"int32")),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(Vn,n)}var Zr=S({maximum_:f4});function d4(r,e=null,t=!1){let n={x:v(r,"x","mean")},s={axis:e,keepDims:t};return E.runKernel(Wn,n,s)}var dt=S({mean_:d4});function h4(r,e=null,t=!1){let n={x:v(r,"x","min")},s={axis:e,keepDims:t};return E.runKernel(jn,n,s)}var ei=S({min_:h4});function g4(r,e){let t=v(r,"a","minimum"),o=v(e,"b","minimum");[t,o]=We(t,o),t.dtype==="bool"&&(t=ne(t,"int32"),o=ne(o,"int32")),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(Un,n)}var ys=S({minimum_:g4});function x4(r,e,t){A(t==="reflect"||t==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${t}.`);let o=v(r,"x","mirrorPad");if(o.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");A(e.length===o.rank,()=>`Padding doesn't match input. Must be ${o.rank}. Got ${e.length}.`);let n=t==="reflect"?1:0;for(let i=0;i<o.rank;i++)A(e[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),A(e[i][0]>=0&&e[i][0]<=o.shape[i]-n&&e[i][1]>=0&&e[i][1]<=o.shape[i]-n,()=>`Padding in dimension ${i} cannot be greater than or equal to ${o.shape[i]-n} or less than 0 for input of shape ${o.shape}`);let s={paddings:e,mode:t},a={x:o};return E.runKernel(Za,a,s)}var qm=S({mirrorPad_:x4});function y4(r,e){let t=v(r,"a","mod"),o=v(e,"b","mod");[t,o]=We(t,o);let n={a:t,b:o};return E.runKernel(Gi,n)}var Km=S({mod_:y4});function b4(r){let e=v(r,"x","square"),t={};return E.runKernel("Square",{x:e},t)}var Oe=S({square_:b4});function w4(r,e=null,t=!1){r=v(r,"x","moments");let o=Qt(e,r.shape),n=dt(r,o,t),s=n.shape;t||(s=en(n.shape,o));let a=Oe(ce(ne(r,"float32"),L(n,s))),i=dt(a,o,t);return{mean:n,variance:i}}var Zc=S({moments_:w4});function _4(r,e,t,o){let n=v(e,"data","multiRNNCell"),s=na(t,"c","multiRNNCell"),a=na(o,"h","multiRNNCell"),i=n,l=[];for(let p=0;p<r.length;p++){let m=r[p](i,s[p],a[p]);l.push(m[0]),l.push(m[1]),i=m[1]}let u=[],c=[];for(let p=0;p<l.length;p+=2)u.push(l[p]),c.push(l[p+1]);return[u,c]}var Xxe=S({multiRNNCell_:_4});function k4(r,e,t,o=!1){let n=v(r,"logits","multinomial"),s=n.size,a=n.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(a>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${a}`);t=t||Math.random();let l={logits:a===1?L(n,[1,-1]):n},u={numSamples:e,seed:t,normalized:o},c=E.runKernel($c,l,u);return a===1?L(c,[c.size]):c}var Bw=S({multinomial_:k4});function v4(r,e){let t=v(r,"a","notEqual"),o=v(e,"b","notEqual");[t,o]=We(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(Wi,n)}var tn=S({notEqual_:v4});function ht(r,e="float32"){if(e==="complex64"){let o=ht(r,"float32"),n=ht(r,"float32");return Co(o,n)}let t=uc(ct(r),e);return E.makeTensor(t,r,e)}function Sr(r,e="float32"){if(e==="complex64"){let o=Sr(r,"float32"),n=ht(r,"float32");return Co(o,n)}let t=fm(ct(r),e);return E.makeTensor(t,r,e)}function C4(r){let t={x:v(r,"x","onesLike")};return E.runKernel(Bs,t)}var rr=S({onesLike_:C4});function I4(r,e){let t=v(r,"v1","outerProduct"),o=v(e,"v2","outerProduct");A(t.rank===1&&o.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${t.rank} and ${o.rank}.`);let n=L(t,[-1,1]),s=L(o,[1,-1]);return je(n,s)}var Aye=S({outerProduct_:I4});function N4(r,e,t=0){let o=v(r,"x","pad");if(o.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let n={paddings:e,constantValue:t},s={x:o};return E.runKernel(Kn,s,n)}var Mr=S({pad_:N4});function S4(r,e,t=0){return A(e.length===2,()=>"Invalid number of paddings. Must be length of 2."),Mr(r,[e],t)}var zye=S({pad1d_:S4});function T4(r,e,t=0){return A(e.length===2&&e[0].length===2&&e[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Mr(r,e,t)}var jye=S({pad2d_:T4});function A4(r,e,t=0){return A(e.length===3&&e[0].length===2&&e[1].length===2&&e[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Mr(r,e,t)}var Xye=S({pad3d_:A4});function E4(r,e,t=0){return A(e.length===4&&e[0].length===2&&e[1].length===2&&e[2].length===2&&e[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Mr(r,e,t)}var ebe=S({pad4d_:E4});function D4(r,e,t){let o=v(r,"x","spaceToBatchND");A(o.rank>=1+e.length,()=>`input rank ${o.rank} should be > than [blockShape] ${e.length}`),A(t.length===e.length,()=>`paddings.shape[0] ${t.length} must be equal to [blockShape] ${e.length}`),A(o.shape.reduce((a,i,l)=>l>0&&l<=e.length?a&&(i+t[l-1][0]+t[l-1][1])%e[l-1]==0:a,!0),()=>`input spatial dimensions ${o.shape.slice(1)} with paddings ${t.toString()} must be divisible by blockShapes ${e.toString()}`);let n={x:o},s={blockShape:e,paddings:t};return E.runKernel(el,n,s)}var ga=S({spaceToBatchND_:D4});function F4(r,e,t,o,n,s){n==null&&(n=[1,1]),s==null&&(s=1),o===0&&(o="valid");let a=v(r,"x","maxPool"),i=a,l=!1;a.rank===3&&(l=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2]])),A(kr(s,n),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${n}'`);let u=yw(i.shape,e,s,n,o),c=[u.dilationHeight,u.dilationWidth],p;o==="same"?p=R4([u.filterHeight,u.filterWidth],c):p=[[0,0],[0,0]];let m=c[0]===1&&c[1]===1,[f,d]=$4([u.inHeight,u.inWidth],c,p),h=m?o:"valid",g=m?i:ga(i,c,f),b=(t==="avg"?()=>ua(g,e,s,h):()=>ha(g,e,s,h))(),w=m?b:ca(b,c,d);return l?L(w,[w.shape[1],w.shape[2],w.shape[3]]):w}function $4(r,e,t){let o=t.map(c=>c[0]),n=t.map(c=>c[1]),s=r.concat(o,n),a=e.map((c,p)=>(c-s[p]%c)%c),i=n.map((c,p)=>c+a[p]),l=e.map((c,p)=>[o[p],i[p]]),u=e.map((c,p)=>[0,a[p]]);return[l,u]}function R4(r,e){let o=r.map((a,i)=>a+(a-1)*(e[i]-1)).map(a=>a-1),n=o.map(a=>Math.floor(a/2)),s=o.map((a,i)=>a-n[i]);return o.map((a,i)=>[n[i],s[i]])}var hT=S({pool_:F4});function O4(r,e){let t=v(r,"base","pow"),o=v(e,"exp","pow");[t,o]=We(t,o);let n={a:t,b:o};return E.runKernel(Xn,n)}var Lr=S({pow_:O4});function P4(r,e){let t=v(r,"x","prelu"),o=v(e,"alpha","prelu"),n={x:t,alpha:o};return E.runKernel(Yn,n)}var xa=S({prelu_:P4});function M4(r,e=null,t=!1){let o=v(r,"x","prod");o.dtype==="bool"&&(o=ne(o,"int32"));let n={x:o},s={axis:e,keepDims:t};return E.runKernel(qi,n,s)}var nu=S({prod_:M4});function L4(r,e,t){let o=ct(r),n=null;if(t==null||t==="float32")n=new Float32Array(o);else if(t==="int32")n=new Int32Array(o);else if(t==="bool")n=new Uint8Array(o);else throw new Error(`Unknown data type ${t}`);for(let s=0;s<o;s++)n[s]=e();return E.makeTensor(n,r,t)}var Lbe=S({rand_:L4});var pg=sc(Kw());var Jc=class{constructor(e,t,o,n,s){this.mean=e,this.stdDev=t,this.dtype=o,this.nextVal=NaN,this.truncated=n,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=s||Math.random();this.random=pg.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let n=this.nextVal;return this.nextVal=NaN,n}let e,t,o=!1;for(;!o;){let n,s,a;do n=2*this.random()-1,s=2*this.random()-1,a=n*n+s*s;while(a>=1||a===0);let i=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*n*i,t=this.mean+this.stdDev*s*i,(!this.truncated||this.isValidTruncated(e))&&(o=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},Xw=class{constructor(e,t,o,n){this.alpha=e,this.beta=1/t,this.dtype=o;let s=n||Math.random();this.randu=pg.alea(s.toString()),this.randn=new Jc(0,1,o,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,o,n,s,a;for(;;){do n=this.randn.nextValue(),a=1+this.c*n;while(a<=0);if(a*=a*a,e=n*n,t=1-.331*e*e,o=.5*e+this.d*(1-a+Math.log(a)),s=this.randu(),s<t||Math.log(s)<o)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},Yw=class{constructor(e=0,t=1,o,n){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=o,n==null&&(n=Math.random()),typeof n=="number"&&(n=n.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=pg.alea(n)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function U4(r,e,t=1,o="float32",n){if(t==null&&(t=1),o==null&&(o="float32"),o!=="float32"&&o!=="int32")throw new Error(`Unsupported data type ${o}`);let s=new Xw(e,t,o,n),a=ve(r,o);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var Kbe=S({randomGamma_:U4});function H4(r,e=0,t=1,o,n){if(o!=null&&o==="bool")throw new Error(`Unsupported data type ${o}`);let s=new Jc(e,t,o,!1,n),a=ve(r,o);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var mg=S({randomNormal_:H4});function q4(r,e=0,t=1,o="float32",n){let s=ve(r,o),a=new Yw(e,t,null,n);for(let i=0;i<s.values.length;i++)s.values[i]=a.nextValue();return s.toTensor()}var bs=S({randomUniform_:q4});function Qc(r,e,t=1,o="float32"){if(t===0)throw new Error("Cannot have a step of zero");let n={start:r,stop:e,step:t,dtype:o};return E.runKernel(Ja,{},n)}function K4(r){let t={input:v(r,"input","real")};return E.runKernel(Rc,t)}var cl=S({real_:K4});function X4(r){let t={x:v(r,"x","reciprocal")};return E.runKernel(Ki,t)}var Xm=S({reciprocal_:X4});function Y4(r){let t={x:v(r,"x","relu")};return E.runKernel(Zn,t)}var Tr=S({relu_:Y4});function Z4(r){let t={x:v(r,"x","relu6")};return E.runKernel(Qn,t)}var iu=S({relu6_:Z4});function J4(r,e){let o={x:v(r,"x","reverse")},n={dims:e};return E.runKernel(es,o,n)}var Ht=S({reverse_:J4});function Q4(r){let e=v(r,"x","reverse");return A(e.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${e.rank}.`),Ht(e,0)}var Pwe=S({reverse1d_:Q4});function eU(r,e){let t=v(r,"x","reverse");return A(t.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${t.rank}.`),Ht(t,e)}var Gwe=S({reverse2d_:eU});function tU(r,e){let t=v(r,"x","reverse");return A(t.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${t.rank}.`),Ht(t,e)}var Kwe=S({reverse3d_:tU});function rU(r,e){let t=v(r,"x","reverse");return A(t.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${t.rank}.`),Ht(t,e)}var e_e=S({reverse4d_:rU});function oU(r){let t={x:v(r,"x","round")};return E.runKernel(ts,t)}var Ym=S({round_:oU});function nU(r){let t={x:v(r,"x","rsqrt")};return E.runKernel(rs,t)}var au=S({rsqrt_:nU});function le(r,e){if((sr(r)&&e!=="string"||Array.isArray(r))&&e!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(e==="string"&&sr(r)&&!(r instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return qr(r,[],[],e)}function sU(r){let t={x:v(r,"x","selu")};return E.runKernel(Yi,t)}var lu=S({selu_:sU});function iU(r,e,t,o,n,s=[1,1],a="NHWC"){let i=v(r,"x","separableConv2d"),l=v(e,"depthwiseFilter","separableConv2d"),u=v(t,"pointwiseFilter","separableConv2d"),c=i,p=!1;if(i.rank===3&&(p=!0,c=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),a==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");A(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),A(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),A(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),A(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),A(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let m=l.shape[2],f=l.shape[3];A(u.shape[2]===m*f,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${m*f}, but got ${u.shape[2]}.`);let d=ds(c,l,o,n,a,s),g=Yr(d,u,1,"valid",a);return p?L(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var Zm=S({separableConv2d_:iU});async function aU(r,e){let t=v(r,"x","setdiff1d"),o=v(e,"y","setdiff1d");A(t.dtype===o.dtype,()=>`x and y should have the same dtype, but got x (${t.dtype}) and y (${o.dtype}).`),A(t.rank===1,()=>`x should be 1D tensor, but got x (${t.shape}).`),A(o.rank===1,()=>`y should be 1D tensor, but got y (${o.shape}).`);let n=await t.data(),s=await o.data(),a=new Set(s),i=0;for(let c=0;c<n.length;c++)a.has(n[c])||i++;let l=new lt([i],t.dtype),u=new lt([i],"int32");for(let c=0,p=0;c<n.length;c++)a.has(n[c])||(l.values[p]=n[c],u.values[p]=c,p++);return[l.toTensor(),u.toTensor()]}var Zw=aU;function lU(r){let t={x:v(r,"x","sign")};return E.runKernel(Ji,t)}var Jm=S({sign_:lU});function uU(r){let t={x:v(r,"x","sin")};return E.runKernel(os,t)}var uu=S({sin_:uU});function cU(r){let t={x:v(r,"x","sinh")};return E.runKernel(Zi,t)}var cu=S({sinh_:cU});function pU(r,e,t){let o=v(r,"x","slice1d");return A(o.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${o.rank} tensor`),Re(o,[e],[t])}var Qm=S({slice1d_:pU});function mU(r,e,t){let o=v(r,"x","slice2d");return A(o.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${o.rank} tensor`),Re(o,e,t)}var fg=S({slice2d_:mU});function fU(r,e,t){let o=v(r,"x","slice3d");return A(o.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${o.rank} tensor`),Re(o,e,t)}var ef=S({slice3d_:fU});function dU(r,e,t){let o=v(r,"x","slice4d");return A(o.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${o.rank} tensor`),Re(o,e,t)}var ep=S({slice4d_:dU});function hU(r,e=-1){let t=v(r,"logits","softmax","float32");if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${t.rank} and dim was ${e}`);let o={logits:t},n={dim:e};return E.runKernel(as,o,n)}var ya=S({softmax_:hU});function gU(r){A(r.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${r.dtype}.`);let e={input:r};return E.runKernel(Cc,e)}var ba=S({fft_:gU});function xU(r){A(r.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${r.dtype}.`);let e={input:r};return E.runKernel(Ic,e)}var ti=S({ifft_:xU});function yU(r){let e=r.shape[r.shape.length-1],t=r.size/e,o;if(e<=2){let n=L(r,[t,e]);o=ti(n)}else{let n=[t,2*(e-1)],s=L(cl(r),[t,e]),a=L(Ql(r),[t,e]),i=Ht(Re(s,[0,1],[t,e-2]),1),l=P(Ht(Re(a,[0,1],[t,e-2]),1),le(-1)),u=Ze([s,i],1),c=Ze([a,l],1),p=L(Co(u,c),[n[0],n[1]]);o=ti(p)}if(o=cl(o),r.rank===3&&r.shape[0]!==0){let n=o,s=r.shape[0];o=L(o,[s,o.shape[0]/s,o.shape[1]]),n.dispose()}return o}var pu=S({irfft_:yU});function bU(r,e,t=0){let n={x:v(r,"x","split")},s={numOrSizeSplits:e,axis:t};return E.runKernel(Us,n,s)}var pr=S({split_:bU});function wU(r,e){A(r.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${r.dtype}`);let t=r.shape[r.shape.length-1],o=r.size/t,n;if(e!=null&&e<t){let d=r.shape.map(g=>0),h=r.shape.map(g=>g);h[r.shape.length-1]=e,n=Re(r,d,h),t=e}else if(e!=null&&e>t){let d=r.shape.map(h=>h);d[r.shape.length-1]=e-t,n=Ze([r,ht(d)],r.shape.length-1),t=e}else n=r;let s=Ce(n),a=L(Co(n,s),[o,t]),i=ba(a),l=Math.floor(t/2)+1,u=cl(i),c=Ql(i),p=pr(u,[l,t-l],u.shape.length-1),m=pr(c,[l,t-l],c.shape.length-1),f=n.shape.slice();return f[n.shape.length-1]=l,L(Co(p[0],m[0]),f)}var wa=S({rfft_:wU});function _U(r){let t={x:v(r,"x","sqrt")};return E.runKernel(ss,t)}var gt=S({sqrt_:_U});function kU(r,e){let t=v(r,"a","squaredDifference"),o=v(e,"b","squaredDifference");[t,o]=We(t,o),Be(t.shape,o.shape);let n={a:t,b:o},s={};return E.runKernel(ls,n,s)}var mu=S({squaredDifference_:kU});function vU(r,e){let t=v(r,"x","squeeze");return L(t,Db(t.shape,e).newShape)}var No=S({squeeze_:vU});function CU(r,e=0){let t=na(r,"tensors","stack","string_or_numeric");A(t.length>=1,()=>"Pass at least one tensor to tf.stack"),t.length>0&&A(e<=t[0].rank,()=>"Axis must be <= rank of the tensor");let o=t,n={axis:e};return E.runKernel(Vs,o,n)}var Bt=S({stack_:CU});function IU(r,e=0){let o={x:v(r,"x","step")},n={alpha:e};return E.runKernel(Xo,o,n)}var ws=S({step_:IU});function NU(r,e,t,o,n=0,s=0,a=0,i=0,l=0){let c={x:v(r,"x","stridedSlice")},p={begin:e,end:t,strides:o,beginMask:n,endMask:s,ellipsisMask:a,newAxisMask:i,shrinkAxisMask:l};return E.runKernel(ea,c,p)}var tf=S({stridedSlice_:NU});function SU(r){let t={x:v(r,"x","tan")};return E.runKernel(ta,t)}var rf=S({tan_:SU});function Vt(r,e){Ro(r);let t=Ir(r,e);if(t.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return qr(r,null,t,e)}function ri(r,e,t){if(Ro(r),e!=null&&e.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let o=Ir(r,t);if(o.length!==2&&o.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return qr(r,e,o,t)}function Jve(r,e,t){if(Ro(r),e!=null&&e.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let o=Ir(r,t);if(o.length!==4&&o.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return qr(r,e,o,t)}function oCe(r,e,t){if(Ro(r),e!=null&&e.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let o=Ir(r,t);if(o.length!==5&&o.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return qr(r,e,o,t)}function lCe(r,e,t){if(Ro(r),e!=null&&e.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let o=Ir(r,t);if(o.length!==6&&o.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return e=e||o,qr(r,e,o,t)}function TU(r,e=1,t=!0){let o=v(r,"x","topk");if(o.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let n=o.shape[o.shape.length-1];if(e>n)throw new Error(`'k' passed to topk() must be <= the last dimension (${n}) but got ${e}`);let s={x:o},a={k:e,sorted:t},[i,l]=E.runKernel(ra,s,a);return{values:i,indices:l}}var of=S({topk_:TU});function AU(r,e=0,t=1,o,n){if(o!=null&&o==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Jc(e,t,o,!0,n),a=ve(r,o);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var fu=S({truncatedNormal_:AU});function EU(r,e=0){let t=v(r,"x","unique","string_or_numeric");A(t.rank>0,()=>"The input tensor must be at least 1D");let o={x:t},n={axis:e},[s,a]=E.runKernel(Lc,o,n);return{values:s,indices:a}}var tp=S({unique_:EU});function DU(r,e,t){let o=v(r,"x","unsortedSegmentSum"),n=v(e,"segmentIds","unsortedSegmentSum","int32");A(ot(t),()=>"numSegments must be of dtype int");let s={x:o,segmentIds:n},a={numSegments:t};return E.runKernel(rl,s,a)}var dg=S({unsortedSegmentSum_:DU});function $U(r,e=0){let t=v(r,"x","unstack","string_or_numeric");A(e>=-t.shape.length&&e<t.shape.length,()=>`Axis = ${e} is not in [-${t.shape.length}, ${t.shape.length})`);let o={value:t},n={axis:e};return E.runKernel(Hs,o,n)}var mr=S({unstack_:$U});function Jw(r,e=!0,t,o){return E.makeVariable(r,e,t,o)}function hg(r,e){let t=[];for(let s=0;s<e.length;s++)e[s]&&t.push(s);let o=ve(r,"int32"),n=ve([t.length,r.length],"int32");for(let s=0;s<t.length;s++){let a=o.indexToLoc(t[s]),i=s*r.length;n.values.set(a,i)}return n.toTensor()}async function RU(r){let e=v(r,"condition","whereAsync","bool"),t=await e.data(),o=hg(e.shape,t);return r!==e&&e.dispose(),o}var nf=RU;async function FU(r,e,t){let o=v(r,"tensor","boolMask"),n=v(e,"mask","boolMask","bool"),s=t==null?0:t,a=n.rank,i=o.shape;A(a>0,()=>"mask cannot be scalar"),vt(i.slice(s,s+a),n.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let h=s;h<s+a;h++)l*=i[h];let u=i.slice(0,s).concat([l],i.slice(s+a)),c=L(o,u),p=L(n,[-1]),m=await nf(p),f=No(m,[1]),d=Qo(c,f,s);return r!==o&&o.dispose(),e!==n&&n.dispose(),f.dispose(),c.dispose(),p.dispose(),m.dispose(),d}var YCe=FU;function OU(r,e="euclidean",t=null,o=!1){r=v(r,"x","norm");let n=ET(r,e,t),s=n.shape;if(o){let a=Qt(t,r.shape);s=en(n.shape,a)}return L(n,s)}function ET(r,e,t=null){if(r.rank===0)return It(r);if(r.rank!==1&&t===null)return ET(L(r,[-1]),e,t);if(r.rank===1||typeof t=="number"||Array.isArray(t)&&t.length===1){if(e===1)return ge(It(r),t);if(e===Infinity)return cr(It(r),t);if(e===-Infinity)return ei(It(r),t);if(e==="euclidean"||e===2)return gt(ge(Lr(It(r),le(2,"int32")),t));throw new Error(`Error in norm: invalid ord value: ${e}`)}if(Array.isArray(t)&&t.length===2){if(e===1)return cr(ge(It(r),t[0]),t[1]-1);if(e===Infinity)return cr(ge(It(r),t[1]),t[0]);if(e===-Infinity)return ei(ge(It(r),t[1]),t[0]);if(e==="fro"||e==="euclidean")return gt(ge(Oe(r),t));throw new Error(`Error in norm: invalid ord value: ${e}`)}throw new Error(`Error in norm: invalid axis: ${t}`)}var rp=S({norm_:OU});function PU(r,e,t,o,n=!0){let s=v(r,"v","movingAverage"),a=v(e,"x","movingAverage"),i=v(t,"decay","movingAverage");Xb(s,a),A(Hr(s.shape,a.shape),()=>"Shape mismatch in v and x");let l=le(1),u=ce(l,i),c=P(ce(a,s),u);if(n){A(o!=null,()=>"When using zeroDebias: true, step is required.");let p=v(o,"step","movingAverage");c=me(c,ce(l,Lr(i,p)))}return ee(s,c)}var k0e=S({movingAverage_:PU});function MU(r,e,t){let o=v(r,"indices","scatterND","int32"),n=v(e,"updates","scatterND");og(n,o,t);let s={indices:o,updates:n},a={shape:t};return E.runKernel(Xi,s,a)}var DT=S({scatterND_:MU});function $T(r,e,t,o){if(r.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${r.dtype}.`);if(r.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${r.shape}.`);let n=r.rank>0?r.shape[0]:1,s=r.rank>1?r.shape[1]:1;if(t.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${t.length}, should be: ${s}.`);let a=e.size;if(!(e.rank===0||e.rank===1&&a===n))throw new Error(`sparseValues has incorrect shape ${e.shape}, should be [] or [${n}]`);if(e.dtype!==o.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function LU(r,e,t,o=0){let n=v(r,"sparseIndices","sparseToDense","int32"),s=v(e,"sparseValues","sparseToDense"),a=v(o,"defaultValue","sparseToDense",s.dtype);$T(n,s,t,a);let i={sparseIndices:n,sparseValues:s,defaultValue:a},l={outputShape:t};return E.runKernel(Pc,i,l)}var gg=S({sparseToDense_:LU});function zU(r,e){let t=v(e,"indices","gatherND","int32"),n={params:v(r,"x","gatherND"),indices:t};return E.runKernel(Ri,n)}var RT=S({gatherND_:zU});function FT(r,e){if(e==null)return r.shape.slice();if(Hr(r.shape,e))return e;if(r.shape.length===e.length){let t=[];for(let o=0;o<r.shape.length;o++)e[o]==null&&r.shape[o]!=null?t.push(r.shape[o]):t.push(e[o]);return t}return e}function BU(r,e,t,o){let n=v(r,"x","dropout");if(A(n.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${n.dtype} tensor instead.`),A(e>=0&&e<1,()=>`rate must be a float in the range [0, 1), but got ${e}.`),e===0)return r instanceof Ve?n.clone():n;let s=FT(n,t),a=1-e,i=me(gs(ee(bs(s,0,1,"float32",o),a)),a);return P(n,i)}var OT=S({dropout_:BU});function PT(r){return Math.floor(Math.pow(2,Math.ceil(Math.log(r)/Math.log(2))))}function xg(r,e,t){let o=1-r%2,n=new Float32Array(r);for(let s=0;s<r;++s){let a=2*Math.PI*s/(r+o-1);n[s]=e-t*Math.cos(a)}return Vt(n,"float32")}async function VU(r,e,t=1){let o=v(r,"predictions","inTopK"),n=v(e,"targets","inTopK");A(o.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${o.rank}`),A(o.rank-1===n.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${o.rank} and targets rank ${n.rank}`),vt(o.shape.slice(0,o.shape.length-1),n.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=o.shape[o.shape.length-1];A(t>0&&t<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${t}`);let a=await o.data(),i=await n.data(),[l,u]=[a.length/s,s],c=$b("bool",l);for(let p=0;p<l;p++){let m=p*u,f=a.subarray(m,m+u),d=[];for(let h=0;h<f.length;h++)d.push({value:f[h],index:h});d.sort((h,g)=>g.value-h.value),c[p]=0;for(let h=0;h<t;h++)if(d[h].index===i[p]){c[p]=1;break}}return r!==o&&o.dispose(),e!==n&&n.dispose(),Pr(c,n.shape,"bool")}var iIe=VU;var rn={};Ge(rn,{conv2d:()=>MT,depthwiseConv2d:()=>LT,matMul:()=>zT});function GU(r,e,t,o,n,s="NHWC",a){let i=r;r.rank===3&&(i=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let l=e;l.rank===3&&(l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]])),A(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),A(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),A(t.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${t}.`);let u=s==="NHWC"?i.shape[3]:i.shape[1],c=s==="NHWC"?l.shape[3]:l.shape[1];A(u===t[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${t[2]}.`),A(c===t[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${t[3]}).`),a!=null&&A(ot(n),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`);let p={x:i,dy:l},m={strides:o,pad:n,dataFormat:s,dimRoundingMode:a,filterShape:t};return E.runKernel(gc,p,m)}var op=S({conv2DBackpropFilter_:GU});function du(r,e,t){if(t==null||t==="linear")return r;if(t==="relu")return P(r,ws(e));throw new Error(`Cannot compute gradient for fused activation ${t}.`)}function hu(r,e){let t=e,o=_t(r.shape,e.shape);return o.length>0&&(t=ge(t,o)),L(t,r.shape)}function gu(r,e,t,o){if(e==="linear")return r;if(e==="relu")return Tr(r);if(e==="elu")return hs(r);if(e==="relu6")return iu(r);if(e==="prelu")return xa(r,t);if(e==="leakyrelu")return fa(r,o);throw new Error(`Unknown fused activation ${e}.`)}var xu=(r,e)=>!(r>0)||e==="linear";function WU({x:r,filter:e,strides:t,pad:o,dataFormat:n="NHWC",dilations:s=[1,1],dimRoundingMode:a,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",xu(E.state.gradientDepth,l)===!1){let k=Yr(r,e,t,o,n,s,a);return i!=null&&(k=ee(k,i)),gu(k,l,u,c)}let p=v(r,"x","conv2d"),m=v(e,"filter","conv2d"),f=p,d=!1;p.rank===3&&(d=!0,f=L(p,[1,p.shape[0],p.shape[1],p.shape[2]])),A(f.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${f.rank}.`),A(m.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${m.rank}.`),a!=null&&A(ot(o),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`),A(f.shape[3]===m.shape[2],()=>`Error in conv2d: depth of input (${f.shape[3]}) must match input depth for filter ${m.shape[2]}.`),A(kr(t,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),A(n==="NHWC",()=>`Error in conv2d: got dataFormat of ${n} but only NHWC is currently supported.`);let h=ql(f.shape,m.shape,t,s,o,a),g;i!=null&&(g=v(i,"bias","fused conv2d"),[g]=We(g,p),Be(h.outShape,g.shape));let x;u!=null&&(x=v(u,"prelu weights","fused conv2d"));let b=(k,D)=>{let[T,R,O,M]=D,G=du(k,O,l);A(Mo(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let j=Xc(R.shape,G,T,t,o),U=op(R,G,T.shape,t,o),H=[j,U];if(M!=null){let q=hu(M,G);H.push(q)}return H},w={x:f,filter:m,bias:g,preluActivationWeights:x},_={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a,activation:l,leakyreluAlpha:c};return i==null?po((D,T,R)=>{let O=E.runKernel(Xs,w,_);return R([T,D,O]),d&&(O=L(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:b}})(f,m):po((D,T,R,O)=>{let M=E.runKernel(Xs,w,_);return O([T,D,M,R]),d&&(M=L(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:b}})(f,m,g)}var MT=S({fusedConv2d_:WU});function jU(r,e,t,o,n,s=[1,1],a){let i=r;r.rank===3&&(i=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let l=e;l.rank===3&&(l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u={x:i,dy:l},c={strides:o,pad:n,dimRoundingMode:a,dilations:s,filterShape:t};return E.runKernel(wc,u,c)}var yg=S({depthwiseConv2dNativeBackpropFilter_:jU});function UU(r,e,t,o,n,s=[1,1],a){let i=e,l=!1;e.rank===3&&(l=!0,i=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u={dy:i,filter:t},c={strides:o,pad:n,dimRoundingMode:a,dilations:s,inputShape:r},p=E.runKernel(_c,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var bg=S({depthwiseConv2dNativeBackpropInput_:UU});function HU({x:r,filter:e,strides:t,pad:o,dataFormat:n="NHWC",dilations:s=[1,1],dimRoundingMode:a,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(xu(E.state.gradientDepth,l)===!1){let k=ds(r,e,t,o,n,s,a);return i!=null&&(k=ee(k,i)),gu(k,l,u,c)}let p=v(r,"x","depthwiseConv2d"),m=v(e,"filter","depthwiseConv2d"),f=p,d=!1;p.rank===3&&(d=!0,f=L(p,[1,p.shape[0],p.shape[1],p.shape[2]])),A(f.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${f.rank}.`),A(m.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${m.rank}.`),A(f.shape[3]===m.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${f.shape[3]}) must match the inChannels dimension in filter ${m.shape[2]}.`),s==null&&(s=[1,1]),A(kr(t,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),a!=null&&A(ot(o),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${a} but got pad ${o}.`);let h=ql(f.shape,m.shape,t,s,o,a,!0),g;i!=null&&(g=v(i,"bias","fused conv2d"),[g]=We(g,p),Be(h.outShape,g.shape));let x;u!=null&&(x=v(u,"prelu weights","fused depthwiseConv2d"));let b=(k,D)=>{A(Mo(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[T,R,O,M]=D,G=du(k,O,l),j=bg(R.shape,G,T,t,o,s,a),U=yg(R,G,T.shape,t,o,s,a);if(M!=null){let H=hu(g,G);return[j,U,H]}return[j,U]},w={x:f,filter:m,bias:g,preluActivationWeights:x},_={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a,activation:l,leakyreluAlpha:c};return i==null?po((D,T,R)=>{let O=E.runKernel(Ys,w,_);return R([T,D,O]),d&&(O=L(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:b}})(f,m):po((D,T,R,O)=>{let M=E.runKernel(Ys,w,_);return O([T,D,M,R]),d&&(M=L(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:b}})(f,m,g)}var LT=S({fusedDepthwiseConv2d_:HU});function qU({a:r,b:e,transposeA:t=!1,transposeB:o=!1,bias:n,activation:s="linear",preluActivationWeights:a,leakyreluAlpha:i}){if(xu(E.state.gradientDepth,s)===!1){let M=je(r,e,t,o);return n!=null&&(M=ee(M,n)),gu(M,s,a,i)}let l=v(r,"a","fused matMul"),u=v(e,"b","fused matMul");[l,u]=We(l,u);let c=t?l.shape[l.rank-2]:l.shape[l.rank-1],p=o?u.shape[u.rank-1]:u.shape[u.rank-2],m=t?l.shape[l.rank-1]:l.shape[l.rank-2],f=o?u.shape[u.rank-2]:u.shape[u.rank-1],d=l.shape.slice(0,-2),h=u.shape.slice(0,-2),g=ct(d),x=ct(h);A(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),A(Hr(d,h),()=>`Error in fused matMul: outer dimensions (${d}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),A(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${t} and transposeB=${o} must match.`);let b=l.shape.slice(0,-2).concat([m,f]),w=t?L(l,[g,c,m]):L(l,[g,m,c]),_=o?L(u,[x,f,p]):L(u,[x,p,f]),k;n!=null&&(k=v(n,"bias","fused matMul"),[k]=We(k,l),Be(b,k.shape));let D;a!=null&&(D=v(a,"prelu weights","fused matMul"));let T=(M,G)=>{let[j,U,H,q]=G,X=du(L(M,H.shape),H,s),oe,Y;if(!t&&!o?(oe=je(X,U,!1,!0),Y=je(j,X,!0,!1)):!t&&o?(oe=je(X,U,!1,!1),Y=je(X,j,!0,!1)):t&&!o?(oe=je(U,X,!1,!0),Y=je(j,X,!1,!1)):(oe=je(U,X,!0,!0),Y=je(X,j,!0,!0)),n!=null){let re=hu(q,X);return[oe,Y,re]}else return[oe,Y]},R={a:w,b:_,bias:k,preluActivationWeights:D},O={transposeA:t,transposeB:o,activation:s,leakyreluAlpha:i};return n==null?po((G,j,U)=>{let H=E.runKernel(Ks,R,O);return U([G,j,H]),{value:L(H,b),gradFunc:T}})(w,_):po((G,j,U,H)=>{let q=E.runKernel(Ks,R,O);return H([G,j,q,U]),{value:L(q,b),gradFunc:T}})(w,_,k)}var zT=S({fusedMatMul_:qU});function KU(r){return xg(r,.54,.46)}var BT=S({hammingWindow_:KU});function XU(r){return xg(r,.5,.5)}var wg=S({hannWindow_:XU});function YU(r,e,t,o=!1,n=0){let s=0,a=[];for(;s+e<=r.size;)a.push(Re(r,s,e)),s+=t;if(o)for(;s<r.size;){let i=s+e-r.size,l=Ze([Re(r,s,e-i),ma([i],n)]);a.push(l),s+=t}return a.length===0?ri([],[0,e]):L(Ze(a),[a.length,e])}var _g=S({frame_:YU});function ZU(r,e,t,o,n=wg){o==null&&(o=PT(e));let s=_g(r,e,t),a=P(s,n(e)),i=[];for(let l=0;l<s.shape[0];l++)i.push(wa(Re(a,[l,0],[1,e]),o));return Ze(i)}var VT=S({stft_:ZU});function JU(r,e,t,o,n="bilinear",s=0){let a=v(r,"image","cropAndResize"),i=v(e,"boxes","cropAndResize","float32"),l=v(t,"boxInd","cropAndResize","int32"),u=i.shape[0];A(a.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${a.rank}.`),A(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),A(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),A(o.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${o.length}.`),A(o[0]>=1&&o[1]>=1,()=>`cropSize must be atleast [1,1], but was ${o}`),A(n==="bilinear"||n==="nearest",()=>`method must be bilinear or nearest, but was ${n}`);let c={image:a,boxes:i,boxInd:l},p={method:n,extrapolationValue:s,cropSize:o};return E.runKernel(Ni,c,p)}var GT=S({cropAndResize_:JU});function QU(r){let e=v(r,"image","flipLeftRight","float32");A(e.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${e.rank}.`);let t={image:e};return E.runKernel($i,t,{})}var WT=S({flipLeftRight_:QU});function eH(r,e,t=0,o=.5){let n=v(r,"image","rotateWithOffset","float32");A(n.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${n.rank}.`);let s={image:n},a={radians:e,fillValue:t,center:o};return E.runKernel(oa,s,a)}var jT=S({rotateWithOffset_:eH});function on(r,e,t,o,n,s){o==null&&(o=.5),n==null&&(n=Number.NEGATIVE_INFINITY),s==null&&(s=0);let a=r.shape[0];return t=Math.min(t,a),A(0<=o&&o<=1,()=>`iouThreshold must be in [0, 1], but was '${o}'`),A(r.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${r.rank}'`),A(r.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${r.shape[1]}`),A(e.rank===1,()=>"scores must be a 1D tensor"),A(e.shape[0]===a,()=>`scores has incompatible shape with boxes. Expected ${a}, but was ${e.shape[0]}`),A(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:t,iouThreshold:o,scoreThreshold:n,softNmsSigma:s}}function tH(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY){let s=v(r,"boxes","nonMaxSuppression"),a=v(e,"scores","nonMaxSuppression"),i=on(s,a,t,o,n);t=i.maxOutputSize,o=i.iouThreshold,n=i.scoreThreshold;let l={maxOutputSize:t,iouThreshold:o,scoreThreshold:n};return E.runKernel(ji,{boxes:s,scores:a},l)}var UT=S({nonMaxSuppression_:tH});function HT(r,e,t){let o=rH(r,e,t),n=o<0?-(o+1):o;r.splice(n,0,e)}function rH(r,e,t){return nH(r,e,t||oH)}function oH(r,e){return r>e?1:r<e?-1:0}function nH(r,e,t){let o=0,n=r.length,s=0,a=!1;for(;o<n;){s=o+(n-o>>>1);let i=t(e,r[s]);i>0?o=s+1:(n=s,a=!i)}return a?o:-o-1}function kg(r,e,t,o,n){return Qw(r,e,t,o,n,0)}function vg(r,e,t,o,n,s){return Qw(r,e,t,o,n,0,!1,s,!0)}function Cg(r,e,t,o,n,s){return Qw(r,e,t,o,n,s,!0)}function Qw(r,e,t,o,n,s,a=!1,i=!1,l=!1){let u=[];for(let g=0;g<e.length;g++)e[g]>n&&u.push({score:e[g],boxIndex:g,suppressBeginIndex:0});u.sort(qT);let c=s>0?-.5/s:0,p=[],m=[];for(;p.length<t&&u.length>0;){let g=u.pop(),{score:x,boxIndex:b,suppressBeginIndex:w}=g;if(x<n)break;let _=!1;for(let k=p.length-1;k>=w;--k){let D=sH(r,b,p[k]);if(D>=o){_=!0;break}if(g.score=g.score*iH(o,c,D),g.score<=n)break}g.suppressBeginIndex=p.length,_||(g.score===x?(p.push(b),m.push(g.score)):g.score>n&&HT(u,g,qT))}let f=p.length,d=t-f;i&&d>0&&(p.push(...new Array(d).fill(0)),m.push(...new Array(d).fill(0)));let h={selectedIndices:p};return a&&(h.selectedScores=m),l&&(h.validOutputs=f),h}function sH(r,e,t){let o=r.subarray(e*4,e*4+4),n=r.subarray(t*4,t*4+4),s=Math.min(o[0],o[2]),a=Math.min(o[1],o[3]),i=Math.max(o[0],o[2]),l=Math.max(o[1],o[3]),u=Math.min(n[0],n[2]),c=Math.min(n[1],n[3]),p=Math.max(n[0],n[2]),m=Math.max(n[1],n[3]),f=(i-s)*(l-a),d=(p-u)*(m-c);if(f<=0||d<=0)return 0;let h=Math.max(s,u),g=Math.max(a,c),x=Math.min(i,p),b=Math.min(l,m),w=Math.max(x-h,0)*Math.max(b-g,0);return w/(f+d-w)}function iH(r,e,t){let o=Math.exp(e*t*t);return t<=r?o:0}function qT(r,e){return r.score-e.score||r.score===e.score&&e.boxIndex-r.boxIndex}async function aH(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY){let s=v(r,"boxes","nonMaxSuppressionAsync"),a=v(e,"scores","nonMaxSuppressionAsync"),i=on(s,a,t,o,n);t=i.maxOutputSize,o=i.iouThreshold,n=i.scoreThreshold;let l=await Promise.all([s.data(),a.data()]),u=l[0],c=l[1],{selectedIndices:p}=kg(u,c,t,o,n);return s!==r&&s.dispose(),a!==e&&a.dispose(),Vt(p,"int32")}var KT=aH;function lH(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=0){let a=v(r,"boxes","nonMaxSuppression"),i=v(e,"scores","nonMaxSuppression"),l=on(a,i,t,o,n,s);t=l.maxOutputSize,o=l.iouThreshold,n=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:a,scores:i},c={maxOutputSize:t,iouThreshold:o,scoreThreshold:n,softNmsSigma:s},p=E.runKernel(Hi,u,c);return{selectedIndices:p[0],selectedScores:p[1]}}var XT=S({nonMaxSuppressionWithScore_:lH});async function uH(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=0){let a=v(r,"boxes","nonMaxSuppressionAsync"),i=v(e,"scores","nonMaxSuppressionAsync"),l=on(a,i,t,o,n,s);t=l.maxOutputSize,o=l.iouThreshold,n=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([a.data(),i.data()]),c=u[0],p=u[1],{selectedIndices:m,selectedScores:f}=Cg(c,p,t,o,n,s);return a!==r&&a.dispose(),i!==e&&i.dispose(),{selectedIndices:Vt(m,"int32"),selectedScores:Vt(f)}}var YT=uH;function cH(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=!1){let a=v(r,"boxes","nonMaxSuppression"),i=v(e,"scores","nonMaxSuppression"),l=on(a,i,t,o,n,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,m={boxes:a,scores:i},f={maxOutputSize:u,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:s},d=E.runKernel(Ui,m,f);return{selectedIndices:d[0],validOutputs:d[1]}}var ZT=S({nonMaxSuppressionPadded_:cH});async function pH(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=!1){let a=v(r,"boxes","nonMaxSuppressionAsync"),i=v(e,"scores","nonMaxSuppressionAsync"),l=on(a,i,t,o,n,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,[m,f]=await Promise.all([a.data(),i.data()]),{selectedIndices:d,validOutputs:h}=vg(m,f,u,c,p,s);return a!==r&&a.dispose(),i!==e&&i.dispose(),{selectedIndices:Vt(d,"int32"),validOutputs:le(h,"int32")}}var JT=pH;function mH(r,e,t=!1,o=!1){let n=v(r,"images","resizeBilinear");A(n.rank===3||n.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${n.rank}.`),A(e.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${e}.`),A(o===!1||t===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=n,a=!1;n.rank===3&&(a=!0,s=L(n,[1,n.shape[0],n.shape[1],n.shape[2]]));let[]=e,i={images:s},l={alignCorners:t,halfPixelCenters:o,size:e},u=E.runKernel(Jn,i,l);return a?L(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Ig=S({resizeBilinear_:mH});function fH(r,e,t=!1,o=!1){let n=v(r,"images","resizeNearestNeighbor");A(n.rank===3||n.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${n.rank}.`),A(e.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${e}.`),A(n.dtype==="float32"||n.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),A(o===!1||t===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=n,a=!1;n.rank===3&&(a=!0,s=L(n,[1,n.shape[0],n.shape[1],n.shape[2]]));let[]=e,i={images:s},l={alignCorners:t,halfPixelCenters:o,size:e},u=E.runKernel(Qa,i,l);return a?L(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Ng=S({resizeNearestNeighbor_:fH});function dH(r,e,t="nearest",o="constant",n=0,s){let a=v(r,"image","transform","float32"),i=v(e,"transforms","transform","float32");A(a.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${a.rank}.`),A(i.rank===2&&(i.shape[0]===a.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),A(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:a,transforms:i},u={interpolation:t,fillMode:o,fillValue:n,outputShape:s};return E.runKernel(Mc,l,u)}var QT=S({transform_:dH});function hH(r,e,t){A(e%1==0,()=>`bandPart(): numLower must be an integer, got ${e}.`),A(t%1==0,()=>`bandPart(): numUpper must be an integer, got ${t}.`);let o=v(r,"a","bandPart");A(o.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${o.rank}.`);let n=o.shape,[s,a]=o.shape.slice(-2);if(!(e<=s))throw new Error(`bandPart(): numLower (${e}) must not be greater than the number of rows (${s}).`);if(!(t<=a))throw new Error(`bandPart(): numUpper (${t}) must not be greater than the number of columns (${a}).`);e<0&&(e=s),t<0&&(t=a);let i=L(Qc(0,s,1,"int32"),[-1,1]),l=Qc(0,a,1,"int32"),u=ce(i,l),c=hr(zo(u,le(+e,"int32")),co(u,le(-t,"int32"))),p=ht([s,a],o.dtype);return L(Bt(mr(L(o,[-1,s,a])).map(m=>Dt(c,m,p))),n)}var e1=S({bandPart_:hH});function gH(r){let e;if(Array.isArray(r)){e=!1,A(r!=null&&r.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let n=r[0].shape[0];for(let s=1;s<r.length;++s)A(r[s].shape[0]===n,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${r[s].shape[0]} vs. ${n})`)}else e=!0,r=pr(r,r.shape[0],0).map(n=>No(n,[0]));A(r.length<=r[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${r.length}) exceeds number of dimensions (${r[0].shape[0]}).`);let t=[],o=r;for(let n=0;n<r.length;++n)t.push(E.tidy(()=>{let s=o[n];if(n>0)for(let a=0;a<n;++a){let i=P(ge(P(t[a],s)),t[a]);s=ce(s,i)}return me(s,rp(s,"euclidean"))}));return e?Bt(t,0):t}var t1=S({gramSchmidt_:gH});function xH(r,e=!1){if(A(r.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${r.rank}`),r.rank===2)return r1(r,e);{let t=r.shape.slice(0,r.shape.length-2).reduce((l,u)=>l*u),o=mr(L(r,[t,r.shape[r.shape.length-2],r.shape[r.shape.length-1]]),0),n=[],s=[];o.forEach(l=>{let[u,c]=r1(l,e);n.push(u),s.push(c)});let a=L(Bt(n,0),r.shape),i=L(Bt(s,0),r.shape);return[a,i]}}function r1(r,e=!1){return E.tidy(()=>{A(r.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${r.shape.length}D Tensor.`);let t=r.shape[0],o=r.shape[1],n=Yc(t),s=Po(r),a=ri([[1]],[1,1]),i=Po(a),l=t>=o?o:t;for(let u=0;u<l;++u){let c=s,p=i,m=n;[i,s,n]=E.tidy(()=>{let f=Re(s,[u,u],[t-u,1]),d=rp(f),h=Re(s,[u,u],[1,1]),g=Dt(tr(h,0),ri([[-1]]),ri([[1]])),x=ce(h,P(g,d)),b=me(f,x);b.shape[0]===1?i=Po(a):i=Ze([a,Re(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let w=He(me(je(g,x),d)),_=Re(s,[u,0],[t-u,o]),k=P(w,i),D=Ke(i);if(u===0)s=ce(_,je(k,je(D,_)));else{let O=ce(_,je(k,je(D,_)));s=Ze([Re(s,[0,0],[u,o]),O],0)}let T=Ke(k),R=Re(n,[0,u],[t,n.shape[1]-u]);if(u===0)n=ce(R,je(je(R,i),T));else{let O=ce(R,je(je(R,i),T));n=Ze([Re(n,[0,0],[t,u]),O],1)}return[i,s,n]}),Ae([c,p,m])}return!e&&t>o&&(n=Re(n,[0,0],[t,o]),s=Re(s,[0,0],[o,o])),[n,s]})}var o1=S({qr_:xH});var qt;(function(r){r[r.NONE=0]="NONE",r[r.MEAN=1]="MEAN",r[r.SUM=2]="SUM",r[r.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(qt||(qt={}));function yH(r,e,t=qt.SUM_BY_NONZERO_WEIGHTS){let o=v(r,"losses","computeWeightedLoss"),n=null;e!=null&&(n=v(e,"weights","computeWeightedLoss"));let s=n==null?o:P(o,n);if(t===qt.NONE)return s;if(t===qt.SUM)return ge(s);if(t===qt.MEAN){if(n==null)return dt(s);{let a=o.size/n.size,i=me(ge(s),ge(n));return a>1?me(i,le(a)):i}}if(t===qt.SUM_BY_NONZERO_WEIGHTS){if(n==null)return me(ge(s),le(o.size));{let a=P(n,Sr(o.shape)),i=ne(ge(tn(a,le(0))),"float32");return me(ge(s),i)}}throw Error(`Unknown reduction: ${t}`)}var Ar=S({computeWeightedLoss_:yH});function bH(r,e,t,o=qt.SUM_BY_NONZERO_WEIGHTS){let n=v(r,"labels","absoluteDifference"),s=v(e,"predictions","absoluteDifference"),a=null;t!=null&&(a=v(t,"weights","absoluteDifference")),vt(n.shape,s.shape,"Error in absoluteDifference: ");let i=It(ce(n,s));return Ar(i,a,o)}var n1=S({absoluteDifference_:bH});function wH(r,e,t,o,n=qt.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","cosineDistance"),a=v(e,"predictions","cosineDistance"),i=null;o!=null&&(i=v(o,"weights","cosineDistance")),vt(s.shape,a.shape,"Error in cosineDistance: ");let l=le(1),u=ce(l,ge(P(s,a),t,!0));return Ar(u,i,n)}var s1=S({cosineDistance_:wH});function _H(r,e,t,o=qt.SUM_BY_NONZERO_WEIGHTS){let n=v(r,"labels","hingeLoss"),s=v(e,"predictions","hingeLoss"),a=null;t!=null&&(a=v(t,"weights","hingeLoss")),vt(n.shape,s.shape,"Error in hingeLoss: ");let i=le(1);n=ce(P(le(2),n),i);let l=Tr(ce(i,P(n,s)));return Ar(l,a,o)}var i1=S({hingeLoss_:_H});function kH(r,e,t,o=1,n=qt.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","huberLoss"),a=v(e,"predictions","huberLoss"),i=null;t!=null&&(i=v(t,"weights","huberLoss")),vt(s.shape,a.shape,"Error in huberLoss: ");let l=le(o),u=It(ce(a,s)),c=ys(u,l),p=ce(u,c),m=ee(P(le(.5),Oe(c)),P(l,p));return Ar(m,i,n)}var a1=S({huberLoss_:kH});function vH(r,e,t,o=1e-7,n=qt.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","logLoss"),a=v(e,"predictions","logLoss"),i=null;t!=null&&(i=v(t,"weights","logLoss")),vt(s.shape,a.shape,"Error in logLoss: ");let l=le(1),u=le(o),c=He(P(s,ur(ee(a,u)))),p=P(ce(l,s),ur(ee(ce(l,a),u))),m=ce(c,p);return Ar(m,i,n)}var l1=S({logLoss_:vH});function CH(r,e,t,o=qt.SUM_BY_NONZERO_WEIGHTS){let n=v(r,"labels","meanSquaredError"),s=v(e,"predictions","meanSquaredError"),a=null;t!=null&&(a=v(t,"weights","meanSquaredError")),vt(n.shape,s.shape,"Error in meanSquaredError: ");let i=mu(n,s);return Ar(i,a,o)}var u1=S({meanSquaredError_:CH});function IH(r,e){let t=v(r,"labels","sigmoidCrossEntropyWithLogits"),o=v(e,"logits","sigmoidCrossEntropyWithLogits");vt(t.shape,o.shape,"Error in sigmoidCrossEntropyWithLogits: ");let n=Tr(o),s=P(o,t),a=tu(Zt(He(It(o))));return ee(ce(n,s),a)}function NH(r,e,t,o=0,n=qt.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"multiClassLabels","sigmoidCrossEntropy"),a=v(e,"logits","sigmoidCrossEntropy"),i=null;if(t!=null&&(i=v(t,"weights","sigmoidCrossEntropy")),vt(s.shape,a.shape,"Error in sigmoidCrossEntropy: "),o>0){let u=le(o),c=le(1),p=le(.5);s=ee(P(s,ce(c,u)),P(p,u))}let l=IH(s,a);return Ar(l,i,n)}var c1=S({sigmoidCrossEntropy_:NH});function SH(r,e,t=-1){if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${e.rank} and dim was ${t}`);return po((n,s,a)=>{let l=ug(s,[t],!0),u=ce(ne(s,"float32"),l);a([n,u]);let c=He(P(u,n));return{value:ge(c,[t]),gradFunc:(f,d)=>{let[h,g]=d,x=en(f.shape,[t]);return[P(L(f,x),ce(ne(h,"float32"),Zt(g))),P(L(f,x),ce(Zt(g),ne(h,"float32")))]}}})(r,e)}function TH(r,e,t,o=0,n=qt.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"onehotLabels","softmaxCrossEntropy"),a=v(e,"logits","softmaxCrossEntropy"),i=null;if(t!=null&&(i=v(t,"weights","softmaxCrossEntropy")),vt(s.shape,a.shape,"Error in softmaxCrossEntropy: "),o>0){let u=le(o),c=le(1),p=le(s.shape[1]);s=ee(P(s,ce(c,u)),me(u,p))}let l=SH(s,a);return Ar(l,i,n)}var p1=S({softmaxCrossEntropy_:TH});var X$e={fft:ba,ifft:ti,rfft:wa,irfft:pu},Y$e={hammingWindow:BT,hannWindow:wg,frame:_g,stft:VT},oi={flipLeftRight:WT,resizeNearestNeighbor:Ng,resizeBilinear:Ig,rotateWithOffset:jT,cropAndResize:GT,nonMaxSuppression:UT,nonMaxSuppressionAsync:KT,nonMaxSuppressionWithScore:XT,nonMaxSuppressionWithScoreAsync:YT,nonMaxSuppressionPadded:ZT,nonMaxSuppressionPaddedAsync:JT,transform:QT},m1={bandPart:e1,gramSchmidt:t1,qr:o1},Z$e={absoluteDifference:n1,computeWeightedLoss:Ar,cosineDistance:s1,hingeLoss:i1,huberLoss:a1,logLoss:l1,meanSquaredError:u1,sigmoidCrossEntropy:c1,softmaxCrossEntropy:p1};var zr=class extends sg{minimize(e,t=!1,o){let{value:n,grads:s}=this.computeGradients(e,o);if(o!=null){let a=o.map(i=>({name:i.name,tensor:s[i.name]}));this.applyGradients(a)}else this.applyGradients(s);return Ae(s),t?n:(n.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Fw(e,t)}dispose(){this.iterations_!=null&&Ae(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:le(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(zr,Symbol.hasInstance,{value:r=>r.minimize!=null&&r.computeGradients!=null&&r.applyGradients!=null});var sf=class extends zr{constructor(e,t,o=null){super();this.learningRate=e,this.rho=t,this.epsilon=o,this.accumulatedGrads=[],this.accumulatedUpdates=[],o==null&&(this.epsilon=E.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=E.registeredVariables[o],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${o}/accum_grad`,variable:V(()=>Ce(s).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${o}/accum_var`,variable:V(()=>Ce(s).variable(a))});let i=Array.isArray(e)?e[n].tensor:e[o];if(i==null)return;let l=this.accumulatedGrads[n].variable,u=this.accumulatedUpdates[n].variable;V(()=>{let c=ee(P(l,this.rho),P(Oe(i),1-this.rho)),p=P(me(gt(ee(u,this.epsilon)),gt(ee(l,this.epsilon))),i),m=ee(P(u,this.rho),P(Oe(p),1-this.rho));l.assign(c),u.assign(m);let f=ee(P(p,-this.learningRate),s);s.assign(f)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ae(this.accumulatedGrads.map(e=>e.variable)),Ae(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,o=!1;this.accumulatedGrads=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.accumulatedUpdates=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(o)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};sf.className="Adadelta";uo(sf);var af=class extends zr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=E.registeredVariables[o];if(this.accumulatedGrads[n]==null){let l=!1;this.accumulatedGrads[n]={originalName:`${o}/accumulator`,variable:V(()=>ma(s.shape,this.initialAccumulatorValue).variable(l))}}let a=Array.isArray(e)?e[n].tensor:e[o];if(a==null)return;let i=this.accumulatedGrads[n].variable;V(()=>{let l=ee(i,Oe(a));i.assign(l);let u=ee(P(me(a,gt(ee(l,E.backend.epsilon()))),-this.learningRate),s);s.assign(u)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ae(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(o=>({originalName:o.name,variable:o.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};af.className="Adagrad";uo(af);var lf=class extends zr{constructor(e,t,o,n=null){super();this.learningRate=e,this.beta1=t,this.beta2=o,this.epsilon=n,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],V(()=>{this.accBeta1=le(t).variable(),this.accBeta2=le(o).variable()}),n==null&&(this.epsilon=E.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);V(()=>{let o=ce(1,this.accBeta1),n=ce(1,this.accBeta2);t.forEach((s,a)=>{let i=E.registeredVariables[s],l=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:V(()=>Ce(i).variable(l))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${s}/v`,variable:V(()=>Ce(i).variable(l))});let u=Array.isArray(e)?e[a].tensor:e[s];if(u==null)return;let c=this.accumulatedFirstMoment[a].variable,p=this.accumulatedSecondMoment[a].variable,m=ee(P(c,this.beta1),P(u,1-this.beta1)),f=ee(P(p,this.beta2),P(Oe(u),1-this.beta2)),d=me(m,o),h=me(f,n);c.assign(m),p.assign(f);let g=ee(P(me(d,ee(gt(h),this.epsilon)),-this.learningRate),i);i.assign(g)}),this.accBeta1.assign(P(this.accBeta1,this.beta1)),this.accBeta2.assign(P(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ae(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ae(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),V(()=>{this.accBeta1.assign(Lr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Lr(this.beta2,this.iterations_+1))});let t=e.length/2,o=!1;this.accumulatedFirstMoment=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(o)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};lf.className="Adam";uo(lf);var uf=class extends zr{constructor(e,t,o,n=null,s=0){super();this.learningRate=e,this.beta1=t,this.beta2=o,this.epsilon=n,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],V(()=>{this.iteration=le(0).variable(),this.accBeta1=le(t).variable()}),n==null&&(this.epsilon=E.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);V(()=>{let o=ce(1,this.accBeta1),n=me(-this.learningRate,ee(P(this.iteration,this.decay),1));t.forEach((s,a)=>{let i=E.registeredVariables[s],l=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:Ce(i).variable(l)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${s}/v`,variable:Ce(i).variable(l)});let u=Array.isArray(e)?e[a].tensor:e[s];if(u==null)return;let c=this.accumulatedFirstMoment[a].variable,p=this.accumulatedWeightedInfNorm[a].variable,m=ee(P(c,this.beta1),P(u,1-this.beta1)),f=P(p,this.beta2),d=It(u),h=Zr(f,d);c.assign(m),p.assign(h);let g=ee(P(me(n,o),me(m,ee(h,this.epsilon))),i);i.assign(g)}),this.iteration.assign(ee(this.iteration,1)),this.accBeta1.assign(P(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ae(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ae(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};uf.className="Adamax";uo(uf);var yu=class extends zr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=Array.isArray(e)?e[n].tensor:e[o];if(s==null)return;let a=E.registeredVariables[o];V(()=>{let i=ee(P(this.c,s),a);a.assign(i)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Et(le(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};yu.className="SGD";uo(yu);var cf=class extends yu{constructor(e,t,o=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=o,this.accumulations=[],this.m=le(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=E.registeredVariables[o];if(this.accumulations[n]==null){let l=!1;this.accumulations[n]={originalName:`${o}/momentum`,variable:V(()=>Ce(s).variable(l))}}let a=this.accumulations[n].variable,i=Array.isArray(e)?e[n].tensor:e[o];i!=null&&V(()=>{let l,u=ee(P(this.m,a),i);this.useNesterov?l=ee(P(this.c,ee(i,P(u,this.m))),s):l=ee(P(this.c,u),s),a.assign(u),s.assign(l)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ae(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(o=>({originalName:o.name,variable:o.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};cf.className="Momentum";uo(cf);var pf=class extends zr{constructor(e,t=.9,o=0,n=null,s=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=o,this.epsilon=n,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,n==null&&(this.epsilon=E.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=E.registeredVariables[o],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${o}/rms`,variable:V(()=>Ce(s).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${o}/momentum`,variable:V(()=>Ce(s).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${o}/mg`,variable:V(()=>Ce(s).variable(a))});let i=Array.isArray(e)?e[n].tensor:e[o];if(i==null)return;let l=this.accumulatedMeanSquares[n].variable,u=this.accumulatedMoments[n].variable;V(()=>{let c=ee(P(l,this.decay),P(Oe(i),1-this.decay));if(this.centered){let p=this.accumulatedMeanGrads[n].variable,m=ee(P(p,this.decay),P(i,1-this.decay)),f=me(P(i,this.learningRate),gt(ce(c,ee(Oe(m),this.epsilon)))),d=ee(P(u,this.momentum),f);l.assign(c),p.assign(m),u.assign(d);let h=ce(s,d);s.assign(h)}else{let p=ee(P(l,this.decay),P(Oe(i),1-this.decay)),m=ee(P(u,this.momentum),me(P(i,this.learningRate),gt(ee(p,this.epsilon))));l.assign(p),u.assign(m);let f=ce(s,m);s.assign(f)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ae(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ae(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ae(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,o=!1;this.accumulatedMeanSquares=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.accumulatedMoments=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};pf.className="RMSProp";uo(pf);var _a=class{static sgd(e){return new yu(e)}static momentum(e,t,o=!1){return new cf(e,t,o)}static rmsprop(e,t=.9,o=0,n=null,s=!1){return new pf(e,t,o,n,s)}static adam(e=.001,t=.9,o=.999,n=null){return new lf(e,t,o,n)}static adadelta(e=.001,t=.95,o=null){return new sf(e,t,o)}static adamax(e=.002,t=.9,o=.999,n=null,s=0){return new uf(e,t,o,n,s)}static adagrad(e,t=.1){return new af(e,t)}};var bu={sgd:_a.sgd,momentum:_a.momentum,adadelta:_a.adadelta,adagrad:_a.adagrad,rmsprop:_a.rmsprop,adamax:_a.adamax,adam:_a.adam};var AH=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:r=>r())();function mf(){return new Promise(r=>AH(()=>r()))}var N={};Ge(N,{ERF_A1:()=>BH,ERF_A2:()=>VH,ERF_A3:()=>GH,ERF_A4:()=>WH,ERF_A5:()=>jH,ERF_P:()=>zH,PARALLELIZE_THRESHOLD:()=>Sg,SELU_SCALE:()=>t_,SELU_SCALEALPHA:()=>e_,applyActivation:()=>gu,assertAndGetBroadcastShape:()=>Be,assertAxesAreInnerMostDims:()=>o4,assertParamsConsistent:()=>EH,assignToTypedArray:()=>JH,axesAreInnerMostDims:()=>Pw,calculateShapes:()=>XS,combineLocations:()=>fT,complexWithEvenIndex:()=>XH,complexWithOddIndex:()=>YH,computeConv2DInfo:()=>ql,computeConv3DInfo:()=>cT,computeDefaultPad:()=>ww,computeDilation2DInfo:()=>OW,computeOptimalWindowSize:()=>$H,computeOutAndReduceShapes:()=>Mw,computeOutShape:()=>DH,computePool2DInfo:()=>yw,computePool3DInfo:()=>PW,convertConv2DDataFormat:()=>uT,eitherStridesOrDilationsAreOne:()=>kr,expandShapeToKeepDim:()=>en,exponent:()=>eq,exponents:()=>QH,fromStringArrayToUint8:()=>iq,fromUint8ToStringArray:()=>sq,getAxesPermutation:()=>Lw,getBroadcastDims:()=>vj,getComplexWithIndex:()=>ZH,getFusedBiasGradient:()=>hu,getFusedDyActivation:()=>du,getImageCenter:()=>RH,getInnerMostAxes:()=>n4,getPermuted:()=>OH,getReductionAxes:()=>_t,getReshaped:()=>FH,getReshapedPermuted:()=>PH,getSliceBeginCoords:()=>MH,getSliceSize:()=>LH,getUndoAxesPermutation:()=>Um,log:()=>HH,mergeRealAndImagArrays:()=>qH,prepareAndValidate:()=>KS,prepareSplitSize:()=>tq,segment_util:()=>r_,shouldFuse:()=>xu,slice_util:()=>er,splitRealAndImagArrays:()=>KH,tupleValuesAreOne:()=>Mo,upcastType:()=>ir,validateInput:()=>og,validateUpdateShape:()=>pw,warn:()=>UH});function EH(r,e){let t=r[0].length;r.forEach((n,s)=>{A(n.length===t,()=>`Error in concat${t}D: rank of tensors[${s}] must be the same as the rank of the rest (${t})`)}),A(e>=0&&e<t,()=>`Error in concat${t}D: axis must be between 0 and ${t-1}.`);let o=r[0];r.forEach((n,s)=>{for(let a=0;a<t;a++)A(a===e||n[a]===o[a],()=>`Error in concat${t}D: Shape of tensors[${s}] (${n}) does not match the shape of the rest (${o}) along the non-concatenated axis ${s}.`)})}function DH(r,e){let t=r[0].slice();for(let o=1;o<r.length;o++)t[e]+=r[o][e];return t}var Sg=30;function $H(r){return r<=Sg?r:lc(r,Math.floor(Math.sqrt(r)))}function RH(r,e,t){let o=t*(typeof r=="number"?r:r[0]),n=e*(typeof r=="number"?r:r[1]);return[o,n]}function FH(r,e,t,o=!0){let n=[];if(o)n=n.concat(e.slice(0)),n.push(r[0]/t),n=n.concat(r.slice(1));else{n=n.concat(r[0]);let s=e.length;for(let a=0;a<s;++a)n=n.concat([r[a+1]/e[a],e[a]]);n=n.concat(r.slice(s+1))}return n}function OH(r,e,t=!0){let o=[];if(t){o.push(e);for(let n=e+1;n<r;++n)n<=2*e?(o.push(n),o.push(n-(e+1))):o.push(n)}else{let n=[],s=[];for(let a=1;a<r;++a)a>=e*2+1||a%2==1?s.push(a):n.push(a);o.push(...n),o.push(0),o.push(...s)}return o}function PH(r,e,t,o=!0){let n=[];o?n.push(r[0]/t):n.push(r[0]*t);for(let s=1;s<r.length;++s)s<=e.length?o?n.push(e[s-1]*r[s]):n.push(r[s]/e[s-1]):n.push(r[s]);return n}function MH(r,e){let t=[0];for(let o=0;o<e;++o)t.push(r[o][0]);return t}function LH(r,e,t){let o=r.slice(0,1);for(let n=0;n<t;++n)o.push(r[n+1]-e[n][0]-e[n][1]);return o}var e_=1.7580993408473768,t_=1.0507009873554805;var zH=.3275911,BH=.254829592,VH=-.284496736,GH=1.421413741,WH=-1.453152027,jH=1.061405429;function UH(...r){W().getBool("IS_TEST")||console.warn(...r)}function HH(...r){W().getBool("IS_TEST")||console.log(...r)}function qH(r,e){if(r.length!==e.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${r.length}, imag: ${e.length}.`);let t=new Float32Array(r.length*2);for(let o=0;o<t.length;o+=2)t[o]=r[o/2],t[o+1]=e[o/2];return t}function KH(r){let e=new Float32Array(r.length/2),t=new Float32Array(r.length/2);for(let o=0;o<r.length;o+=2)e[o/2]=r[o],t[o/2]=r[o+1];return{real:e,imag:t}}function XH(r){let e=Math.ceil(r.length/4),t=new Float32Array(e),o=new Float32Array(e);for(let n=0;n<r.length;n+=4)t[Math.floor(n/4)]=r[n],o[Math.floor(n/4)]=r[n+1];return{real:t,imag:o}}function YH(r){let e=Math.floor(r.length/4),t=new Float32Array(e),o=new Float32Array(e);for(let n=2;n<r.length;n+=4)t[Math.floor(n/4)]=r[n],o[Math.floor(n/4)]=r[n+1];return{real:t,imag:o}}function ZH(r,e){let t=r[e*2],o=r[e*2+1];return{real:t,imag:o}}function JH(r,e,t,o){r[o*2]=e,r[o*2+1]=t}function QH(r,e){let t=new Float32Array(r/2),o=new Float32Array(r/2);for(let n=0;n<Math.ceil(r/2);n++){let s=(e?2:-2)*Math.PI*(n/r);t[n]=Math.cos(s),o[n]=Math.sin(s)}return{real:t,imag:o}}function eq(r,e,t){let o=(t?2:-2)*Math.PI*(r/e),n=Math.cos(o),s=Math.sin(o);return{real:n,imag:s}}function tq(r,e,t=0){let o=[];if(typeof e=="number")A(r.shape[t]%e==0,()=>"Number of splits must evenly divide the axis."),o=new Array(e).fill(r.shape[t]/e);else{let n=e.reduce((a,i)=>(i===-1&&(a+=1),a),0);A(n<=1,()=>"There should be only one negative value in split array.");let s=e.indexOf(-1);if(s!==-1){let a=e.reduce((i,l)=>l>0?i+l:i);e[s]=r.shape[t]-a}A(r.shape[t]===e.reduce((a,i)=>a+i),()=>"The sum of sizes must match the size of the axis dimension."),o=e}return o}var r_={};Ge(r_,{collectGatherOpShapeInfo:()=>nq,computeOutShape:()=>oq,segOpComputeOptimalWindowSize:()=>rq});function rq(r,e){let t=!1,o;for(r<=Sg?(o=r,t=!0):o=lc(r,Math.floor(Math.sqrt(r)));!t;)o>e||o===r?t=!0:o=lc(r,o+1);return o}function oq(r,e,t){let o=[],n=r.length;for(let s=0;s<n;s++)s!==e?o.push(r[s]):o.push(t);return o}function nq(r,e,t,o){let n=e.shape.length,s=r.shape.length;if(o!==0&&(o<-n||o>n))throw new Error(`Expect batchDims in the range of [-${n}, ${n}], but got ${o}`);if(o<0&&(o+=n),o>s)throw new Error(`batchDims (${o}) must be less than rank(x) (
${s}).`);if(t<o)throw new Error(`batchDims (${o}) must be less than or equal to axis (${t}).`);for(let p=0;p<o;++p)if(r.shape[p]!==e.shape[p])throw new Error(`x.shape[${p}]: ${r.shape[p]} should be equal to indices.shape[${p}]: ${e.shape[p]}.`);let a=r.shape[t],i=[],l=1,u=1,c=1;for(let p=0;p<o;++p)i.push(r.shape[p]),l*=r.shape[p];for(let p=o;p<t;p++)i.push(r.shape[p]),u*=r.shape[p];for(let p=o;p<n;p++)i.push(e.shape[p]);for(let p=t+1;p<s;p++)i.push(r.shape[p]),c*=r.shape[p];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:a,outputShape:i}}function sq(r){try{return r.map(e=>Vc(e))}catch(e){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${e}`)}}function iq(r){return r.map(e=>ol(e))}var Er={};Ge(Er,{nonMaxSuppressionV3Impl:()=>kg,nonMaxSuppressionV4Impl:()=>vg,nonMaxSuppressionV5Impl:()=>Cg,whereImpl:()=>hg});function te(r,e){Array.isArray(r)||(r=[r]),r.forEach(t=>{t!=null&&y.assert(t.dtype!=="complex64",()=>`${e} does not support complex64 tensors in the CPU backend.`)})}var aq=Er.whereImpl,np=class extends $s{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Va(this,Zo())}nextDataId(){return np.nextDataId++}write(e,t,o){this.firstUse&&(this.firstUse=!1,W().get("IS_NODE")&&N.warn(`
============================
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let n={id:this.nextDataId()};return this.data.set(n,{values:e,dtype:o,refCount:1}),n}makeTensorInfo(e,t,o){let n;if(t==="string"&&o!=null&&o.length>0&&y.isString(o[0])){let s=o.map(a=>y.encodeString(a));n=this.write(s,e,t)}else n=this.write(o,e,t);return{dataId:n,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,o,n,s){this.data.set(e,{values:t,dtype:n,refCount:s})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:o}=this.data.get(e);if(t==="complex64"){let n=this.readSync(o.real.dataId),s=this.readSync(o.imag.dataId);return N.mergeRealAndImagArrays(n,s)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),o=t;if(e.dtype==="string")try{o=t.map(n=>y.decodeString(n))}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return ve(e.shape,e.dtype,o)}makeOutput(e,t,o){let n=this.write(e,t,o);return Zo().makeTensorFromDataId(n,t,o,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:o}=this.data.get(e);o!=null&&(this.disposeData(o.real.dataId,!0),this.disposeData(o.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=y.now();return e(),{kernelMs:y.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){te([e],"where");let t=this.readSync(e.dataId);return aq(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};np.nextDataId=0;var __={};Ge(__,{addImpl:()=>n_,bincountImpl:()=>ap,bincountReduceImpl:()=>Tg,ceilImpl:()=>s_,concatImpl:()=>wu,expImpl:()=>i_,expm1Impl:()=>l_,floorImpl:()=>u_,gatherV2Impl:()=>Ag,greaterImpl:()=>c_,lessImpl:()=>p_,linSpaceImpl:()=>Eg,logImpl:()=>m_,maxImpl:()=>Dg,maximumImpl:()=>f_,minimumImpl:()=>d_,multiplyImpl:()=>ff,negImpl:()=>h_,notEqualImpl:()=>g_,prodImpl:()=>x_,rangeImpl:()=>_u,rsqrtImpl:()=>y_,simpleAbsImpl:()=>o_,sliceImpl:()=>ku,squaredDifferenceImpl:()=>b_,stridedSliceImpl:()=>$g,subImpl:()=>w_,tileImpl:()=>Rg,topKImpl:()=>Fg,transposeImpl:()=>lp,uniqueImpl:()=>Og});function o_(r){let e=new Float32Array(r.length);for(let t=0;t<r.length;++t)e[t]=Math.abs(r[t]);return e}var lq=r=>{let{x:e}=r.inputs,t=r.backend;te(e,"abs");let o=new Float32Array(y.sizeFromShape(e.shape)),n=t.data.get(e.dataId).values;return o=o_(n),t.makeOutput(o,e.shape,"float32")},f1={kernelName:Os,backendName:"cpu",kernelFunc:lq};function Xe(r){return(e,t,o,n,s)=>{let a=N.assertAndGetBroadcastShape(e,t),i=a.length,l=y.computeStrides(a),u=y.sizeFromShape(a),c=y.getTypedArrayFromDType(s,u),p=e.length,m=t.length,f=y.computeStrides(e),d=y.computeStrides(t),h=N.getBroadcastDims(e,a),g=N.getBroadcastDims(t,a);if(h.length+g.length===0)for(let x=0;x<c.length;++x)c[x]=r(o[x%o.length],n[x%n.length]);else for(let x=0;x<c.length;++x){let b=y.indexToLoc(x,i,l),w=b.slice(-p);h.forEach(T=>w[T]=0);let _=y.locToIndex(w,p,f),k=b.slice(-m);g.forEach(T=>k[T]=0);let D=y.locToIndex(k,m,d);c[x]=r(o[_],n[D])}return[c,a]}}function fr(r){let{inputs:e,backend:t}=r,{real:o,imag:n}=e,s=t.data.get(o.dataId).values,a=t.data.get(n.dataId).values,i=t.makeTensorInfo(o.shape,"complex64"),l=t.data.get(i.dataId);return l.complexTensorInfos={real:t.makeTensorInfo(o.shape,"float32",s),imag:t.makeTensorInfo(n.shape,"float32",a)},i}var d1={kernelName:hc,backendName:"cpu",kernelFunc:fr};function sp(r,e,t="float32"){if(t==="complex64"){let n=sp(r,e,"float32"),s=sp(r,e,"float32");return fr({inputs:{real:n,imag:s},backend:r})}let o=y.makeZerosTypedArray(y.sizeFromShape(e),t);return r.makeTensorInfo(e,t,o)}function Dr(r){let{inputs:e,backend:t}=r,{x:o}=e;return t.incRef(o.dataId),{dataId:o.dataId,shape:o.shape,dtype:o.dtype}}var h1={kernelName:Ko,backendName:"cpu",kernelFunc:Dr};function nn(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.data.get(o.dataId).complexTensorInfos.real,s=t.data.get(n.dataId).values;return t.makeTensorInfo(n.shape,n.dtype,s)}var g1={kernelName:Rc,backendName:"cpu",kernelFunc:nn};function sn(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dtype:s}=o;if(s==="complex64"){if(n.dtype==="complex64")return Dr({inputs:{x:n},backend:t});let a=sp(t,n.shape,n.dtype),i=sn({inputs:{x:n},backend:t,attrs:{dtype:"float32"}}),l=fr({inputs:{real:i,imag:a},backend:t});return t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}if(n.dtype==="complex64"){let a=nn({inputs:{input:n},backend:t}),i=sn({inputs:{x:a},backend:t,attrs:{dtype:s}});return t.disposeIntermediateTensorInfo(a),i}if(!y.hasEncodingLoss(n.dtype,s)){let a=Dr({inputs:{x:n},backend:t});return{dataId:a.dataId,shape:a.shape,dtype:s}}if(s==="int32"){let a=t.data.get(n.dataId).values,i=Int32Array.from(a);return t.makeTensorInfo(n.shape,"int32",i)}if(s==="bool"){let a=t.data.get(n.dataId).values,i=y.toTypedArray([0],n.dtype),[l,u]=Xe((c,p)=>c!==p?1:0)(n.shape,[],a,i,"bool");return t.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${n.dtype} to ${s}`)}var x1={kernelName:Ho,backendName:"cpu",kernelFunc:sn};function et(r,e,t,o){return t==null?({inputs:n,backend:s})=>{let{a,b:i}=n,l=s;te([a,i],r);let u=l.data.get(a.dataId).values,c=l.data.get(i.dataId).values,p=o||a.dtype,[m,f]=e(a.shape,i.shape,u,c,p);return l.makeTensorInfo(f,p,m)}:({inputs:n,backend:s})=>{let{a,b:i}=n,l=s;if(a.dtype==="complex64"||i.dtype==="complex64"){let u=sn({inputs:{x:a},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),p=c.complexTensorInfos.real,m=c.complexTensorInfos.imag,f=l.data.get(p.dataId).values,d=l.data.get(m.dataId).values,h=sn({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(h.dataId),x=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,w=l.data.get(x.dataId).values,_=l.data.get(b.dataId).values,[k,D,T]=t(a.shape,i.shape,f,d,w,_),R=l.makeTensorInfo(T,"float32",k),O=l.makeTensorInfo(T,"float32",D),M=fr({inputs:{real:R,imag:O},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(h),l.disposeIntermediateTensorInfo(R),l.disposeIntermediateTensorInfo(O),M}else{let u=l.data.get(a.dataId).values,c=l.data.get(i.dataId).values,p=o||a.dtype,[m,f]=e(a.shape,i.shape,u,c,p);return l.makeTensorInfo(f,p,m)}}}function ip(r){return(e,t,o,n,s,a)=>{let i=N.assertAndGetBroadcastShape(e,t),l=y.sizeFromShape(i),u=i.length,c=y.computeStrides(i),p=y.getTypedArrayFromDType("float32",l),m=y.getTypedArrayFromDType("float32",l),f=N.getBroadcastDims(e,i),d=N.getBroadcastDims(t,i),h=N.mergeRealAndImagArrays(o,n),g=N.mergeRealAndImagArrays(s,a),x=e.length,b=y.computeStrides(e),w=t.length,_=y.computeStrides(t);if(f.length+d.length===0)for(let k=0;k<p.length;k++){let D=k%h.length,T=k%g.length,R=r(h[D*2],h[D*2+1],g[T*2],g[T*2+1]);p[k]=R.real,m[k]=R.imag}else for(let k=0;k<p.length;k++){let D=y.indexToLoc(k,u,c),T=D.slice(-x);f.forEach(j=>T[j]=0);let R=y.locToIndex(T,x,b),O=D.slice(-w);d.forEach(j=>O[j]=0);let M=y.locToIndex(O,w,_),G=r(h[R*2],h[R*2+1],g[M*2],g[M*2+1]);p[k]=G.real,m[k]=G.imag}return[p,m,i]}}var n_=Xe((r,e)=>r+e),uq=ip((r,e,t,o)=>({real:r+t,imag:e+o})),ka=et(Fo,n_,uq),y1={kernelName:Fo,backendName:"cpu",kernelFunc:ka};function ap(r,e,t,o,n){let s=y.sizeFromShape(o),a=y.makeZerosTypedArray(n,t);for(let i=0;i<r.length;i++){let l=r[i];if(l<0)throw new Error("Input x must be non-negative!");l>=n||(s>0?a[l]+=e[i]:a[l]+=1)}return a}function Tg(r,e,t,o=!1){let n=r.shape[0],s=r.shape[1],a=ve([n,t],e.dtype);for(let i=0;i<n;i++)for(let l=0;l<s;l++){let u=r.get(i,l);if(u<0)throw new Error("Input x must be non-negative!");u>=t||(o?a.set(1,i,u):e.size>0?a.set(a.get(i,u)+e.get(i,l),i,u):a.set(a.get(i,u)+1,i,u))}return a}function an(r){return(e,t,o)=>{let n=y.getTypedArrayFromDType(t,e.length);for(let s=0;s<e.length;++s)n[s]=r(e[s],o);return n}}function $e(r,e,t){return({inputs:o,attrs:n,backend:s})=>{let{x:a}=o;if(te(a,r),a.dtype==="string"||t==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=s,l=i.data.get(a.dataId).values,u=y.sizeFromShape(a.shape),c=t||a.dtype,p=y.getArrayFromDType(c,u);for(let m=0;m<u;++m)p[m]=e(l[m],n);return i.makeTensorInfo(a.shape,c,p)}}function ln(r,e,t){return({inputs:o,attrs:n,backend:s})=>{let{x:a}=o;if(te(a,r),a.dtype==="string"||t==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=s,l=i.data.get(a.dataId).values,u=t||a.dtype,c=e(l,u,n);return i.makeTensorInfo(a.shape,u,c)}}var s_=an(r=>Math.ceil(r)),cq=ln(Nn,s_),b1={kernelName:Nn,backendName:"cpu",kernelFunc:cq};function wu(r,e,t,o){let n=y.getArrayFromDType(t,y.sizeFromShape(e));if(o&&t!=="string"){let s=0;r.forEach(a=>{let i=y.sizeFromShape(a.shape);n.set(a.vals,s),s+=i})}else{let s=0;r.forEach(a=>{let i=t==="string"?N.fromUint8ToStringArray(a.vals):a.vals,l=0;for(let u=0;u<a.shape[0];++u){let c=u*e[1]+s;for(let p=0;p<a.shape[1];++p)n[c+p]=i[l++]}s+=a.shape[1]})}return n}var i_=an(r=>Math.exp(r)),a_=ln(Rn,i_),w1={kernelName:Rn,backendName:"cpu",kernelFunc:a_};var l_=an(r=>Math.expm1(r)),pq=ln(Di,l_),_1={kernelName:Di,backendName:"cpu",kernelFunc:pq};var u_=an(r=>Math.floor(r)),mq=ln(Fn,u_),k1={kernelName:Fn,backendName:"cpu",kernelFunc:mq};function Ag(r,e,t){let o=ve(t,r.dtype);for(let n=0;n<o.size;++n){let a=o.indexToLoc(n).slice(),i=a[0],l=a[2],u=e.locToIndex([i,l]);a[2]=e.values[u];let c=r.locToIndex(a);o.values[n]=r.values[c]}return o}var c_=Xe((r,e)=>r>e?1:0),fq=et(Fi,c_,null,"bool"),v1={kernelName:Fi,backendName:"cpu",kernelFunc:fq};var p_=Xe((r,e)=>r<e?1:0),dq=et(Li,p_,null,"bool"),C1={kernelName:Li,backendName:"cpu",kernelFunc:dq};function Eg(r,e,t){let o=(e-r)/(t-1),n=y.makeZerosTypedArray(t,"float32");n[0]=r;for(let s=1;s<n.length;s++)n[s]=n[s-1]+o;return n}var m_=an(r=>Math.log(r)),hq=ln(zn,m_),I1={kernelName:zn,backendName:"cpu",kernelFunc:hq};function Dg(r,e,t,o){let n=y.getTypedArrayFromDType(o,y.sizeFromShape(t));for(let s=0;s<n.length;++s){let a=s*e,i=r[a];for(let l=0;l<e;++l){let u=r[a+l];u>i&&(i=u)}n[s]=i}return n}var f_=Xe((r,e)=>Math.max(r,e)),gq=et(Vn,f_),N1={kernelName:Vn,backendName:"cpu",kernelFunc:gq};var d_=Xe((r,e)=>Math.min(r,e)),xq=et(Un,d_),S1={kernelName:Un,backendName:"cpu",kernelFunc:xq};var ff=Xe((r,e)=>r*e),yq=ip((r,e,t,o)=>({real:r*t-e*o,imag:r*o+e*t})),df=et(Hn,ff,yq),T1={kernelName:Hn,backendName:"cpu",kernelFunc:df};function h_(r,e,t){let o=y.createScalarValue(-1,t);return ff([],e,o,r,t)}function bq(r){let{inputs:e,backend:t}=r,{x:o}=e;te(o,"neg");let n=t.data.get(o.dataId).values,[s,a]=h_(n,o.shape,o.dtype);return t.makeTensorInfo(a,o.dtype,s)}var A1={kernelName:zs,backendName:"cpu",kernelFunc:bq};var g_=Xe((r,e)=>r!==e?1:0),wq=et(Wi,g_,null,"bool"),E1={kernelName:Wi,backendName:"cpu",kernelFunc:wq};function lp(r,e,t,o,n){let s=e.length,a=y.sizeFromShape(e),i=y.computeStrides(e),l=y.computeStrides(n),u=y.getTypedArrayFromDType(t,y.sizeFromShape(n));for(let c=0;c<a;++c){let p=y.indexToLoc(c,s,i),m=new Array(p.length);for(let d=0;d<m.length;d++)m[d]=p[o[d]];let f=y.locToIndex(m,s,l);u[f]=r[c]}return u}function or(r){let{inputs:e,attrs:t,backend:o}=r,{x:n}=e,{perm:s}=t;te(n,"transpose");let a=n.shape.length,i=new Array(a);for(let p=0;p<i.length;p++)i[p]=n.shape[s[p]];let l=o.data.get(n.dataId).values,u=lp(l,n.shape,n.dtype,s,i);return{dataId:o.write(u,i,n.dtype),shape:i,dtype:n.dtype}}var D1={kernelName:ps,backendName:"cpu",kernelFunc:or};function x_(r,e,t,o){let[n,s]=N.computeOutAndReduceShapes(r,o),a=ir(e,"int32"),i=y.makeZerosTypedArray(y.sizeFromShape(n),a),l=y.sizeFromShape(s);for(let u=0;u<i.length;++u){let c=u*l,p=1;for(let m=0;m<l;++m)p*=t[c+m];i[u]=p}return{outVals:i,outShape:n,outDtype:a}}function _q(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;te(n,"prod");let i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=N.getAxesPermutation(l,i),c=l,p=n,m=[];u!=null&&(p=or({inputs:{x:n},backend:t,attrs:{perm:u}}),m.push(p),c=N.getInnerMostAxes(c.length,i));let f=t.data.get(p.dataId).values,{outVals:d,outShape:h,outDtype:g}=x_(p.shape,p.dtype,f,c),x=h;return a&&(x=N.expandShapeToKeepDim(h,l)),m.forEach(b=>t.disposeIntermediateTensorInfo(b)),t.makeTensorInfo(x,g,d)}var $1={kernelName:qi,backendName:"cpu",kernelFunc:_q};function _u(r,e,t,o){let n=r===e,s=r<e&&t<0,a=e<r&&t>1;if(n||s||a)return y.makeZerosTypedArray(0,o);let i=Math.abs(Math.ceil((e-r)/t)),l=y.makeZerosTypedArray(i,o);e<r&&t===1&&(t=-1),l[0]=r;for(let u=1;u<l.length;u++)l[u]=l[u-1]+t;return l}var y_=an(r=>1/Math.sqrt(r)),kq=ln(rs,y_),R1={kernelName:rs,backendName:"cpu",kernelFunc:kq};function ku(r,e,t,o,n){let s=er.isSliceContinous(o,e,t),a=y.sizeFromShape(t),i=y.computeStrides(o);if(s){let p=er.computeFlatOffset(e,i);return n==="string"?r.slice(p,p+a):r.subarray(p,p+a)}let l=n==="string"?N.fromUint8ToStringArray(r):r,u=ve(o,n,l),c=ve(t,n);for(let p=0;p<c.size;++p){let m=c.indexToLoc(p),f=m.map((d,h)=>d+e[h]);c.set(u.get(...f),...m)}return n==="string"?N.fromStringArrayToUint8(c.values):c.values}function un(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,size:a}=o;te(n,"slice");let[i,l]=er.parseSliceParams(n,s,a);er.assertParamsValid(n,i,l);let u=t.data.get(n.dataId).values,c=ku(u,i,l,n.shape,n.dtype);return t.makeTensorInfo(l,n.dtype,c)}var F1={kernelName:js,backendName:"cpu",kernelFunc:un};var b_=Xe((r,e)=>{let t=r-e;return t*t}),vq=et(ls,b_),O1={kernelName:ls,backendName:"cpu",kernelFunc:vq};function $g(r,e,t,o){let n=ve(r,e.dtype);for(let s=0;s<n.size;s++){let a=n.indexToLoc(s),i=new Array(a.length);for(let l=0;l<i.length;l++)i[l]=a[l]*t[l]+o[l];n.set(e.get(...i),...a)}return n}var w_=Xe((r,e)=>r-e),Cq=ip((r,e,t,o)=>({real:r-t,imag:e-o})),hf=et(us,w_,Cq),P1={kernelName:us,backendName:"cpu",kernelFunc:hf};function Rg(r,e){let t=new Array(r.rank);for(let n=0;n<t.length;n++)t[n]=r.shape[n]*e[n];let o=ve(t,r.dtype);for(let n=0;n<o.values.length;++n){let s=o.indexToLoc(n),a=new Array(r.rank);for(let l=0;l<a.length;l++)a[l]=s[l]%r.shape[l];let i=r.locToIndex(a);o.values[n]=r.values[i]}return o}function Fg(r,e,t,o,n){let s=e[e.length-1],[a,i]=[r.length/s,s],l=y.getTypedArrayFromDType(t,a*o),u=y.getTypedArrayFromDType("int32",a*o);for(let p=0;p<a;p++){let m=p*i,f=r.subarray(m,m+i),d=[];for(let b=0;b<f.length;b++)d.push({value:f[b],index:b});d.sort((b,w)=>w.value-b.value);let h=p*o,g=l.subarray(h,h+o),x=u.subarray(h,h+o);for(let b=0;b<o;b++)g[b]=d[b].value,x[b]=d[b].index}let c=e.slice();return c[c.length-1]=o,[ve(c,t,l),ve(c,"int32",u)]}function Og(r,e,t,o){let n=y.parseAxisParam(e,t)[0],s=[1,t[0],1];for(let d=0;d<n;d++)s[0]*=t[d];s[1]=t[n];for(let d=n+1;d<t.length;d++)s[2]*=t[d];let a={},i=new Int32Array(t[n]),l=new lt(s,o,r),u=[],c=s[0]===1&&s[2]===1;for(let d=0;d<t[n];d++){let h;if(c)h=r[d].toString();else{let g=[];for(let x=0;x<s[0];x++)for(let b=0;b<s[2];b++)g.push(l.get(x,d,b));h=g.join(",")}if(a[h]!==void 0)i[d]=a[h];else{let g=Object.keys(a).length;a[h]=g,i[d]=g,u.push(d)}}let p=s.slice();p[1]=Object.keys(a).length;let m=new lt(p,o);u.forEach((d,h)=>{for(let g=0;g<s[0];g++)for(let x=0;x<s[2];x++)m.set(l.get(g,d,x),g,h,x)});let f=t.slice();return f[n]=p[1],{outputValues:m.values,outputShape:f,indices:i}}var k_="3.3.0";qc("cpu",()=>new np,1);var v_=$e(Ti,r=>r>=0?r:Math.exp(r)-1),M1={kernelName:Ti,backendName:"cpu",kernelFunc:v_};function C_(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{alpha:s}=o;te([n],"leakyRelu");let a=y.sizeFromShape(n.shape),i=t.data.get(n.dataId).values,l=y.getTypedArrayFromDType("float32",a);for(let u=0;u<i.length;u++)l[u]=i[u]<0?s*i[u]:i[u];return t.makeTensorInfo(n.shape,"float32",l)}var L1={kernelName:Ln,backendName:"cpu",kernelFunc:C_};var Iq=Xe((r,e)=>r<0?e*r:r);function I_(r){let{inputs:e,backend:t}=r,{x:o,alpha:n}=e;te([o,n],"prelu");let s=t.data.get(o.dataId).values,a=t.data.get(n.dataId).values,[i,l]=Iq(o.shape,n.shape,s,a,o.dtype);return t.makeTensorInfo(l,o.dtype,i)}var z1={kernelName:Yn,backendName:"cpu",kernelFunc:I_};var N_=$e(Zn,r=>Math.max(0,r)),B1={kernelName:Zn,backendName:"cpu",kernelFunc:N_};var S_=$e(Qn,r=>Math.min(Math.max(0,r),6)),V1={kernelName:Qn,backendName:"cpu",kernelFunc:S_};function up(r,e,t,o,n){if(t==="linear")return Dr({inputs:{x:e},backend:r});if(t==="relu")return N_({inputs:{x:e},backend:r});if(t==="elu")return v_({inputs:{x:e},backend:r});if(t==="relu6")return S_({inputs:{x:e},backend:r});if(t==="prelu")return I_({inputs:{x:e,alpha:o},backend:r});if(t==="leakyrelu")return C_({inputs:{x:e},backend:r,attrs:{alpha:n}});throw new Error(`Activation ${t} has not been implemented for the CPU backend.`)}function Qe(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{shape:s}=o,a=y.sizeFromShape(n.shape),i=y.inferFromImplicitShape(s,a),l=y.sizeFromShape(i);y.assert(a===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${n.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),t.incRef(n.dataId);let u=t.data.get(n.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,p=u.complexTensorInfos.imag;c.shape=i,p.shape=i}return{dataId:n.dataId,shape:i,dtype:n.dtype}}var G1={kernelName:Gs,backendName:"cpu",kernelFunc:Qe};function T_(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s}=e,{transposeA:a,transposeB:i}=o;te([n,s],"matMul");let l=n.shape.length,u=s.shape.length,c=a?n.shape[l-2]:n.shape[l-1],p=i?s.shape[u-1]:s.shape[u-2],m=a?n.shape[l-1]:n.shape[l-2],f=i?s.shape[u-2]:s.shape[u-1],d=n.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),b=g===x||g===1||x===1;y.assert(l>=2&&u>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${d}) and (${h}).`);let _=(g>x?n.shape.slice(0,-2):s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${n.shape} and ${s.shape} and transposeA=${a} and transposeB=${i} must match.`);let k=a?[g,c,m]:[g,m,c],D=i?[x,f,p]:[x,p,f],T=Qe({inputs:{x:n},backend:t,attrs:{shape:k}}),R=Qe({inputs:{x:s},backend:t,attrs:{shape:D}}),O=a?T.shape[1]:T.shape[2],M=a?T.shape[2]:T.shape[1],G=i?R.shape[1]:R.shape[2],j=Math.max(g,x),U=t.data.get(T.dataId).values,H=t.data.get(R.dataId).values,q=y.computeStrides(T.shape),X=y.computeStrides(R.shape),[oe,Y,re]=a?[q[0],1,q[1]]:[q[0],q[1],1],[J,ie,ue]=i?[1,X[1],X[0]]:[X[1],1,X[0]],ae=M*G,fe=ve([j,M,G],T.dtype),de=fe.values,xe=t.blockSize;for(let we=0;we<j;we++)for(let De=0;De<M;De+=xe)for(let Ne=0;Ne<G;Ne+=xe)for(let ze=0;ze<O;ze+=xe){let qe=Math.min(De+xe,M),it=Math.min(Ne+xe,G),St=Math.min(ze+xe,O);for(let Tt=De;Tt<qe;Tt++)for(let Ue=Ne;Ue<it;Ue++){let ut=0;for(let mt=ze;mt<St;mt++){let Pt=Math.min(we,g-1)*oe,_o=Math.min(we,x-1)*ue,Xt=U[Pt+Tt*Y+mt*re],oo=H[mt*J+Ue*ie+_o];ut+=Xt*oo}de[we*ae+(Tt*G+Ue)]+=ut}}return t.disposeIntermediateTensorInfo(T),t.disposeIntermediateTensorInfo(R),t.makeTensorInfo(_,fe.dtype,fe.values)}var W1={kernelName:In,backendName:"cpu",kernelFunc:T_};function Nq(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s,bias:a,preluActivationWeights:i}=e,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=o,m,f,d,h=[];m=T_({inputs:{a:n,b:s},attrs:{transposeA:l,transposeB:u},backend:t}),a&&(f=ka({inputs:{a:m,b:a},backend:t}),h.push(m),m=f),c&&(d=up(t,m,c,i,p),h.push(m),m=d);for(let x of h)t.disposeIntermediateTensorInfo(x);return m}var j1={kernelName:Ks,backendName:"cpu",kernelFunc:Nq};var Sq=$e(yi,r=>Math.acos(r)),U1={kernelName:yi,backendName:"cpu",kernelFunc:Sq};var Tq=$e(bi,r=>Math.acosh(r)),H1={kernelName:bi,backendName:"cpu",kernelFunc:Tq};function Aq(r){let{inputs:e,backend:t}=r,o=e;te(e,"addN");let n=o.map(i=>t.data.get(i.dataId).values),s=ve(o[0].shape,o[0].dtype),a=s.values;for(let i=0;i<o.length;i++){let l=n[i];for(let u=0;u<a.length;u++)a[u]+=l[u]}return t.makeTensorInfo(s.shape,s.dtype,s.values)}var q1={kernelName:kn,backendName:"cpu",kernelFunc:Aq};function Eq(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;te(n,"all");let i=y.parseAxisParam(s,n.shape),l=i,u=N.getAxesPermutation(l,n.shape.length),c=n;u!=null&&(c=or({inputs:{x:n},backend:t,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,n.shape.length)),N.assertAxesAreInnerMostDims("all",l,c.shape.length);let[p,m]=N.computeOutAndReduceShapes(c.shape,l),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let b=x*f,w=h[b];for(let _=0;_<f;++_){let k=h[b+_];w=w&&k}d[x]=w}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let x=N.expandShapeToKeepDim(p,i),b=Qe({inputs:{x:g},backend:t,attrs:{shape:x}});return t.disposeIntermediateTensorInfo(g),b}return g}var K1={kernelName:cc,backendName:"cpu",kernelFunc:Eq};function Dq(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;te(n,"any");let i=y.parseAxisParam(s,n.shape),l=i,u=N.getAxesPermutation(l,n.shape.length),c=n;u!=null&&(c=or({inputs:{x:n},backend:t,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,n.shape.length)),N.assertAxesAreInnerMostDims("any",l,c.shape.length);let[p,m]=N.computeOutAndReduceShapes(c.shape,l),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let b=x*f,w=h[b];for(let _=0;_<f;++_){let k=h[b+_];w=w||k}d[x]=w}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let x=N.expandShapeToKeepDim(p,i),b=Qe({inputs:{x:g},backend:t,attrs:{shape:x}});return t.disposeIntermediateTensorInfo(g),b}return g}var X1={kernelName:pc,backendName:"cpu",kernelFunc:Dq};function $q(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o;te(n,"argMax");let a=y.parseAxisParam(s,n.shape),i=N.getAxesPermutation(a,n.shape.length),l=n,u=[];i!=null&&(l=or({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(l),a=N.getInnerMostAxes(a.length,l.shape.length)),a=[a[0]],N.assertAxesAreInnerMostDims("argMax",a,l.shape.length);let[c,p]=N.computeOutAndReduceShapes(l.shape,a),m=y.sizeFromShape(c),f=y.makeZerosTypedArray(m,"int32"),d=y.sizeFromShape(p),h=t.data.get(l.dataId).values;for(let g=0;g<f.length;++g){let x=g*d,b=h[x],w=0;for(let _=0;_<d;++_){let k=h[x+_];k>b&&(b=k,w=_)}f[g]=w}return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),t.makeTensorInfo(c,"int32",f)}var Y1={kernelName:vn,backendName:"cpu",kernelFunc:$q};function Rq(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o;te(n,"argMin");let a=y.parseAxisParam(s,n.shape),i=N.getAxesPermutation(a,n.shape.length),l=n,u=[];i!=null&&(l=or({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(l),a=N.getInnerMostAxes(a.length,l.shape.length)),a=[a[0]],N.assertAxesAreInnerMostDims("argMin",a,l.shape.length);let[c,p]=N.computeOutAndReduceShapes(l.shape,a),m=y.sizeFromShape(c),f=y.makeZerosTypedArray(m,"int32"),d=y.sizeFromShape(p),h=t.data.get(l.dataId).values;for(let g=0;g<f.length;++g){let x=g*d,b=h[x],w=0;for(let _=0;_<d;++_){let k=h[x+_];k<b&&(b=k,w=_)}f[g]=w}return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),t.makeTensorInfo(c,"int32",f)}var Z1={kernelName:Ga,backendName:"cpu",kernelFunc:Rq};var Fq=$e(wi,r=>Math.asin(r)),J1={kernelName:wi,backendName:"cpu",kernelFunc:Fq};var Oq=$e(_i,r=>Math.asinh(r)),Q1={kernelName:_i,backendName:"cpu",kernelFunc:Oq};var Pq=$e(ki,r=>Math.atan(r)),eA={kernelName:ki,backendName:"cpu",kernelFunc:Pq};var Mq=Xe((r,e)=>Math.atan2(r,e)),Lq=et(Ci,Mq),tA={kernelName:Ci,backendName:"cpu",kernelFunc:Lq};var zq=$e(vi,r=>Math.atanh(r)),rA={kernelName:vi,backendName:"cpu",kernelFunc:zq};function cp(r,e,t,o,n,s){let a=n.strideHeight,i=n.strideWidth,l=n.dilationHeight,u=n.dilationWidth,c=n.effectiveFilterHeight,p=n.effectiveFilterWidth,m=n.padInfo.top,f=n.padInfo.left,d=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,h=ve(n.outShape,t),g=h.values,x=n.outShape[1]*n.outShape[2]*n.outShape[3],b=n.outShape[2]*n.outShape[3],w=n.outShape[3];for(let _=0;_<n.batchSize;++_){let k=_*x,D=_*o[0];for(let T=0;T<n.inChannels;++T)for(let R=0;R<n.outHeight;++R){let O=R*a-m,M=Math.max(0,O),G=Math.min(n.inHeight,c+O),j=k+R*b;for(let U=0;U<n.outWidth;++U){let H=U*i-f,q=Math.max(0,H),X=Math.min(n.inWidth,p+H),oe=d,Y=0,re=0;for(let ie=M;ie<G;ie+=l){let ue=D+ie*o[1];for(let ae=q;ae<X;ae+=u){let fe=ue+ae*o[2],de=r[fe+T];s==="max"&&de>oe?oe=de:s==="avg"&&(Y+=de,re++)}if(isNaN(oe))break}let J=j+U*w+T;g[J]=s==="avg"?Y/re:oe}}}return h}function Pg(r,e,t,o,n=!1,s=!1){let a=ve(o.outShape,"int32"),i=o.strideHeight,l=o.strideWidth,u=o.dilationHeight,c=o.dilationWidth,p=o.effectiveFilterHeight,m=o.effectiveFilterWidth,f=o.padInfo.top,d=o.padInfo.left,h=ve(e,t,r);for(let g=0;g<o.batchSize;++g)for(let x=0;x<o.inChannels;++x)for(let b=0;b<o.outHeight;++b){let w=b*i-f,_=w;for(;_<0;)_+=u;let k=Math.min(o.inHeight,p+w);for(let D=0;D<o.outWidth;++D){let T=D*l-d,R=T;for(;R<0;)R+=c;let O=Math.min(o.inWidth,m+T),M=Number.NEGATIVE_INFINITY,G=-1;for(let j=_;j<k;j+=u){let U=j-w;for(let H=R;H<O;H+=c){let q=H-T,X=h.get(g,j,H,x);X>M&&(M=X,n?G=s?((g*o.inHeight+j)*o.inWidth+H)*o.inChannels+x:(j*o.inWidth+H)*o.inChannels+x:G=U*m+q)}}a.set(G,g,b,D,x)}}return a}function Mg(r,e,t,o,n,s){let a=n.strideDepth,i=n.strideHeight,l=n.strideWidth,u=n.dilationDepth,c=n.dilationHeight,p=n.dilationWidth,m=n.effectiveFilterDepth,f=n.effectiveFilterHeight,d=n.effectiveFilterWidth,h=n.padInfo.front,g=n.padInfo.top,x=n.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,w=ve(n.outShape,t),_=w.values,k=n.outShape[1]*n.outShape[2]*n.outShape[3]*n.outShape[4],D=n.outShape[2]*n.outShape[3]*n.outShape[4],T=n.outShape[3]*n.outShape[4],R=n.outShape[4];for(let O=0;O<n.batchSize;++O){let M=O*k,G=O*o[0];for(let j=0;j<n.inChannels;++j)for(let U=0;U<n.outDepth;++U){let H=U*a-h,q=H;for(;q<0;)q+=u;let X=Math.min(n.inDepth,m+H),oe=M+U*D;for(let Y=0;Y<n.outHeight;++Y){let re=Y*i-g,J=re;for(;J<0;)J+=c;let ie=Math.min(n.inHeight,f+re),ue=oe+Y*T;for(let ae=0;ae<n.outWidth;++ae){let fe=ae*l-x,de=fe;for(;de<0;)de+=p;let xe=Math.min(n.inWidth,d+fe),we=ue+ae*R,De=b,Ne=0,ze=0;for(let it=q;it<X;it+=u){let St=G+it*o[1];for(let Tt=J;Tt<ie;Tt+=c){let Ue=St+Tt*o[2];for(let ut=de;ut<xe;ut+=p){let mt=Ue+ut*o[3],Pt=r[mt+j];if(s==="max"&&Pt>De?De=Pt:s==="avg"&&(Ne+=Pt,ze++),isNaN(De))break}if(isNaN(De))break}if(isNaN(De))break}let qe=we+j;_[qe]=s==="avg"?Ne/ze:De}}}}return w}function oA(r,e){let t=ve(e.outShape,"int32"),o=e.strideDepth,n=e.strideHeight,s=e.strideWidth,a=e.dilationDepth,i=e.dilationHeight,l=e.dilationWidth,u=e.effectiveFilterDepth,c=e.effectiveFilterHeight,p=e.effectiveFilterWidth,m=e.padInfo.front,f=e.padInfo.top,d=e.padInfo.left;for(let h=0;h<e.batchSize;++h)for(let g=0;g<e.inChannels;++g)for(let x=0;x<e.outDepth;++x){let b=x*o-m,w=b;for(;w<0;)w+=a;let _=Math.min(e.inDepth,u+b);for(let k=0;k<e.outHeight;++k){let D=k*n-f,T=D;for(;T<0;)T+=i;let R=Math.min(e.inHeight,c+D);for(let O=0;O<e.outWidth;++O){let M=O*s-d,G=M;for(;G<0;)G+=l;let j=Math.min(e.inWidth,p+M),U=Number.NEGATIVE_INFINITY,H=-1;for(let q=w;q<_;q+=a){let X=q-b;for(let oe=T;oe<R;oe+=i){let Y=oe-D;for(let re=G;re<j;re+=l){let J=re-M,ie=r.get(h,q,oe,re,g);ie>=U&&(U=ie,H=X*c*p+Y*c+J)}}}t.set(H,h,x,k,O,g)}}}return t}function Bq(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;te(n,"avgPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=o,u=1;y.assert(N.eitherStridesOrDilationsAreOne(a,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=N.computePool2DInfo(n.shape,s,a,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Dr({inputs:{x:n},backend:t});else{let m=t.data.get(n.dataId).values,f=y.computeStrides(n.shape),d=cp(m,n.shape,n.dtype,f,c,"avg");p=t.makeTensorInfo(c.outShape,n.dtype,d.values)}return p}var nA={kernelName:Cn,backendName:"cpu",kernelFunc:Bq};function Vq(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=o;te(n,"avgPool3d");let c=N.computePool3DInfo(n.shape,s,a,1,i,l,u),p=t.data.get(n.dataId).values,m=Mg(p,n.shape,n.dtype,y.computeStrides(n.shape),c,"avg");return t.makeTensorInfo(m.shape,"float32",m.values)}var sA={kernelName:Wa,backendName:"cpu",kernelFunc:Vq};function Gq(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=o;te([n,s],"avgPool3DGrad");let c=N.computePool3DInfo(s.shape,a,i,1,l,u),p=c.strideDepth,m=c.strideHeight,f=c.strideWidth,d=c.filterDepth,h=c.filterHeight,g=c.filterWidth,x=c.dilationDepth,b=c.dilationHeight,w=c.dilationWidth,_=c.effectiveFilterDepth,k=c.effectiveFilterHeight,D=c.effectiveFilterWidth,T=_-1-c.padInfo.front,R=D-1-c.padInfo.left,O=k-1-c.padInfo.top,M=ve(s.shape,"float32"),G=1/(d*h*g),j=t.bufferSync(n);for(let U=0;U<c.batchSize;++U)for(let H=0;H<c.inChannels;++H)for(let q=0;q<c.inDepth;++q)for(let X=0;X<c.inHeight;++X)for(let oe=0;oe<c.inWidth;++oe){let Y=q-T,re=X-O,J=oe-R,ie=0;for(let ue=0;ue<_;ue+=x){let ae=(Y+ue)/p;if(!(ae<0||ae>=c.outDepth||Math.floor(ae)!==ae))for(let fe=0;fe<k;fe+=b){let de=(re+fe)/m;if(!(de<0||de>=c.outHeight||Math.floor(de)!==de))for(let xe=0;xe<D;xe+=w){let we=(J+xe)/f;if(we<0||we>=c.outWidth||Math.floor(we)!==we)continue;ie+=j.get(U,ae,de,we,H)}}}M.set(ie*G,U,q,X,oe,H)}return t.makeTensorInfo(M.shape,M.dtype,M.values)}var iA={kernelName:fc,backendName:"cpu",kernelFunc:Gq};function Wq(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s;te([n,s],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=o,c=N.computePool2DInfo(a.shape,i,l,1,u),p=c.strideHeight,m=c.strideWidth,f=c.filterHeight,d=c.filterWidth,h=c.dilationHeight,g=c.dilationWidth,x=c.effectiveFilterHeight,b=c.effectiveFilterWidth,w=b-1-c.padInfo.left,_=x-1-c.padInfo.top,k=ve(a.shape,"float32"),D=1/(f*d),T=t.data.get(n.dataId).values,R=ve(n.shape,"float32",T);for(let O=0;O<c.batchSize;++O)for(let M=0;M<c.inChannels;++M)for(let G=0;G<c.inHeight;++G)for(let j=0;j<c.inWidth;++j){let U=G-_,H=j-w,q=0;for(let X=0;X<x;X+=h){let oe=(U+X)/p;if(!(oe<0||oe>=c.outHeight||Math.floor(oe)!==oe))for(let Y=0;Y<b;Y+=g){let re=(H+Y)/m;if(re<0||re>=c.outWidth||Math.floor(re)!==re)continue;q+=R.get(O,oe,re,M)}}k.set(q*D,O,G,j,M)}return t.makeTensorInfo(k.shape,k.dtype,k.values)}var aA={kernelName:mc,backendName:"cpu",kernelFunc:Wq};function jq(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,scale:s,offset:a,mean:i,variance:l}=e;y.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),y.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),y.assert(s==null||i.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),te([n,i,l,s,a],"batchNorm");let{varianceEpsilon:u}=o;u==null&&(u=.001);let c=t.data.get(n.dataId).values,p=t.data.get(i.dataId).values,m=t.data.get(l.dataId).values,f=s?t.data.get(s.dataId).values:new Float32Array([1]),d=a?t.data.get(a.dataId).values:new Float32Array([0]),h=new Float32Array(c.length),g=d.length,x=f.length,b=m.length,w=p.length,_=0,k=0,D=0,T=0;for(let R=0;R<c.length;++R)h[R]=d[_++]+(c[R]-p[k++])*f[D++]/Math.sqrt(m[T++]+u),_>=g&&(_=0),k>=w&&(k=0),D>=x&&(D=0),T>=b&&(T=0);return t.makeTensorInfo(n.shape,n.dtype,h)}var lA={kernelName:Pn,backendName:"cpu",kernelFunc:jq};function Uq(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,crops:a}=o;te([n],"batchToSpaceND");let i=s.reduce((x,b)=>x*b),l=N.getReshaped(n.shape,s,i),u=N.getPermuted(l.length,s.length),c=N.getReshapedPermuted(n.shape,s,i),p=N.getSliceBeginCoords(a,s.length),m=N.getSliceSize(c,a,s.length),f=Qe({inputs:{x:n},backend:t,attrs:{shape:l}}),d=or({inputs:{x:f},backend:t,attrs:{perm:u}}),h=Qe({inputs:{x:d},backend:t,attrs:{shape:c}}),g=un({inputs:{x:h},backend:t,attrs:{begin:p,size:m}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(h),g}var uA={kernelName:ja,backendName:"cpu",kernelFunc:Uq};function Hq(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a}=o,i=t.data.get(n.dataId).values,l=t.data.get(s.dataId).values,u=ap(i,l,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,u)}var cA={kernelName:dc,backendName:"cpu",kernelFunc:Hq};var qq=$e(qo,(r,e)=>{let t=e;return r>t.clipValueMax?t.clipValueMax:r<t.clipValueMin?t.clipValueMin:r}),pA={kernelName:qo,backendName:"cpu",kernelFunc:qq};var Kq=r=>{let{x:e}=r.inputs,t=r.backend,o=new Float32Array(y.sizeFromShape(e.shape)),n=t.data.get(e.dataId),s=n.complexTensorInfos.real,a=n.complexTensorInfos.imag,i=t.data.get(s.dataId).values,l=t.data.get(a.dataId).values;for(let u=0;u<i.length;u++){let c=i[u],p=l[u];o[u]=Math.hypot(c,p)}return t.makeOutput(o,e.shape,"float32")},mA={kernelName:Ua,backendName:"cpu",kernelFunc:Kq};function ni(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.data.get(o.dataId).complexTensorInfos.imag,s=t.data.get(n.dataId).values;return t.makeTensorInfo(n.shape,n.dtype,s)}var fA={kernelName:Nc,backendName:"cpu",kernelFunc:ni};function pl(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o,s=y.parseAxisParam(n,e[0].shape)[0],a=N.computeOutShape(e.map(h=>h.shape),s);if(y.sizeFromShape(a)===0)return t.makeTensorInfo(a,e[0].dtype,[]);let i=e.filter(h=>y.sizeFromShape(h.shape)>0);if(i.length===1)return Dr({inputs:{x:i[0]},backend:t});let l=i.map(h=>h.shape);if(N.assertParamsConsistent(l,s),i[0].dtype==="complex64"){let h=i.map(_=>nn({inputs:{input:_},backend:t})),g=i.map(_=>ni({inputs:{input:_},backend:t})),x=pl({inputs:h,backend:t,attrs:{axis:s}}),b=pl({inputs:g,backend:t,attrs:{axis:s}}),w=fr({inputs:{real:x,imag:b},backend:t});return h.forEach(_=>t.disposeIntermediateTensorInfo(_)),g.forEach(_=>t.disposeIntermediateTensorInfo(_)),t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(b),w}let u=i.map(h=>{let g=y.sizeFromShape(h.shape.slice(s));return Qe({inputs:{x:h},backend:t,attrs:{shape:[-1,g]}})}),c=u.map(h=>({vals:t.data.get(h.dataId).values,shape:h.shape}));a=N.computeOutShape(u.map(h=>h.shape),1);let p=u[0].shape[0]===1,m=wu(c,a,e[0].dtype,p),f=N.computeOutShape(i.map(h=>h.shape),s),d=t.makeTensorInfo(f,e[0].dtype,m);return u.forEach(h=>t.disposeIntermediateTensorInfo(h)),d}var dA={kernelName:Ps,backendName:"cpu",kernelFunc:pl};function A_(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=o;te([n,s],"conv2d");let p=N.convertConv2DDataFormat(l),m=N.computeConv2DInfo(n.shape,s.shape,a,u,i,c,!1,p),f=m.filterHeight,d=m.filterWidth,h=m.dilationHeight,g=m.dilationWidth,x=m.padInfo.left,b=m.padInfo.top,w=m.dataFormat==="channelsLast",_=new lt(m.outShape,n.dtype),k=y.computeStrides(n.shape),D=y.computeStrides(s.shape),T=k[0],R=w?k[1]:k[2],O=w?k[2]:1,M=w?1:k[1],G=_.strides[0],j=w?_.strides[1]:_.strides[2],U=w?_.strides[2]:1,H=w?1:_.strides[1],q=t.data.get(n.dataId).values,X=t.data.get(s.dataId).values,oe=_.values;for(let Y=0;Y<m.batchSize;++Y){let re=Y*T,J=Y*G;for(let ie=0;ie<m.outHeight;++ie){let ue=J+ie*j,ae=ie*m.strideHeight-b;for(let fe=0;fe<f;++fe){let de=ae+fe*h;if(de<0||de>=m.inHeight)continue;let xe=fe*D[0],we=re+de*R;for(let De=0;De<m.outWidth;++De){let Ne=ue+De*U,ze=De*m.strideWidth-x;for(let qe=0;qe<d;++qe){let it=ze+qe*g;if(it<0||it>=m.inWidth)continue;let St=xe+qe*D[1],Tt=we+it*O,Ue=St;for(let ut=0;ut<m.inChannels;++ut){let mt=q[Tt+ut*M];for(let Pt=0;Pt<m.outChannels;++Pt)oe[Ne+Pt*H]+=mt*X[Ue+Pt];Ue+=m.outChannels}}}}}}return t.makeTensorInfo(_.shape,_.dtype,oe)}var hA={kernelName:Sn,backendName:"cpu",kernelFunc:A_};function Xq(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=o;te([n,s],"conv2dBackpropFilter");let p=N.convertConv2DDataFormat(l),m=N.computeConv2DInfo(n.shape,c,a,1,i,u,!1,p),{strideHeight:f,strideWidth:d,filterHeight:h,filterWidth:g}=m,x=m.dataFormat==="channelsLast",b=new lt(m.filterShape,"float32"),w=m.padInfo.left,_=m.padInfo.top,k=t.data.get(n.dataId).values,D=t.data.get(s.dataId).values,T=new lt(n.shape,n.dtype,k),R=new lt(s.shape,s.dtype,D);for(let O=0;O<h;++O){let M=Math.max(0,Math.ceil((_-O)/f)),G=Math.min(m.outHeight,(m.inHeight+_-O)/f);for(let j=0;j<g;++j){let U=Math.max(0,Math.ceil((w-j)/d)),H=Math.min(m.outWidth,(m.inWidth+w-j)/d);for(let q=0;q<m.inChannels;++q)for(let X=0;X<m.outChannels;++X){let oe=0;for(let Y=0;Y<m.batchSize;++Y)for(let re=M;re<G;++re){let J=O+re*f-_;for(let ie=U;ie<H;++ie){let ue=j+ie*d-w;x?oe+=T.get(Y,J,ue,q)*R.get(Y,re,ie,X):oe+=T.get(Y,q,J,ue)*R.get(Y,X,re,ie)}}b.set(oe,O,j,q,X)}}}return t.makeTensorInfo(b.shape,b.dtype,b.values)}var gA={kernelName:gc,backendName:"cpu",kernelFunc:Xq};function Yq(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{inputShape:a,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=o;te([n,s],"conv2dBackpropInput");let p=y.computeStrides(s.shape),m=y.computeStrides(n.shape),f=N.convertConv2DDataFormat(u),d=N.computeConv2DInfo(a,s.shape,i,1,l,c,!1,f),h=new lt(d.inShape,"float32"),g=h.values,x=t.data.get(n.dataId).values,b=t.data.get(s.dataId).values,[w,_,k]=p,{batchSize:D,filterHeight:T,filterWidth:R,inChannels:O,inHeight:M,inWidth:G,outChannels:j,outHeight:U,outWidth:H,strideHeight:q,strideWidth:X}=d;f=d.dataFormat;let oe=T-1-d.padInfo.top,Y=R-1-d.padInfo.left,re=f==="channelsLast",J=h.strides[0],ie=re?h.strides[1]:h.strides[2],ue=re?h.strides[2]:1,ae=re?1:h.strides[1],fe=m[0],de=re?m[1]:m[2],xe=re?m[2]:1,we=re?1:m[1];for(let De=0;De<D;++De)for(let Ne=0;Ne<O;++Ne)for(let ze=0;ze<M;++ze){let qe=ze-oe,it=Math.max(0,Math.ceil(qe/q)),St=Math.min(U,(T+qe)/q);for(let Tt=0;Tt<G;++Tt){let Ue=Tt-Y,ut=Math.max(0,Math.ceil(Ue/X)),mt=Math.min(H,(R+Ue)/X),Pt=0;for(let Xt=it;Xt<St;++Xt){let oo=Xt*q-qe;for(let Rr=ut;Rr<mt;++Rr){let jo=Rr*X-Ue,nr=fe*De+de*Xt+xe*Rr,ko=w*(T-1-oo)+_*(R-1-jo)+k*Ne;for(let jr=0;jr<j;++jr){let br=x[nr+we*jr],no=b[ko+jr];Pt+=br*no}}}let _o=J*De+ie*ze+ue*Tt+ae*Ne;g[_o]=Pt}}return t.makeTensorInfo(h.shape,h.dtype,h.values)}var xA={kernelName:Tn,backendName:"cpu",kernelFunc:Yq};function Zq(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l}=o;te([n,s],"conv3d");let u=N.computeConv3DInfo(n.shape,s.shape,a,l,i),{filterDepth:c,filterHeight:p,filterWidth:m,dilationDepth:f,dilationHeight:d,dilationWidth:h,padInfo:g}=u,x=g.front,b=g.left,w=g.top,_=new lt(u.outShape,n.dtype),k=t.data.get(n.dataId).values,D=t.data.get(s.dataId).values,T=_.values,R=y.computeStrides(n.shape),O=y.computeStrides(s.shape);for(let M=0;M<u.batchSize;++M){let G=M*R[0],j=M*_.strides[0];for(let U=0;U<u.outDepth;++U){let H=j+U*_.strides[1],q=U*u.strideDepth-x;for(let X=0;X<c;++X){let oe=q+X*f;if(oe<0||oe>=u.inDepth)continue;let Y=X*O[0],re=G+oe*R[1];for(let J=0;J<u.outHeight;++J){let ie=H+J*_.strides[2],ue=J*u.strideHeight-w;for(let ae=0;ae<p;++ae){let fe=ue+ae*d;if(fe<0||fe>=u.inHeight)continue;let de=Y+ae*O[1],xe=re+fe*R[2];for(let we=0;we<u.outWidth;++we){let De=ie+we*u.outChannels,Ne=we*u.strideWidth-b;for(let ze=0;ze<m;++ze){let qe=Ne+ze*h;if(qe<0||qe>=u.inWidth)continue;let it=de+ze*O[2],St=xe+qe*u.inChannels,Tt=it;for(let Ue=0;Ue<u.inChannels;++Ue){let ut=k[St+Ue];for(let mt=0;mt<u.outChannels;++mt)T[De+mt]+=ut*D[Tt+mt];Tt+=u.outChannels}}}}}}}}return t.makeTensorInfo(_.shape,_.dtype,_.values)}var yA={kernelName:Ha,backendName:"cpu",kernelFunc:Zq};function Jq(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,filterShape:l}=o;te([n,s],"conv3dBackpropFilterV2");let u=y.computeStrides(n.shape),c=y.computeStrides(s.shape),p=N.computeConv3DInfo(n.shape,l,a,1,i),m=p.strideDepth,f=p.strideHeight,d=p.strideWidth,h=p.filterDepth,g=p.filterHeight,x=p.filterWidth,b=new lt(p.filterShape,"float32"),w=b.values,[_,k,D,T]=b.strides,R=t.data.get(s.dataId).values,[O,M,G,j]=c,U=t.data.get(n.dataId).values,[H,q,X,oe]=u,Y=p.padInfo.front,re=p.padInfo.left,J=p.padInfo.top;for(let ie=0;ie<h;++ie){let ue=Math.max(0,Math.ceil((Y-ie)/m)),ae=Math.min(p.outDepth,(p.inDepth+Y-ie)/m),fe=ie*_;for(let de=0;de<g;++de){let xe=Math.max(0,Math.ceil((J-de)/f)),we=Math.min(p.outHeight,(p.inHeight+J-de)/f),De=de*k+fe;for(let Ne=0;Ne<x;++Ne){let ze=Math.max(0,Math.ceil((re-Ne)/d)),qe=Math.min(p.outWidth,(p.inWidth+re-Ne)/d),it=Ne*D+De;for(let St=0;St<p.inChannels;++St){let Tt=St*T+it;for(let Ue=0;Ue<p.outChannels;++Ue){let ut=0;for(let mt=0;mt<p.batchSize;++mt){let Pt=mt*H,_o=mt*O;for(let Xt=ue;Xt<ae;++Xt){let Rr=(ie+Xt*m-Y)*q+Pt,jo=Xt*M+_o;for(let nr=xe;nr<we;++nr){let jr=(de+nr*f-J)*X+Rr,br=nr*G+jo;for(let no=ze;no<qe;++no){let Dl=(Ne+no*d-re)*oe+jr,Oa=no*j+br;ut+=U[Dl+St]*R[Oa+Ue]}}}}w[Tt+Ue]=ut}}}}}return t.makeTensorInfo(b.shape,b.dtype,b.values)}var bA={kernelName:xc,backendName:"cpu",kernelFunc:Jq};function Qq(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{pad:a,strides:i,inputShape:l}=o;te([n],"conv3dBackpropInputV2");let u=y.computeStrides(n.shape),c=y.computeStrides(s.shape),p=N.computeConv3DInfo(l,s.shape,i,1,a),m=new lt(p.inShape,"float32"),f=m.values,[d,h,g,x]=m.strides,b=t.data.get(n.dataId).values,[w,_,k,D]=u,T=t.data.get(s.dataId).values,[R,O,M,G]=c,{batchSize:j,filterDepth:U,filterHeight:H,filterWidth:q,inChannels:X,inDepth:oe,inHeight:Y,inWidth:re,outChannels:J,outDepth:ie,outHeight:ue,outWidth:ae,strideDepth:fe,strideHeight:de,strideWidth:xe}=p,we=U-1-p.padInfo.front,De=H-1-p.padInfo.top,Ne=q-1-p.padInfo.left;for(let ze=0;ze<j;++ze)for(let qe=0;qe<X;++qe)for(let it=0;it<oe;++it){let St=it-we,Tt=Math.max(0,Math.ceil(St/fe)),Ue=Math.min(ie,(U+St)/fe);for(let ut=0;ut<Y;++ut){let mt=ut-De,Pt=Math.max(0,Math.ceil(mt/de)),_o=Math.min(ue,(H+mt)/de);for(let Xt=0;Xt<re;++Xt){let oo=Xt-Ne,Rr=Math.max(0,Math.ceil(oo/xe)),jo=Math.min(ae,(q+oo)/xe),nr=0;for(let ko=Tt;ko<Ue;++ko){let jr=ko*fe-St;for(let br=Pt;br<_o;++br){let no=br*de-mt;for(let $o=Rr;$o<jo;++$o){let Dl=$o*xe-oo,Oa=w*ze+_*ko+k*br+D*$o,bn=R*(U-1-jr)+O*(H-1-no)+M*(q-1-Dl)+G*qe;for(let fi=0;fi<J;++fi){let Jp=b[Oa+fi],qu=T[bn+fi];nr+=Jp*qu}}}}f[d*ze+h*it+g*ut+x*Xt+qe]=nr}}}return t.makeTensorInfo(m.shape,m.dtype,m.values)}var wA={kernelName:yc,backendName:"cpu",kernelFunc:Qq};var eK=$e(An,r=>Math.cos(r)),_A={kernelName:An,backendName:"cpu",kernelFunc:eK};var tK=$e(Ii,r=>Math.cosh(r)),kA={kernelName:Ii,backendName:"cpu",kernelFunc:tK};function rK(r){let{inputs:e,backend:t,attrs:o}=r,{image:n,boxes:s,boxInd:a}=e,{cropSize:i,method:l,extrapolationValue:u}=o,[c,p,m,f]=n.shape,d=s.shape[0],[h,g]=i,x=ve([d,h,g,f],"float32"),b=t.data.get(s.dataId).values,w=t.data.get(a.dataId).values,_=t.data.get(n.dataId).values,k=y.computeStrides(n.shape),D=y.computeStrides(x.shape);for(let T=0;T<d;T++){let R=T*4,O=b[R],M=b[R+1],G=b[R+2],j=b[R+3],U=w[T];if(U>=c)continue;let H=h>1?(G-O)*(p-1)/(h-1):0,q=g>1?(j-M)*(m-1)/(g-1):0;for(let X=0;X<h;X++){let oe=h>1?O*(p-1)+X*H:.5*(O+G)*(p-1);if(oe<0||oe>p-1){for(let Y=0;Y<g;Y++)for(let re=0;re<f;re++){let J=re+Y*D[2]+X*D[1]+T*D[0];x.values[J]=u}continue}if(l==="bilinear"){let Y=Math.floor(oe),re=Math.ceil(oe),J=oe-Y;for(let ie=0;ie<g;ie++){let ue=g>1?M*(m-1)+ie*q:.5*(M+j)*(m-1);if(ue<0||ue>m-1){for(let xe=0;xe<f;xe++){let we=xe+ie*D[2]+X*D[1]+T*D[0];x.values[we]=u}continue}let ae=Math.floor(ue),fe=Math.ceil(ue),de=ue-ae;for(let xe=0;xe<f;xe++){let we=xe+ae*k[2]+Y*k[1]+U*k[0],De=_[we];we=xe+fe*k[2]+Y*k[1]+U*k[0];let Ne=_[we];we=xe+ae*k[2]+re*k[1]+U*k[0];let ze=_[we];we=xe+fe*k[2]+re*k[1]+U*k[0];let qe=_[we],it=De+(Ne-De)*de,St=ze+(qe-ze)*de;we=xe+ie*D[2]+X*D[1]+T*D[0],x.values[we]=it+(St-it)*J}}}else for(let Y=0;Y<g;++Y){let re=g>1?M*(m-1)+Y*q:.5*(M+j)*(m-1);if(re<0||re>m-1){for(let ue=0;ue<f;ue++){let ae=ue+Y*D[2]+X*D[1]+T*D[0];x.values[ae]=u}continue}let J=Math.round(re),ie=Math.round(oe);for(let ue=0;ue<f;ue++){let ae=ue+J*k[2]+ie*k[1]+U*k[0],fe=ue+Y*D[2]+X*D[1]+T*D[0];x.values[fe]=_[ae]}}}}return t.makeTensorInfo(x.shape,x.dtype,x.values)}var vA={kernelName:Ni,backendName:"cpu",kernelFunc:rK};function oK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,exclusive:a,reverse:i}=o;te(n,"cumsum");let l=N.getAxesPermutation([s],n.shape.length),u=n;l!=null&&(u=or({inputs:{x:n},backend:t,attrs:{perm:l}}));let c=N.getInnerMostAxes(1,n.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let p=ir(u.dtype,"int32"),m=y.makeZerosTypedArray(y.sizeFromShape(u.shape),p),f=t.data.get(u.dataId).values,d=u.shape[u.shape.length-1],h=i?(x,b)=>x+d-b-1:(x,b)=>x+b;for(let x=0;x<f.length;x+=d)for(let b=0;b<d;b++){let w=h(x,b);if(b===0)m[w]=a?0:f[w];else{let _=h(x,b-1);m[w]=a?f[_]+m[_]:f[w]+m[_]}}let g=t.makeTensorInfo(u.shape,p,m);if(l!=null){let x=N.getUndoAxesPermutation(l),b=or({inputs:{x:g},backend:t,attrs:{perm:x}});return t.disposeIntermediateTensorInfo(g),t.disposeIntermediateTensorInfo(u),b}return g}var CA={kernelName:En,backendName:"cpu",kernelFunc:oK};function nK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a,binaryOutput:i}=o;if(n.shape.length===1){let l=t.data.get(n.dataId).values,u=t.data.get(s.dataId).values,c=ap(l,u,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,c)}else if(n.shape.length===2){let l=t.bufferSync(n),u=t.bufferSync(s),c=Tg(l,u,a,i);return t.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${n.shape.length}.`)}var IA={kernelName:bc,backendName:"cpu",kernelFunc:nK};function sK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockSize:s,dataFormat:a}=o;y.assert(a==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${a}`),y.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=n.shape[0],l=n.shape[1],u=n.shape[2],c=n.shape[3],p=l*s,m=u*s,f=c/(s*s),d=t.data.get(n.dataId).values,h=new Float32Array(i*p*m*f),g=0;for(let x=0;x<i;++x)for(let b=0;b<p;++b){let w=Math.floor(b/s),_=b%s;for(let k=0;k<m;++k){let D=Math.floor(k/s),T=k%s,R=(_*s+T)*f;for(let O=0;O<f;++O){let G=O+R+c*(D+u*(w+l*x));h[g++]=d[G]}}}return t.makeTensorInfo([i,p,m,f],n.dtype,h)}var NA={kernelName:Si,backendName:"cpu",kernelFunc:sK};function E_(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l,dimRoundingMode:u}=o;te([n,s],"depthwiseConv2DNative");let c=y.computeStrides(n.shape),p=y.computeStrides(s.shape),m=l;m==null&&(m=[1,1]),y.assert(N.eitherStridesOrDilationsAreOne(a,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${m}'`);let f=N.computeConv2DInfo(n.shape,s.shape,a,m,i,u,!0),{filterHeight:d,filterWidth:h,dilationHeight:g,dilationWidth:x,padInfo:b}=f,w=b.left,_=b.top,k=f.outChannels/f.inChannels,D=new lt(f.outShape,n.dtype),T=t.data.get(n.dataId).values,R=t.data.get(s.dataId).values,O=D.values;for(let M=0;M<f.batchSize;++M){let G=M*c[0],j=M*D.strides[0];for(let U=0;U<f.outHeight;++U){let H=j+U*D.strides[1],q=U*f.strideHeight-w;for(let X=0;X<d;++X){let oe=q+X*g;if(oe<0||oe>=f.inHeight)continue;let Y=X*p[0],re=G+oe*c[1];for(let J=0;J<f.outWidth;++J){let ie=H+J*D.strides[2],ue=J*f.strideWidth-_;for(let ae=0;ae<h;++ae){let fe=ue+ae*x;if(fe<0||fe>=f.inWidth)continue;let de=Y+ae*p[1],xe=re+fe*f.inChannels,we=ie,De=de;for(let Ne=0;Ne<f.inChannels;++Ne){let ze=T[xe+Ne];for(let qe=0;qe<k;++qe)O[we+qe]+=ze*R[De+qe];we+=k,De+=k}}}}}}return t.makeTensorInfo(D.shape,D.dtype,D.values)}var SA={kernelName:Dn,backendName:"cpu",kernelFunc:E_};function iK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=o;te([n,s],"depthwiseConv2dNativeBackpropFilter");let p=N.computeConv2DInfo(n.shape,c,a,i,l,u,!0),{strideHeight:m,strideWidth:f,filterHeight:d,filterWidth:h}=p,g=new lt(p.filterShape,"float32"),x=p.padInfo.left,b=p.padInfo.top,w=p.outChannels/p.inChannels,_=t.data.get(n.dataId).values,k=new lt(n.shape,n.dtype,_),D=t.data.get(s.dataId).values,T=new lt(s.shape,s.dtype,D);for(let R=0;R<d;++R){let O=Math.max(0,Math.ceil((b-R)/m)),M=Math.min(p.outHeight,(p.inHeight+b-R)/m);for(let G=0;G<h;++G){let j=Math.max(0,Math.ceil((x-G)/f)),U=Math.min(p.outWidth,(p.inWidth+x-G)/f);for(let H=0;H<p.outChannels;++H){let q=Math.trunc(H/w),X=H%w,oe=0;for(let Y=0;Y<p.batchSize;++Y)for(let re=O;re<M;++re){let J=R+re*m-b;for(let ie=j;ie<U;++ie){let ue=G+ie*f-x;oe+=k.get(Y,J,ue,q)*T.get(Y,re,ie,H)}}g.set(oe,R,G,q,X)}}}return t.makeTensorInfo(g.shape,g.dtype,g.values)}var TA={kernelName:wc,backendName:"cpu",kernelFunc:iK};function aK(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=o;te([n,s],"depthwiseConv2DNativeBackpropInput");let p=y.computeStrides(n.shape),m=y.computeStrides(s.shape),f=N.computeConv2DInfo(c,s.shape,a,i,l,u,!0),d=new lt(f.inShape,"float32"),h=d.values,[g,x,b]=d.strides,w=t.data.get(n.dataId).values,[_,k,D]=p,T=t.data.get(s.dataId).values,[R,O,M]=m,{batchSize:G,filterHeight:j,filterWidth:U,inChannels:H,inHeight:q,inWidth:X,outChannels:oe,outHeight:Y,outWidth:re,strideHeight:J,strideWidth:ie}=f,ue=j-1-f.padInfo.top,ae=U-1-f.padInfo.left,fe=oe/H;for(let de=0;de<G;++de)for(let xe=0;xe<H;++xe)for(let we=0;we<q;++we){let De=we-ue,Ne=Math.max(0,Math.ceil(De/J)),ze=Math.min(Y,(j+De)/J);for(let qe=0;qe<X;++qe){let it=qe-ae,St=Math.max(0,Math.ceil(it/ie)),Tt=Math.min(re,(U+it)/ie),Ue=0;for(let ut=Ne;ut<ze;++ut){let mt=ut*J-De;for(let Pt=St;Pt<Tt;++Pt){let _o=Pt*ie-it,Xt=_*de+k*ut+D*Pt,oo=R*(j-1-mt)+O*(U-1-_o)+M*xe;for(let Rr=0;Rr<fe;++Rr){let jo=xe*fe+Rr,nr=w[Xt+jo],ko=T[oo+Rr];Ue+=nr*ko}}}h[g*de+x*we+b*qe+xe]=Ue}}return t.makeTensorInfo(d.shape,d.dtype,d.values)}var AA={kernelName:_c,backendName:"cpu",kernelFunc:aK};function lK(r){let{inputs:e,backend:t}=r,{x:o}=e,n=y.sizeFromShape(o.shape),s=t.data.get(o.dataId).values,a=ve([n,n],o.dtype),i=a.values;for(let u=0;u<s.length;u++)i[u*n+u]=s[u];let l=[...o.shape,...o.shape];return t.makeTensorInfo(l,a.dtype,a.values)}var EA={kernelName:kc,backendName:"cpu",kernelFunc:lK};var DA={kernelName:qa,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:o,filter:n}=r,{strides:s,pad:a,dilations:i}=t,l=e,u=l.data.get(o.dataId).values,c=o.shape.length,p=l.data.get(n.dataId).values,m=n.shape.length,{batchSize:f,inHeight:d,inWidth:h,inChannels:g,outHeight:x,outWidth:b,padInfo:w,strideHeight:_,strideWidth:k,filterHeight:D,filterWidth:T,dilationHeight:R,dilationWidth:O,outShape:M}=N.computeDilation2DInfo(o.shape,n.shape,s,a,"NHWC",i),G=y.sizeFromShape(M),j=M.length,U=y.getArrayFromDType(o.dtype,G);for(let q=0;q<f;++q)for(let X=0;X<x;++X){let oe=X*_-w.top;for(let Y=0;Y<b;++Y){let re=Y*k-w.left;for(let J=0;J<g;++J){let ie=Number.MIN_SAFE_INTEGER;for(let ae=0;ae<D;++ae){let fe=oe+ae*R;if(fe>=0&&fe<d)for(let de=0;de<T;++de){let xe=re+de*O;if(xe>=0&&xe<h){let we=y.locToIndex([q,fe,xe,J],c,y.computeStrides(o.shape)),De=y.locToIndex([ae,de,J],m,y.computeStrides(n.shape)),Ne=u[we]+p[De];Ne>ie&&(ie=Ne)}}}let ue=y.locToIndex([q,X,Y,J],j,y.computeStrides(M));U[ue]=ie}}}return{dataId:l.write(y.toTypedArray(U,o.dtype),M,o.dtype),shape:M,dtype:o.dtype}}};var $A={kernelName:ym,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:o,filter:n,dy:s}=r,{strides:a,pad:i,dilations:l}=t,u=e,c=y.toNestedArray(o.shape,u.data.get(o.dataId).values),p=y.toNestedArray(n.shape,u.data.get(n.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:b,strideHeight:w,strideWidth:_,filterHeight:k,filterWidth:D,dilationHeight:T,dilationWidth:R,outShape:O}=N.computeDilation2DInfo(o.shape,n.shape,a,i,"NHWC",l);y.assert(s.rank===O.length,()=>`Error in ${ym}, dy must have the same rank as output ${O.length}, but got ${s.rank}`);let M=y.toNestedArray(O,u.data.get(s.dataId).values),G=y.makeZerosNestedTypedArray(n.shape,n.dtype);for(let U=0;U<m;++U)for(let H=0;H<g;++H){let q=H*w-b.top;for(let X=0;X<x;++X){let oe=X*_-b.left;for(let Y=0;Y<h;++Y){let re=Number.MIN_SAFE_INTEGER,J=0,ie=0;for(let ue=0;ue<k;++ue){let ae=q+ue*T;if(ae>=0&&ae<f)for(let fe=0;fe<D;++fe){let de=oe+fe*R;if(de>=0&&de<d){let xe=c[U][ae][de][Y]+p[ue][fe][Y];xe>re&&(re=xe,J=ue,ie=fe)}}}G[J][ie][Y]+=M[U][H][X][Y]}}}return{dataId:u.write(y.toTypedArray(G,o.dtype),n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};var RA={kernelName:xm,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:o,filter:n,dy:s}=r,{strides:a,pad:i,dilations:l}=t,u=e,c=y.toNestedArray(o.shape,u.data.get(o.dataId).values),p=y.toNestedArray(n.shape,u.data.get(n.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:b,strideHeight:w,strideWidth:_,filterHeight:k,filterWidth:D,dilationHeight:T,dilationWidth:R,outShape:O}=N.computeDilation2DInfo(o.shape,n.shape,a,i,"NHWC",l);y.assert(s.rank===O.length,()=>`Error in ${xm}, dy must have the same rank as output ${O.length}, but got ${s.rank}`);let M=y.toNestedArray(O,u.data.get(s.dataId).values),G=y.makeZerosNestedTypedArray(o.shape,o.dtype);for(let U=0;U<m;++U)for(let H=0;H<g;++H){let q=H*w-b.top;for(let X=0;X<x;++X){let oe=X*_-b.left;for(let Y=0;Y<h;++Y){let re=Number.MIN_SAFE_INTEGER,J=q<0?0:q,ie=oe<0?0:oe;for(let ue=0;ue<k;++ue){let ae=q+ue*T;if(ae>=0&&ae<f)for(let fe=0;fe<D;++fe){let de=oe+fe*R;if(de>=0&&de<d){let xe=c[U][ae][de][Y]+p[ue][fe][Y];xe>re&&(re=xe,J=ae,ie=de)}}}G[U][J][ie][Y]+=M[U][H][X][Y]}}}return{dataId:u.write(y.toTypedArray(G,o.dtype),o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};function uK(r){let{inputs:e,backend:t}=r,{dy:o,y:n}=e;te([o,n],"eluGrad");let s=new Float32Array(y.sizeFromShape(n.shape)),a=t.data.get(n.dataId).values,i=t.data.get(o.dataId).values;for(let l=0;l<a.length;++l){let u=a[l];u>=1?s[l]=i[l]:s[l]=i[l]*(u+1)}return t.makeTensorInfo(n.shape,"float32",s)}var FA={kernelName:vc,backendName:"cpu",kernelFunc:uK};var cK=Xe((r,e)=>r===e?1:0),D_=et(Ei,cK,null,"bool"),OA={kernelName:Ei,backendName:"cpu",kernelFunc:D_};var pK=N.ERF_P,mK=N.ERF_A1,fK=N.ERF_A2,dK=N.ERF_A3,hK=N.ERF_A4,gK=N.ERF_A5,xK=$e(Ai,r=>{let e=Math.sign(r),t=Math.abs(r),o=1/(1+pK*t);return e*(1-((((gK*o+hK)*o+dK)*o+fK)*o+mK)*o*Math.exp(-t*t))}),PA={kernelName:Ai,backendName:"cpu",kernelFunc:xK};function pp(r){let{inputs:e,backend:t,attrs:o}=r,{input:n}=e,{dim:s}=o,a=n.shape.length,i=n.shape.slice(),l=s;return s<0&&(y.assert(-(a+1)<=s,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+s+1),i.splice(l,0,1),Qe({inputs:{x:n},backend:t,attrs:{shape:i}})}var MA={kernelName:Ms,backendName:"cpu",kernelFunc:pp};var yK=Xe((r,e)=>r/e),gf=et($n,yK),xf={kernelName:$n,backendName:"cpu",kernelFunc:gf};function Lg(r,e,t){let o=r.shape,n=o[0],s=o[1],a=t.data.get(r.dataId),i=a.complexTensorInfos.real,l=a.complexTensorInfos.imag,u=[n,s],c=y.sizeFromShape(u),p=y.getTypedArrayFromDType("float32",c),m=y.getTypedArrayFromDType("float32",c);for(let g=0;g<n;g++){let x=un({inputs:{x:i},backend:t,attrs:{begin:[g,0],size:[1,s]}}),b=un({inputs:{x:l},backend:t,attrs:{begin:[g,0],size:[1,s]}}),w=fr({inputs:{real:x,imag:b},backend:t}),{real:_,imag:k}=bK(w,e,t),D=N.mergeRealAndImagArrays(_,k);for(let T=0;T<s;T++){let R=N.getComplexWithIndex(D,T);p[g*s+T]=R.real,m[g*s+T]=R.imag}t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(b),t.disposeIntermediateTensorInfo(w)}let f=t.makeTensorInfo(u,"float32",p),d=t.makeTensorInfo(u,"float32",m),h=fr({inputs:{real:f,imag:d},backend:t});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),h}function bK(r,e,t){let o=y.sizeFromShape(r.shape),n=t.data.get(r.dataId),s=t.data.get(n.complexTensorInfos.real.dataId).values,a=t.data.get(n.complexTensorInfos.imag.dataId).values;if(wK(o)){let i=$_(s,a,o,e,t),l=[r.shape[0],r.shape[1]];if(e){let u=t.makeTensorInfo(l,"float32",i.real),c=t.makeTensorInfo(l,"float32",i.imag),p=t.makeTensorInfo([],"float32",y.createScalarValue(o,"float32")),m=Dr({inputs:{x:p},backend:t}),f=xf.kernelFunc({inputs:{a:u,b:p},backend:t}),d=xf.kernelFunc({inputs:{a:c,b:m},backend:t}),h=t.data.get(f.dataId).values,g=t.data.get(d.dataId).values;return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),{real:h,imag:g}}return i}else{let i=N.mergeRealAndImagArrays(s,a),l=_K(i,o,e);return N.splitRealAndImagArrays(l)}}function wK(r){return(r&r-1)==0}function $_(r,e,t,o,n){if(t===1)return{real:r,imag:e};let s=N.mergeRealAndImagArrays(r,e),a=t/2,i=N.complexWithEvenIndex(s),l=i.real,u=i.imag,c=[l.length],p=n.makeTensorInfo(c,"float32",l),m=n.makeTensorInfo(c,"float32",u),f=fr({inputs:{real:p,imag:m},backend:n}),d=N.complexWithOddIndex(s),h=d.real,g=d.imag,x=[h.length],b=n.makeTensorInfo(x,"float32",h),w=n.makeTensorInfo(x,"float32",g),_=fr({inputs:{real:b,imag:w},backend:n}),k=$_(l,u,a,o,n),D=k.real,T=k.imag,R=[D.length],O=n.makeTensorInfo(R,"float32",D),M=n.makeTensorInfo(R,"float32",T),G=fr({inputs:{real:O,imag:M},backend:n}),j=$_(h,g,a,o,n),U=j.real,H=j.imag,q=[U.length],X=n.makeTensorInfo(q,"float32",U),oe=n.makeTensorInfo(q,"float32",H),Y=fr({inputs:{real:X,imag:oe},backend:n}),re=N.exponents(t,o),J=[re.real.length],ie=n.makeTensorInfo(J,"float32",re.real),ue=n.makeTensorInfo(J,"float32",re.imag),ae=fr({inputs:{real:ie,imag:ue},backend:n}),fe=df({inputs:{a:ae,b:Y},backend:n}),de=ka({inputs:{a:G,b:fe},backend:n}),xe=hf({inputs:{a:G,b:fe},backend:n}),we=nn({inputs:{input:de},backend:n}),De=nn({inputs:{input:xe},backend:n}),Ne=ni({inputs:{input:de},backend:n}),ze=ni({inputs:{input:xe},backend:n}),qe=pl({inputs:[we,De],backend:n,attrs:{axis:0}}),it=pl({inputs:[Ne,ze],backend:n,attrs:{axis:0}}),St=n.data.get(qe.dataId).values,Tt=n.data.get(it.dataId).values;return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(_),n.disposeIntermediateTensorInfo(O),n.disposeIntermediateTensorInfo(M),n.disposeIntermediateTensorInfo(G),n.disposeIntermediateTensorInfo(X),n.disposeIntermediateTensorInfo(oe),n.disposeIntermediateTensorInfo(Y),n.disposeIntermediateTensorInfo(ie),n.disposeIntermediateTensorInfo(ue),n.disposeIntermediateTensorInfo(ae),n.disposeIntermediateTensorInfo(fe),n.disposeIntermediateTensorInfo(de),n.disposeIntermediateTensorInfo(xe),n.disposeIntermediateTensorInfo(we),n.disposeIntermediateTensorInfo(Ne),n.disposeIntermediateTensorInfo(De),n.disposeIntermediateTensorInfo(ze),n.disposeIntermediateTensorInfo(qe),n.disposeIntermediateTensorInfo(it),{real:St,imag:Tt}}function _K(r,e,t){let o=new Float32Array(e*2);for(let n=0;n<e;n++){let s=0,a=0;for(let i=0;i<e;i++){let l=N.exponent(n*i,e,t),u=N.getComplexWithIndex(r,i);s+=u.real*l.real-u.imag*l.imag,a+=u.real*l.imag+u.imag*l.real}t&&(s/=e,a/=e),N.assignToTypedArray(o,s,a,n)}return o}function kK(r){let{inputs:e,backend:t}=r,{input:o}=e,n=y.sizeFromShape(o.shape),s=o.shape[o.shape.length-1],a=n/s,i=Qe({inputs:{x:o},backend:t,attrs:{shape:[a,s]}}),l=Lg(i,!1,t),u=Qe({inputs:{x:l},backend:t,attrs:{shape:o.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(l),u}var LA={kernelName:Cc,backendName:"cpu",kernelFunc:kK};function yf(r){let{backend:e,attrs:t}=r,{shape:o,value:n,dtype:s}=t,a=s||y.inferDtype(n),i=y.getArrayFromDType(a,y.sizeFromShape(o));return vK(i,n,a),e.makeTensorInfo(o,a,i)}var zA={kernelName:Ka,backendName:"cpu",kernelFunc:yf};function vK(r,e,t){r.fill(e)}var BA={kernelName:$i,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:o}=r,n=t,s=y.getTypedArrayFromDType(o.dtype,y.sizeFromShape(o.shape)),[a,i,l,u]=o.shape,c=n.data.get(o.dataId).values;for(let m=0;m<a;m++){let f=m*l*i*u;for(let d=0;d<i;d++){let h=d*(l*u);for(let g=0;g<l;g++){let x=g*u;for(let b=0;b<u;b++){let _=[a,d,g,b][2],k=Math.round(l-_),D=f+h+x+b,T=c[D];if(k>=0&&k<l){let R=k*u,O=f+h+R+b;T=c[O]}s[D]=T}}}}return{dataId:n.write(s,o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};var CK=Xe((r,e)=>Math.floor(r/e)),IK=et(On,CK,null,"int32"),VA={kernelName:On,backendName:"cpu",kernelFunc:IK};function NK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=o,h=A_({inputs:{x:n,filter:s},backend:t,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m}});if(a){let g=h;h=ka({inputs:{a:h,b:a},backend:t}),t.disposeIntermediateTensorInfo(g)}if(f){let g=h;h=up(t,h,f,i,d),t.disposeIntermediateTensorInfo(g)}return h}var GA={kernelName:Xs,backendName:"cpu",kernelFunc:NK};function SK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=o,h=E_({inputs:{x:n,filter:s},backend:t,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m}});if(a){let g=h;h=ka({inputs:{a:h,b:a},backend:t}),t.disposeIntermediateTensorInfo(g)}if(f){let g=h;h=up(t,h,f,i,d),t.disposeIntermediateTensorInfo(g)}return h}var WA={kernelName:Ys,backendName:"cpu",kernelFunc:SK};function TK(r){let{inputs:e,backend:t}=r,{params:o,indices:n}=e,s=y.sizeFromShape(o.shape),a=n.shape,i=a[a.length-1],[l,u,c,p]=N.prepareAndValidate(o,n);if(u===0)return t.makeTensorInfo(l,o.dtype,[]);let m=ve([u,c],o.dtype),f=t.data.get(n.dataId).values,d=t.data.get(o.dataId).values;for(let h=0;h<u;h++){let g=[],x=0;for(let b=0;b<i;b++){let w=f[h*i+b];x+=w*p[b],g.push(w)}if(x<0||x>=s/c)throw new Error(`Invalid indices: ${g} does not index into ${o.shape}`);for(let b=0;b<c;b++)m.values[h*c+b]=d[x*c+b]}return t.makeTensorInfo(l,m.dtype,m.values)}var jA={kernelName:Ri,backendName:"cpu",kernelFunc:TK};function AK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,indices:s}=e,{axis:a,batchDims:i}=o;te([n,s],"gatherV2");let l=i;i==null&&(l=0);let u=y.sizeFromShape(s.shape),c=y.parseAxisParam(a,n.shape)[0],p=N.segment_util.collectGatherOpShapeInfo(n,s,c,l),m=Qe({inputs:{x:n},backend:t,attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]}}),f=Qe({inputs:{x:s},backend:t,attrs:{shape:[p.batchSize,u/p.batchSize]}}),d=[p.batchSize,p.outerSize,u/p.batchSize,p.sliceSize],h=t.bufferSync(f),g=t.bufferSync(m),x=Ag(g,h,d);return t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.makeTensorInfo(p.outputShape,x.dtype,x.values)}var UA={kernelName:Ls,backendName:"cpu",kernelFunc:AK};var EK=Xe((r,e)=>r>=e?1:0),DK=et(Mn,EK,null,"bool"),HA={kernelName:Mn,backendName:"cpu",kernelFunc:DK};function $K(r){let{inputs:e,backend:t}=r,{input:o}=e,n=y.sizeFromShape(o.shape),s=o.shape[o.shape.length-1],a=n/s,i=Qe({inputs:{x:o},backend:t,attrs:{shape:[a,s]}}),l=Lg(i,!0,t),u=Qe({inputs:{x:l},backend:t,attrs:{shape:o.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(l),u}var qA={kernelName:Ic,backendName:"cpu",kernelFunc:$K};var RK=$e(Oi,r=>Number.isFinite(r)?1:0,"bool"),KA={kernelName:Oi,backendName:"cpu",kernelFunc:RK};var FK=$e(Pi,r=>Math.abs(r)===Infinity?1:0,"bool"),XA={kernelName:Pi,backendName:"cpu",kernelFunc:FK};var OK=$e(Mi,r=>Number.isNaN(r)?1:0,"bool"),YA={kernelName:Mi,backendName:"cpu",kernelFunc:OK};var PK=Xe((r,e)=>r<=e?1:0),MK=et(zi,PK,null,"bool"),ZA={kernelName:zi,backendName:"cpu",kernelFunc:MK};function LK(r){let{backend:e,attrs:t}=r,{start:o,stop:n,num:s}=t,a=Eg(o,n,s);return e.makeTensorInfo([a.length],"float32",a)}var JA={kernelName:Sc,backendName:"cpu",kernelFunc:LK};var zK=$e(Bi,r=>Math.log1p(r)),QA={kernelName:Bi,backendName:"cpu",kernelFunc:zK};var BK=Xe((r,e)=>r&&e),VK=et(Vi,BK,null,"bool"),eE={kernelName:Vi,backendName:"cpu",kernelFunc:VK};var GK=$e(Ml,r=>r?0:1,"bool"),tE={kernelName:Ml,backendName:"cpu",kernelFunc:GK};var WK=Xe((r,e)=>r||e),jK=et(Ll,WK,null,"bool"),rE={kernelName:Ll,backendName:"cpu",kernelFunc:jK};function UK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{depthRadius:s,bias:a,alpha:i,beta:l}=o;te(n,"LRN");let u=n.shape[3],c=u-1,p=t.data.get(n.dataId).values,m=y.sizeFromShape(n.shape),f=new Float32Array(m);function d(h){let g=h%u,x=h-g+Math.max(0,g-s),b=h-g+Math.min(g+s,c),w=0;for(;x<=b;x++){let _=p[x];w+=_*_}return w}for(let h=0;h<m;h++){let g=d(h),x=p[h]*Math.pow(a+i*g,-l);f[h]=x}return t.makeTensorInfo(n.shape,n.dtype,f)}var oE={kernelName:Xa,backendName:"cpu",kernelFunc:UK};function HK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,y:s,dy:a}=e,{depthRadius:i,bias:l,alpha:u,beta:c}=o;te(a,"LRNGrad");let p=y.sizeFromShape(a.shape),m=a.shape[3],f=t.data.get(a.dataId).values,d=t.data.get(n.dataId).values,h=t.data.get(s.dataId).values,g=new Float32Array(p),x=p;for(let b=0;b<x;b++){let w=b%m,_=b-w+Math.max(0,w-i),k=b-w+Math.min(m,w+i+1),D=0;for(let T=_;T<k;T++)D+=Math.pow(d[T],2);D=u*D+l;for(let T=_;T<k;T++){let R=-2*u*c*d[T]*h[b]/D;b===T&&(R+=Math.pow(D,-c)),R*=f[b],g[T]+=R}}return t.makeTensorInfo(a.shape,n.dtype,g)}var nE={kernelName:Tc,backendName:"cpu",kernelFunc:HK};function R_(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reductionIndices:s,keepDims:a}=o,i=t,l=n.shape,u=l.length,c=y.parseAxisParam(s,l),p=c,m=N.getAxesPermutation(p,u),f=i.data.get(n.dataId).values;if(m!=null){let _=new Array(u);for(let k=0;k<_.length;k++)_[k]=l[m[k]];f=lp(f,l,n.dtype,m,_),p=N.getInnerMostAxes(p.length,u),l=_}te(n,"max"),N.assertAxesAreInnerMostDims("max",p,u);let[d,h]=N.computeOutAndReduceShapes(l,p),g=y.sizeFromShape(h),x=Dg(f,g,d,n.dtype),b=i.write(x,d,n.dtype),w=d;return a&&(w=N.expandShapeToKeepDim(d,c)),{dataId:b,shape:w,dtype:n.dtype}}var sE={kernelName:Bn,backendName:"cpu",kernelFunc:R_};function qK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;te(n,"maxPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=o,u=1;y.assert(N.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=N.computePool2DInfo(n.shape,s,a,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Dr({inputs:{x:n},backend:t});else{let m=t.data.get(n.dataId).values,f=y.computeStrides(n.shape),d=cp(m,n.shape,n.dtype,f,c,"max");p=t.makeTensorInfo(c.outShape,n.dtype,d.values)}return p}var iE={kernelName:Gn,backendName:"cpu",kernelFunc:qK};function KK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=o;te(n,"maxPool3d");let c=N.computePool3DInfo(n.shape,s,a,1,i,l,u),p=t.data.get(n.dataId).values,m=Mg(p,n.shape,n.dtype,y.computeStrides(n.shape),c,"max");return t.makeTensorInfo(m.shape,"float32",m.values)}var aE={kernelName:Ya,backendName:"cpu",kernelFunc:KK};function XK(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=o;te([n,s],"maxPool3DGrad");let c=N.computePool3DInfo(s.shape,a,i,1,l,u),p=t.bufferSync(s),m=oA(p,c),f=c.strideDepth,d=c.strideHeight,h=c.strideWidth,g=c.dilationDepth,x=c.dilationHeight,b=c.dilationWidth,w=c.effectiveFilterDepth,_=c.effectiveFilterHeight,k=c.effectiveFilterWidth,D=w-1-c.padInfo.front,T=k-1-c.padInfo.left,R=_-1-c.padInfo.top,O=ve(s.shape,"float32"),M=t.bufferSync(n);for(let G=0;G<c.batchSize;++G)for(let j=0;j<c.inChannels;++j)for(let U=0;U<c.inDepth;++U)for(let H=0;H<c.inHeight;++H)for(let q=0;q<c.inWidth;++q){let X=U-D,oe=H-R,Y=q-T,re=0;for(let J=0;J<w;J+=g){let ie=(X+J)/f;if(!(ie<0||ie>=c.outDepth||Math.floor(ie)!==ie))for(let ue=0;ue<_;ue+=x){let ae=(oe+ue)/d;if(!(ae<0||ae>=c.outHeight||Math.floor(ae)!==ae))for(let fe=0;fe<k;fe+=b){let de=(Y+fe)/h;if(de<0||de>=c.outWidth||Math.floor(de)!==de)continue;let xe=w*_*k-1-m.get(G,ie,ae,de,j),we=J*_*k+ue*k+fe,De=xe===we?1:0;if(De===0)continue;re+=M.get(G,ie,ae,de,j)*De}}}O.set(re,G,U,H,q,j)}return t.makeTensorInfo(O.shape,O.dtype,O.values)}var lE={kernelName:Ec,backendName:"cpu",kernelFunc:XK};function YK(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s,output:a}=e,i=s;te([s,a],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=o,m=N.computePool2DInfo(i.shape,l,u,1,c,p),f=t.data.get(i.dataId).values,d=ve(m.outShape,i.dtype,Pg(f,i.shape,i.dtype,m).values),h=m.strideHeight,g=m.strideWidth,x=m.dilationHeight,b=m.dilationWidth,w=m.effectiveFilterHeight,_=m.effectiveFilterWidth,k=_-1-m.padInfo.left,D=w-1-m.padInfo.top,T=ve(i.shape,"float32"),R=t.data.get(n.dataId).values,O=ve(n.shape,"float32",R);for(let M=0;M<m.batchSize;++M)for(let G=0;G<m.inChannels;++G)for(let j=0;j<m.inHeight;++j)for(let U=0;U<m.inWidth;++U){let H=j-D,q=U-k,X=0;for(let oe=0;oe<w;oe+=x){let Y=(H+oe)/h;if(!(Y<0||Y>=m.outHeight||Math.floor(Y)!==Y))for(let re=0;re<_;re+=b){let J=(q+re)/g;if(J<0||J>=m.outWidth||Math.floor(J)!==J)continue;let ie=w*_-1-d.get(M,Y,J,G),ue=oe*_+re,ae=ie===ue?1:0;if(ae===0)continue;X+=O.get(M,Y,J,G)*ae}}T.set(X,M,j,U,G)}return t.makeTensorInfo(T.shape,T.dtype,T.values)}var uE={kernelName:Ac,backendName:"cpu",kernelFunc:YK};function cE(r,e,t,o,n){let s=y.computeStrides(e),a=cp(r,e,t,s,n,"max"),i=Pg(r,e,t,n,!0,o);return[a.values,i.values]}var pE={kernelName:Dc,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:o}=r,{filterSize:n,strides:s,pad:a,includeBatchInIndex:i}=e,l=t;te(o,"MaxPoolWithArgmax");let u=l.data.get(o.dataId).values,c=N.computePool2DInfo(o.shape,n,s,[1,1],a),[p,m]=cE(u,o.shape,o.dtype,i,c),f=l.write(p,c.outShape,o.dtype),d=l.write(m,c.outShape,o.dtype);return[{dataId:f,shape:c.outShape,dtype:o.dtype},{dataId:d,shape:c.outShape,dtype:"int32"}]}};function vu(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;te(n,"sum");let i;n.dtype==="bool"?i=sn({inputs:{x:n},backend:t,attrs:{dtype:"int32"}}):i=Dr({inputs:{x:n},backend:t});let l=i.shape.length,u=y.parseAxisParam(s,i.shape),c=N.getAxesPermutation(u,l),p=u,m=i;c!=null&&(m=or({inputs:{x:i},backend:t,attrs:{perm:c}}),p=N.getInnerMostAxes(p.length,l)),N.assertAxesAreInnerMostDims("sum",p,m.shape.length);let[f,d]=N.computeOutAndReduceShapes(m.shape,p),h=N.upcastType(m.dtype,"int32"),g=sp(t,f,h),x=y.sizeFromShape(d),b=t.data.get(g.dataId).values,w=t.data.get(m.dataId).values;for(let _=0;_<b.length;++_){let k=_*x,D=0;for(let T=0;T<x;++T)D+=w[k+T];b[_]=D}if(a){let _=N.expandShapeToKeepDim(g.shape,u),k=g;g=Qe({inputs:{x:g},backend:t,attrs:{shape:_}}),t.disposeIntermediateTensorInfo(k)}return t.disposeIntermediateTensorInfo(i),c!=null&&t.disposeIntermediateTensorInfo(m),g}var mE={kernelName:is,backendName:"cpu",kernelFunc:vu};function ZK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=y.parseAxisParam(s,n.shape),u=N.computeOutAndReduceShapes(n.shape,i)[1],c=y.sizeFromShape(u),p=[],m=t.makeTensorInfo([],"float32",new Float32Array([c]));p.push(m);let f=sn({inputs:{x:n},backend:t,attrs:{dtype:"float32"}});p.push(f);let d=gf({inputs:{a:f,b:m},backend:t});p.push(d);let h=vu({inputs:{x:d},backend:t,attrs:{axis:s,keepDims:a}});return p.forEach(g=>t.disposeIntermediateTensorInfo(g)),h}var fE={kernelName:Wn,backendName:"cpu",kernelFunc:ZK};function JK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;te(n,"min");let i=y.parseAxisParam(s,n.shape),l=i,u=N.getAxesPermutation(l,n.shape.length),c=n;u!=null&&(c=or({inputs:{x:n},backend:t,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,n.shape.length)),N.assertAxesAreInnerMostDims("min",l,c.shape.length);let[p,m]=N.computeOutAndReduceShapes(c.shape,l),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let b=x*f,w=h[b];for(let _=0;_<f;++_){let k=h[b+_];k<w&&(w=k)}d[x]=w}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let x=N.expandShapeToKeepDim(p,i),b=Qe({inputs:{x:g},backend:t,attrs:{shape:x}});return t.disposeIntermediateTensorInfo(g),b}return g}var dE={kernelName:jn,backendName:"cpu",kernelFunc:JK};function QK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{paddings:s,mode:a}=o;te(n,"mirrorPad");let i=s.map((w,_)=>w[0]+n.shape[_]+w[1]),l=s.map(w=>w[0]),u=s.map((w,_)=>w[0]+n.shape[_]),c=a==="reflect"?0:1,p=t.data.get(n.dataId).values,m=n.shape.length,f=y.computeStrides(n.shape),d=y.sizeFromShape(i),h=i.length,g=y.computeStrides(i),x=y.getTypedArrayFromDType(n.dtype,d);for(let w=0;w<d;w++){let _=y.indexToLoc(w,h,g);for(let D=0;D<h;D++)_[D]<l[D]?_[D]=l[D]*2-_[D]-c:_[D]>=u[D]&&(_[D]=(u[D]-1)*2-_[D]+c);_=_.map((D,T)=>D-l[T]);let k=y.locToIndex(_,m,f);x[w]=p[k]}return{dataId:t.write(x,i,n.dtype),shape:i,dtype:n.dtype}}var hE={kernelName:Za,backendName:"cpu",kernelFunc:QK};var e6=Xe((r,e)=>{let t=r%e;return r<0&&e<0||r>=0&&e>=0?t:(t+e)%e}),t6=et(Gi,e6),gE={kernelName:Gi,backendName:"cpu",kernelFunc:t6};var yE=sc(Kw());function F_(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{dim:s}=o,a=n.shape.length,i=s;if(i===-1&&(i=a-1),i!==a-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${a} and dim was ${i}`);let l=y.parseAxisParam([i],n.shape),u=R_({inputs:{x:n},backend:t,attrs:{reductionIndices:l,keepDims:!1}}),c=N.expandShapeToKeepDim(u.shape,l),p=Qe({inputs:{x:u},backend:t,attrs:{shape:c}}),m=hf({inputs:{a:n,b:p},backend:t}),f=a_({inputs:{x:m},backend:t}),d=vu({inputs:{x:f},backend:t,attrs:{axis:l,keepDims:!1}}),h=Qe({inputs:{x:d},backend:t,attrs:{shape:c}}),g=gf({inputs:{a:f,b:h},backend:t});return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(h),g}var xE={kernelName:as,backendName:"cpu",kernelFunc:F_};function r6(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{numSamples:s,seed:a,normalized:i}=o;te(n,"multinomial");let l=i?n:F_({inputs:{logits:n},backend:t,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],p=t.data.get(l.dataId).values,m=[u,s],f=y.makeZerosTypedArray(y.sizeFromShape(m),"int32");for(let d=0;d<u;++d){let h=d*c,g=new Float32Array(c-1);g[0]=p[h];for(let w=1;w<g.length;++w)g[w]=g[w-1]+p[h+w];let x=yE.alea(a.toString()),b=d*s;for(let w=0;w<s;++w){let _=x();f[b+w]=g.length;for(let k=0;k<g.length;k++)if(_<g[k]){f[b+w]=k;break}}}return i||t.disposeIntermediateTensorInfo(l),t.makeTensorInfo(m,"int32",f)}var bE={kernelName:$c,backendName:"cpu",kernelFunc:r6};var o6=Er.nonMaxSuppressionV3Impl;function n6(r){let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l}=o;te(n,"NonMaxSuppression");let u=t.data.get(n.dataId).values,c=t.data.get(s.dataId).values,{selectedIndices:p}=o6(u,c,a,i,l);return t.makeTensorInfo([p.length],"int32",new Int32Array(p))}var wE={kernelName:ji,backendName:"cpu",kernelFunc:n6};var s6=Er.nonMaxSuppressionV4Impl;function i6(r){let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=o;te(n,"NonMaxSuppressionPadded");let c=t.data.get(n.dataId).values,p=t.data.get(s.dataId).values,{selectedIndices:m,validOutputs:f}=s6(c,p,a,i,l,u);return[t.makeTensorInfo([m.length],"int32",new Int32Array(m)),t.makeTensorInfo([],"int32",new Int32Array([f]))]}var _E={kernelName:Ui,backendName:"cpu",kernelFunc:i6};var a6=Er.nonMaxSuppressionV5Impl;function l6(r){let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=o;te(n,"NonMaxSuppressionWithScore");let c=t.data.get(n.dataId).values,p=t.data.get(s.dataId).values,m=a,f=i,d=l,h=u,{selectedIndices:g,selectedScores:x}=a6(c,p,m,f,d,h);return[t.makeTensorInfo([g.length],"int32",new Int32Array(g)),t.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var kE={kernelName:Hi,backendName:"cpu",kernelFunc:l6};function u6(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n}=e,{depth:s,onValue:a,offValue:i}=o;te(n,"oneHot");let l=y.sizeFromShape(n.shape),u=new Float32Array(l*s);u.fill(i);let c=t.data.get(n.dataId).values;for(let p=0;p<l;++p)c[p]>=0&&c[p]<s&&(u[p*s+c[p]]=a);return t.makeTensorInfo([...n.shape,s],"int32",u)}var vE={kernelName:qn,backendName:"cpu",kernelFunc:u6};function bf(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(o.dtype==="complex64"){let n=nn({inputs:{input:o},backend:t}),s=bf({inputs:{x:n},backend:t}),a=ni({inputs:{input:o},backend:t}),i=bf({inputs:{x:a},backend:t}),l=fr({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return yf({backend:t,attrs:{shape:o.shape,value:0,dtype:o.dtype}})}var CE={kernelName:qs,backendName:"cpu",kernelFunc:bf};function IE(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(o.dtype==="complex64"){let n=nn({inputs:{input:o},backend:t}),s=IE({inputs:{x:n},backend:t}),a=ni({inputs:{input:o},backend:t}),i=bf({inputs:{x:a},backend:t}),l=fr({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return yf({backend:t,attrs:{shape:o.shape,value:1,dtype:o.dtype}})}var NE={kernelName:Bs,backendName:"cpu",kernelFunc:IE};function O_(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o;if(e.length===1)return pp({inputs:{input:e[0]},backend:t,attrs:{dim:n}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=pp({inputs:{input:c},backend:t,attrs:{dim:n}});return i.push(p),p}),u=pl({inputs:l,backend:t,attrs:{axis:n}});return i.forEach(c=>t.disposeIntermediateTensorInfo(c)),u}var SE={kernelName:Vs,backendName:"cpu",kernelFunc:O_};function c6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{paddings:s,constantValue:a}=o;te(n,"pad");let i=s.map((b,w)=>b[0]+n.shape[w]+b[1]),l=s.map(b=>b[0]),u=t.data.get(n.dataId).values,c=y.sizeFromShape(n.shape),p=n.shape.length,m=y.computeStrides(n.shape),f=y.sizeFromShape(i),d=i.length,h=y.computeStrides(i),g=y.getTypedArrayFromDType(n.dtype,f);a!==0&&g.fill(a);for(let b=0;b<c;b++){let _=y.indexToLoc(b,p,m).map((D,T)=>D+l[T]),k=y.locToIndex(_,d,h);g[k]=u[b]}return{dataId:t.write(g,i,n.dtype),shape:i,dtype:n.dtype}}var zg={kernelName:Kn,backendName:"cpu",kernelFunc:c6};var p6=Xe((r,e)=>Math.pow(r,e)),m6=et(Xn,p6),TE={kernelName:Xn,backendName:"cpu",kernelFunc:m6};function f6(r){let{backend:e,attrs:t}=r,{start:o,stop:n,dtype:s,step:a}=t,i=_u(o,n,a,s);return e.makeTensorInfo([i.length],s,i)}var AE={kernelName:Ja,backendName:"cpu",kernelFunc:f6};var d6=$e(Ki,r=>1/r),EE={kernelName:Ki,backendName:"cpu",kernelFunc:d6};function h6(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o;te(n,"resizeBilinear");let l=y.computeStrides(n.shape),[u,c]=i,[p,m,f,d]=n.shape,h=t.data.get(n.dataId).values,g=new Float32Array(y.sizeFromShape([p,u,c,d])),x=[s&&u>1?m-1:m,s&&c>1?f-1:f],b=[s&&u>1?u-1:u,s&&c>1?c-1:c],w=0,_=x[0]/b[0],k=x[1]/b[1];for(let D=0;D<p;D++)for(let T=0;T<u;T++){let R;a?R=_*(T+.5)-.5:R=_*T;let O=Math.max(0,Math.floor(R)),M=R-O,G=Math.min(m-1,Math.ceil(R)),j=D*l[0]+O*l[1],U=D*l[0]+G*l[1];for(let H=0;H<c;H++){let q;a?q=k*(H+.5)-.5:q=k*H;let X=Math.max(0,Math.floor(q)),oe=q-X,Y=Math.min(f-1,Math.ceil(q)),re=j+X*l[2],J=U+X*l[2],ie=j+Y*l[2],ue=U+Y*l[2];for(let ae=0;ae<d;ae++){let fe=h[re+ae],de=h[J+ae],xe=h[ie+ae],we=h[ue+ae],De=fe+(xe-fe)*oe,Ne=de+(we-de)*oe,ze=De+(Ne-De)*M;g[w++]=ze}}}return t.makeTensorInfo([p,u,c,d],"float32",g)}var DE={kernelName:Jn,backendName:"cpu",kernelFunc:h6};function g6(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o;te([s,n],"resizeBilinearGrad");let i=y.computeStrides(n.shape),[l,u,c,p]=n.shape,[,m,f]=s.shape,d=new Float32Array(l*u*c*p),h=[a&&m>1?u-1:u,a&&f>1?c-1:c],g=[a&&m>1?m-1:m,a&&f>1?f-1:f],x=h[0]/g[0],b=h[1]/g[1],w=t.data.get(s.dataId).values,_=0;for(let k=0;k<l;k++){let D=k*i[0];for(let T=0;T<m;T++){let R=T*x,O=Math.floor(R),M=Math.min(Math.ceil(R),u-1),G=D+O*i[1],j=D+M*i[1],U=R-O,H=1-U;for(let q=0;q<f;q++){let X=q*b,oe=Math.floor(X),Y=Math.min(Math.ceil(X),c-1),re=X-oe,J=1-re,ie=G+oe*i[2],ue=G+Y*i[2],ae=j+oe*i[2],fe=j+Y*i[2],de=H*J,xe=H*re,we=U*J,De=U*re;for(let Ne=0;Ne<p;Ne++){let ze=w[_++];d[ie+Ne]+=ze*de,d[ue+Ne]+=ze*xe,d[ae+Ne]+=ze*we,d[fe+Ne]+=ze*De}}}}return t.makeTensorInfo([l,c,u,p],"float32",d)}var $E={kernelName:Oc,backendName:"cpu",kernelFunc:g6};function x6(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o;te(n,"resizeNearestNeighbor");let l=y.computeStrides(n.shape),[u,c]=i,[p,m,f,d]=n.shape,h=t.data.get(n.dataId).values,g=new Float32Array(p*u*c*d),x=[s&&u>1?m-1:m,s&&c>1?f-1:f],b=[s&&u>1?u-1:u,s&&c>1?c-1:c],w=x[0]/b[0],_=x[1]/b[1],k=0;for(let D=0;D<p;D++){let T=D*l[0];for(let R=0;R<u;R++){let O=a?w*(R+.5):w*R,M=Math.min(m-1,s?Math.round(O):Math.floor(O));a&&(M=Math.max(0,M));let G=T+M*l[1];for(let j=0;j<c;j++){let U=a?_*(j+.5):_*j,H=Math.min(f-1,s?Math.round(U):Math.floor(U));a&&(H=Math.max(0,H));let q=G+H*l[2];for(let X=0;X<d;X++){let oe=h[q+X];g[k++]=oe}}}}return t.makeTensorInfo([p,u,c,d],n.dtype,g)}var RE={kernelName:Qa,backendName:"cpu",kernelFunc:x6};function y6(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o;te([s,n],"resizeNearestNeighborGrad");let i=y.computeStrides(n.shape),l=y.computeStrides(s.shape),[u,c,p,m]=n.shape,[,f,d]=s.shape,h=new Float32Array(u*c*p*m),g=t.data.get(s.dataId).values,x=[a&&f>1?c-1:c,a&&d>1?p-1:p],b=[a&&f>1?f-1:f,a&&d>1?d-1:d],w=x[0]/b[0],_=x[1]/b[1],k=1/w,D=1/_,T=Math.ceil(k)*2+2,R=Math.ceil(D)*2+2;for(let O=0;O<u;O++){let M=O*i[0];for(let G=0;G<c;G++){let j=M+G*i[1],U=Math.floor(G*k),H=Math.floor(U-T/2);for(let q=0;q<p;q++){let X=j+q*i[2],oe=Math.floor(q*D),Y=Math.floor(oe-R/2);for(let re=0;re<m;re++){let J=0;for(let ie=0;ie<T;ie++){let ue=ie+H;if(ue<0||ue>=f)continue;let ae=M+ue*l[1],fe=ue*w,de=Math.min(c-1,a?Math.round(fe):Math.floor(fe));if(G===de)for(let xe=0;xe<R;xe++){let we=xe+Y;if(we<0||we>=d)continue;let De=ae+we*l[2],Ne=we*_,ze=Math.min(p-1,a?Math.round(Ne):Math.floor(Ne));q===ze&&(J+=g[De+re])}}h[X+re]=J}}}}return t.makeTensorInfo(n.shape,n.dtype,h)}var FE={kernelName:Fc,backendName:"cpu",kernelFunc:y6};function b6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dims:s}=o;te(n,"reverse");let a=n.shape.length,i=y.parseAxisParam(s,n.shape);if(a===0)return Dr({inputs:{x:n},backend:t});let l=new lt(n.shape,n.dtype),u=t.bufferSync(n);for(let c=0;c<l.size;c++){let p=l.indexToLoc(c),m=p.slice();i.forEach(f=>m[f]=n.shape[f]-1-m[f]),l.set(u.get(...m),...p)}return t.makeTensorInfo(l.shape,l.dtype,l.values)}var OE={kernelName:es,backendName:"cpu",kernelFunc:b6};var PE={kernelName:oa,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:o}=r,{radians:n,fillValue:s,center:a}=e,i=t,l=y.getTypedArrayFromDType(o.dtype,y.sizeFromShape(o.shape)),[u,c,p,m]=o.shape,[f,d]=N.getImageCenter(a,c,p),h=255,g=Math.sin(n),x=Math.cos(n),b=i.data.get(o.dataId).values;for(let _=0;_<u;_++){let k=_*p*c*m;for(let D=0;D<c;D++){let T=D*(p*m);for(let R=0;R<p;R++){let O=R*m;for(let M=0;M<m;M++){let G=[u,D,R,M],j=G[2],U=G[1],H=(j-f)*x-(U-d)*g,q=(j-f)*g+(U-d)*x;H=Math.round(H+f),q=Math.round(q+d);let X=s;if(typeof s!="number"&&(M===3?X=h:X=s[M]),H>=0&&H<p&&q>=0&&q<c){let Y=q*(p*m),re=H*m,J=k+Y+re+M;X=b[J]}let oe=k+T+O+M;l[oe]=X}}}}return{dataId:i.write(l,o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};var w6=$e(ts,r=>{let e=Math.floor(r);return r-e<.5?Math.floor(r):r-e>.5?Math.ceil(r):e%2==0?e:e+1}),ME={kernelName:ts,backendName:"cpu",kernelFunc:w6};function Bg(r,e,t,o,n,s,a,i,l,u){let c=[o/n,n],p=r.values,m=e.values;if(o===0)return ve(t,e.dtype);let f=ve(c,e.dtype);f.values.fill(l);for(let d=0;d<s;d++){let h=[],g=0;for(let x=0;x<a;x++){let b=p[d*a+x];h.push(b),g+=b*i[x]}if(g<0||g>=o/n)throw new Error(`Invalid indices: ${h} does not index into ${t}`);for(let x=0;x<n;x++)u?f.values[g*n+x]+=m[d*n+x]:f.values[g*n+x]=e.rank===0?m[0]:m[d*n+x]}return f}function _6(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n,updates:s}=e,{shape:a}=o,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=N.calculateShapes(s,n,a),m=!0,f=t.bufferSync(n),d=t.bufferSync(s),h=Bg(f,d,a,p,u,l,i,c,0,m);return t.makeTensorInfo(a,h.dtype,h.values)}var LE={kernelName:Xi,backendName:"cpu",kernelFunc:_6};function k6(r){let{inputs:e,backend:t}=r,{condition:o,t:n,e:s}=e;te([o,n,s],"select");let a=o.shape.length,i=t.data.get(o.dataId).values,l=t.data.get(n.dataId).values,u=t.data.get(s.dataId).values,c=ir(n.dtype,s.dtype),p=y.makeZerosTypedArray(y.sizeFromShape(n.shape),c),m=0,f=a===0||a>1||n.shape.length===1?1:y.sizeFromShape(n.shape.slice(1));for(let d=0;d<i.length;d++)for(let h=0;h<f;h++)i[d]===1?p[m++]=l[d]:p[m++]=u[d];return t.makeTensorInfo(n.shape,c,p)}var zE={kernelName:Ws,backendName:"cpu",kernelFunc:k6};var v6=N.SELU_SCALEALPHA,C6=N.SELU_SCALE,I6=$e(Yi,r=>r>=0?C6*r:v6*(Math.exp(r)-1)),BE={kernelName:Yi,backendName:"cpu",kernelFunc:I6};var N6=$e(ns,r=>1/(1+Math.exp(-r))),VE={kernelName:ns,backendName:"cpu",kernelFunc:N6};var S6=$e(Ji,r=>r<0?-1:r>0?1:0),GE={kernelName:Ji,backendName:"cpu",kernelFunc:S6};var T6=$e(os,r=>Math.sin(r)),WE={kernelName:os,backendName:"cpu",kernelFunc:T6};var A6=$e(Zi,r=>Math.sinh(r)),jE={kernelName:Zi,backendName:"cpu",kernelFunc:A6};var E6=11920928955078125e-23,UE=Math.log(E6)+2,D6=$e(Qi,r=>{let e=r>-UE,t=r<UE,o=Math.exp(r),n;return t?n=o:e?n=r:n=Math.log(1+o),n}),HE={kernelName:Qi,backendName:"cpu",kernelFunc:D6};function $6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,paddings:a}=o;te([n],"spaceToBatchND");let i=y.sizeFromShape(s),l=[[0,0]];l.push(...a);for(let D=1+s.length;D<n.shape.length;++D)l.push([0,0]);let u=zg.kernelFunc({inputs:{x:n},backend:t,attrs:{paddings:l,constantValue:0}}),c=N.getReshaped(u.shape,s,i,!1),p=N.getPermuted(c.length,s.length,!1),m=N.getReshapedPermuted(u.shape,s,i,!1),h=Qe({inputs:{x:u},backend:t,attrs:{shape:c}}),b=or({inputs:{x:h},backend:t,attrs:{perm:p}}),k=Qe({inputs:{x:b},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(b),k}var qE={kernelName:el,backendName:"cpu",kernelFunc:$6};function R6(r){let{inputs:e,backend:t,attrs:o}=r,{sparseIndices:n,sparseValues:s,defaultValue:a}=e,{outputShape:i}=o,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:m}=N.calculateShapes(s,n,i),f=!1,d=t.bufferSync(n),h=t.bufferSync(s),g=t.data.get(a.dataId).values[0],x=Bg(d,h,i,m,c,u,l,p,g,f);return t.makeTensorInfo(i,x.dtype,x.values)}var KE={kernelName:Pc,backendName:"cpu",kernelFunc:R6};function F6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{numOrSizeSplits:s,axis:a}=o,i=y.parseAxisParam(a,n.shape)[0],l=N.prepareSplitSize(n,s,i),u=new Array(n.shape.length).fill(0),c=n.shape.slice();return l.map(p=>{let m=[...c];m[i]=p;let f=un({inputs:{x:n},backend:t,attrs:{begin:u,size:m}});return u[i]+=p,f})}var XE={kernelName:Us,backendName:"cpu",kernelFunc:F6};var O6=$e(ss,r=>Math.sqrt(r)),YE={kernelName:ss,backendName:"cpu",kernelFunc:O6};var ZE={kernelName:tl,backendName:"cpu",kernelFunc:({inputs:r,backend:e})=>{let{x:t}=r,o=e;te(t,"square");let n=o.data.get(t.dataId).values,s=new Float32Array(n.length);for(let i=0;i<n.length;++i){let l=n[i];s[i]=l*l}return{dataId:o.write(s,t.shape,t.dtype),shape:t.shape,dtype:t.dtype}}};var P6=$e(Xo,(r,e)=>{let t=e;return isNaN(r)?NaN:r>0?1:t.alpha}),JE={kernelName:Xo,backendName:"cpu",kernelFunc:P6};function M6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,end:a,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=o;te(n,"stridedSlice");let{nonStrided:f,$begin:d,$strides:h,size:g,newShape:x,outShape:b}=er.sliceInfo(n.shape,s,a,i,l,u,c,p,m),w=Qe({inputs:{x:n},backend:t,attrs:{shape:x}}),_;if(f){let D=un({inputs:{x:w},backend:t,attrs:{begin:d,size:g}});_=Qe({inputs:{x:D},backend:t,attrs:{shape:b}}),t.disposeIntermediateTensorInfo(D)}else if(b.some(D=>D===0))_=t.makeTensorInfo(b,n.dtype,[]);else{let D=t.bufferSync(w),T=$g(b,D,h,d);_=t.makeTensorInfo(T.shape,T.dtype,T.values)}let k=Qe({inputs:{x:_},backend:t,attrs:{shape:b}});return t.disposeIntermediateTensorInfo(w),t.disposeIntermediateTensorInfo(_),k}var QE={kernelName:ea,backendName:"cpu",kernelFunc:M6};var L6=$e(ta,r=>Math.tan(r)),e2={kernelName:ta,backendName:"cpu",kernelFunc:L6};var z6=$e(cs,r=>Math.tanh(r)),t2={kernelName:cs,backendName:"cpu",kernelFunc:z6};function B6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reps:s}=o;te(n,"tile");let a=Rg(t.bufferSync(n),s);return t.makeTensorInfo(a.shape,a.dtype,a.values)}var r2={kernelName:Oo,backendName:"cpu",kernelFunc:B6};function V6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{k:s,sorted:a}=o;te(n,"topk");let i=t.data.get(n.dataId).values,[l,u]=Fg(i,n.shape,n.dtype,s,a);return[t.makeTensorInfo(l.shape,l.dtype,l.values),t.makeTensorInfo(u.shape,u.dtype,u.values)]}var o2={kernelName:ra,backendName:"cpu",kernelFunc:V6};function j6(r){let{inputs:e,attrs:t,backend:o}=r,{image:n,transforms:s}=e,{interpolation:a,fillMode:i,fillValue:l,outputShape:u}=t,[c,p,m,f]=n.shape,[d,h]=u!=null?u:[p,m],g=[c,d,h,f],x=y.computeStrides(n.shape),b=x[0],w=x[1],_=x[2],k=y.getTypedArrayFromDType(n.dtype,y.sizeFromShape(g));k.fill(l);let D=o.data.get(n.dataId).values,T=o.data.get(s.dataId).values;for(let O=0;O<c;++O){let M=s.shape[0]===1?T:T.subarray(O*8,O*8+8);for(let G=0;G<d;++G)for(let j=0;j<h;++j)for(let U=0;U<f;++U){let H,q=M[6]*j+M[7]*G+1;if(q===0)continue;let X=(M[0]*j+M[1]*G+M[2])/q,oe=(M[3]*j+M[4]*G+M[5])/q,Y=n2(X,m,i),re=n2(oe,p,i);switch(a){case"nearest":H=G6(D,p,m,b,w,_,O,re,Y,U,l);break;case"bilinear":H=W6(D,p,m,b,w,_,O,re,Y,U,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${a}`)}let J=O*b+G*w+j*_+U;k[J]=H}return o.makeTensorInfo(g,n.dtype,k)}return{dataId:o.write(k,g,n.dtype),shape:n.shape,dtype:n.dtype}}var s2={kernelName:Mc,backendName:"cpu",kernelFunc:j6};function n2(r,e,t){switch(t){case"reflect":return U6(r,e);case"wrap":return H6(r,e);case"nearest":return K6(r,e);case"constant":default:return q6(r,e)}}function U6(r,e){let t=r;if(t<0)if(e<=1)t=0;else{let o=2*e;t<o&&(t=o*Math.trunc(-t/o)+t),t=t<-e?t+o:-t-1}else if(t>e-1)if(e<=1)t=0;else{let o=2*e;t-=o*Math.trunc(t/o),t>=e&&(t=o-t-1)}return y.clamp(0,t,e-1)}function H6(r,e){let t=r;if(t<0)if(e<=1)t=0;else{let o=e-1;t+=e*(Math.trunc(-t/o)+1)}else if(t>e-1)if(e<=1)t=0;else{let o=e-1;t-=e*Math.trunc(t/o)}return y.clamp(0,t,e-1)}function q6(r,e){return r}function K6(r,e){return y.clamp(0,r,e-1)}function wf(r,e,t,o,n,s,a,i,l,u,c){let p=a*o+i*n+l*s+u;return 0<=i&&i<e&&0<=l&&l<t?r[p]:c}function G6(r,e,t,o,n,s,a,i,l,u,c){let p=Math.round(i),m=Math.round(l);return wf(r,e,t,o,n,s,a,p,m,u,c)}function W6(r,e,t,o,n,s,a,i,l,u,c){let p=Math.floor(i),m=Math.floor(l),f=p+1,d=m+1,h=(d-l)*wf(r,e,t,o,n,s,a,p,m,u,c)+(l-m)*wf(r,e,t,o,n,s,a,p,d,u,c),g=(d-l)*wf(r,e,t,o,n,s,a,f,m,u,c)+(l-m)*wf(r,e,t,o,n,s,a,f,d,u,c);return(f-i)*h+(i-p)*g}function X6(r){let{inputs:e,attrs:t,backend:o}=r,{axis:n}=t,{x:s}=e;te(s,"unique");let a=o.data.get(s.dataId).values,{outputValues:i,outputShape:l,indices:u}=Og(a,n,s.shape,s.dtype);return[o.makeTensorInfo(l,s.dtype,i),o.makeTensorInfo([u.length],"int32",u)]}var i2={kernelName:Lc,backendName:"cpu",kernelFunc:X6};function Y6(r){let{inputs:e,backend:t,attrs:o}=r,{value:n}=e,{axis:s}=o;s<0&&(s+=n.shape.length);let a=n.shape.length,i=n.shape[s],l=new Array(a-1),u=0;for(let f=0;f<a;f++)f!==s&&(l[u++]=n.shape[f]);let c=new Array(a).fill(0),p=n.shape.slice();p[s]=1;let m=new Array(i);for(let f=0;f<m.length;f++){c[s]=f;let d=un({inputs:{x:n},backend:t,attrs:{begin:c,size:p}});m[f]=Qe({inputs:{x:d},backend:t,attrs:{shape:l}}),t.disposeIntermediateTensorInfo(d)}return m}var a2={kernelName:Hs,backendName:"cpu",kernelFunc:Y6};function Z6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,segmentIds:s}=e,{numSegments:a}=o;te(n,"unsortedSegmentSum");let i=n.shape.length,l=s.shape.length,u=[],c=[],p=i-l,m=s;for(let d=0;d<p;++d){let h=pp({inputs:{input:m},backend:t,attrs:{dim:d+1}});m=h,c.push(h)}for(let d=0;d<a;++d){let h=y.createScalarValue(d,"int32"),g=t.makeTensorInfo([],"int32",h),x=D_({inputs:{a:g,b:m},backend:t}),b=sn({inputs:{x},backend:t,attrs:{dtype:"float32"}}),w=df({inputs:{a:b,b:n},backend:t}),_=vu({inputs:{x:w},backend:t,attrs:{axis:0,keepDims:!1}});u.push(_),c.push(g),c.push(x),c.push(b),c.push(w),c.push(_)}let f=O_({inputs:u,backend:t,attrs:{axis:0}});return c.forEach(d=>t.disposeIntermediateTensorInfo(d)),f}var l2={kernelName:rl,backendName:"cpu",kernelFunc:Z6};var J6=[j1,f1,U1,H1,y1,q1,K1,X1,Y1,Z1,J1,Q1,eA,tA,rA,nA,sA,iA,aA,W1,lA,uA,cA,x1,b1,pA,d1,mA,dA,gA,xA,hA,bA,wA,yA,_A,kA,vA,CA,IA,NA,SA,TA,AA,EA,DA,RA,$A,xf,M1,FA,OA,PA,w1,MA,_1,LA,zA,BA,k1,VA,GA,WA,jA,UA,v1,HA,h1,qA,fA,KA,XA,YA,L1,C1,ZA,JA,I1,QA,eE,tE,rE,oE,nE,N1,iE,aE,lE,uE,pE,sE,fE,dE,S1,hE,gE,bE,T1,A1,wE,_E,kE,E1,vE,NE,SE,zg,TE,z1,$1,AE,g1,EE,B1,V1,G1,DE,$E,RE,FE,OE,PE,ME,R1,LE,zE,BE,VE,GE,WE,jE,F1,xE,HE,qE,KE,XE,YE,ZE,O1,JE,QE,P1,mE,e2,t2,r2,o2,D1,s2,i2,a2,l2,CE];for(let r of J6)zl(r);var t5={};Ge(t5,{assertNotComplex:()=>_s,bindCanvasToFramebuffer:()=>u5,bindColorTextureToFramebuffer:()=>vf,bindTextureToProgramUniformSampler:()=>X_,bindTextureUnit:()=>d2,bindVertexBufferToProgramAttribute:()=>Vg,callAndCheck:()=>Ie,canBeRepresented:()=>M_,createFragmentShader:()=>z_,createFramebuffer:()=>H_,createProgram:()=>B_,createStaticIndexBuffer:()=>W_,createStaticVertexBuffer:()=>G_,createTexture:()=>j_,createVertexShader:()=>L_,getBatchDim:()=>Ca,getExtensionOrThrow:()=>mp,getFramebufferErrorMessage:()=>h2,getMaxTexturesInShader:()=>J_,getNumChannels:()=>a5,getProgramUniformLocation:()=>K_,getProgramUniformLocationOrThrow:()=>q_,getRowsCols:()=>Ia,getShapeAs3D:()=>Cf,getTextureShapeFromLogicalShape:()=>Y_,getWebGLDisjointQueryTimerVersion:()=>Q_,getWebGLErrorMessage:()=>m2,getWebGLMaxTextureSize:()=>Z_,hasExtension:()=>So,isCapableOfRenderingToFloatTexture:()=>tk,isDownloadFloatTextureEnabled:()=>rk,isReshapeFree:()=>dl,isWebGLFenceEnabled:()=>ok,isWebGLVersionEnabled:()=>Hg,linkProgram:()=>V_,resetMaxTextureSize:()=>c5,resetMaxTexturesInShader:()=>p5,unbindColorTextureFromFramebuffer:()=>Gg,unbindTextureUnit:()=>l5,validateFramebuffer:()=>fp,validateProgram:()=>kf,validateTextureSize:()=>U_});var Cu={},P_={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function u2(r,e){Cu[r]=e}function Bo(r){if(!(r in Cu)){let t=Q6(r);if(t!==null)Cu[r]=t;else return console.log("Could not get context for WebGL version",r),null}let e=Cu[r];return e.isContextLost()?(delete Cu[r],Bo(r)):(e.disable(e.DEPTH_TEST),e.disable(e.STENCIL_TEST),e.disable(e.BLEND),e.disable(e.DITHER),e.disable(e.POLYGON_OFFSET_FILL),e.disable(e.SAMPLE_COVERAGE),e.enable(e.SCISSOR_TEST),e.enable(e.CULL_FACE),e.cullFace(e.BACK),Cu[r])}function e5(r){if(typeof OffscreenCanvas!="undefined"&&r===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function Q6(r){if(r!==1&&r!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let e=e5(r);return e.addEventListener("webglcontextlost",t=>{t.preventDefault(),delete Cu[r]},!1),r===1?e.getContext("webgl",P_)||e.getContext("experimental-webgl",P_):e.getContext("webgl2",P_)}var ml;(function(r){r[r.DENSE=0]="DENSE",r[r.SHARED_BATCH=1]="SHARED_BATCH"})(ml||(ml={}));var $r;(function(r){r[r.RENDER=0]="RENDER",r[r.UPLOAD=1]="UPLOAD",r[r.PIXELS=2]="PIXELS",r[r.DOWNLOAD=3]="DOWNLOAD"})($r||($r={}));var vr;(function(r){r[r.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",r[r.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",r[r.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",r[r.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",r[r.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(vr||(vr={}));function Iu(r,e){return[e,r]}function c2(r,e){return r*e}function fl(r){let e=y.sizeFromShape(r),t=Math.ceil(e/4);return y.sizeToSquarishShape(t)}function si(r,e){return[Math.max(1,Math.ceil(e/2)),Math.max(1,Math.ceil(r/2))]}function p2(r,e){let[t,o]=si(r,e);return t*o*4}function _f(r,e){let t=r,o,n,s,a,i,l,u,c,p,m;return W().getNumber("WEBGL_VERSION")===2?(o=t.R32F,n=t.R16F,s=t.RGBA16F,a=t.RGBA32F,i=t.RED,u=4,c=1,p=t.HALF_FLOAT,m=t.FLOAT):(o=r.RGBA,n=r.RGBA,s=r.RGBA,a=t.RGBA,i=r.RGBA,u=4,c=4,p=e!=null?e.HALF_FLOAT_OES:null,m=r.FLOAT),l=r.RGBA,{internalFormatFloat:o,internalFormatHalfFloat:n,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:a,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:m}}function Ie(r,e){let t=e();return W().getBool("DEBUG")&&r5(r),t}function r5(r){let e=r.getError();if(e!==r.NO_ERROR)throw new Error("WebGL Error: "+m2(r,e))}var o5=596e-10,n5=65504;function M_(r){return!!(W().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||r===0||o5<Math.abs(r)&&Math.abs(r)<n5)}function m2(r,e){switch(e){case r.NO_ERROR:return"NO_ERROR";case r.INVALID_ENUM:return"INVALID_ENUM";case r.INVALID_VALUE:return"INVALID_VALUE";case r.INVALID_OPERATION:return"INVALID_OPERATION";case r.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case r.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case r.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${e}`}}function mp(r,e){return va(r,()=>r.getExtension(e),'Extension "'+e+'" not supported on this browser.')}function L_(r,e){let t=va(r,()=>r.createShader(r.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ie(r,()=>r.shaderSource(t,e)),Ie(r,()=>r.compileShader(t)),r.getShaderParameter(t,r.COMPILE_STATUS)===!1)throw console.log(r.getShaderInfoLog(t)),new Error("Failed to compile vertex shader.");return t}function z_(r,e){let t=va(r,()=>r.createShader(r.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ie(r,()=>r.shaderSource(t,e)),Ie(r,()=>r.compileShader(t)),r.getShaderParameter(t,r.COMPILE_STATUS)===!1)throw s5(e,r.getShaderInfoLog(t)),new Error("Failed to compile fragment shader.");return t}var i5=/ERROR: [0-9]+:([0-9]+):/g;function s5(r,e){let t=i5.exec(e);if(t==null){console.log(`Couldn't parse line number in error: ${e}`),console.log(r);return}let o=+t[1],n=r.split(`
`),s=n.length.toString().length+2,a=n.map((p,m)=>y.rightPad((m+1).toString(),s)+p),i=0;for(let p=0;p<a.length;p++)i=Math.max(a[p].length,i);let l=a.slice(0,o-1),u=a.slice(o-1,o),c=a.slice(o);console.log(l.join(`
`)),console.log(e.split(`
`)[0]),console.log(`%c ${y.rightPad(u[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
`))}function B_(r){return va(r,()=>r.createProgram(),"Unable to create WebGLProgram.")}function V_(r,e){if(Ie(r,()=>r.linkProgram(e)),r.getProgramParameter(e,r.LINK_STATUS)===!1)throw console.log(r.getProgramInfoLog(e)),new Error("Failed to link vertex and fragment shaders.")}function kf(r,e){if(Ie(r,()=>r.validateProgram(e)),r.getProgramParameter(e,r.VALIDATE_STATUS)===!1)throw console.log(r.getProgramInfoLog(e)),new Error("Shader program validation failed.")}function G_(r,e){let t=va(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return Ie(r,()=>r.bindBuffer(r.ARRAY_BUFFER,t)),Ie(r,()=>r.bufferData(r.ARRAY_BUFFER,e,r.STATIC_DRAW)),t}function W_(r,e){let t=va(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return Ie(r,()=>r.bindBuffer(r.ELEMENT_ARRAY_BUFFER,t)),Ie(r,()=>r.bufferData(r.ELEMENT_ARRAY_BUFFER,e,r.STATIC_DRAW)),t}function a5(){return W().getNumber("WEBGL_VERSION")===2?1:4}function j_(r){return va(r,()=>r.createTexture(),"Unable to create WebGLTexture.")}function U_(r,e){let t=W().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(r<=0||e<=0){let o=`[${r}x${e}]`;throw new Error("Requested texture size "+o+" is invalid.")}if(r>t||e>t){let o=`[${r}x${e}]`,n=`[${t}x${t}]`;throw new Error("Requested texture size "+o+" greater than WebGL maximum on this browser / GPU "+n+".")}}function H_(r){return va(r,()=>r.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Vg(r,e,t,o,n,s,a){let i=r.getAttribLocation(e,t);return i===-1?!1:(Ie(r,()=>r.bindBuffer(r.ARRAY_BUFFER,o)),Ie(r,()=>r.vertexAttribPointer(i,n,r.FLOAT,!1,s,a)),Ie(r,()=>r.enableVertexAttribArray(i)),!0)}function d2(r,e,t){f2(r,t),Ie(r,()=>r.activeTexture(r.TEXTURE0+t)),Ie(r,()=>r.bindTexture(r.TEXTURE_2D,e))}function l5(r,e){f2(r,e),Ie(r,()=>r.activeTexture(r.TEXTURE0+e)),Ie(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function q_(r,e,t){return va(r,()=>r.getUniformLocation(e,t),'uniform "'+t+'" not present in program.')}function K_(r,e,t){return r.getUniformLocation(e,t)}function X_(r,e,t,o){Ie(r,()=>d2(r,e,o)),Ie(r,()=>r.uniform1i(t,o))}function u5(r){Ie(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,null)),Ie(r,()=>r.viewport(0,0,r.canvas.width,r.canvas.height)),Ie(r,()=>r.scissor(0,0,r.canvas.width,r.canvas.height))}function vf(r,e,t){Ie(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,t)),Ie(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,e,0))}function Gg(r,e){Ie(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,e)),Ie(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,null,0))}function fp(r){let e=r.checkFramebufferStatus(r.FRAMEBUFFER);if(e!==r.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+h2(r,e))}function h2(r,e){switch(e){case r.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case r.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${e}`}}function va(r,e,t){let o=Ie(r,()=>e());if(o==null)throw new Error(t);return o}function f2(r,e){let t=r.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,o=e+r.TEXTURE0;if(o<r.TEXTURE0||o>t){let n=`[gl.TEXTURE0, gl.TEXTURE${t}]`;throw new Error(`textureUnit must be in ${n}.`)}}function Ca(r,e=2){return y.sizeFromShape(r.slice(0,r.length-e))}function Ia(r){if(r.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[r.length>1?r[r.length-2]:1,r[r.length-1]]}function Cf(r){let e=[1,1,1];return r.length===0||r.length===1&&r[0]===1||(e=[Ca(r),...Ia(r)]),e}function Y_(r,e=!1){let t=W().getNumber("WEBGL_MAX_TEXTURE_SIZE");e&&(t=t*2,r=r.map((n,s)=>s>=r.length-2?y.nearestLargerEven(r[s]):r[s]),r.length===1&&(r=[2,r[0]])),r.length!==2&&(r=y.squeezeShape(r).newShape);let o=y.sizeFromShape(r);if(r.length<=1&&o<=t)return[1,o];if(r.length===2&&r[0]<=t&&r[1]<=t)return r;if(r.length===3&&r[0]*r[1]<=t&&r[2]<=t)return[r[0]*r[1],r[2]];if(r.length===3&&r[0]<=t&&r[1]*r[2]<=t)return[r[0],r[1]*r[2]];if(r.length===4&&r[0]*r[1]*r[2]<=t&&r[3]<=t)return[r[0]*r[1]*r[2],r[3]];if(r.length===4&&r[0]<=t&&r[1]*r[2]*r[3]<=t)return[r[0],r[1]*r[2]*r[3]];if(e){let n=Ca(r),s=2,a=2;return r.length&&([s,a]=Ia(r)),o=n*(s/2)*(a/2),y.sizeToSquarishShape(o).map(i=>i*2)}return y.sizeToSquarishShape(o)}function Wg(r){return r%2==0}function dl(r,e){if(r=r.slice(-2),e=e.slice(-2),y.arraysEqual(r,e)||!r.length||!e.length||r[0]===0||r[1]===0||e[0]===0||e[1]===0)return!0;if(r.length!==e.length){let t=r.slice(-1)[0],o=e.slice(-1)[0];if(t===o||Wg(t)&&Wg(o)&&(r[0]===1||e[0]===1))return!0}return r[1]===e[1]&&Wg(r[0])&&Wg(e[0])}var jg,Ug;function Z_(r){if(jg==null){let e=Bo(r);jg=e.getParameter(e.MAX_TEXTURE_SIZE)}return jg}function c5(){jg=null}function p5(){Ug=null}function J_(r){if(Ug==null){let e=Bo(r);Ug=e.getParameter(e.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Ug)}function Q_(r){if(r===0)return 0;let e,t=Bo(r);return So(t,"EXT_disjoint_timer_query_webgl2")&&r===2?e=2:So(t,"EXT_disjoint_timer_query")?e=1:e=0,e}function So(r,e){return r.getExtension(e)!=null}function Hg(r){try{if(Bo(r)!=null)return!0}catch(e){return console.log("Error when getting WebGL context: ",e),!1}return!1}function tk(r){if(r===0)return!1;let e=Bo(r);if(r===1){if(!So(e,"OES_texture_float"))return!1}else if(!So(e,"EXT_color_buffer_float"))return!1;return ek(e)}function rk(r){if(r===0)return!1;let e=Bo(r);if(r===1){if(!So(e,"OES_texture_float")||!So(e,"WEBGL_color_buffer_float"))return!1}else{if(So(e,"EXT_color_buffer_float"))return ek(e);let o="EXT_color_buffer_half_float";if(So(e,o)){let n=e.getExtension(o);return m5(e,n)}return!1}return ek(e)}function ek(r){let e=_f(r),t=r.createTexture();r.bindTexture(r.TEXTURE_2D,t);let o=1,n=1;r.texImage2D(r.TEXTURE_2D,0,e.internalFormatFloat,o,n,0,e.textureFormatFloat,e.textureTypeFloat,null);let s=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,s),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,t,0);let a=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(t),r.deleteFramebuffer(s),a}function m5(r,e){let t=_f(r,e),o=r.createTexture();r.bindTexture(r.TEXTURE_2D,o);let n=1,s=1;r.texImage2D(r.TEXTURE_2D,0,t.internalFormatHalfFloat,n,s,0,t.textureFormatFloat,t.textureTypeHalfFloat,null);let a=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,a),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,o,0);let i=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(o),r.deleteFramebuffer(a),i}function ok(r){return r!==2?!1:Bo(r).fenceSync!=null}function _s(r,e){Array.isArray(r)||(r=[r]),r.forEach(t=>{t!=null&&y.assert(t.dtype!=="complex64",()=>`${e} does not support complex64 tensors in the WebGL backend.`)})}var Pe=W();Pe.registerFlag("HAS_WEBGL",()=>Pe.getNumber("WEBGL_VERSION")>0);Pe.registerFlag("WEBGL_VERSION",()=>Hg(2)?2:Hg(1)?1:0);Pe.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Pe.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Pe.get("WEBGL_VERSION")===2);Pe.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Pe.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Pe.registerFlag("WEBGL_PACK",()=>Pe.getBool("HAS_WEBGL"));Pe.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_CLIP",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);Pe.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_REDUCE",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_LAZILY_UNPACK",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_CONV_IM2COL",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>Z_(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>J_(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let r=Pe.getNumber("WEBGL_VERSION");return r===0?0:Q_(r)});Pe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Pe.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Wl.isMobile());Pe.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>tk(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Pe.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Pe.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Pe.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>rk(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_FENCE_API_ENABLED",()=>ok(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Pe.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Pe.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${r}.`)});Pe.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Wl.isMobile()&&Pe.getBool("IS_CHROME")?1:-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${r}.`)});function Rt(){let r,e,t,o,n,s,a,i,l,u;return W().getNumber("WEBGL_VERSION")===2?(r="#version 300 es",e="in",t="out",o="in",n="texture",s="outputColor",a="out vec4 outputColor;",i=`
bool isnan_custom(float val) {
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",u=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(r="",e="attribute",t="varying",o="varying",n="texture2D",s="gl_FragColor",a="",i=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,u=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:r,attribute:e,varyingVs:t,varyingFs:o,texture2D:n,output:s,defineOutput:a,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function ks(r,e,t="index"){let o=y.computeStrides(e);return o.map((n,s)=>{let a=`int ${r[s]} = ${t} / ${n}`,i=s===o.length-1?`int ${r[s+1]} = ${t} - ${r[s]} * ${n}`:`index -= ${r[s]} * ${n}`;return`${a}; ${i};`}).join("")}function dp(r){let e=y.computeStrides(r).map(t=>t.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${e[0]} + coords.y * ${e[1]} + coords.z;
}
`}var qg=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`;var nk=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=ml.DENSE;let t=fl(e),o=Rt();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${ks(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${o.output} = result;
}
`}};var sk=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=ml.DENSE;let t=fl(e),o=Rt();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${ks(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${o.output} = result;
}
`}};var ik=class{constructor(e){this.variableNames=["A"],this.outTexUsage=$r.DOWNLOAD;let t=Rt();this.outputShape=e,this.userCode=`
${qg}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}};var ak=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=$r.DOWNLOAD;let t=Rt();this.outputShape=e,this.userCode=`
${qg}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}};var lk=class{constructor(e,t,o=!1){this.variableNames=["A"];let n=Rt(),[s,a]=t;this.outputShape=e;let i="result";o&&(i="floor(result * 255. + 0.5)"),this.userCode=`
${dp(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / ${a};
int c = imod(flatIndex, ${a});
vec2 uv = (vec2(c, r) + halfCR) / vec2(${a}.0, ${s}.0);
vec4 values = ${n.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${n.output} = vec4(${i}, 0., 0., 0.);
}
`}};var uk=class{constructor(e,t,o=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let n=Rt(),[s,a]=t;this.outputShape=e;let i="",l="result";o&&(l="floor(result * 255. + 0.5)");for(let u=0;u<=1;u++)for(let c=0;c<=1;c++){let p=u*2+c;i+=`
localCoords = coords;
if(localCoords[2] + ${c} < ${e[2]}) {
localCoords[2] += ${c};
if(localCoords[1] + ${u} < ${e[1]}) {
localCoords[1] += ${u};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
r = flatIndex / ${a};
c = imod(flatIndex, ${a});
uv = (vec2(c, r) + halfCR) / vec2(${a}.0, ${s}.0);
values = ${n.texture2D}(A, uv);
if(offset == 0) {
result[${p}] = values[0];
} else if(offset == 1) {
result[${p}] = values[1];
} else if(offset == 2) {
result[${p}] = values[2];
} else {
result[${p}] = values[3];
}
}
}
`}this.userCode=`
${dp(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${i}
${n.output} = ${l};
}
`}};var f5={};Ge(f5,{bindVertexProgramAttributeStreams:()=>yk,createBufferFromOutputTexture:()=>_k,createFloat16MatrixTexture:()=>dk,createFloat16PackedMatrixTexture:()=>xk,createFloat32MatrixTexture:()=>fk,createIndexBuffer:()=>mk,createPackedMatrixTexture:()=>gk,createUnsignedBytesMatrixTexture:()=>hk,createVertexBuffer:()=>pk,createVertexShader:()=>ck,downloadByteEncodedFloatMatrixFromOutputTexture:()=>vk,downloadFloat32MatrixFromBuffer:()=>kk,downloadMatrixFromPackedOutputTexture:()=>Ik,downloadPackedMatrixFromBuffer:()=>Ck,getInternalFormatForFloat16MatrixTexture:()=>Xg,getInternalFormatForFloat16PackedMatrixTexture:()=>Jg,getInternalFormatForFloat32MatrixTexture:()=>Kg,getInternalFormatForPackedMatrixTexture:()=>Zg,getInternalFormatForUnsignedBytesMatrixTexture:()=>Yg,uploadDenseMatrixToTexture:()=>bk,uploadPixelDataToTexture:()=>wk});function ck(r){let e=Rt(),t=`${e.version}
precision highp float;
${e.attribute} vec3 clipSpacePos;
${e.attribute} vec2 uv;
${e.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return L_(r,t)}function pk(r){let e=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return G_(r,e)}function mk(r){let e=new Uint16Array([0,1,2,2,1,3]);return W_(r,e)}function If(r,e,t,o,n,s){U_(e,t);let a=j_(r),i=r.TEXTURE_2D;return Ie(r,()=>r.bindTexture(i,a)),Ie(r,()=>r.texParameteri(i,r.TEXTURE_WRAP_S,r.CLAMP_TO_EDGE)),Ie(r,()=>r.texParameteri(i,r.TEXTURE_WRAP_T,r.CLAMP_TO_EDGE)),Ie(r,()=>r.texParameteri(i,r.TEXTURE_MIN_FILTER,r.NEAREST)),Ie(r,()=>r.texParameteri(i,r.TEXTURE_MAG_FILTER,r.NEAREST)),Ie(r,()=>r.texImage2D(i,0,o,e,t,0,n,s,null)),Ie(r,()=>r.bindTexture(r.TEXTURE_2D,null)),a}function Kg(r){return r.internalFormatFloat}function fk(r,e,t,o){let[n,s]=Iu(e,t);return If(r,n,s,Kg(o),o.textureFormatFloat,r.FLOAT)}function Xg(r){return r.internalFormatHalfFloat}function dk(r,e,t,o){let[n,s]=Iu(e,t);return If(r,n,s,Xg(o),o.textureFormatFloat,o.textureTypeHalfFloat)}function Yg(r){return r.downloadTextureFormat}function hk(r,e,t,o){let[n,s]=Iu(e,t);return If(r,n,s,Yg(o),r.RGBA,r.UNSIGNED_BYTE)}function Zg(r){return r.internalFormatPackedFloat}function gk(r,e,t,o){let[n,s]=si(e,t);return If(r,n,s,Zg(o),r.RGBA,r.FLOAT)}function Jg(r){return r.internalFormatPackedHalfFloat}function xk(r,e,t,o){let[n,s]=si(e,t);return If(r,n,s,Jg(o),r.RGBA,o.textureTypeHalfFloat)}function yk(r,e,t){let o=0,n=3*4,s=3*4+2*4;return Ie(r,()=>r.bindBuffer(r.ARRAY_BUFFER,t)),Vg(r,e,"clipSpacePos",t,3,s,o)&&Vg(r,e,"uv",t,2,s,n)}function bk(r,e,t,o,n,s){Ie(r,()=>r.bindTexture(r.TEXTURE_2D,e));let a,i,l;n instanceof Uint8Array?(a=new Uint8Array(t*o*4),i=r.UNSIGNED_BYTE,l=r.RGBA):(a=new Float32Array(t*o*4),i=r.FLOAT,l=s.internalFormatPackedFloat),a.set(n),Ie(r,()=>r.texImage2D(r.TEXTURE_2D,0,l,t,o,0,r.RGBA,i,a)),Ie(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function wk(r,e,t){Ie(r,()=>r.bindTexture(r.TEXTURE_2D,e)),t.data instanceof Uint8Array?Ie(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,t.width,t.height,0,r.RGBA,r.UNSIGNED_BYTE,t.data)):Ie(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,r.RGBA,r.UNSIGNED_BYTE,t)),Ie(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function _k(r,e,t,o){let n=r.createBuffer();Ie(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,n));let i=4*4*e*t;return Ie(r,()=>r.bufferData(r.PIXEL_PACK_BUFFER,i,r.STREAM_READ)),Ie(r,()=>r.readPixels(0,0,t,e,r.RGBA,r.FLOAT,0)),Ie(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,null)),n}function kk(r,e,t){let o=r,n=new Float32Array(t);return o.bindBuffer(o.PIXEL_PACK_BUFFER,e),o.getBufferSubData(o.PIXEL_PACK_BUFFER,0,n),o.bindBuffer(o.PIXEL_PACK_BUFFER,null),n}function vk(r,e,t,o){let[n,s]=Iu(e,t),a=4,i=new Uint8Array(c2(e*t,a));return Ie(r,()=>r.readPixels(0,0,n,s,o.downloadTextureFormat,r.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function Ck(r,e,t,o,n,s,a,i){let l=r,u=new Float32Array(p2(s,a));return l.bindBuffer(l.PIXEL_PACK_BUFFER,e),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function Ik(r,e,t){let o=new Float32Array(e*t*4);return Ie(r,()=>r.readPixels(0,0,t,e,r.RGBA,r.FLOAT,o)),o}var Nk=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=W().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,u2(t,e)):this.gl=Bo(t);let o="WEBGL_color_buffer_float",n="EXT_color_buffer_half_float";if(W().getNumber("WEBGL_VERSION")===1){let s="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=mp(this.gl,s),So(this.gl,a))this.textureHalfFloatExtension=mp(this.gl,a);else if(W().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(o),So(this.gl,n))this.colorBufferHalfFloatExtension=mp(this.gl,n);else if(W().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(o="EXT_color_buffer_float",So(this.gl,o))this.colorBufferFloatExtension=this.gl.getExtension(o);else if(So(this.gl,n))this.colorBufferHalfFloatExtension=this.gl.getExtension(n);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=pk(this.gl),this.indexBuffer=mk(this.gl),this.framebuffer=H_(this.gl),this.textureConfig=_f(this.gl,this.textureHalfFloatExtension)}get debug(){return W().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ie(e,()=>e.finish()),Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.deleteFramebuffer(this.framebuffer)),Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ie(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),fk(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),dk(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),hk(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),wk(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,o,n){this.throwIfDisposed(),bk(this.gl,e,t,o,n,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),xk(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),gk(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(Gg(this.gl,this.framebuffer),this.outputTexture=null),Ie(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,o){return this.downloadMatrixDriver(e,()=>vk(this.gl,t,o,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,o,n,s,a){return Ck(this.gl,e,t,o,n,s,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return kk(this.gl,e,t)}createBufferFromTexture(e,t,o){this.bindTextureToFrameBuffer(e);let n=_k(this.gl,t,o,this.textureConfig);return this.unbindTextureToFrameBuffer(),n}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,o;if(W().getBool("WEBGL_FENCE_API_ENABLED")){let n=e,s=n.fenceSync(n.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),o=()=>{let a=n.clientWaitSync(s,0,0);return a===n.ALREADY_SIGNALED||a===n.CONDITION_SATISFIED},t=s}else W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),o=()=>this.isQueryAvailable(t,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):o=()=>!0;return{query:t,isFencePassed:o}}downloadMatrixFromPackedTexture(e,t,o){return this.downloadMatrixDriver(e,()=>Ik(this.gl,t,o))}createProgram(e){this.throwIfDisposed();let t=this.gl,o=z_(t,e),n=ck(t),s=B_(t);return Ie(t,()=>t.attachShader(s,n)),Ie(t,()=>t.attachShader(s,o)),V_(t,s),this.debug&&kf(t,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=yk(t,this.program,this.vertexBuffer)),s}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ie(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&kf(this.gl,this.program),Ie(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,o=!0){return this.throwIfDisposed(),o?q_(this.gl,e,t):K_(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ie(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,o){this.throwIfDisposed(),this.throwIfNoProgram(),X_(this.gl,e,t,o)}setOutputMatrixTexture(e,t,o){this.setOutputMatrixTextureDriver(e,o,t)}setOutputPackedMatrixTexture(e,t,o){this.throwIfDisposed();let[n,s]=si(t,o);this.setOutputMatrixTextureDriver(e,n,s)}setOutputMatrixWriteRegion(e,t,o,n){this.setOutputMatrixWriteRegionDriver(o,e,n,t)}setOutputPackedMatrixWriteRegion(e,t,o,n){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&kf(this.gl,this.program),fp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ie(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=mp(this.gl,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let o=this.gl,n=this.getQueryTimerExtensionWebGL2(),s=o.createQuery();return o.beginQuery(n.TIME_ELAPSED_EXT,s),s}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,o=this.getQueryTimerExtensionWebGL2();t.endQuery(o.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await y.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let o=this.gl;return o.getQueryParameter(e,o.QUERY_RESULT)/1e6}else{let o=this.getQueryTimerExtensionWebGL1();return o.getQueryObjectEXT(e,o.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let o=this.gl,n=this.getQueryTimerExtensionWebGL2(),s=o.getQueryParameter(e,o.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}else{let o=this.getQueryTimerExtensionWebGL1(),n=o.getQueryObjectEXT(e,o.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(o.GPU_DISJOINT_EXT)),n&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=d5(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:o}=this.itemsToPoll[t];o()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&y.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),vf(this.gl,e,this.framebuffer),this.debug&&fp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(vf(this.gl,this.outputTexture,this.framebuffer),this.debug&&fp(this.gl)):Gg(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let o=t();return this.unbindTextureToFrameBuffer(),o}setOutputMatrixTextureDriver(e,t,o){this.throwIfDisposed();let n=this.gl;vf(n,e,this.framebuffer),this.debug&&fp(n),this.outputTexture=e,Ie(n,()=>n.viewport(0,0,t,o)),Ie(n,()=>n.scissor(0,0,t,o))}setOutputMatrixWriteRegionDriver(e,t,o,n){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.scissor(e,t,o,n))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function d5(r){let e=0;for(;e<r.length&&r[e]();++e);return e-1}var{getBroadcastDims:g2}=N;function x2(r,e,t,o){let n=[];r.forEach(d=>{let h=y.sizeFromShape(d.shapeInfo.logicalShape);d.shapeInfo.isUniform?n.push(`uniform float ${d.name}${h>1?`[${h}]`:""};`):(n.push(`uniform sampler2D ${d.name};`),n.push(`uniform int offset${d.name};`))});let s=n.join(`
`),a=r.map(d=>h5(d,e,o)).join(`
`),i=e.texShape,l=Rt(),u=y5(l),c,p,m=_5(l);return e.isPacked?(c=g5(e.logicalShape,i),p=w5(l)):(c=x5(e.logicalShape,i),p=b5(l)),o&&(m+=k5),[m,u,p,s,c,a,t].join(`
`)}function hp(r){let e=r.shapeInfo.logicalShape;switch(e.length){case 0:return v5(r);case 1:return C5(r);case 2:return I5(r);case 3:return N5(r);case 4:return S5(r);case 5:return T5(r);case 6:return A5(r);default:throw new Error(`${e.length}-D input sampling is not yet supported`)}}function y2(r){switch(r.shapeInfo.logicalShape.length){case 0:return E5(r);case 1:return D5(r);case 2:return $5(r);case 3:return R5(r);default:return F5(r)}}function h5(r,e,t=!1){let o="";t?o+=y2(r):o+=hp(r);let n=r.shapeInfo.logicalShape,s=e.logicalShape;return n.length<=s.length&&(t?o+=O5(r,e):o+=P5(r,e)),o}function g5(r,e){switch(r.length){case 0:return b2();case 1:return M5(r,e);case 2:return B5(r,e);case 3:return L5(r,e);default:return z5(r,e)}}function x5(r,e){switch(r.length){case 0:return b2();case 1:return V5(r,e);case 2:return H5(r,e);case 3:return G5(r,e);case 4:return W5(r,e);case 5:return j5(r,e);case 6:return U5(r,e);default:throw new Error(`${r.length}-D output sampling is not yet supported`)}}function y5(r){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${r.texture2D}(textureSampler, uv).r;
}
`}function b5(r){return`
void setOutput(float val) {
${r.output} = vec4(val, 0, 0, 0);
}
`}function w5(r){return`
void setOutput(vec4 val) {
${r.output} = val;
}
`}function _5(r){return`${r.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${r.varyingFs} vec2 resultUV;
${r.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${r.defineSpecialNaN}
${r.defineSpecialInf}
${r.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${q5}
${K5}
${X5}
`}var q5=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,K5=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,X5=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,k5=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function b2(){return`
int getOutputCoords() {
return 0;
}
`}function M5(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)];return t[0]===1?`
int getOutputCoords() {
return 2 * int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?`
int getOutputCoords() {
return 2 * int(resultUV.y * ${t[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return 2 * (resTexRC.x * ${t[1]} + resTexRC.y);
}
`}function V5(r,e){return e[0]===1?`
int getOutputCoords() {
return int(resultUV.x * ${e[1]}.0);
}
`:e[1]===1?`
int getOutputCoords() {
return int(resultUV.y * ${e[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
return resTexRC.x * ${e[1]} + resTexRC.y;
}
`}function L5(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)],o=Math.ceil(r[2]/2),n=o*Math.ceil(r[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int b = index / ${n};
index -= b * ${n};
int r = 2 * (index / ${o});
int c = imod(index, ${o}) * 2;
return ivec3(b, r, c);
}
`}function G5(r,e){let t=ks(["r","c","d"],r);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
return ivec3(r, c, d);
}
`}function z5(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)],o=Math.ceil(r[r.length-1]/2),n=o*Math.ceil(r[r.length-2]/2),s=n,a="",i="b, r, c";for(let l=2;l<r.length-1;l++)s*=r[r.length-l-1],a=`
int b${l} = index / ${s};
index -= b${l} * ${s};
`+a,i=`b${l}, `+i;return`
ivec${r.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${a}
int b = index / ${n};
index -= b * ${n};
int r = 2 * (index / ${o});
int c = imod(index, ${o}) * 2;
return ivec${r.length}(${i});
}
`}function W5(r,e){let t=ks(["r","c","d","d2"],r);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
return ivec4(r, c, d, d2);
}
`}function j5(r,e){let t=ks(["r","c","d","d2","d3"],r);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${e[0]},
${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function U5(r,e){let t=ks(["r","c","d","d2","d3","d4"],r);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function B5(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)];if(y.arraysEqual(r,e))return`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`;let o=Math.ceil(r[1]/2);return`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = 2 * (index / ${o});
int c = imod(index, ${o}) * 2;
return ivec2(r, c);
}
`}function H5(r,e){return y.arraysEqual(r,e)?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${e[0]}, ${e[1]}));
}
`:r[1]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:r[0]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
int r = index / ${r[1]};
int c = index - r * ${r[1]};
return ivec2(r, c);
}
`}function Nu(r){return`offset${r}`}function E5(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1),o=Rt();return`
vec4 ${t}() {
return ${o.texture2D}(${e}, halfCR);
}
`}function v5(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`float ${t}() {return ${e};}`;let[o,n]=r.shapeInfo.texShape;if(o===1&&n===1)return`
float ${t}() {
return sampleTexture(${e}, halfCR);
}
`;let[s,a]=r.shapeInfo.texShape,i=Nu(e);return`
float ${t}() {
vec2 uv = uvFromFlat(${s}, ${a}, ${i});
return sampleTexture(${e}, uv);
}
`}function D5(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1),o=r.shapeInfo.texShape,n=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],s=Rt();return`
vec4 ${t}(int index) {
vec2 uv = packedUVfrom1D(
${n[0]}, ${n[1]}, index);
return ${s.texture2D}(${e}, uv);
}
`}function C5(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`
float ${t}(int index) {
${gp(r)}
}
`;let o=r.shapeInfo.texShape,n=o[0],s=o[1];if(s===1&&n===1)return`
float ${t}(int index) {
return sampleTexture(${e}, halfCR);
}
`;let a=Nu(e);return s===1?`
float ${t}(int index) {
vec2 uv = vec2(0.5, (float(index + ${a}) + 0.5) / ${n}.0);
return sampleTexture(${e}, uv);
}
`:n===1?`
float ${t}(int index) {
vec2 uv = vec2((float(index + ${a}) + 0.5) / ${s}.0, 0.5);
return sampleTexture(${e}, uv);
}
`:`
float ${t}(int index) {
vec2 uv = uvFromFlat(${n}, ${s}, index + ${a});
return sampleTexture(${e}, uv);
}
`}function $5(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=r.shapeInfo.texShape,s=n[0],a=n[1],i=Rt();if(n!=null&&y.arraysEqual(e,n))return`
vec4 ${o}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}.0, ${s}.0);
return ${i.texture2D}(${t}, uv);
}
`;let l=[Math.ceil(n[0]/2),Math.ceil(n[1]/2)],u=Math.ceil(e[1]/2);return`
vec4 ${o}(int row, int col) {
vec2 uv = packedUVfrom2D(${u}, ${l[0]}, ${l[1]}, row, col);
return ${i.texture2D}(${t}, uv);
}
`}function I5(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=r.shapeInfo.texShape;if(n!=null&&y.arraysEqual(e,n)){let p=n[0],m=n[1];return`
float ${o}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${m}.0, ${p}.0);
return sampleTexture(${t}, uv);
}
`}let{newShape:s,keptDims:a}=y.squeezeShape(e),i=s;if(i.length<e.length){let p=xp(r,i),m=["row","col"];return`
${hp(p)}
float ${o}(int row, int col) {
return ${o}(${yp(m,a)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${e[1]}, 1)));
${gp(r)}
}
`;let l=n[0],u=n[1],c=Nu(t);return u===1?`
float ${o}(int row, int col) {
float index = dot(vec3(row, col, ${c}), vec3(${e[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
return sampleTexture(${t}, uv);
}
`:l===1?`
float ${o}(int row, int col) {
float index = dot(vec3(row, col, ${c}), vec3(${e[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
return sampleTexture(${t}, uv);
}
`:`
float ${o}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${e[1]} + col + ${c};
vec2 uv = uvFromFlat(${l}, ${u}, index);
return sampleTexture(${t}, uv);
}
`}function R5(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=r.shapeInfo.texShape,s=[Math.ceil(n[0]/2),Math.ceil(n[1]/2)];if(e[0]===1){let p=e.slice(1),m=[1,2],f=xp(r,p),d=["b","row","col"];return`
${y2(f)}
vec4 ${o}(int b, int row, int col) {
return ${o}(${yp(d,m)});
}
`}let a=s[0],i=s[1],l=Math.ceil(e[2]/2),u=l*Math.ceil(e[1]/2),c=Rt();return`
vec4 ${o}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${a}, ${i}, ${u}, ${l}, b, row, col);
return ${c.texture2D}(${t}, uv);
}
`}function N5(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=e[1]*e[2],s=e[2],{newShape:a,keptDims:i}=y.squeezeShape(e),l=a;if(l.length<e.length){let d=xp(r,l),h=["row","col","depth"];return`
${hp(d)}
float ${o}(int row, int col, int depth) {
return ${o}(${yp(h,i)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${n}, ${s}, 1)));
${gp(r)}
}
`;let u=r.shapeInfo.texShape,c=u[0],p=u[1],m=r.shapeInfo.flatOffset;if(p===n&&m==null)return`
float ${o}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${c}.0);
return sampleTexture(${t}, uv);
}
`;if(p===s&&m==null)return`
float ${o}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${e[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${c}.0);
return sampleTexture(${t}, uv);
}
`;let f=Nu(t);return`
float ${o}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n} + col * ${s} + depth + ${f};
vec2 uv = uvFromFlat(${c}, ${p}, index);
return sampleTexture(${t}, uv);
}
`}function F5(r){let e=r.shapeInfo.logicalShape,t=e.length,o=r.name,n="get"+o.charAt(0).toUpperCase()+o.slice(1),s=r.shapeInfo.texShape,a=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],i=a[0],l=a[1],u=Math.ceil(e[t-1]/2),c=u*Math.ceil(e[t-2]/2),p="int b, int row, int col",m=`b * ${c} + (row / 2) * ${u} + (col / 2)`;for(let d=2;d<t-1;d++)p=`int b${d}, `+p,c*=e[t-d-1],m=`b${d} * ${c} + `+m;let f=Rt();return`
vec4 ${n}(${p}) {
int index = ${m};
int texR = index / ${l};
int texC = index - texR * ${l};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${i});
return ${f.texture2D}(${o}, uv);
}
`}function S5(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=e[3],s=e[2]*n,a=e[1]*s,{newShape:i,keptDims:l}=y.squeezeShape(e);if(i.length<e.length){let d=xp(r,i),h=["row","col","depth","depth2"];return`
${hp(d)}
float ${o}(int row, int col, int depth, int depth2) {
return ${o}(${yp(h,l)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${a}, ${s}, ${n}, 1)));
${gp(r)}
}
`;let u=r.shapeInfo.flatOffset,c=r.shapeInfo.texShape,p=c[0],m=c[1];if(m===a&&u==null)return`
float ${o}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${s}, ${n}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${p}.0);
return sampleTexture(${t}, uv);
}
`;if(m===n&&u==null)return`
float ${o}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${e[1]*e[2]}, ${e[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${p}.0);
return sampleTexture(${t}, uv);
}
`;let f=Nu(t);return`
float ${o}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${s} +
depth * ${n} + depth2;
vec2 uv = uvFromFlat(${p}, ${m}, index + ${f});
return sampleTexture(${t}, uv);
}
`}function T5(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=e[4],s=e[3]*n,a=e[2]*s,i=e[1]*a,{newShape:l,keptDims:u}=y.squeezeShape(e);if(l.length<e.length){let h=xp(r,l),g=["row","col","depth","depth2","depth3"];return`
${hp(h)}
float ${o}(int row, int col, int depth, int depth2, int depth3) {
return ${o}(${yp(g,u)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${i}, ${a}, ${s}, ${n})) +
depth3;
${gp(r)}
}
`;let c=r.shapeInfo.flatOffset,p=r.shapeInfo.texShape,m=p[0],f=p[1];if(f===i&&c==null)return`
float ${o}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${a}, ${s}, ${n}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${m}.0);
return sampleTexture(${t}, uv);
}
`;if(f===n&&c==null)return`
float ${o}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${e[1]*e[2]*e[3]},
${e[2]*e[3]}, ${e[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${m}.0);
return sampleTexture(${t}, uv);
}
`;let d=Nu(t);return`
float ${o}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${a} + depth * ${s} +
depth2 * ${n} + depth3 + ${d};
vec2 uv = uvFromFlat(${m}, ${f}, index);
return sampleTexture(${t}, uv);
}
`}function A5(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),{newShape:n,keptDims:s}=y.squeezeShape(e);if(n.length<e.length){let g=xp(r,n),x=["row","col","depth","depth2","depth3","depth4"];return`
${hp(g)}
float ${o}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${o}(${yp(x,s)});
}
`}let a=e[5],i=e[4]*a,l=e[3]*i,u=e[2]*l,c=e[1]*u;if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${c}, ${u}, ${l}, ${i})) +
dot(
vec2(depth3, depth4),
vec2(${a}, 1)));
${gp(r)}
}
`;let p=r.shapeInfo.flatOffset,m=r.shapeInfo.texShape,f=m[0],d=m[1];if(d===c&&p==null)return`
float ${o}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${u}, ${l}, ${i}, ${a})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${f}.0);
return sampleTexture(${t}, uv);
}
`;if(d===a&&p==null)return`
float ${o}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${e[1]*e[2]*e[3]*e[4]},
${e[2]*e[3]*e[4]},
${e[3]*e[4]},
${e[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${f}.0);
return sampleTexture(${t}, uv);
}
`;let h=Nu(t);return`
float ${o}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${c} + col * ${u} + depth * ${l} +
depth2 * ${i} + depth3 * ${a} + depth4 + ${h};
vec2 uv = uvFromFlat(${f}, ${d}, index);
return sampleTexture(${t}, uv);
}
`}function gp(r){let e=r.name,t=y.sizeFromShape(r.shapeInfo.logicalShape);return t<2?`return ${e};`:`
for (int i = 0; i < ${t}; i++) {
if (i == index) {
return ${e}[i];
}
}
`}function O5(r,e){let t=r.name,o=t.charAt(0).toUpperCase()+t.slice(1),n="get"+o+"AtOutCoords",s=r.shapeInfo.logicalShape.length,a=e.logicalShape.length,i=g2(r.shapeInfo.logicalShape,e.logicalShape),l=Le(a),u=a-s,c,p=["x","y","z","w","u","v"];s===0?c="":a<2&&i.length>=1?c="coords = 0;":c=i.map(b=>`coords.${p[b+u]} = 0;`).join(`
`);let m="";a<2&&s>0?m="coords":m=r.shapeInfo.logicalShape.map((b,w)=>`coords.${p[w+u]}`).join(", ");let f="return outputValue;",h=y.sizeFromShape(r.shapeInfo.logicalShape)===1,x=y.sizeFromShape(e.logicalShape)===1;if(s===1&&!h&&!x)f=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(h&&!x)a===1?f=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:f=`
return vec4(outputValue.x);
`;else if(i.length){let b=s-2,w=s-1;i.indexOf(b)>-1&&i.indexOf(w)>-1?f="return vec4(outputValue.x);":i.indexOf(b)>-1?f="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(w)>-1&&(f="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${n}() {
${l} coords = getOutputCoords();
${c}
vec4 outputValue = get${o}(${m});
${f}
}
`}function P5(r,e){let t=r.name,o=t.charAt(0).toUpperCase()+t.slice(1),n="get"+o+"AtOutCoords",s=e.texShape,a=r.shapeInfo.texShape,i=r.shapeInfo.logicalShape.length,l=e.logicalShape.length;if(!r.shapeInfo.isUniform&&i===l&&r.shapeInfo.flatOffset==null&&y.arraysEqual(a,s))return`
float ${n}() {
return sampleTexture(${t}, resultUV);
}
`;let u=Le(l),c=g2(r.shapeInfo.logicalShape,e.logicalShape),p=l-i,m,f=["x","y","z","w","u","v"];i===0?m="":l<2&&c.length>=1?m="coords = 0;":m=c.map(h=>`coords.${f[h+p]} = 0;`).join(`
`);let d="";return l<2&&i>0?d="coords":d=r.shapeInfo.logicalShape.map((h,g)=>`coords.${f[g+p]}`).join(", "),`
float ${n}() {
${u} coords = getOutputCoords();
${m}
return get${o}(${d});
}
`}function Le(r){if(r<=1)return"int";if(r===2)return"ivec2";if(r===3)return"ivec3";if(r===4)return"ivec4";if(r===5)return"ivec5";if(r===6)return"ivec6";throw Error(`GPU for rank ${r} is not yet supported`)}function xp(r,e){let t=JSON.parse(JSON.stringify(r));return t.shapeInfo.logicalShape=e,t}function yp(r,e){return e.map(t=>r[t]).join(", ")}function w2(r,e,t,o){let n=e.userCode,s=t.map((f,d)=>{let h={logicalShape:f.shape,texShape:f.isUniform?null:f.texData.texShape,isUniform:f.isUniform,isPacked:f.isUniform?!1:f.texData.isPacked,flatOffset:null};return f.texData!=null&&f.texData.slice!=null&&f.texData.slice.flatOffset>0&&(h.flatOffset=f.texData.slice.flatOffset),{name:e.variableNames[d],shapeInfo:h}}),a=s.map(f=>f.shapeInfo),i={logicalShape:o.shape,texShape:o.texData.texShape,isUniform:!1,isPacked:o.texData.isPacked,flatOffset:null},l=x2(s,i,n,e.packedInputs),u=r.createProgram(l),c=null,p=r.getUniformLocation(u,"NAN",!1);W().getNumber("WEBGL_VERSION")===1&&(c=r.getUniformLocation(u,"INFINITY",!1));let m={};for(let f=0;f<e.variableNames.length;f++){let d=e.variableNames[f],h=!1;m[d]=r.getUniformLocation(u,d,h),m[`offset${d}`]=r.getUniformLocation(u,`offset${d}`,h)}return{program:e,source:l,webGLProgram:u,uniformLocations:m,inShapeInfos:a,outShapeInfo:i,infLoc:c,nanLoc:p}}function _2(r,e){if(r.length!==e.length)throw Error(`Binary was compiled with ${r.length} inputs, but was executed with ${e.length} inputs`);r.forEach((t,o)=>{let n=t.logicalShape,s=e[o],a=s.shape;if(!y.arraysEqual(n,a))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${n} and ${a} must match`);if(t.isUniform&&s.isUniform)return;let i=t.texShape,l=s.isUniform?null:s.texData.texShape;if(!y.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function k2(r,e,t,o,n){_2(e.inShapeInfos,t),_2([e.outShapeInfo],[o]);let s=o.texData.texture,a=o.texData.texShape;o.texData.isPacked?r.setOutputPackedMatrixTexture(s,a[0],a[1]):r.setOutputMatrixTexture(s,a[0],a[1]),r.setProgram(e.webGLProgram),W().getNumber("WEBGL_VERSION")===1&&e.infLoc!==null&&r.gl.uniform1f(e.infLoc,Infinity),e.nanLoc!==null&&r.gl.uniform1f(e.nanLoc,NaN),t.forEach((i,l)=>{let u=e.program.variableNames[l],c=e.uniformLocations[u],p=e.uniformLocations[`offset${u}`];if(c!=null){if(i.isUniform){if(y.sizeFromShape(i.shape)<2)r.gl.uniform1f(c,i.uniformValues[0]);else{let m=i.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),r.gl.uniform1fv(c,m)}return}i.texData.slice!=null&&p!=null&&r.gl.uniform1i(p,i.texData.slice.flatOffset),r.setInputMatrixTexture(i.texData.texture,c,l)}}),n!=null&&n(r,e.webGLProgram),r.executeProgram()}function v2(r,e,t){let o="";e.concat(t).forEach(a=>{let i=a.texData!=null&&a.texData.slice!=null&&a.texData.slice.flatOffset>0,l=a.isUniform?"uniform":a.texData.texShape;o+=`${a.shape}_${l}_${i}`});let n=r.userCode,s=r.constructor.name;return s+="_"+o+"_"+n,s}var{addImpl:C2,bincountImpl:Qg,bincountReduceImpl:I2,ceilImpl:N2,concatImpl:S2,expImpl:T2,expm1Impl:A2,floorImpl:E2,gatherV2Impl:D2,greaterImpl:$2,lessImpl:R2,linSpaceImpl:F2,logImpl:O2,maxImpl:P2,maximumImpl:M2,minimumImpl:L2,multiplyImpl:z2,negImpl:B2,prodImpl:V2,rangeImpl:G2,rsqrtImpl:W2,simpleAbsImpl:ex,sliceImpl:j2,stridedSliceImpl:U2,subImpl:H2,tileImpl:q2,topKImpl:K2,transposeImpl:Su,uniqueImpl:X2}=__;function Sk(r,e){return["x","y","z","w","u","v"].slice(0,e).map(t=>`${r}.${t}`)}function Gt(r,e){return e===1?[r]:Sk(r,e)}function Y2(r,e){if(r===1)return"rc";let t="";for(let o=0;o<r;o++)t+=e[o],o<r-1&&(t+=",");return t}var Tk=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let o=Gt("rc",t),n=Le(t),s=Y5(t,e,o),a=Z5(t,e[e.length-1],e[e.length-2],o),i=J5(e,o);this.userCode=`
void main() {
${n} rc = getOutputCoords();
if(${s}) {
setOutput(vec4(0));
} else {
${a}
setOutput(vec4(${i}));
}
}
`}}};function Q5(r,e){let t=[];for(let o=0;o<=1;o++)for(let n=0;n<=1;n++){let s=`${o===0?"r":"rp1"}, ${n===0?"c":"cp1"}`;for(let a=2;a<r;a++)s=`${e[e.length-1-a]},`+s;t.push(s)}return t}function Y5(r,e,t){if(r===1)return`rc > ${e[0]}`;let o="";for(let n=r-2;n<r;n++)o+=`${t[n]} >= ${e[n]}`,n<r-1&&(o+="||");return o}function Z5(r,e,t,o){if(r===1)return"";let n=o.slice(-2);return`
int r = ${n[0]};
int c = ${n[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${e};
bool rEdge = rp1 >= ${t};
`}function J5(r,e){let t=r.length,o=Q5(t,e);return t===1?`getA(rc),
rc + 1 >= ${r[0]} ? 0. : getA(rc + 1),
0, 0`:`getA(${o[0]}),
cEdge ? 0. : getA(${o[1]}),
rEdge ? 0. : getA(${o[2]}),
rEdge || cEdge ? 0. : getA(${o[3]})`}var Nf=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let o="";for(let n=0;n<4;n++){let s="thisRC = rc;";n%2==1&&(s+="thisRC.z += 1;"),n>1&&(s+="thisRC.y += 1;"),o+=`
${s}
${n>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${n}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${n>0?"}":""}
`}this.userCode=`
${eX(t)}
${dp(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${e[1]};
int cols = ${e[2]};
${o}
setOutput(result);
}
`}};function eX(r){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${ks(["r","c","d"],r)}
return ivec3(r, c, d);
}
`}var Ak=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,o){let n=J2(t,o),s=Q2(e,n,o);s in this.freeTextures||(this.freeTextures[s]=[]),s in this.usedTextures||(this.usedTextures[s]=[]);let a=Z2(e,n,this.gpgpu.gl,this.gpgpu.textureConfig,o);if(this.freeTextures[s].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let l=this.freeTextures[s].shift();return this.usedTextures[s].push(l),l}let i;return n===vr.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):n===vr.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):n===vr.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):n===vr.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):n===vr.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[s].push(i),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),i}releaseTexture(e,t,o,n){if(this.freeTextures==null)return;let s=J2(o,n),a=Q2(t,s,n);a in this.freeTextures||(this.freeTextures[a]=[]);let i=Z2(t,s,this.gpgpu.gl,this.gpgpu.textureConfig,n),l=W().get("WEBGL_DELETE_TEXTURE_THRESHOLD");l!==-1&&this._numBytesAllocated>l?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let u=this.usedTextures[a],c=u.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");u.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function tX(r,e){let t=r;if(e===t.R32F)return 4;if(e===t.R16F)return 2;if(e===t.RGBA32F)return 16;if(e===r.RGBA)return 16;if(e===t.RGBA16F)return 8;throw new Error(`Unknown internal format ${e}`)}function Z2(r,e,t,o,n){let s=rX(e,o),a;if(n){let[l,u]=si(r[0],r[1]);a=l*u}else{let[l,u]=Iu(r[0],r[1]);a=l*u}let i=tX(t,s);return a*i}function rX(r,e){switch(r){case vr.PACKED_2X2_FLOAT32:return Zg(e);case vr.PACKED_2X2_FLOAT16:return Jg(e);case vr.UNPACKED_FLOAT32:return Kg(e);case vr.UNPACKED_FLOAT16:return Xg(e);case vr.PACKED_4X1_UNSIGNED_BYTE:return Yg(e);default:throw new Error(`Unknown physical texture type ${r}`)}}function oX(r){return W().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?r?vr.PACKED_2X2_FLOAT32:vr.UNPACKED_FLOAT32:r?vr.PACKED_2X2_FLOAT16:vr.UNPACKED_FLOAT16}function J2(r,e){if(r===$r.UPLOAD)return vr.PACKED_2X2_FLOAT32;if(r===$r.RENDER||r==null)return oX(e);if(r===$r.DOWNLOAD||r===$r.PIXELS)return vr.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${r}`)}function Q2(r,e,t){return`${r[0]}_${r[1]}_${e}_${t}`}var mo=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},gr="if (isnan(x)) return x;",eD="return x;",Ek="return abs(x);";var tD="return (x >= 0.0) ? x : (exp(x) - 1.0);",rD=gr+`
return (x < 0.0) ? 0.0 : x;
`,oD=gr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Sf="return x;";var nD="return x;",sD=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,iD=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,aD=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,vs=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}};var Dk=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,o=Gt("rc",t),n=Le(t),s=Y2(t,o),a=o.slice(-2),i=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
void main() {
${n} rc = getOutputCoords();
vec4 packedInput = getA(${s});
setOutput(getChannel(packedInput, ${i}));
}
`}};var nX=Er.whereImpl,sX=1e-7,iX=1e-4,tx={};function aX(r){return r in tx||(tx[r]={}),tx[r]}var lX=128,uX=600;function cX(){return W().global.screen==null?1024:W().global.screen.height*W().global.screen.width*window.devicePixelRatio*uX/1024/1024}var bp=class extends $s{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!W().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Bo(W().getNumber("WEBGL_VERSION"));this.binaryCache=aX(W().getNumber("WEBGL_VERSION")),this.gpgpu=new Nk(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new Ak(this.gpgpu),this.numMBBeforeWarning=cX(),this.texData=new Va(this,Zo())}nextDataId(){return bp.nextDataId++}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,o){if((W().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||W().getBool("DEBUG"))&&this.checkNumericalProblems(e),o==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let n={id:this.nextDataId()};return this.texData.set(n,{shape:t,dtype:o,values:e,usage:$r.UPLOAD,refCount:1}),n}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,o,n,s){if(W().getBool("DEBUG")&&this.checkNumericalProblems(t),n==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:o,dtype:n,values:t,usage:$r.UPLOAD,refCount:s})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:o,dtype:n,complexTensorInfos:s,slice:a,shape:i,isPacked:l}=t;if(a!=null){let m;l?m=new vs(i,Sf):m=new mo(i,Sf);let f=this.runWebGLProgram(m,[{dataId:e,shape:i,dtype:n}],n),d=this.readSync(f.dataId);return this.disposeIntermediateTensorInfo(f),d}if(o!=null)return this.convertAndCacheOnCPU(e);if(n==="string")return o;let u=this.activeTimers!=null,c;u&&(c=y.now());let p;if(n==="complex64"){let m=this.readSync(s.real.dataId),f=this.readSync(s.imag.dataId);p=N.mergeRealAndImagArrays(m,f)}else p=this.getValuesFromTexture(e);return u&&(this.downloadWaitMs+=y.now()-c),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){let d=this.pendingRead.get(e);return new Promise(h=>d.push(h))}let t=this.texData.get(e),{values:o,shape:n,slice:s,dtype:a,complexTensorInfos:i,isPacked:l}=t;if(s!=null){let d;l?d=new vs(n,Sf):d=new mo(n,Sf);let h=this.runWebGLProgram(d,[{dataId:e,shape:n,dtype:a}],a),g=this.read(h.dataId);return this.disposeIntermediateTensorInfo(h),g}if(o!=null)return this.convertAndCacheOnCPU(e);if(!W().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&W().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let u=null,c;if(a!=="complex64"&&W().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let d=this.texData.get(c.dataId);u=this.gpgpu.createBufferFromTexture(d.texture,...fl(n))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(a==="complex64"){let d=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),h=d[0],g=d[1];p=N.mergeRealAndImagArrays(h,g)}else if(u==null)p=this.getValuesFromTexture(e);else{let d=y.sizeFromShape(n);p=this.gpgpu.downloadFloat32MatrixFromBuffer(u,d)}c!=null&&this.disposeIntermediateTensorInfo(c);let m=this.convertAndCacheOnCPU(e,p),f=this.pendingRead.get(e);return this.pendingRead.delete(e),f.forEach(d=>d(m)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Zo().removeDataId(e,this),this.pendingDeletes--),m}bufferSync(e){let t=this.readSync(e.dataId),o=t;if(e.dtype==="string")try{o=t.map(n=>y.decodeString(n))}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return ve(e.shape,e.dtype,o)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let o=e[t];if(!M_(o))throw W().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${o} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${o} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:o,isPacked:n}=this.texData.get(e),s=y.sizeFromShape(t);if(W().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let m=this.decode(e),f=this.texData.get(m.dataId),d=this.gpgpu.downloadMatrixFromPackedTexture(f.texture,...fl(t)).subarray(0,s);return this.disposeIntermediateTensorInfo(m),d}let a=W().getBool("WEBGL_PACK")&&n===!0,i=a?Cf(t):t,l=a?new ak(i):new ik(i),u=this.runWebGLProgram(l,[{shape:i,dtype:o,dataId:e}],"float32"),c=this.texData.get(u.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,s);return this.disposeIntermediateTensorInfo(u),p}timerAvailable(){return W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,o=[],n=!1;this.programTimersStack==null?(this.programTimersStack=o,n=!0):this.activeTimers.push(o),this.activeTimers=o,e();let s=y.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),a=y.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,n&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let l=await Promise.all(s);i.kernelMs=y.sum(l),i.getExtraProfileInfo=()=>l.map((u,c)=>({name:a[c],ms:u})).map(u=>`${u.name}: ${u.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:y.now(),endMs:null}}endTimer(e){return W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=y.now(),e)}async getQueryTime(e){if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:o}=this.texData.get(e);return o!=null&&(this.disposeData(o.real.dataId,t),this.disposeData(o.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:o,texShape:n,usage:s,isPacked:a,slice:i}=this.texData.get(e),l=i&&i.origDataId||e,u=this.dataRefCount.get(l);u>1?this.dataRefCount.set(l,u-1):(this.dataRefCount.delete(l),t!=null&&(this.numBytesInGPU-=this.computeBytes(n,o),this.textureManager.releaseTexture(t,n,s,a)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return W().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Zo().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=lX){let o=this.getCPUBackend();return!W().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&o==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),o!=null&&e.every(n=>this.texData.get(n.dataId).texture==null&&y.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){N.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return nX(e.shape,t)}packedUnaryOp(e,t,o){let n=new vs(e.shape,t),s=this.compileAndRun(n,[e],o);return Zo().makeTensorFromDataId(s.dataId,s.shape,s.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let n=ex(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,n)}if(W().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Ek,e.dtype);let t=new mo(e.shape,Ek),o=this.compileAndRun(t,[e]);return Zo().makeTensorFromDataId(o.dataId,o.shape,o.dtype)}makeTensorInfo(e,t,o){let n;if(t==="string"&&o!=null&&o.length>0&&y.isString(o[0])){let s=o.map(a=>y.encodeString(a));n=this.write(s,e,t)}else n=this.write(o,e,t);return this.texData.get(n).usage=null,{dataId:n,shape:e,dtype:t}}makeOutput(e,t,o){let{dataId:n}=this.makeTensorInfo(e,t,o);return Zo().makeTensorFromDataId(n,e,t,this)}unpackTensor(e){let t=new Dk(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new Tk(e.shape),o=!0;return this.runWebGLProgram(t,[e],e.dtype,null,o)}packedReshape(e,t){let o=[Ca(e.shape),...Ia(e.shape)],n={dtype:e.dtype,shape:o,dataId:e.dataId},s=[Ca(t),...Ia(t)],a=new Nf(s,o),i=!0,l=this.runWebGLProgram(a,[n],e.dtype,null,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:o,shape:n,dtype:s}=t,a=Cf(n),i;o?i=new sk(a):i=new nk(a);let l=!0,u=this.runWebGLProgram(i,[{shape:a,dtype:s,dataId:e}],s,null,l);return{dtype:s,shape:n,dataId:u.dataId}}runWebGLProgram(e,t,o,n,s=!1){let a=this.makeTensorInfo(e.outputShape,o),i=this.texData.get(a.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===ml.DENSE){let g=fl(e.outputShape);i.texShape=g.map(x=>x*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),y.sizeFromShape(a.shape)===0)return i.values=y.getTypedArrayFromDType(a.dtype,0),a;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let x=this.texData.get(g.dataId);if(x.texture==null){if(!e.packedInputs&&y.sizeFromShape(g.shape)<=W().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:x.values};e.packedInputs&&(x.isPacked=!0,x.shape=g.shape)}else if(!!x.isPacked!=!!e.packedInputs)g=x.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),x=this.texData.get(g.dataId);else if(x.isPacked&&!dl(x.shape,g.shape)){let b=g,w=g.shape;g.shape=x.shape,g=this.packedReshape(g,w),l.push(g),x=this.texData.get(g.dataId),b.shape=w}return this.uploadToGPU(g.dataId),{shape:g.shape,texData:x,isUniform:!1}});this.uploadToGPU(a.dataId);let c={shape:a.shape,texData:i,isUniform:!1},p=v2(e,u,c),m=this.getAndSaveBinary(p,()=>w2(this.gpgpu,e,u,c)),f=this.activeTimers!=null,d;f&&(d=this.startTimer()),k2(this.gpgpu,m,u,c,n),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),f&&(d=this.endTimer(d),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(d)}));let h=W().get("WEBGL_FLUSH_THRESHOLD");if(h>0){let g=y.now();g-this.lastGlFlushTime>h&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!W().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&s===!1){let g=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),g}return a}compileAndRun(e,t,o,n,s=!1){return o=o||t[0].dtype,this.runWebGLProgram(e,t,o,n,s)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(W().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=V(()=>{if(!W().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=W().getBool("DEBUG");W().set("DEBUG",!1);let t=this.abs(le(1e-8)).dataSync()[0];if(W().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?sX:iX}uploadToGPU(e){let t=this.texData.get(e),{shape:o,dtype:n,values:s,texture:a,usage:i,isPacked:l}=t;if(a!=null)return;let u=this.activeTimers!=null,c;u&&(c=y.now());let p=t.texShape;if(p==null&&(p=Y_(o,l),t.texShape=p),s!=null){let m=Cf(o),f,d=p[1],h=p[0],g=s instanceof Uint8Array;l?([d,h]=si(p[0],p[1]),f=new uk(m,[h,d],g)):f=new lk(m,[h,d],g);let x=this.makeTensorInfo([h,d],n);g?this.texData.get(x.dataId).usage=$r.PIXELS:this.texData.get(x.dataId).usage=$r.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(x.dataId),d,h,s);let b=!0,w=this.runWebGLProgram(f,[x],n,null,b),_=this.texData.get(w.dataId);t.texture=_.texture,t.texShape=_.texShape,t.isPacked=_.isPacked,t.usage=_.usage,this.disposeIntermediateTensorInfo(x),this.texData.delete(w.dataId),t.values=null,u&&(this.uploadWaitMs+=y.now()-c)}else{let m=this.acquireTexture(p,i,n,l);t.texture=m}}convertAndCacheOnCPU(e,t){let o=this.texData.get(e),{dtype:n}=o;return this.releaseGPUData(e),t!=null&&(o.values=pX(t,n)),o.values}acquireTexture(e,t,o,n){if(this.numBytesInGPU+=this.computeBytes(e,o),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let s=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${s} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,n)}computeBytes(e,t){return e[0]*e[1]*y.bytesPerElement(t)}};bp.nextDataId=0;function pX(r,e){if(e==="float32"||e==="complex64")return r;if(e==="int32"||e==="bool"){let t=e==="int32"?new Int32Array(r.length):new Uint8Array(r.length);for(let o=0;o<t.length;++o)t[o]=Math.round(r[o]);return t}else throw new Error(`Unknown dtype ${e}`)}var $k="3.3.0";function lD(){W().set("WEBGL_FORCE_F16_TEXTURES",!0)}Wl.isBrowser()&&qc("webgl",()=>new bp,2);var F5e={forceHalfFloat:lD};var rx=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`;var cn=class{constructor(e,t,o){this.variableNames=["A","B"],this.outputShape=N.assertAndGetBroadcastShape(t,o),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}};var hl=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;var Cs=class{constructor(e,t,o,n=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=N.assertAndGetBroadcastShape(t,o);let s=this.outputShape.length,a="";if(n)if(s===0||y.sizeFromShape(this.outputShape)===1)a=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(a=`
${Le(s)} coords = getOutputCoords();
`,s===1)a+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let l=Gt("coords",s);a+=`
bool nextRowOutOfBounds =
(${l[s-2]} + 1) >= ${this.outputShape[s-2]};
bool nextColOutOfBounds =
(${l[s-1]} + 1) >= ${this.outputShape[s-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${a}
setOutput(result);
}
`}};function Wt(r){let{inputs:e,backend:t}=r,{x:o}=e;return t.incRef(o.dataId),{dataId:o.dataId,shape:o.shape,dtype:o.dtype}}var uD={kernelName:Ko,backendName:"webgl",kernelFunc:Wt};function fo(r){let{inputs:e,backend:t}=r,{real:o,imag:n}=e,s=t.makeTensorInfo(o.shape,"complex64"),a=t.texData.get(s.dataId),i=Wt({inputs:{x:o},backend:t}),l=Wt({inputs:{x:n},backend:t});return a.complexTensorInfos={real:i,imag:l},s}var cD={kernelName:hc,backendName:"webgl",kernelFunc:fo};var Rk="return (a < 0.) ? b * a : a;",Fk=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function mX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{alpha:s}=o,a=t.makeTensorInfo([],"float32",y.createScalarValue(s,"float32")),i=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Cs(Fk,n.shape,a.shape):new cn(Rk,n.shape,a.shape),l=t.runWebGLProgram(i,[n,a],n.dtype);return t.disposeIntermediateTensorInfo(a),l}var pD={kernelName:Ln,backendName:"webgl",kernelFunc:mX};var Ok="return (a < 0.) ? b * a : a;",Pk=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function fX(r){let{inputs:e,backend:t}=r,{x:o,alpha:n}=e,s=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Cs(Pk,o.shape,n.shape):new cn(Ok,o.shape,n.shape);return t.runWebGLProgram(s,[o,n],o.dtype)}var mD={kernelName:Yn,backendName:"webgl",kernelFunc:fX};var ox="if (isnan(x)) return x;",fD=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,dD=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function _e({opSnippet:r,packedOpSnippet:e,cpuKernelImpl:t,dtype:o}){return({inputs:n,backend:s})=>{let{x:a}=n,i=s,l=o||a.dtype;if(i.shouldExecuteOnCPU([a])&&t!=null){let p=i.texData.get(a.dataId),m=t(p.values,l);return i.makeTensorInfo(a.shape,l,m)}let u=W().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&e!=null,c;return u?c=new vs(a.shape,e):c=new mo(a.shape,r),i.runWebGLProgram(c,[a],l)}}function nt({opSnippet:r,packedOpSnippet:e,checkOutOfBounds:t=!1,supportsComplex:o=!1,cpuKernelImpl:n,dtype:s}){return({inputs:a,backend:i})=>{let{a:l,b:u}=a,c=i;if(o&&l.dtype==="complex64"){let d=c.texData.get(l.dataId),h=c.texData.get(u.dataId),[g,x]=[[d.complexTensorInfos.real,h.complexTensorInfos.real],[d.complexTensorInfos.imag,h.complexTensorInfos.imag]].map(w=>{let[_,k]=w,D={dataId:_.dataId,dtype:_.dtype,shape:l.shape},T={dataId:k.dataId,dtype:k.dtype,shape:u.shape},R=new cn(r,l.shape,u.shape);return c.runWebGLProgram(R,[D,T],ir(_.dtype,k.dtype))}),b=fo({inputs:{real:g,imag:x},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(x),b}let p=s||ir(l.dtype,u.dtype);if(c.shouldExecuteOnCPU([l,u])&&n!=null){let d=c.texData.get(l.dataId),h=c.texData.get(u.dataId),[g,x]=n(l.shape,u.shape,d.values,h.values,p),b=c.makeTensorInfo(x,p),w=c.texData.get(b.dataId);return w.values=g,b}let m=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&e!=null,f;return m?f=new Cs(e,l.shape,u.shape,t):f=new cn(r,l.shape,u.shape),c.runWebGLProgram(f,[l,u],p)}}function gl(r,e=!1){if(r==="linear")return e?nD:eD;if(r==="relu")return e?iD:rD;if(r==="elu")return e?sD:tD;if(r==="relu6")return e?aD:oD;if(r==="prelu")return e?Pk:Ok;if(r==="leakyrelu")return e?Fk:Rk;throw new Error(`Activation ${r} has not been implemented for the WebGL backend.`)}var Tf=class{constructor(e,t,o,n=!1,s=!1,a=!1,i=null,l=!1,u=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=o;let c=n?e[1]:e[2],p=Math.ceil(c/2),m=n?"i * 2, rc.y":"rc.y, i * 2",f=s?"rc.z, i * 2":"i * 2, rc.z",d=n?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],h=s?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],g="",x="";i&&(l?g=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:u?g=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:g=`vec4 activation(vec4 x) {
${i}
}`,x="result = activation(result);");let b=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),l&&this.variableNames.push("preluActivationWeights"),u&&this.variableNames.push("leakyreluAlpha");let w="rc.x",_="rc.x";e[0]<t[0]?w=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(_=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${g}
const float sharedDimension = ${p}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${p}; i++) {
int batchA = ${w};
int batchB = ${_};
vec4 a = getMatrixA(batchA, ${m});
vec4 b = getMatrixB(batchB, ${f});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${d[0]} * ${h[0]});
result += (${d[1]} * ${h[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${b}
${x}
setOutput(result);
}
`}};var Mk={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},nx=class{constructor(e,t,o){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=N.assertAndGetBroadcastShape(t,o),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}};var hD="return a * b;";function Lk(r){let{inputs:e,backend:t}=r,{a:o,b:n}=e,s=N.upcastType(o.dtype,n.dtype);if(o.dtype==="complex64"){let i=t.texData.get(o.dataId),l=t.texData.get(n.dataId),u=new nx(Mk.REAL,o.shape,n.shape),c=new nx(Mk.IMAG,o.shape,n.shape),p=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:o.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:o.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:n.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:n.shape}],m=t.runWebGLProgram(u,p,"float32"),f=t.runWebGLProgram(c,p,"float32"),d=fo({inputs:{real:m,imag:f},backend:t});return t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),d}if(t.shouldExecuteOnCPU([o,n])){let i=t.texData.get(o.dataId),l=t.texData.get(n.dataId),[u,c]=z2(o.shape,n.shape,i.values,l.values,s),p=t.makeTensorInfo(c,s),m=t.texData.get(p.dataId);return m.values=u,p}let a;return W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?a=new Cs(hD,o.shape,n.shape):a=new cn(hD,o.shape,n.shape),t.runWebGLProgram(a,[o,n],s)}var gD={kernelName:Hn,backendName:"webgl",kernelFunc:Lk};function xD(r,e,t){let o=[Ca(r.shape),...Ia(r.shape)],n={dtype:r.dtype,shape:o,dataId:r.dataId},s=[Ca(e),...Ia(e)],a=new Nf(s,o),i=!0,l=t.runWebGLProgram(a,[n],r.dtype,null,i);return{dataId:l.dataId,shape:e,dtype:l.dtype}}function pe(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{shape:s}=o,a=t,i=y.sizeFromShape(n.shape),l=y.inferFromImplicitShape(s,i),u=y.sizeFromShape(l);y.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${n.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=a.texData.get(n.dataId);return c.isPacked&&!dl(n.shape,l)&&!(c.texture!==null&&dl(c.shape,l))?xD(n,l,a):(a.incRef(n.dataId),{dataId:n.dataId,shape:l,dtype:n.dtype})}var yD={kernelName:Gs,backendName:"webgl",kernelFunc:pe};var sx=class{constructor(e,t){this.variableNames=["x"];let{windowSize:o,batchSize:n,inSize:s,outSize:a}=e;this.outputShape=[n,a];let i=Math.floor(o/4)*4,l=o%4,u="sumValue += dot(values, ones);";if(t!=null){let p=1/t;u=`sumValue += dot(values * ${y.isInt(p)?p.toPrecision(2):p}, ones);`}let c="";s%o>0&&(c=`
if (inIdx < 0 || inIdx >= ${s}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${o};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${u}
}
int inIdx = inOffset + ${i};
if (${l===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${u}
} else if (${l===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${u}
} else if (${l===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${u}
}
setOutput(sumValue);
}
`}};var zk=class{constructor(e,t){this.variableNames=["x"];let{windowSize:o,batchSize:n,inSize:s,outSize:a}=e;this.outputShape=[n,a];let i="0.0",l="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",l="min"):t==="max"&&(i="-1.0 / 1e-20",l="max");let u=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?u="sumValue":t==="prod"?u="prodValue":t==="all"?u="allValue":t==="any"&&(u="anyValue");let c=Math.floor(o/4)*4,p=o%4,m=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${l}(values, minMaxValue);
}
`,f="vec4";t==="all"?(i="1.0",m=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,f="bvec4"):t==="any"&&(i="0.0",m=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,f="bvec4");let d="";s%o>0&&(d=`
if (inIdx < 0 || inIdx >= ${s}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${d}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${o};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${m}
}
int inIdx = inOffset + ${c};
if (${p===1}) {
${f} values = ${f}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${m}
} else if (${p===2}) {
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${m}
} else if (${p===3}) {
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${m}
}
setOutput(${u});
}
`}};function dX(r){let e=[];for(;e.length===0||e[e.length-1].outSize!==1;){let t=e.length?e[e.length-1].outSize:r[1],o=N.computeOptimalWindowSize(t);e.push({inSize:t,windowSize:o,outSize:Math.ceil(t/o)})}return e}function To(r,e,t,o){let n=dX(r.shape),s=r;for(let a=0;a<n.length;a++){let{inSize:i,windowSize:l,outSize:u}=n[a],c,p;t==="mean"?c=a===0?new sx({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u},i):new sx({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u}):c=new zk({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u},t),p=s,s=o.runWebGLProgram(c,[s],e),p.dataId!==r.dataId&&o.disposeIntermediateTensorInfo(p)}return s}var Bk=class{constructor(e,t){this.variableNames=["A"];let o=new Array(e.length);for(let a=0;a<o.length;a++)o[a]=e[t[a]];this.outputShape=o,this.rank=o.length;let n=Le(this.rank),s=hX(t);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function hX(r){let e=r.length;if(e>6)throw Error(`Transpose for rank ${e} is not yet supported`);let t=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],o=new Array(e);for(let n=0;n<r.length;n++)o[r[n]]=t[n];return o.join()}var Vk=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let o=new Array(e.length);for(let c=0;c<o.length;c++)o[c]=e[t[c]];if(this.outputShape=o,this.rank=o.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let n=Le(this.rank),s=Sk("rc",this.rank),a=new Array(this.rank);for(let c=0;c<t.length;c++)a[t[c]]=s[c];let i=`vec2(${a.slice(-2).join()})`,l=`++${s[this.rank-1]} < ${o[this.rank-1]}`,u=`getChannel(getA(${a.join()}), ${i})`;this.userCode=`
void main() {
${n} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${u};
if(${l}) {
result[1] = ${u};
}
--${s[this.rank-1]};
if(++${s[this.rank-2]} < ${o[this.rank-2]}) {
result[2] = ${u};
if(${l}) {
result[3] = ${u};
}
}
setOutput(result);
}
`}};function xl(r,e,t){let o=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Vk(r.shape,e):new Bk(r.shape,e);return t.runWebGLProgram(o,[r],r.dtype)}function bD(r,e,t,o){let n=e,s=r.shape.length,a=y.parseAxisParam(n,r.shape),i=a,l=N.getAxesPermutation(i,s),u=l!=null,c=r;u&&(c=xl(r,l,o),i=N.getInnerMostAxes(i.length,s)),N.assertAxesAreInnerMostDims("sum",i,s);let[p,m]=N.computeOutAndReduceShapes(c.shape,i),f=p;t&&(f=N.expandShapeToKeepDim(p,a));let d=y.sizeFromShape(m),g=y.sizeFromShape(r.shape)/d,x=pe({inputs:{x:c},attrs:{shape:[g,d]},backend:o}),b=Vl(r.dtype),w=To(x,b,"sum",o),_=pe({inputs:{x:w},attrs:{shape:f},backend:o});return o.disposeIntermediateTensorInfo(x),o.disposeIntermediateTensorInfo(w),u&&o.disposeIntermediateTensorInfo(c),_}function Af(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;return bD(n,s,a,t)}var wD={kernelName:is,backendName:"webgl",kernelFunc:Af};function Mt(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{perm:s}=o,a=t,i=n.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=n.shape[s[c]];let u;if(a.shouldExecuteOnCPU([n])){let p=a.texData.get(n.dataId).values,m=Su(p,n.shape,n.dtype,s,l);u=a.makeTensorInfo(l,n.dtype);let f=a.texData.get(u.dataId);f.values=m}else u=xl(n,s,a);return u}var _D={kernelName:ps,backendName:"webgl",kernelFunc:Mt};var Gk=1e3;function Tu({a:r,b:e,transposeA:t,transposeB:o,backend:n,bias:s=null,preluActivationWeights:a=null,leakyreluAlpha:i=0,activation:l=null}){let u=r.shape.length,c=e.shape.length,p=t?r.shape[u-2]:r.shape[u-1],m=o?e.shape[c-1]:e.shape[c-2],f=t?r.shape[u-1]:r.shape[u-2],d=o?e.shape[c-2]:e.shape[c-1],h=r.shape.slice(0,-2),g=e.shape.slice(0,-2),x=y.sizeFromShape(h),b=y.sizeFromShape(g),w=x===b||x===1||b===1;y.assert(u>=2&&c>=2&&w,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${h}) and (${g}).`);let k=(x>b?r.shape.slice(0,-2):e.shape.slice(0,-2)).concat([f,d]);y.assert(p===m,()=>`Error in matMul: inner shapes (${p}) and (${m}) of Tensors with shapes ${r.shape} and ${e.shape} and transposeA=${t} and transposeB=${o} must match.`);let D=t?[x,p,f]:[x,f,p],T=o?[b,d,m]:[b,m,d],R=pe({inputs:{x:r},backend:n,attrs:{shape:D}}),O=pe({inputs:{x:e},backend:n,attrs:{shape:T}}),M=[R,O],G=Math.max(x,b),j=t?R.shape[1]:R.shape[2],U=s!=null,H=a!=null,q=l==="leakyrelu",X=l!=null?gl(l,!0):null,oe=U||H||q||X!=null,Y;if((f===1||d===1)&&j>Gk&&oe===!1){let J=R,ie=O;t&&(J=Mt({inputs:{x:R},backend:n,attrs:{perm:[0,2,1]}}),M.push(J)),o&&(ie=Mt({inputs:{x:O},backend:n,attrs:{perm:[0,2,1]}}),M.push(ie));let ue=d!==1,ae=d===1,fe=J;ue&&(fe=pe({inputs:{x:J},backend:n,attrs:{shape:[G,j,1]}}),M.push(fe));let de=d===1?2:1,xe=ie;ae&&(xe=pe({inputs:{x:ie},backend:n,attrs:{shape:[G,1,j]}}),M.push(xe));let we=Lk({inputs:{a:fe,b:xe},backend:n});Y=Af({inputs:{x:we},backend:n,attrs:{axis:de,keepDims:!0}}),M.push(we)}else{let J=ir(r.dtype,e.dtype),ie=new Tf(D,T,[G,f,d],t,o,U,X,H,q),ue=[R,O];if(s!=null&&ue.push(s),H&&ue.push(a),q){let ae=n.makeTensorInfo([],"float32",y.createScalarValue(i,"float32"));ue.push(ae),M.push(ae)}Y=n.runWebGLProgram(ie,ue,J)}let re=pe({inputs:{x:Y},backend:n,attrs:{shape:k}});M.push(Y);for(let J of M)n.disposeIntermediateTensorInfo(J);return re}function gX(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s,bias:a,preluActivationWeights:i}=e,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=o;return Tu({a:n,b:s,transposeA:l,transposeB:u,backend:t,bias:a,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var kD={kernelName:Ks,backendName:"webgl",kernelFunc:gX};var vD="return abs(x);";function xX(r){let{inputs:e,backend:t}=r,{x:o}=e;if(t.shouldExecuteOnCPU([o])&&o.dtype!=="complex64"){let s=t.texData.get(o.dataId),a=ex(s.values);return t.makeTensorInfo(o.shape,o.dtype,a)}let n;return W().getBool("WEBGL_PACK_UNARY_OPERATIONS")?n=new vs(o.shape,vD):n=new mo(o.shape,vD),t.runWebGLProgram(n,[o],o.dtype)}var CD={kernelName:Os,backendName:"webgl",kernelFunc:xX};var yX=gr+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,bX=_e({opSnippet:yX}),ID={kernelName:yi,backendName:"webgl",kernelFunc:bX};var wX=gr+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,_X=_e({opSnippet:wX}),ND={kernelName:bi,backendName:"webgl",kernelFunc:_X};var SD="return a + b;",kX=nt({opSnippet:SD,packedOpSnippet:SD,supportsComplex:!0,cpuKernelImpl:C2}),TD={kernelName:Fo,backendName:"webgl",kernelFunc:kX};var Wk=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let o=[];this.variableNames.forEach(s=>{o.push(`float v${s} = get${s}AtOutCoords();`)});let n=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
void main() {
${o.join(`
`)}
float result = ${n};
setOutput(result);
}
`}};var jk=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let o=[];this.variableNames.forEach(s=>{o.push(`vec4 v${s} = get${s}AtOutCoords();`)});let n=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
void main() {
${o.join(`
`)}
vec4 result = ${n};
setOutput(result);
}
`}};function ix(r){let{inputs:e,backend:t}=r,o=e;if(o.length===1)return Wt({inputs:{x:o[0]},backend:t});if(o.length>W().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(o.length/2),u=ix({inputs:o.slice(0,l),backend:t}),c=ix({inputs:o.slice(l),backend:t});return ix({inputs:[u,c],backend:t})}let n=o.map(l=>l.dtype).reduce((l,u)=>ir(l,u)),s=o.map(l=>l.shape),i=W().getBool("WEBGL_PACK")?new jk(o[0].shape,s):new Wk(o[0].shape,s);return t.runWebGLProgram(i,o,n)}var AD={kernelName:kn,backendName:"webgl",kernelFunc:ix};function vX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=l,c=N.getAxesPermutation(u,i),p=n;c!=null&&(p=Mt({inputs:{x:n},backend:t,attrs:{perm:c}}),u=N.getInnerMostAxes(u.length,i)),N.assertAxesAreInnerMostDims("all",u,i);let[m,f]=N.computeOutAndReduceShapes(p.shape,u),d=y.sizeFromShape(f),h=pe({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=To(h,h.dtype,"all",t),x;if(a){let b=N.expandShapeToKeepDim(m,l);x=pe({inputs:{x:g},backend:t,attrs:{shape:b}})}else x=pe({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),x}var ED={kernelName:cc,backendName:"webgl",kernelFunc:vX};function CX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=l,c=N.getAxesPermutation(u,i),p=n;c!=null&&(p=Mt({inputs:{x:n},backend:t,attrs:{perm:c}}),u=N.getInnerMostAxes(u.length,i)),N.assertAxesAreInnerMostDims("any",u,i);let[m,f]=N.computeOutAndReduceShapes(p.shape,u),d=y.sizeFromShape(f),h=pe({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=To(h,h.dtype,"any",t),x;if(a){let b=N.expandShapeToKeepDim(m,l);x=pe({inputs:{x:g},backend:t,attrs:{shape:b}})}else x=pe({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),x}var DD={kernelName:pc,backendName:"webgl",kernelFunc:CX};var Uk=class{constructor(e,t,o){this.variableNames=["A"];let{windowSize:n,batchSize:s,outSize:a}=e;o||this.variableNames.push("bestIndicesA"),this.outputShape=[s,a];let i=t==="max"?">":"<",l=o?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${n}; i++) {
int inIdx = ${l};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}};var Hk=class{constructor(e,t,o,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,y.assert(e.length>2,()=>`Packed arg${o.charAt(0).toUpperCase()+o.slice(1)} supports only inputs with rank above 2.`);let s=e[e.length-1],a=Math.ceil(s/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),n||this.variableNames.push("bestIndicesA");let i=this.outputShape,l=i.length,u=Le(l),c=Gt("coords",l),p,m;if(a===1){m=l+1;let R=Le(m);p=`
${R} sourceLocR = ${R}(${c.join()}, 0);
++${c[l-1]};
${R} sourceLocG = ${R}(${c.join()}, 0);
++${c[l-2]};
${R} sourceLocA = ${R}(${c.join()}, 0);
--${c[l-1]};
${R} sourceLocB = ${R}(${c.join()}, 0);
--${c[l-2]};`}else m=l,p=`
${u} sourceLocR = coords;
++${c[l-1]};
${u} sourceLocG = coords;
++${c[l-2]};
${u} sourceLocA = coords;
--${c[l-1]};
${u} sourceLocB = coords;
--${c[l-2]};`;let f=["x","y","z","w","u","v"].slice(0,m),d="."+f[m-1],h=f.map(R=>"int "+R),g=Gt("sourceLocR",m-1).concat("inIdx.r"),x=Gt("sourceLocG",m-1).concat("inIdx.g"),b=Gt("sourceLocB",m-1).concat("inIdx.b"),w=Gt("sourceLocA",m-1).concat("inIdx.a"),_=o==="max"?"greaterThan":"lessThan",k=n?"":`
inIdx = round(vec4(getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${x.join()}),
getBestIndicesAChannel(${b.join()}),
getBestIndicesAChannel(${w.join()})));`,D=`vec4(
getAChannel(${g.join()}),
hasNextCol ? getAChannel(${x.join()}) : 0.,
hasNextRow ? getAChannel(${b.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${w.join()}) : 0.)`,T=n?"":`
float getBestIndicesAChannel(${h.join()}) {
return getChannel(getBestIndicesA(${f.join()}),
vec2(${f.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${h.join()}) {
return getChannel(getA(${f.join()}),
vec2(${f.slice(-2).join()}));
}
${T}
void main() {
${u} coords = getOutputCoords();
bool hasNextCol = ${c[l-1]} < ${i[l-1]-1};
bool hasNextRow = ${c[l-2]} < ${i[l-2]-1};
${p}
ivec4 srcIdx = ivec4(sourceLocR${d}, sourceLocG${d},
sourceLocB${d}, sourceLocA${d}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${D};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${k}
vec4 candidate = ${D};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${_}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function $D(r,e,t,o=null){let n=e.shape[0],s=e.shape[1];o!=null&&(n=o.shape[0],s=o.shape[1]);let a=N.computeOptimalWindowSize(s),i={windowSize:a,inSize:s,batchSize:n,outSize:Math.ceil(s/a)},l=new Uk(i,t,o==null),u=[e];o!=null&&u.push(o);let c=r.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let p=$D(r,e,t,c);return r.disposeIntermediateTensorInfo(c),p}function RD(r,e,t,o=null){let n=o!=null?o.shape:e.shape,s=n[n.length-1],a=N.computeOptimalWindowSize(s),i=new Hk(n,a,t,o==null),l=o==null?[e]:[e,o],u=r.runWebGLProgram(i,l,"int32");if(u.shape.length===e.shape.length){let c=RD(r,e,t,u);return r.disposeIntermediateTensorInfo(u),c}return u}function ax(r,e,t,o){let n=[t];if(N.assertAxesAreInnerMostDims("arg"+o.charAt(0).toUpperCase()+o.slice(1),n,e.shape.length),!W().getBool("WEBGL_PACK_REDUCE")||e.shape.length<=2){let s=[],[a,i]=N.computeOutAndReduceShapes(e.shape,n),l=y.sizeFromShape(i),u=pe({inputs:{x:e},backend:r,attrs:{shape:[-1,l]}});s.push(u);let c=$D(r,u,o);s.push(c);let p=pe({inputs:{x:c},backend:r,attrs:{shape:a}});return s.forEach(m=>r.disposeIntermediateTensorInfo(m)),p}return RD(r,e,o)}function IX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o,a=y.parseAxisParam(s,n.shape),i=N.getAxesPermutation(a,n.shape.length),l=n,u=[];i!=null&&(l=Mt({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(l),a=N.getInnerMostAxes(a.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMax",[a[0]],l.shape.length);let c=ax(t,l,a[0],"max");return u.forEach(p=>t.disposeIntermediateTensorInfo(p)),c}var FD={kernelName:vn,backendName:"webgl",kernelFunc:IX};function NX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o,a=y.parseAxisParam(s,n.shape),i=N.getAxesPermutation(a,n.shape.length),l=n,u=[];i!=null&&(l=Mt({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(l),a=N.getInnerMostAxes(a.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMin",[a[0]],l.shape.length);let c=ax(t,l,a[0],"min");return u.forEach(p=>t.disposeIntermediateTensorInfo(p)),c}var OD={kernelName:Ga,backendName:"webgl",kernelFunc:NX};var SX=gr+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,TX=_e({opSnippet:SX}),PD={kernelName:wi,backendName:"webgl",kernelFunc:TX};var AX=gr+"return log(x + sqrt(x * x + 1.0));",EX=_e({opSnippet:AX}),MD={kernelName:_i,backendName:"webgl",kernelFunc:EX};var DX=gr+`
return atan(x);
`,$X=_e({opSnippet:DX}),LD={kernelName:ki,backendName:"webgl",kernelFunc:$X};var RX=fD+`
return atan(a, b);
`,FX=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+dD+`
return result;
`,OX=nt({opSnippet:RX,packedOpSnippet:FX}),zD={kernelName:Ci,backendName:"webgl",kernelFunc:OX};var PX=gr+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,MX=_e({opSnippet:PX}),BD={kernelName:vi,backendName:"webgl",kernelFunc:MX};var ii=class{constructor(e,t,o,n=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&o)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,p=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.top,d=e.padInfo.left;this.outputShape=e.outShape;let h=t==="avg",g=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,x=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,b="0.0";if(h||(b="-1.0 / 1e-20"),o){let R=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${l});
const ivec2 pads = ivec2(${f}, ${d});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${p};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${c}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${R} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${n?s?g:x:`wR * ${m} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let w="max",_=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(_="avgValue / count");let k=Math.floor(a/4)*4,D=a%4,T=`
if (${h}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${w}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${l});
const ivec2 pads = ivec2(${f}, ${d});
const float initializationValue = ${b};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${b});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${p};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${k}; wC += 4) {
int xC = xCCorner + wC * ${c};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
getValue(batch, xR, xC + 3 * ${c}, d)
);
${T}
}
int xC = xCCorner + ${k};
if (${D===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${T}
} else if (${D===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
initializationValue,
initializationValue
);
${T}
} else if (${D===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
initializationValue
);
${T}
}
}
setOutput(${_});
}
`}},Au=class{constructor(e,t,o,n=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&o)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideDepth,l=e.strideHeight,u=e.strideWidth,c=e.dilationDepth,p=e.dilationHeight,m=e.dilationWidth,f=e.effectiveFilterDepth,d=e.effectiveFilterHeight,h=e.effectiveFilterWidth,g=e.padInfo.front,x=e.padInfo.top,b=e.padInfo.left;this.outputShape=e.outShape;let w=t==="avg",_="0.0";if(w||(_="-1.0 / 1e-20"),o){let M=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${l}, ${u});
const ivec3 pads = ivec3(${g}, ${x}, ${b});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${f};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${h};
wC += ${m}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${M} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${n?s?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${d} * ${h} +
wR * ${h} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let k="max",D=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(D="avgValue / count");let T=Math.floor(a/4)*4,R=a%4,O=`
if (${w}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${k}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${l}, ${u});
const ivec3 pads = ivec3(${g}, ${x}, ${b});
const float initializationValue = ${_};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${_});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${f};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${T}; wC += 4) {
int xC = xCCorner + wC * ${m};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
getValue(batch, xD, xR, xC + 3 * ${m}, ch)
);
${O}
}
int xC = xCCorner + ${T};
if (${R===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${O}
} else if (${R===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
initializationValue,
initializationValue
);
${O}
} else if (${R===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
initializationValue
);
${O}
}
}
setOutput(${D});
}
}
`}};function LX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;_s(n,"avgPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=o,u=1;y.assert(N.eitherStridesOrDilationsAreOne(a,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=N.computePool2DInfo(n.shape,s,a,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return Wt({inputs:{x:n},backend:t});let p=new ii(c,"avg",!1);return t.runWebGLProgram(p,[n],"float32")}var VD={kernelName:Cn,backendName:"webgl",kernelFunc:LX};function zX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=o,c=[1,1,1],p=N.computePool3DInfo(n.shape,s,a,c,i,l,u),m=new Au(p,"avg",!1);return t.runWebGLProgram(m,[n],"float32")}var GD={kernelName:Wa,backendName:"webgl",kernelFunc:zX};var qk=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,o=e.filterWidth,n=e.strideHeight,s=e.strideWidth,a=e.dilationHeight,i=e.dilationWidth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=l-1-e.padInfo.top,p=u-1-e.padInfo.left,m=1/(t*o);this.userCode=`
const ivec2 pads = ivec2(${c}, ${p});
const float avgMultiplier = float(${m});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${l};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${u};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},Kk=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,o=e.filterHeight,n=e.filterWidth,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=e.dilationDepth,u=e.dilationHeight,c=e.dilationWidth,p=e.effectiveFilterDepth,m=e.effectiveFilterHeight,f=e.effectiveFilterWidth,d=p-1-e.padInfo.front,h=m-1-e.padInfo.top,g=f-1-e.padInfo.left,x=1/(t*o*n);this.userCode=`
const ivec3 pads = ivec3(${d}, ${h}, ${g});
const float avgMultiplier = float(${x});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${p};
wD += ${l}) {
float dyD = float(dyDCorner + wD) / ${s}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${m};
wR += ${u}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${f};
wC += ${c}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function BX(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=o,p=[1,1,1],m=N.computePool3DInfo(a.shape,i,l,p,u,c),f=new Kk(m);return t.runWebGLProgram(f,[n],a.dtype)}var WD={kernelName:fc,backendName:"webgl",kernelFunc:BX};function VX(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s;_s([n,s],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=o,c=N.computePool2DInfo(a.shape,i,l,1,u),p=new qk(c);return t.runWebGLProgram(p,[n],a.dtype)}var jD={kernelName:mc,backendName:"webgl",kernelFunc:VX};function GX(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s}=e,{transposeA:a,transposeB:i}=o;return Tu({a:n,b:s,transposeA:a,transposeB:i,backend:t})}var UD={kernelName:In,backendName:"webgl",kernelFunc:GX};var Xk=class{constructor(e,t,o,n,s,a){this.outputShape=[],this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,o);let i="0.0";n!=null&&(N.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let l="1.0";s!=null&&(N.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),l="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${l};
float inv = scale * inversesqrt(variance + float(${a}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}};var Yk=class{constructor(e,t,o,n,s,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,o);let i="vec4(0.0)";n!=null&&(N.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let l="vec4(1.0)";s!=null&&(N.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),l="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${l};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
setOutput((x - mean) * inv + offset);
}
`}};var WX=({inputs:r,backend:e,attrs:t})=>{let{x:o,mean:n,variance:s,offset:a,scale:i}=r;y.assert(n.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),y.assert(a==null||n.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),y.assert(i==null||n.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=t;l==null&&(l=.001);let u=[o,n,s],c=null;a!=null&&(c=a.shape,u.push(a));let p=null;i!=null&&(p=i.shape,u.push(i));let m=W().getBool("WEBGL_PACK_NORMALIZATION")?new Yk(o.shape,n.shape,s.shape,c,p,l):new Xk(o.shape,n.shape,s.shape,c,p,l);return e.runWebGLProgram(m,u,u[0].dtype)},HD={kernelName:Pn,backendName:"webgl",kernelFunc:WX};var Zk=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=Le(this.rank),o=`uniform int start[${this.rank}];`,n=jX(this.rank),s,a=e.map((i,l)=>`sourceLoc.${Jk[l]} = start[${l}] + coords.${Jk[l]};`);s=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${a.join(`
`)}
`,this.userCode=`
${o}
void main() {
${s}
setOutput(getSource(${n}));
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,o)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(o,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},Jk=["x","y","z","w","u","v"];function jX(r){if(r===1)return"sourceLoc";if(r<=6)return Jk.slice(0,r).map(e=>"sourceLoc."+e).join(",");throw Error(`Slicing for rank ${r} is not yet supported`)}var Qk=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=Le(this.rank),o=Gt("coords",this.rank),n=Gt("sourceLoc",this.rank),s=this.rank===1?"sourceLoc":`vec2(${n.slice(-2).join()})`,a=`getChannel(getSource(${n.join()}), ${s})`,i=`
result.x = ${a};
if (++${o[this.rank-1]} < ${e[this.rank-1]}) {
++${n[this.rank-1]};
result.y = ${a};
--${n[this.rank-1]};
}
`,l=this.rank===1?"":`
--${o[this.rank-1]};
if (++${o[this.rank-2]} < ${e[this.rank-2]}) {
++${n[this.rank-2]};
result.z = ${a};
if (++${o[this.rank-1]} < ${e[this.rank-1]}) {
++${n[this.rank-1]};
result.w = ${a};
}
}
`,u=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((c,p)=>`start[${p}]`).join()});`:e.map((c,p)=>`${n[p]} = ${o[p]} + start[${p}];`).join(`
`);this.userCode=`
uniform int start[${this.rank}];
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${u}
vec4 result = vec4(0.);
${i}
${l}
setOutput(result);
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,o)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(o,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function UX(r,e,t,o){let n=o.texData.get(r.dataId),s=o.makeTensorInfo(t,r.dtype),a=o.texData.get(s.dataId);Object.assign(a,n),a.refCount=1,a.shape=t,a.dtype=r.dtype;let i=er.computeFlatOffset(e,y.computeStrides(r.shape));n.slice&&(i+=n.slice.flatOffset),a.slice={flatOffset:i,origDataId:n.slice&&n.slice.origDataId||r.dataId};let l=o.dataRefCount.get(a.slice.origDataId)||1;return o.dataRefCount.set(a.slice.origDataId,l+1),s}function Na(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,size:a}=o,[i,l]=er.parseSliceParams(n,s,a);if(er.assertParamsValid(n,i,l),y.sizeFromShape(l)===0)return t.makeTensorInfo(l,n.dtype,[]);if(t.shouldExecuteOnCPU([n])||n.dtype==="string"){let p=t.texData.get(n.dataId),m=j2(p.values,i,l,n.shape,n.dtype);return t.makeTensorInfo(l,n.dtype,m)}let{isPacked:u}=t.texData.get(n.dataId),c=er.isSliceContinous(n.shape,i,l);if(u||!c){let p=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Qk(l):new Zk(l),m=p.getCustomSetupFunc(i);return t.runWebGLProgram(p,[n],n.dtype,m)}return t.uploadToGPU(n.dataId),UX(n,i,l,t)}var qD={kernelName:js,backendName:"webgl",kernelFunc:Na};var HX=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,crops:a}=o;y.assert(n.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=s.reduce((b,w)=>b*w),l=N.getReshaped(n.shape,s,i),u=N.getPermuted(l.length,s.length),c=N.getReshapedPermuted(n.shape,s,i),p=N.getSliceBeginCoords(a,s.length),m=N.getSliceSize(c,a,s.length),f=[],d=pe({inputs:{x:n},backend:t,attrs:{shape:l}}),h=Mt({inputs:{x:d},backend:t,attrs:{perm:u}}),g=pe({inputs:{x:h},backend:t,attrs:{shape:c}}),x=Na({inputs:{x:g},backend:t,attrs:{begin:p,size:m}});return f.push(d),f.push(h),f.push(g),f.forEach(b=>t.disposeIntermediateTensorInfo(b)),x},KD={kernelName:ja,backendName:"webgl",kernelFunc:HX};function qX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a}=o,i=t.readSync(n.dataId),l=t.readSync(s.dataId),u=Qg(i,l,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,u)}var XD={kernelName:dc,backendName:"webgl",kernelFunc:qX};var KX="return float(a != b);",ev=nt({opSnippet:KX,dtype:"bool"}),YD={kernelName:Wi,backendName:"webgl",kernelFunc:ev};function Sa(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.texData.get(o.dataId);return Wt({inputs:{x:n.complexTensorInfos.real},backend:t})}var ZD={kernelName:Rc,backendName:"webgl",kernelFunc:Sa};var XX="return float(int(x));";function JD(r,e){let t=new mo(r.shape,XX),o=e.runWebGLProgram(t,[r],"int32");return{dataId:o.dataId,shape:o.shape,dtype:o.dtype}}function tv(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dtype:s}=o;if(s==="complex64"){if(n.dtype==="complex64")return Wt({inputs:{x:n},backend:t});let a=ht(n.shape),i=tv({inputs:{x:n},backend:t,attrs:{dtype:"float32"}}),l=fo({inputs:{real:i,imag:a},backend:t});return a.dispose(),t.disposeIntermediateTensorInfo(i),l}if(n.dtype==="complex64"){let a=Sa({inputs:{input:n},backend:t}),i=tv({inputs:{x:a},backend:t,attrs:{dtype:s}});return t.disposeIntermediateTensorInfo(a),i}if(!y.hasEncodingLoss(n.dtype,s)){let a=Wt({inputs:{x:n},backend:t});return{dataId:a.dataId,shape:a.shape,dtype:s}}if(s==="int32")return JD(n,t);if(s==="bool"){let a=t.makeTensorInfo([],"bool",y.getTypedArrayFromDType("bool",1)),l=ev({inputs:{a:n,b:a},backend:t});return t.disposeIntermediateTensorInfo(a),l}throw new Error(`Error in Cast: failed to cast ${n.dtype} to ${s}`)}var QD={kernelName:Ho,backendName:"webgl",kernelFunc:tv};var e$="return ceil(x);",YX=_e({opSnippet:e$,packedOpSnippet:e$,cpuKernelImpl:N2}),t$={kernelName:Nn,backendName:"webgl",kernelFunc:YX};var rv=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}getCustomSetupFunc(e,t){return(o,n)=>{this.minLoc==null&&(this.minLoc=o.getUniformLocationNoThrow(n,"minVal"),this.maxLoc=o.getUniformLocationNoThrow(n,"maxVal")),o.gl.uniform1f(this.minLoc,e),o.gl.uniform1f(this.maxLoc,t)}}};var ov=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}getCustomSetupFunc(e,t){return(o,n)=>{this.minLoc==null&&(this.minLoc=o.getUniformLocationNoThrow(n,"minVal"),this.maxLoc=o.getUniformLocationNoThrow(n,"maxVal")),o.gl.uniform1f(this.minLoc,e),o.gl.uniform1f(this.maxLoc,t)}}};function ZX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{clipValueMin:s,clipValueMax:a}=o,i;W().getBool("WEBGL_PACK_CLIP")?i=new ov(n.shape):i=new rv(n.shape);let l=i.getCustomSetupFunc(s,a);return t.runWebGLProgram(i,[n],n.dtype,l)}var r$={kernelName:qo,backendName:"webgl",kernelFunc:ZX};var nv=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function o$(r,e){return{dataId:e.dataId,dtype:e.dtype,shape:r.shape}}function JX(r){let{inputs:e,backend:t}=r,{x:o}=e,n=t.texData.get(o.dataId),s=new nv(o.shape),a=[o$(o,n.complexTensorInfos.real),o$(o,n.complexTensorInfos.imag)];return t.runWebGLProgram(s,a,a[0].dtype)}var n$={kernelName:Ua,backendName:"webgl",kernelFunc:JX};var sv=class{constructor(e){this.outputShape=[],this.outputShape=N.computeOutShape(e,1),this.variableNames=e.map((a,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let o=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let i=t[a-1];o.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${i}));`)}let n=t.length,s=t[t.length-1];o.push(`else setOutput(getT${n}(yR, yC-${s}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${o.join(`
`)}
}
`}};var iv=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=N.computeOutShape(e,t);let o=this.outputShape,n=o.length,s=Le(n),a=Gt("coords",n),i=["x","y","z","w","u","v"].slice(0,n);this.variableNames=e.map((h,g)=>`T${g}`);let l=new Array(e.length-1);l[0]=e[0][t];for(let h=1;h<l.length;h++)l[h]=l[h-1]+e[h][t];let u=i[t],c=i.slice(-2),p=i.join(),m=`if (${u} < ${l[0]}) {
return getChannel(
getT0(${p}), vec2(${c.join()}));
}`;for(let h=1;h<l.length;h++){let g=l[h-1];m+=`
if (${u} < ${l[h]} && ${u} >= ${l[h-1]}) {
return getChannel(
getT${h}(${lx(i,u,g)}),
vec2(${lx(c,u,g)}));
}`}let f=l.length,d=l[l.length-1];m+=`
return getChannel(
getT${f}(${lx(i,u,d)}),
vec2(${lx(c,u,d)}));`,this.userCode=`
float getValue(${i.map(h=>"int "+h)}) {
${m}
}
void main() {
${s} coords = getOutputCoords();
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
${a[n-1]} = ${a[n-1]} + 1;
if (${a[n-1]} < ${o[n-1]}) {
result.g = getValue(${a});
}
${a[n-2]} = ${a[n-2]} + 1;
if (${a[n-2]} < ${o[n-2]}) {
result.a = getValue(${a});
}
${a[n-1]} = ${a[n-1]} - 1;
if (${a[n-2]} < ${o[n-2]} &&
${a[n-1]} < ${o[n-1]}) {
result.b = getValue(${a});
}
setOutput(result);
}
`}};function lx(r,e,t){let o=r.indexOf(e);return r.map((s,a)=>a===o?`${s} - ${t}`:s).join()}function Eu(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.texData.get(o.dataId);return Wt({inputs:{x:n.complexTensorInfos.imag},backend:t})}var s$={kernelName:Nc,backendName:"webgl",kernelFunc:Eu};function Du(r,e,t){let o=r[0].dtype;if(o==="complex64"){let u=r.map(d=>Sa({inputs:{input:d},backend:t})),c=r.map(d=>Eu({inputs:{input:d},backend:t})),p=Du(u,e,t),m=Du(c,e,t),f=fo({inputs:{real:p,imag:m},backend:t});return u.forEach(d=>t.disposeIntermediateTensorInfo(d)),c.forEach(d=>t.disposeIntermediateTensorInfo(d)),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),f}if(o==="string"){let{tensors2D:u,outShape:c}=i$(r,e,t),p=u.map(g=>({vals:t.readSync(g.dataId),shape:g.shape})),m=u[0].shape[0]===1,f=S2(p,c,o,m),d=N.computeOutShape(r.map(g=>g.shape),e),h=t.makeTensorInfo(d,o,f);return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),h}if(r.length>W().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(r.length/2),c=Du(r.slice(0,u),e,t),p=Du(r.slice(u),e,t),m=Du([c,p],e,t);return t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),m}if(W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&r[0].shape.length>1){let u=new iv(r.map(c=>c.shape),e);return t.runWebGLProgram(u,r,o)}let{tensors2D:n,outShape:s}=i$(r,e,t),a=new sv(n.map(u=>u.shape)),i=t.runWebGLProgram(a,n,o);n.forEach(u=>t.disposeIntermediateTensorInfo(u));let l=pe({inputs:{x:i},attrs:{shape:s},backend:t});return t.disposeIntermediateTensorInfo(i),l}function i$(r,e,t){let o=N.computeOutShape(r.map(s=>s.shape),e);return{tensors2D:r.map(s=>pe({inputs:{x:s},attrs:{shape:[-1,y.sizeFromShape(s.shape.slice(e))]},backend:t})),outShape:o}}function av(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o,s=y.parseAxisParam(n,e[0].shape)[0],a=N.computeOutShape(e.map(u=>u.shape),s);if(y.sizeFromShape(a)===0)return t.makeTensorInfo(a,e[0].dtype,[]);let i=e.filter(u=>y.sizeFromShape(u.shape)>0);if(i.length===1)return Wt({inputs:{x:i[0]},backend:t});let l=i.map(u=>u.shape);return N.assertParamsConsistent(l,s),Du(i,s,t)}var a$={kernelName:Ps,backendName:"webgl",kernelFunc:av};var Ef=class{constructor(e,t=!1,o=null,n=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,i=e.padInfo.left,l=e.strideHeight,u=e.strideWidth,c=e.dilationHeight,p=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,d=Math.floor(e.inChannels/4)*4,h=e.inChannels%4,g=e.dataFormat==="channelsLast",x=g?1:2,b=g?2:3,w=g?3:1,_="",k="";o&&(n?_=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${o}
}`:s?_=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${o}
}`:_=`
float activation(float x) {
${o}
}
`,k="result = activation(result);");let D=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${_}
const ivec2 strides = ivec2(${l}, ${u});
const ivec2 pads = ivec2(${a}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${w}];
ivec2 xRCCorner =
ivec2(coords[${x}], coords[${b}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${m}; wR++) {
int xR = xRCorner + wR * ${c};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f}; wC++) {
int xC = xCCorner + wC * ${p};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${d}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${g}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${h===1}) {
if (${g}) {
dotProd +=
getX(batch, xR, xC, ${d}) *
getW(wR, wC, ${d}, d2);
} else {
dotProd +=
getX(batch, ${d}, xR, xC) *
getW(wR, wC, ${d}, d2);
}
} else if (${h===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${d}, d2),
getW(wR, wC, ${d} + 1, d2)
);
if (${g}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${d}),
getX(batch, xR, xC, ${d} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${d}, xR, xC),
getX(batch, ${d} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${h===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${d}, d2),
getW(wR, wC, ${d} + 1, d2),
getW(wR, wC, ${d} + 2, d2)
);
if (${g}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${d}),
getX(batch, xR, xC, ${d} + 1),
getX(batch, xR, xC, ${d} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${d}, xR, xC),
getX(batch, ${d} + 1, xR, xC),
getX(batch, ${d} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${D}
${k}
setOutput(result);
}
`}},lv=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,o=e.padInfo.top,n=e.padInfo.left,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=e.dilationDepth,u=e.dilationHeight,c=e.dilationWidth,p=e.filterDepth,m=e.filterHeight,f=e.filterWidth,d=Math.floor(e.inChannels/4)*4,h=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${s}, ${a}, ${i});
const ivec3 pads = ivec3(${t}, ${o}, ${n});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${p}; wF++) {
int xF = xFCorner + wF * ${l};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${m}; wR++) {
int xR = xRCorner + wR * ${u};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${d}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${h===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${d}) *
getW(wF, wR, wC, ${d}, d2);
} else if (${h===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${d}),
getX(batch, xF, xR, xC, ${d} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${d}, d2),
getW(wF, wR, wC, ${d} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${h===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${d}),
getX(batch, xF, xR, xC, ${d} + 1),
getX(batch, xF, xR, xC, ${d} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${d}, d2),
getW(wF, wR, wC, ${d} + 1, d2),
getW(wF, wR, wC, ${d} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}};var uv=class{constructor(e,t,o){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:n,inChannels:s,strideWidth:a,strideHeight:i,padInfo:l,outWidth:u,dilationWidth:c,dilationHeight:p,dataFormat:m}=o,{left:f,top:d}=l,h=s*n,g=Rt(),x=m==="channelsLast",b=x?0:1,w=x?1:2,_="";for(let k=0;k<=1;k++)for(let D=0;D<=1;D++)_+=`
blockIndex = rc.y + ${D};
pos = rc.x + ${k};
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
offsetY = int(blockIndex / (${u})) * ${i} - ${d};
d0 = offsetY + ${p} * (pos / ${h});
if(d0 < ${t[b]} && d0 >= 0) {
offsetX = int(mod(float(blockIndex), ${u}.) * ${a}. - ${f}.);
d1 = offsetX + ${c} * (int(mod(float(pos), ${h}.) / ${s}.));
if(d1 < ${t[w]} && d1 >= 0) {
ch = int(mod(float(pos), ${s}.));
if (${x}) {
innerDims = vec2(d1, ch);
result[${k*2+D}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${k*2+D}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${_}
${g.output} = result;
}
`}};function ux({x:r,filter:e,convInfo:t,backend:o,bias:n=null,preluActivationWeights:s=null,leakyreluAlpha:a=0,activation:i=null}){let l=r.shape,u=o.texData.get(r.dataId),c=t.inChannels,p=l[0]*l[1]*l[2],m=t.outChannels,f=t.dataFormat==="channelsLast",d=!1,h=!1,g,x=[],b=(p===1||m===1)&&c>Gk,w=l[2]%2!=0&&!!u.isPacked;if(b||!W().getBool("WEBGL_LAZILY_UNPACK")||!W().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!w){let _=f?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],k=pe({inputs:{x:r},backend:o,attrs:{shape:[1,_,t.inChannels]}}),D=pe({inputs:{x:e},backend:o,attrs:{shape:[1,t.inChannels,t.outChannels]}}),T=Tu({a:k,b:D,transposeA:d,transposeB:h,backend:o,bias:n,activation:i,preluActivationWeights:s,leakyreluAlpha:a});g=pe({inputs:{x:T},backend:o,attrs:{shape:t.outShape}}),x.push(k),x.push(D),x.push(T)}else{let _=f?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),k={dataId:r.dataId,shape:[1,_,t.inChannels],dtype:r.dtype},D=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,y.assert(dl(u.shape,k.shape),()=>`packed reshape ${u.shape} to ${k.shape} isn't free`);let T=pe({inputs:{x:e},backend:o,attrs:{shape:[1,t.inChannels,t.outChannels]}});x.push(T);let R=Tu({a:k,b:T,backend:o,transposeA:d,transposeB:h,bias:n,activation:i,preluActivationWeights:s,leakyreluAlpha:a}),O=o.texData.get(R.dataId);y.assert(O.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=D,O.shape=t.outShape,g=Wt({inputs:{x:R},backend:o}),g.shape=t.outShape,x.push(R)}for(let _ of x)o.disposeIntermediateTensorInfo(_);return g}function cx({x:r,filter:e,convInfo:t,backend:o,bias:n=null,preluActivationWeights:s=null,leakyreluAlpha:a=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:p,outHeight:m,dataFormat:f}=t,d=f==="channelsLast",h=l*u*c,g=m*p,x=[h,g],b=!0,w=!1,_=[],k=pe({inputs:{x:r},backend:o,attrs:{shape:r.shape.slice(1)}}),D=pe({inputs:{x:e},backend:o,attrs:{shape:[1,h,y.sizeFromShape(e.shape)/h]}});_.push(k),_.push(D);let T=new uv(x,k.shape,t),R=o.runWebGLProgram(T,[k],"float32"),O=pe({inputs:{x:R},backend:o,attrs:{shape:[1,x[0],x[1]]}});_.push(R),_.push(O);let M=n!=null,G=s!=null,j=i==="leakyrelu",U=i?gl(i,!0):null,H=new Tf(O.shape,D.shape,[1,g,t.outChannels],b,w,M,U,G,j),q=[O,D];if(n&&q.push(n),G&&q.push(s),j){let re=o.makeTensorInfo([],"float32",y.createScalarValue(a,"float32"));q.push(re),_.push(re)}let X=o.runWebGLProgram(H,q,"float32"),oe=d?[1,m,p,t.outChannels]:[1,t.outChannels,m,p],Y=pe({inputs:{x:X},backend:o,attrs:{shape:oe}});_.push(X);for(let re of _)o.disposeIntermediateTensorInfo(re);return Y}function QX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=o,p=N.convertConv2DDataFormat(l),m=N.computeConv2DInfo(n.shape,s.shape,a,u,i,c,!1,p),f;if(m.filterHeight===1&&m.filterWidth===1&&m.dilationHeight===1&&m.dilationWidth===1&&m.strideHeight===1&&m.strideWidth===1&&(m.padInfo.type==="SAME"||m.padInfo.type==="VALID"))f=ux({x:n,filter:s,convInfo:m,backend:t});else if(W().getBool("WEBGL_CONV_IM2COL")&&n.shape[0]===1)f=cx({x:n,filter:s,convInfo:m,backend:t});else{let h=new Ef(m);f=t.runWebGLProgram(h,[n,s],"float32")}let d=pe({inputs:{x:f},backend:t,attrs:{shape:m.outShape}});return t.disposeIntermediateTensorInfo(f),d}var l$={kernelName:Sn,backendName:"webgl",kernelFunc:QX};var cv=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,o=e.strideWidth,n=e.padInfo.top,s=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${n};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${o} - ${s};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${a}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},pv=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,o=e.filterWidth,n=e.strideHeight,s=e.strideWidth,a=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,l=o-1-e.padInfo.left,u=a?1:2,c=a?2:3,p=a?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${p}];
ivec2 dyCorner = ivec2(coords[${u}], coords[${c}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${o}; wC++) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${o} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${a}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},mv=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,o=e.strideHeight,n=e.strideWidth,s=e.padInfo.front,a=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${s};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${o} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},fv=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,o=e.filterHeight,n=e.filterWidth,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=t-1-e.padInfo.front,u=o-1-e.padInfo.top,c=n-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${l}, ${u}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${s}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${o}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${o} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function e8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=o,p=N.convertConv2DDataFormat(l),m=N.computeConv2DInfo(n.shape,c,a,1,i,u,!1,p),f=new cv(m);return t.runWebGLProgram(f,[n,s],"float32")}var u$={kernelName:gc,backendName:"webgl",kernelFunc:e8};function t8(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{inputShape:a,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=o,p=N.convertConv2DDataFormat(u),m=N.computeConv2DInfo(a,s.shape,i,1,l,c,!1,p),f=new pv(m);return t.runWebGLProgram(f,[n,s],"float32")}var c$={kernelName:Tn,backendName:"webgl",kernelFunc:t8};function r8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l}=o,u=N.computeConv3DInfo(n.shape,s.shape,a,l,i),c=new lv(u);return t.runWebGLProgram(c,[n,s],"float32")}var p$={kernelName:Ha,backendName:"webgl",kernelFunc:r8};function o8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,filterShape:l}=o,u=N.computeConv3DInfo(n.shape,l,a,1,i),c=new mv(u);return t.runWebGLProgram(c,[n,s],"float32")}var m$={kernelName:xc,backendName:"webgl",kernelFunc:o8};function n8(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{pad:a,strides:i,inputShape:l}=o,u=N.computeConv3DInfo(l,s.shape,i,1,a),c=new fv(u);return t.runWebGLProgram(c,[n,s],"float32")}var f$={kernelName:yc,backendName:"webgl",kernelFunc:n8};var s8=ox+`
return cos(x);
`,i8=_e({opSnippet:s8}),d$={kernelName:An,backendName:"webgl",kernelFunc:i8};var a8=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,l8=_e({opSnippet:a8}),h$={kernelName:Ii,backendName:"webgl",kernelFunc:l8};var dv=class{constructor(e,t,o,n,s){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,i,l,u]=e,[c]=t,[p,m]=o;this.outputShape=[c,p,m,u];let f=n==="bilinear"?1:0,[d,h]=[`${i-1}.0`,`${l-1}.0`],[g,x,b]=p>1?[`${(i-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${d} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${d}`],[w,_,k]=m>1?[`${(l-1)/(m-1)}`,"(x2-x1) * width_ratio",`x1*${h} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${h}`];this.userCode=`
const float height_ratio = float(${g});
const float width_ratio = float(${w});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${a}) {
return;
}
float height_scale = ${x};
float width_scale = ${_};
float in_y = ${b};
if( in_y < 0.0 || in_y > ${d} ) {
setOutput(float(${s}));
return;
}
float in_x = ${k};
if( in_x < 0.0 || in_x > ${h} ) {
setOutput(float(${s}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${f} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}};var u8=r=>{let{inputs:e,backend:t,attrs:o}=r,{image:n,boxes:s,boxInd:a}=e,{cropSize:i,method:l,extrapolationValue:u}=o,c=new dv(n.shape,s.shape,i,l,u);return t.runWebGLProgram(c,[n,s,a],"float32")},g$={kernelName:Ni,backendName:"webgl",kernelFunc:u8};var px=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=e;let n=e.length,s=t?"0.0":`getX(${x$(n,"coords")})`,a=e[e.length-1],i="",l="";t?(i=o?`end != ${a-1}`:"end != 0",l=o?"end + 1":"end - 1"):(i=o?`end + pow2 < ${a}`:"end >= pow2",l=o?"end + pow2":"end - pow2"),this.userCode=`
uniform float index;
void main() {
${Le(n)} coords = getOutputCoords();
int end = ${y$(n,"coords")};
float val = ${s};
int pow2 = int(pow(2.0, index));
if (${i}) {
int idx = ${l};
${y$(n,"coords")} = idx;
val += getX(${x$(n,"coords")});
}
setOutput(val);
}
`}getCustomSetupFunc(e){return(t,o)=>{this.index==null&&(this.index=t.getUniformLocation(o,"index")),t.gl.uniform1f(this.index,e)}}};function x$(r,e){if(r===1)return`${e}`;if(r===2)return`${e}.x, ${e}.y`;if(r===3)return`${e}.x, ${e}.y, ${e}.z`;if(r===4)return`${e}.x, ${e}.y, ${e}.z, ${e}.w`;throw Error(`Cumulative sum for rank ${r} is not yet supported`)}function y$(r,e){if(r===1)return`${e}`;if(r===2)return`${e}.y`;if(r===3)return`${e}.z`;if(r===4)return`${e}.w`;throw Error(`Cumulative sum for rank ${r} is not yet supported`)}function c8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,exclusive:a,reverse:i}=o,l=n.shape.length,u=N.getAxesPermutation([s],l),c=n;u!=null&&(c=Mt({inputs:{x:n},backend:t,attrs:{perm:u}}));let p=N.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${n.shape.length-1} but got axis=${s}`);let m=c.shape[p],f=Wt({inputs:{x:c},backend:t});for(let d=0;d<=Math.ceil(Math.log2(m))-1;d++){let h=new px(c.shape,!1,i),g=h.getCustomSetupFunc(d),x=f;f=t.runWebGLProgram(h,[f],f.dtype,g),t.disposeIntermediateTensorInfo(x)}if(a){let d=new px(c.shape,a,i),h=f;f=t.runWebGLProgram(d,[f],f.dtype),t.disposeIntermediateTensorInfo(h)}if(u!=null){let d=N.getUndoAxesPermutation(u),h=Mt({inputs:{x:f},backend:t,attrs:{perm:d}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(c),h}return f}var b$={kernelName:En,backendName:"webgl",kernelFunc:c8};function p8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a,binaryOutput:i}=o;if(n.shape.length===1){let l=t.readSync(n.dataId),u=t.readSync(s.dataId),c=Qg(l,u,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,c)}else if(n.shape.length===2){let l=t.bufferSync(n),u=t.bufferSync(s),c=I2(l,u,a,i);return t.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${n.shape.length}.`)}var w$={kernelName:bc,backendName:"webgl",kernelFunc:p8};var hv=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=o,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function m8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockSize:s,dataFormat:a}=o;y.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=n.shape[0],l=a==="NHWC"?n.shape[1]:n.shape[2],u=a==="NHWC"?n.shape[2]:n.shape[3],c=a==="NHWC"?n.shape[3]:n.shape[1],p=l*s,m=u*s,f=c/(s*s),d=a==="NHWC"?[i,p,m,f]:[i,f,p,m],h=new hv(d,s,a);return t.runWebGLProgram(h,[n],n.dtype)}var _$={kernelName:Si,backendName:"webgl",kernelFunc:m8};var Df=class{constructor(e,t=!1,o=null,n=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.inHeight,i=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,c=e.strideHeight,p=e.strideWidth,m=e.dilationHeight,f=e.dilationWidth,d=e.filterHeight,h=e.filterWidth,g=e.outChannels/e.inChannels,x="",b="";o&&(n?x=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${o}
}`:s?x=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${o}
}`:x=`
float activation(float x) {
${o}
}
`,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${x}
const ivec2 strides = ivec2(${c}, ${p});
const ivec2 pads = ivec2(${l}, ${u});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${g};
int q = d2 - d1 * ${g};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${m};
if (xR < 0 || xR >= ${a}) {
continue;
}
for (int wC = 0; wC < ${h}; wC++) {
int xC = xCCorner + wC * ${f};
if (xC < 0 || xC >= ${i}) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${w}
${b}
setOutput(result);
}
`}};var $f=class{constructor(e,t=!1,o=null,n=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let a=e.inHeight,i=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,c=e.strideHeight,p=e.strideWidth,m=e.dilationHeight,f=e.dilationWidth,d=e.filterHeight,h=e.filterWidth,g=h,x="int xR; int xC; int xCOffset;";for(let k=0;k<d;k++)for(let D=0;D<h;D++)x+=`
vec4 xTexelR${k}C${D*2} = vec4(0.);
vec4 wR${k}C${D} = vec4(0.);
vec4 xR${k}C${D} = vec4(0.);`;for(let k=0;k<d;k++)for(let D=0;D<g;D++){let T=D*2;if(x+=`
xR = xRCorner + ${k*m};
xC = xCCorner + ${T*f};
`,p===1){if(T<h&&(u%2==1?x+=`
xCOffset = xC + 1;
if(xR >= 0 && xR < ${a} && xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${k}C${T} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
xTexelR${k}C${T}.zw = vec2(0.);
}
} else {
xTexelR${k}C${T} = vec4(0.);
}
xCOffset = xC + 1 - 2;
if(xR >= 0 && xR < ${a} && xCOffset >= 0 && xCOffset < ${i}) {
vec4 previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
previous.zw = vec2(0.);
}
xR${k}C${T} = vec4(previous.zw, xTexelR${k}C${T}.xy);
} else {
xR${k}C${T} = vec4(0, 0, xTexelR${k}C${T}.xy);
}
`:x+=`
if(xR >= 0 && xR < ${a} && xC >= 0 && xC < ${i}) {
xTexelR${k}C${T} = getX(batch, xR, xC, d1);
} else {
xTexelR${k}C${T} = vec4(0.);
}
xR${k}C${T} = xTexelR${k}C${T};
`,T+1<h)){let R=u%2==0?y.nearestLargerEven(f):f;f%2==0&&u%2==1||f%2!=0&&u%2!=1?(x+=`
xCOffset = xC + ${u%2} + ${R};
if(xR >= 0 && xR < ${a} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${k}C${T+2} = getX(batch, xR, xCOffset, d1);
}
`,f>1&&(x+=`
xCOffset -= 2;
if(xR >= 0 && xR < ${a} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${k}C${T} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${k}C${T} = vec4(0.);
}
`),x+=`
xR${k}C${T+1} = vec4(
xTexelR${k}C${T}.zw, xTexelR${k}C${T+2}.xy);
`):x+=`
xCOffset = xC + ${R};
if(xR >= 0 && xR < ${a} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${k}C${T+2} = getX(batch, xR, xCOffset, d1);
}
xR${k}C${T+1} = xTexelR${k}C${T+2};
`}}else T<h&&(x+=`
if(xR >= 0 && xR < ${a}) {
`,u%2==1?(x+=`
xCOffset = xC + 1 - ${p};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${k}C${T} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${k}C${T} = vec4(0.);
}
if(xC + 1 >= 0 && xC + 1 < ${i}) {
xTexelR${k}C${T+2} = getX(batch, xR, xC + 1, d1);
} else {
xTexelR${k}C${T+2} = vec4(0.);
}
xR${k}C${T} = vec4(
xTexelR${k}C${T}.zw, xTexelR${k}C${T+2}.zw);
`,T+1<h&&(x+=`
vec4 final = vec4(0.);
xCOffset = xC + 1 + ${p};
if(xCOffset >= 0 && xCOffset < ${i}) {
final = getX(batch, xR, xCOffset, d1);
}
xR${k}C${T+1} = vec4(xTexelR${k}C${T+2}.xy, final.xy);
`)):(x+=`
if(xC >= 0 && xC < ${i}) {
xTexelR${k}C${T} = getX(batch, xR, xC, d1);
} else {
xTexelR${k}C${T} = vec4(0.);
}
xCOffset = xC + ${p};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${k}C${T+2} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${k}C${T+2} = vec4(0.);
}
xR${k}C${T} = vec4(
xTexelR${k}C${T}.xy, xTexelR${k}C${T+2}.xy);
`,T+1<h&&(x+=`
xR${k}C${T+1} = vec4(
xTexelR${k}C${T}.zw, xTexelR${k}C${T+2}.zw);
`)),x+="}");T<h&&(x+=`
vec4 wTexelR${k}C${T} = getW(${k}, ${T}, d1, q);
wR${k}C${T} = vec4(wTexelR${k}C${T}.xz, wTexelR${k}C${T}.xz);
`,T+1<h&&(x+=`
vec4 wTexelR${k}C${T+1} = getW(${k}, ${T+1}, d1, q);
wR${k}C${T+1} =
vec4(wTexelR${k}C${T+1}.xz, wTexelR${k}C${T+1}.xz);`))}for(let k=0;k<d;k++)for(let D=0;D<h;D++)x+=`dotProd += xR${k}C${D} * wR${k}C${D};`;let b="",w="";o&&(n?b=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${o}
}`:s?b=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${o}
}`:b=`vec4 activation(vec4 x) {
${o}
}`,w="result = activation(result);");let _=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${b}
const ivec2 strides = ivec2(${c}, ${p});
const ivec2 pads = ivec2(${l}, ${u});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2;
int q = 0;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
vec4 dotProd = vec4(0.);
${x}
vec4 result = dotProd;
${_}
${w}
setOutput(result);
}
`}};function f8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l,dimRoundingMode:u}=o,c=l;c==null&&(c=[1,1]),y.assert(N.eitherStridesOrDilationsAreOne(a,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${c}'`);let p=N.computeConv2DInfo(n.shape,s.shape,a,c,i,u,!0),m;return W().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels==1?m=new $f(p):m=new Df(p),t.runWebGLProgram(m,[n,s],"float32")}var k$={kernelName:Dn,backendName:"webgl",kernelFunc:f8};var gv=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,o=e.strideWidth,n=e.padInfo.top,s=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${a} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${n};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${o} - ${s};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},xv=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,o=e.filterWidth,n=e.strideHeight,s=e.strideWidth,a=t-1-e.padInfo.top,i=o-1-e.padInfo.left,l=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${a}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${o}; wC++) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${o} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${l}; dm++) {
int d2 = d1 * ${l} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function d8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=o,p=N.computeConv2DInfo(n.shape,c,a,i,l,u,!0),m=new gv(p);return t.runWebGLProgram(m,[n,s],"float32")}var v$={kernelName:wc,backendName:"webgl",kernelFunc:d8};function h8(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=o,p=N.computeConv2DInfo(c,s.shape,a,i,l,u,!0),m=new xv(p);return t.runWebGLProgram(m,[n,s],"float32")}var C$={kernelName:_c,backendName:"webgl",kernelFunc:h8};var yv=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function g8(r){let{inputs:e,backend:t}=r,{x:o}=e,n=[...o.shape,...o.shape],s=y.sizeFromShape(o.shape),a=pe({inputs:{x:o},backend:t,attrs:{shape:[s]}}),i=new yv(s),l=t.runWebGLProgram(i,[a],a.dtype),u=pe({inputs:{x:l},backend:t,attrs:{shape:n}});return t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(l),u}var I$={kernelName:kc,backendName:"webgl",kernelFunc:g8};var bv=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:o,padInfo:n,strideHeight:s,strideWidth:a,filterHeight:i,filterWidth:l,dilationHeight:u,dilationWidth:c}=e,{top:p,left:m}=n;this.userCode=`
const ivec2 strides = ivec2(${s}, ${a});
const ivec2 pads = ivec2(${p}, ${m});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${u};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${l}; w++) {
int wIn = wBeg + w * ${c};
if (wIn >= 0 && wIn < ${o}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function x8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l}=o,u=N.computeDilation2DInfo(n.shape,s.shape,a,i,"NHWC",l),c,p=new bv(u);c=t.runWebGLProgram(p,[n,s],"float32");let m=pe({inputs:{x:c},backend:t,attrs:{shape:u.outShape}});return t.disposeIntermediateTensorInfo(c),m}var N$={kernelName:qa,backendName:"webgl",kernelFunc:x8};var y8="return (x >= 0.0) ? x : (exp(x) - 1.0);",b8=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,w8=_e({opSnippet:y8,packedOpSnippet:b8}),S$={kernelName:Ti,backendName:"webgl",kernelFunc:w8};var _8="return (b >= 1.0) ? a : a * (b + 1.0);",k8=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,v8=r=>{let{inputs:e,backend:t}=r,{dy:o,y:n}=e,s=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Cs(k8,o.shape,n.shape):new cn(_8,o.shape,n.shape);return t.runWebGLProgram(s,[o,n],o.dtype)},T$={kernelName:vc,backendName:"webgl",kernelFunc:v8};var C8=`
return vec4(equal(a, b));
`,I8="return float(a == b);",N8=nt({opSnippet:I8,packedOpSnippet:C8,dtype:"bool"}),A$={kernelName:Ei,backendName:"webgl",kernelFunc:N8};var S8=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${N.ERF_P};
float a1 = ${N.ERF_A1};
float a2 = ${N.ERF_A2};
float a3 = ${N.ERF_A3};
float a4 = ${N.ERF_A4};
float a5 = ${N.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,T8=_e({opSnippet:S8}),E$={kernelName:Ai,backendName:"webgl",kernelFunc:T8};var D$="return exp(x);",wv=_e({opSnippet:D$,packedOpSnippet:D$,cpuKernelImpl:T2}),$$={kernelName:Rn,backendName:"webgl",kernelFunc:wv};function mx(r){let{inputs:e,attrs:t,backend:o}=r,{dim:n}=t,{input:s}=e,a=s.shape.length,i=s.shape.slice(),l=n;return n<0&&(y.assert(-(a+1)<=n,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+n+1),i.splice(l,0,1),pe({inputs:{x:s},backend:o,attrs:{shape:i}})}var R$={kernelName:Ms,backendName:"webgl",kernelFunc:mx};var F$="return exp(x) - 1.0;",A8=_e({opSnippet:F$,packedOpSnippet:F$,cpuKernelImpl:A2}),O$={kernelName:Di,backendName:"webgl",kernelFunc:A8};var fx=class{constructor(e,t,o){this.variableNames=["real","imag"];let n=t[1];this.outputShape=t;let s=o?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=o?`${n}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${s};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${n});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${n}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${a};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function dx(r,e,t){let o=t.texData.get(r.dataId),n=y.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],a=n/s,i=pe({inputs:{x:r},backend:t,attrs:{shape:[a,s]}}),l=i.shape,u=new fx("real",l,e),c=new fx("imag",l,e),p=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:l},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:l}],m=t.runWebGLProgram(u,p,"float32"),f=t.runWebGLProgram(c,p,"float32"),d=fo({inputs:{real:m,imag:f},backend:t});t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f);let h=pe({inputs:{x:d},backend:t,attrs:{shape:r.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(d),h}function E8(r){let{inputs:e,backend:t}=r,{input:o}=e;return dx(o,!1,t)}var P$={kernelName:Cc,backendName:"webgl",kernelFunc:E8};var _v=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
uniform float value;
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}getCustomSetupFunc(e){return(t,o)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(o,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function Rf(r){let{backend:e,attrs:t}=r,{shape:o,value:n}=t,{dtype:s}=t;if(s=s||y.inferDtype(n),s==="string"){let a=y.getArrayFromDType(s,y.sizeFromShape(o));return a.fill(n),e.makeTensorInfo(o,s,a)}else{let a=new _v(o,n),i=a.getCustomSetupFunc(n);return e.runWebGLProgram(a,[],s,i)}}var M$={kernelName:Ka,backendName:"webgl",kernelFunc:Rf};var kv=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}};var L$={kernelName:$i,backendName:"webgl",kernelFunc:({inputs:r,backend:e})=>{let{image:t}=r,o=e,n=new kv(t.shape);return o.runWebGLProgram(n,[t],t.dtype)}};var z$="return floor(x);",D8=_e({opSnippet:z$,packedOpSnippet:z$,cpuKernelImpl:E2}),B$={kernelName:Fn,backendName:"webgl",kernelFunc:D8};var $8=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,R8=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,F8=nt({opSnippet:$8,packedOpSnippet:R8,dtype:"int32"}),V$={kernelName:On,backendName:"webgl",kernelFunc:F8};var vv=class{constructor(e){this.variableNames=["A"];let t=Rt(),[o,n]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}.0, ${o}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}};var Cv=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Rt(),[o,n]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}.0, ${o}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}};var G$={kernelName:bm,backendName:"webgl",kernelFunc:O8},wp;function O8(r){let{inputs:e,backend:t,attrs:o}=r,{pixels:n}=e,{numChannels:s}=o,a=typeof HTMLVideoElement!="undefined"&&n instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&n instanceof HTMLImageElement,[l,u]=a?[n.videoWidth,n.videoHeight]:[n.width,n.height],c=[u,l],p=[u,l,s];(i||a)&&(wp==null&&(wp=document.createElement("canvas").getContext("2d")),wp.canvas.width=l,wp.canvas.height=u,wp.drawImage(n,0,0,l,u),n=wp.canvas);let m=t.makeTensorInfo(c,"int32");t.texData.get(m.dataId).usage=$r.PIXELS,t.gpgpu.uploadPixelDataToTexture(t.getTexture(m.dataId),n);let f=W().getBool("WEBGL_PACK")?new Cv(p):new vv(p),d=t.runWebGLProgram(f,[m],"int32");return t.disposeData(m.dataId),d}function P8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=o,h=N.convertConv2DDataFormat(c),g=N.computeConv2DInfo(n.shape,s.shape,l,p,u,m,!1,h),x,b=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))x=ux({x:n,filter:s,convInfo:g,backend:t,bias:a,activation:f,preluActivationWeights:i,leakyreluAlpha:d});else if(W().getBool("WEBGL_CONV_IM2COL")&&n.shape[0]===1)x=cx({x:n,filter:s,convInfo:g,backend:t,bias:a,activation:f,preluActivationWeights:i,leakyreluAlpha:d});else{let _=a!=null,k=i!=null,D=f==="leakyrelu",T=f?gl(f,!1):null,R=new Ef(g,_,T,k,D),O=[n,s];if(a&&O.push(a),i&&O.push(i),D){let M=t.makeTensorInfo([],"float32",y.createScalarValue(d,"float32"));O.push(M),b.push(M)}x=t.runWebGLProgram(R,O,"float32")}let w=pe({inputs:{x},backend:t,attrs:{shape:g.outShape}});return b.push(x),b.forEach(_=>t.disposeIntermediateTensorInfo(_)),w}var W$={kernelName:Xs,backendName:"webgl",kernelFunc:P8};function M8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:m,leakyreluAlpha:f}=o,d=[],h=c;h==null&&(h=[1,1]),y.assert(N.eitherStridesOrDilationsAreOne(l,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${h}'`);let g=N.computeConv2DInfo(n.shape,s.shape,l,h,u,p,!0),x=W().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,b=m?gl(m,x):null,w=[n,s],_=a!=null,k=i!=null,D=m==="leakyrelu";if(_&&w.push(a),k&&w.push(i),D){let O=t.makeTensorInfo([],"float32",y.createScalarValue(f,"float32"));w.push(O),d.push(O)}let T;x?T=new $f(g,_,b,k,D):T=new Df(g,_,b,k,D);let R=t.runWebGLProgram(T,w,"float32");return d.forEach(O=>t.disposeIntermediateTensorInfo(O)),R}var j$={kernelName:Ys,backendName:"webgl",kernelFunc:M8};var Iv=class{constructor(e,t,o){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=o;let n=Le(t.length),s=Le(o.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${n} strides = ${n}(${this.strides});
void main() {
${s} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${a};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}};function L8(r){let{inputs:e,backend:t}=r,{params:o,indices:n}=e,s=n.shape,a=s[s.length-1],[i,l,u,c]=N.prepareAndValidate(o,n),p=pe({inputs:{x:n},backend:t,attrs:{shape:[l,a]}}),m=pe({inputs:{x:o},backend:t,attrs:{shape:[y.sizeFromShape(o.shape)/u,u]}}),f=new Iv(a,c,[l,u]),d=t.runWebGLProgram(f,[m,p],m.dtype),h=pe({inputs:{x:d},backend:t,attrs:{shape:i}});return t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(d),h}var U$={kernelName:Ri,backendName:"webgl",kernelFunc:L8};var Nv=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let o=Le(this.rank),n=z8(e,2);this.userCode=`
void main() {
${o} resRC = getOutputCoords();
setOutput(getA(${n}));
}
`}};function z8(r,e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[];for(let n=0;n<r.length;n++)n===2?o.push("int(getIndices(resRC.x, resRC.z))"):o.push(`${t[n]}`);return o.join()}function B8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,indices:s}=e,{axis:a,batchDims:i}=o,l=y.parseAxisParam(a,n.shape)[0],u=N.segment_util.collectGatherOpShapeInfo(n,s,l,i),c=y.sizeFromShape(s.shape),p=[],m=pe({inputs:{x:n},backend:t,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),f=pe({inputs:{x:s},backend:t,attrs:{shape:[u.batchSize,c/u.batchSize]}});p.push(m),p.push(f);let d=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(t.shouldExecuteOnCPU([n,s])||n.dtype==="string"){let b=t.bufferSync(f),w=t.bufferSync(m),_=D2(w,b,d);return p.forEach(k=>t.disposeIntermediateTensorInfo(k)),t.makeTensorInfo(u.outputShape,_.dtype,_.values)}let h=new Nv(m.shape,d),g=t.runWebGLProgram(h,[m,f],m.dtype);p.push(g);let x=pe({inputs:{x:g},backend:t,attrs:{shape:u.outputShape}});return p.forEach(b=>t.disposeIntermediateTensorInfo(b)),x}var H$={kernelName:Ls,backendName:"webgl",kernelFunc:B8};var V8="return float(a > b);",G8=`
return vec4(greaterThan(a, b));
`,W8=nt({opSnippet:V8,packedOpSnippet:G8,cpuKernelImpl:$2,dtype:"bool"}),q$={kernelName:Fi,backendName:"webgl",kernelFunc:W8};var j8="return float(a >= b);",U8=`
return vec4(greaterThanEqual(a, b));
`,H8=nt({opSnippet:j8,packedOpSnippet:U8,dtype:"bool"}),K$={kernelName:Mn,backendName:"webgl",kernelFunc:H8};function q8(r){let{inputs:e,backend:t}=r,{input:o}=e;return dx(o,!0,t)}var X$={kernelName:Ic,backendName:"webgl",kernelFunc:q8};var K8="return float(!isnan(x) && !isinf(x));",X8=_e({opSnippet:K8,dtype:"bool"}),Y$={kernelName:Oi,backendName:"webgl",kernelFunc:X8};var Y8="return float(isinf(x));",Z8=_e({opSnippet:Y8,dtype:"bool"}),Z$={kernelName:Pi,backendName:"webgl",kernelFunc:Z8};var J8="return float(isnan(x));",Q8=_e({opSnippet:J8,dtype:"bool"}),J$={kernelName:Mi,backendName:"webgl",kernelFunc:Q8};var eY="return float(a < b);",tY=`
return vec4(lessThan(a, b));
`,rY=nt({opSnippet:eY,packedOpSnippet:tY,cpuKernelImpl:R2,dtype:"bool"}),Q$={kernelName:Li,backendName:"webgl",kernelFunc:rY};var oY="return float(a <= b);",nY=`
return vec4(lessThanEqual(a, b));
`,sY=nt({opSnippet:oY,packedOpSnippet:nY,dtype:"bool"}),eR={kernelName:zi,backendName:"webgl",kernelFunc:sY};function iY(r){let{backend:e,attrs:t}=r,{start:o,stop:n,num:s}=t,a=F2(o,n,s);return e.makeTensorInfo([a.length],"float32",a)}var tR={kernelName:Sc,backendName:"webgl",kernelFunc:iY};var aY=`if (x < 0.0) return NAN;
return log(x);`,lY=`
vec4 result = log(x);
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
result.r = isNaN.r == 1.0 ? NAN : result.r;
result.g = isNaN.g == 1.0 ? NAN : result.g;
result.b = isNaN.b == 1.0 ? NAN : result.b;
result.a = isNaN.a == 1.0 ? NAN : result.a;
return result;
`,uY=_e({opSnippet:aY,packedOpSnippet:lY,cpuKernelImpl:O2}),rR={kernelName:zn,backendName:"webgl",kernelFunc:uY};var cY="return log(1.0 + x);",pY=_e({opSnippet:cY}),oR={kernelName:Bi,backendName:"webgl",kernelFunc:pY};var mY="return float(a >= 1.0 && b >= 1.0);",fY=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,dY=nt({opSnippet:mY,packedOpSnippet:fY,dtype:"bool"}),nR={kernelName:Vi,backendName:"webgl",kernelFunc:dY};var hY="return float(!(x >= 1.0));",gY=_e({opSnippet:hY}),sR={kernelName:Ml,backendName:"webgl",kernelFunc:gY};var xY="return float(a >= 1.0 || b >= 1.0);",yY=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,bY=nt({opSnippet:xY,packedOpSnippet:yY,dtype:"bool"}),iR={kernelName:Ll,backendName:"webgl",kernelFunc:bY};var Sv=class{constructor(e,t,o,n,s){this.variableNames=["x"],this.outputShape=[];let a=t,i=e[3]-1;this.outputShape=e;let l,u=`float(${o}) + float(${n}) * sum`;s===.5?l=`inversesqrt(${u})`:s===1?l=`1.0/(${u})`:l=`exp(log(${u}) * float(-${s}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${a}; j <= ${a}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${l};
setOutput(val);
}
`}};var Tv=class{constructor(e,t,o,n,s){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,i=e[3]-1;this.outputShape=e;let l,u=`float(${o}) + float(${n}) * sum`;s===.5?l=`inversesqrt(${u})`:s===1?l=`1.0/(${u})`:l=`exp(log(${u}) * float(-${s}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${a};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${a}; j <= ${a}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${l};
setOutput(result);
}
`}};var wY=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{depthRadius:s,bias:a,alpha:i,beta:l}=o,u=W().getBool("WEBGL_PACK_NORMALIZATION")?new Tv(n.shape,s,a,i,l):new Sv(n.shape,s,a,i,l);return t.runWebGLProgram(u,[n],n.dtype)},aR={kernelName:Xa,backendName:"webgl",kernelFunc:wY};var Av=class{constructor(e,t,o,n,s){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=o,this.alpha=n,this.beta=s,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${n}) * norm + float(${o});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${n})
* float(${s})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${s});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}};var _Y=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n,y:s,dy:a}=e,{depthRadius:i,bias:l,alpha:u,beta:c}=o,p=new Av(n.shape,i,l,u,c);return t.runWebGLProgram(p,[n,s,a],n.dtype)},lR={kernelName:Tc,backendName:"webgl",kernelFunc:_Y};function uR(r,e,t,o){let n=y.sizeFromShape(e),a=y.sizeFromShape(r.shape)/n,i=pe({inputs:{x:r},attrs:{shape:[a,n]},backend:o}),l=To(i,r.dtype,"max",o),u=pe({inputs:{x:l},attrs:{shape:t},backend:o});return o.disposeIntermediateTensorInfo(i),o.disposeIntermediateTensorInfo(l),u}function Ev(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reductionIndices:s,keepDims:a}=o,i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=l,c=N.getAxesPermutation(u,i),p=c!=null,m=t.shouldExecuteOnCPU([n]),f=n;if(p){if(m){let w=t.texData.get(f.dataId).values,_=new Array(i);for(let T=0;T<_.length;T++)_[T]=n.shape[c[T]];let k=Su(w,n.shape,n.dtype,c,_);f=t.makeTensorInfo(_,n.dtype);let D=t.texData.get(f.dataId);D.values=k}else f=xl(n,c,t);u=N.getInnerMostAxes(u.length,i)}N.assertAxesAreInnerMostDims("max",u,i);let[d,h]=N.computeOutAndReduceShapes(f.shape,u),g=d;a&&(g=N.expandShapeToKeepDim(d,l));let x;if(m){let w=t.texData.get(f.dataId).values,_=P2(w,y.sizeFromShape(h),g,n.dtype);x=t.makeTensorInfo(g,n.dtype);let k=t.texData.get(x.dataId);k.values=_}else x=uR(f,h,g,t);return p&&t.disposeIntermediateTensorInfo(f),x}var cR={kernelName:Bn,backendName:"webgl",kernelFunc:Ev};var kY=rx+`
return max(a, b);
`,vY=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+hl+`
return result;
`,CY=nt({opSnippet:kY,packedOpSnippet:vY,cpuKernelImpl:M2}),pR={kernelName:Vn,backendName:"webgl",kernelFunc:CY};function IY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;_s(n,"maxPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=o,u=1;y.assert(N.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=N.computePool2DInfo(n.shape,s,a,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return Wt({inputs:{x:n},backend:t});let p=new ii(c,"max",!1);return t.runWebGLProgram(p,[n],n.dtype)}var mR={kernelName:Gn,backendName:"webgl",kernelFunc:IY};function NY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dataFormat:l,dimRoundingMode:u}=o,c=[1,1,1],p=N.computePool3DInfo(n.shape,s,a,c,i,u,l),m=new Au(p,"max",!1);return t.runWebGLProgram(m,[n],n.dtype)}var fR={kernelName:Ya,backendName:"webgl",kernelFunc:NY};var Dv=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,o=e.strideWidth,n=e.dilationHeight,s=e.effectiveFilterHeight,a=e.effectiveFilterWidth,i=s-1-e.padInfo.top,l=a-1-e.padInfo.left,u=s*a-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${s};
wR += ${n}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${u} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${a} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},$v=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,o=e.strideHeight,n=e.strideWidth,s=e.dilationDepth,a=e.dilationHeight,i=e.dilationWidth,l=e.effectiveFilterDepth,u=e.effectiveFilterHeight,c=e.effectiveFilterWidth,p=l-1-e.padInfo.front,m=u-1-e.padInfo.top,f=c-1-e.padInfo.left,d=l*u*c-1;this.userCode=`
const ivec3 pads = ivec3(${p}, ${m}, ${f});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${l};
wD += ${s}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${u};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${o}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${d} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${u} * ${c} +
wR * ${c} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function SY(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=o,p=[1,1,1],m=N.computePool3DInfo(a.shape,i,l,p,u,c),f=new Au(m,"max",!0),d=t.runWebGLProgram(f,[a],a.dtype),h=new $v(m),g=t.runWebGLProgram(h,[n,d],a.dtype);return t.disposeIntermediateTensorInfo(d),g}var dR={kernelName:Ec,backendName:"webgl",kernelFunc:SY};function TY(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s,output:a}=e,i=s;_s([s,a],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=o,m=N.computePool2DInfo(i.shape,l,u,1,c,p),f=!0,d=new ii(m,"max",f),h=t.runWebGLProgram(d,[i],i.dtype),g=new Dv(m),x=t.runWebGLProgram(g,[n,h],i.dtype);return t.disposeIntermediateTensorInfo(h),x}var hR={kernelName:Ac,backendName:"webgl",kernelFunc:TY};function gR(r,e,t,o){let n=new ii(t,"max",!1),s=o.runWebGLProgram(n,[r],"float32");n=new ii(t,"max",!0,!0,e);let a=o.runWebGLProgram(n,[r],"float32");return[s,a]}var xR={kernelName:Dc,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:o}=r,{filterSize:n,strides:s,pad:a,includeBatchInIndex:i}=e,l=t;y.assert(o.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.shape.length}.`);let u=[1,1];y.assert(N.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let c=N.computePool2DInfo(o.shape,n,s,u,a),[p,m]=gR(o,i,c,l);return[p,m]}};function yR(r,e,t,o){let n=y.sizeFromShape(e),a=y.sizeFromShape(r.shape)/n,i=pe({inputs:{x:r},attrs:{shape:[a,n]},backend:o}),l=To(i,"float32","mean",o),u=pe({inputs:{x:l},attrs:{shape:t},backend:o});return o.disposeIntermediateTensorInfo(i),o.disposeIntermediateTensorInfo(l),u}var bR={kernelName:Wn,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:o}=r,{keepDims:n,axis:s}=e,a=t,i=o.shape.length,l=y.parseAxisParam(s,o.shape),u=l,c=N.getAxesPermutation(u,i),p=c!=null,m=a.shouldExecuteOnCPU([o]),f=[],d=o;if(p){if(m){let _=a.texData.get(d.dataId).values,k=new Array(i);for(let R=0;R<k.length;R++)k[R]=o.shape[c[R]];let D=Su(_,o.shape,o.dtype,c,k);d=a.makeTensorInfo(k,o.dtype);let T=a.texData.get(d.dataId);T.values=D}else d=xl(o,c,a);f.push(d),u=N.getInnerMostAxes(u.length,i)}N.assertAxesAreInnerMostDims("sum",u,i);let[h,g]=N.computeOutAndReduceShapes(d.shape,u),x=h;n&&(x=N.expandShapeToKeepDim(h,l));let b=yR(d,g,x,a);for(let w of f)a.disposeIntermediateTensorInfo(w);return b}};function AY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=l,c=N.getAxesPermutation(u,i),p=n;c!=null&&(p=Mt({inputs:{x:n},backend:t,attrs:{perm:c}}),u=N.getInnerMostAxes(u.length,n.shape.length)),N.assertAxesAreInnerMostDims("min",u,i);let[m,f]=N.computeOutAndReduceShapes(p.shape,u),d=y.sizeFromShape(f),h=pe({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=To(h,h.dtype,"min",t),x;if(a){let b=N.expandShapeToKeepDim(m,l);x=pe({inputs:{x:g},backend:t,attrs:{shape:b}})}else x=pe({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),x}var wR={kernelName:jn,backendName:"webgl",kernelFunc:AY};var EY=rx+`
return min(a, b);
`,DY=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+hl+`
return result;
`,$Y=nt({opSnippet:EY,packedOpSnippet:DY,cpuKernelImpl:L2}),_R={kernelName:Un,backendName:"webgl",kernelFunc:$Y};var Rv=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=t.map((c,p)=>c[0]+e[p]+c[1]);let n=e.length,s=Le(n),a=t.map(c=>c[0]).join(","),i=t.map((c,p)=>c[0]+e[p]).join(","),l=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n),u=o==="reflect"?0:1;if(n===1){this.userCode=`
int start = ${a};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${u};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${u};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${s} start = ${s}(${a});
${s} end = ${s}(${i});
void main() {
${s} outC = getOutputCoords();
for (int i = 0; i < ${n}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${u};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${u};
}
}
${s} coords = outC - start;
setOutput(getX(${l}));
}
`}};var Fv=class{constructor(e,t,o){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((d,h)=>d[0]+e[h]+d[1]);let n=e.length,s=Le(n),a=t.map(d=>d[0]).join(","),i=t.map((d,h)=>d[0]+e[h]).join(","),l=Gt("rc",n),u=Gt("source",n),c=`${l[n-1]} < ${this.outputShape[n-1]}`,p=n===1?"source":`vec2(${u.slice(-2).join()})`,m=o==="reflect"?0:1,f="";if(n===1){let d=`
${s} source = rc;
if (source < start) {
source = start * 2 - source - ${m};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${m};
}
source -= start;
`;f=`
${s} rc = outputLoc;
${d}
result[0] = getChannel(getX(${u.join()}), ${p});
${l[n-1]} += 1;
if(${c}) {
${d}
result[1] = getChannel(getX(${u.join()}), ${p});
}
`}else{let d=`
${s} source = rc;
${s} lt = ${s}(lessThan(source, start));
${s} gte = ${s}(greaterThanEqual(source, end));
${s} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${m}) +
gte * ((end - 1) * 2 - source + ${m});
source -= start;
`;f=`
${s} rc = outputLoc;
${d}
result[0] = getChannel(getX(${u.join()}), ${p});
${l[n-1]} += 1;
if(${c}) {
${d}
result[1] = getChannel(getX(${u.join()}), ${p});
}
rc = outputLoc;
${l[n-2]} += 1;
if(${l[n-2]} < ${this.outputShape[n-2]}) {
${d}
result[2] = getChannel(getX(${u.join()}), ${p});
${l[n-1]} += 1;
if(${c}) {
${d}
result[3] = getChannel(getX(${u.join()}), ${p});
}
}
`}this.userCode=`
const ${s} start = ${s}(${a});
const ${s} end = ${s}(${i});
void main() {
${s} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${f}
setOutput(result);
}
`}};var RY=({inputs:r,backend:e,attrs:t})=>{let{x:o}=r,{paddings:n,mode:s}=t,a=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Fv(o.shape,n,s):new Rv(o.shape,n,s);return e.runWebGLProgram(a,[o],o.dtype)},kR={kernelName:Za,backendName:"webgl",kernelFunc:RY};var FY=`if (b == 0.0) return NAN;
return mod(a, b);`,OY=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+hl+`
return result;
`,PY=nt({opSnippet:FY,packedOpSnippet:OY}),vR={kernelName:Gi,backendName:"webgl",kernelFunc:PY};var Ov=class{constructor(e,t,o){this.variableNames=["probs"],this.outputShape=[e,o],this.userCode=`
uniform float seed;
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}getCustomSetupFunc(e){return(t,o)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(o,"seed")),t.gl.uniform1f(this.seedLoc,e)}}};var MY=`
if (a == b) {
return 1.0;
};
return a / b;`,LY=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,Pv=nt({opSnippet:MY,packedOpSnippet:LY,checkOutOfBounds:!0}),CR={kernelName:$n,backendName:"webgl",kernelFunc:Pv};var IR="return a - b;",Mv=nt({opSnippet:IR,packedOpSnippet:IR,supportsComplex:!0,cpuKernelImpl:H2}),NR={kernelName:us,backendName:"webgl",kernelFunc:Mv};function Lv(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{dim:s}=o,a=y.parseAxisParam([s],n.shape),i=Ev({inputs:{x:n},backend:t,attrs:{reductionIndices:a,keepDims:!1}}),l=N.expandShapeToKeepDim(i.shape,a),u=pe({inputs:{x:i},backend:t,attrs:{shape:l}}),c=Mv({inputs:{a:n,b:u},backend:t}),p=wv({inputs:{x:c},backend:t}),m=Af({inputs:{x:p},backend:t,attrs:{axis:a,keepDims:!1}}),f=pe({inputs:{x:m},backend:t,attrs:{shape:l}}),d=Pv({inputs:{a:p,b:f},backend:t});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),d}var SR={kernelName:as,backendName:"webgl",kernelFunc:Lv};function zY(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{numSamples:s,seed:a,normalized:i}=o,l=i?n:Lv({inputs:{logits:n},backend:t,attrs:{dim:n.shape.length-1}}),u=l.shape[0],c=l.shape[1],p=new Ov(u,c,s),m=p.getCustomSetupFunc(a),f=t.runWebGLProgram(p,[l],"int32",m);return i||t.disposeIntermediateTensorInfo(l),f}var TR={kernelName:$c,backendName:"webgl",kernelFunc:zY};var AR="return -x;";function BY(r){let{inputs:e,backend:t}=r,{x:o}=e;if(t.shouldExecuteOnCPU([o])){let s=t.texData.get(o.dataId),[a,i]=B2(s.values,o.shape,o.dtype);return t.makeTensorInfo(i,o.dtype,a)}let n;return W().getBool("WEBGL_PACK_UNARY_OPERATIONS")?n=new vs(o.shape,AR):n=new mo(o.shape,AR),t.runWebGLProgram(n,[o],o.dtype)}var ER={kernelName:zs,backendName:"webgl",kernelFunc:BY};var VY=Er.nonMaxSuppressionV3Impl;function GY(r){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l}=o,u=t.readSync(n.dataId),c=t.readSync(s.dataId),{selectedIndices:p}=VY(u,c,a,i,l);return t.makeTensorInfo([p.length],"int32",new Int32Array(p))}var DR={kernelName:ji,backendName:"webgl",kernelFunc:GY};var WY=Er.nonMaxSuppressionV4Impl;function jY(r){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=o,c=t.readSync(n.dataId),p=t.readSync(s.dataId),{selectedIndices:m,validOutputs:f}=WY(c,p,a,i,l,u);return[t.makeTensorInfo([m.length],"int32",new Int32Array(m)),t.makeTensorInfo([],"int32",new Int32Array([f]))]}var $R={kernelName:Ui,backendName:"webgl",kernelFunc:jY};var UY=Er.nonMaxSuppressionV5Impl;function HY(r){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=o,c=t.readSync(n.dataId),p=t.readSync(s.dataId),m=a,f=i,d=l,h=u,{selectedIndices:g,selectedScores:x}=UY(c,p,m,f,d,h);return[t.makeTensorInfo([g.length],"int32",new Int32Array(g)),t.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var RR={kernelName:Hi,backendName:"webgl",kernelFunc:HY};var zv=class{constructor(e,t,o,n){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${n}), float(${o}),
float(index == coords.y)));
}
`}};var qY=r=>{let{inputs:e,backend:t,attrs:o}=r,{indices:n}=e,{depth:s,onValue:a,offValue:i}=o,l=y.sizeFromShape(n.shape),u=new zv(l,s,a,i),c=pe({inputs:{x:n},backend:t,attrs:{shape:[l]}}),p=t.runWebGLProgram(u,[c],n.dtype);t.disposeIntermediateTensorInfo(c);let m=[...n.shape,s],f=pe({inputs:{x:p},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(p),f},FR={kernelName:qn,backendName:"webgl",kernelFunc:qY};function Ff(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="complex64"){let n=Sa({inputs:{input:o},backend:t}),s=Ff({inputs:{x:n},backend:t}),a=Eu({inputs:{input:o},backend:t}),i=Ff({inputs:{x:a},backend:t}),l=fo({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return Rf({attrs:{shape:o.shape,dtype:o.dtype,value:o.dtype==="string"?"":0},backend:t})}var OR={kernelName:qs,backendName:"webgl",kernelFunc:Ff};function PR(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(o.dtype==="complex64"){let n=Sa({inputs:{input:o},backend:t}),s=PR({inputs:{x:n},backend:t}),a=Eu({inputs:{input:o},backend:t}),i=Ff({inputs:{x:a},backend:t}),l=fo({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return Rf({attrs:{shape:o.shape,dtype:o.dtype,value:1},backend:t})}var MR={kernelName:Bs,backendName:"webgl",kernelFunc:PR};function KY(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o;if(e.length===1)return mx({inputs:{input:e[0]},backend:t,attrs:{dim:n}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=mx({inputs:{input:c},backend:t,attrs:{dim:n}});return i.push(p),p}),u=av({inputs:l,backend:t,attrs:{axis:n}});return i.forEach(c=>t.disposeIntermediateTensorInfo(c)),u}var LR={kernelName:Vs,backendName:"webgl",kernelFunc:KY};var Bv=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let n=e.length,s=Le(n),a=t.map(u=>u[0]).join(","),i=t.map((u,c)=>u[0]+e[c]).join(","),l=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n);if(n===1){this.userCode=`
int start = ${a};
int end = ${i};
uniform float value;
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${s} start = ${s}(${a});
${s} end = ${s}(${i});
uniform float value;
void main() {
${s} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${s} coords = outC - start;
setOutput(getX(${l}));
}
}
`}getCustomSetupFunc(e){return(t,o)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(o,"value")),t.gl.uniform1f(this.valueLoc,e)}}};var Vv=class{constructor(e,t,o){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,g)=>h[0]+e[g]+h[1]);let n=e.length,s=Le(n),a=t.map(h=>h[0]).join(","),i=t.map((h,g)=>h[0]+e[g]).join(","),l=Gt("rc",n),u=Gt("source",n),c=`${l[n-1]} < ${this.outputShape[n-1]}`,p=n===1?"source":`vec2(${u.slice(-2).join()})`,m=[`${s} rc = outputLoc;`,`${l[n-1]} += 1;
if(${c}) {
`,n===1?"":`}
rc = outputLoc;
${l[n-2]} += 1;
if(${l[n-2]} < ${this.outputShape[n-2]}) {`,n===1?"":` ${l[n-1]} += 1;
if(${c}) {`],f=n===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",d="";for(let h=0,g=n===1?2:4;h<g;h++)d+=`
${m[h]}
if (${f}) {
result[${h}] = float(value);
} else {
${s} source = rc - start;
result[${h}] = getChannel(getX(${u.join()}), ${p});
}
`;d+=n===1?"} ":"}}",this.userCode=`
const ${s} start = ${s}(${a});
const ${s} end = ${s}(${i});
uniform float value;
void main() {
${s} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${d}
setOutput(result);
}
`}getCustomSetupFunc(e){return(t,o)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(o,"value")),t.gl.uniform1f(this.valueLoc,e)}}};var Gv=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{paddings:s,constantValue:a}=o,i=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Vv(n.shape,s,a):new Bv(n.shape,s,a),l=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[n],n.dtype,l)},zR={kernelName:Kn,backendName:"webgl",kernelFunc:Gv};var XY=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,YY=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+hl+`
return result;
`,ZY=nt({opSnippet:XY,packedOpSnippet:YY}),BR={kernelName:Xn,backendName:"webgl",kernelFunc:ZY};function JY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,l=[],u=y.parseAxisParam(s,n.shape),c=u,p=N.getAxesPermutation(c,i),m=n;p!=null&&(m=Mt({inputs:{x:n},backend:t,attrs:{perm:p}}),c=N.getInnerMostAxes(c.length,i),l.push(m)),N.assertAxesAreInnerMostDims("prod",c,i);let f;if(t.shouldExecuteOnCPU([m])){let d=t.texData.get(m.dataId).values,{outVals:h,outShape:g,outDtype:x}=V2(m.shape,m.dtype,d,c);f=t.makeTensorInfo(g,x,h)}else{let[d,h]=N.computeOutAndReduceShapes(m.shape,c),g=y.sizeFromShape(h),x=pe({inputs:{x:m},backend:t,attrs:{shape:[-1,g]}}),b=Vl(n.dtype),w=To(x,b,"prod",t);f=pe({inputs:{x:w},backend:t,attrs:{shape:d}}),l.push(x),l.push(w)}if(a){l.push(f);let d=N.expandShapeToKeepDim(f.shape,u);f=pe({inputs:{x:f},backend:t,attrs:{shape:d}})}return l.forEach(d=>t.disposeIntermediateTensorInfo(d)),f}var VR={kernelName:qi,backendName:"webgl",kernelFunc:JY};var Wv=r=>{let{backend:e,attrs:t}=r,{start:o,stop:n,step:s,dtype:a}=t,i=G2(o,n,s,a);return e.makeTensorInfo([i.length],a,i)},GR={kernelName:Ja,backendName:"webgl",kernelFunc:Wv};var QY="return 1.0 / x;",e7=_e({opSnippet:QY}),WR={kernelName:Ki,backendName:"webgl",kernelFunc:e7};var t7=gr+`
return (x < 0.0) ? 0.0 : x;
`,r7=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,o7=_e({opSnippet:t7,packedOpSnippet:r7}),jR={kernelName:Zn,backendName:"webgl",kernelFunc:o7};var n7=gr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,s7=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,i7=_e({opSnippet:n7,packedOpSnippet:s7}),UR={kernelName:Qn,backendName:"webgl",kernelFunc:i7};var jv=class{constructor(e,t,o,n,s){this.variableNames=["A"],this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,o,u];let c=[n&&t>1?i-1:i,n&&o>1?l-1:l],p=[n&&t>1?t-1:t,n&&o>1?o-1:o],m;s?m="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":m="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/p[0]},
${c[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${l}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${m};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}};var Uv=class{constructor(e,t,o,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,o,u];let c=[n&&t>1?i-1:i,n&&o>1?l-1:l],p=[n&&t>1?t-1:t,n&&o>1?o-1:o],m;s?m="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":m="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/p[0]},
${c[1]/p[1]},
${c[1]/p[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${l}.0,
${l}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${m};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${u-1};
bool hasNextRow = coords.z < ${o-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function a7(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o,[l,u]=i,c=W().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Uv(n.shape,l,u,s,a):new jv(n.shape,l,u,s,a);return t.runWebGLProgram(c,[n],"float32")}var HR={kernelName:Jn,backendName:"webgl",kernelFunc:a7};var Hv=class{constructor(e,t,o){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,s]=t,[,a,i]=e,l=[o&&a>1?n-1:n,o&&i>1?s-1:s],u=[o&&a>1?a-1:a,o&&i>1?i-1:i],c=l[0]/u[0],p=l[1]/u[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${p});
const float invHeightScale = float(${m});
const float invWidthScale = float(${f});
const int winHeight = int(${d});
const int winWidth = int(${h});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${n-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${s-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function l7(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o,i=new Hv(s.shape,n.shape,a);return t.runWebGLProgram(i,[s],s.dtype)}var qR={kernelName:Oc,backendName:"webgl",kernelFunc:l7};var qv=class{constructor(e,t,o,n,s){this.variableNames=["A"],this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,o,u];let c=[n&&t>1?i-1:i,n&&o>1?l-1:l],p=[n&&t>1?t-1:t,n&&o>1?o-1:o],m=n?"0.5":"0.0",f;s?f="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":f="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/p[0]},
${c[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${l}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${f};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}};function u7(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o,[l,u]=i,c=new qv(n.shape,l,u,s,a);return t.runWebGLProgram(c,[n],n.dtype)}var KR={kernelName:Qa,backendName:"webgl",kernelFunc:u7};var Kv=class{constructor(e,t,o){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,s]=t,[,a,i]=e,l=[o&&a>1?n-1:n,o&&i>1?s-1:s],u=[o&&a>1?a-1:a,o&&i>1?i-1:i],c=l[0]/u[0],p=l[1]/u[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${p});
const float invHeightScale = float(${m});
const float invWidthScale = float(${f});
const int winHeight = int(${d});
const int winWidth = int(${h});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${l[0]}) *
(float(dyR) / float(${u[0]}));
float sourceFracCol =
float(${l[1]}) *
(float(dyC) / float(${u[1]}));
int sourceNearestRow = int(min(
float(int(${n}) - 1),
${o} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${s}) - 1),
${o} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function c7(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o,i=new Kv(s.shape,n.shape,a);return t.runWebGLProgram(i,[s],s.dtype)}var XR={kernelName:Fc,backendName:"webgl",kernelFunc:c7};var Xv=class{constructor(e,t){this.variableNames=["x"];let o=e.length;if(o>4)throw new Error(`WebGL backend: Reverse of rank-${o} tensor is not yet supported`);if(this.outputShape=e,o===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let n=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,s=e.map((i,l)=>n(l)).join(","),a=Le(o);this.userCode=`
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${s}));
}
`}};var Yv=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let o=e.length;if(o>4)throw new Error(`WebGL backend: Reverse of rank-${o} tensor is not yet supported`);this.outputShape=e;let n=Gt("rc",o),s=`${n[o-1]} + 1 < ${this.outputShape[o-1]}`,a=`${n[o-2]} + 1 < ${this.outputShape[o-2]}`,i=Le(o);o===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${s}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${l(n.slice())};
if(${s}){
result.g = ${u(n.slice())};
}
if(${a}) {
result.b = ${c(n.slice())};
if(${s}) {
result.a = ${p(n.slice())};
}
}
setOutput(result);
}
`;function l(d){return m(d)}function u(d){return d[o-1]="("+d[o-1]+" + 1)",m(d)}function c(d){return d[o-2]="("+d[o-2]+" + 1)",m(d)}function p(d){return d[o-1]="("+d[o-1]+" + 1)",d[o-2]="("+d[o-2]+" + 1)",m(d)}function m(d){let h=e.map((b,w)=>f(w,d)),g=h.join(","),x=h.slice(-2).join(",");return`getChannel(getX(${g}), vec2(${x}))`}function f(d,h){return t.indexOf(d)!==-1&&e[d]!==1?`${e[d]} - ${h[d]} - 1`:`${h[d]}`}}};function p7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dims:s}=o,a=n.shape.length,i=y.parseAxisParam(s,n.shape);if(a===0)return Wt({inputs:{x:n},backend:t});let l=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Yv(n.shape,i):new Xv(n.shape,i);return t.runWebGLProgram(l,[n],n.dtype)}var YR={kernelName:es,backendName:"webgl",kernelFunc:p7};var Zv=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let o=e[1],n=e[2];this.outputShape=e;let s="";typeof t=="number"?s=`float outputValue = ${t.toFixed(2)};`:s=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
uniform vec4 params;
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${s}
if(coordX >= 0 && coordX < ${n} && coordY >= 0 && coordY < ${o}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}getCustomSetupFunc(e,t,o,n){return(s,a)=>{this.paramsLoc==null&&(this.paramsLoc=s.getUniformLocationNoThrow(a,"params")),s.gl.uniform4f(this.paramsLoc,e,t,o,n)}}};var ZR={kernelName:oa,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:o}=r,{radians:n,fillValue:s,center:a}=e,i=t,l=new Zv(o.shape,s),[u,c]=N.getImageCenter(a,o.shape[1],o.shape[2]),p=l.getCustomSetupFunc(u,c,Math.sin(n),Math.cos(n));return i.runWebGLProgram(l,[o],o.dtype,p)}};var m7=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,f7=_e({opSnippet:m7}),JR={kernelName:ts,backendName:"webgl",kernelFunc:f7};var d7="return inversesqrt(x);",h7=_e({opSnippet:d7,cpuKernelImpl:W2}),QR={kernelName:rs,backendName:"webgl",kernelFunc:h7};var Of=class{constructor(e,t,o,n,s,a,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let l=Le(s.length),u=Le(a.length),c="";o===1?c="i":o===2&&(c="i, j");let p=`getIndices(${c})`,m="";n===1?m="i":n===2&&(m="i, coords[1]");let f=`getUpdates(${m})`,d=t>1?"strides[j]":"strides";this.userCode=`
${l} strides = ${l}(${s});
void main() {
${u} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${p});
flattenedIndex += index * ${d};
}
if (flattenedIndex == coords[0]) {
sum += ${f};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function g7(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n,updates:s}=e,{shape:a}=o,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=N.calculateShapes(s,n,a),m=[p/u,u];if(p===0)return t.makeTensorInfo(a,n.dtype);let f=pe({inputs:{x:n},backend:t,attrs:{shape:[l,i]}}),d=pe({inputs:{x:s},backend:t,attrs:{shape:[l,u]}}),h=t.makeTensorInfo([],"float32",new Float32Array([0])),g=new Of(l,i,f.shape.length,d.shape.length,c,m),x=t.runWebGLProgram(g,[d,f,h],d.dtype),b=pe({inputs:{x},backend:t,attrs:{shape:a}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(h),b}var eF={kernelName:Xi,backendName:"webgl",kernelFunc:g7};var Jv=class{constructor(e,t,o){this.variableNames=["c","a","b"],this.outputShape=t;let n,s;if(o>4)throw Error(`Where for rank ${o} is not yet supported`);if(o===1)s="resRC",n="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],l=[],u=[];for(let c=0;c<t.length;c++)u.push(`${i[c]}`),c<e&&l.push(`${i[c]}`);n=l.join(),s=u.join()}let a=Le(o);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
float cVal = getC(${n});
if (cVal >= 1.0) {
setOutput(getA(${s}));
} else {
setOutput(getB(${s}));
}
}
`}};function x7(r){let{inputs:e,backend:t}=r,{condition:o,t:n,e:s}=e,a=new Jv(o.shape.length,n.shape,n.shape.length);return t.runWebGLProgram(a,[o,n,s],ir(n.dtype,s.dtype))}var tF={kernelName:Ws,backendName:"webgl",kernelFunc:x7};var y7=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${N.SELU_SCALEALPHA};
float scale = ${N.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,b7=_e({opSnippet:y7}),rF={kernelName:Yi,backendName:"webgl",kernelFunc:b7};var w7="return 1.0 / (1.0 + exp(-1.0 * x));",_7=_e({opSnippet:w7}),oF={kernelName:ns,backendName:"webgl",kernelFunc:_7};var k7=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,v7=_e({opSnippet:k7}),nF={kernelName:Ji,backendName:"webgl",kernelFunc:v7};var C7=ox+`
return sin(x);
`,I7=_e({opSnippet:C7}),sF={kernelName:os,backendName:"webgl",kernelFunc:I7};var N7=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,S7=_e({opSnippet:N7}),iF={kernelName:Zi,backendName:"webgl",kernelFunc:S7};var T7=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,A7=_e({opSnippet:T7}),aF={kernelName:Qi,backendName:"webgl",kernelFunc:A7};var E7=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,paddings:a}=o;y.assert(n.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=s.reduce((x,b)=>x*b),l=[[0,0]];l.push(...a);for(let x=1+s.length;x<n.shape.length;++x)l.push([0,0]);let u=[],c=Gv({inputs:{x:n},backend:t,attrs:{paddings:l,constantValue:0}}),p=N.getReshaped(c.shape,s,i,!1),m=N.getPermuted(p.length,s.length,!1),f=N.getReshapedPermuted(c.shape,s,i,!1),d=pe({inputs:{x:c},backend:t,attrs:{shape:p}}),h=Mt({inputs:{x:d},backend:t,attrs:{perm:m}}),g=pe({inputs:{x:h},backend:t,attrs:{shape:f}});return u.push(c),u.push(d),u.push(h),u.forEach(x=>t.disposeIntermediateTensorInfo(x)),g},lF={kernelName:el,backendName:"webgl",kernelFunc:E7};function D7(r){let{inputs:e,backend:t,attrs:o}=r,{sparseIndices:n,sparseValues:s,defaultValue:a}=e,{outputShape:i}=o,{sliceRank:l,numUpdates:u,strides:c,outputSize:p}=N.calculateShapes(s,n,i),m=!1,f=new Of(u,l,n.shape.length,s.shape.length,c,[p,1],m),d=t.runWebGLProgram(f,[s,n,a],s.dtype),h=pe({inputs:{x:d},backend:t,attrs:{shape:i}});return t.disposeIntermediateTensorInfo(d),h}var uF={kernelName:Pc,backendName:"webgl",kernelFunc:D7};function $7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{numOrSizeSplits:s,axis:a}=o,i=y.parseAxisParam(a,n.shape)[0],l=N.prepareSplitSize(n,s,i),u=n.shape.length,c=new Array(u).fill(0),p=n.shape.slice();return l.map(m=>{let f=[...p];f[i]=m;let d=Na({inputs:{x:n},backend:t,attrs:{begin:c,size:f}});return c[i]+=m,d})}var cF={kernelName:Us,backendName:"webgl",kernelFunc:$7};var R7="return sqrt(x);",F7=_e({opSnippet:R7}),pF={kernelName:ss,backendName:"webgl",kernelFunc:F7};var O7="return x * x;",P7=_e({opSnippet:O7}),mF={kernelName:tl,backendName:"webgl",kernelFunc:P7};var fF="return (a - b) * (a - b);",M7=nt({opSnippet:fF,packedOpSnippet:fF}),dF={kernelName:ls,backendName:"webgl",kernelFunc:M7};function L7({inputs:r,attrs:e,backend:t}){let{x:o}=r,n=gr+`
return x > 0.0 ? 1.0 : float(${e.alpha});
`,s=new mo(o.shape,n);return t.runWebGLProgram(s,[o],o.dtype)}var hF={kernelName:Xo,backendName:"webgl",kernelFunc:L7};var Qv=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=o;let n=o.length,s=Le(o.length),a=Le(o.length),i="";if(n===1)i="coords * strides + begin";else{let l=0;i=o.map((u,c)=>(l++,o.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${l-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
${s} begin = ${s}(${e});
${s} strides = ${s}(${t});
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function z7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,end:a,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=o,{nonStrided:f,$begin:d,$strides:h,size:g,newShape:x,outShape:b}=er.sliceInfo(n.shape,s,a,i,l,u,c,p,m),w=pe({inputs:{x:n},backend:t,attrs:{shape:x}}),_;if(f){let D=Na({inputs:{x:w},backend:t,attrs:{begin:d,size:g}});_=pe({inputs:{x:D},backend:t,attrs:{shape:b}}),t.disposeIntermediateTensorInfo(D)}else if(b.some(D=>D===0))_=t.makeTensorInfo(b,n.dtype,[]);else if(t.shouldExecuteOnCPU([w])){let R=t.texData.get(w.dataId).values,O=ve(w.shape,w.dtype,R),M=U2(b,O,h,d);_=t.makeTensorInfo(b,w.dtype,M.values)}else{let T=new Qv(d,h,b);_=t.runWebGLProgram(T,[w],w.dtype)}let k=pe({inputs:{x:_},backend:t,attrs:{shape:b}});return t.disposeIntermediateTensorInfo(w),t.disposeIntermediateTensorInfo(_),k}var gF={kernelName:ea,backendName:"webgl",kernelFunc:z7};var B7="return tan(x);",V7=_e({opSnippet:B7}),xF={kernelName:ta,backendName:"webgl",kernelFunc:V7};var G7=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,W7=_e({opSnippet:G7}),yF={kernelName:cs,backendName:"webgl",kernelFunc:W7};var eC=class{constructor(e,t){this.variableNames=["A"];let o=new Array(e.length);for(let a=0;a<o.length;a++)o[a]=e[a]*t[a];this.outputShape=o,this.rank=o.length;let n=Le(this.rank),s=j7(e);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function j7(r){let e=r.length;if(e>5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`imod(resRC, ${r[0]})`;let t=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],o=[];for(let n=0;n<r.length;n++)o.push(`imod(${t[n]}, ${r[n]})`);return o.join()}function tC(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reps:s}=o;if(n.dtype==="string"){let u=t.readSync(n.dataId).map(m=>y.decodeString(m)),c=ve(n.shape,n.dtype,u),p=q2(c,s);return t.makeTensorInfo(p.shape,p.dtype,p.values)}let a=new eC(n.shape,s);return t.runWebGLProgram(a,[n],n.dtype)}var bF={kernelName:Oo,backendName:"webgl",kernelFunc:tC};function U7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{k:s,sorted:a}=o,i=t.readSync(n.dataId),[l,u]=K2(i,n.shape,n.dtype,s,a);return[t.makeTensorInfo(l.shape,l.dtype,l.values),t.makeTensorInfo(u.shape,u.dtype,u.values)]}var wF={kernelName:ra,backendName:"webgl",kernelFunc:U7};var rC=class{constructor(e,t,o,n,s,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let i=o==="nearest"?1:2,l;switch(n){case"constant":l=1;break;case"reflect":l=2;break;case"wrap":l=3;break;case"nearest":l=4;break;default:l=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${l} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${l} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${l} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${s});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${s});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${i} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function H7(r){let{inputs:e,backend:t,attrs:o}=r,{image:n,transforms:s}=e,{interpolation:a,fillMode:i,fillValue:l,outputShape:u}=o,[c,p,m,f]=n.shape,[d,h]=u!=null?u:[p,m],g=[c,d,h,f],x=new rC(p,m,a,i,l,g);return t.runWebGLProgram(x,[n,s],"float32")}var _F={kernelName:Mc,backendName:"webgl",kernelFunc:H7};function q7(r){let{inputs:e,attrs:t,backend:o}=r,{axis:n}=t,{x:s}=e;_s(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let a=o.readSync(s.dataId),{outputValues:i,outputShape:l,indices:u}=X2(a,n,s.shape,s.dtype);return[o.makeTensorInfo(l,s.dtype,i),o.makeTensorInfo([u.length],"int32",u)]}var kF={kernelName:Lc,backendName:"webgl",kernelFunc:q7};function K7(r){let{inputs:e,backend:t,attrs:o}=r,{value:n}=e,{axis:s}=o;s<0&&(s+=n.shape.length);let a=n,i=a.shape.length,l=n.shape[s],u=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==s&&(u[c++]=a.shape[h]);let p=[],m=new Array(i).fill(0),f=a.shape.slice();f[s]=1;let d=new Array(l);for(let h=0;h<d.length;h++){m[s]=h;let g=Na({inputs:{x:a},backend:t,attrs:{begin:m,size:f}}),x=pe({inputs:{x:g},backend:t,attrs:{shape:u}});d[h]=x,p.push(g)}return p.forEach(h=>t.disposeIntermediateTensorInfo(h)),d}var vF={kernelName:Hs,backendName:"webgl",kernelFunc:K7};var oC=class{constructor(e,t){this.variableNames=["x","segmentIds"];let o=e.windowSize,n=e.batchSize,s=e.inSize,a=e.numSegments,i=a*Math.ceil(s/o);this.outputShape=[n,i];let l="0.0",u="sumValue",c=Math.floor(o/4)*4,p=o%4,m=`
sumValue += dot(values, segFilter);
`,f="";s%o>0&&(f=`
if (inIdx < 0 || inIdx >= ${s}) {
return initializationValue;
}
`);let d="";s%o>0&&(d=`
if (inIdx < 0 || inIdx >= ${s}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${l};
float getValue(int batch, int inIdx) {
${f}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${d}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${a})) * float(${o}));
int currentSeg = int(mod(float(outIdx), float(${a})));
float sumValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${m}
}
int inIdx = inOffset + ${c};
if (${p===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${m}
} else if (${p===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${m}
} else if (${p===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${m}
}
setOutput(${u});
}
`}};function X7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,segmentIds:s}=e,{numSegments:a}=o,i=n.shape.length,l=[],u=0,c=N.getAxesPermutation([u],i),p=n;c!=null&&(p=Mt({inputs:{x:n},backend:t,attrs:{perm:c}}),l.push(p),u=N.getInnerMostAxes(1,i)[0]);let m=N.segment_util.computeOutShape(p.shape,u,a),f=y.sizeFromShape([p.shape[u]]),d=pe({inputs:{x:p},backend:t,attrs:{shape:[-1,f]}});l.push(d);let h=Vl(n.dtype),g=(_,k,D,T,R)=>{let O=_.shape[0],M=_.shape[1],G=N.segment_util.segOpComputeOptimalWindowSize(M,R),j={windowSize:G,inSize:M,batchSize:O,numSegments:R},U=new oC(j,k),H=t.compileAndRun(U,[_,D],T);if(l.push(H),H.shape[1]===R)return H;let q=Wv({backend:t,attrs:{start:0,stop:R,step:1,dtype:"float32"}}),X=tC({inputs:{x:q},backend:t,attrs:{reps:[M/G]}});return l.push(q),l.push(X),g(H,k,X,T,R)},x=g(d,"unsortedSegmentSum",s,h,a),b=pe({inputs:{x},backend:t,attrs:{shape:m}}),w=b;if(c!=null){l.push(b);let _=N.getUndoAxesPermutation(c);w=Mt({inputs:{x:w},backend:t,attrs:{perm:_}})}return l.forEach(_=>t.disposeIntermediateTensorInfo(_)),w}var CF={kernelName:rl,backendName:"webgl",kernelFunc:X7};var Y7=[aR,lR,kD,CD,ID,ND,TD,AD,ED,DD,FD,OD,PD,MD,zD,LD,BD,GD,VD,WD,jD,UD,HD,KD,XD,QD,t$,r$,n$,cD,a$,u$,c$,l$,m$,f$,p$,d$,h$,g$,b$,w$,_$,v$,C$,k$,I$,N$,S$,T$,A$,E$,$$,R$,O$,P$,M$,L$,B$,V$,G$,W$,j$,U$,H$,q$,K$,uD,X$,s$,Y$,Z$,J$,pD,Q$,eR,tR,oR,rR,nR,sR,iR,cR,fR,mR,dR,hR,xR,pR,bR,wR,_R,kR,vR,TR,gD,ER,DR,$R,RR,YD,FR,MR,LR,zR,BR,mD,VR,GR,ZD,CR,WR,UR,jR,yD,HR,qR,KR,XR,YR,ZR,JR,QR,eF,tF,rF,oF,nF,sF,iF,qD,SR,aF,lF,uF,cF,pF,mF,dF,hF,gF,NR,wD,xF,yF,bF,wF,_F,_D,kF,vF,CF,OR];for(let r of Y7)zl(r);var Lt;(function(r){r[r.float32=0]="float32",r[r.int32=1]="int32",r[r.bool=2]="bool",r[r.string=3]="string",r[r.complex64=4]="complex64"})(Lt||(Lt={}));var yl;(function(r){r[r.linear=0]="linear",r[r.relu=1]="relu",r[r.relu6=2]="relu6",r[r.prelu=3]="prelu",r[r.leakyrelu=4]="leakyrelu"})(yl||(yl={}));var IF;function Z7(r){IF=r.wasm.cwrap(Ks,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function J7(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s,bias:a,preluActivationWeights:i}=e;if(n.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=o,m=t.dataIdMap.get(n.dataId).id,f=t.dataIdMap.get(s.dataId).id,d=0;if(a!=null){let R=t.dataIdMap.get(a.dataId);if(R.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${R.shape.length}.`);d=R.id}let h=i==null?0:t.dataIdMap.get(i.dataId).id,g=yl[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let x=l?n.shape[2]:n.shape[1],b=u?s.shape[1]:s.shape[2],w=n.shape[0],_=t.makeOutput([w,x,b],n.dtype),k=t.dataIdMap.get(_.dataId).id,D=new Uint8Array(new Int32Array(n.shape).buffer),T=new Uint8Array(new Int32Array(s.shape).buffer);return IF(m,D,n.shape.length,f,T,s.shape.length,l,u,g,d,h,p||0,k),_}var NF={kernelName:Ks,backendName:"wasm",setupFunc:Z7,kernelFunc:J7};function Nt(r){let e;function t(n){e=n.wasm.cwrap(r,null,["number","number"])}function o(n){let{backend:s,inputs:{x:a}}=n,i=s.dataIdMap.get(a.dataId).id,l=s.makeOutput(a.shape,a.dtype),u=s.dataIdMap.get(l.dataId).id;return y.sizeFromShape(l.shape)===0||e(i,u),l}return{kernelName:r,backendName:"wasm",setupFunc:t,kernelFunc:o}}var SF=Nt(Os);function xt(r,e,t){let o;function n(a){o=a.wasm.cwrap(r,null,["number","array","number","number","array","number","number","number"])}function s(a){let{backend:i,inputs:l}=a,{a:u,b:c}=l,p=i.dataIdMap.get(u.dataId).id,m=i.dataIdMap.get(c.dataId).id,f=t!=null?t:u.dtype,d=N.assertAndGetBroadcastShape(u.shape,c.shape),h=i.makeOutput(d,f);if(y.sizeFromShape(d)===0)return h;let g=new Uint8Array(new Int32Array(u.shape).buffer),x=new Uint8Array(new Int32Array(c.shape).buffer),b=i.dataIdMap.get(h.dataId).id,w=()=>o(p,g,u.shape.length,m,x,c.shape.length,Lt[u.dtype],b);if(e&&u.dtype==="float32")return w(),h;let _=N.getBroadcastDims(u.shape,d),k=N.getBroadcastDims(c.shape,d),D=_.every((R,O)=>R===O),T=k.every((R,O)=>R===O);if(D&&T)return w(),h;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${r}.`)}return{kernelName:r,backendName:"wasm",setupFunc:n,kernelFunc:s}}var Q7=!0,TF=xt(Fo,Q7);var AF;function eZ(r){AF=r.wasm.cwrap(kn,null,["array","number","number","number"])}function tZ(r){let{inputs:e,backend:t}=r,o=t.makeOutput(e[0].shape,e[0].dtype);if(y.sizeFromShape(o.shape)===0)return o;let n=e.map(i=>t.dataIdMap.get(i.dataId).id),s=new Uint8Array(new Int32Array(n).buffer),a=t.dataIdMap.get(o.dataId).id;return AF(s,n.length,Lt[o.dtype],a),o}var EF={kernelName:kn,backendName:"wasm",setupFunc:eZ,kernelFunc:tZ};function $u(r){let{inputs:{x:e},backend:t}=r,o=t.makeOutput(e.shape,e.dtype),n=t.typedArrayFromHeap(e);return t.typedArrayFromHeap(o).set(n),o}var DF={kernelName:Ko,backendName:"wasm",kernelFunc:$u};var $F;function rZ(r){$F=r.wasm.cwrap(ps,null,["number","array","number","number","number","array","number"])}function _p(r){let{inputs:e,backend:t,attrs:o}=r,[n,s]=nZ(e.x.shape,o.perm),a=!0;for(let d=0;d<s.length;d++)s[d]!==d&&(a=!1);let i=oZ(e.x.shape,o.perm),l={dataId:e.x.dataId,shape:n,dtype:e.x.dtype};if(a){let d=$u({inputs:e,backend:t});return d.shape=i,d}let u=t.makeOutput(i,l.dtype),c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,m=new Uint8Array(new Int32Array(s).buffer),f=new Uint8Array(new Int32Array(l.shape).buffer);return $F(c,f,l.shape.length,Lt[l.dtype],p,m,s.length),u}function oZ(r,e){let t=new Array(r.length);for(let o=0;o<t.length;o++)t[o]=r[e[o]];return t}function nZ(r,e){let t=[],o=[];for(let n=0;n<r.length;++n)r[n]!==1&&t.push(r[n]),r[e[n]]!==1&&o.push(e[n]);for(let n=0;n<o.length;++n){let s=-1;for(let a=0;a<o.length;++a)o[a]>=n&&(s===-1||o[s]>o[a])&&(s=a);o[s]=n}return[t,o]}var RF={kernelName:ps,backendName:"wasm",kernelFunc:_p,setupFunc:rZ};function pn(r,e,t){let o=r.shape,n=r.shape.length,s=y.parseAxisParam(e,o),a=s,i=N.getAxesPermutation(a,n),l=null,u=!1;if(i!=null){let c=new Array(n);for(let f=0;f<c.length;f++)c[f]=o[i[f]];a=N.getInnerMostAxes(a.length,n),l=_p({inputs:{x:r},attrs:{perm:i},backend:t});let p=t.dataIdMap.get(r.dataId).id;t.dataIdMap.get(l.dataId).id!==p&&(u=!0)}return{transposed:l,originalAxes:s,axes:a,inputWasTransposed:u}}var FF;function sZ(r){FF=r.wasm.cwrap(vn,null,["number","number","number","number","number"])}function iZ(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n}=o,{x:s}=t,a=e.dataIdMap.get(s.dataId).id,i=a,l=s,{transposed:u,axes:c,inputWasTransposed:p}=pn(s,n,e);if(p){let x=e.dataIdMap.get(u.dataId).id;x!==a&&(l=u,i=x)}let m=l.shape.slice(0,-1),f=e.makeOutput(m,"int32"),d=e.dataIdMap.get(f.dataId).id,h=y.sizeFromShape(f.shape),g=l.shape[c[0]];return FF(i,Lt[l.dtype],h,g,d),p&&e.disposeData(u.dataId),f}var OF={kernelName:vn,backendName:"wasm",kernelFunc:iZ,setupFunc:sZ};var PF;function aZ(r){PF=r.wasm.cwrap(Cn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function lZ(r){let{inputs:e,attrs:t,backend:o}=r,n=e.x,s=o.dataIdMap.get(n.dataId).id,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=t,c=N.computePool2DInfo(n.shape,a,i,1,l,u),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,x=c.strideHeight,b=c.strideWidth,w=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let _=o.makeOutput(c.outShape,"float32"),k=o.dataIdMap.get(_.dataId).id;return PF(s,n.shape[0],n.shape[1],n.shape[2],p,m,f,d,h,g,x,b,w,k),_}var MF={kernelName:Cn,backendName:"wasm",setupFunc:aZ,kernelFunc:lZ};function Br(r){let{inputs:e,attrs:t}=r,{x:o}=e,{shape:n}=t,s=y.sizeFromShape(o.shape),a=y.inferFromImplicitShape(n,s);return y.assert(s===y.sizeFromShape(a),()=>`new shape: ${a}, old shape: ${o.shape}. New shape and old shape must have the same number of elements.`),r.backend.incRef(o.dataId),{dataId:o.dataId,shape:a,dtype:o.dtype}}var LF={kernelName:Gs,backendName:"wasm",kernelFunc:Br};var zF;function uZ(r){zF=r.wasm.cwrap(In,null,["number","array","number","number","array","number","number","number","number"])}function cZ(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s}=e,{transposeA:a,transposeB:i}=o;if(n.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=n.shape.length,u=s.shape.length,c=a?n.shape[l-2]:n.shape[l-1],p=i?s.shape[u-1]:s.shape[u-2],m=a?n.shape[l-1]:n.shape[l-2],f=i?s.shape[u-2]:s.shape[u-1],d=n.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),b=g===x||g===1||x===1;y.assert(l>=2&&u>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${d}) and (${h}).`);let _=(g>x?n.shape.slice(0,-2):s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${n.shape} and ${s.shape} and transposeA=${a} and transposeB=${i} must match.`);let k=a?[g,c,m]:[g,m,c],D=i?[x,f,p]:[x,p,f],T=Br({inputs:{x:n},backend:t,attrs:{shape:k}}),R=Br({inputs:{x:s},backend:t,attrs:{shape:D}}),O=t.dataIdMap.get(T.dataId).id,M=t.dataIdMap.get(R.dataId).id,G=a?T.shape[2]:T.shape[1],j=i?R.shape[1]:R.shape[2],U=Math.max(g,x),H=t.makeOutput([U,G,j],T.dtype),q=t.dataIdMap.get(H.dataId).id,X=new Uint8Array(new Int32Array(T.shape).buffer),oe=new Uint8Array(new Int32Array(R.shape).buffer);return zF(O,X,T.shape.length,M,oe,R.shape.length,a,i,q),t.disposeData(T.dataId),t.disposeData(R.dataId),H.shape=_,H}var BF={kernelName:In,backendName:"wasm",setupFunc:uZ,kernelFunc:cZ};function Ru(r){let{inputs:{x:e},attrs:{dtype:t},backend:o}=r,n=o.makeOutput(e.shape,t),s=o.typedArrayFromHeap(e);return o.typedArrayFromHeap(n).set(s),n}var VF={kernelName:Ho,backendName:"wasm",kernelFunc:Ru};var GF=Nt(Nn);var WF;function pZ(r){WF=r.wasm.cwrap(qo,null,["number","number","number","number"])}function mZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{clipValueMin:s,clipValueMax:a}=o,i=t.dataIdMap.get(n.dataId).id,l=t.makeOutput(n.shape,n.dtype),u=t.dataIdMap.get(l.dataId).id;return WF(i,s,a,u),l}var jF={kernelName:qo,backendName:"wasm",setupFunc:pZ,kernelFunc:mZ};function nC(r){let{inputs:e,backend:t}=r,o=y.parseAxisParam(r.attrs.axis,e[0].shape)[0],n=N.computeOutShape(e.map(f=>f.shape),o),s=e.filter(f=>y.sizeFromShape(f.shape)>0);if(s.length===1)return $u({inputs:{x:s[0]},backend:t});let a=t.makeOutput(n,e[0].dtype);if(y.sizeFromShape(n)===0)return a;let i=s.map(f=>f.shape);if(N.assertParamsConsistent(i,o),s[0].dtype==="string"){let f=s.map(w=>{let _=y.sizeFromShape(w.shape.slice(o));return Br({inputs:{x:w},backend:t,attrs:{shape:[-1,_]}})}),d=f.map(w=>({vals:t.readSync(w.dataId),shape:w.shape}));n=N.computeOutShape(f.map(w=>w.shape),1);let h=f[0].shape[0]===1,g=wu(d,n,e[0].dtype,h),x=N.computeOutShape(s.map(w=>w.shape),o);a.shape=x;let b=t.dataIdMap.get(a.dataId);return b.stringBytes=N.fromStringArrayToUint8(g),f.forEach(w=>t.disposeData(w.dataId)),a}let l=y.sizeFromShape(s[0].shape.slice(0,o)),u=0,c=s.map(f=>{let d=y.sizeFromShape(f.shape.slice(o));return u+=d,d}),p=s.map(f=>t.typedArrayFromHeap(f)),m=t.typedArrayFromHeap(a);for(let f=0;f<l;f++){let d=f*u;for(let h=0;h<p.length;h++){let g=c[h],x=f*g,b=p[h].subarray(x,x+g);m.set(b,d),d+=g}}return a}var UF={kernelName:Ps,backendName:"wasm",kernelFunc:nC};var HF;function fZ(r){HF=r.wasm.cwrap(Sn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function dZ(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s}=e,a=o.dataIdMap.get(n.dataId).id,i=o.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p,dataFormat:m}=t,f=N.convertConv2DDataFormat(m),d=N.computeConv2DInfo(n.shape,s.shape,l,u,c,p,!1,f),h=d.filterHeight,g=d.filterWidth,x=d.padInfo.top,b=d.padInfo.right,w=d.padInfo.bottom,_=d.padInfo.left,k=d.dilationHeight,D=d.dilationWidth,T=d.strideHeight,R=d.strideWidth,O=d.inChannels,M=d.outChannels,G=d.padInfo.type==="SAME"?1:0;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let j=o.makeOutput(d.outShape,"float32"),U=o.dataIdMap.get(j.dataId).id;return HF(a,n.shape[0],n.shape[1],n.shape[2],i,h,g,x,b,w,_,G,k,D,T,R,O,M,U),j}var qF={kernelName:Sn,backendName:"wasm",setupFunc:fZ,kernelFunc:dZ};var KF;function hZ(r){KF=r.wasm.cwrap(Tn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function gZ(r){let{backend:e,inputs:t,attrs:o}=r,{dy:n,filter:s}=t,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,inputShape:c}=o,p=1,m=N.convertConv2DDataFormat(l),f=N.computeConv2DInfo(c,s.shape,a,p,i,u,!1,m),{batchSize:d,filterHeight:h,filterWidth:g,inChannels:x,inHeight:b,inWidth:w,outChannels:_,outHeight:k,outWidth:D,strideHeight:T,strideWidth:R}=f,O=h-1-f.padInfo.top,M=g-1-f.padInfo.left,G=f.dataFormat==="channelsLast",j=y.computeStrides(f.inShape),U=y.computeStrides(n.shape),[H,q,X]=y.computeStrides(s.shape),oe=j[0],Y=G?j[1]:j[2],re=G?j[2]:1,J=G?1:j[1],ie=U[0],ue=G?U[1]:U[2],ae=G?U[2]:1,fe=G?1:U[1],de=e.makeOutput(f.inShape,"float32"),xe=e.dataIdMap.get(de.dataId).id,we=e.dataIdMap.get(n.dataId).id,De=e.dataIdMap.get(s.dataId).id;return KF(we,De,d,h,g,b,w,x,k,D,_,T,R,O,M,H,q,X,oe,Y,re,J,ie,ue,ae,fe,xe),de}var XF={kernelName:Tn,backendName:"wasm",setupFunc:hZ,kernelFunc:gZ};var YF=Nt(An);var sC;(function(r){r[r.bilinear=0]="bilinear",r[r.nearest=1]="nearest"})(sC||(sC={}));var ZF;function xZ(r){ZF=r.wasm.cwrap(Ni,null,["number","number","number","number","array","number","number","number","number","number"])}function yZ(r){let{backend:e,inputs:t,attrs:o}=r,{method:n,extrapolationValue:s,cropSize:a}=o,{image:i,boxes:l,boxInd:u}=t,c=l.shape[0],[p,m]=a,f=[c,p,m,i.shape[3]],d=e.dataIdMap.get(i.dataId),h;i.dtype!=="float32"&&(h=Ru({backend:e,inputs:{x:i},attrs:{dtype:"float32"}}),d=e.dataIdMap.get(h.dataId));let g=d.id,x=e.dataIdMap.get(l.dataId).id,b=e.dataIdMap.get(u.dataId).id,w=e.makeOutput(f,"float32"),_=e.dataIdMap.get(w.dataId).id,k=new Uint8Array(new Int32Array(i.shape).buffer);return ZF(g,x,b,c,k,p,m,sC[n],s,_),h!=null&&e.disposeData(h.dataId),w}var JF={kernelName:Ni,backendName:"wasm",setupFunc:xZ,kernelFunc:yZ};var QF;function bZ(r){QF=r.wasm.cwrap(En,null,["number","number","number","number","number","number"])}function wZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,exclusive:a,reverse:i}=o,l=n.shape.length;y.assert(n.dtype==="float32"||n.dtype==="int32",()=>`cumsum does not support ${n.dtype} tensors in the WASM backend`);let u=N.getAxesPermutation([s],l),c=n;u!==null&&(c=_p({inputs:{x:n},attrs:{perm:u},backend:t}));let p=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumsum",[p],l);let m=t.makeOutput(c.shape,c.dtype),f=c.shape[p],d=t.dataIdMap.get(c.dataId).id,h=t.dataIdMap.get(m.dataId).id;QF(d,a?1:0,i?1:0,f,h,Lt[n.dtype]);let g=m;if(u!==null){let x=N.getUndoAxesPermutation(u);g=_p({inputs:{x:m},attrs:{perm:x},backend:t}),t.disposeData(c.dataId),t.disposeData(m.dataId)}return g}var eO={kernelName:En,backendName:"wasm",setupFunc:bZ,kernelFunc:wZ};var tO;function _Z(r){tO=r.wasm.cwrap(Si,null,["number","number","number","array","number","array","array","number","number"])}function kZ(r){let{backend:e,inputs:t,attrs:o}=r,{x:n}=t,{blockSize:s,dataFormat:a}=o;y.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=n.shape[0],l=a==="NHWC"?n.shape[1]:n.shape[2],u=a==="NHWC"?n.shape[2]:n.shape[3],c=a==="NHWC"?n.shape[3]:n.shape[1],p=l*s,m=u*s,f=c/(s*s),d=a==="NHWC"?[i,p,m,f]:[i,f,p,m],h=e.makeOutput(d,"float32"),x=e.dataIdMap.get(n.dataId).id,b=new Uint8Array(new Int32Array(y.computeStrides(n.shape)).buffer),w=new Uint8Array(new Int32Array(d).buffer),_=new Uint8Array(new Int32Array(y.computeStrides(d)).buffer),k=e.dataIdMap.get(h.dataId).id;return tO(x,s,a==="NHWC"?1:0,b,n.shape.length-1,w,_,d.length,k),h}var rO={kernelName:Si,backendName:"wasm",setupFunc:_Z,kernelFunc:kZ};var oO;function vZ(r){oO=r.wasm.cwrap(Dn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function CZ(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s}=e,a=o.dataIdMap.get(n.dataId).id,i=o.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p}=t,m=u==null?[1,1]:u,f=N.computeConv2DInfo(n.shape,s.shape,l,m,c,p,!0),d=f.filterHeight,h=f.filterWidth,g=f.padInfo.top,x=f.padInfo.right,b=f.padInfo.bottom,w=f.padInfo.left,_=f.dilationHeight,k=f.dilationWidth,D=f.strideHeight,T=f.strideWidth,R=f.inChannels,O=f.outChannels,M=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let G=o.makeOutput(f.outShape,"float32"),j=o.dataIdMap.get(G.dataId).id;return oO(a,n.shape[0],n.shape[1],n.shape[2],i,d,h,g,x,b,w,M,_,k,D,T,R,O,j),G}var nO={kernelName:Dn,backendName:"wasm",setupFunc:vZ,kernelFunc:CZ};var IZ=!1,sO=xt(Ei,IZ,"bool");var iO=Nt(Rn);function hx(r){let{inputs:e,attrs:t,backend:o}=r,{input:n}=e,{dim:s}=t,a=n.shape.length,i=n.shape.slice(),l=s;return s<0&&(y.assert(-(a+1)<=s,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+s+1),i.splice(l,0,1),Br({inputs:{x:n},backend:o,attrs:{shape:i}})}var aO={kernelName:Ms,backendName:"wasm",kernelFunc:hx};function NZ(r){let{attrs:{shape:e,value:t,dtype:o},backend:n}=r,s=n.makeOutput(e,o);return n.typedArrayFromHeap(s).fill(t),s}var lO={kernelName:Ka,backendName:"wasm",kernelFunc:NZ};var uO;function SZ(r){uO=r.wasm.cwrap($i,null,["number","number","number","number","number","number"])}function TZ(r){let{inputs:e,backend:t}=r,{image:o}=e,n=t.makeOutput(o.shape,o.dtype),s=t.dataIdMap.get(o.dataId).id,a=t.dataIdMap.get(n.dataId).id,[i,l,u,c]=o.shape;return uO(s,i,l,u,c,a),n}var cO={kernelName:$i,backendName:"wasm",kernelFunc:TZ,setupFunc:SZ};var pO=Nt(Fn);var AZ=!1,mO=xt(On,AZ);var fO;function EZ(r){fO=r.wasm.cwrap(Pn,null,["number","number","number","number","number","number","number"])}function DZ(r){let{backend:e,inputs:t,attrs:o}=r,{varianceEpsilon:n}=o,{x:s,mean:a,variance:i,offset:l,scale:u}=t,c=e.dataIdMap.get(s.dataId).id,p=e.dataIdMap.get(a.dataId).id,m=e.dataIdMap.get(i.dataId).id,f=l!=null?e.dataIdMap.get(l.dataId).id:0,d=u!=null?e.dataIdMap.get(u.dataId).id:0,h=e.makeOutput(s.shape,s.dtype);if(y.sizeFromShape(s.shape)===0)return h;let g=e.dataIdMap.get(h.dataId).id;return fO(c,p,m,f,d,n,g),h}var dO={kernelName:Pn,backendName:"wasm",setupFunc:EZ,kernelFunc:DZ};var hO;function $Z(r){hO=r.wasm.cwrap(Xs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function RZ(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=t,h=N.computeConv2DInfo(n.shape,s.shape,l,c,u,m),g=yl[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedConv2D in the wasm backend.`);let x=o.dataIdMap.get(n.dataId).id,b=o.dataIdMap.get(s.dataId).id,w=h.outChannels,_=0;if(a!=null){let ae=o.dataIdMap.get(a.dataId);if(ae.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==w)throw new Error(`FusedConv2D bias shape (${ae.shape}) does not match the number of output channels (${w})`);_=ae.id}let k=h.filterHeight,D=h.filterWidth,T=h.padInfo.top,R=h.padInfo.right,O=h.padInfo.bottom,M=h.padInfo.left,G=h.dilationHeight,j=h.dilationWidth,U=h.strideHeight,H=h.strideWidth,q=h.inChannels,X=h.padInfo.type==="SAME"?1:0,oe=h.batchSize,Y=h.inHeight,re=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let J=o.makeOutput(h.outShape,"float32"),ie=o.dataIdMap.get(J.dataId).id,ue=i==null?0:o.dataIdMap.get(i.dataId).id;return hO(x,oe,Y,re,b,k,D,_,T,R,O,M,X,G,j,U,H,q,w,g,ue,d||0,ie),J}var gO={kernelName:Xs,backendName:"wasm",setupFunc:$Z,kernelFunc:RZ};var xO;function FZ(r){xO=r.wasm.cwrap(Ys,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function OZ(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=t,h=N.computeConv2DInfo(n.shape,s.shape,l,c,u,m,!0),g=yl[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let x=o.dataIdMap.get(n.dataId).id,b=o.dataIdMap.get(s.dataId).id,w=h.outChannels,_=0;if(a!=null){let ae=o.dataIdMap.get(a.dataId);if(ae.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==w)throw new Error(`FusedDepthwiseConv2D bias shape (${ae.shape}) does not match the number of output channels (${w})`);_=ae.id}let k=h.filterHeight,D=h.filterWidth,T=h.padInfo.top,R=h.padInfo.right,O=h.padInfo.bottom,M=h.padInfo.left,G=h.dilationHeight,j=h.dilationWidth,U=h.strideHeight,H=h.strideWidth,q=h.inChannels,X=h.padInfo.type==="SAME"?1:0,oe=h.batchSize,Y=h.inHeight,re=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let J=o.makeOutput(h.outShape,"float32"),ie=o.dataIdMap.get(J.dataId).id,ue=i==null?0:o.dataIdMap.get(i.dataId).id;return xO(x,oe,Y,re,b,k,D,_,T,R,O,M,X,G,j,U,H,q,w,g,ue,d||0,ie),J}var yO={kernelName:Ys,backendName:"wasm",setupFunc:FZ,kernelFunc:OZ};var bO;function PZ(r){bO=r.wasm.cwrap(Ri,null,["number","number","number","number","number","number","array","number"])}function MZ(r){let{backend:e,inputs:t}=r,{params:o,indices:n}=t,[s,a,i,l]=tg.prepareAndValidate(o,n),u=e.makeOutput(s,o.dtype);if(a===0)return u;let c=n.shape,p=c[c.length-1],f=e.dataIdMap.get(o.dataId).id,h=e.dataIdMap.get(n.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),x=e.dataIdMap.get(u.dataId).id;return bO(f,Lt[o.dtype],h,a,p,i,g,x),u}var wO={kernelName:Ri,backendName:"wasm",setupFunc:PZ,kernelFunc:MZ};var _O;function LZ(r){_O=r.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function zZ(r){let{backend:e,inputs:t,attrs:o}=r,{x:n,indices:s}=t,{axis:a,batchDims:i}=o,l=y.parseAxisParam(a,n.shape)[0],u=N.segment_util.collectGatherOpShapeInfo(n,s,l,i),c=Br({inputs:{x:n},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:e}),p=y.sizeFromShape(s.shape),m=Br({inputs:{x:s},attrs:{shape:[u.batchSize,p/u.batchSize]},backend:e}),f=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize],d=e.makeOutput(f,n.dtype);if(y.sizeFromShape(n.shape)===0)return d;let h=c.shape.length-1,x=e.dataIdMap.get(c.dataId).id,w=e.dataIdMap.get(m.dataId).id,_=e.dataIdMap.get(d.dataId).id,k=new Uint8Array(new Int32Array(y.computeStrides(c.shape)).buffer),D=new Uint8Array(new Int32Array(y.computeStrides(f)).buffer);return _O(x,Lt[n.dtype],k,h,w,u.batchSize,D,_),e.disposeData(c.dataId),e.disposeData(m.dataId),d.shape=u.outputShape,d}var kO={kernelName:Ls,backendName:"wasm",setupFunc:LZ,kernelFunc:zZ};var BZ=!1,vO=xt(Fi,BZ,"bool");var VZ=!1,CO=xt(Mn,VZ,"bool");var IO;function GZ(r){IO=r.wasm.cwrap(Ln,null,["number","number","number"])}function WZ(r){let{inputs:{x:e},attrs:{alpha:t},backend:o}=r,n=o.dataIdMap.get(e.dataId).id,s=o.makeOutput(e.shape,e.dtype);if(y.sizeFromShape(e.shape)!==0){let a=o.dataIdMap.get(s.dataId).id;IO(n,t,a)}return s}var NO={kernelName:Ln,backendName:"wasm",setupFunc:GZ,kernelFunc:WZ};var jZ=!1,SO=xt(Li,jZ,"bool");var UZ=!1,TO=xt(zi,UZ,"bool");var AO=Nt(zn);var HZ=!1,EO=xt(Vi,HZ,"bool");var DO;function qZ(r){DO=r.wasm.cwrap(Bn,null,["number, number, number"])}function KZ(r){let{backend:e,inputs:t,attrs:o}=r,{reductionIndices:n,keepDims:s}=o,{x:a}=t,l=e.dataIdMap.get(a.dataId).id,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=pn(a,n,e);if(f){let w=e.dataIdMap.get(c.dataId).id;u=c,l=w}let d=u.shape.length;N.assertAxesAreInnerMostDims("max",p,d);let[h,g]=N.computeOutAndReduceShapes(u.shape,p),x=y.sizeFromShape(g),b=e.makeOutput(h,a.dtype);if(y.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;DO(l,x,w)}if(f&&e.disposeData(c.dataId),s){let w=N.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var $O={kernelName:Bn,backendName:"wasm",setupFunc:qZ,kernelFunc:KZ};var XZ=!1,RO=xt(Vn,XZ);var FO;function YZ(r){FO=r.wasm.cwrap(Gn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ZZ(r){let{inputs:e,attrs:t,backend:o}=r,n=e.x,s=o.dataIdMap.get(n.dataId).id,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=t,c=N.computePool2DInfo(n.shape,a,i,1,l,u),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,x=c.dilationHeight,b=c.dilationWidth,w=c.strideHeight,_=c.strideWidth,k=c.inChannels,D=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let T=o.makeOutput(c.outShape,"float32"),R=o.dataIdMap.get(T.dataId).id;return FO(s,n.shape[0],n.shape[1],n.shape[2],p,m,f,d,h,g,x,b,w,_,k,D,R),T}var OO={kernelName:Gn,backendName:"wasm",setupFunc:YZ,kernelFunc:ZZ};var PO;function JZ(r){PO=r.wasm.cwrap(Wn,null,["number, number, number"])}function QZ(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=pn(a,n,e),d=p;if(f){let _=e.dataIdMap.get(c.dataId).id;_!==i&&(u=c,l=_,d=N.getInnerMostAxes(d.length,u.shape.length))}N.assertAxesAreInnerMostDims("mean",d,u.shape.length);let[h,g]=N.computeOutAndReduceShapes(u.shape,d),x=y.sizeFromShape(g),b=u;u.dtype!=="float32"&&(b=Ru({backend:e,inputs:{x:u},attrs:{dtype:"float32"}}),l=e.dataIdMap.get(b.dataId).id);let w=e.makeOutput(h,"float32");if(y.sizeFromShape(u.shape)!==0){let _=e.dataIdMap.get(w.dataId).id;PO(l,x,_)}if(f&&e.disposeData(c.dataId),s){let _=N.expandShapeToKeepDim(w.shape,m);w.shape=_}return u.dtype!=="float32"&&e.disposeData(b.dataId),w}var MO={kernelName:Wn,backendName:"wasm",setupFunc:JZ,kernelFunc:QZ};var LO;function e9(r){LO=r.wasm.cwrap(jn,null,["number, number, number"])}function t9(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=pn(a,n,e);if(f){let w=e.dataIdMap.get(c.dataId).id;w!==i&&(u=c,l=w)}let d=u.shape.length;N.assertAxesAreInnerMostDims("min",p,d);let[h,g]=N.computeOutAndReduceShapes(u.shape,p),x=y.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;LO(l,x,w)}if(f&&e.disposeData(c.dataId),s){let w=N.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var zO={kernelName:jn,backendName:"wasm",setupFunc:e9,kernelFunc:t9};var r9=!1,BO=xt(Un,r9);var o9=!0,VO=xt(Hn,o9);var GO=Nt(zs);function kp(r,e){let t=new Int32Array(r.wasm.HEAPU8.buffer,e,4),o=t[0],n=t[1],s=t[2],a=t[3];return r.wasm._free(e),{pSelectedIndices:o,selectedSize:n,pSelectedScores:s,pValidOutputs:a}}var WO;function n9(r){WO=r.wasm.cwrap(ji,"number",["number","number","number","number","number"])}function s9(r){let{backend:e,inputs:t,attrs:o}=r,{iouThreshold:n,maxOutputSize:s,scoreThreshold:a}=o,{boxes:i,scores:l}=t,u=e.dataIdMap.get(i.dataId).id,c=e.dataIdMap.get(l.dataId).id,p=WO(u,c,s,n,a),{pSelectedIndices:m,selectedSize:f,pSelectedScores:d,pValidOutputs:h}=kp(e,p);return e.wasm._free(d),e.wasm._free(h),e.makeOutput([f],"int32",m)}var jO={kernelName:ji,backendName:"wasm",setupFunc:n9,kernelFunc:s9};var UO;function i9(r){UO=r.wasm.cwrap(Ui,"number",["number","number","number","number","number","bool"])}function a9(r){let{backend:e,inputs:t,attrs:o}=r,{iouThreshold:n,maxOutputSize:s,scoreThreshold:a,padToMaxOutputSize:i}=o,{boxes:l,scores:u}=t,c=e.dataIdMap.get(l.dataId).id,p=e.dataIdMap.get(u.dataId).id,m=UO(c,p,s,n,a,i),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=kp(e,m);e.wasm._free(h);let x=e.makeOutput([d],"int32",f),b=e.makeOutput([],"int32",g);return[x,b]}var HO={kernelName:Ui,backendName:"wasm",setupFunc:i9,kernelFunc:a9};var qO;function l9(r){qO=r.wasm.cwrap(Hi,"number",["number","number","number","number","number","number"])}function u9(r){let{backend:e,inputs:t,attrs:o}=r,{iouThreshold:n,maxOutputSize:s,scoreThreshold:a,softNmsSigma:i}=o,{boxes:l,scores:u}=t,c=e.dataIdMap.get(l.dataId).id,p=e.dataIdMap.get(u.dataId).id,m=qO(c,p,s,n,a,i),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=kp(e,m);e.wasm._free(g);let x=e.makeOutput([d],"int32",f),b=e.makeOutput([d],"float32",h);return[x,b]}var KO={kernelName:Hi,backendName:"wasm",setupFunc:l9,kernelFunc:u9};var c9=!1,XO=xt(Wi,c9,"bool");var YO;function p9(r){YO=r.wasm.cwrap(qn,null,["number","number","number","number","number"])}function m9(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n}=e,{depth:s,onValue:a,offValue:i}=o,l=t.makeOutput([...n.shape,s],"int32"),u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(n.dataId).id;return YO(p,s,a,i,u),l}var ZO={kernelName:qn,backendName:"wasm",setupFunc:p9,kernelFunc:m9};function f9(r){let{inputs:{x:e},backend:t}=r,o=t.makeOutput(e.shape,e.dtype);return t.typedArrayFromHeap(o).fill(1),o}var JO={kernelName:Bs,backendName:"wasm",kernelFunc:f9};function d9(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o;if(e.length===1)return hx({inputs:{input:e[0]},backend:t,attrs:{dim:n}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=hx({inputs:{input:c},backend:t,attrs:{dim:n}});return i.push(p),p}),u=nC({inputs:l,backend:t,attrs:{axis:n}});return i.forEach(c=>t.disposeData(c.dataId)),u}var QO={kernelName:Vs,backendName:"wasm",kernelFunc:d9};var eP;function h9(r){eP=r.wasm.cwrap(Kn,null,["number","array","number","number","array","array","number","number"])}function g9(r){let{inputs:{x:e},backend:t,attrs:{paddings:o,constantValue:n}}=r,s=o.map((d,h)=>d[0]+e.shape[h]+d[1]),a=t.dataIdMap.get(e.dataId).id,i=t.makeOutput(s,e.dtype),l=t.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(e.shape).buffer),c=o.map(d=>d[0]),p=o.map(d=>d[1]),m=new Uint8Array(new Int32Array(c).buffer),f=new Uint8Array(new Int32Array(p).buffer);return eP(a,u,e.shape.length,Lt[e.dtype],m,f,n,l),i}var tP={kernelName:Kn,backendName:"wasm",kernelFunc:g9,setupFunc:h9};var x9=!1,rP=xt(Xn,x9);var oP;function y9(r){oP=r.wasm.cwrap(Yn,null,["number","number","number"])}function b9(r){let{inputs:e,backend:t}=r,{x:o,alpha:n}=e,s=t.dataIdMap.get(o.dataId).id,a=t.dataIdMap.get(n.dataId).id,i=t.makeOutput(o.shape,"float32"),l=t.dataIdMap.get(i.dataId).id;return oP(s,a,l),i}var nP={kernelName:Yn,backendName:"wasm",setupFunc:y9,kernelFunc:b9};var sP;function w9(r){sP=r.wasm.cwrap(qi,null,["number","number","number","number"])}function _9(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=pn(a,n,e),d=p;if(f){let w=e.dataIdMap.get(c.dataId).id;w!==i&&(u=c,l=w,d=N.getInnerMostAxes(d.length,u.shape.length))}N.assertAxesAreInnerMostDims("prod",d,u.shape.length);let[h,g]=N.computeOutAndReduceShapes(u.shape,d),x=y.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;sP(l,x,Lt[b.dtype],w)}if(f&&e.disposeData(c.dataId),s){let w=N.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var iP={kernelName:qi,backendName:"wasm",setupFunc:w9,kernelFunc:_9};var k9=r=>{let{backend:e,attrs:t}=r,{start:o,stop:n,step:s,dtype:a}=t,i=_u(o,n,s,a),l=e.makeOutput([i.length],a);return e.typedArrayFromHeap(l).set(i),l},aP={kernelName:Ja,backendName:"wasm",kernelFunc:k9};var v9=!0,lP=xt($n,v9);var uP=Nt(Zn);var cP=Nt(Qn);var pP;function C9(r){pP=r.wasm.cwrap(Jn,null,["number","number","number","number","number","number","number","number","number","number"])}function I9(r){let{backend:e,inputs:t,attrs:o}=r,{images:n}=t,{alignCorners:s,halfPixelCenters:a,size:i}=o,[l,u]=i,[c,p,m,f]=n.shape,d=[c,l,u,f],h=e.dataIdMap.get(n.dataId),g;h.dtype!=="float32"&&(g=Ru({backend:e,inputs:{x:n},attrs:{dtype:"float32"}}),h=e.dataIdMap.get(g.dataId));let x=h.id,b=e.makeOutput(d,"float32");if(y.sizeFromShape(n.shape)===0)return b;let w=e.dataIdMap.get(b.dataId).id;return pP(x,c,p,m,f,l,u,s?1:0,a?1:0,w),g!=null&&e.disposeData(g.dataId),b}var mP={kernelName:Jn,backendName:"wasm",setupFunc:C9,kernelFunc:I9};var fP;function N9(r){fP=r.wasm.cwrap(es,null,["number","array","number","array","number","number"])}function S9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dims:s}=o,a=y.parseAxisParam(s,n.shape);if(n.shape.length===0)return $u({inputs:{x:n},backend:t});let i=t.makeOutput(n.shape,n.dtype),l=t.dataIdMap.get(n.dataId).id,u=t.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(a).buffer),p=new Uint8Array(new Int32Array(n.shape).buffer);fP(l,c,a.length,p,n.shape.length,u);let m=Br({inputs:{x:i},attrs:{shape:n.shape},backend:t});return t.disposeData(i.dataId),m}var dP={kernelName:es,backendName:"wasm",kernelFunc:S9,setupFunc:N9};var hP;function T9(r){hP=r.wasm.cwrap(oa,null,["number","number","number","number","number","number","number","number","array","number","number"])}function A9(r){let{inputs:e,backend:t,attrs:o}=r,{image:n}=e,{radians:s,fillValue:a,center:i}=o,l=t.makeOutput(n.shape,n.dtype),u=t.dataIdMap.get(n.dataId).id,c=t.dataIdMap.get(l.dataId).id,[p,m,f,d]=n.shape,[h,g]=N.getImageCenter(i,m,f),x=a===0,b=255,w=typeof a=="number"?[a,a,a,x?0:b]:[...a,b],_=new Uint8Array(new Int32Array(w).buffer);return hP(u,p,m,f,d,s,h,g,_,w.length,c),l}var gP={kernelName:oa,backendName:"wasm",kernelFunc:A9,setupFunc:T9};var xP=Nt(ts);var yP=Nt(rs);var bP;function E9(r){bP=r.wasm.cwrap(Xi,null,["number","number","number","number","number","number","array","number","number"])}function D9(r){let{backend:e,inputs:t,attrs:o}=r,{indices:n,updates:s}=t,{shape:a}=o,i=e.makeOutput(a,s.dtype);if(y.sizeFromShape(a)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:m}=rg.calculateShapes(s,n,a),d=e.dataIdMap.get(n.dataId).id,g=e.dataIdMap.get(s.dataId).id,x=new Uint8Array(new Int32Array(p).buffer),b=e.dataIdMap.get(i.dataId).id;return bP(d,g,Lt[s.dtype],l,u,c,x,m,b),i}var wP={kernelName:Xi,backendName:"wasm",setupFunc:E9,kernelFunc:D9};var _P;function $9(r){_P=r.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function R9(r){let{inputs:e,backend:t}=r,{condition:o,t:n,e:s}=e,a=t.dataIdMap.get(o.dataId).id,i=t.dataIdMap.get(n.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=t.makeOutput(n.shape,n.dtype),c=t.dataIdMap.get(u.dataId).id,p=o.shape.length,m=n.shape.length,f=p===0||p>1||m===1?1:y.sizeFromShape(n.shape.slice(1));return _P(a,i,l,f,c),u}var kP={kernelName:Ws,backendName:"wasm",kernelFunc:R9,setupFunc:$9};var vP;function F9(r){vP=r.wasm.cwrap(ns,null,["number","number"])}function O9(r){let{backend:e,inputs:{x:t}}=r,o=e.dataIdMap.get(t.dataId).id,n=e.makeOutput(t.shape,t.dtype),s=e.dataIdMap.get(n.dataId).id;return y.sizeFromShape(n.shape)===0||vP(o,s),n}var CP={kernelName:"Sigmoid",backendName:"wasm",setupFunc:F9,kernelFunc:O9};var IP=Nt(os);function Fu(r){let{inputs:{x:e},attrs:{begin:t,size:o},backend:n}=r,[s,a]=er.parseSliceParams(e,t,o),i=er.isSliceContinous(e.shape,s,a),l=n.readSync(e.dataId),u=n.makeOutput(a,e.dtype),c=y.computeStrides(e.shape),p=n.dataIdMap.get(u.dataId);if(i){let d=er.computeFlatOffset(s,c);return e.dtype==="string"?p.stringBytes=l.slice(d,d+y.sizeFromShape(a)):n.typedArrayFromHeap(u).set(l.subarray(d,d+y.sizeFromShape(a))),u}if(e.dtype==="string"){let d=ku(l,s,a,e.shape,e.dtype);return p.stringBytes=d,u}let m=n.typedArrayFromHeap(u),f=e.shape.length;if(f===2)P9(l,c[0],m,s,a);else if(f===3)M9(l,c[0],c[1],m,s,a);else if(f===4)L9(l,c[0],c[1],c[2],m,s,a);else{let d=ku(l,s,a,e.shape,e.dtype);m.set(d)}return u}function P9(r,e,t,o,n){let s=0,a=o[0],i=o[1],l=a+n[0];for(let u=a;u<l;u++){let c=u*e+i;t.set(r.subarray(c,c+n[1]),s),s+=n[1]}}function M9(r,e,t,o,n,s){let a=0,i=n[0],l=n[1],u=n[2],c=i+s[0],p=l+s[1];for(let m=i;m<c;m++)for(let f=l;f<p;f++){let d=m*e+f*t+u;o.set(r.subarray(d,d+s[2]),a),a+=s[2]}}function L9(r,e,t,o,n,s,a){let i=0,l=s[0],u=s[1],c=s[2],p=l+a[0],m=u+a[1],f=c+a[2],d=s[3];for(let h=l;h<p;h++)for(let g=u;g<m;g++)for(let x=c;x<f;x++){let b=h*e+g*t+x*o+d;n.set(r.subarray(b,b+a[3]),i),i+=a[3]}}var NP={kernelName:js,backendName:"wasm",kernelFunc:Fu};var SP;function z9(r){SP=r.wasm.cwrap(as,null,["number","number","number","number"])}function B9(r){let{backend:e,inputs:{logits:t},attrs:{dim:o}}=r,n=e.dataIdMap.get(t.dataId).id,s=e.makeOutput(t.shape,t.dtype),a=e.dataIdMap.get(s.dataId).id,i=t.shape[o],l=y.sizeFromShape(t.shape)/i;return y.sizeFromShape(s.shape)===0||SP(n,a,i,l),s}var TP={kernelName:as,backendName:"wasm",setupFunc:z9,kernelFunc:B9};function V9(r){let{inputs:e,attrs:t,backend:o}=r,{x:n}=e,{numOrSizeSplits:s,axis:a}=t,i=y.parseAxisParam(a,n.shape)[0],l=N.prepareSplitSize(n,s,i),u=new Array(n.shape.length).fill(0),c=n.shape.slice();return l.map(p=>{let m=[...c];m[i]=p;let f=Fu({inputs:{x:n},attrs:{begin:u,size:m},backend:o});return u[i]+=p,f})}var AP={kernelName:Us,backendName:"wasm",kernelFunc:V9};var EP=Nt(ss);var DP=Nt(tl);var G9=!0,$P=xt(ls,G9);var RP;function W9(r){RP=r.wasm.cwrap(Xo,null,["number","number","number"])}function j9(r){let{backend:e,inputs:t,attrs:o}=r,{alpha:n}=o,{x:s}=t,a=e.dataIdMap.get(s.dataId).id,i=e.makeOutput(s.shape,s.dtype),l=e.dataIdMap.get(i.dataId).id;return RP(a,n,l),i}var FP={kernelName:Xo,backendName:"wasm",setupFunc:W9,kernelFunc:j9};var OP;function U9(r){OP=r.wasm.cwrap(ea,null,["number","array","number","array","array","array","array","array","number","number"])}function H9(r){let{backend:e,inputs:t,attrs:o}=r,{x:n}=t,{begin:s,end:a,strides:i}=o;i==null&&(i=new Array(s.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=o,f=N.slice_util.maskToAxes(c);if(f.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&m!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let d=n.shape.length-s.length,h=N.slice_util.maskToAxes(p),g=n.shape.slice();h.forEach(G=>{s[G]=0,a[G]=1,g.splice(G,0,1)});let x=Br({inputs:{x:n},attrs:{shape:g},backend:e}),{begin:b,end:w,strides:_}=N.slice_util.getNormalizedAxes(x.shape,f,d,s,a,i,l,u,c);s=b,a=w,i=_;let k=N.slice_util.maskToAxes(m);k.forEach(G=>{a[G]=s[G]+1,i[G]=1});let D=N.slice_util.computeOutShape(s,a,i),T=D.filter((G,j)=>k.indexOf(j)===-1);if(i.every(G=>G===1)){let G=Fu({inputs:{x},attrs:{begin:s,size:D},backend:e});e.disposeData(x.dataId);let j=Br({inputs:{x:G},attrs:{shape:T},backend:e});return e.disposeData(G.dataId),j}let O=e.makeOutput(T,"float32");if(!T.some(G=>G===0)){let G=e.dataIdMap.get(x.dataId).id,j=new Uint8Array(new Int32Array(y.computeStrides(x.shape)).buffer),U=new Uint8Array(new Int32Array(s).buffer),H=new Uint8Array(new Int32Array(a).buffer),q=new Uint8Array(new Int32Array(i).buffer),X=new Uint8Array(new Int32Array(T).buffer),oe=new Uint8Array(new Int32Array(y.computeStrides(T)).buffer),Y=e.dataIdMap.get(O.dataId).id;OP(G,j,x.shape.length,U,H,q,X,oe,T.length,Y)}e.disposeData(x.dataId);let M=Br({inputs:{x:O},attrs:{shape:T},backend:e});return e.disposeData(O.dataId),M}var PP={kernelName:ea,backendName:"wasm",setupFunc:U9,kernelFunc:H9};var q9=!0,MP=xt(us,q9);var LP;function K9(r){LP=r.wasm.cwrap(is,null,["number, number, number"])}function X9(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=pn(a,n,e),d=p;if(f){let w=e.dataIdMap.get(c.dataId).id;w!==i&&(u=c,l=w,d=N.getInnerMostAxes(d.length,u.shape.length))}N.assertAxesAreInnerMostDims("sum",d,u.shape.length);let[h,g]=N.computeOutAndReduceShapes(u.shape,d),x=y.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;LP(l,x,w)}if(f&&e.disposeData(c.dataId),s){let w=N.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var zP={kernelName:is,backendName:"wasm",setupFunc:K9,kernelFunc:X9};var BP=Nt(cs);var VP;function Y9(r){VP=r.wasm.cwrap(Oo,null,["number","array","number","array","number","number"])}function Z9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,s=t.dataIdMap.get(n.dataId).id,{reps:a}=o,i=new Array(n.shape.length);for(let m=0;m<i.length;m++)i[m]=n.shape[m]*a[m];let l=new Uint8Array(new Int32Array(n.shape).buffer),u=new Uint8Array(new Int32Array(i).buffer),c=t.makeOutput(i,n.dtype),p=t.dataIdMap.get(c.dataId).id;return VP(s,l,n.shape.length,u,i.length,Lt[c.dtype],p),c}var GP={kernelName:Oo,backendName:"wasm",setupFunc:Y9,kernelFunc:Z9};var WP;function J9(r){WP=r.wasm.cwrap(ra,null,["number","array","number","number","number","bool","number","number"])}var Q9=({inputs:r,backend:e,attrs:t})=>{let{x:o}=r,{k:n,sorted:s}=t,a=e.dataIdMap.get(o.dataId).id,i=new Uint8Array(new Int32Array(o.shape).buffer),l=o.shape.slice();l[l.length-1]=n;let u=e.makeOutput(l,o.dtype),c=e.dataIdMap.get(u.dataId).id,p=e.makeOutput(l,"int32"),m=e.dataIdMap.get(p.dataId).id;return WP(a,i,o.shape.length,Lt[o.dtype],n,s,c,m),[u,p]},jP={kernelName:ra,backendName:"wasm",setupFunc:J9,kernelFunc:Q9};function eJ(r){let{inputs:e,backend:t,attrs:o}=r,{value:n}=e,{axis:s}=o;s<0&&(s+=n.shape.length);let a=n.shape[s],i=n.shape.length,l=new Array(i-1),u=0;for(let f=0;f<i;f++)f!==s&&(l[u++]=n.shape[f]);let c=new Array(a),p=new Array(i).fill(0),m=n.shape.slice();m[s]=1;for(let f=0;f<c.length;f++)p[s]=f,c[f]=Fu({inputs:{x:n},attrs:{begin:p,size:m},backend:t});return c.map(({dataId:f,dtype:d})=>({dataId:f,dtype:d,shape:l}))}var UP={kernelName:Hs,backendName:"wasm",kernelFunc:eJ};function tJ(r){let{inputs:{x:e},backend:t}=r,o=t.makeOutput(e.shape,e.dtype);return t.typedArrayFromHeap(o).fill(0),o}var HP={kernelName:qs,backendName:"wasm",kernelFunc:tJ};var rJ=[SF,TF,EF,OF,MF,BF,VF,GF,jF,UF,qF,XF,YF,JF,eO,rO,nO,sO,iO,aO,lO,cO,pO,mO,NF,dO,gO,yO,wO,kO,vO,CO,DF,NO,SO,TO,AO,EO,$O,RO,OO,MO,zO,BO,VO,GO,jO,HO,KO,XO,ZO,JO,QO,tP,rP,nP,iP,aP,lP,uP,cP,LF,mP,dP,gP,yP,xP,wP,kP,CP,IP,NP,TP,AP,EP,DP,$P,FP,PP,MP,zP,BP,GP,jP,RF,UP,HP];for(let r of rJ)zl(r);var iC=W();iC.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));iC.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(iC.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(r){return!1}});var pC=sc(XP());var YP='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}';var JP=sc(ZP());var mC=class extends $s{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Va(this,Zo())}write(e,t,o){let n={id:this.dataIdNextNumber++};return this.move(n,e,t,o,1),n}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=y.now();return e(),{kernelMs:y.now()-t}}move(e,t,o,n,s){let a=this.dataIdNextNumber++;if(n==="string"){let c=t;this.dataIdMap.set(e,{id:a,stringBytes:c,shape:o,dtype:n,memoryOffset:null,refCount:s});return}let i=y.sizeFromShape(o),l=i*y.bytesPerElement(n),u=this.wasm._malloc(l);this.dataIdMap.set(e,{id:a,memoryOffset:u,shape:o,dtype:n,refCount:s}),this.wasm.tfjs.registerTensor(a,i,u),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,l),u)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:o,shape:n,stringBytes:s}=this.dataIdMap.get(e);if(o==="string")return s;let a=this.wasm.HEAPU8.slice(t,t+y.sizeFromShape(n)*y.bytesPerElement(o));return oJ(a.buffer,o)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let o=this.dataIdMap.get(e);if(o.refCount--,!t&&o.refCount>0)return!1;this.wasm._free(o.memoryOffset),this.wasm.tfjs.disposeData(o.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,o){let n;if(o==null)n=this.write(null,e,t);else{let s=this.dataIdNextNumber++;n={id:s},this.dataIdMap.set(n,{id:s,memoryOffset:o,shape:e,dtype:t,refCount:1});let a=y.sizeFromShape(e);this.wasm.tfjs.registerTensor(s,a,o)}return{dataId:n,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:o}){let n=this.wasm.HEAPU8.buffer,{memoryOffset:s}=this.dataIdMap.get(o),a=y.sizeFromShape(e);switch(t){case"float32":return new Float32Array(n,s,a);case"int32":return new Int32Array(n,s,a);case"bool":return new Uint8Array(n,s,a);default:throw new Error(`Unknown dtype ${t}`)}}};function nJ(r){return(e,t)=>(y.fetch(r,{credentials:"same-origin"}).then(o=>{o.ok||e.env.a(`failed to load wasm binary file at '${r}'`),o.arrayBuffer().then(n=>{WebAssembly.instantiate(n,e).then(s=>{t(s.instance)})})}),{})}function QP(r,e,t){if(yx!=null)return yx;let o="tfjs-backend-wasm.wasm";return r&&e?o="tfjs-backend-wasm-threaded-simd.wasm":r&&(o="tfjs-backend-wasm-simd.wasm"),Pf!=null&&Pf[o]!=null?Pf[o]:t+o}async function eM(){let[r,e]=await Promise.all([W().getAsync("WASM_HAS_SIMD_SUPPORT"),W().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((t,o)=>{let n={};n.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let u=YP,c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?QP(r,e,Mf!=null?Mf:l):l+i},fC&&(n.instantiateWasm=nJ(QP(r,e,Mf!=null?Mf:"")));let s=!1;n.onAbort=()=>{if(s||Lf)return;Lf=!0,o({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let a;e&&r&&yx==null?(n.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+pC.default.toString()],{type:"text/javascript"}),a=(0,pC.default)(n)):a=(0,JP.default)(n),a.then(i=>{s=!0,Lf=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},t({wasm:i})})})}function oJ(r,e){switch(e){case"float32":return new Float32Array(r);case"int32":return new Int32Array(r);case"bool":return new Uint8Array(r);default:throw new Error(`Unknown dtype ${e}`)}}var sJ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],yx=null,Mf=null,Pf={},Lf=!1,fC=!1;function Rht(r,e=!1){if(gw("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Lf)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");yx=r,fC=e}function Fht(r,e=!1){if(Lf)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof r=="string")Mf=r;else{Pf=r;let t=sJ.filter(o=>Pf[o]==null);if(t.length>0)throw new Error(`There were no entries found for the following binaries: ${t.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}fC=e}var dC="3.3.0";var iJ=2;qc("wasm",async()=>{let{wasm:r}=await eM();return new mC(r)},iJ);F().prototype.abs=function(){return this.throwIfDisposed(),It(this)};F().prototype.acos=function(){return this.throwIfDisposed(),Tm(this)};F().prototype.acosh=function(){return this.throwIfDisposed(),Am(this)};F().prototype.add=function(r){return this.throwIfDisposed(),ee(this,r)};F().prototype.all=function(r,e){return this.throwIfDisposed(),Hl(this,r,e)};F().prototype.any=function(r,e){return this.throwIfDisposed(),al(this,r,e)};F().prototype.argMax=function(r){return this.throwIfDisposed(),ll(this,r)};F().prototype.argMin=function(r){return this.throwIfDisposed(),Em(this,r)};F().prototype.asScalar=function(){return this.throwIfDisposed(),A(this.size===1,()=>"The array must have only 1 element."),L(this,[])};F().prototype.asType=function(r){return this.throwIfDisposed(),ne(this,r)};F().prototype.as1D=function(){return this.throwIfDisposed(),L(this,[this.size])};F().prototype.as2D=function(r,e){return this.throwIfDisposed(),L(this,[r,e])};F().prototype.as3D=function(r,e,t){return this.throwIfDisposed(),L(this,[r,e,t])};F().prototype.as4D=function(r,e,t,o){return this.throwIfDisposed(),L(this,[r,e,t,o])};F().prototype.as5D=function(r,e,t,o,n){return this.throwIfDisposed(),L(this,[r,e,t,o,n])};F().prototype.asin=function(){return this.throwIfDisposed(),Dm(this)};F().prototype.asinh=function(){return this.throwIfDisposed(),$m(this)};F().prototype.atan=function(){return this.throwIfDisposed(),Rm(this)};F().prototype.atan2=function(r){return this.throwIfDisposed(),Fm(this,r)};F().prototype.atanh=function(){return this.throwIfDisposed(),Om(this)};F().prototype.avgPool=function(r,e,t,o){return this.throwIfDisposed(),ua(this,r,e,t,o)};F().prototype.batchToSpaceND=function(r,e){return this.throwIfDisposed(),ca(this,r,e)};F().prototype.batchNorm=function(r,e,t,o,n){return this.throwIfDisposed(),Jo(this,r,e,t,o,n)};F().prototype.broadcastTo=function(r){return this.throwIfDisposed(),ul(this,r)};F().prototype.cast=function(r){return this.throwIfDisposed(),ne(this,r)};F().prototype.ceil=function(){return this.throwIfDisposed(),Mm(this)};F().prototype.clipByValue=function(r,e){return this.throwIfDisposed(),ar(this,r,e)};F().prototype.concat=function(r,e){return this.throwIfDisposed(),r instanceof Ve&&(r=[r]),Ze([this,...r],e)};F().prototype.conv1d=function(r,e,t,o,n,s){return this.throwIfDisposed(),Xl(this,r,e,t,o,n,s)};F().prototype.conv2dTranspose=function(r,e,t,o,n){return this.throwIfDisposed(),Yl(this,r,e,t,o,n)};F().prototype.conv2d=function(r,e,t,o,n,s){return this.throwIfDisposed(),Yr(this,r,e,t,o,n,s)};F().prototype.cos=function(){return this.throwIfDisposed(),pa(this)};F().prototype.cosh=function(){return this.throwIfDisposed(),Zl(this)};F().prototype.cumsum=function(r,e,t){return this.throwIfDisposed(),Jl(this,r,e,t)};F().prototype.depthToSpace=function(r,e){return this.throwIfDisposed(),zm(this,r,e)};F().prototype.depthwiseConv2d=function(r,e,t,o,n,s){return this.throwIfDisposed(),ds(this,r,e,t,o,n,s)};F().prototype.dilation2d=function(r,e,t,o,n){return this.throwIfDisposed(),Bm(this,r,e,t,o,n)};F().prototype.divNoNan=function(r){return this.throwIfDisposed(),Vm(this,r)};F().prototype.div=function(r){return this.throwIfDisposed(),me(this,r)};F().prototype.dot=function(r){return this.throwIfDisposed(),mT(this,r)};F().prototype.elu=function(){return this.throwIfDisposed(),hs(this)};F().prototype.equal=function(r){return this.throwIfDisposed(),Io(this,r)};F().prototype.erf=function(){return this.throwIfDisposed(),Gm(this)};F().prototype.exp=function(){return this.throwIfDisposed(),Zt(this)};F().prototype.expandDims=function(r){return this.throwIfDisposed(),lr(this,r)};F().prototype.expm1=function(){return this.throwIfDisposed(),Wm(this)};F().prototype.fft=function(){return this.throwIfDisposed(),ba(this)};F().prototype.flatten=function(){return this.throwIfDisposed(),L(this,[this.size])};F().prototype.floor=function(){return this.throwIfDisposed(),gs(this)};F().prototype.floorDiv=function(r){return this.throwIfDisposed(),Ul(this,r)};F().prototype.gather=function(r,e){return this.throwIfDisposed(),Qo(this,r,e)};F().prototype.greaterEqual=function(r){return this.throwIfDisposed(),co(this,r)};F().prototype.greater=function(r){return this.throwIfDisposed(),tr(this,r)};F().prototype.ifft=function(){return this.throwIfDisposed(),ti(this)};F().prototype.irfft=function(){return this.throwIfDisposed(),pu(this)};F().prototype.isFinite=function(){return this.throwIfDisposed(),Ew(this)};F().prototype.isInf=function(){return this.throwIfDisposed(),Dw(this)};F().prototype.isNaN=function(){return this.throwIfDisposed(),$w(this)};F().prototype.leakyRelu=function(r){return this.throwIfDisposed(),fa(this,r)};F().prototype.lessEqual=function(r){return this.throwIfDisposed(),zo(this,r)};F().prototype.less=function(r){return this.throwIfDisposed(),eu(this,r)};F().prototype.localResponseNormalization=function(r,e,t,o){return this.throwIfDisposed(),jm(this,r,e,t,o)};F().prototype.logSigmoid=function(){return this.throwIfDisposed(),Ow(this)};F().prototype.logSoftmax=function(r){return this.throwIfDisposed(),ru(this,r)};F().prototype.logSumExp=function(r,e){return this.throwIfDisposed(),ug(this,r,e)};F().prototype.log=function(){return this.throwIfDisposed(),ur(this)};F().prototype.log1p=function(){return this.throwIfDisposed(),tu(this)};F().prototype.logicalAnd=function(r){return this.throwIfDisposed(),hr(this,r)};F().prototype.logicalNot=function(){return this.throwIfDisposed(),da(this)};F().prototype.logicalOr=function(r){return this.throwIfDisposed(),ou(this,r)};F().prototype.logicalXor=function(r){return this.throwIfDisposed(),dT(this,r)};F().prototype.matMul=function(r,e,t){return this.throwIfDisposed(),je(this,r,e,t)};F().prototype.maxPool=function(r,e,t,o){return this.throwIfDisposed(),ha(this,r,e,t,o)};F().prototype.max=function(r,e){return this.throwIfDisposed(),cr(this,r,e)};F().prototype.maximum=function(r){return this.throwIfDisposed(),Zr(this,r)};F().prototype.mean=function(r,e){return this.throwIfDisposed(),dt(this,r,e)};F().prototype.min=function(r,e){return this.throwIfDisposed(),ei(this,r,e)};F().prototype.minimum=function(r){return this.throwIfDisposed(),ys(this,r)};F().prototype.mirrorPad=function(r,e){return this.throwIfDisposed(),qm(this,r,e)};F().prototype.mod=function(r){return this.throwIfDisposed(),Km(this,r)};F().prototype.mul=function(r){return this.throwIfDisposed(),P(this,r)};F().prototype.neg=function(){return this.throwIfDisposed(),He(this)};F().prototype.norm=function(r,e,t){return this.throwIfDisposed(),rp(this,r,e,t)};F().prototype.notEqual=function(r){return this.throwIfDisposed(),tn(this,r)};F().prototype.oneHot=function(r,e=1,t=0){return this.throwIfDisposed(),fs(this,r,e,t)};F().prototype.onesLike=function(){return this.throwIfDisposed(),rr(this)};F().prototype.pad=function(r,e){return this.throwIfDisposed(),Mr(this,r,e)};F().prototype.pool=function(r,e,t,o,n){return this.throwIfDisposed(),hT(this,r,e,t,o,n)};F().prototype.pow=function(r){return this.throwIfDisposed(),Lr(this,r)};F().prototype.prelu=function(r){return this.throwIfDisposed(),xa(this,r)};F().prototype.prod=function(r,e){return this.throwIfDisposed(),nu(this,r,e)};F().prototype.reciprocal=function(){return this.throwIfDisposed(),Xm(this)};F().prototype.relu=function(){return this.throwIfDisposed(),Tr(this)};F().prototype.relu6=function(){return this.throwIfDisposed(),iu(this)};F().prototype.reshapeAs=function(r){return this.throwIfDisposed(),L(this,r.shape)};F().prototype.reshape=function(r){return this.throwIfDisposed(),L(this,r)};F().prototype.resizeBilinear=function(r,e,t){return this.throwIfDisposed(),Ig(this,r,e,t)};F().prototype.resizeNearestNeighbor=function(r,e,t){return this.throwIfDisposed(),Ng(this,r,e,t)};F().prototype.reverse=function(r){return this.throwIfDisposed(),Ht(this,r)};F().prototype.rfft=function(){return this.throwIfDisposed(),wa(this)};F().prototype.round=function(){return this.throwIfDisposed(),Ym(this)};F().prototype.rsqrt=function(){return this.throwIfDisposed(),au(this)};F().prototype.selu=function(){return this.throwIfDisposed(),lu(this)};F().prototype.separableConv2d=function(r,e,t,o,n,s){return this.throwIfDisposed(),Zm(this,r,e,t,o,n,s)};F().prototype.sigmoid=function(){return this.throwIfDisposed(),Xr(this)};F().prototype.sign=function(){return this.throwIfDisposed(),Jm(this)};F().prototype.sin=function(){return this.throwIfDisposed(),uu(this)};F().prototype.sinh=function(){return this.throwIfDisposed(),cu(this)};F().prototype.slice=function(r,e){return this.throwIfDisposed(),Re(this,r,e)};F().prototype.softmax=function(r){return this.throwIfDisposed(),ya(this,r)};F().prototype.softplus=function(){return this.throwIfDisposed(),xs(this)};F().prototype.spaceToBatchND=function(r,e){return this.throwIfDisposed(),ga(this,r,e)};F().prototype.split=function(r,e){return this.throwIfDisposed(),pr(this,r,e)};F().prototype.sqrt=function(){return this.throwIfDisposed(),gt(this)};F().prototype.square=function(){return this.throwIfDisposed(),Oe(this)};F().prototype.squaredDifference=function(r){return this.throwIfDisposed(),mu(this,r)};F().prototype.squeeze=function(r){return this.throwIfDisposed(),No(this,r)};F().prototype.stack=function(r,e){this.throwIfDisposed();let t=r instanceof Ve?[this,r]:[this,...r];return Bt(t,e)};F().prototype.step=function(r){return this.throwIfDisposed(),ws(this,r)};F().prototype.stridedSlice=function(r,e,t,o,n,s,a,i){return this.throwIfDisposed(),tf(this,r,e,t,o,n,s,a,i)};F().prototype.sub=function(r){return this.throwIfDisposed(),ce(this,r)};F().prototype.sum=function(r,e){return this.throwIfDisposed(),ge(this,r,e)};F().prototype.tan=function(){return this.throwIfDisposed(),rf(this)};F().prototype.tanh=function(){return this.throwIfDisposed(),Qs(this)};F().prototype.tile=function(r){return this.throwIfDisposed(),Lo(this,r)};F().prototype.toBool=function(){return this.throwIfDisposed(),ne(this,"bool")};F().prototype.toFloat=function(){return this.throwIfDisposed(),ne(this,"float32")};F().prototype.toInt=function(){return this.throwIfDisposed(),ne(this,"int32")};F().prototype.topk=function(r,e){return this.throwIfDisposed(),of(this,r,e)};F().prototype.transpose=function(r){return this.throwIfDisposed(),Ke(this,r)};F().prototype.unique=function(r){return this.throwIfDisposed(),tp(this,r)};F().prototype.unsortedSegmentSum=function(r,e){return this.throwIfDisposed(),dg(this,r,e)};F().prototype.unstack=function(r){return this.throwIfDisposed(),mr(this,r)};F().prototype.where=function(r,e){return this.throwIfDisposed(),Dt(r,this,e)};F().prototype.zerosLike=function(){return this.throwIfDisposed(),Ce(this)};var bx={kernelName:Os,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,ws(ne(t,"float32"),-1))}}};var tM={kernelName:yi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let o=Oe(ne(t,"float32")),n=gt(ce(le(1),o));return He(me(r,n))}}}};var rM={kernelName:bi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let o=gt(ce(Oe(ne(t,"float32")),1));return me(r,o)}}}};var oM={kernelName:Fo,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=r,l=_t(t.shape,n);return l.length>0&&(i=ge(i,l)),L(i,t.shape)},b:()=>{let i=r,l=_t(o.shape,n);return l.length>0&&(i=ge(i,l)),L(i,o.shape)}}}};var nM={kernelName:kn,saveAllInputs:!0,gradFunc:(r,e)=>{let t={};return e.forEach((o,n)=>{t[n]=()=>r.clone()}),t}};var sM={kernelName:vn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>Ce(t)}}};var iM={kernelName:Ga,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>Ce(t)}}};var aM={kernelName:wi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,gt(ce(le(1),Oe(ne(t,"float32")))))}}};var lM={kernelName:_i,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let o=gt(ee(le(1),Oe(ne(t,"float32"))));return me(r,o)}}}};var uM={kernelName:Ci,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=ee(Oe(t),Oe(o)),l=P(r,me(o,i)),u=_t(t.shape,n);return u.length>0&&(l=ge(l,u)),L(l,t.shape)},b:()=>{let i=ee(Oe(t),Oe(o)),l=He(P(r,me(t,i))),u=_t(o.shape,n);return u.length>0&&(l=ge(l,u)),L(l,o.shape)}}}};var cM={kernelName:ki,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,ee(Oe(ne(t,"float32")),1))}}};var pM={kernelName:vi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,ce(le(1),Oe(ne(t,"float32"))))}}};function aJ(r,e,t,o,n,s){let a=v(r,"dy","avgPool3dGrad"),i=v(e,"input","avgPool3dGrad"),l=a,u=i,c=!1;i.rank===4&&(c=!0,l=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]]),u=L(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),A(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),s!=null&&A(ot(n),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${n}.`);let p={dy:l,input:u},m={filterSize:t,strides:o,pad:n,dimRoundingMode:s},f=E.runKernel(fc,p,m);return c?L(f,[f.shape[1],f.shape[2],f.shape[3],f.shape[4]]):f}var mM=S({avgPool3dGrad_:aJ});var fM={kernelName:Wa,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{filterSize:n,strides:s,pad:a,dimRoundingMode:i}=t;return{x:()=>mM(r,o,n,s,a,i)}}};function lJ(r,e,t,o,n){let s=v(r,"dy","avgPoolGrad"),a=v(e,"input","avgPoolGrad");A(a.rank===s.rank,()=>`Rank of input (${a.rank}) does not match rank of dy (${s.rank})`);let i=a,l=s,u=!1;a.rank===3&&(u=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2]]),l=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),A(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},p={filterSize:t,strides:o,pad:n},m=E.runKernel(mc,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var dM=S({avgPoolGrad_:lJ});var hM={kernelName:Cn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{filterSize:n,strides:s,pad:a}=t;return{x:()=>dM(r,o,n,s,a)}}};var gM={kernelName:In,inputsToSave:["a","b"],gradFunc:(r,e,t)=>{let[o,n]=e,{transposeA:s,transposeB:a}=t;return!s&&!a?{a:()=>je(r,n,!1,!0),b:()=>je(o,r,!0,!1)}:!s&&a?{a:()=>je(r,n,!1,!1),b:()=>je(r,o,!0,!1)}:s&&!a?{a:()=>je(n,r,!1,!0),b:()=>je(o,r,!1,!1)}:{a:()=>je(n,r,!0,!0),b:()=>je(r,o,!0,!0)}}};var xM={kernelName:ja,gradFunc:(r,e,t)=>{let{blockShape:o,crops:n}=t;return{x:()=>ga(r,o,n)}}};var yM={kernelName:QN,gradFunc:(r,e,t)=>{let o=t,n=o.inputShape,s=o.shape,a=Array.from(s);for(let l=n.length-1;l>=0;l--)if(n[l]===s[l])a[l]=1;else if(n[l]!==1)throw new Error(`broadcastTo(): [${n}] cannot be broadcast to [${s}].`);let i=[];for(let l=0;l<a.length;l++)a[l]>1&&i.push(l);return{x:()=>ge(r,i,!0)}}};var bM={kernelName:Ho,gradFunc:r=>({x:()=>r.clone()})};var wM={kernelName:Nn,gradFunc:r=>({x:()=>Ce(r)})};var _M={kernelName:qo,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{clipValueMin:n,clipValueMax:s}=t;return{x:()=>Dt(hr(co(o,n),zo(o,s)),r,Ce(r))}}};var kM={kernelName:Ua,inputsToSave:["x"],gradFunc:bx.gradFunc};var vM={kernelName:Ps,saveAllInputs:!0,gradFunc:(r,e,t)=>{let o=e.map(l=>l.shape),{axis:n}=t,s=Qt(n,e[0].shape)[0],a=o.map(l=>l[s]);return pr(r,a,s).map(l=>()=>l)}};var CM={kernelName:Sn,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let[o,n]=e,{dilations:s,strides:a,pad:i,dataFormat:l}=t;return A(Mo(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>Xc(o.shape,r,n,a,i,l),filter:()=>op(o,r,n.shape,a,i,l)}}};var IM={kernelName:Tn,inputsToSave:["dy","filter"],gradFunc:(r,e,t)=>{let[o,n]=e,{strides:s,pad:a,dataFormat:i,dimRoundingMode:l}=t;return{dy:()=>Yr(r,n,s,a,i,1,l),filter:()=>op(r,o,n.shape,s,a,i,l)}}};function uJ(r,e,t,o,n){let s=r;r.rank===4&&(s=L(r,[1,r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));let a=e;a.rank===4&&(a=L(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]])),A(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),A(a.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${a.shape}.`),A(t.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${t}.`),A(s.shape[4]===t[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${t[3]}.`),A(a.shape[4]===t[4],()=>`Error in conv3dDerFilter: depth of dy (${a.shape[4]}) must match output depth for filter (${t[4]}).`);let i={x:s,dy:a},l={strides:o,pad:n,filterShape:t};return E.runKernel(xc,i,l)}var NM=S({conv3DBackpropFilter_:uJ});var SM={kernelName:Ha,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let{dilations:o,strides:n,pad:s}=t;A(Mo(o),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${o}'`);let[a,i]=e;return{x:()=>ag(a.shape,r,i,n,s),filter:()=>NM(a,r,i.shape,n,s)}}};var TM={kernelName:An,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(He(uu(ne(t,"float32"))),r)}}};var AM={kernelName:Ii,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(cu(ne(t,"float32")),r)}}};var EM={kernelName:En,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{axis:n,exclusive:s,reverse:a}=t;return{x:()=>{let i=Lw([n],o.rank),l=Jl(r,n,s,!a);return i!=null&&(l=Ke(l,i)),l}}}};var DM={kernelName:Dn,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let{dilations:o,strides:n,pad:s,dimRoundingMode:a}=t,i=o==null?[1,1]:o;A(Mo(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=e;return A(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),A(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),A(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),A(kr(n,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'.`),a!=null&&A(ot(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`),{x:()=>bg(l.shape,r,u,n,s,o,a),filter:()=>yg(l,r,u.shape,n,s,o,a)}}};var $M={kernelName:qa,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let[o,n]=e,s={x:o,filter:n,dy:r},a={x:o,filter:n,dy:r};return{x:()=>E.runKernel(xm,s,t),filter:()=>E.runKernel(ym,a,t)}}};var RM={kernelName:Ti,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e,o={dy:r,y:t};return{x:()=>E.runKernel(vc,o)}}};var FM={kernelName:Ai,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e,o=P(Zt(He(Oe(t))),2/Math.sqrt(Math.PI));return{x:()=>P(r,o)}}};var OM={kernelName:Rn,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,t)}}};var PM={kernelName:Ms,inputsToSave:["input"],gradFunc:(r,e)=>{let[t]=e;return{input:()=>L(r,t.shape)}}};var MM={kernelName:Di,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,Zt(t))}}};var LM={kernelName:Fn,gradFunc:r=>({x:()=>Ce(r)})};var zM={kernelName:On,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=me(r,ne(o,"float32")),l=_t(t.shape,n);return l.length>0?L(ge(i,l),t.shape):i},b:()=>{let i=P(r,ne(t,"float32")),l=_t(o.shape,n);l.length>0&&(i=L(ge(i,l),o.shape));let u=Oe(o);return He(me(i,ne(u,"float32")))}}}};var BM={kernelName:Pn,inputsToSave:["x","mean","variance","scale"],gradFunc:(r,e,t)=>{let{varianceEpsilon:o}=t,[n,s,a,i]=e,l=i==null?le(1):i,u=_t(s.shape,n.shape),c=[];if(s.rank===1){for(let _=0;_<n.shape.length-1;++_)c.push(n.shape[_]);c.push(1)}let p=ce(n,s),m=P(r,l),f=au(ee(a,le(o))),d=P(P(P(f,f),f),le(-.5));return{x:()=>s.rank===1?L(P(P(r,Lo(L(f,[1,1,1,s.shape[0]]),c)),l),n.shape):L(P(P(r,f),l),n.shape),mean:()=>{let _=P(P(f,le(-1)),m);return s.rank===1&&(_=ge(_,u)),L(_,s.shape)},variance:()=>{let _=P(P(d,p),m);return s.rank===1&&(_=ge(_,u)),L(_,s.shape)},scale:()=>{let _=P(p,f),k=P(r,_);return s.rank===1&&(k=ge(k,u)),L(k,s.shape)},offset:()=>{let _=r;return s.rank===1&&(_=ge(_,u)),L(_,s.shape)}}}};var WM={kernelName:Ls,inputsToSave:["x","indices"],gradFunc:(r,e,t)=>{let[o,n]=e,{axis:s}=t,a=Qt(s,o.shape)[0];return{x:()=>{let l=o.shape,u=n.size,c=l.slice(0,a),p=c.length,m=l.slice(s,l.length).slice(1),f=m.length,d=VM(0,p),h=VM(p+1,p+1+f),g=GM([c,[u],m]),x=L(r,g),b=L(n,[u]),w=GM([[p],d,h]),_=Ke(x,w),k=dg(_,b,o.shape[a]),D=Um(w);return k=Ke(k,D),k},indices:()=>n}}};function VM(r,e){let t=[];for(let o=r;o<e;++o)t.push(o);return t}function GM(r){let e=[];for(let t=0;t<r.length;++t)for(let o=0;o<r[t].length;++o)e.push(r[t][o]);return e}var jM={kernelName:Mn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e;return{a:()=>Ce(t),b:()=>Ce(o)}}};var UM={kernelName:Ko,gradFunc:r=>({x:()=>ne(r,"float32")})};var HM={kernelName:Oi,gradFunc:r=>({x:()=>Ce(r)})};var qM={kernelName:Pi,gradFunc:r=>({x:()=>Ce(r)})};var KM={kernelName:Mi,gradFunc:r=>({x:()=>Ce(r)})};var XM={kernelName:Ln,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{alpha:n}=t,s=tr(o,0);return{x:()=>Dt(s,r,P(r,n))}}};var YM={kernelName:Bi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,ee(t,1))}}};var ZM={kernelName:zn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,ne(t,"float32"))}}};var JM={kernelName:eS,inputsToSave:[],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o]=e,{axis:n}=t;return{logits:()=>{let s=!0,a=Zt(o);return ce(r,P(ge(r,n,s),a))}}}};function cJ(r,e,t,o=5,n=1,s=1,a=.5){let i={x:r,y:e,dy:t},l={depthRadius:o,bias:n,alpha:s,beta:a};return E.runKernel(Tc,i,l)}var QM=S({localResponseNormalizationBackprop_:cJ});var eL={kernelName:Xa,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o,n]=e,{depthRadius:s,bias:a,alpha:i,beta:l}=t;return{x:()=>QM(o,n,r,s,a,i,l)}}};function wx(r,e,t,o){return e.rank<t.rank&&(e=L(e,en(e.shape,o))),r.rank<t.rank&&(r=L(r,en(r.shape,o))),{x:()=>P(r,ne(Io(t,e),r.dtype))}}var hC={kernelName:Bn,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let o=t,{reductionIndices:n}=o,s=e[0],a=e[1],i=Qt(n,s.shape),l=wx(r,a,s,i);return{x:()=>l.x()}}};var tL={kernelName:Vn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e;return{a:()=>P(r,ne(co(t,o),"float32")),b:()=>P(r,ne(eu(t,o),"float32"))}}};function pJ(r,e,t,o,n,s,a){let i=v(r,"dy","maxPool3dGrad"),l=v(e,"input","maxPool3dGrad"),u=v(t,"output","maxPool3dGrad"),c=i,p=l,m=u,f=!1;l.rank===4&&(f=!0,c=L(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),p=L(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),m=L(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),A(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),A(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),A(m.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${m.rank}.`),a!=null&&A(ot(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);let d={dy:c,input:p,output:m},h={filterSize:o,strides:n,pad:s,dimRoundingMode:a},g=E.runKernel(Ec,d,h);return f?L(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var rL=S({maxPool3dGrad_:pJ});var oL={kernelName:Ya,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o,n]=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=t;return{x:()=>rL(r,o,n,s,a,i,l)}}};function mJ(r,e,t,o,n,s,a){let i=v(r,"dy","maxPoolGrad"),l=v(e,"input","maxPoolGrad"),u=v(t,"output","maxPoolGrad");A(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),A(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),A(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),a!=null&&A(ot(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);let c={dy:i,input:l,output:u},p={filterSize:o,strides:n,pad:s,dimRoundingMode:a};return E.runKernel(Ac,c,p)}var nL=S({maxPoolGrad_:mJ});var sL={kernelName:Gn,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o,n]=e,{filterSize:s,strides:a,pad:i}=t;return{x:()=>nL(r,o,n,s,a,i)}}};var iL={kernelName:Wn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{axis:n}=t,s=Qt(n,o.shape),i=Mw(o.shape,s)[1],l=ct(i);return{x:()=>{let c=o.shape.slice();s.forEach(f=>{c[f]=1});let p=L(r,c);return me(P(p,Sr(o.shape,"float32")),l)}}}};var aL={kernelName:jn,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let o=t,{axis:n}=o,[s,a]=e,i=Qt(n,s.shape),l=wx(r,a,s,i);return{x:()=>l.x()}}};var lL={kernelName:Un,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e;return{a:()=>P(r,ne(zo(t,o),"float32")),b:()=>P(r,ne(tr(t,o),"float32"))}}};var uL={kernelName:Za,inputsToSave:["x"],gradFunc:(r,e,t)=>{let o=e[0],{paddings:n}=t,s=n.map(a=>a[0]);return{x:()=>Re(r,s,o.shape)}}};var cL={kernelName:Gi,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=_t(t.shape,n);return i.length>0?L(ge(r,i),t.shape):r},b:()=>{let i=P(r,He(gs(me(t,o)))),l=_t(o.shape,n);return l.length>0?L(ge(i,l),o.shape):i}}}};var pL={kernelName:Hn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=P(r,ne(o,"float32")),l=_t(t.shape,n);return l.length>0?L(ge(i,l),t.shape):i},b:()=>{let i=P(r,ne(t,"float32")),l=_t(o.shape,n);return l.length>0?L(ge(i,l),o.shape):i}}}};var mL={kernelName:zs,gradFunc:r=>({x:()=>He(r)})};var fL={kernelName:qn,inputsToSave:["indices"],gradFunc:(r,e)=>{let t=e[0];return{indices:()=>ht(t.shape,"float32")}}};var dL={kernelName:Bs,gradFunc:r=>({x:()=>Ce(r)})};var hL={kernelName:Vs,saveAllInputs:!0,gradFunc:(r,e,t)=>{let{axis:o}=t;return mr(r,o).map(s=>()=>s)}};var gC={kernelName:Kn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let o=e[0],{paddings:n}=t,s=n.map(a=>a[0]);return{x:()=>Re(r,s,o.shape)}}};var gL={kernelName:Xn,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(r,e)=>{let[t,o,n]=e,s=t,a=o,i=Be(s.shape,a.shape);return{a:()=>{let c=ne(a,"float32"),p=P(r,P(c,Lr(s,ce(c,le(1))))),m=_t(s.shape,i);return m.length>0&&(p=ge(p,m)),L(p,s.shape)},b:()=>{let c=tr(s,0),p=Dt(c,ur(s),Ce(s)),m=P(r,P(n,p)),f=_t(a.shape,i);return f.length>0&&(m=ge(m,f)),L(m,a.shape)}}}};var xL={kernelName:Yn,inputsToSave:["x","alpha"],gradFunc:(r,e)=>{let[t,o]=e,n=tr(t,0);return{x:()=>Dt(n,r,P(r,o)),alpha:()=>{let s=Dt(n,Ce(r),P(r,t)),a=_t(o.shape,r.shape);return a.length>0&&(s=ge(s,a)),L(s,o.shape)}}}};var yL={kernelName:$n,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=me(r,ne(o,"float32")),l=_t(t.shape,n);return l.length>0?L(ge(i,l),t.shape):i},b:()=>{let i=P(r,ne(t,"float32")),l=_t(o.shape,n);l.length>0&&(i=L(ge(i,l),o.shape));let u=Oe(o);return He(me(i,ne(u,"float32")))}}}};var bL={kernelName:Ki,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,He(Oe(t)))}}};var wL={kernelName:Qn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e,o=P(zo(t,6),ws(t));return{x:()=>P(r,ne(o,"float32"))}}};var _L={kernelName:Zn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,ne(ws(t),"float32"))}}};var kL={kernelName:Gs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>L(r,t.shape)}}};var vL={kernelName:Jn,inputsToSave:["images"],gradFunc:(r,e,t)=>{let[o]=e,n={dy:r,images:o};return{images:()=>E.runKernel(Oc,n,t)}}};var CL={kernelName:Qa,inputsToSave:["images"],gradFunc:(r,e,t)=>{let[o]=e,n={dy:r,images:o};return{images:()=>E.runKernel(Fc,n,t)}}};var IL={kernelName:es,gradFunc:(r,e,t)=>{let{dims:o}=t,n=Qt(o,r.shape);return{x:()=>Ht(r,n)}}};var NL={kernelName:ts,gradFunc:r=>({x:()=>Ce(r)})};var SL={kernelName:rs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>He(me(r,P(Lr(t,1.5),2)))}}};var TL={kernelName:Ws,inputsToSave:["condition"],gradFunc:(r,e)=>{let[t]=e;return{condition:()=>ne(Ce(t),"float32"),t:()=>P(r,ne(t,r.dtype)),e:()=>P(r,ne(da(t),r.dtype))}}};var AL={kernelName:Yi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let o=tr(t,le(0)),n=le(e_),s=le(t_),a=P(r,s),i=P(P(r,n),Zt(ne(t,"float32")));return Dt(o,a,i)}}}};var EL={kernelName:ns,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,P(t,ce(le(1),t)))}}};var DL={kernelName:Ji,gradFunc:r=>({x:()=>Ce(r)})};var $L={kernelName:os,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(pa(ne(t,"float32")),r)}}};var RL={kernelName:Zi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(Zl(ne(t,"float32")),r)}}};var FL={kernelName:js,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{begin:n,size:s}=t,a=o.shape,[i,l]=mw(o,n,s),u=[];for(let c=0;c<r.rank;c++)u.push([i[c],a[c]-i[c]-l[c]]);return{x:()=>Mr(r,u)}}};var OL={kernelName:as,outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o]=e,{dim:n}=t,s=!0,a=P(r,o);return{logits:()=>ce(a,P(ge(a,[n],s),o))}}};var PL={kernelName:Qi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,Xr(t))}}};var xC={kernelName:el,gradFunc:(r,e,t)=>{let{blockShape:o,paddings:n}=t;return{x:()=>ca(r,o,n)}}};var yC={kernelName:Us,gradFunc:(r,e,t)=>{let{axis:o}=t;return{x:()=>Ze(r,o)}}};var ML={kernelName:ss,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,P(gt(ne(t,"float32")),2))}}};var LL={kernelName:tl,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,P(ne(t,"float32"),2))}}};var zL={kernelName:ls,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=le(2);return{a:()=>P(r,P(n,ce(t,o))),b:()=>P(r,P(n,ce(o,t)))}}};var BL={kernelName:Xo,gradFunc:r=>({x:()=>Ce(r)})};var VL={kernelName:us,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=r,l=_t(t.shape,n);return l.length>0&&(i=ge(i,l)),L(i,t.shape)},b:()=>{let i=r,l=_t(o.shape,n);return l.length>0&&(i=ge(i,l)),L(He(i),o.shape)}}}};var GL={kernelName:is,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,n=o.shape.slice(),{axis:s}=t;Qt(s,o.shape).forEach(u=>{n[u]=1});let i=L(r,n),l=P(i,Sr(o.shape,"float32"));return{x:()=>l}}};var WL={kernelName:ta,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,Oe(pa(t)))}}};var jL={kernelName:cs,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(ce(le(1),Oe(t)),r)}}};var UL={kernelName:Oo,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{reps:n}=t;return{x:()=>{let a=Ce(o);if(o.rank===1)for(let i=0;i<n[0];++i)a=ee(a,Re(r,[i*o.shape[0]],[o.shape[0]]));else if(o.rank===2)for(let i=0;i<n[0];++i)for(let l=0;l<n[1];++l)a=ee(a,Re(r,[i*o.shape[0],l*o.shape[1]],[o.shape[0],o.shape[1]]));else if(o.rank===3)for(let i=0;i<n[0];++i)for(let l=0;l<n[1];++l)for(let u=0;u<n[2];++u)a=ee(a,Re(r,[i*o.shape[0],l*o.shape[1],u*o.shape[2]],[o.shape[0],o.shape[1],o.shape[2]]));else if(o.rank===4)for(let i=0;i<n[0];++i)for(let l=0;l<n[1];++l)for(let u=0;u<n[2];++u)for(let c=0;c<n[3];++c)a=ee(a,Re(r,[i*o.shape[0],l*o.shape[1],u*o.shape[2],c*o.shape[3]],[o.shape[0],o.shape[1],o.shape[2],o.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${o.rank} tensors yet.`);return a}}}};var HL={kernelName:ps,gradFunc:(r,e,t)=>{let o=t,{perm:n}=o,s=Um(n);return{x:()=>Ke(r,s)}}};var qL={kernelName:Hs,gradFunc:(r,e,t)=>{let o=t,{axis:n}=o;return{value:()=>Bt(r,n)}}};var KL={kernelName:rl,inputsToSave:["segmentIds"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>fJ(r,t)}}};function fJ(r,e){let t=Zr(e,Ce(e)),o=Qo(r,t),n=co(e,le(0,"int32")),s=o.rank-n.rank;for(let i=0;i<s;++i)n=lr(n,i+1);n=hr(n,Sr(o.shape,"bool"));let a=Ce(o);return Dt(n,o,a)}var XL={kernelName:qs,gradFunc:r=>({x:()=>Ce(r)})};var dJ=[bx,tM,rM,oM,nM,sM,iM,aM,lM,uM,cM,pM,fM,hM,gM,xM,yM,bM,wM,_M,kM,vM,IM,CM,SM,TM,AM,EM,DM,$M,yL,RM,FM,OM,PM,MM,zM,LM,BM,WM,jM,UM,HM,qM,KM,XM,YM,ZM,JM,eL,hC,hC,tL,oL,sL,iL,aL,lL,uL,cL,pL,mL,fL,dL,hL,gC,gC,gL,xL,bL,wL,_L,kL,vL,CL,IL,NL,SL,TL,AL,EL,DL,$L,RL,FL,OL,PL,xC,xC,yC,yC,ML,zL,LL,BL,VL,GL,WL,jL,UL,HL,qL,KL,XL];for(let r of dJ)tS(r);var tz={};Ge(tz,{maxNorm:()=>gJ,minMaxNorm:()=>bJ,nonNeg:()=>yJ,unitNorm:()=>xJ});var bC;function Jt(){return bC==null&&(bC=lT().epsilon()),bC}function Jr(){return"channelsLast"}var Ao=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ao.prototype)}},Vr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Vr.prototype)}},z=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,z.prototype)}},Se=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Se.prototype)}},zf=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,zf.prototype)}};function mn(r,e){if(Array.isArray(r)){let t=[];for(let o=0;o<e;o++)t=t.concat(r);return t}else{let t=new Array(e);return t.fill(r),t}}function Vo(r,e){if(!r)throw new zf(e)}function wC(r,e){let t=0;for(let o of r)o===e&&t++;return t}function xr(r){return r.length===1?r[0]:r}function yt(r){return Array.isArray(r)?r:[r]}function fn(r){let t=r.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Ta(r){return r.length<=1||r.indexOf("_")===-1?r:r.replace(/[_]+(\w|$)/g,(e,t)=>t.toUpperCase())}var dn={};function Cp(r){if(r==null)return null;let e={};return e.className=r.getClassName(),e.config=r.getConfig(),e}function _C(r){if(!(r==null||typeof r!="object"))if(Array.isArray(r))r.forEach(e=>_C(e));else{let e=Object.keys(r);for(let t of e){let o=r[t];o!=null&&typeof o=="object"&&(!Array.isArray(o)&&o.type==="ndarray"&&typeof o.value=="number"?r[t]=o.value:_C(o))}}}function ai(r,e={},t={},o="object",n=!1){if(typeof r=="string"){let s=r,a;if(s in t)a=t[s];else if(s in dn)a=dn[s];else if(a=e[s],a==null)throw new z(`Unknown ${o}: ${r}. This may be due to one of the following reasons:
1. The ${o} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${o} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return a}else{let s=r;if(s.className==null||s.config==null)throw new z(`${o}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let a=s.className,i,l;if(a in t?[i,l]=t[a]:a in dn?[i,l]=dn.className:a in e&&([i,l]=e[a]),i==null)throw new z(`Unknown ${o}: ${a}. This may be due to one of the following reasons:
1. The ${o} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${o} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let f of Object.keys(dn))u[f]=dn[f];for(let f of Object.keys(t))u[f]=t[f];let c=s.config;c.customObjects=u;let p=Object.assign({},dn);for(let f of Object.keys(t))dn[f]=t[f];_C(s.config);let m=l(i,s.config,t,n);return dn=Object.assign({},p),m}else{let u=Object.assign({},dn);for(let p of Object.keys(t))dn[p]=t[p];let c=new i(s.config);return dn=Object.assign({},u),c}}}function hJ(r,e){return r<e?-1:r>e?1:0}function Bf(r,e){return-1*hJ(r,e)}function hn(r){if(r==null)return r;let e=[];for(let t of r)e.indexOf(t)===-1&&e.push(t);return e}function YL(r){if(r==null)throw new z(`Invalid value in obj: ${JSON.stringify(r)}`);for(let e in r)if(r.hasOwnProperty(e))return!1;return!0}function li(r,e,t){if(t!=null&&r.indexOf(t)<0)throw new z(`${t} is not a valid ${e}. Valid values are ${r} or null/undefined.`)}function _x(r,e,t=0,o=Infinity){return Vo(t>=0),Vo(o>=t),Array.isArray(r)&&r.length>=t&&r.length<=o&&r.every(n=>typeof n===e)}function jt(r,e){Array.isArray(r)?(y.assert(r.length>0,()=>`${e} is unexpectedly an empty array.`),r.forEach((t,o)=>jt(t,`element ${o+1} of ${e}`))):y.assert(Number.isInteger(r)&&r>0,()=>`Expected ${e} to be a positive integer, but got ${ZL(r)}.`)}function ZL(r){return r===null?"null":Array.isArray(r)?"["+r.map(e=>ZL(e)).join(",")+"]":typeof r=="string"?`"${r}"`:`${r}`}function JL(r,e){let t=y.now(),o;return(...s)=>{let a=y.now();return a-t<e||(t=a,o=r(...s)),o}}function kx(r){return r==="relu"?"relu":r==="linear"?"linear":r==="elu"?"elu":null}function kC(r,e){return V(()=>gt(ge(P(r,r),e,!0)))}var Ip=class extends Q.Serializable{getConfig(){return{}}},Vf=class extends Ip{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>{let t=kC(e,this.axis),o=ar(t,0,this.maxValue);return P(e,me(o,ee(Jt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Vf.className="MaxNorm";Q.registerClass(Vf);var Gf=class extends Ip{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>me(e,ee(Jt(),kC(e,this.axis))))}getConfig(){return{axis:this.axis}}};Gf.className="UnitNorm";Q.registerClass(Gf);var Wf=class extends Ip{apply(e){return Tr(e)}};Wf.className="NonNeg";Q.registerClass(Wf);var jf=class extends Ip{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>{let t=kC(e,this.axis),o=ee(P(this.rate,ar(t,this.minValue,this.maxValue)),P(1-this.rate,t));return P(e,me(o,ee(Jt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};jf.className="MinMaxNorm";Q.registerClass(jf);var QL={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Ft(r){return Cp(r)}function ez(r,e={}){return ai(r,Q.SerializationMap.getMap().classNameMap,e,"constraint")}function Ot(r){if(r==null)return null;if(typeof r=="string"){let t={className:r in QL?QL[r]:r,config:{}};return ez(t)}else return r instanceof Ip?r:ez(r)}function gJ(r){return new Vf(r)}function xJ(r){return new Gf(r)}function yJ(){return new Wf}function bJ(r){return new jf(r)}var kz={};Ge(kz,{constant:()=>SJ,glorotNormal:()=>FJ,glorotUniform:()=>RJ,heNormal:()=>OJ,heUniform:()=>PJ,identity:()=>DJ,leCunNormal:()=>MJ,leCunUniform:()=>LJ,ones:()=>NJ,orthogonal:()=>zJ,randomNormal:()=>AJ,randomUniform:()=>TJ,truncatedNormal:()=>EJ,varianceScaling:()=>$J,zeros:()=>IJ});var rz=["channelsFirst","channelsLast"],oz=["nearest","bilinear"],nz=["valid","same","causal"],sz=["max","avg"],iz=["sum","mul","concat","ave"];var Np=new Map;function $t(r){li(rz,"DataFormat",r)}function az(r){li(oz,"InterpolationFormat",r)}function Qr(r){li(nz,"PaddingMode",r)}function vC(r){li(sz,"PoolMode",r)}var Uf=[],lz="/";function Is(r,e){Uf.push(r);try{let t=e();return Uf.pop(),t}catch(t){throw Uf.pop(),t}}function wJ(){return Uf.length===0?"":Uf.join(lz)+lz}function vx(r){if(!uz(r))throw new Error("Not a valid tensor name: '"+r+"'");return wJ()+r}function Cx(r){if(!uz(r))throw new Error("Not a valid tensor name: '"+r+"'");Np.has(r)||Np.set(r,0);let e=Np.get(r);if(Np.set(r,Np.get(r)+1),e>0){let t=`${r}_${e}`;return Np.set(t,1),t}else return r}var _J=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function uz(r){return!!r.match(_J)}function cz(r){return r===parseInt(r.toString(),10)}function gn(r,e,t){e==null&&(e=0),t==null&&(t=r.length);let o=1;for(let n=e;n<t;++n)o*=r[n];return o}function pz(r){return r=Array.isArray(r)?new Float32Array(r):r,Vt(r)}function Ou(r){return ei(pz(r)).dataSync()[0]}function Ns(r){return cr(pz(r)).dataSync()[0]}function Gr(r,e){if(e<r)throw new z(`end (${e}) < begin (${r}) is forbidden.`);let t=[];for(let o=r;o<e;++o)t.push(o);return t}function Aa(r,e){return r.asType(e)}function Ea(r,e=-1){let t=r.shape.slice();return e<0&&(e=t.length+e+1),t.splice(e,0,1),r.reshape(t)}function mz(r,e){return V(()=>{if(r.shape.length!==2)throw new z(`repeat() expects a rank-2 tensor, but received a rank-${r.shape.length} tensor.`);let t=Ea(r,1);return Ix(t,[1,e,1])})}function fz(r){let e=[gn(r.shape)];return r.reshape(e)}function dz(r){if(r.rank<=1)throw new z(`batchFlatten requires a minimum rank of 2. Got rank: ${r.rank}.`);let e=[r.shape[0],gn(r.shape,1)];return r.reshape(e)}function Da(r,e,t){return V(()=>{switch(r.rank){case 1:return Qm(r,e,t);case 2:return fg(r,[e,0],[t,r.shape[1]]);case 3:return ef(r,[e,0,0],[t,r.shape[1],r.shape[2]]);case 4:return ep(r,[e,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3]]);case 5:return Re(r,[e,0,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3],r.shape[4]]);case 6:return Re(r,[e,0,0,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3],r.shape[4],r.shape[5]]);default:throw new z(`sliceAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}})}function CC(r,e,t){return V(()=>{switch(r.rank){case 1:return Qm(r,e,t);case 2:return fg(r,[0,e],[r.shape[0],t]);case 3:return ef(r,[0,0,e],[r.shape[0],r.shape[1],t]);case 4:return ep(r,[0,0,0,e],[r.shape[0],r.shape[1],r.shape[2],t]);default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function Hf(r,e,t,o){return V(()=>{switch(r.rank){case 1:return Qm(r,e,t);case 2:switch(o){case 1:return Da(r,e,t);case 2:return CC(r,e,t);default:throw new z(`The axis is not within the rank of the tensor ${o}`)}case 3:switch(o){case 1:return Da(r,e,t);case 2:return ef(r,[0,e,0],[r.shape[0],t,r.shape[2]]);case 3:return CC(r,e,t);default:throw new z(`The axis is not within the rank of the tensor ${o}`)}case 4:switch(o){case 1:return Da(r,e,t);case 2:return ep(r,[0,e,0,0],[r.shape[0],t,r.shape[2],r.shape[3]]);case 3:return ep(r,[0,0,e,0],[r.shape[0],r.shape[1],t,r.shape[3]]);case 4:return CC(r,e,t);default:throw new z(`The axis is not within the rank of the tensor ${o}`)}default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function Sp(r,e=-1){let t;return e<0&&(t=r[0].rank,t!==0?e=t:e=0),e===r[0].rank&&(e=-1),Ze(r,e)}function IC(r,e){switch(r.rank){case 1:return Iw([r,e]);case 2:return Nw([r,e],0);case 3:return Sw([r,e],0);case 4:return Tw([r,e],0);default:throw new z(`concatAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}}function Ix(r,e){if(Array.isArray(e)||(e=[e]),r.rank!==e.length)throw new z(`The length of input n (${e.length}) does not match the number of dimensions in input x (${r.rank})`);return Lo(r,e)}function Tp(r,e=0,t=1,o,n){return mg(r,e,t,o,n)}function xn(r,e,t,o){if(r.rank<2||e.rank<2)throw new Se(`dot requires both inputs to be rank >= 2 but got x shape = ${r.shape} and y shape = ${e.shape}`);if(e.rank>=3){let n=r.shape.slice(-1)[0],s=e.shape.slice(-2)[0];if(n!==s)throw new Se(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${r.shape} and y shape = ${e.shape}`)}if(r.rank===2&&e.rank===2){let n=!1,s=!1;return rn.matMul({a:r,b:e,transposeA:n,transposeB:s,bias:o?NC(r.rank,o,Jr()):null,activation:t})}else{let n=r.shape.slice(),s=n.pop();r=r.reshape([-1,s]);let a=e.shape.slice(),i=a.pop(),l=a.pop(),u=[...a,i],c=Array.from({length:e.rank},(d,h)=>h===0?e.rank-2:h<=e.rank-2?h-1:h);e=e.transpose(c).reshape([l,-1]);let p=[...n,...u],m=!1,f=!1;return rn.matMul({a:r,b:e,transposeA:m,transposeB:f,bias:o?NC(r.rank,o,Jr()):null,activation:t}).reshape(p)}}function Nx(r,e,t){return V(()=>(Array.isArray(e)?e=Vt(e,"int32"):e=e.toInt(),Qo(r,e,t)))}function Pu(r){return P(r,r)}function NC(r,e,t){let o=e.shape;if(e.rank!==1&&e.rank!==r)throw new z(`Unexpected bias dimensions: ${e.rank}; expected it to be 1 or ${r}`);if(r===5){if(t==="channelsFirst")return o.length===1?e.reshape([1,o[0],1,1,1]):e.reshape([1,o[3],o[0],o[1],o[2]]);if(t==="channelsLast")return o.length===1?e.reshape([1,1,1,1,o[0]]):e.reshape([1].concat(o))}else if(r===4){if(t==="channelsFirst")return o.length===1?e.reshape([1,o[0],1,1]):e.reshape([1,o[2],o[0],o[1]]);if(t==="channelsLast")return o.length===1?e.reshape([1,1,1,o[0]]):e.reshape([1].concat(o))}else if(r===3){if(t==="channelsFirst")return o.length===1?e.reshape([1,o[0],1]):e.reshape([1,o[1],o[0]]);if(t==="channelsLast")return o.length===1?e.reshape([1,1,o[0]]):e.reshape([1].concat(o))}else if(r<3)return e;throw new z(`Unsupported input rank by biasAdd: ${e.rank}`)}function ho(r,e,t){return V(()=>(t==null&&(t=Jr()),$t(t),r.add(NC(r.rank,e,t))))}function hz(r,e=1){if(e!==1)throw new Se(`Support for alpha values other than 1 (${e}) is not implemented yet.`);return hs(r)}function gz(r){return V(()=>me(r,It(r).add(1)))}function Sx(r,e,t,o){return V(()=>OT(r,e,t,o))}function xz(r){return V(()=>{let e=ee(.5,P(.2,r));return ar(e,0,1)})}function bl(r,e,t=!1){return t?r():e()}var yz=["fanIn","fanOut","fanAvg"],bz=["normal","uniform","truncatedNormal"];function kJ(r){li(yz,"FanMode",r)}function vJ(r){li(bz,"Distribution",r)}var go=class extends Q.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},qf=class extends go{apply(e,t){return ht(e,t)}};qf.className="Zeros";Q.registerClass(qf);var Mu=class extends go{apply(e,t){return Sr(e,t)}};Mu.className="Ones";Q.registerClass(Mu);var Kf=class extends go{constructor(e){super();if(typeof e!="object")throw new z(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new z(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return V(()=>P(le(this.value),Sr(e,t)))}getConfig(){return{value:this.value}}};Kf.className="Constant";Q.registerClass(Kf);var Xf=class extends go{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return bs(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Xf.className="RandomUniform";Q.registerClass(Xf);var Yf=class extends go{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Se(`randomNormal does not support dType ${t}.`);return Tp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Yf.className="RandomNormal";Q.registerClass(Yf);var Zf=class extends go{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Se(`truncatedNormal does not support dType ${t}.`);return fu(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Zf.className="TruncatedNormal";Q.registerClass(Zf);var Jf=class extends go{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return V(()=>{if(e.length!==2||e[0]!==e[1])throw new z("Identity matrix initializer can only be used for 2D square matrices.");return P(this.gain,Yc(e[0]))})}getConfig(){return{gain:this.gain}}};Jf.className="Identity";Q.registerClass(Jf);function CJ(r,e="channelsLast"){let t,o;if($t(e),r.length===2)t=r[0],o=r[1];else if([3,4,5].indexOf(r.length)!==-1){if(e==="channelsFirst"){let n=gn(r,2);t=r[1]*n,o=r[0]*n}else if(e==="channelsLast"){let n=gn(r,0,r.length-2);t=r[r.length-2]*n,o=r[r.length-1]*n}}else{let n=gn(r);t=Math.sqrt(n),o=Math.sqrt(n)}return[t,o]}var Wr=class extends go{constructor(e){super();if(e.scale<0)throw new z(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,kJ(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,vJ(this.distribution),this.seed=e.seed}apply(e,t){let o=CJ(e),n=o[0],s=o[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,n):this.mode==="fanOut"?a/=Math.max(1,s):a/=Math.max(1,(n+s)/2),this.distribution==="normal"){let i=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Se(`${this.getClassName()} does not support dType ${t}.`);return fu(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*a);return bs(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Wr.className="VarianceScaling";Q.registerClass(Wr);var Ap=class extends Wr{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Wr.className}};Ap.className="GlorotUniform";Q.registerClass(Ap);var Ep=class extends Wr{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Wr.className}};Ep.className="GlorotNormal";Q.registerClass(Ep);var Dp=class extends Wr{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Wr.className}};Dp.className="HeNormal";Q.registerClass(Dp);var $p=class extends Wr{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Wr.className}};$p.className="HeUniform";Q.registerClass($p);var Rp=class extends Wr{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Wr.className}};Rp.className="LeCunNormal";Q.registerClass(Rp);var Fp=class extends Wr{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Wr.className}};Fp.className="LeCunNormal";Q.registerClass(Fp);var Qf=class extends go{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Se("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return V(()=>{if(e.length<2)throw new Se("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let o=e[0]>e[1]?[e[1],e[0]]:e,n=Tp(o,0,1,"float32"),s=m1.gramSchmidt(n);return e[0]>e[1]&&(s=s.transpose()),P(this.gain,s)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Qf.className="Orthogonal";Q.registerClass(Qf);var wz={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function _z(r,e={}){return ai(r,Q.SerializationMap.getMap().classNameMap,e,"initializer")}function kt(r){return Cp(r)}function pt(r){if(typeof r=="string"){let e=r in wz?wz[r]:r;if(e==="GlorotNormal")return new Ep;if(e==="GlorotUniform")return new Ap;if(e==="HeNormal")return new Dp;if(e==="HeUniform")return new $p;if(e==="LeCunNormal")return new Rp;if(e==="LeCunUniform")return new Fp;{let t={};return t.className=e,t.config={},_z(t)}}else return r instanceof go?r:_z(r)}function IJ(){return new qf}function NJ(){return new Mu}function SJ(r){return new Kf(r)}function TJ(r){return new Xf(r)}function AJ(r){return new Yf(r)}function EJ(r){return new Zf(r)}function DJ(r){return new Jf(r)}function $J(r){return new Wr(r)}function RJ(r){return new Ap(r)}function FJ(r){return new Ep(r)}function OJ(r){return new Dp(r)}function PJ(r){return new $p(r)}function MJ(r){return new Rp(r)}function LJ(r){return new Fp(r)}function zJ(r){return new Qf(r)}var Qz={};Ge(Qz,{Layer:()=>Me,RNN:()=>Eo,RNNCell:()=>Sl,activation:()=>aee,add:()=>gee,alphaDropout:()=>Qee,average:()=>xee,averagePooling1d:()=>m0,averagePooling2d:()=>f0,averagePooling3d:()=>d0,avgPool1d:()=>Nee,avgPool2d:()=>Tee,avgPool3d:()=>Eee,avgPooling1d:()=>See,avgPooling2d:()=>Aee,avgPooling3d:()=>Dee,batchNormalization:()=>vee,bidirectional:()=>Uee,concatenate:()=>yee,conv1d:()=>QQ,conv2d:()=>eee,conv2dTranspose:()=>tee,conv3d:()=>ree,convLstm2d:()=>Vee,convLstm2dCell:()=>Gee,cropping2D:()=>nee,dense:()=>lee,depthwiseConv2d:()=>iee,dot:()=>kee,dropout:()=>uee,elu:()=>qQ,embedding:()=>hee,flatten:()=>pee,gaussianDropout:()=>Jee,gaussianNoise:()=>Zee,globalAveragePooling1d:()=>$ee,globalAveragePooling2d:()=>Ree,globalMaxPool1d:()=>qee,globalMaxPool2d:()=>Kee,globalMaxPooling1d:()=>e3,globalMaxPooling2d:()=>t3,gru:()=>Oee,gruCell:()=>Pee,input:()=>zC,inputLayer:()=>HQ,layerNormalization:()=>Cee,leakyReLU:()=>XQ,lstm:()=>Mee,lstmCell:()=>Lee,masking:()=>ete,maxPool1d:()=>Xee,maxPool2d:()=>Yee,maxPooling1d:()=>r3,maxPooling2d:()=>o3,maxPooling3d:()=>Fee,maximum:()=>bee,minimum:()=>wee,multiply:()=>_ee,permute:()=>dee,prelu:()=>YQ,reLU:()=>KQ,repeatVector:()=>mee,reshape:()=>fee,rnn:()=>Wee,separableConv2d:()=>oee,simpleRNN:()=>zee,simpleRNNCell:()=>Bee,softmax:()=>ZQ,spatialDropout1d:()=>cee,stackedRNNCells:()=>jee,thresholdedReLU:()=>JQ,timeDistributed:()=>Hee,upSampling2d:()=>see,zeroPadding2d:()=>Iee});var BJ=0;function Tx(){return BJ++}var Ax={};function wl(r=""){return r in Ax||(Ax[r]=0),Ax[r]+=1,r+Ax[r].toString()}function Ex(r){return Array.isArray(r)&&Array.isArray(r[0])}function Op(r){return r.length===0?[]:Array.isArray(r[0])?r:[r]}function Fe(r){let e;if(Array.isArray(r)){if(r.length!==1)throw new z(`Expected Tensor length to be 1; got ${r.length}`);e=r[0]}else e=r;return e}function Je(r){if(Array.isArray(r)&&Array.isArray(r[0])){if(r.length===1)return r=r,r[0];throw new z(`Expected exactly 1 Shape; got ${r.length}`)}else return r}function Pp(r){let e=0;for(let t of r)t.shape.length===0?e+=1:e+=t.shape.reduce((o,n)=>o*n);return e}var vz="Variable",Dx=class{constructor(e,t="float32",o=vz,n=!0,s=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=Tx(),o=o==null?vz:o,this.originalName=vx(o),this.name=Cx(this.originalName),this.trainable_=n,this.constraint=s,this.val=Jw(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),VJ(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function VJ(r,e){if(r.shape.toString()!==e.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(r.shape)+" vs. "+JSON.stringify(e.shape))}function ed(r){return r.map(e=>e.read())}function Mp(r){r.forEach(e=>{e[0].write(e[1])})}var At=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},eo=class{constructor(e,t,o,n,s,a,i){this.dtype=e,this.shape=t,this.sourceLayer=o,this.inputs=n,this.callArgs=s,this.outputTensorIndex=i,this.id=Tx(),a!=null&&(this.originalName=vx(a),this.name=Cx(this.originalName)),this.rank=t.length}},GJ=0,_l=class{constructor(e,t){this.callArgs=t,this.id=GJ++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let o of e.inboundLayers)o!=null&&o.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},WJ=0,Me=class extends Q.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=WJ++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let o=this.getClassName();t=fn(o)+"_"+wl(o)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let o;if(e.batchInputShape!=null)o=e.batchInputShape;else if(e.inputShape!=null){let s=null;e.batchSize!=null&&(s=e.batchSize),o=[s].concat(e.inputShape)}this.batchInputShape=o;let n=e.dtype;n==null&&(n=e.inputDType),n==null&&(n="float32"),this.dtype=n}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Vr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new z(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return xr(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return xr(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Ao(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Ao(`Layer ${this.name} is not connected, no input to return.`);return xr(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Ao(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Ao(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return xr(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=yt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=yt(this.inputSpec);if(e.length!==t.length)throw new z(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let o=0;o<e.length;o++){let n=e[o],s=t[o];if(s==null)continue;let a=n.rank;if(s.ndim!=null&&a!==s.ndim)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected ndim=${s.ndim}, found ndim=${a}`);if(s.maxNDim!=null&&a>s.maxNDim)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected max_ndim=${s.maxNDim}, found ndim=${a}`);if(s.minNDim!=null&&a<s.minNDim)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected min_ndim=${s.minNDim}, found ndim=${a}.`);if(s.dtype!=null&&n.dtype!==s.dtype)throw new z(`Input ${o} is incompatible with layer ${this.name} : expected dtype=${s.dtype}, found dtype=${n.dtype}.`);if(s.axes){let i=n.shape;for(let l in s.axes){let u=Number(l),c=s.axes[l],p=u>=0?i[u]:i[i.length+u];if(c!=null&&[c,null].indexOf(p)===-1)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected axis ${u} of input shape to have value ${c} but got shape ${i}.`)}}if(s.shape!=null)for(let i=0;i<s.shape.length;++i){let l=s.shape[i],u=n.shape[i];if(l!=null&&u!=null&&l!==u)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected shape=${s.shape}, found shape=${n.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let o=yt(e),n=!0;for(let a of o)if(!(a instanceof eo)){n=!1;break}let s=!0;for(let a of o)if(a instanceof eo){s=!1;break}if(n===s)throw new z("Arguments to apply() must be all SymbolicTensors or all Tensors");return Is(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let i of yt(e))a.push(i.shape);this.build(xr(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&s&&(this._refCount=1)}if(this.assertInputCompatibility(e),s){let a=this.call(e,t),i=yt(a),l=[];for(let u of i)o.indexOf(u)!==-1&&(u=u.clone()),l.push(u);if(a=xr(l),this.activityRegularizer!=null)throw new Se("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=jJ(e),i=this.computeOutputShape(a),l,u=UJ(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),i!=null&&i.length>0&&Array.isArray(i[0])?l=i.map((c,p)=>new eo(u,c,this,yt(e),t,this.name,p)):l=new eo(u,i,this,yt(e),t,this.name),this.addInboundNode(e,l,null,null,a,i,t),this._refCount++,this.activityRegularizer!=null)throw new Se("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return l}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((o,n)=>{o!=null&&e[n]!=null&&e[n]!==o&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Ao(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let o=JSON.stringify(t.outputShapes);e.indexOf(o)===-1&&e.push(o)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Ao(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Vr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Pp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return ed(e?this.trainableWeights:this.weights)}setWeights(e){V(()=>{let t=this.weights;if(t.length!==e.length)throw new z(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let o=[],n=ed(t);for(let s=0;s<n.length;++s){let a=n[s],i=t[s],l=e[s];if(!y.arraysEqual(a.shape,l.shape))throw new z(`Layer weight shape ${a.shape} not compatible with provided weight shape ${l.shape}`);o.push([i,l])}Mp(o)})}addWeight(e,t,o,n,s,a,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new z(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),o==null&&(o="float32"),this.fastWeightInitDuringBuild&&(n=pt("zeros"));let l=n.apply(t,o),u=new Dx(l,o,e,a,i);return l.dispose(),s!=null&&this.addLoss(()=>s.apply(u.read())),a==null&&(a=!0),a?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=yt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(o=>{if(o!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,o,n,s,a,i=null){let l=yt(e);t=yt(t),o=yt(o),n=yt(n),s=Op(s),a=Op(a);let u=[],c=[],p=[];for(let m of l)u.push(m.sourceLayer),c.push(m.nodeIndex),p.push(m.tensorIndex);new _l({outboundLayer:this,inboundLayers:u,nodeIndices:c,tensorIndices:p,inputTensors:l,outputTensors:t,inputMasks:o,outputMasks:n,inputShapes:s,outputShapes:a},i);for(let m=0;m<t.length;m++)t[m].sourceLayer=this,t[m].nodeIndex=this.inboundNodes.length-1,t[m].tensorIndex=m}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function jJ(r){r=yt(r);let e=[];for(let t of r)e.push(t.shape);return xr(e)}function UJ(r){return"float32"}function SC(r,e,t){if((e==null||t!=null&&t>0)&&(e=r.sourceLayer,t=r.nodeIndex),e.inboundNodes.length===0)return[r];{let o=e.inboundNodes[t];if(o.inboundLayers.length===0)return o.inputTensors;{let n=[];for(let s=0;s<o.inboundLayers.length;s++){let a=o.inputTensors[s],i=o.inboundLayers[s],l=o.nodeIndices[s],u=SC(a,i,l);for(let c of u)n.indexOf(c)===-1&&n.push(c)}return n}}}var ui=class extends Me{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:wl("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new z("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new z("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new z("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let o=e.dtype||"float32";this.batchInputShape=t,this.dtype=o,this.inputSpec=[{shape:t}];let n=new eo(this.dtype,this.batchInputShape,this,[],{},this.name);n.nodeIndex=0,n.tensorIndex=0,new _l({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[n],outputTensors:[n],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new z(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};ui.className="InputLayer";Q.registerClass(ui);function $x(r){if(r.batchShape==null&&r.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(r.batchShape!=null&&r.shape!=null)throw new z("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let e=r.batchShape;r.shape!=null&&e==null&&(e=[null].concat(r.shape));let t=r.dtype;return t==null&&(t="float32"),new ui({batchInputShape:e,name:r.name,dtype:t,sparse:r.sparse}).inboundNodes[0].outputTensors[0]}async function ci(r){if(r==null)return;let e=[],t=[],o=[];for(let n in r){let s=r[n];if(typeof s!="number"){let a=s;e.push(a.data()),t.push(n),o.push(a)}}if(e.length>0){let n=await Promise.all(e);for(let s=0;s<n.length;++s)r[t[s]]=n[s][0];Ae(o)}}function Rx(r){if(r!=null)for(let e in r){let t=r[e];typeof t!="number"&&t.dispose()}}var Cz;(function(r){r[r.SILENT=0]="SILENT",r[r.VERBOSE=1]="VERBOSE"})(Cz||(Cz={}));var HJ=125,kl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},TC=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let o of this.callbacks)await o.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let o of this.callbacks)await o.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let o of this.callbacks)await o.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let o of this.callbacks)await o.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},Iz=class extends kl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let o=t.size==null?0:t.size;this.seen+=o;for(let n in t){let s=t[n];if(typeof s=="number")this.totals.hasOwnProperty(n)||(this.totals[n]=0),this.totals[n]=this.totals[n]+s*o;else{let a;n in this.totals?a=this.totals[n]:this.totals[n]=0;let i=V(()=>ee(this.totals[n],P(s,o)));this.totals[n]=i,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let o of this.params.metrics)this.totals[o]!=null&&(typeof this.totals[o]=="number"?t[o]=this.totals[o]/this.seen:V(()=>{let n=P(me(1,this.seen),this.totals[o]);t[o]=n,this.totals[o].dispose(),Et(t[o])}))}},AC=class extends kl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let o in t)this.history[o]==null&&(this.history[o]=[]),this.history[o].push(t[o])}async syncData(){let e=[],t=[],o=[];for(let s in this.history){let a=this.history[s];for(let i=0;i<a.length;++i)if(typeof a[i]!="number"){let l=a[i];e.push(l.data()),t.push(s),o.push(i)}}let n=await Promise.all(e);for(let s=0;s<n.length;++s)this.history[t[s]][o[s]].dispose(),this.history[t[s]][o[s]]=n[s][0]}},EC=class extends kl{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=HJ),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");y.isNumber(this.yieldEvery)&&(this.maybeWait=JL(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,o){let n=[];this.yield!=null&&(await ci(o),n.push(this.yield(e,t,o))),n.push(mf()),await Promise.all(n)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await ci(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let o=[];this.epochEnd!=null&&(await ci(t),o.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&o.push(mf()),await Promise.all(o)}async onBatchBegin(e,t){this.batchBegin!=null&&(await ci(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let o=[];this.batchEnd!=null&&(await ci(t),o.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?o.push(mf()):y.isNumber(this.yieldEvery)&&o.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(o)}async onTrainBegin(e){this.trainBegin!=null&&(await ci(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await ci(e),await this.trainEnd(e))}};function Fx(r,e){return r==null&&(r={}),r instanceof kl?[r]:Array.isArray(r)&&r[0]instanceof kl?r:yt(r).map(o=>new EC(o,e))}var xo=class{constructor(){}static registerCallbackConstructor(e,t){y.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),xo.checkForDuplicate(t),xo.constructors[e]==null&&(xo.constructors[e]=[]),xo.constructors[e].push(t)}static checkForDuplicate(e){for(let t in xo.constructors)xo.constructors[+t].forEach(n=>{if(n===e)throw new z("Duplicate callback constructor.")})}static clear(){xo.constructors={}}static createCallbacks(e){let t=[];for(let o in xo.constructors){let n=+o;e>=n&&t.push(...xo.constructors[n])}return t.map(o=>new o)}};xo.constructors={};function Ox(r,e,t,o,n,s,a,i,l){let u=new AC,c=[new Iz,...xo.createCallbacks(e)];r!=null&&c.push(...r),c.push(u);let p=new TC(c);return p.setParams({epochs:t,initialEpoch:o,samples:n,steps:s,batchSize:a,verbose:e,doValidation:i,metrics:l}),{callbackList:p,history:u}}function to(r,e={},t=!1){return ai(r,Q.SerializationMap.getMap().classNameMap,e,"layer",t)}function td(r,e){return V(()=>{r.dtype!=="float32"&&(r=r.asType("float32"));let t=ge(Pu(r),e,!0),o=ma(t.shape,Jt()),n=gt(Zr(t,o));return me(r,n)})}function pi(r,e){return V(()=>dt(Pu(ce(e,r)),-1))}function Lp(r,e){return V(()=>dt(It(ce(e,r)),-1))}function vl(r,e){return V(()=>{let t=ce(r,e),o=ar(It(r),Jt(),Number.MAX_VALUE),n=It(me(t,o));return P(100,dt(n,-1))})}function qJ(r,e){return V(()=>{let t=ar(e,Jt(),Number.MAX_VALUE),o=ur(ee(1,t)),n=ar(r,Jt(),Number.MAX_VALUE),s=ur(ee(1,n));return dt(Pu(ce(o,s)),-1)})}function KJ(r,e){return V(()=>{let t=Zr(0,ce(1,P(r,e)));return dt(Pu(t),-1)})}function XJ(r,e){return V(()=>{let t=Zr(0,ce(1,P(r,e)));return dt(t,-1)})}function YJ(r,e){return V(()=>{let t=ge(P(r,e),-1),o=cr(P(ce(1,r),e),-1);return Zr(0,ee(1,ce(o,t)))})}function ZJ(r,e){return V(()=>{let t=Math.log(2),o=ce(e,r),n=ce(ee(o,xs(P(-2,o))),t);return dt(n,-1)})}function Lu(r,e,t=!1){return V(()=>{if(t)e=ya(e);else{let o=ge(e,e.shape.length-1,!0);e=me(e,o)}return e=ar(e,Jt(),1-Jt()),He(ge(P(r.toFloat(),ur(e)),e.shape.length-1))})}function zp(r,e,t=!1){return V(()=>{let o=gs(fz(r)).toInt();e=ar(e,Jt(),1-Jt());let n=e.shape,s=fs(o,n[n.length-1]).reshape(n);return Lu(s,e,t)})}function JJ(r,e){if(!y.arraysEqual(r.shape,e.shape))throw new z(`logits and labels must have the same shape, but got shapes ${JSON.stringify(r.shape)} and ${JSON.stringify(e.shape)}`);return V(()=>{let t=e.relu(),o=e.abs().neg();return t.sub(e.mul(r)).add(o.exp().log1p())})}function Bp(r,e){return V(()=>{let t;return t=ar(e,Jt(),1-Jt()),t=ur(me(t,ce(1,t))),dt(JJ(r,t),-1)})}function QJ(r,e){return V(()=>{let t=ar(r,Jt(),1),o=ar(e,Jt(),1);return ge(P(r,ur(me(t,o))),-1)})}function eQ(r,e){return V(()=>{let t=ur(ee(Jt(),e));return dt(ce(e,P(r,t)),-1)})}function rd(r,e){return V(()=>{let t=td(r,-1),o=td(e,-1),n=P(t,o);return He(ge(n,-1))})}var od={meanSquaredError:pi,meanAbsoluteError:Lp,meanAbsolutePercentageError:vl,meanSquaredLogarithmicError:qJ,squaredHinge:KJ,hinge:XJ,categoricalHinge:YJ,logcosh:ZJ,categoricalCrossentropy:Lu,sparseCategoricalCrossentropy:zp,binaryCrossentropy:Bp,kullbackLeiblerDivergence:QJ,poisson:eQ,cosineProximity:rd};function Px(r){if(typeof r=="string"){if(r in od)return od[r];let e=`Unknown loss ${r}`;throw r.toLowerCase().includes("softmaxcrossentropy")&&(e=`Unknown loss ${r}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new z(e)}else return r}function nd(r,e){return V(()=>{let t=P(.5,rr(e)),o=Aa(tr(e,t),r.dtype);return dt(Io(r,o),-1)})}function sd(r,e){return V(()=>Aa(Io(ll(r,-1),ll(e,-1)),"float32"))}function Nz(r,e){return V(()=>hr(r.equal(1),e.equal(1)).sum().cast("float32"))}function tQ(r,e){return V(()=>hr(r.equal(1),e.equal(0)).sum().cast("float32"))}function rQ(r,e){return V(()=>hr(r.equal(0),e.equal(1)).sum().cast("float32"))}function DC(r,e){return V(()=>{let t=Nz(r,e),o=rQ(r,e),n=t.add(o);return Dt(tr(n,0),t.div(n),0).cast("float32")})}function Sz(r,e){return V(()=>{let t=Nz(r,e),o=tQ(r,e),n=t.add(o);return Dt(tr(n,0),t.div(n),0).cast("float32")})}function Mx(r,e){return Bp(r,e)}function Lx(r,e){return r.rank===e.rank&&(r=r.squeeze([r.rank-1])),e=e.argMax(-1),e.dtype!==r.dtype&&(e=e.asType(r.dtype)),Io(r,e).asType("float32")}var oQ=pi,nQ=pi,sQ=Lp,iQ=Lp,aQ=vl,lQ=vl,id=Lu,uQ=rd,$C=zp,zx={binaryAccuracy:nd,categoricalAccuracy:sd,precision:DC,categoricalCrossentropy:id,sparseCategoricalCrossentropy:$C,mse:oQ,MSE:nQ,mae:sQ,MAE:iQ,mape:aQ,MAPE:lQ,cosine:uQ};function Tz(r){if(typeof r=="string"&&r in zx)return zx[r];if(typeof r!="string"&&r!=null)return r;throw new z(`Unknown metric ${r}`)}function ad(r){if(Vo(r!==null,`Unknown LossOrMetricFn ${r}`),typeof r=="string")return r;{let e;for(let t of Object.keys(od))if(od[t]===r){e=t;break}if(e!==void 0)return e;for(let t of Object.keys(zx))if(zx[t]===r){e=t;break}return e!==void 0?e:r.name}}function Az(r){let e={Adagrad:()=>bu.adagrad(.01),Adadelta:()=>bu.adadelta(1,.95,Jt()),Adam:()=>bu.adam(.001,.9,.999,Jt()),Adamax:()=>bu.adamax(.002,.9,.999,Jt(),0),RMSProp:()=>bu.rmsprop(.001,.9,0,Jt()),SGD:()=>bu.sgd(.01)};if(e.adagrad=e.Adagrad,e.adadelta=e.Adadelta,e.adam=e.Adam,e.adamax=e.Adamax,e.rmsprop=e.RMSProp,e.sgd=e.SGD,r in e)return e[r]();throw new z(`Unknown Optimizer ${r}`)}var Ez=1*1024*1024;function FC(r,e,t=!1){if(r==null||typeof r!="object"||Object.getPrototypeOf(r)!==Object.prototype||!RC(r))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(t){let o=JSON.stringify(r);o.length>Ez&&console.warn(`User-defined metadata of model "${e}" is too large in size (length=${o.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${Ez}.`)}}function RC(r){if(r===null)return!0;if(typeof r=="object")if(Object.getPrototypeOf(r)===Object.prototype){let e=Object.keys(r);for(let t of e)if(typeof t!="string"||!RC(r[t]))return!1;return!0}else if(Array.isArray(r)){for(let e of r)if(!RC(e))return!1;return!0}else return!1;else{let e=typeof r;return e==="string"||e==="number"||e==="boolean"}}function Dz(r,e,t,o=console.log){let n=pQ(r),s=["Layer (type)","Output shape","Param #"];n?(e=e||65,t=t||[.45,.85,1]):(e=e||98,t=t||[.33,.55,.67,1]),t[t.length-1]<=1&&(t=t.map(c=>Math.floor(e*c)));let a;if(!n){s.push("Receives inputs"),a=[];for(let c in r.nodesByDepth)a.push(...r.nodesByDepth[c])}o("_".repeat(e)),Bx(s,t,o),o("=".repeat(e));let i=r.layers;for(let c=0;c<i.length;++c)n?mQ(i[c],t,o):fQ(i[c],t,a,o),o((c===i.length-1?"=":"_").repeat(e));r.checkTrainableWeightsConsistency();let l=cQ(r),u=Pp(r.nonTrainableWeights);o(`Total params: ${l+u}`),o(`Trainable params: ${l}`),o(`Non-trainable params: ${u}`),o("_".repeat(e))}function cQ(r){let e;return r.collectedTrainableWeights!=null?e=Pp(r.collectedTrainableWeights):e=Pp(r.trainableWeights),e}function pQ(r){let e=!0,t=[],o=[];for(let n in r.nodesByDepth)t.push(r.nodesByDepth[n]);for(let n of t){if(n.length>1||n.length===1&&n[0].inboundLayers.length>1){e=!1;break}o.push(...n)}if(e)for(let n of r.layers){let s=!1;for(let a of n.inboundNodes)if(o.indexOf(a)!==-1)if(s){e=!1;break}else s=!0;if(!e)break}return e}function Bx(r,e,t=console.log){let o="";for(let n=0;n<r.length;++n)n>0&&(o=o.slice(0,o.length-1)+" "),o+=r[n],o=o.slice(0,e[n]),o+=" ".repeat(e[n]-o.length);t(o)}function mQ(r,e,t){let o;try{o=JSON.stringify(r.outputShape)}catch(i){o="multiple"}let n=r.name,s=r.getClassName(),a=[`${n} (${s})`,o,r.countParams().toString()];Bx(a,e,t)}function fQ(r,e,t,o){let n;try{n=JSON.stringify(r.outputShape)}catch(c){n="multiple"}let s=[];for(let c of r.inboundNodes)if(!(t!=null&&t.length>0&&t.indexOf(c)===-1))for(let p=0;p<c.inboundLayers.length;++p){let m=c.inboundLayers[p].name,f=c.nodeIndices[p],d=c.tensorIndices[p];s.push(`${m}[${f}][${d}]`)}let a=r.name,i=r.getClassName(),l=s.length===0?"":s[0],u=[`${a} (${i})`,n,r.countParams().toString(),l];Bx(u,e,o);for(let c=1;c<s.length;++c)Bx(["","","",s[c]],e,o)}function $z(r,e,t){return(r==="inboundNodes"||r==="outputLayers"||r==="inputLayers")&&e===0&&typeof t=="string"}function zu(r,e){if(r===null)return null;if(typeof r=="string")return Ta(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let t=[],o=r.length;for(let n=0;n<o;++n){let s=r[n];$z(e,n,s)?t.push(s):t.push(zu(s,e))}return t}else{let t={};for(let o of Object.keys(r)){let n=r[o];if(o==="name"&&typeof n=="string")t[o]=n;else{let s=Ta(o);t[s]=zu(n,s)}}return t}}function Vx(r,e){if(r==null)return null;if(typeof r=="string")return fn(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let t=[],o=r.length;for(let n=0;n<o;++n){let s=r[n];$z(e,n,s)?t.push(s):t.push(Vx(s,e))}return t}else{let t={};for(let o of Object.keys(r)){let n=r[o],s=fn(o);(o==="name"||o==="className")&&typeof n=="string"?t[s]=n:t[s]=Vx(n,o)}return t}}var ld="3.3.0";function dQ(r,e){if(r.dtype==null||r.dtype===e.dtype)return e;try{return ne(e,r.dtype)}catch(t){throw new z(`The dtype of the feed (${e.dtype}) can not be cast to the dtype of the key '${r.name}' (${r.dtype}).`)}}var Ss=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Ss)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,o){if(this.id2Value[e.id]==null)this.id2Value[e.id]=dQ(e,t),this.name2Id[e.name]=e.id,o!=null&&(this.id2Mask[e.id]=o);else throw new z(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof eo){if(this.id2Value[e.id]==null)throw new z(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new z(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof eo){if(this.id2Value[e.id]==null)throw new z(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new z(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Ae(this.id2Mask)}},OC={},Rz={};function Bu(r,e,t,o){let n=t==null?!1:t.training,s=Array.isArray(r),a=s?r:[r],i=a.map(d=>d.name),l=[],u=e.names();for(let d of i)u.indexOf(d)!==-1?l.push(e.getValue(d)):l.push(null);o!=null&&(o.maxNumTensors=-Infinity,o.minNumTensors=Infinity);let c=i.join(",")+"|"+e.names().join(","),p,m;if(OC[c]==null){let d=hQ(a,e);p=d.sorted,m=d.recipientCounts,OC[c]=p,Rz[c]=m}p=OC[c],m={},n||Object.assign(m,Rz[c]);let f=new Ss(e);for(let d=0;d<p.length;++d){if(o!=null){let O=Sm().numTensors;O>o.maxNumTensors&&(o.maxNumTensors=O),O<o.minNumTensors&&(o.minNumTensors=O)}let h=p[d],g=h.sourceLayer;if(g instanceof ui)continue;let x=[],b=[],w=[],_=!1;for(let O of h.inputs){let M=f.getValue(O),G=f.getMask(O);x.push(M),b.push(G),G!=null&&(_=!0),n||(m[O.name]--,m[O.name]===0&&!e.hasKey(O)&&i.indexOf(O.name)===-1&&!M.isDisposed&&O.sourceLayer.stateful!==!0&&w.push(M))}_&&(t=t||{},t.mask=b[0]);let k=yt(g.apply(x,t)),D=null;g.supportsMasking&&(D=g.computeMask(x,b));let T=gQ(h),R=Array.isArray(T)?T:[T];for(let O=0;O<R.length;++O){f.hasKey(R[O])||f.add(R[O],k[O],Array.isArray(D)?D[0]:D);let M=i.indexOf(R[O].name);M!==-1&&(l[M]=k[O])}n||Ae(w)}return f.disposeMasks(),s?l:l[0]}function hQ(r,e){y.assert(r!=null&&r.length>0,()=>"Expected at least one fetch, got none");let t=[],o={};if(r.length===1){let n=Fz(r[0],e);t=n.sorted,o=n.recipientMap}else{let n=new Set;for(let s of r){let{sorted:a,recipientMap:i}=Fz(s,e);for(let l of a)n.has(l.name)||(t.push(l),n.add(l.name));for(let l in i)o[l]==null&&(o[l]=new Set),i[l].forEach(u=>o[l].add(u))}}return{sorted:t,recipientCounts:xQ(o)}}function xQ(r){let e={};for(let t in r)e[t]=r[t].size;return e}function Fz(r,e){let t=new Set,o=[],n={};for(let i of e.names())t.add(i);let s=[],a=[];for(s.push(r);s.length>0;){let i=s[s.length-1];if(t.has(i.name)){s.pop();continue}let l=a[a.length-1]===s.length-1;if(i.inputs.length===0||l)s.pop(),o.push(i),t.add(i.name),l&&a.pop();else{a.push(s.length-1);for(let u of i.inputs)n[u.name]==null&&(n[u.name]=new Set),n[u.name].add(i.name),!t.has(u.name)&&s.push(u)}}return{sorted:o,recipientMap:n}}function gQ(r){let e;if(r.sourceLayer.inboundNodes.length===1)e=r.sourceLayer.output;else{let t=null;for(let o=0;o<r.sourceLayer.inboundNodes.length;++o)for(let n of r.sourceLayer.inboundNodes[o].outputTensors)if(n.id===r.id){t=o;break}e=r.sourceLayer.getOutputAt(t)}return e}var Go=class extends Me{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=wl(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],hn(this.inputs).length!==this.inputs.length)throw new z(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);hn(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let w=b.sourceLayer,_=b.nodeIndex,k=b.tensorIndex;this.outputLayers.push(w),this.outputLayersNodeIndices.push(_),this.outputLayersTensorIndices.push(k)}for(let b of this.inputs){let w=b.sourceLayer,_=b.nodeIndex,k=b.tensorIndex;Vo(_===0,"input layer has >1 nodes"),Vo(k===0,"input layer has >1 tensors"),this.inputLayers.push(w),this.inputLayersNodeIndices.push(_),this.inputLayersTensorIndices.push(k)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;b<this.inputLayers.length;b++){let w=this.inputLayers[b];if(!(w instanceof ui))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${b} (0-based) originates from layer type ${w.getClassName()}.`);this.inputNames.push(w.name),this.feedInputShapes.push(w.batchInputShape),this.feedInputNames.push(w.name)}for(let b of this.outputLayers)this.outputNames.push(b.name);this.internalInputShapes=this.inputs.map(b=>b.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let t={},o={},n={},s={},a={},i=[],l=(b,w,_,k,D,T)=>{(k==null||D==null||T==null)&&(k=b.sourceLayer,D=b.nodeIndex,T=b.tensorIndex);let R=k.inboundNodes[D];if(_.indexOf(R)!==-1)throw new Vr(`The tensor ${b.name} at layer "${k.name}" is part of a cycle.`);if(w.indexOf(R)!==-1)return;this.containerNodes.add(Go.nodeKey(k,D)),k.id in a||(a[k.id]=Object.keys(a).length),_.indexOf(R)===-1&&_.push(R);let O=R.inboundLayers.length;for(let M=0;M<O;M++){let G=R.inputTensors[M],j=R.inboundLayers[M],U=R.nodeIndices[M],H=R.tensorIndices[M];l(G,w,_,j,U,H)}for(w.push(R);_.indexOf(R)>=0;)_.splice(_.indexOf(R),1);i.push(R)},u=[],c=[];for(let b of this.outputs)l(b,u,c);let p=i.slice().reverse();for(let b of p){o[b.id]=b,b.id in t||(t[b.id]=0);let w=t[b.id],_=n[b.outboundLayer.id]==null?0:n[b.outboundLayer.id];w=Math.max(w,_),n[b.outboundLayer.id]=w,s[b.outboundLayer.id]=b.outboundLayer,t[b.id]=w;for(let k=0;k<b.inboundLayers.length;k++){let D=b.inboundLayers[k],T=b.nodeIndices[k],R=D.inboundNodes[T],O=t[R.id]==null?0:t[R.id];t[R.id]=Math.max(w+1,O),o[R.id]=R}}let m={};for(let b in t){let w=t[b];w in m||(m[w]=[]),m[w].push(o[b])}let f={};for(let b in n){let w=n[b];w in f||(f[w]=[]),f[w].push(s[b])}let d=Object.keys(f).map(b=>parseInt(b,10)).sort(Bf);this.layers=[];for(let b of d){let w=f[b];w.sort((_,k)=>{let D=a[_.id],T=a[k.id];return D<T?-1:D>T?1:0});for(let _ of w)_ instanceof Go&&this.internalContainerRefs.push(_),this.layers.push(_)}this.layersByDepth=f,d=Object.keys(m).map(b=>parseInt(b,10)).sort(Bf);let h=this.inputs.slice(),g=[];for(let b of d)for(let w of m[b]){let _=w.outboundLayer;if(_!=null){for(let k of w.inputTensors)if(h.indexOf(k)===-1)throw new Vr(`Graph disconnected: cannot obtain value for tensor ${k} at layer "${_.name}". The following previous layers were accessed without issue: ${g}`);for(let k of w.outputTensors)h.push(k);g.push(_.name)}}this.nodesByDepth=m;let x=this.layers.map(b=>b.name);for(let b of x){let w=x.filter(_=>_===b).length;if(w!==1)throw new Vr(`The name "${b}" is used ${w} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(x))}this.outboundNodes=[],this.inboundNodes=[],new _l({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(o=>o.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new z("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let o of this.layers)t.push(...o.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let o={},n=0;for(let a of this.layers)for(let i of a.weights){if(o[i.originalName]!=null)throw new z(`Duplicate weight name: ${i.originalName}`);o[i.originalName]=i,n++}let s=[];for(let a in e){let i=a;if(o[a]==null){let l=a.split("/");i=l.slice(0,-2).concat([l[l.length-1]]).join("/")}if(o[i]!=null)s.push([o[i],e[a]]);else if(t)throw new z(`Provided weight data has no target variable: ${a}`);delete o[i]}if(t){let a=[];for(let i in o)a.push(i);if(a.length>0)throw new z(`${a.length} of ${n} weights are not set: ${a}`)}Mp(s)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${ld}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let o=Vx(this.updatedConfig());return t?JSON.stringify(o):o}call(e,t){return V(()=>{e=yt(e);let o=new Ss;for(let n=0;n<this.inputs.length;++n)o.add(this.inputs[n],e[n]);return Bu(this.outputs,o,t)})}computeMask(e,t){return V(()=>{e=yt(e);let o;return t==null?o=mn(null,e.length):o=yt(t),this.runInternalGraph(e,o)[1]})}computeOutputShape(e){let t=Op(e);if(t.length!==this.inputLayers.length)throw new z(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let o={};for(let i=0;i<t.length;i++){let l=this.inputLayers[i],u=t[i],c=l.name+"_0_0";o[c]=u}let n=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Bf);if(n.length>1)for(let i of n){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer;if(this.inputLayers.map(h=>h.id).indexOf(c.id)!==-1)continue;let p=[];for(let h=0;h<u.inboundLayers.length;h++){let g=u.inboundLayers[h],x=u.nodeIndices[h],b=u.tensorIndices[h],w=`${g.name}_${x}_${b}`,_=o[w];p.push(_)}let m=c.computeOutputShape(xr(p)),f=Op(m),d=c.inboundNodes.indexOf(u);for(let h=0;h<f.length;h++){let g=`${c.name}_${d}_${h}`;o[g]=f[h]}}}let s=[],a=[];for(let i=0;i<this.outputLayers.length;i++){let l=this.outputLayers[i],u=this.outputLayersNodeIndices[i],c=this.outputLayersTensorIndices[i],p=`${l.name}_${u}_${c}`;a.push(p)}for(let i=0;i<a.length;i++){let l=a[i];Vo(l in o),s.push(o[l])}return xr(s)}runInternalGraph(e,t){t==null&&(t=mn(null,e.length));let o={};for(let l=0;l<this.inputs.length;++l){let u=this.inputs[l],c=e[l],p=t[l];o[u.id]=[c,p]}let n=Object.keys(this.nodesByDepth).map(l=>parseInt(l,10)).sort(Bf);for(let l of n){let u=this.nodesByDepth[l];for(let c of u){let p=c.outboundLayer,m=c.inputTensors,f=c.outputTensors,d=new Array;for(let h of m)h.id in o&&d.push(o[h.id]);if(d.length===m.length){let h={},g,x,b,w;if(c.callArgs!=null&&(h=c.callArgs),d.length===1){let[_,k]=d[0];h.mask==null&&(h.mask=k),b=yt(p.call(_,h)),w=yt(p.computeMask(_,k)),g=[_],x=[k]}else g=d.map(_=>_[0]),x=d.map(_=>_[1]),h.mask==null&&(h.mask=x),b=yt(p.call(g,h)),w=yt(p.computeMask(g,x));if(p.activityRegularizer)throw new Se("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let _=0;_<f.length;++_){let k=f[_],D=b[_],T=w[_];o[k.id]=[D,T]}}}}let s=[],a=[],i=[];for(let l of this.outputs){Vo(l.id in o,`Could not compute output ${l.name} : ${l.id}`);let[u,c]=o[l.id];i.push(u.shape),s.push(u),a.push(c)}return[s,a,i]}buildNodeConversionMap(e){let t={},o;for(let n of this.layers){o=n instanceof Go?1:0;for(let s=0;s<n.inboundNodes.length;s++){let a=Go.nodeKey(n,s);this.containerNodes.has(a)&&(t[a]=o,o+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new z(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new z("Provide either a layer name or layer index");for(let o of this.layers)if(o.name===e)return o;throw new z(`No such layer: ${e}`)}calculateLosses(){return V(()=>{let e=[];for(let t of this.layers)for(let o=0;o<t.inboundNodes.length;++o){let n=Go.nodeKey(t,o);this.containerNodes.has(n)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),o=[];for(let a of this.layers){let i=a.getClassName(),l=a.getConfig(),u=[];for(let p=0;p<a.inboundNodes.length;p++){let m=a.inboundNodes[p],f=Go.nodeKey(a,p),d={};if(this.containerNodes.has(f)){if(m.callArgs)try{JSON.stringify(m.callArgs),d=m.callArgs}catch(h){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${m.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),d={}}if(m.inboundLayers.length>0){let h=[];for(let g=0;g<m.inboundLayers.length;g++){let x=m.inboundLayers[g],b=m.nodeIndices[g],w=m.tensorIndices[g],_=Go.nodeKey(x,b),k=t[_];k==null&&(k=0),h.push([x.name,k,w,d])}u.push(h)}}}let c={};c.name=a.name,c.className=i,c.config=l,c.inboundNodes=u,o.push(c)}e.layers=o;let n=[];for(let a=0;a<this.inputLayers.length;a++){let i=this.inputLayers[a],l=this.inputLayersNodeIndices[a],u=Go.nodeKey(i,l);if(!this.containerNodes.has(u))continue;let c=t[u];c==null&&(c=0);let p=this.inputLayersTensorIndices[a];n.push([i.name,c,p])}e.inputLayers=n;let s=[];for(let a=0;a<this.outputLayers.length;a++){let i=this.outputLayers[a],l=this.outputLayersNodeIndices[a],u=Go.nodeKey(i,l);if(!this.containerNodes.has(u))continue;let c=t[u];c==null&&(c=0);let p=this.outputLayersTensorIndices[a];s.push([i.name,c,p])}return e.outputLayers=s,e}static fromConfig(e,t,o={},n=!1){let s={},a={};function i(g,x){g.name in a?a[g.name].push(x):a[g.name]=[x]}function l(g,x){let b=[],w;for(let _ of x){let k=_[0],D=_[1],T=_[2];if(w=_[3]==null?{}:_[3],!(k in s)){i(g,x);return}let R=s[k];if(R.inboundNodes.length<=D){i(g,x);return}let O=R.inboundNodes[D];b.push(O.outputTensors[T])}b.length>0&&g.apply(xr(b),w)}function u(g){let x=g.name,b=to(g,t.customObjects!=null?t.customObjects:{});b.setFastWeightInitDuringBuild(n),s[x]=b,g.inboundNodes.forEach(_=>{if(!(_ instanceof Array))throw new z(`Corrupted configuration, expected array for nodeData: ${_}`);i(b,_)})}let c=t.name,p=t.layers;for(let g of p)u(g);for(;!YL(a);)for(let g of p){let x=s[g.name];if(x.name in a){let b=a[x.name];delete a[x.name];for(let w of b)l(x,w)}}let m=[],f=[],d=t.inputLayers;for(let g of d){let x=g[0],b=g[1],w=g[2];Vo(x in s);let k=s[x].inboundNodes[b].outputTensors;m.push(k[w])}let h=t.outputLayers;for(let g of h){let x=g[0],b=g[1],w=g[2];Vo(x in s);let k=s[x].inboundNodes[b].outputTensors;f.push(k[w])}return new e({inputs:m,outputs:f,name:c})}get stateful(){if(this._stateful)throw new z("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){V(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function yQ(r,e,t){let o=e.length;if(r==null||Array.isArray(r)&&r.length===0)return e.map(n=>null);if(o===1)return Array.isArray(r)&&r.length===1?r:typeof r=="object"&&e[0]in r?[r[e[0]]]:[r];if(Array.isArray(r)){if(r.length!==o)throw new Error(`Provided ${t} is an array of ${r.length} element(s), but the model has ${o} outputs. Make sure a set of weights is provided for each model output.`);return r}else if(typeof r=="object"&&Object.keys(r).length>0&&typeof r[Object.keys(r)[0]]=="object"){let n=[];return e.forEach(s=>{s in r?n.push(r[s]):n.push(null)}),n}else throw new Error(`The model has multiple (${o}) outputs, so ${t} must be either an array with ${o} elements or an object with ${e} keys. Provided ${t} not understood: ${JSON.stringify(r)}`)}function Gx(r,e){return yQ(r,e,"classWeight")}async function Wx(r,e,t,o){if(e!=null||o!=null)throw new Error("Support sampleWeight is not implemented yet");if(t!=null){let n=V(()=>{if(r.shape.length===1)return r.clone();if(r.shape.length===2)if(r.shape[1]>1){let i=1;return r.argMax(i)}else{if(r.shape[1]===1)return r.reshape([r.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${r.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${r.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await n.data());Ae(n);let a=[];return s.forEach(i=>{if(t[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);a.push(t[i])}),Vt(a,"float32")}else return null}function Oz(r,e){return P(r,e)}var bQ=32;function Mz(r,e){let t,o,n=e;t=n.xs,o=n.ys,y.assert(t!=null&&o!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${e}`);let s=Pz("input",r.inputNames,t),a=Pz("output",r.outputNames,o),i=s[0].shape[0];y.assert(s.length===r.inputs.length,()=>`LayersModel has ${r.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(r.inputNames)})`),y.assert(a.length===r.outputs.length,()=>`LayersModel has ${r.outputs.length} outputs, but the dataset provides ${a.length} outputs. (Expected output keys: ${JSON.stringify(r.outputNames)})`);for(let l=0;l<s.length;l++)y.assert(s[l].shape[0]===i,()=>`Batch size mismatch: input ${r.inputNames[l]} has ${s[l].shape[0]}; expected ${i} based on input ${r.inputNames[0]}.`);for(let l=0;l<a.length;l++)y.assert(a[l].shape[0]===i,()=>`Batch size mismatch: output ${r.outputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${r.inputNames[0]}.`);return{xs:s,ys:a}}function Pz(r,e,t){if(t instanceof Ve)return[t];if(Array.isArray(t))return y.assert(t.length===e.length,()=>`Received an array of ${t.length} Tensors, but expected ${e.length} to match the ${r} keys ${e}.`),t;{let o=[];for(let n of e){if(t[n]==null)throw new z(`The feature data generated by the dataset lacks the required ${r} key '${n}'.`);o.push(t[n])}return o}}function wQ(r){if(r.length===3)throw new Se("Validation with sample weights is not implemented yet.");return{xs:r[0],ys:r[1]}}async function zz(r,e,t){let o=t.batchesPerEpoch!=null;if(y.assert(r.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),y.assert(t!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),y.assert(t.epochs!=null&&t.epochs>0&&Number.isInteger(t.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${t.epochs}`),y.assert(!o||t.batchesPerEpoch>0&&Number.isInteger(t.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${t.batchesPerEpoch}`),y.assert(t.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;try{let n=t.validationData!=null,s,a;if(n)if(Lz(t.validationData))y.assert(t.validationBatches==null||t.validationBatches>0&&Number.isInteger(t.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${t.validationBatches}`);else{let g=wQ(t.validationData);s=g.xs,a=g.ys}let i=r.makeTrainFunction(),l=r.getDedupedMetricsNames(),u;n?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=Fx(t.callbacks,t.yieldEvery),p=t.verbose==null?1:t.verbose,{callbackList:m,history:f}=Ox(c,p,t.epochs,null,null,_Q(e,t),null,n,u);m.setModel(r),r.history=f,await m.onTrainBegin(),r.stopTraining_=!1;let d=t.initialEpoch==null?0:t.initialEpoch,h=await e.iterator();for(;d<t.epochs;){let g={};await m.onEpochBegin(d);let x=0,b=0;for(o||(h=await e.iterator());o?x<t.batchesPerEpoch:!0;){let w=await h.next();if(o&&w.done){console.warn(`You provided \`batchesPerEpoch\` as ${t.batchesPerEpoch}, but your dataset iterator ran out of data after ${x} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${t.batchesPerEpoch*t.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(w.value!=null){let{xs:_,ys:k}=Mz(r,w.value),D={};D.batch=b,D.size=_[0].shape[0],await m.onBatchBegin(b,D);let T=[];if(t.classWeight!=null){let M=Gx(t.classWeight,r.outputNames);for(let G=0;G<M.length;++G)T.push(await Wx(k[G],null,M[G]))}let R=_.concat(k).concat(T),O=i(R);Ae(R);for(let M=0;M<l.length;++M){let G=l[M],j=O[M];D[G]=j,Et(j)}await m.onBatchEnd(b,D),Rx(D),b++,x++}if(o?x>=t.batchesPerEpoch:w.done){if(n){let _;Lz(t.validationData)?_=yt(await r.evaluateDataset(t.validationData,{batches:t.validationBatches})):_=yt(r.evaluate(s,a,{batchSize:t.validationBatchSize==null?bQ:t.validationBatchSize,verbose:0}));for(let k=0;k<r.metricsNames.length;++k)g[`val_${r.metricsNames[k]}`]=_[k]}break}if(r.stopTraining_)break}if(await m.onEpochEnd(d,g),d++,r.stopTraining_)break}return await m.onTrainEnd(),await r.history.syncData(),r.history}finally{r.isTraining=!1}}function _Q(r,e){let t=null;return e.batchesPerEpoch!=null?t=e.batchesPerEpoch:Number.isFinite(r.size)&&(t=r.size),t}function Lz(r){return typeof r.iterator=="function"}function kQ(r){return typeof r.next=="function"}async function Bz(r,e,t){t=t||{};let o=t.batches!=null,n=r.testFunction,s=[];if(t.verbose>0)throw new Se("Verbose mode is not implemented yet.");y.assert(!o||t.batches>0&&Number.isInteger(t.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(t.batches)}`);let a=kQ(e)?e:await e.iterator(),i=0,l=0;for(;o?l<t.batches:!0;){let u=await a.next();if(s=V(()=>{if(u.value){let{xs:c,ys:p}=Mz(r,u.value),m=c.concat(p),f=V(()=>n(m));if(Ae(m),l===0)for(let h=0;h<f.length;++h)s.push(le(0));let d=m[0].shape[0];for(let h=0;h<f.length;++h){let g=f[h],x=s[h];s[h]=V(()=>ee(s[h],P(d,g))),l>0&&Ae(x)}Ae(f),i+=d,++l}return s}),u.done){o&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${t.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let c=s[u];s[u]=me(s[u],i),Ae(c)}return xr(s)}function jx(r){y.assert(r>0&&Number.isInteger(r),()=>`batchSize is required to be a positive integer, but got ${r}`)}function Vp(r,e,t){return r==null?[null]:Array.isArray(r)?r.map(o=>Da(o,e,t-e)):Da(r,e,t-e)}function Ux(r,e){return V(()=>r==null?null:Array.isArray(r)?r.map(t=>Ux(t,e)):Nx(r,e.dtype==="int32"?e:e.toInt()))}function Hx(r,e){let t=[],o=0,n=null;for(;o<r;)n=o+e,n>=r&&(n=r),t.push([o,n]),o=n;return t}async function vQ(r,e,t,o,n,s,a,i,l,u,c,p,m,f,d){n==null&&(n=32),s==null&&(s=1),c==null&&(c=!0),m==null&&(m=0);let h=!1;if(l!=null&&u!=null&&(h=!0),d!=null&&(h=!0,f==null))throw new z("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=r.checkNumSamples(t,n,f,"steps_per_epoch"),x;g!=null&&(x=Gr(0,g)),a==null&&(a=1);let{callbackList:b,history:w}=Ox(i,a,s,m,g,f,n,h,p);b.setModel(r),r.history=w,await b.onTrainBegin(),r.stopTraining_=!1;for(let _=m;_<s;++_){await b.onEpochBegin(_);let k={};if(f!=null)throw new Se("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Se("batch shuffling is not implemneted yet");c&&y.shuffle(x);let D=Vt(x),T=Hx(g,n);for(let R=0;R<T.length;++R){let O={};if(await b.onBatchBegin(R,O),V(()=>{let M=T[R][0],G=T[R][1],j=Da(D,M,G-M);O.batch=R,O.size=G-M;let U=Ux(t,j),H=e(U);for(let q=0;q<o.length;++q){let X=o[q],oe=H[q];O[X]=oe,Et(oe)}if(R===T.length-1&&h){let q=r.testLoop(l,u,n);for(let X=0;X<o.length;++X){let oe=o[X],Y=q[X];Et(Y),k["val_"+oe]=Y}}}),await b.onBatchEnd(R,O),Rx(O),r.stopTraining_)break}D.dispose()}if(await b.onEpochEnd(_,k),r.stopTraining_)break}return await b.onTrainEnd(),await r.history.syncData(),r.history}async function Vz(r,e,t,o={}){if(r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;let n,s,a,i,l,u,c;try{let p=o.batchSize==null?32:o.batchSize;jx(p);let m=!1,f=await r.standardizeUserData(e,t,o.sampleWeight,o.classWeight,m,p);n=f[0],s=f[1],c=f[2];let d=!1,h;if(o.validationData!=null&&o.validationData.length>0){if(d=!0,o.validationData.length===2)a=o.validationData[0],i=o.validationData[1];else throw o.validationData.length===3?new Se("validationData including sample weights is not supported yet."):new z(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${o.validationData} is invalid.`);let T=!0,R=await r.standardizeUserData(a,i,null,null,T,p);l=R[0],u=R[1],h=l.concat(u)}else if(o.validationSplit!=null&&o.validationSplit>0&&o.validationSplit<1){d=!0;let T=Math.floor(n[0].shape[0]*(1-o.validationSplit)),R=n[0].shape[0];l=Vp(n,T,R),n=Vp(n,0,T),u=Vp(s,T,R),s=Vp(s,0,T),h=l.concat(u)}else o.validationSteps!=null&&(d=!0);let g=n.concat(s).concat(c);r.checkTrainableWeightsConsistency();let x=r.makeTrainFunction(),b=r.getDedupedMetricsNames(),w,_;d?(r.makeTestFunction(),w=r.testFunction,_=b.slice().concat(b.map(T=>"val_"+T))):(w=null,h=[],_=b.slice());let k=Fx(o.callbacks,o.yieldEvery);return await vQ(r,x,g,b,p,o.epochs,o.verbose,k,w,h,o.shuffle,_,o.initialEpoch,null,null)}finally{r.isTraining=!1,Cl(n,e),Cl(s,t),Cl(l,a),Cl(u,i),c!=null&&Ae(c)}}function PC(r){let e=[];r instanceof Ve&&(r=[r]);for(let t=0;t<r.length;++t){let o=r[t];if(o.rank===1)e.push(Ea(o,1));else{if(o.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");e.push(o)}}return e}function Cl(r,e){if(r==null)return;let t=[];if(e instanceof Ve)t.push(e.id);else if(Array.isArray(e))e.forEach(n=>t.push(n.id));else if(e!=null)for(let n in e){let s=e[n];t.push(s.id)}let o=[];if(r instanceof Ve)t.indexOf(r.id)===-1&&o.push(r);else if(Array.isArray(r))r.forEach(n=>{t.indexOf(n.id)===-1&&o.push(n)});else if(r!=null)for(let n in r){let s=r[n];t.indexOf(s.id)===-1&&o.push(s)}o.forEach(n=>{n.isDisposed||n.dispose()})}function CQ(r){return r instanceof Ve}function MC(r){return Array.isArray(r)}function Gz(r){return!CQ(r)&&!MC(r)}function Wz(r,e,t,o=!0,n=""){if(e==null||e.length===0){if(r!=null){let a=!1;if(MC(r)&&r.length>0)a=!0;else if(Gz(r)){for(let i in r)if(r.hasOwnProperty(i)){a=!0;break}}else a=!0;if(a)throw new z(`Error when checking model ${n} expected no data, but got ${r}`)}return[]}if(r==null)return e.map(a=>null);let s;if(Gz(r)){r=r,s=[];for(let a of e){if(r[a]==null)throw new z(`No data provided for "${a}". Need data for each key in: ${e}`);s.push(r[a])}}else if(MC(r)){if(r=r,r.length!==e.length)throw new z(`Error when checking model ${n}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${e.length} Tensor(s), but instead got the following list of Tensor(s): ${r}`);s=r}else{if(r=r,e.length>1)throw new z(`The model ${n} expects ${e.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${r.shape}`);s=[r]}if(s=PC(s),t!=null)for(let a=0;a<e.length;++a){if(t[a]==null)continue;let i=s[a];if(i.shape.length!==t[a].length)throw new z(`Error when checking ${n}: expected ${e[a]} to have ${t[a].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<t[a].length;++l){if(l===0&&!o)continue;let u=i.shape[l],c=t[a][l];if(c!=null&&c>=0&&u!==c)throw new z(`Error when checking ${n}: expected ${e[a]} to have shape [${t[a]}], but got array with shape [${i.shape}].`)}}return s}function IQ(r,e,t){let o=hn(r.map(s=>s.shape[0]));o.sort();let n=hn(e.map(s=>s.shape[0]));if(n.sort(),o.length>1)throw new z(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(r.map(s=>s.shape))}`);if(n.length>1)throw new z(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(o.length>0&&n.length>0&&!y.arraysEqual(o,n))throw new z(`Input Tensors should have the same number of samples as target Tensors. Found ${o[0]} input sample(s) and ${n[0]} target sample(s).`)}function NQ(r,e,t){let o=[pi,Bp,Lu];for(let n=0;n<r.length;++n){let s=r[n],a=e[n],i=t[n];if(a!=null){if(a===Lu&&s.shape[s.shape.length-1]===1)throw new z(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(o.indexOf(a)!==-1){let l=s.shape.slice(1),u=i.slice(1);for(let c=0;c<l.length;++c){let p=l[c],m=u[c];if(m!=null&&p!==m)throw new z(`A target Tensor with shape ${s.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function jz(r,e,t,o=!0,n=""){let s;if(Array.isArray(r)){if(r.length!==e.length)throw new z(`Error when checking model ${n}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${e.length} Tensor(s), but instead got ${r.length} Tensors(s).`);s=r}else{if(e.length>1)throw new z(`The model expects ${e.length} ${n} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(r.shape)}.`);s=[r]}if(t!=null)for(let a=0;a<e.length;++a){if(t[a]==null)continue;let i=s[a];if(i.shape.length!==t[a].length)throw new z(`Error when checking ${n}: expected ${e[a]} to have ${t[a].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<t[a].length;++l){if(l===0&&!o)continue;let u=i.shape[l],c=t[a][l];if(c!=null&&c!==u)throw new z(`Error when checking ${n}: expected ${e[a]} to have shape ${JSON.stringify(t[a])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function SQ(r,e){if(r==null||Array.isArray(r)&&r.length===0)return e.map(o=>[]);let t;if(typeof r=="string"||typeof r=="function")t=[r];else if(Array.isArray(r)||typeof r=="object")t=r;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${r}`);if(Array.isArray(t))return e.map(o=>t);{let o=[];for(let n of e){let s=t.hasOwnProperty(n)?t[n]:[];Array.isArray(s)||(s=[s]),o.push(s)}return o}}var TQ="layers-model",Wo=class extends Go{constructor(e){super(e);this.isTraining=!1}summary(e,t,o=console.log){if(!this.built)throw new z("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");Dz(this,e,t,o)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=Az(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof zr))throw new z("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new z(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(Px(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new z(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(i=>Px(i))}else{let a=Px(e.loss);this.outputs.forEach(i=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let i=this.internalOutputShapes[a],l=this.outputNames[a];this.feedOutputNames.push(l),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[a])}let o=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Is("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(o.indexOf(a)!==-1)continue;let i=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([i,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let n=SQ(e.metrics,this.outputNames),s=(a,i,l)=>{this.outputNames.length>1&&(i=this.outputNames[a]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([l,a])};Is("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(o.indexOf(a)!==-1)continue;let i=n[a];(u=>{let c="",p,m,f;for(let d of u){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let g=this.internalOutputShapes[a];g[g.length-1]===1||this.lossFunctions[a]===Bp?["accuracy","acc"].indexOf(d)!==-1?m=nd:["crossentropy","ce"].indexOf(d)!==-1&&(m=Mx):this.lossFunctions[a]===zp?["accuracy","acc"].indexOf(d)!==-1?m=Lx:["crossentropy","ce"].indexOf(d)!==-1&&(m=$C):["accuracy","acc"].indexOf(d)!==-1?m=sd:["crossentropy","ce"].indexOf(d)!==-1&&(m=id);let x;["accuracy","acc"].indexOf(d)!==-1?x="acc":["crossentropy","ce"].indexOf(d)!==-1&&(x="ce"),f=m,p=c+x}else f=Tz(d),p=c+ad(d);let h;Is(p,()=>{h=f}),s(a,p,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,o={}){let n=o.batchSize==null?32:o.batchSize;jx(n);let s=!0,a=this.standardizeUserDataXY(e,t,s,n);try{let i=a[0].concat(a[1]);this.makeTestFunction();let l=this.testFunction,u=this.testLoop(l,i,n,o.verbose,o.steps);return xr(u)}finally{Cl(a[0],e),Cl(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),Bz(this,e,t)}checkNumSamples(e,t,o,n="steps"){let s;if(o!=null){if(s=null,t!=null)throw new z(`If ${n} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?s=e[0].shape[0]:s=e.shape[0];else throw new z(`Either the input data should have a defined shape, or ${n} shoud be specified.`);return s}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new z("`outputs` is an empty Array, which is not allowed.");let o=Array.isArray(t),n=o?t:[t],s=this.retrieveSymbolicTensors(n),a=new Ss;if(e instanceof Ve&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new z(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let l=0;l<this.inputs.length;++l)a.add(this.inputs[l],e[l])}else for(let l of this.inputs){let u=e[l.name];if(u==null)throw new z(`No value is provided for the model's input ${l.name}`);a.add(l,u)}let i=Bu(s,a);return o?i:i[0]}retrieveSymbolicTensors(e){let t=mn(null,e.length),o=e.length;for(let n of this.layers){let s=Array.isArray(n.output)?n.output:[n.output],a=s.map(i=>i.name);for(let i=0;i<e.length;++i){let l=a.indexOf(e[i]);if(l!==-1&&(t[i]=s[l],o--),o===0)break}if(o===0)break}if(o>0){let n=[];throw t.forEach((s,a)=>{s==null&&n.push(e[a])}),new z(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(n)}`)}return t}predictLoop(e,t=32,o=!1){return V(()=>{let n=this.checkNumSamples(e);if(o)throw new Se("Verbose predictLoop() is not implemented yet.");let s=Hx(n,t),a=this.outputs.map(i=>[]);for(let i=0;i<s.length;++i)V(()=>{let u=s[i][0],c=s[i][1],p=Vp(e,u,c),m=[];if(Array.isArray(p))for(let d=0;d<p.length;++d)m.push({key:this.inputs[d],value:p[d]});else m.push({key:this.inputs[0],value:p});let f=new Ss(m);return Bu(this.outputs,f)}).forEach((u,c)=>a[c].push(u));return xr(a.map(i=>Ze(i,0)))})}predict(e,t={}){let o=PC(e);jz(o,this.inputNames,this.feedInputShapes,!1);try{let n=t.batchSize==null?32:t.batchSize;return jx(n),this.predictLoop(o,n)}finally{Cl(o,e)}}predictOnBatch(e){jz(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,o=!0,n){if(this.optimizer_==null)throw new Vr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let s=[];for(let a=0;a<this.feedOutputShapes.length;++a){let i=this.feedOutputShapes[a];this.feedLossFns[a]===zp?s.push(i.slice(0,i.length-1).concat([1])):s.push(i)}if(e=Wz(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=Wz(t,this.feedOutputNames,s,!1,"target"),IQ(e,t,null),NQ(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&n!=null&&n>0&&e[0].shape[0]%n!=0)throw new z(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${n}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,o,n,s=!0,a){let[i,l]=this.standardizeUserDataXY(e,t,s,a);if(o!=null)throw new Error("sample weight is not supported yet.");let u=null;if(n!=null){let c=Gx(n,this.outputNames);u=[];for(let p=0;p<c.length;++p)u.push(await Wx(l[p],null,c[p]))}return[i,l,u]}testLoop(e,t,o,n=0,s){return V(()=>{let a=this.checkNumSamples(t,o,s,"steps"),i=[];if(n>0)throw new Se("Verbose mode is not implemented yet.");if(s!=null)throw new Se("steps mode in testLoop() is not implemented yet");{let l=Hx(a,o),u=Vt(Gr(0,a));for(let c=0;c<l.length;++c){let p=l[c][0],m=l[c][1],f=Da(u,p,m-p),d=Ux(t,f),h=e(d);if(c===0)for(let g=0;g<h.length;++g)i.push(le(0));for(let g=0;g<h.length;++g){let x=h[g];i[g]=ee(i[g],P(m-p,x))}}for(let c=0;c<i.length;++c)i[c]=me(i[c],a)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let o=0;o<e.length;++o){let n=e[o],s=n;wC(e,n)>1&&(s+=`_${wC(e.slice(0,o),n)}`),t.push(s)}return t}makeTrainFunction(){return e=>{let t=[],o=e.slice(0,this.inputs.length),n=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],i=()=>{let p=[];for(let h=0;h<this.inputs.length;++h)p.push({key:this.inputs[h],value:o[h]});let m=new Ss(p),f=Bu(this.outputs,m,{training:!0}),d;for(let h=0;h<this.lossFunctions.length;++h){let x=this.lossFunctions[h](n[h],f[h]);s[h]!=null&&(x=Oz(x,s[h]));let b=dt(x);t.push(b),h===0?d=x:d=ee(d,x)}for(let h=0;h<this.metricsTensors.length;++h){let g;if(this.outputs.length>1&&h<this.outputs.length)g=t[h];else{let x=this.metricsTensors[h][0],b=this.metricsTensors[h][1];g=dt(x(n[b],f[b]))}Et(g),a.push(g)}return d=dt(d),this.calculateLosses().forEach(h=>{d=ee(d,h)}),d},l=this.collectedTrainableWeights.map(p=>p.read()),u=!0;return[this.optimizer_.minimize(i,u,l)].concat(a)}}makeTestFunction(){this.testFunction=e=>V(()=>{let t=[],o,n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let u=0;u<this.inputs.length;++u)a.push({key:this.inputs[u],value:n[u]});let i=new Ss(a),l=Bu(this.outputs,i);for(let u=0;u<this.lossFunctions.length;++u){let c=this.lossFunctions[u],p=dt(c(s[u],l[u]));u===0?o=p:o=ee(o,p),t.push(o)}for(let u=0;u<this.metricsTensors.length;++u){let c=this.metricsTensors[u][0],p=this.metricsTensors[u][1],m=dt(c(s[p],l[p]));t.push(m)}return t})}async fit(e,t,o={}){return Vz(this,e,t,o)}async fitDataset(e,t){return zz(this,e,t)}async trainOnBatch(e,t){let o=await this.standardizeUserData(e,t),n=o[0],s=o[1],i=this.makeTrainFunction()(n.concat(s)),l=[];for(let u of i){let c=await u.data();l.push(c[0])}return Ae(i),xr(l)}getNamedWeights(e){let t=[],o=e!=null&&e.trainableOnly,n=o?this.trainableWeights:this.weights,s=this.getWeights(o);for(let a=0;a<n.length;++a)o&&!n[a].trainable||t.push({name:n[a].originalName,tensor:s[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Sm().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Sm().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=fn(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>fn(t))}else{let t=Object.keys(this.loss);e={};let o=this.loss;for(let n of t)if(typeof o[n]=="string")e[n]=fn(o[n]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[fn(ad(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>fn(ad(e)));{let e={};for(let t in this.metrics)e[t]=fn(ad(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=zu(e.optimizer_config),o=to(t),n;if(typeof e.loss=="string")n=Ta(e.loss);else if(Array.isArray(e.loss))n=e.loss.map(a=>Ta(a));else if(e.loss!=null){n={};for(let a in e.loss)n[a]=Ta(e.loss[a])}let s;if(Array.isArray(e.metrics))s=e.metrics.map(a=>Ta(a));else if(e.metrics!=null){s={};for(let a in e.metrics)s[a]=Ta(e.metrics[a])}this.compile({loss:n,metrics:s,optimizer:o})}async save(e,t){if(typeof e=="string"){let u=Nr.getSaveHandlers(e);if(u.length===0)throw new z(`Cannot find any save handlers for URL '${e}'`);if(u.length>1)throw new z(`Found more than one (${u.length}) save handlers for URL '${e}'`);e=u[0]}if(e.save==null)throw new z("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let o=await Nr.encodeWeights(this.getNamedWeights(t)),n=!1,s=null,i={modelTopology:this.toJSON(s,n),format:TQ,generatedBy:`TensorFlow.js tfjs-layers v${ld}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){i.trainingConfig=this.getTrainingConfig();let u="optimizer",{data:c,specs:p}=await Nr.encodeWeights(await this.optimizer.getWeights(),u);o.specs.push(...p),o.data=Nr.concatenateArrayBuffers([o.data,c])}if(this.userDefinedMetadata!=null){let u=!0;FC(this.userDefinedMetadata,this.name,u),i.userDefinedMetadata=this.userDefinedMetadata}return i.weightData=o.data,i.weightSpecs=o.specs,e.save(i)}setUserDefinedMetadata(e){FC(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Wo.className="Model";Q.registerClass(Wo);var LC=class extends Wo{};LC.className="Functional";Q.registerClass(LC);async function Uz(r,e){"modelTopology"in r||(r={modelTopology:r}),r=r;let t=r.modelTopology;t.model_config!=null&&(t=t.model_config);let o=zu(t),n=to(o,e);if(r.weightsManifest!=null){let s=await Nr.loadWeights(r.weightsManifest,r.pathPrefix,n.weights.map(i=>i.originalName)),a={};for(let i of n.weights)a[i.originalName]=s[i.originalName];n.loadWeights(a),Ae(s)}return n}async function Hz(r,e){if(e==null&&(e={}),typeof r=="string"){let t=Nr.getLoadHandlers(r,e);if(t.length===0)t.push(Nr.browserHTTPRequest(r,e));else if(t.length>1)throw new z(`Found more than one (${t.length}) load handlers for URL '${r}'`);r=t[0]}return AQ(r,void 0,e)}async function AQ(r,e,t){if(t==null&&(t={}),r.load==null)throw new z("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let o=await r.load(),n=o.modelTopology;n.model_config!=null&&(n=n.model_config);let s=t.strict==null?!0:t.strict,a=o.weightData!=null&&o.weightSpecs!=null&&s,i=to(zu(n),e,a),l=o.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),o.userDefinedMetadata!=null&&i.setUserDefinedMetadata(o.userDefinedMetadata),o.weightData!=null){if(o.weightSpecs==null)throw new z("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=EQ(o.weightData,o.weightSpecs);i.loadWeights(u,s),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),Ae(u),Ae(c.map(p=>p.tensor))}return i}function EQ(r,e){let t=Nr.decodeWeights(r,e),o={},n=[];return e.forEach(s=>{s.group==="optimizer"?n.push({name:s.name,tensor:t[s.name]}):o[s.name]=t[s.name]}),{modelWeights:o,optimizerWeights:n}}var $a=class extends Wo{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:wl("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(o=>o<0))throw new z(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof $a||e instanceof Wo,o;if(t){if(o=e,o.outputs.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(o.inputs.length!==1)throw new z("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new z("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let n=$x({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(n)}if(t)this.outputs=o.outputs,this.inputs=o.inputs;else{if(e.inboundNodes.length!==1)throw new z(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=SC(this.outputs[0])}this.inboundNodes=[],new _l({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:mn(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(n=>n.shape),outputShapes:this.outputs[0].shape})}else{let n=e.apply(this.outputs[0]);if(Array.isArray(n))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[n],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(Je(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Wo({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,o=console.log){this.built||this.build(),super.summary(e,t,o)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,o={}){if(!this.built)throw new Vr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,o)}async evaluateDataset(e,t){if(!this.built)throw new Vr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,o={}){if(!this.built)throw new Vr("The model needs to be compiled before being used.");return this.model.fit(e,t,o)}async fitDataset(e,t){if(!this.built)throw new Vr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,o={},n=!1){let s,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new z("Legacy serialization format not supported yet.");s=t}else y.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),s=t.layers,delete t.layers,a=t;let i=new e(a);if(!(i instanceof $a))throw new Se(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let l of s){let c=to(l,void 0,n);n&&c.setFastWeightInitDuringBuild(!0),i.add(c)}return i}set stopTraining(e){if(this.model==null)throw new z("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new z("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let o={};o.className=t.getClassName(),o.config=t.getConfig(),e.push(o)}return{name:this.name,layers:e}}};$a.className="Sequential";Q.registerClass($a);function DQ(r){return new Wo(r)}function $Q(r){return new $a(r)}function RQ(r,e){return e==null&&(e={}),Hz(r,e)}function zC(r){return $x(r)}function FQ(r,e){xo.registerCallbackConstructor(r,e)}var yo=class extends Q.Serializable{getConfig(){return{}}},BC=class extends yo{apply(e,t=1){return hz(e,t)}};BC.className="elu";Q.registerClass(BC);var VC=class extends yo{apply(e){return lu(e)}};VC.className="selu";Q.registerClass(VC);var GC=class extends yo{apply(e){return Tr(e)}};GC.className="relu";Q.registerClass(GC);var WC=class extends yo{apply(e){return V(()=>ys(6,Tr(e)))}};WC.className="relu6";Q.registerClass(WC);var jC=class extends yo{apply(e){return e}};jC.className="linear";Q.registerClass(jC);var UC=class extends yo{apply(e){return Xr(e)}};UC.className="sigmoid";Q.registerClass(UC);var HC=class extends yo{apply(e){return xz(e)}};HC.className="hardSigmoid";Q.registerClass(HC);var qC=class extends yo{apply(e){return xs(e)}};qC.className="softplus";Q.registerClass(qC);var KC=class extends yo{apply(e){return gz(e)}};KC.className="softsign";Q.registerClass(KC);var XC=class extends yo{apply(e){return Qs(e)}};XC.className="tanh";Q.registerClass(XC);var ud=class extends yo{apply(e,t=-1){return ya(e,t)}};ud.className="softmax";Q.registerClass(ud);var YC=class extends yo{apply(e,t=-1){return ru(e,t)}};YC.className="logSoftmax";Q.registerClass(YC);var ZC=class extends yo{apply(e,t=1){return V(()=>Xr(e.mul(t)).mul(e))}};ZC.className="swish";Q.registerClass(ZC);function Ts(r){return r.getClassName()}function JC(r,e={}){return ai(r,Q.SerializationMap.getMap().classNameMap,e,"activation")}function As(r){if(r==null){let e={};return e.className="linear",e.config={},JC(e)}if(typeof r=="string"){let e={};return e.className=r,e.config={},JC(e)}else return r instanceof yo?r:JC(r)}function QC(r){if(r!=null&&typeof r!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${r}`)}var e0=class extends Q.Serializable{},Vu=class extends e0{constructor(e){super();QC(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return V(()=>{let t=ht([1]);return this.hasL1&&(t=ee(t,ge(P(this.l1,It(e))))),this.hasL2&&(t=ee(t,ge(P(this.l2,Pu(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Vu.className="L1L2";Q.registerClass(Vu);function qz(r){return QC(r),new Vu({l1:r!=null?r.l1:null,l2:0})}function Kz(r){return QC(r),new Vu({l2:r!=null?r.l2:null,l1:0})}var Xz={l1l2:"L1L2"};function st(r){return Cp(r)}function Yz(r,e={}){return ai(r,Q.SerializationMap.getMap().classNameMap,e,"regularizer")}function bt(r){if(r==null)return null;if(typeof r=="string"){let t={className:r in Xz?Xz[r]:r,config:{}};return Yz(t)}else return r instanceof e0?r:Yz(r)}var cd=class extends Me{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Fe(e);let o=Tr(e);return this.maxValue!=null&&(o=ar(o,0,this.maxValue)),o}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};cd.className="ReLU";Q.registerClass(cd);var pd=class extends Me{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let o=Fe(e);return fa(o,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};pd.className="LeakyReLU";Q.registerClass(pd);var md=class extends Me{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=pt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=bt(e.alphaRegularizer),this.alphaConstraint=Ot(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new z(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=Je(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let n of this.sharedAxes)t[n-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let o={};if(this.sharedAxes!=null)for(let n=1;n<e.length;++n)o[n]=e[n];this.inputSpec=[new At({ndim:e.length,axes:o})],this.built=!0}call(e,t){return e=Fe(e),xa(e,this.alpha.read())}getConfig(){let e={alphaInitializer:kt(this.alphaInitializer),alphaRegularizer:st(this.alphaRegularizer),alphaConstraint:Ft(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};md.className="PReLU";Q.registerClass(md);var fd=class extends Me{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Se(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let o=Fe(e);return hs(o)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};fd.className="ELU";Q.registerClass(fd);var dd=class extends Me{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let o=Fe(e);return o.mul(Aa(o.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};dd.className="ThresholdedReLU";Q.registerClass(dd);var hd=class extends Me{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new ud().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let o=Fe(e);return this.softmax(o,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};hd.className="Softmax";Q.registerClass(hd);function Il(r,e,t){if(typeof r=="number")return mn(r,e);if(r.length!==e)throw new z(`The ${t} argument must be an integer or tuple of ${e} integers. Received: ${r.length} elements.`);for(let o=0;o<e;++o){let n=r[o];if(!cz(n))throw new z(`The ${t} argument must be an integer or tuple of ${e} integers. Received: ${JSON.stringify(r)} including a non-integer number ${n}`)}return r}function bo(r,e,t,o,n=1){if(r==null)return r;let s=e+(e-1)*(n-1),a;return t==="same"?a=r:a=r-s+1,Math.floor((a+o-1)/o)}function gd(r,e,t,o){if(r==null)return null;if(o==="valid")r=r*e+Ns([t-e,0]);else if(o==="same")r=r*e;else throw new z(`Unsupport padding mode: ${o}.`);return r}function xd(r,e){return V(()=>($t(e),e==="channelsFirst"?Ke(r,[0,2,3,1]):r))}function t0(r,e){return V(()=>($t(e),e==="channelsFirst"?Ke(r,[0,2,3,4,1]):r))}function OQ(r,e,t,o=1,n="valid",s,a=1){return V(()=>{if(s==null&&(s=Jr()),$t(s),r.shape.length!==3)throw new z(`The input of a conv1dWithBias operation should be 3, but is ${r.shape.length} instead.`);if(e.shape.length!==3)throw new z(`The kernel for a conv1dWithBias operation should be 3, but is ${e.shape.length} instead`);if(t!=null&&t.shape.length!==1)throw new z(`The bias for a conv1dWithBias operation should be 1, but is ${e.shape.length} instead`);if(s==="channelsFirst"&&(r=Ke(r,[0,2,1])),n==="causal")throw new Se("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=Xl(r,e,o,n==="same"?"same":"valid","NWC",a);return t!=null&&(i=ho(i,t)),i})}function Zz(r,e,t,o=[1,1],n="valid",s,a,i=null){return V(()=>{if(s==null&&(s=Jr()),$t(s),r.rank!==3&&r.rank!==4)throw new z(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${r.rank}.`);if(e.rank!==3&&e.rank!==4)throw new z(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${r.rank}.`);let l=xd(r,s);if(n==="causal")throw new Se("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=rn.conv2d({x:l,filter:e,strides:o,pad:n==="same"?"same":"valid",dilations:a,dataFormat:"NHWC",bias:t,activation:i}),s==="channelsFirst"&&(l=Ke(l,[0,3,1,2])),l})}function PQ(r,e,t,o=[1,1,1],n="valid",s,a){return V(()=>{if(s==null&&(s=Jr()),$t(s),r.rank!==4&&r.rank!==5)throw new z(`conv3dWithBias expects input to be of rank 4 or 5, but received ${r.rank}.`);if(e.rank!==4&&e.rank!==5)throw new z(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${r.rank}.`);let i=t0(r,s);if(n==="causal")throw new Se("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=Lm(i,e,o,n==="same"?"same":"valid","NDHWC",a),t!=null&&(i=ho(i,t)),s==="channelsFirst"&&(i=Ke(i,[0,4,1,2,3])),i})}var Gp=class extends Me{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Gp.verifyArgs(t),this.rank=e,jt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Se(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Il(t.kernelSize,e,"kernelSize"),this.strides=Il(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Qr(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,$t(this.dataFormat),this.activation=As(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=pt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Ot(t.biasConstraint),this.biasRegularizer=bt(t.biasRegularizer),this.activityRegularizer=bt(t.activityRegularizer),this.dilationRate=Il(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new z(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new z(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new z(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Vo("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!_x(e.kernelSize,"number",1,3))throw new z(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Ts(this.activation),useBias:this.useBias,biasInitializer:kt(this.biasInitializer),biasRegularizer:st(this.biasRegularizer),activityRegularizer:st(this.activityRegularizer),biasConstraint:Ft(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Gu=class extends Gp{constructor(e,t){super(e,t);this.kernel=null,Gu.verifyArgs(t),this.filters=t.filters,jt(this.filters,"filters"),this.kernelInitializer=pt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Ot(t.kernelConstraint),this.kernelRegularizer=bt(t.kernelRegularizer)}build(e){e=Je(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new z(`The channel dimension of the input should be defined. Found ${e[t]}`);let o=e[t],n=this.kernelSize.concat([o,this.filters]);this.kernel=this.addWeight("kernel",n,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:o}}],this.built=!0}call(e,t){return V(()=>{e=Fe(e);let o,n=this.bias==null?null:this.bias.read(),s=kx(this.activation.getClassName());if(s!=null&&this.rank===2)o=Zz(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate,s);else{if(this.rank===1)o=OQ(e,this.kernel.read(),n,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)o=Zz(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)o=PQ(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Se("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(o=this.activation.apply(o))}return o})}computeOutputShape(e){e=Je(e);let t=[],o=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let s=0;s<o.length;++s){let a=bo(o[s],this.kernelSize[s],this.padding,this.strides[s],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[s]);t.push(a)}let n=[e[0]];return this.dataFormat==="channelsLast"?(n=n.concat(t),n.push(this.filters)):(n.push(this.filters),n=n.concat(t)),n}getConfig(){let e={filters:this.filters,kernelInitializer:kt(this.kernelInitializer),kernelRegularizer:st(this.kernelRegularizer),kernelConstraint:Ft(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new z(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Nl=class extends Gu{constructor(e){super(2,e);Nl.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!_x(e.kernelSize,"number",1,2))throw new z(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Nl.className="Conv2D";Q.registerClass(Nl);var Wu=class extends Gu{constructor(e){super(3,e);Wu.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new z(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Wu.className="Conv3D";Q.registerClass(Wu);var yd=class extends Nl{constructor(e){super(e);if(this.inputSpec=[new At({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new z(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=Je(e),e.length!==4)throw new z("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new z("The channel dimension of the inputs should be defined. Found `None`.");let o=e[t],n=this.kernelSize.concat([this.filters,o]);this.kernel=this.addWeight("kernel",n,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new At({ndim:4,axes:{[t]:o}})],this.built=!0}call(e,t){return V(()=>{let o=Fe(e);if(o.shape.length!==4)throw new z(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${o.shape.length}`);let n=o.shape,s=n[0],a,i;this.dataFormat==="channelsFirst"?(a=2,i=3):(a=1,i=2);let l=n[a],u=n[i],c=this.kernelSize[0],p=this.kernelSize[1],m=this.strides[0],f=this.strides[1],d=gd(l,m,c,this.padding),h=gd(u,f,p,this.padding),g=[s,d,h,this.filters];this.dataFormat!=="channelsLast"&&(o=Ke(o,[0,2,3,1]));let x=Yl(o,this.kernel.read(),g,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(x=Ke(x,[0,3,1,2])),this.bias!=null&&(x=ho(x,this.bias.read(),this.dataFormat)),this.activation!=null&&(x=this.activation.apply(x)),x})}computeOutputShape(e){e=Je(e);let t=e.slice(),o,n,s;this.dataFormat==="channelsFirst"?(o=1,n=2,s=3):(o=3,n=1,s=2);let a=this.kernelSize[0],i=this.kernelSize[1],l=this.strides[0],u=this.strides[1];return t[o]=this.filters,t[n]=gd(t[n],l,a,this.padding),t[s]=gd(t[s],u,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};yd.className="Conv2DTranspose";Q.registerClass(yd);var r0=class extends Gu{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new z("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new z("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new z(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=pt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=bt(t.depthwiseRegularizer),this.depthwiseConstraint=Ot(t.depthwiseConstraint),this.pointwiseInitializer=pt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=bt(t.pointwiseRegularizer),this.pointwiseConstraint=Ot(t.pointwiseConstraint)}build(e){if(e=Je(e),e.length<this.rank+2)throw new z(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new z(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let o=e[t],n=this.kernelSize.concat([o,this.depthMultiplier]),s=[];for(let i=0;i<this.rank;++i)s.push(1);s.push(o*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",n,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",s,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new At({ndim:this.rank+2,axes:{[t]:o}})],this.built=!0}call(e,t){return V(()=>{e=Fe(e);let o;if(this.rank===1)throw new Se("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ke(e,[0,2,3,1])),o=Zm(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(o=ho(o,this.bias.read(),this.dataFormat)),this.activation!=null&&(o=this.activation.apply(o)),this.dataFormat==="channelsFirst"&&(o=Ke(o,[0,3,1,2])),o})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=kt(this.depthwiseInitializer),e.pointwiseInitializer=kt(this.pointwiseInitializer),e.depthwiseRegularizer=st(this.depthwiseRegularizer),e.pointwiseRegularizer=st(this.pointwiseRegularizer),e.depthwiseConstraint=Ft(this.depthwiseConstraint),e.pointwiseConstraint=Ft(this.pointwiseConstraint),e}};r0.className="SeparableConv";var bd=class extends r0{constructor(e){super(2,e)}};bd.className="SeparableConv2D";Q.registerClass(bd);var ju=class extends Gu{constructor(e){super(1,e);ju.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!_x(e.kernelSize,"number",1,1))throw new z(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};ju.className="Conv1D";Q.registerClass(ju);var wd=class extends Me{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return V(()=>{if(e=Fe(e),this.dataFormat==="channelsLast"){let o=Hf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Hf(o,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let o=Hf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Hf(o,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};wd.className="Cropping2D";Q.registerClass(wd);var _d=class extends Me{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,$t(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,az(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],o=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,o]}else{let t=e[1]==null?null:this.size[0]*e[1],o=e[2]==null?null:this.size[1]*e[2];return[e[0],t,o,e[3]]}}call(e,t){return V(()=>{let o=Fe(e),n=o.shape;if(this.dataFormat==="channelsFirst"){o=Ke(o,[0,2,3,1]);let s=this.size[0]*n[2],a=this.size[1]*n[3],i=this.interpolation==="nearest"?o.resizeNearestNeighbor([s,a]):o.resizeBilinear([s,a]);return Ke(i,[0,3,1,2])}else{let s=this.size[0]*n[1],a=this.size[1]*n[2];return this.interpolation==="nearest"?o.resizeNearestNeighbor([s,a]):o.resizeBilinear([s,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};_d.className="UpSampling2D";Q.registerClass(_d);function MQ(r,e,t=[1,1],o="valid",n,s){return V(()=>{n==null&&(n=Jr()),$t(n);let a=xd(r,n);if(r.rank!==4)throw new z(`Input for depthwiseConv2d is required to be 4-D, but is instead ${r.rank}-D`);if(e.rank!==4)throw new z(`depthwiseKernel is required to be 4-D, but is instead ${e.rank}-D`);return a=ds(a,e,t,o==="same"?"same":"valid","NHWC",s),n==="channelsFirst"&&(a=Ke(a,[0,3,1,2])),a})}var kd=class extends Gp{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=pt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Ot(e.depthwiseConstraint),this.depthwiseRegularizer=bt(e.depthwiseRegularizer)}build(e){if(e=Je(e),e.length<4)throw new z(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new z(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let o=e[t],n=[this.kernelSize[0],this.kernelSize[1],o,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",n,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[o*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{e=Fe(e);let o=MQ(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(o=ho(o,this.bias.read(),this.dataFormat)),this.activation!=null&&(o=this.activation.apply(o)),o})}computeOutputShape(e){e=Je(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],o=this.dataFormat==="channelsFirst"?e[3]:e[2],n=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,s=bo(t,this.kernelSize[0],this.padding,this.strides[0]),a=bo(o,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],n,s,a]:[e[0],s,a,n]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=kt(this.depthwiseInitializer),e.depthwiseRegularizer=st(this.depthwiseRegularizer),e.depthwiseConstraint=Ft(this.depthwiseRegularizer),e}};kd.className="DepthwiseConv2D";Q.registerClass(kd);function o0(r,e,t,o){if(Array.isArray(r)){if(e!=null||t!=null)throw new z("When inputs is an array, neither initialState or constants should be provided");o!=null&&(t=r.slice(r.length-o,r.length),r=r.slice(0,r.length-o)),r.length>1&&(e=r.slice(1,r.length)),r=r[0]}function n(s){return s==null||Array.isArray(s)?s:[s]}return e=n(e),t=n(t),{inputs:r,initialState:e,constants:t}}function n0(r,e,t,o=!1,n,s,a=!1,i=!1){return V(()=>{let l=e.shape.length;if(l<3)throw new z(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Gr(2,l));if(e=Ke(e,u),s!=null)throw new Se("The rnn() functoin of the deeplearn.js backend does not support constants yet.");a&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),n!=null&&(n=n.asType("bool").asType("float32"),n.rank===l-1&&(n=lr(n,-1)),n=Ke(n,u)),o&&(e=Ht(e,0),n!=null&&(n=Ht(n,0)));let c=[],p,m=t,f=e.shape[0],d=mr(e),h;n!=null&&(h=mr(n));for(let x=0;x<f;++x){let b=d[x],w=V(()=>r(b,m));if(n==null)p=w[0],m=w[1];else{let _=V(()=>{let k=h[x],D=rr(k).sub(k),T=w[0].mul(k).add(m[0].mul(D)),R=m.map((O,M)=>w[1][M].mul(k).add(O.mul(D)));return{output:T,newStates:R}});p=_.output,m=_.newStates}i&&c.push(p)}let g;return i&&(g=Bt(c,1)),[p,g,m]})}var Eo=class extends Me{constructor(e){super(e);let t;if(e.cell==null)throw new z("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Wp({cells:e.cell}):t=e.cell,t.stateSize==null)throw new z("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new At({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Gr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Ex(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let o=t[0],n;if(this.returnSequences?n=[e[0],e[1],o]:n=[e[0],o],this.returnState){let s=[];for(let a of t)s.push([e[0],a]);return[n].concat(s)}else return n}computeMask(e,t){return V(()=>{Array.isArray(t)&&(t=t[0]);let o=this.returnSequences?t:null;if(this.returnState){let n=this.states.map(s=>null);return[o].concat(n)}else return o})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let o=0;o<e;++o)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Se("Constants support is not implemented in RNN yet.");Ex(e)&&(e=e[0]),e=e;let o=this.stateful?e[0]:null,n=e.slice(2);this.inputSpec[0]=new At({shape:[o,null,...n]});let s=[e[0]].concat(e.slice(2));if(t!=null)throw new Se("Constants support is not implemented in RNN yet.");this.cell.build(s);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!y.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),a))throw new z(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(i=>new At({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){V(()=>{if(!this.stateful)throw new Ao("Cannot call resetStates() on an RNN Layer that is not stateful.");let o=this.inputSpec[0].shape[0];if(o==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(n=>ht([o,n])):this.states_=[ht([o,this.cell.stateSize])];else if(e==null)Ae(this.states_),this.keptStates!=null&&(Ae(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(n=>ht([o,n])):this.states_[0]=ht([o,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Ae(this.states_);for(let n=0;n<this.states_.length;++n){let s=e[n],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[n]:this.cell.stateSize,i=[o,a];if(!y.arraysEqual(s.shape,i))throw new z(`State ${n} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${s.shape}`);this.states_[n]=s}}this.states_=this.states_.map(n=>Et(n.clone()))})}apply(e,t){let o=t==null?null:t.initialState,n=t==null?null:t.constants;t==null&&(t={});let s=o0(e,o,n,this.numConstants);e=s.inputs,o=s.initialState,n=s.constants;let a=[],i=[];if(o!=null){t.initialState=o,a=a.concat(o),this.stateSpec=[];for(let u of o)this.stateSpec.push(new At({shape:u.shape}));i=i.concat(this.stateSpec)}if(n!=null&&(t.constants=n,a=a.concat(n),this.numConstants=n.length),a[0]instanceof eo){let u=[e].concat(a),c=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=c;let m=super.apply(u,t);return this.inputSpec=p,m}else return super.apply(e,t)}call(e,t){return V(()=>{let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;e=Fe(e),s==null&&(this.stateful?s=this.states_:s=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(s.length!==a)throw new z(`RNN Layer has ${a} state(s) but was passed ${s.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:n},u=n0((d,h)=>{let g=this.cell.call([d].concat(h),i);return[g[0],g.slice(1)]},e,s,this.goBackwards,o,null,this.unroll,this.returnSequences),c=u[0],p=u[1],m=u[2];this.stateful&&this.resetStates(m,n);let f=this.returnSequences?p:c;return this.returnState?[f].concat(m):f})}getInitialState(e){return V(()=>{let t=ht(e.shape);return t=ge(t,[1,2]),t=Ea(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(o=>o>1?Ix(t,[1,o]):t):this.cell.stateSize>1?[Ix(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let o=this.cell.getConfig();return this.getClassName()===Eo.className&&(t.cell={className:this.cell.getClassName(),config:o}),Object.assign({},o,e,t)}static fromConfig(e,t,o={}){let n=t.cell,s=to(n,o);return new e(Object.assign(t,{cell:s}))}};Eo.className="RNN";Q.registerClass(Eo);var Sl=class extends Me{},jp=class extends Sl{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,jt(this.units,"units"),this.activation=As(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=bt(e.kernelRegularizer),this.recurrentRegularizer=bt(e.recurrentRegularizer),this.biasRegularizer=bt(e.biasRegularizer),this.kernelConstraint=Ot(e.kernelConstraint),this.recurrentConstraint=Ot(e.recurrentConstraint),this.biasConstraint=Ot(e.biasConstraint),this.dropout=Ou([1,Ns([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Ou([1,Ns([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Je(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{if(e=e,e.length!==2)throw new z(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let o=e[1];e=e[0];let n=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ra({ones:()=>rr(e),rate:this.dropout,training:n})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ra({ones:()=>rr(o),rate:this.recurrentDropout,training:n}));let s,a=this.dropoutMask,i=this.recurrentDropoutMask;a!=null?s=xn(P(e,a),this.kernel.read()):s=xn(e,this.kernel.read()),this.bias!=null&&(s=ho(s,this.bias.read())),i!=null&&(o=P(o,i));let l=ee(s,xn(o,this.recurrentKernel.read()));return this.activation!=null&&(l=this.activation.apply(l)),[l,l]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ts(this.activation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:st(this.kernelRegularizer),recurrentRegularizer:st(this.recurrentRegularizer),biasRegularizer:st(this.biasRegularizer),activityRegularizer:st(this.activityRegularizer),kernelConstraint:Ft(this.kernelConstraint),recurrentConstraint:Ft(this.recurrentConstraint),biasConstraint:Ft(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};jp.className="SimpleRNNCell";Q.registerClass(jp);var vd=class extends Eo{constructor(e){e.cell=new jp(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:o,training:n,initialState:s})})}static fromConfig(e,t){return new e(t)}};vd.className="SimpleRNN";Q.registerClass(vd);var Up=class extends Sl{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new z("GRUCell does not support reset_after parameter set to true.");this.units=e.units,jt(this.units,"units"),this.activation=As(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=As(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=bt(e.kernelRegularizer),this.recurrentRegularizer=bt(e.recurrentRegularizer),this.biasRegularizer=bt(e.biasRegularizer),this.kernelConstraint=Ot(e.kernelConstraint),this.recurrentConstraint=Ot(e.recurrentConstraint),this.biasConstraint=Ot(e.biasConstraint),this.dropout=Ou([1,Ns([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Ou([1,Ns([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Je(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{if(e=e,e.length!==2)throw new z(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let o=t.training==null?!1:t.training,n=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ra({ones:()=>rr(e),rate:this.dropout,training:o,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ra({ones:()=>rr(n),rate:this.recurrentDropout,training:o,count:3}));let s=this.dropoutMask,a=this.recurrentDropoutMask,i,l,u;0<this.dropout&&this.dropout<1&&(e=P(e,s[0]));let c=xn(e,this.kernel.read());this.useBias&&(c=ho(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(n=P(n,a[0]));let p=this.recurrentKernel.read(),[m,f]=pr(p,[2*this.units,this.units],p.rank-1),d=xn(n,m),[h,g,x]=pr(c,3,c.rank-1),[b,w]=pr(d,2,d.rank-1);i=this.recurrentActivation.apply(ee(h,b)),l=this.recurrentActivation.apply(ee(g,w));let _=xn(P(l,n),f);u=this.activation.apply(ee(x,_));let k=ee(P(i,n),P(ee(1,He(i)),u));return[k,k]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ts(this.activation),recurrentActivation:Ts(this.recurrentActivation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:st(this.kernelRegularizer),recurrentRegularizer:st(this.recurrentRegularizer),biasRegularizer:st(this.biasRegularizer),activityRegularizer:st(this.activityRegularizer),kernelConstraint:Ft(this.kernelConstraint),recurrentConstraint:Ft(this.recurrentConstraint),biasConstraint:Ft(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};Up.className="GRUCell";Q.registerClass(Up);var Cd=class extends Eo{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Up(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:o,training:n,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Cd.className="GRU";Q.registerClass(Cd);var Tl=class extends Sl{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,jt(this.units,"units"),this.activation=As(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=As(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=bt(e.kernelRegularizer),this.recurrentRegularizer=bt(e.recurrentRegularizer),this.biasRegularizer=bt(e.biasRegularizer),this.kernelConstraint=Ot(e.kernelConstraint),this.recurrentConstraint=Ot(e.recurrentConstraint),this.biasConstraint=Ot(e.biasConstraint),this.dropout=Ou([1,Ns([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Ou([1,Ns([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=Je(e);let o=e[e.length-1];this.kernel=this.addWeight("kernel",[o,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let n;if(this.useBias){if(this.unitForgetBias){let s=this.biasInitializer,a=this.units;n=new(t=class extends go{apply(l,u){let c=s.apply([a]),p=new Mu().apply([a]),m=s.apply([a*2]);return IC(IC(c,p),m)}},t.className="CustomInit",t)}else n=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,n,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return V(()=>{let o=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new z(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=e[1],s=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ra({ones:()=>rr(e),rate:this.dropout,training:o,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ra({ones:()=>rr(n),rate:this.recurrentDropout,training:o,count:4}));let a=this.dropoutMask,i=this.recurrentDropoutMask,l,u,c,p;0<this.dropout&&this.dropout<1&&(e=P(e,a[0]));let m=xn(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(n=P(n,i[0])),m=ee(m,xn(n,this.recurrentKernel.read())),this.useBias&&(m=ho(m,this.bias.read()));let[f,d,h,g]=pr(m,4,m.rank-1);l=this.recurrentActivation.apply(f),u=this.recurrentActivation.apply(d),c=ee(P(u,s),P(l,this.activation.apply(h))),p=this.recurrentActivation.apply(g);let x=P(p,this.activation.apply(c));return[x,x,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ts(this.activation),recurrentActivation:Ts(this.recurrentActivation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:st(this.kernelRegularizer),recurrentRegularizer:st(this.recurrentRegularizer),biasRegularizer:st(this.biasRegularizer),activityRegularizer:st(this.activityRegularizer),kernelConstraint:Ft(this.kernelConstraint),recurrentConstraint:Ft(this.recurrentConstraint),biasConstraint:Ft(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Tl.className="LSTMCell";Q.registerClass(Tl);var Id=class extends Eo{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Tl(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:o,training:n,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Id.className="LSTM";Q.registerClass(Id);var Wp=class extends Sl{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return V(()=>{e=e;let o=e.slice(1),n=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?n.push(o.splice(0,i.stateSize.length)):n.push(o.splice(0,1));n.reverse();let s=[],a;for(let i=0;i<this.cells.length;++i){let l=this.cells[i];o=n[i],i===0?a=[e[0]].concat(o):a=[a[0]].concat(o),a=l.call(a,t),s.push(a.slice(1))}o=[];for(let i of s.slice().reverse())o.push(...i);return[a[0]].concat(o)})}build(e){Ex(e)&&(e=e[0]),e=e;let t;this.cells.forEach((o,n)=>{Is(`RNNCell_${n}`,()=>{o.build(e),Array.isArray(o.stateSize)?t=o.stateSize[0]:t=o.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=s=>({className:s.getClassName(),config:s.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,o={}){let n=[];for(let s of t.cells)n.push(to(s,o));return new e({cells:n})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let o of this.cells)t.push(...o.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return ed(e)}setWeights(e){let t=[];for(let o of this.cells){let n=o.weights.length,s=e.splice(n);for(let a=0;a<o.weights.length;++a)t.push([o.weights[a],s[a]])}Mp(t)}};Wp.className="StackedRNNCells";Q.registerClass(Wp);function Ra(r){let{ones:e,rate:t,training:o=!1,count:n=1}=r,s=()=>Sx(e(),t),a=()=>bl(s,e,o);return!n||n<=1?Et(a().clone()):Array(n).fill(void 0).map(a).map(l=>Et(l.clone()))}var LQ=function(r,e){var t={};for(var o in r)Object.prototype.hasOwnProperty.call(r,o)&&e.indexOf(o)<0&&(t[o]=r[o]);if(r!=null&&typeof Object.getOwnPropertySymbols=="function")for(var n=0,o=Object.getOwnPropertySymbols(r);n<o.length;n++)e.indexOf(o[n])<0&&Object.prototype.propertyIsEnumerable.call(r,o[n])&&(t[o[n]]=r[o[n]]);return t};var s0=class extends Eo{constructor(e){if(e.unroll)throw new Se("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Se("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new At({ndim:5})]}call(e,t){return V(()=>{if(this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new z("ConvRNN2D cell does not support constants");let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:o,training:n,initialState:s})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return V(()=>{let{stateSize:t}=this.cell,o=e.shape,n=this.computeSingleOutputShape(o),s=[n[0],...n.slice(2)],a=ht(s);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){V(()=>{if(!this.stateful)throw new Ao("Cannot call resetStates() on an RNN Layer that is not stateful.");let o=this.inputSpec[0].shape,n=this.computeSingleOutputShape(o),s=[n[0],...n.slice(2)];if(o[0]==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>ht(s)):this.states_=[ht(s)];else if(e==null)Ae(this.states_),this.keptStates!=null&&(Ae(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>ht(s)):this.states_[0]=ht(s);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Ae(this.states_);for(let i=0;i<this.states_.length;++i){let l=e[i],u=s;if(!y.arraysEqual(l.shape,u))throw new z(`State ${i} is incompatible with layer ${this.name}: expected shape=${u}, received shape=${l.shape}`);this.states_[i]=l}}this.states_=this.states_.map(i=>Et(i.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:o,kernelSize:n,padding:s,strides:a,dilationRate:i}=this.cell,l=t==="channelsFirst",u=e[l?3:2],c=e[l?4:3],p=bo(u,n[0],s,a[0],i[0]),m=bo(c,n[1],s,a[1],i[1]);return[...e.slice(0,2),...l?[o,p,m]:[p,m,o]]}};s0.className="ConvRNN2D";var Hp=class extends Tl{constructor(e){let{filters:t,kernelSize:o,strides:n,padding:s,dataFormat:a,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,jt(this.filters,"filters"),this.kernelSize=Il(o,2,"kernelSize"),this.kernelSize.forEach(l=>jt(l,"kernelSize")),this.strides=Il(n||1,2,"strides"),this.strides.forEach(l=>jt(l,"strides")),this.padding=s||"valid",Qr(this.padding),this.dataFormat=a||"channelsLast",$t(this.dataFormat),this.dilationRate=Il(i||1,2,"dilationRate"),this.dilationRate.forEach(l=>jt(l,"dilationRate"))}build(e){var t;e=Je(e);let o=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[o]==null)throw new z(`The channel dimension of the input should be defined. Found ${e[o]}`);let n=e[o],s=4,a=this.kernelSize.concat([n,this.filters*s]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*s]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let l;if(this.unitForgetBias){let u=this.biasInitializer,c=this.filters;l=new(t=class extends go{apply(m,f){let d=u.apply([c]),h=Sr([c]),g=u.apply([c*2]);return Sp([d,h,g])}},t.className="CustomInit",t)}else l=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*s],null,l,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return V(()=>{if(e.length!==3)throw new z(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let o=t.training||!1,n=e[0],s=e[1],a=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ra({ones:()=>rr(n),rate:this.dropout,training:o,count:i}));let l=this.dropoutMask,u=(J,ie,ue)=>!ie||!ie[ue]?J:P(ie[ue],J),c=u(n,l,0),p=u(n,l,1),m=u(n,l,2),f=u(n,l,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ra({ones:()=>rr(s),rate:this.recurrentDropout,training:o,count:i}));let d=this.recurrentDropoutMask,h=u(s,d,0),g=u(s,d,1),x=u(s,d,2),b=u(s,d,3),w=3,[_,k,D,T]=pr(this.kernel.read(),i,w),[R,O,M,G]=this.useBias?pr(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,_,R,this.padding),p=this.inputConv(p,k,O,this.padding),m=this.inputConv(m,D,M,this.padding),f=this.inputConv(f,T,G,this.padding);let[j,U,H,q]=pr(this.recurrentKernel.read(),i,w);h=this.recurrentConv(h,j),g=this.recurrentConv(g,U),x=this.recurrentConv(x,H),b=this.recurrentConv(b,q);let X=this.recurrentActivation.apply(ee(c,h)),oe=this.recurrentActivation.apply(ee(p,g)),Y=ee(P(oe,a),P(X,this.activation.apply(ee(m,x)))),re=P(this.recurrentActivation.apply(ee(f,b)),this.activation.apply(Y));return[re,re,Y]})}getConfig(){let e=super.getConfig(),{units:t}=e,o=LQ(e,["units"]),n={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},o,n)}inputConv(e,t,o,n){let s=Yr(e,t,this.strides,n||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return o?ho(s,o,this.dataFormat):s}recurrentConv(e,t){return Yr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Hp.className="ConvLSTM2DCell";Q.registerClass(Hp);var Nd=class extends s0{constructor(e){let t=new Hp(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Nd.className="ConvLSTM2D";Q.registerClass(Nd);var qp=class extends Me{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,o=[];for(let n=0;n<this.noiseShape.length;++n)o.push(this.noiseShape[n]==null?t[n]:this.noiseShape[n]);return o}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e);if(0<this.rate&&this.rate<1){let n=t.training==null?!1:t.training,s=this.getNoiseShape(o);return bl(()=>Sx(o,this.rate,s,this.seed),()=>o,n)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};qp.className="Dropout";Q.registerClass(qp);var Sd=class extends qp{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Sd.className="SpatialDropout1D";Q.registerClass(Sd);var Td=class extends Me{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,jt(this.units,"units"),this.activation=As(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Ot(e.kernelConstraint),this.biasConstraint=Ot(e.biasConstraint),this.kernelRegularizer=bt(e.kernelRegularizer),this.biasRegularizer=bt(e.biasRegularizer),this.activityRegularizer=bt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=Je(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=Je(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e),n=kx(this.activation.getClassName()),s;return n!=null?s=xn(o,this.kernel.read(),n,this.bias?this.bias.read():null):(s=xn(o,this.kernel.read()),this.bias!=null&&(s=ho(s,this.bias.read())),this.activation!=null&&(s=this.activation.apply(s))),s})}getConfig(){let e={units:this.units,activation:Ts(this.activation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:st(this.kernelRegularizer),biasRegularizer:st(this.biasRegularizer),activityRegularizer:st(this.activityRegularizer),kernelConstraint:Ft(this.kernelConstraint),biasConstraint:Ft(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Td.className="Dense";Q.registerClass(Td);var Ad=class extends Me{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=Je(e);for(let t of e.slice(1))if(t==null)throw new z(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],gn(e,1)]}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e);if(this.dataFormat==="channelsFirst"&&o.rank>1){let n=[0];for(let s=2;s<o.rank;++s)n.push(s);n.push(1),o=o.transpose(n)}return dz(o)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Ad.className="Flatten";Q.registerClass(Ad);var Ed=class extends Me{constructor(e){super(e);this.supportsMasking=!0,this.activation=As(e.activation)}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e);return this.activation.apply(o)})}getConfig(){let e={activation:Ts(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Ed.className="Activation";Q.registerClass(Ed);var Dd=class extends Me{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return V(()=>(e=Fe(e),mz(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Dd.className="RepeatVector";Q.registerClass(Dd);var $d=class extends Me{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let o="Total size of new array must be unchanged.",n=t.slice(),s=1,a=null;for(let l=0;l<n.length;++l){let u=n[l];if(this.isUnknown(u))if(a===null)a=l;else throw new z("Can only specifiy one unknown dimension.");else s*=u}let i=gn(e);if(a!==null){if(s===0||i%s!=0)throw new z(o);n[a]=i/s}else if(i!==s)throw new z(o);return n}computeOutputShape(e){let t=!1;for(let o=0;o<e.length;++o)if(this.isUnknown(e[o])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e),n=o.shape,s=n.slice(0,1).concat(this.fixUnknownDimension(n.slice(1),this.targetShape));return o.reshape(s)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};$d.className="Reshape";Q.registerClass($d);var Rd=class extends Me{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Gr(1,e.dims.length+1);if(!y.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new At({ndim:this.dims.length+1})]}computeOutputShape(e){e=Je(e);let t=e.slice();return this.dims.forEach((o,n)=>{t[n+1]=e[o]}),t}call(e,t){return Ke(Fe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Rd.className="Permute";Q.registerClass(Rd);var Fd=class extends Me{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let o=Fe(e),n=-1;return al(tn(o,this.maskValue),n)}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e),n=-1,s=!0,a=al(tn(o,this.maskValue),n,s);return o.mul(a.asType(o.dtype))})}};Fd.className="Masking";Q.registerClass(Fd);var Od=class extends Me{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(yt(e.inputLength))}this.inputDim=e.inputDim,jt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,jt(this.outputDim,"outputDim"),this.embeddingsInitializer=pt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=bt(e.embeddingsRegularizer),this.activityRegularizer=bt(e.activityRegularizer),this.embeddingsConstraint=Ot(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return V(()=>this.maskZero?(e=Fe(e),tn(e,Ce(e))):null)}computeOutputShape(e){if(e=Je(e),this.inputLength==null)return[...e,this.outputDim];let t=yt(this.inputLength);if(t.length!==e.length-1)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let o=0;for(let n=0;n<t.length;++n){let s=t[n],a=e[n+1];if(s!=null&&a!=null&&s!==a)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);s==null&&(t[o]=a),o++}}return[e[0],...t,this.outputDim]}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e);return o.dtype!=="int32"&&(o=Aa(o,"int32")),Nx(this.embeddings.read(),o.as1D()).reshape(Je(this.computeOutputShape(o.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:kt(this.embeddingsInitializer),embeddingsRegularizer:st(this.embeddingsRegularizer),activityRegularizer:st(this.activityRegularizer),embeddingsConstraint:Ft(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Od.className="Embedding";Q.registerClass(Od);var Al=class extends Me{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Se}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let o=e.slice(0,e.length-t.length);for(let n=0;n<t.length;++n){let s=e[e.length-t.length+n],a=t[n];if(s==null||a==null||s<0||a<0)o.push(null);else if(s===1)o.push(a);else if(a===1)o.push(s);else{if(s!==a)throw new z("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));o.push(s)}}return o}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[Je(e)]),e=e,e.length<2)throw new z(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let s of e)s!=null&&s[0]!==null&&t.push(s[0]);if(t=hn(t),t.length>1)throw new z(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let o=e[0]==null?null:e[0].slice(1);for(let s=1;s<e.length;++s){let a=e[s]==null?null:e[s].slice(1);o=this.computeElementwiseOpOutputShape(o,a)}let n=e.map(s=>s.length);e.indexOf(null)===-1&&hn(n).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return V(()=>{if(e=e,this.reshapeRequired){let o=[],n=e.map(s=>s.rank);if(n.indexOf(null)===-1){let s=Ns(n);for(let a of e){let i=a.rank;for(let l=0;l<s-i;++l)a=Ea(a,1);o.push(a)}return this.mergeFunction(o)}else{let s=!1;for(let l of e){let u=l.rank;if(u==null){let c=l.shape,p=c[0],m=c.slice(1).concat([p]),f=l.reshape([p].concat(gn(c.slice(1))));f=Ke(f,[1,0]),f=f.reshape(m),o.push(f),s=!0}else if(u>1){let c=Gr(1,u).concat([0]);o.push(Ke(l,c)),s=!0}else o.push(l)}let a=this.mergeFunction(o),i=a.rank;if(s){if(i==null){let l=a.shape,u=l.length,c=l[u-1],p=[c].concat(l.slice(0,l.length-1));a=Ke(a.reshape([-1,c]),[1,0]).reshape(p)}else if(i>1){let l=[i-1].concat(Gr(0,i-1));a=Ke(a,l)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let n=1;n<e.length;++n){let s=e[n]==null?null:e[n].slice(1);t=this.computeElementwiseOpOutputShape(t,s)}let o=[];for(let n of e)n!=null&&n[0]!==null&&o.push(n[0]);return o=hn(o),o.length===1?t=o.concat(t):t=[null].concat(t),t}computeMask(e,t){return V(()=>{if(t==null)return null;if(!Array.isArray(t))throw new z("`mask` should be an Array");if(!Array.isArray(e))throw new z("`inputs` should be an Array");if(t.length!==e.length)throw new z(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(n=>n==null))return null;t=t.map(n=>n==null?n:lr(n,0));let o=t[0];for(let n=1;n<t.length-1;++n)o=hr(o,t[n]);return o})}},Pd=class extends Al{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let o=1;o<e.length;++o)t=ee(t,e[o]);return t})}};Pd.className="Add";Q.registerClass(Pd);var Md=class extends Al{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let o=1;o<e.length;++o)t=P(t,e[o]);return t})}};Md.className="Multiply";Q.registerClass(Md);var Ld=class extends Al{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let o=1;o<e.length;++o)t=ee(t,e[o]);return P(1/e.length,t)})}};Ld.className="Average";Q.registerClass(Ld);var zd=class extends Al{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0];for(let o=1;o<e.length;++o)t=Zr(t,e[o]);return t})}};zd.className="Maximum";Q.registerClass(zd);var Bd=class extends Al{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0];for(let o=1;o<e.length;++o)t=ys(t,e[o]);return t})}};Bd.className="Minimum";Q.registerClass(Bd);var Vd=class extends Al{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new z("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let n of e)if(n!=null){t=!1;break}if(t)return;let o=[];for(let n=0;n<e.length;++n){let s=e[n].slice();s.splice(this.axis,1);let a=!1;for(let i of o)if(y.arraysEqual(i,s)){a=!0;break}a||o.push(s)}if(o.length>1)throw new z("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return V(()=>Sp(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new z("A `Concatenate` layer should be called on a list of inputs.");let t=e,o=t[0].slice(),n=this.axis<0?o.length+this.axis:this.axis;for(let s of t.slice(1)){if(o[n]==null||s[n]==null){o[n]=null;break}o[n]+=s[n]}return o}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new z("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new z("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new z(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return V(()=>{let o=!0;if(t.forEach(a=>{if(a!=null){o=!1;return}}),o)return null;let n=[];for(let a=0;a<e.length;++a)t[a]==null?n.push(rr(e[a]).asType("bool")):t[a].rank<e[a].rank?n.push(lr(t[a],-1)):n.push(t[a]);let s=Ze(n,this.axis);return Hl(s,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Vd.className="Concatenate";Q.registerClass(Vd);function Gd(r,e){for(;r<0;)r+=e;return r}function zQ(r,e,t){if(r.shape.length>3||e.shape.length>3)throw new Se("batchDot is not implemented for tensors of 4D or higher rank yet");if(y.assert(r.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${r.shape.length}`),y.assert(r.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${e.shape.length}`),typeof t=="number"&&(t=[t,t]),r.dtype==="complex64"||e.dtype==="complex64")throw new Se("batchDot is not implemented for complex64-type Tensors yet.");let o=r.shape.length,n=e.shape.length;t==null&&(t=[o-1,n-2]);let s=t;return V(()=>{let a;if(o>n){a=o-n;let l=[];for(let u=0;u<a;++u)l.push(1);e=e.reshape(e.shape.concat(l))}else if(n>o){a=n-o;let l=[];for(let u=0;u<a;++u)l.push(1);r=r.reshape(r.shape.concat(l))}else a=0;let i;if(r.shape.length===2&&e.shape.length===2)s[0]===s[1]?i=r.mul(e).sum(s[0]):i=r.transpose([1,0]).mul(e).sum(s[1]);else{let l=s[0]!==r.shape.length-1,u=s[1]===e.shape.length-1;i=r.matMul(e,l,u)}if(a>0){let l;o>n?l=o+n-3:l=o-1;let u=[];for(let c=l;c<l+a;++c)u.push(c);i=i.squeeze(u)}return i.shape.length===1&&(i=i.expandDims(1)),i})}var Wd=class extends Al{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){y.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],o=e[1];if(t.length>3||o.length>3)throw new Se("Dot layer does not support tensors of 4D or higher rank yet.");let n=this.interpretAxes(t,o);if(t[n[0]]!==o[n[1]])throw new z(`Dimension incompatibility: ${t[n[0]]} !== ${o[n[1]]}`)}mergeFunction(e){if(e.length!==2)throw new z(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],o=e[1],n;return Array.isArray(this.axes)?n=this.axes.map((s,a)=>Gd(s,e[a].shape.length)):n=[Gd(this.axes,t.shape.length),Gd(this.axes,o.shape.length)],this.normalize&&(t=td(t,n[0]),o=td(o,n[1])),zQ(t,o,n)}interpretAxes(e,t){let o;return Array.isArray(this.axes)?o=this.axes:o=[Gd(this.axes,e.length),Gd(this.axes,t.length)],o}computeOutputShape(e){y.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),o=e[1].slice();if(t.length>3||o.length>3)throw new Se("Dot layer does not support tensors of 4D or higher rank yet.");let n=this.interpretAxes(t,o);t.splice(n[0],1),o.splice(n[1],1),o.splice(0,1);let s=t.concat(o);return s.length===1&&s.push(1),s}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Wd.className="Dot";Q.registerClass(Wd);var jd=class extends Me{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e);return bl(()=>Tp(o.shape,0,this.stddev).add(o),()=>o,t.training||!1)})}};jd.className="GaussianNoise";Q.registerClass(jd);var Ud=class extends Me{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e);return this.rate>0&&this.rate<1?bl(()=>{let s=Math.sqrt(this.rate/(1-this.rate));return o.mul(Tp(o.shape,1,s))},()=>o,t.training||!1):o})}};Ud.className="GaussianDropout";Q.registerClass(Ud);var Hd=class extends Me{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Fe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return V(()=>{if(this.rate<1&&this.rate>0){let o=this._getNoiseShape(e);return bl(()=>{let s=Fe(e),a=1.6732632423543772,i=1.0507009873554805,l=-a*i,u=co(bs(o),this.rate);u=Aa(u,"float32");let c=((1-this.rate)*(1+this.rate*l**2))**-.5,p=-c*l*this.rate;return s.mul(u).add(u.add(-1).mul(l)).mul(c).add(p)},()=>Fe(e),t.training||!1)}return e})}};Hd.className="AlphaDropout";Q.registerClass(Hd);function qd(r,e,t,o,n,s=.001){let a;if(r.rank===2)a=_w(r,e,t,o,n,s);else if(r.rank===3)a=kw(r,e,t,o,n,s);else if(r.rank===4)a=vw(r,e,t,o,n,s);else throw new Se(`batchNormalization is not implemented for array of rank ${r.rank} yet`);return a}function BQ(r,e,t,o,n=.001){return V(()=>{let s=Zc(r,o),a=s.mean,i=s.variance;return[qd(r,a,i,t,e,n),a,i]})}function VQ(r,e,t,o,n=.001){return V(()=>{let s=Zc(r,o),a=s.mean,i=s.variance,l=[];for(let d of Gr(0,r.rank))o.indexOf(d)!==-1?l.push(1):l.push(r.shape[d]);let u=a.reshape(l),c=i.reshape(l),p=e==null?null:e.reshape(l),m=t==null?null:t.reshape(l);return[qd(r,u,c,m,p,n),a,i]})}function GQ(r,e,t,o,n=.001){return y.arraysEqual(o.slice().sort(),Gr(0,r.rank-1))?BQ(r,e,t,o,n):VQ(r,e,t,o,n)}var Kd=class extends Me{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=pt(e.betaInitializer||"zeros"),this.gammaInitializer=pt(e.gammaInitializer||"ones"),this.movingMeanInitializer=pt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=pt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Ot(e.betaConstraint),this.gammaConstraint=Ot(e.gammaConstraint),this.betaRegularizer=bt(e.betaRegularizer),this.gammaRegularizer=bt(e.gammaRegularizer)}build(e){e=Je(e);let t=this.axis>=0?this.axis:this.axis+e.length,o=e[t];if(o==null)throw new z(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new At({ndim:e.length,axes:{[t]:o}})];let n=[o];this.scale&&(this.gamma=this.addWeight("gamma",n,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",n,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",n,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",n,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return V(()=>{let o=t.training==null?!1:t.training,n=Fe(e),s=n.shape,a=s.length,i=Gr(0,a),l=this.axis>=0?this.axis:this.axis+a;i.splice(l,1);let u=mn(1,a);u[l]=s[l];let c=i.slice();c.sort();let p=!y.arraysEqual(c,Gr(0,a).slice(0,a-1)),m=()=>{if(p){let b=this.movingMean.read().reshape(u),w=this.movingVariance.read().reshape(u),_=this.center?this.beta.read().reshape(u):null,k=this.scale?this.gamma.read().reshape(u):null;return qd(n,b,w,_,k,this.epsilon)}else return qd(n,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!o)return m();let[f,d,h]=GQ(n,this.gamma.read(),this.beta.read(),i,this.epsilon),g=(b,w,_)=>{V(()=>{let k=1-_,D=b.read(),T=D.sub(w).mul(k);b.write(D.sub(T))})};return(()=>{g(this.movingMean,d,this.momentum),g(this.movingVariance,h,this.momentum)})(),f})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:kt(this.betaInitializer),gammaInitializer:kt(this.gammaInitializer),movingMeanInitializer:kt(this.movingMeanInitializer),movingVarianceInitializer:kt(this.movingVarianceInitializer),betaRegularizer:st(this.betaRegularizer),gammaRegularizer:st(this.gammaRegularizer),betaConstraint:Ft(this.betaConstraint),gammaConstraint:Ft(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Kd.className="BatchNormalization";Q.registerClass(Kd);var Xd=class extends Me{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=pt(e.betaInitializer||"zeros"),this.gammaInitializer=pt(e.gammaInitializer||"ones"),this.betaRegularizer=bt(e.betaRegularizer),this.gammaRegularizer=bt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=Je(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let s=0;s<this.axis.length;++s)this.axis[s]<0&&(this.axis[s]+=t);for(let s of this.axis)if(s<0||s>=t)throw new Error(`Invalid axis: ${s}`);if(this.axis.length!==hn(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let o=this.axis.map(s=>e[s]),n=!0;this.scale?this.gamma=this.addWeight("gamma",o,"float32",this.gammaInitializer,this.gammaRegularizer,n):this.gamma=null,this.center?this.beta=this.addWeight("beta",o,"float32",this.betaInitializer,this.betaRegularizer,n):this.beta=null,this.built=!0}call(e,t){let o=Fe(e),n=o.shape,s=n.length;return V(()=>{let a=!0,{mean:i,variance:l}=Zc(o,this.axis,a),u=mn(1,s);for(let h of this.axis)u[h]=n[h];let c=h=>h!=null&&h.shape.length!==s&&this.axis!==[s-1]?h.reshape(u):h,p=c(this.gamma.read()),m=c(this.beta.read()),f=[],d=[];for(let h=0;h<s;++h)this.axis.indexOf(h)!==-1?(f.push(n[h]),d.push(1)):(f.push(1),d.push(n[h]));return i=i.tile(f),l=l.tile(f),p=p.tile(d),m=m.tile(d),qd(o,i,l,m,p,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:kt(this.betaInitializer),gammaInitializer:kt(this.gammaInitializer),betaRegularizer:st(this.betaRegularizer),gammaRegularizer:st(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};Xd.className="LayerNormalization";Q.registerClass(Xd);function WQ(r,e,t){return V(()=>{if(r.rank!==4)throw new z(`temporalPadding expects input tensor to be 4-D, but received a ${r.rank}-D tensor.`);if(e==null&&(e=[[1,1],[1,1]]),e.length!==2||e[0].length!==2||e[1].length!==2)throw new z("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(t==null&&(t=Jr()),t!=="channelsLast"&&t!=="channelsFirst")throw new z(`Unknown data format: ${t}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let o;return t==="channelsFirst"?o=[[0,0],[0,0],e[0],e[1]]:o=[[0,0],e[0],e[1],[0,0]],Mr(r,o)})}var Yd=class extends Me{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Jr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new z(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,o;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],o=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new z(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new z(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);o=e.padding[1]}this.padding=[t,o]}this.inputSpec=[new At({ndim:4})]}computeOutputShape(e){e=Je(e);let t,o;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?o=e[3]+this.padding[1][0]+this.padding[1][1]:o=null,[e[0],e[1],t,o]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?o=e[2]+this.padding[1][0]+this.padding[1][1]:o=null,[e[0],t,o,e[3]])}call(e,t){return V(()=>WQ(Fe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Yd.className="ZeroPadding2D";Q.registerClass(Yd);function qx(r,e,t,o,n,s){return V(()=>{$t(n),vC(s),Qr(o),t==null&&(t=[1,1]),o==null&&(o="valid"),n==null&&(n=Jr()),s==null&&(s="max"),r=xd(r,n);let a,i=o==="same"?"same":"valid";return s==="max"?a=ha(r,e,t,i):a=ua(r,e,t,i),n==="channelsFirst"&&(a=Ke(a,[0,3,1,2])),a})}function Jz(r,e,t,o,n,s){return V(()=>{$t(n),vC(s),Qr(o),t==null&&(t=[1,1,1]),o==null&&(o="valid"),n==null&&(n=Jr()),s==null&&(s="max"),r=t0(r,n);let a,i=o==="same"?"same":"valid";return s==="max"?a=Hm(r,e,t,i):a=Pm(r,e,t,i),n==="channelsFirst"&&(a=Ke(a,[0,4,1,2,3])),a})}var i0=class extends Me{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new z(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(jt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new z(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);jt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Qr(this.padding),this.inputSpec=[new At({ndim:3})]}computeOutputShape(e){e=Je(e);let t=bo(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return V(()=>{this.invokeCallHook(e,t),e=Ea(Fe(e),2);let o=this.poolingFunction(Fe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return No(o,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Zd=class extends i0{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return $t(s),Qr(n),qx(e,t,o,n,s,"max")}};Zd.className="MaxPooling1D";Q.registerClass(Zd);var Jd=class extends i0{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return $t(s),Qr(n),qx(e,t,o,n,s,"avg")}};Jd.className="AveragePooling1D";Q.registerClass(Jd);var a0=class extends Me{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new z(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];jt(this.poolSize,"poolSize"),jt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,$t(this.dataFormat),Qr(this.padding),this.inputSpec=[new At({ndim:4})]}computeOutputShape(e){e=Je(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],o=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=bo(t,this.poolSize[0],this.padding,this.strides[0]),o=bo(o,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,o]:[e[0],t,o,e[3]]}call(e,t){return V(()=>(this.invokeCallHook(e,t),this.poolingFunction(Fe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Qd=class extends a0{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return $t(s),Qr(n),qx(e,t,o,n,s,"max")}};Qd.className="MaxPooling2D";Q.registerClass(Qd);var eh=class extends a0{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return $t(s),Qr(n),qx(e,t,o,n,s,"avg")}};eh.className="AveragePooling2D";Q.registerClass(eh);var l0=class extends Me{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new z(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];jt(this.poolSize,"poolSize"),jt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,$t(this.dataFormat),Qr(this.padding),this.inputSpec=[new At({ndim:5})]}computeOutputShape(e){e=Je(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],o=this.dataFormat==="channelsFirst"?e[3]:e[2],n=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=bo(t,this.poolSize[0],this.padding,this.strides[0]),o=bo(o,this.poolSize[1],this.padding,this.strides[1]),n=bo(n,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,o,n]:[e[0],t,o,n,e[4]]}call(e,t){return V(()=>(this.invokeCallHook(e,t),this.poolingFunction(Fe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},th=class extends l0{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return $t(s),Qr(n),Jz(e,t,o,n,s,"max")}};th.className="MaxPooling3D";Q.registerClass(th);var rh=class extends l0{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return $t(s),Qr(n),Jz(e,t,o,n,s,"avg")}};rh.className="AveragePooling3D";Q.registerClass(rh);var u0=class extends Me{constructor(e){super(e);this.inputSpec=[new At({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Se}},oh=class extends u0{constructor(e){super(e||{})}call(e,t){return V(()=>{let o=Fe(e);return dt(o,1)})}};oh.className="GlobalAveragePooling1D";Q.registerClass(oh);var nh=class extends u0{constructor(e){super(e||{})}call(e,t){return V(()=>{let o=Fe(e);return cr(o,1)})}};nh.className="GlobalMaxPooling1D";Q.registerClass(nh);var c0=class extends Me{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,$t(this.dataFormat),this.inputSpec=[new At({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Se}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},sh=class extends c0{call(e,t){return V(()=>{let o=Fe(e);return this.dataFormat==="channelsLast"?dt(o,[1,2]):dt(o,[2,3])})}};sh.className="GlobalAveragePooling2D";Q.registerClass(sh);var ih=class extends c0{call(e,t){return V(()=>{let o=Fe(e);return this.dataFormat==="channelsLast"?cr(o,[1,2]):cr(o,[2,3])})}};ih.className="GlobalMaxPooling2D";Q.registerClass(ih);var p0=class extends Me{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,o={}){let n=t.layer,s=to(n,o);delete t.layer;let a={layer:s};return Object.assign(a,t),new e(a)}},ah=class extends p0{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=Je(e),e.length<3)throw new z(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=Je(e);let t=[e[0]].concat(e.slice(2)),o=this.layer.computeOutputShape(t),n=e[1];return[o[0],n].concat(o.slice(1))}call(e,t){return V(()=>(e=Fe(e),n0((a,i)=>[Fe(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};ah.className="TimeDistributed";Q.registerClass(ah);function jQ(r){li(iz,"BidirectionalMergeMode",r)}var UQ="concat",lh=class extends p0{constructor(e){super(e);let t=e.layer.getConfig(),o={};o.className=e.layer.getClassName(),o.config=t,this.forwardLayer=to(o),t.goBackwards=t.goBackwards!==!0;let n={};if(n.className=e.layer.getClassName(),n.config=t,this.backwardLayer=to(n),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?UQ:e.mergeMode,jQ(this.mergeMode),e.weights)throw new Se("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,o=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,o)),this.backwardLayer.setWeights(e.slice(o))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let o,n,s;return this.returnState&&(s=t.slice(1)),o=t[0],o=o,this.mergeMode==="concat"?(o[o.length-1]*=2,n=[o]):this.mergeMode==null?n=[o,o.slice()]:n=[o],this.returnState?this.mergeMode==null?n.concat(s).concat(s.slice()):[o].concat(s).concat(s.slice()):xr(n)}apply(e,t){let o=t==null?null:t.initialState,n=t==null?null:t.constants;t==null&&(t={});let s=o0(e,o,n,this.numConstants);if(e=s.inputs,o=s.initialState,n=s.constants,Array.isArray(e)&&(o=e.slice(1),e=e[0]),(o==null||o.length===0)&&n==null)return super.apply(e,t);let a=[],i=[];if(o!=null){let u=o.length;if(u%2>0)throw new z("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=o,a.push(...o);let c=o.map(p=>new At({shape:p.shape}));this.forwardLayer.stateSpec=c.slice(0,u/2),this.backwardLayer.stateSpec=c.slice(u/2),i.push(...c)}if(n!=null)throw new Se("Support for constants in Bidirectional layers is not implemented yet.");let l=a[0]instanceof eo;for(let u of a)if(u instanceof eo!==l)throw new z("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(l){let u=[e].concat(a),c=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=c;let m=super.apply(u,t);return this.inputSpec=p,m}else return super.apply(e,t)}call(e,t){return V(()=>{let o=t.initialState,n,s;if(o==null)n=this.forwardLayer.call(e,t),s=this.backwardLayer.call(e,t);else{let l=o.slice(0,o.length/2),u=o.slice(o.length/2);n=this.forwardLayer.call(e,Object.assign(t,{initialState:l})),s=this.backwardLayer.call(e,Object.assign(t,{initialState:u}))}let a;this.returnState&&(Array.isArray(n)&&(a=n.slice(1).concat(s.slice(1))),n=n[0],s=s[0]),this.returnSequences&&(s=Ht(s,1));let i;return this.mergeMode==="concat"?i=Sp([n,s]):this.mergeMode==="sum"?i=ee(n,s):this.mergeMode==="ave"?i=P(.5,ee(n,s)):this.mergeMode==="mul"?i=P(n,s):this.mergeMode==null&&(i=[n,s]),this.returnState?this.mergeMode==null?i.concat(a):[i].concat(a):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Is(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Is(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let o;if(this.returnSequences?this.mergeMode==null?o=[t,t]:o=t:this.mergeMode==null?o=[null,null]:o=null,this.returnState){let s=this.forwardLayer.states.map(a=>null);return Array.isArray(o)?o.concat(s).concat(s):[o].concat(s).concat(s)}else return o}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let o=to(t.layer);if(delete t.layer,t.numConstants!=null)throw new Se("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let n=t;return n.layer=o,new e(n)}};lh.className="Bidirectional";Q.registerClass(lh);function HQ(r){return new ui(r)}function qQ(r){return new fd(r)}function KQ(r){return new cd(r)}function XQ(r){return new pd(r)}function YQ(r){return new md(r)}function ZQ(r){return new hd(r)}function JQ(r){return new dd(r)}function QQ(r){return new ju(r)}function eee(r){return new Nl(r)}function tee(r){return new yd(r)}function ree(r){return new Wu(r)}function oee(r){return new bd(r)}function nee(r){return new wd(r)}function see(r){return new _d(r)}function iee(r){return new kd(r)}function aee(r){return new Ed(r)}function lee(r){return new Td(r)}function uee(r){return new qp(r)}function cee(r){return new Sd(r)}function pee(r){return new Ad(r)}function mee(r){return new Dd(r)}function fee(r){return new $d(r)}function dee(r){return new Rd(r)}function hee(r){return new Od(r)}function gee(r){return new Pd(r)}function xee(r){return new Ld(r)}function yee(r){return new Vd(r)}function bee(r){return new zd(r)}function wee(r){return new Bd(r)}function _ee(r){return new Md(r)}function kee(r){return new Wd(r)}function vee(r){return new Kd(r)}function Cee(r){return new Xd(r)}function Iee(r){return new Yd(r)}function m0(r){return new Jd(r)}function Nee(r){return m0(r)}function See(r){return m0(r)}function f0(r){return new eh(r)}function Tee(r){return f0(r)}function Aee(r){return f0(r)}function d0(r){return new rh(r)}function Eee(r){return d0(r)}function Dee(r){return d0(r)}function $ee(r){return new oh(r)}function Ree(r){return new sh(r)}function e3(r){return new nh(r)}function t3(r){return new ih(r)}function r3(r){return new Zd(r)}function o3(r){return new Qd(r)}function Fee(r){return new th(r)}function Oee(r){return new Cd(r)}function Pee(r){return new Up(r)}function Mee(r){return new Id(r)}function Lee(r){return new Tl(r)}function zee(r){return new vd(r)}function Bee(r){return new jp(r)}function Vee(r){return new Nd(r)}function Gee(r){return new Hp(r)}function Wee(r){return new Eo(r)}function jee(r){return new Wp(r)}function Uee(r){return new lh(r)}function Hee(r){return new ah(r)}var qee=e3,Kee=t3,Xee=r3,Yee=o3;function Zee(r){return new jd(r)}function Jee(r){return new Ud(r)}function Qee(r){return new Hd(r)}function ete(r){return new Fd(r)}var n3={};Ge(n3,{MAPE:()=>pte,MSE:()=>dte,binaryAccuracy:()=>tte,binaryCrossentropy:()=>rte,categoricalAccuracy:()=>nte,categoricalCrossentropy:()=>ste,cosineProximity:()=>lte,mape:()=>mte,meanAbsoluteError:()=>ute,meanAbsolutePercentageError:()=>cte,meanSquaredError:()=>fte,mse:()=>hte,precision:()=>ite,recall:()=>ate,sparseCategoricalAccuracy:()=>ote});function tte(r,e){return nd(r,e)}function rte(r,e){return Mx(r,e)}function ote(r,e){return Lx(r,e)}function nte(r,e){return sd(r,e)}function ste(r,e){return id(r,e)}function ite(r,e){return DC(r,e)}function ate(r,e){return Sz(r,e)}function lte(r,e){return rd(r,e)}function ute(r,e){return Lp(r,e)}function cte(r,e){return vl(r,e)}function pte(r,e){return vl(r,e)}function mte(r,e){return vl(r,e)}function fte(r,e){return pi(r,e)}function dte(r,e){return pi(r,e)}function hte(r,e){return pi(r,e)}var s3={};Ge(s3,{modelFromJSON:()=>Uz});var i3={};Ge(i3,{l1:()=>xte,l1l2:()=>gte,l2:()=>yte});function gte(r){return new Vu(r)}function xte(r){return qz(r)}function yte(r){return Kz(r)}var h0=class extends kl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof Wo))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Kx(r,e){return r<e}function a3(r,e){return r>e}var g0=class extends h0{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Se("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Kx:this.mode==="max"?this.monitorFunc=a3:this.monitor.indexOf("acc")!==-1?this.monitorFunc=a3:this.monitorFunc=Kx,this.monitorFunc===Kx&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Kx?Infinity:-Infinity}async onEpochEnd(e,t){await ci(t);let o=this.getMonitorValue(t);o!=null&&(this.monitorFunc(o-this.minDelta,this.best)?(this.best=o,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function bte(r){return new g0(r)}var wte={earlyStopping:bte};var yn;(function(r){r[r.DT_INVALID=0]="DT_INVALID",r[r.DT_FLOAT=1]="DT_FLOAT",r[r.DT_DOUBLE=2]="DT_DOUBLE",r[r.DT_INT32=3]="DT_INT32",r[r.DT_UINT8=4]="DT_UINT8",r[r.DT_INT16=5]="DT_INT16",r[r.DT_INT8=6]="DT_INT8",r[r.DT_STRING=7]="DT_STRING",r[r.DT_COMPLEX64=8]="DT_COMPLEX64",r[r.DT_INT64=9]="DT_INT64",r[r.DT_BOOL=10]="DT_BOOL",r[r.DT_QINT8=11]="DT_QINT8",r[r.DT_QUINT8=12]="DT_QUINT8",r[r.DT_QINT32=13]="DT_QINT32",r[r.DT_BFLOAT16=14]="DT_BFLOAT16",r[r.DT_FLOAT_REF=101]="DT_FLOAT_REF",r[r.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",r[r.DT_INT32_REF=103]="DT_INT32_REF",r[r.DT_UINT8_REF=104]="DT_UINT8_REF",r[r.DT_INT16_REF=105]="DT_INT16_REF",r[r.DT_INT8_REF=106]="DT_INT8_REF",r[r.DT_STRING_REF=107]="DT_STRING_REF",r[r.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",r[r.DT_INT64_REF=109]="DT_INT64_REF",r[r.DT_BOOL_REF=110]="DT_BOOL_REF",r[r.DT_QINT8_REF=111]="DT_QINT8_REF",r[r.DT_QUINT8_REF=112]="DT_QUINT8_REF",r[r.DT_QINT32_REF=113]="DT_QINT32_REF",r[r.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(yn||(yn={}));var l3;(function(r){let e;(function(t){t[t.LEGACY=0]="LEGACY",t[t.V1=1]="V1",t[t.V2=2]="V2"})(e=r.CheckpointFormatVersion||(r.CheckpointFormatVersion={}))})(l3||(l3={}));var x0={};function _te(r,e){let t={tfOpName:r,category:"custom",inputs:[],attrs:[],customExecutor:e};x0[r]=t}function Xx(r){return x0[r]}function kte(r){delete x0[r]}function C(r,e,t,o,n){let s=e.inputParams[r];if(s&&s.inputIndexStart!==void 0){let i=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?i+1:s.inputIndexEnd;if(s.type==="tensor")return yr(e.inputNames[s.inputIndexStart],t,o,n);if(s.type==="tensors")return e.inputNames.slice(i,l).map(m=>yr(m,t,o,n));let u=yr(e.inputNames.slice(i)[0],t,o,n),c=u.dataSync();return s.type==="number"?c[0]:y.toNestedArray(u.shape,c)}let a=e.attrParams[r];return a&&a.value}function yr(r,e,t,o){let[n,s]=ro(r);if(o!=null){let i=o.getHashTableHandleByName(n);if(i!=null)return i}let a=t.currentContextIds.find(i=>!!e[Yx(n,i)]);return a!==void 0?e[Yx(n,a)][s]:void 0}function u3(r,e,t){return e[Yx(r,t.currentContextId)]}function Es(r,e){let[t,o]=ro(r);return[Yx(t,e&&e.currentContextId),o]}function Yx(r,e){return e?`${r}-${e}`:r}function ro(r){let e=r.split(":");return e.length===1?[r,0]:[e[0],Number(e[e.length-1])]}function uh(r,e,t){let o=C("pad",r,e,t);if(o==="explicit"){o=C("explicitPaddings",r,e,t);let n=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)n[s][0]=o[s*2],n[s][1]=o[s*2+1];return n}return o}function Ds(r){return r.kept?r:Po(r)}var y0={};Ge(y0,{json:()=>vte});var vte=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var b0={};Ge(b0,{json:()=>Cte});var Cte=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var w0={};Ge(w0,{json:()=>Ite});var Ite=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}];var _0={};Ge(_0,{json:()=>Nte});var Nte=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}];var k0={};Ge(k0,{json:()=>Ste});var Ste=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}];var v0={};Ge(v0,{json:()=>Tte});var Tte=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var C0={};Ge(C0,{json:()=>Ate});var Ate=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}];var I0={};Ge(I0,{json:()=>Ete});var Ete=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}];var N0={};Ge(N0,{json:()=>Dte});var Dte=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}];var S0={};Ge(S0,{json:()=>$te});var $te=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}];var T0={};Ge(T0,{json:()=>Rte});var Rte=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var A0={};Ge(A0,{json:()=>Fte});var Fte=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var E0={};Ge(E0,{json:()=>Ote});var Ote=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}];var D0={};Ge(D0,{json:()=>Pte});var Pte=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}];var $0={};Ge($0,{json:()=>Mte});var Mte=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}];var R0={};Ge(R0,{json:()=>Lte});var Lte=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}];var F0={};Ge(F0,{json:()=>zte});var zte=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}];var Zx=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[y0,b0,w0,_0,k0,v0,C0,T0,S0,I0,A0,E0,D0,$0,R0,F0,N0],t=[].concat(...e.map(o=>o.json));this.opMappers=t.reduce((o,n)=>(o[n.tfOpName]=n,o),{})}transformGraph(e,t={}){let o=e.node,n=[],s=[],a=[],i=o.reduce((h,g)=>(h[g.name]=this.mapNode(g),g.op.startsWith("Placeholder")?n.push(h[g.name]):g.op==="Const"?s.push(h[g.name]):(g.input==null||g.input.length===0)&&a.push(h[g.name]),h),{}),l=[],u=[],c={},p={};t!=null&&(c=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));let m=Object.keys(i);m.forEach(h=>{let g=i[h];g.inputNames.forEach(x=>{let[b]=Es(x);g.inputs.push(i[b]),i[b].children.push(g)})}),Object.keys(p).length===0?m.forEach(h=>{let g=i[h];g.children.length===0&&u.push(g)}):Object.keys(p).forEach(h=>{let[g]=Es(h),x=i[g];x!=null&&(x.signatureKey=p[h],u.push(x))}),Object.keys(c).length>0?Object.keys(c).forEach(h=>{let[g]=Es(h),x=i[g];x&&(x.signatureKey=c[h],l.push(x))}):l=n;let f={};e.library!=null&&e.library.function!=null&&(f=e.library.function.reduce((h,g)=>(h[g.signature.name]=this.mapFunction(g),h),{}));let d={nodes:i,inputs:l,outputs:u,weights:s,placeholders:n,signature:t,functions:f};return a.length>0&&(d.initNodes=a),d}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,o)=>(t[e[o].name]=o,t),{})}mapNode(e){let t=Xx(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let o={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(n=>n.startsWith("^")?n.substr(1):n),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(o.inputParams=t.inputs.reduce((n,s)=>(n[s.name]={type:s.type,inputIndexStart:s.start,inputIndexEnd:s.end},n),{})),t.attrs!=null&&(o.attrParams=t.attrs.reduce((n,s)=>{let a=s.type,i;switch(s.type){case"string":i=Jx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=Jx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"string[]":i=sy(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=sy(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number":i=ey(e.attr,s.tfName,s.defaultValue||0),i===void 0&&!!s.tfDeprecatedName&&(i=ey(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number[]":i=ny(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=ny(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool":i=Qx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=Qx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool[]":i=ay(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=ay(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape":i=oy(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=oy(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape[]":i=iy(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=iy(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype":i=ty(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=ty(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype[]":i=ry(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=ry(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"func":i=c3(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=c3(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${s.type} for op: ${e.op}`)}return n[s.name]={value:i,type:a},n},{})),o}mapFunction(e){let t=e.nodeDef,o=[],n=[],s={};t!=null&&(s=t.reduce((p,m)=>(p[m.name]=this.mapNode(m),m.op==="Const"&&n.push(p[m.name]),p),{}));let a=[],i=[];e.signature.inputArg.forEach(p=>{let[m]=Es(p.name),f={name:m,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:O0(p.type),type:"dtype"}},children:[]};f.signatureKey=p.name,a.push(f),s[m]=f}),Object.keys(s).forEach(p=>{let m=s[p];m.inputNames.forEach(f=>{let[d]=Es(f);m.inputs.push(s[d]),s[d].children.push(m)})});let u=e.ret;e.signature.outputArg.forEach(p=>{let[m,f]=Es(u[p.name]),d=s[m];d!=null&&(d.defaultOutput=f,i.push(d))});let c=this.mapArgsToSignature(e);return{nodes:s,inputs:a,outputs:i,weights:n,placeholders:o,signature:c}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,o)=>(t[o.name]=this.mapArgToTensorInfo(o),t),{}),outputs:e.signature.outputArg.reduce((t,o)=>(t[o.name]=this.mapArgToTensorInfo(o,e.ret),t),{})}}mapArgToTensorInfo(e,t){let o=e.name;return t!=null&&(o=t[o]),{name:o,dtype:e.type}}};function Bte(r){let e=W().global;if(typeof e.atob!="undefined")return e.atob(r);if(typeof Buffer!="undefined")return new Buffer(r,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function p3(r,e){let t=Array.isArray(r)?String.fromCharCode.apply(null,r):Bte(r);return e?t:t.toLowerCase()}function Jx(r,e,t,o=!1){let n=r[e];return n!=null?p3(n.s,o):t}function Qx(r,e,t){let o=r[e];return o?o.b:t}function ey(r,e,t){let o=r[e]||{},n=o.i!=null?o.i:o.f!=null?o.f:t;return typeof n=="number"?n:parseInt(n,10)}function O0(r){switch(typeof r=="string"&&(r=yn[r]),r){case yn.DT_FLOAT:return"float32";case yn.DT_INT32:case yn.DT_INT64:case yn.DT_INT8:case yn.DT_UINT8:return"int32";case yn.DT_BOOL:return"bool";case yn.DT_DOUBLE:return"float32";case yn.DT_STRING:return"string";default:return null}}function c3(r,e,t){let o=r[e];return o&&o.func?o.func.name:t}function ty(r,e,t){let o=r[e];return o&&o.type?O0(o.type):t}function ry(r,e,t){let o=r[e];return o&&o.list&&o.list.type?o.list.type.map(n=>O0(n)):t}function m3(r){if(!r.unknownRank)return r.dim!=null?r.dim.map(e=>typeof e.size=="number"?e.size:parseInt(e.size,10)):[]}function oy(r,e,t){let o=r[e];return o&&o.shape?m3(o.shape):t}function ny(r,e,t){let o=r[e];return o?((o.list.f&&o.list.f.length?o.list.f:o.list.i)||[]).map(n=>typeof n=="number"?n:parseInt(n,10)):t}function sy(r,e,t,o=!1){let n=r[e];return n&&n.list&&n.list.s?n.list.s.map(s=>p3(s,o)):t}function iy(r,e,t){let o=r[e];return o&&o.list&&o.list.shape?o.list.shape.map(n=>m3(n)):t}function ay(r,e,t){let o=r[e];return o&&o.list&&o.list.b?o.list.b:t}var P0=class{constructor(e,t,o){this.node=e,this.tensorMap=t,this.context=o,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(n=>this.getInput(n)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((n,s)=>(n[s]=this.getAttr(s),n),{}))}getInput(e){return yr(e,this.tensorMap,this.context)}getAttr(e,t){let o=this.node.rawAttrs[e];if(o.tensor!=null)return yr(e,this.tensorMap,this.context);if(o.i!=null||o.f!=null)return ey(this.node.rawAttrs,e,t);if(o.s!=null)return Jx(this.node.rawAttrs,e,t);if(o.b!=null)return Qx(this.node.rawAttrs,e,t);if(o.shape!=null)return oy(this.node.rawAttrs,e,t);if(o.type!=null)return ty(this.node.rawAttrs,e,t);if(o.list!=null){if(o.list.i!=null||o.list.f!=null)return ny(this.node.rawAttrs,e,t);if(o.list.s!=null)return sy(this.node.rawAttrs,e,t);if(o.list.shape!=null)return iy(this.node.rawAttrs,e,t);if(o.list.b!=null)return ay(this.node.rawAttrs,e,t);if(o.list.type!=null)return ry(this.node.rawAttrs,e,t)}return t}};var f3=(r,e,t)=>{switch(r.op){case"BiasAdd":case"AddV2":case"Add":return[ee(C("a",r,e,t),C("b",r,e,t))];case"AddN":return[xw(C("tensors",r,e,t))];case"FloorMod":case"Mod":return[Km(C("a",r,e,t),C("b",r,e,t))];case"Mul":return[P(C("a",r,e,t),C("b",r,e,t))];case"RealDiv":case"Div":return[me(C("a",r,e,t),C("b",r,e,t))];case"DivNoNan":return[Vm(C("a",r,e,t),C("b",r,e,t))];case"FloorDiv":return[Ul(C("a",r,e,t),C("b",r,e,t))];case"Sub":return[ce(C("a",r,e,t),C("b",r,e,t))];case"Minimum":return[ys(C("a",r,e,t),C("b",r,e,t))];case"Maximum":return[Zr(C("a",r,e,t),C("b",r,e,t))];case"Pow":return[Lr(C("a",r,e,t),C("b",r,e,t))];case"SquaredDifference":return[mu(C("a",r,e,t),C("b",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var d3=(r,e,t)=>{switch(r.op){case"Abs":case"ComplexAbs":return[It(C("x",r,e,t))];case"Acos":return[Tm(C("x",r,e,t))];case"Acosh":return[Am(C("x",r,e,t))];case"Asin":return[Dm(C("x",r,e,t))];case"Asinh":return[$m(C("x",r,e,t))];case"Atan":return[Rm(C("x",r,e,t))];case"Atan2":return[Fm(C("x",r,e,t),C("y",r,e,t))];case"Atanh":return[Om(C("x",r,e,t))];case"Ceil":return[Mm(C("x",r,e,t))];case"Complex":return[Co(C("real",r,e,t),C("imag",r,e,t))];case"Cos":return[pa(C("x",r,e,t))];case"Cosh":return[Zl(C("x",r,e,t))];case"Elu":return[hs(C("x",r,e,t))];case"Erf":return[Gm(C("x",r,e,t))];case"Exp":return[Zt(C("x",r,e,t))];case"Expm1":return[Wm(C("x",r,e,t))];case"Floor":return[gs(C("x",r,e,t))];case"Log":return[ur(C("x",r,e,t))];case"Log1p":return[tu(C("x",r,e,t))];case"Imag":return[Ql(C("x",r,e,t))];case"Neg":return[He(C("x",r,e,t))];case"Reciprocal":return[Xm(C("x",r,e,t))];case"Real":return[cl(C("x",r,e,t))];case"Relu":return[Tr(C("x",r,e,t))];case"Round":return[Ym(C("x",r,e,t))];case"Selu":return[lu(C("x",r,e,t))];case"Sigmoid":return[Xr(C("x",r,e,t))];case"Sin":return[uu(C("x",r,e,t))];case"Sign":return[Jm(C("x",r,e,t))];case"Sinh":return[cu(C("x",r,e,t))];case"Softplus":return[xs(C("x",r,e,t))];case"Sqrt":return[gt(C("x",r,e,t))];case"Square":return[Oe(C("x",r,e,t))];case"Tanh":return[Qs(C("x",r,e,t))];case"Tan":return[rf(C("x",r,e,t))];case"ClipByValue":return[ar(C("x",r,e,t),C("clipValueMin",r,e,t),C("clipValueMax",r,e,t))];case"Relu6":return[iu(C("x",r,e,t))];case"Rsqrt":return[au(yr(r.inputNames[0],e,t))];case"Prod":return[nu(C("x",r,e,t),C("axes",r,e,t))];case"LeakyRelu":return[fa(C("x",r,e,t),C("alpha",r,e,t))];case"Prelu":return[xa(C("x",r,e,t),C("alpha",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function Do(r,e,t=""){if(!(typeof r=="number"||typeof e=="number")){y.assert(r.length===e.length,()=>t+` Shapes ${r} and ${e} must match`);for(let o=0;o<r.length;o++){let n=r[o],s=e[o];y.assert(n<0||s<0||n===s,()=>t+` Shapes ${r} and ${e} must match`)}}}function h3(r){return!(typeof r=="number"||r.some(e=>e<0))}function Kp(r,e,t){let o=ly(r,t),n=!h3(o);if(n&&e.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${o}`);if(n&&e.forEach(s=>{o=ly(s.shape,o)}),!h3(o))throw new Error(`Non-fully-defined elementShape: ${o}`);return o}function ly(r,e){if(typeof r=="number")return e;if(typeof e=="number")return r;if(r.length!==e.length)throw new Error(`Incompatible ranks during merge: ${r} vs. ${e}`);let t=[];for(let o=0;o<r.length;++o){let n=r[o],s=e[o];if(n>=0&&s>=0&&n!==s)throw new Error(`Incompatible shape during merge: ${r} vs. ${e}`);t[o]=n>=0?n:s}return t}var M0=class{constructor(e,t,o,n,s,a,i){this.name=e,this.dtype=t,this.maxSize=o,this.elementShape=n,this.identicalElementShapes=s,this.dynamicSize=a,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=le(0),Et(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let o=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Do(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),o.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(o.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);o.tensor=t,Et(t),o.written=!0,this.tensors[e]=o}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((o,n)=>this.write(o,t[n]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let n=0;n<this.size();n++)e.push(n)}if(e.length===0)return Pr([],[0].concat(this.elementShape));let o=this.readMany(e);return Do(this.elementShape,o[0].shape,"TensorArray shape mismatch: "),Bt(o,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Pr([],[0].concat(this.elementShape));let t=[];for(let n=0;n<this.size();n++)t.push(n);let o=this.readMany(t);return Do(this.elementShape,o[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${o[0].shape})`),Ze(o,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let o=Math.max(...e);if(!this.dynamicSize&&o>=this.maxSize)throw new Error(`Max index must be < array size (${o} vs. ${this.maxSize})`);this.writeMany(e,mr(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let o=0,n=e.map(l=>(o+=l,o));if(o!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${o}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let s=o===0?0:t.size/o,a=[];V(()=>{t=L(t,[1,o,s]);for(let l=0;l<e.length;++l){let u=l===0?0:n[l-1],c=[0,u,0],p=[1,e[l],s];a[l]=L(Re(t,c,p),this.elementShape)}return a});let i=[];for(let l=0;l<e.length;l++)i[l]=l;this.writeMany(i,a)}};var Uu=class{constructor(e,t,o,n=-1){this.tensors=e,this.elementShape=t,this.elementDtype=o,e!=null&&e.forEach(s=>{if(o!==s.dtype)throw new Error(`Invalid data types; op elements ${o}, but list elements ${s.dtype}`);Do(t,s.shape,"TensorList shape mismatch: "),Et(s)}),this.idTensor=le(0),this.maxNumElements=n,Et(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Uu([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,o=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(o!==-1&&this.tensors.length!==o)throw new Error(`Operation expected a list with ${o} elements but got a list with ${this.tensors.length} elements.`);Do(e,this.elementShape,"TensorList shape mismatch: ");let n=Kp(this.elementShape,this.tensors,e);return V(()=>{let s=this.tensors.map(a=>L(a,n));return Bt(s,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let o=Kp(this.elementShape,this.tensors,e),n=this.tensors.pop();return Do(n.shape,e,"TensorList shape mismatch: "),L(n,o)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Do(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Et(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,o){if(o!==this.elementDtype)throw new Error(`Invalid data types; op elements ${o}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Do(this.tensors[e].shape,t,"TensorList shape mismatch: ");let n=Kp(this.elementShape,this.tensors,t);return L(this.tensors[e],n)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Do(this.elementShape,t.shape,"TensorList shape mismatch: "),Et(t),this.tensors[e]=t}gather(e,t,o){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Do(this.elementShape,o,"TensorList shape mismatch: "),e=e.slice(0,this.size());let n=Kp(this.elementShape,this.tensors,o);return e.length===0?Pr([],[0].concat(n)):V(()=>{let s=e.map(a=>L(this.tensors[a],n));return Bt(s,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Do(this.elementShape,t,"TensorList shape mismatch: ");let o=Kp(this.elementShape,this.tensors,t);return this.size()===0?Pr([],[0].concat(o)):V(()=>{let n=this.tensors.map(s=>L(s,o));return Ze(n,0)})}};function g3(r,e,t){let o=r.dtype;if(r.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${r.shape}`);if(r.dtype!==t)throw new Error(`Invalid data types; op elements ${r.dtype}, but list elements ${t}`);let n=r.shape.slice(1);Do(n,e,"TensorList shape mismatch: ");let s=mr(r);return new Uu(s,e,o)}function x3(r,e,t){return new Uu([],r,e,t)}function y3(r,e,t,o){if(e.length!==r.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${r.shape[0]}`);let n=Math.max(...e);if(o!=null&&o!==-1&&n>=o)throw new Error(`Max index must be < array size (${n} vs. ${o})`);let s=new Uu([],t,r.dtype,o),a=mr(r,0);return e.forEach((i,l)=>{s.setItem(i,a[l])}),s}function b3(r,e,t){let o=0,n=e.map(c=>(o+=c,o));if(o!==r.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${o}, and tensor's shape is: ${r.shape}`);let s=r.shape.slice(1),a=ly(s,t),i=o===0?0:r.size/o,l=V(()=>{let c=[];r=L(r,[1,o,i]);for(let p=0;p<e.length;++p){let m=p===0?0:n[p-1],f=[0,m,0],d=[1,e[p],i];c[p]=L(Re(r,f,d),a)}return r.dispose(),c}),u=new Uu([],t,r.dtype,e.length);for(let c=0;c<l.length;c++)u.setItem(c,l[c]);return u}var w3=async(r,e,t)=>{switch(r.op){case"If":case"StatelessIf":{let o=C("thenBranch",r,e,t),n=C("elseBranch",r,e,t),s=C("cond",r,e,t),a=C("args",r,e,t);return(await s.data())[0]?t.functionMap[o].executeFunctionAsync(a,t.tensorArrayMap,t.tensorListMap):t.functionMap[n].executeFunctionAsync(a,t.tensorArrayMap,t.tensorListMap)}case"While":case"StatelessWhile":{let o=C("body",r,e,t),n=C("cond",r,e,t),s=C("args",r,e,t),a=await t.functionMap[n].executeFunctionAsync(s,t.tensorArrayMap,t.tensorListMap),i=s.map(c=>c.id),l=await a[0].data();a.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=s;for(;l[0];){let c=u;u=await t.functionMap[o].executeFunctionAsync(u,t.tensorArrayMap,t.tensorListMap);let p=u.map(f=>f.id);c.forEach(f=>{!f.kept&&i.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()});let m=await t.functionMap[n].executeFunctionAsync(u,t.tensorArrayMap,t.tensorListMap);l=await m[0].data(),m.forEach(f=>{!f.kept&&i.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()})}return u}case"LoopCond":{let o=C("pred",r,e,t);return[Ds(o)]}case"Switch":{let o=C("pred",r,e,t),n=C("data",r,e,t);return n.kept||(n=Ds(n)),(await o.data())[0]?[void 0,n]:[n,void 0]}case"Merge":{let o=r.inputNames.find(n=>yr(n,e,t)!==void 0);if(o){let n=yr(o,e,t);return[Ds(n)]}return}case"Enter":{let o=C("frameName",r,e,t),n=C("tensor",r,e,t);return t.enterFrame(o),[Ds(n)]}case"Exit":{let o=C("tensor",r,e,t);return t.exitFrame(),[Ds(o)]}case"NextIteration":{let o=C("tensor",r,e,t);return t.nextIteration(),[Ds(o)]}case"TensorArrayV3":{let o=C("size",r,e,t),n=C("dtype",r,e,t),s=C("elementShape",r,e,t),a=C("dynamicSize",r,e,t),i=C("clearAfterRead",r,e,t),l=C("identicalElementShapes",r,e,t),u=C("name",r,e,t),c=new M0(u,n,o,s,l,a,i);return t.addTensorArray(c),[c.idTensor,le(1)]}case"TensorArrayWriteV3":{let o=C("tensorArrayId",r,e,t),n=C("index",r,e,t),s=C("tensor",r,e,t),a=t.getTensorArray(o.id);return a.write(n,s),[a.idTensor]}case"TensorArrayReadV3":{let o=C("tensorArrayId",r,e,t),n=C("index",r,e,t);return[t.getTensorArray(o.id).read(n)]}case"TensorArrayGatherV3":{let o=C("tensorArrayId",r,e,t),n=C("indices",r,e,t),s=C("dtype",r,e,t);return[t.getTensorArray(o.id).gather(n,s)]}case"TensorArrayScatterV3":{let o=C("tensorArrayId",r,e,t),n=C("indices",r,e,t),s=C("tensor",r,e,t),a=t.getTensorArray(o.id);return a.scatter(n,s),[a.idTensor]}case"TensorArrayConcatV3":{let o=C("tensorArrayId",r,e,t),n=t.getTensorArray(o.id),s=C("dtype",r,e,t);return[n.concat(s)]}case"TensorArraySplitV3":{let o=C("tensorArrayId",r,e,t),n=C("tensor",r,e,t),s=C("lengths",r,e,t),a=t.getTensorArray(o.id);return a.split(s,n),[a.idTensor]}case"TensorArraySizeV3":{let o=C("tensorArrayId",r,e,t),n=t.getTensorArray(o.id);return[le(n.size(),"int32")]}case"TensorArrayCloseV3":{let o=C("tensorArrayId",r,e,t),n=t.getTensorArray(o.id);return n.clearAndClose(),[n.idTensor]}case"TensorListSetItem":{let o=C("tensorListId",r,e,t),n=C("index",r,e,t),s=C("tensor",r,e,t),a=t.getTensorList(o.id);return a.setItem(n,s),[a.idTensor]}case"TensorListGetItem":{let o=C("tensorListId",r,e,t),n=C("index",r,e,t),s=C("elementShape",r,e,t),a=C("elementDType",r,e,t);return[t.getTensorList(o.id).getItem(n,s,a)]}case"TensorListScatterV2":case"TensorListScatter":{let o=C("indices",r,e,t),n=C("tensor",r,e,t),s=C("elementShape",r,e,t),a=C("numElements",r,e,t),i=y3(n,o,s,a);return t.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let o=C("elementShape",r,e,t),n=C("elementDType",r,e,t),s;r.op==="TensorListReserve"?s="numElements":s="maxNumElements";let a=C(s,r,e,t),i=x3(o,n,a);return t.addTensorList(i),[i.idTensor]}case"TensorListGather":{let o=C("tensorListId",r,e,t),n=C("indices",r,e,t),s=C("elementShape",r,e,t),a=C("elementDType",r,e,t);return[t.getTensorList(o.id).gather(n,a,s)]}case"TensorListStack":{let o=C("tensorListId",r,e,t),n=C("elementShape",r,e,t),s=C("elementDType",r,e,t),a=C("numElements",r,e,t);return[t.getTensorList(o.id).stack(n,s,a)]}case"TensorListFromTensor":{let o=C("tensor",r,e,t),n=C("elementShape",r,e,t),s=C("elementDType",r,e,t),a=g3(o,n,s);return t.addTensorList(a),[a.idTensor]}case"TensorListConcat":{let o=C("tensorListId",r,e,t),n=t.getTensorList(o.id),s=C("dtype",r,e,t),a=C("elementShape",r,e,t);return[n.concat(s,a)]}case"TensorListPushBack":{let o=C("tensorListId",r,e,t),n=C("tensor",r,e,t),s=t.getTensorList(o.id);return s.pushBack(n),[s.idTensor]}case"TensorListPopBack":{let o=C("tensorListId",r,e,t),n=C("elementShape",r,e,t),s=C("elementDType",r,e,t);return[t.getTensorList(o.id).popBack(n,s)]}case"TensorListSplit":{let o=C("tensor",r,e,t),n=C("elementShape",r,e,t),s=C("lengths",r,e,t),a=b3(o,s,n);return t.addTensorList(a),[a.idTensor]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};function _3(r,e,t){let[o,n]=C("fusedOps",r,e,t),s=o==="biasadd",a=n==="prelu",i=o==="fusedbatchnorm",l=C("numArgs",r,e,t);if(s){if(a&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(i)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let u=C("strides",r,e,t),c=uh(r,e,t),p=C("dataFormat",r,e,t).toUpperCase(),m=C("dilations",r,e,t),[f,d]=C("args",r,e,t),h=C("leakyreluAlpha",r,e,t);return{stride:u,pad:c,dataFormat:p,dilations:m,biasArg:f,preluArg:d,activationFunc:n,leakyreluAlpha:h}}var k3=(r,e,t)=>{switch(r.op){case"Conv1D":{let o=C("stride",r,e,t),n=C("pad",r,e,t),s=C("dataFormat",r,e,t).toUpperCase(),a=C("dilation",r,e,t);return[Xl(C("x",r,e,t),C("filter",r,e,t),o,n,s,a)]}case"Conv2D":{let o=C("strides",r,e,t),n=uh(r,e,t),s=C("dataFormat",r,e,t).toUpperCase(),a=C("dilations",r,e,t);return[Yr(C("x",r,e,t),C("filter",r,e,t),[o[1],o[2]],n,s,[a[1],a[2]])]}case"_FusedConv2D":{let{stride:o,pad:n,dataFormat:s,dilations:a,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=_3(r,e,t);return[rn.conv2d({x:C("x",r,e,t),filter:C("filter",r,e,t),strides:[o[1],o[2]],pad:n,dataFormat:s,dilations:[a[1],a[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:o,pad:n,dataFormat:s,dilations:a,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=_3(r,e,t);return[rn.depthwiseConv2d({x:C("x",r,e,t),filter:C("filter",r,e,t),strides:[o[1],o[2]],pad:n,dataFormat:s,dilations:[a[1],a[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let o=C("outputShape",r,e,t),n=C("strides",r,e,t),s=uh(r,e,t);return[Yl(C("x",r,e,t),C("filter",r,e,t),o,[n[1],n[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let o=C("strides",r,e,t),n=uh(r,e,t),s=C("dilations",r,e,t),a=C("dataFormat",r,e,t).toUpperCase();return[ds(C("input",r,e,t),C("filter",r,e,t),[o[1],o[2]],n,a,[s[1],s[2]])]}case"Conv3D":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("dataFormat",r,e,t).toUpperCase(),a=C("dilations",r,e,t);return[Lm(C("x",r,e,t),C("filter",r,e,t),[o[1],o[2],o[3]],n,s,[a[1],a[2],a[3]])]}case"AvgPool":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[ua(C("x",r,e,t),[s[1],s[2]],[o[1],o[2]],n)]}case"MaxPool":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[ha(C("x",r,e,t),[s[1],s[2]],[o[1],o[2]],n)]}case"MaxPoolWithArgmax":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("kernelSize",r,e,t),a=C("includeBatchInIndex",r,e,t),{result:i,indexes:l}=zw(C("x",r,e,t),[s[1],s[2]],[o[1],o[2]],n,a);return[i,l]}case"AvgPool3D":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[Pm(C("x",r,e,t),[s[1],s[2],s[3]],[o[1],o[2],o[3]],n)]}case"MaxPool3D":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[Hm(C("x",r,e,t),[s[1],s[2],s[3]],[o[1],o[2],o[3]],n)]}case"Dilation2D":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("dilations",r,e,t),a=o[1],i=o[2],l=s[1],u=s[2];return[Bm(C("x",r,e,t),C("filter",r,e,t),[a,i],n,[l,u],"NHWC")]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var v3=(r,e,t)=>{switch(r.op){case"Fill":{let o=C("shape",r,e,t),n=C("dtype",r,e,t),s=C("value",r,e,t);return[ma(o,s,n)]}case"LinSpace":{let o=C("start",r,e,t),n=C("stop",r,e,t),s=C("num",r,e,t);return[Rw(o,n,s)]}case"Multinomial":{let o=C("logits",r,e,t),n=C("numSamples",r,e,t),s=C("seed",r,e,t);return[Bw(o,n,s)]}case"OneHot":{let o=C("indices",r,e,t),n=C("depth",r,e,t),s=C("onValue",r,e,t),a=C("offValue",r,e,t);return[fs(o,n,s,a)]}case"Ones":return[Sr(C("shape",r,e,t),C("dtype",r,e,t))];case"OnesLike":return[rr(C("x",r,e,t))];case"RandomUniform":return[bs(C("shape",r,e,t),C("minval",r,e,t),C("maxval",r,e,t),C("dtype",r,e,t))];case"Range":{let o=C("start",r,e,t),n=C("stop",r,e,t),s=C("step",r,e,t);return[Qc(o,n,s,C("dtype",r,e,t))]}case"TruncatedNormal":{let o=C("shape",r,e,t),n=C("mean",r,e,t),s=C("stdDev",r,e,t),a=C("seed",r,e,t);return[fu(o,n,s,C("dtype",r,e,t),a)]}case"Zeros":return[ht(C("shape",r,e,t),C("dtype",r,e,t))];case"ZerosLike":return[Ce(C("x",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function L0(r,e,t){let o=C("boxes",r,e,t),n=C("scores",r,e,t),s=C("maxOutputSize",r,e,t),a=C("iouThreshold",r,e,t),i=C("scoreThreshold",r,e,t),l=C("softNmsSigma",r,e,t);return{boxes:o,scores:n,maxOutputSize:s,iouThreshold:a,scoreThreshold:i,softNmsSigma:l}}var C3=async(r,e,t)=>{switch(r.op){case"NonMaxSuppressionV5":{let{boxes:o,scores:n,maxOutputSize:s,iouThreshold:a,scoreThreshold:i,softNmsSigma:l}=L0(r,e,t),u=await oi.nonMaxSuppressionWithScoreAsync(o,n,s,a,i,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:o,scores:n,maxOutputSize:s,iouThreshold:a,scoreThreshold:i}=L0(r,e,t),l=C("padToMaxOutputSize",r,e,t),u=await oi.nonMaxSuppressionPaddedAsync(o,n,s,a,i,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:o,scores:n,maxOutputSize:s,iouThreshold:a,scoreThreshold:i}=L0(r,e,t);return[await oi.nonMaxSuppressionAsync(o,n,s,a,i)]}case"Where":{let o=ne(C("condition",r,e,t),"bool"),n=[await nf(o)];return o.dispose(),n}case"ListDiff":return Zw(C("x",r,e,t),C("y",r,e,t));default:throw TypeError(`Node type ${r.op} is not implemented`)}};var I3=(r,e,t)=>{switch(r.op){case"TopKV2":{let o=C("x",r,e,t),n=C("k",r,e,t),s=C("sorted",r,e,t),a=of(o,n,s);return[a.values,a.indices]}case"Unique":{let o=C("x",r,e,t),n=tp(o);return[n.values,n.indices]}case"UniqueV2":{let o=C("x",r,e,t),n=C("axis",r,e,t),s=tp(o,n);return[s.values,s.indices]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var N3=(r,e,t)=>{switch(r.op){case"Const":return e[r.name];case"PlaceholderWithDefault":let o=C("default",r,e,t);return[yr(r.name,e,t)||o];case"Placeholder":return[yr(r.name,e,t)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=C("x",r,e,t);return[Ds(u)]}case"IdentityN":return C("x",r,e,t).map(u=>Ds(u));case"Snapshot":let n=C("x",r,e,t);return[Ds(n)];case"Shape":return[Vt(C("x",r,e,t).shape,"int32")];case"ShapeN":return C("x",r,e,t).map(u=>Vt(u.shape));case"Size":return[le(C("x",r,e,t).size,"int32")];case"Rank":return[le(C("x",r,e,t).rank,"int32")];case"NoOp":return[le(1)];case"Print":let s=C("x",r,e,t),a=C("data",r,e,t),i=C("message",r,e,t),l=C("summarize",r,e,t);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let u=0;u<a.length;u++)console.log(Array.prototype.slice.call(a[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var z0=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=le(0),this.tensorMap=new Map,Et(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return le(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let o=await e.data();return this.tensorMap.forEach(n=>n.dispose()),this.tensorMap.clear(),V(()=>{let n=mr(t),s=o.length,a=n.length;y.assert(s===a,()=>`The number of elements doesn't match, keys has ${s} elements, the values has ${a} elements.`);for(let i=0;i<s;i++){let l=o[i],u=n[i];Et(u),this.tensorMap.set(l,u)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let o=await e.data();return V(()=>{let n=[];for(let s=0;s<o.length;s++){let a=o[s],i=this.findWithDefault(a,t);n.push(i)}return Bt(n)})}findWithDefault(e,t){let o=this.tensorMap.get(e);return o!=null?o:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}};var S3=async(r,e,t,o)=>{switch(r.op){case"HashTable":case"HashTableV2":{let n=C("keyDType",r,e,t),s=C("valueDType",r,e,t),a=new z0(n,s);return o.addHashTable(r.name,a),[a.handle]}case"LookupTableImport":case"LookupTableImportV2":{let n=C("tableHandle",r,e,t,o),s=C("keys",r,e,t),a=C("values",r,e,t);return[await o.getHashTableById(n.id).import(s,a)]}case"LookupTableFind":case"LookupTableFindV2":{let n=C("tableHandle",r,e,t,o),s=C("keys",r,e,t),a=C("defaultValue",r,e,t);return[await o.getHashTableById(n.id).find(s,a)]}case"LookupTableSize":case"LookupTableSizeV2":{let n=C("tableHandle",r,e,t,o);return[o.getHashTableById(n.id).tensorSize()]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var T3=(r,e,t)=>{switch(r.op){case"ResizeBilinear":{let o=C("images",r,e,t),n=C("size",r,e,t),s=C("alignCorners",r,e,t),a=C("halfPixelCenters",r,e,t);return[oi.resizeBilinear(o,[n[0],n[1]],s,a)]}case"ResizeNearestNeighbor":{let o=C("images",r,e,t),n=C("size",r,e,t),s=C("alignCorners",r,e,t),a=C("halfPixelCenters",r,e,t);return[oi.resizeNearestNeighbor(o,[n[0],n[1]],s,a)]}case"CropAndResize":{let o=C("image",r,e,t),n=C("boxes",r,e,t),s=C("boxInd",r,e,t),a=C("cropSize",r,e,t),i=C("method",r,e,t),l=C("extrapolationValue",r,e,t);return[oi.cropAndResize(o,n,s,a,i,l)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var A3=(r,e,t)=>{switch(r.op){case"Equal":return[Io(C("a",r,e,t),C("b",r,e,t))];case"NotEqual":return[tn(C("a",r,e,t),C("b",r,e,t))];case"Greater":return[tr(C("a",r,e,t),C("b",r,e,t))];case"GreaterEqual":return[co(C("a",r,e,t),C("b",r,e,t))];case"Less":return[eu(C("a",r,e,t),C("b",r,e,t))];case"LessEqual":return[zo(C("a",r,e,t),C("b",r,e,t))];case"LogicalAnd":return[hr(C("a",r,e,t),C("b",r,e,t))];case"LogicalNot":return[da(C("a",r,e,t))];case"LogicalOr":return[ou(C("a",r,e,t),C("b",r,e,t))];case"Select":case"SelectV2":return[Dt(C("condition",r,e,t),C("a",r,e,t),C("b",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var E3=(r,e,t)=>{switch(r.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[je(C("a",r,e,t),C("b",r,e,t),C("transposeA",r,e,t),C("transposeB",r,e,t))];case"Transpose":return[Ke(C("x",r,e,t),C("perm",r,e,t))];case"_FusedMatMul":let[o,n]=C("fusedOps",r,e,t),s=o==="biasadd",a=n==="prelu",i=C("numArgs",r,e,t),l=C("leakyreluAlpha",r,e,t);if(s){if(a&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=C("args",r,e,t);return[rn.matMul({a:C("a",r,e,t),b:C("b",r,e,t),transposeA:C("transposeA",r,e,t),transposeB:C("transposeB",r,e,t),bias:u,activation:n,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var D3=(r,e,t)=>{switch(r.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Jo(C("x",r,e,t),C("mean",r,e,t),C("variance",r,e,t),C("offset",r,e,t),C("scale",r,e,t),C("epsilon",r,e,t))];case"FusedBatchNormV3":return[Jo(C("x",r,e,t),C("mean",r,e,t),C("variance",r,e,t),C("offset",r,e,t),C("scale",r,e,t),C("epsilon",r,e,t))];case"LRN":return[jm(C("x",r,e,t),C("radius",r,e,t),C("bias",r,e,t),C("alpha",r,e,t),C("beta",r,e,t))];case"Softmax":return[ya(C("x",r,e,t))];case"LogSoftmax":return[ru(C("x",r,e,t))];case"SparseToDense":return[gg(C("sparseIndices",r,e,t),C("outputShape",r,e,t),C("sparseValues",r,e,t),C("defaultValue",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var $3=(r,e,t)=>{switch(r.op){case"Max":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[cr(C("x",r,e,t),a,i)]}case"Mean":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[dt(C("x",r,e,t),a,i)]}case"Min":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[ei(C("x",r,e,t),a,i)]}case"Sum":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[ge(C("x",r,e,t),a,i)]}case"All":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[Hl(C("x",r,e,t),a,i)]}case"Any":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[al(C("x",r,e,t),a,i)]}case"ArgMax":{let a=C("axis",r,e,t);return[ll(C("x",r,e,t),a)]}case"ArgMin":{let a=C("axis",r,e,t);return[Em(C("x",r,e,t),a)]}case"Prod":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[nu(C("x",r,e,t),a,i)]}case"Cumsum":{let a=C("axis",r,e,t),i=C("exclusive",r,e,t),l=C("reverse",r,e,t);return[Jl(C("x",r,e,t),a,i,l)]}case"Bincount":let o=C("x",r,e,t),n=C("weights",r,e,t),s=C("size",r,e,t);return[Cw(o,n,s)];case"DenseBincount":{let a=C("x",r,e,t),i=C("weights",r,e,t),l=C("size",r,e,t),u=C("binaryOutput",r,e,t);return[Aw(a,i,l,u)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var R3=(r,e,t)=>{switch(r.op){case"ConcatV2":case"Concat":{let o=C("n",r,e,t),n=C("axis",r,e,t),s=C("tensors",r,e,t);return s=s.slice(0,o),[Ze(s,n)]}case"Gather":{let o=C("x",r,e,t),n=C("indices",r,e,t);return[Qo(o,ne(n,"int32"),0)]}case"GatherV2":{let o=C("axis",r,e,t),n=C("batchDims",r,e,t),s=C("x",r,e,t),a=C("indices",r,e,t);return[Qo(s,ne(a,"int32"),o,n)]}case"Reverse":{let o=C("dims",r,e,t),n=[];for(let a=0;a<o.length;a++)o[a]&&n.push(a);let s=C("x",r,e,t);return[Ht(s,n)]}case"ReverseV2":{let o=C("axis",r,e,t),n=C("x",r,e,t);return[Ht(n,o)]}case"Slice":{let o=C("begin",r,e,t),n=C("size",r,e,t);return[Re(C("x",r,e,t),o,n)]}case"StridedSlice":{let o=C("begin",r,e,t),n=C("end",r,e,t),s=C("strides",r,e,t),a=C("beginMask",r,e,t),i=C("endMask",r,e,t),l=C("ellipsisMask",r,e,t),u=C("newAxisMask",r,e,t),c=C("shrinkAxisMask",r,e,t),p=C("x",r,e,t);return[tf(p,o,n,s,a,i,l,u,c)]}case"Pack":return V(()=>{let o=C("axis",r,e,t),n=C("tensors",r,e,t),s=n[0].shape,a=No(n[0]).shape,i=n.map(l=>{let u=y.arraysEqual(l.shape,s);if(!u&&!y.arraysEqual(No(l).shape,a))throw new Error("the input tensors shape does not match");return u?l:L(l,s)});return[Bt(i,o)]});case"Unpack":{let o=C("axis",r,e,t),n=C("tensor",r,e,t);return mr(n,o)}case"Tile":{let o=C("reps",r,e,t);return[Lo(C("x",r,e,t),o)]}case"Split":case"SplitV":{let o=C("axis",r,e,t),n=C("numOrSizeSplits",r,e,t),s=C("x",r,e,t);return pr(s,n,o)}case"ScatterNd":{let o=C("indices",r,e,t),n=C("values",r,e,t),s=C("shape",r,e,t);return[DT(o,n,s)]}case"GatherNd":{let o=C("x",r,e,t),n=C("indices",r,e,t);return[RT(o,n)]}case"SparseToDense":{let o=C("sparseIndices",r,e,t),n=C("outputShape",r,e,t),s=C("sparseValues",r,e,t),a=C("defaultValue",r,e,t);return[gg(o,s,n,s.dtype===a.dtype?a:ne(a,s.dtype))]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var F3=(r,e,t)=>{switch(r.op){case"FFT":return[ba(C("x",r,e,t))];case"IFFT":return[ti(C("x",r,e,t))];case"RFFT":return[wa(C("x",r,e,t))];case"IRFFT":return[pu(C("x",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var O3=(r,e,t)=>{switch(r.op){case"Cast":return[ne(C("x",r,e,t),C("dtype",r,e,t))];case"ExpandDims":{let o=C("axis",r,e,t);return[lr(C("x",r,e,t),o)]}case"Squeeze":{let o=C("axis",r,e,t);return[No(C("x",r,e,t),o)]}case"Reshape":return[L(C("x",r,e,t),C("shape",r,e,t))];case"MirrorPad":return[qm(C("x",r,e,t),C("padding",r,e,t),C("mode",r,e,t))];case"PadV2":case"Pad":return[Mr(C("x",r,e,t),C("padding",r,e,t),C("constantValue",r,e,t))];case"SpaceToBatchND":{let o=C("blockShape",r,e,t),n=C("paddings",r,e,t);return[ga(C("x",r,e,t),o,n)]}case"BatchToSpaceND":{let o=C("blockShape",r,e,t),n=C("crops",r,e,t);return[ca(C("x",r,e,t),o,n)]}case"DepthToSpace":{let o=C("blockSize",r,e,t),n=C("dataFormat",r,e,t).toUpperCase();return[zm(C("x",r,e,t),o,n)]}case"BroadcastTo":return[ul(C("x",r,e,t),C("shape",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function B0(r,e,t,o){let n=((s,a,i)=>{switch(s.category){case"arithmetic":return V(()=>f3(s,a,i));case"basic_math":return V(()=>d3(s,a,i));case"control":return w3(s,a,i);case"convolution":return V(()=>k3(s,a,i));case"creation":return V(()=>v3(s,a,i));case"dynamic":return C3(s,a,i);case"evaluation":return V(()=>I3(s,a,i));case"image":return V(()=>T3(s,a,i));case"graph":return V(()=>N3(s,a,i));case"logical":return V(()=>A3(s,a,i));case"matrices":return V(()=>E3(s,a,i));case"normalization":return V(()=>D3(s,a,i));case"reduction":return V(()=>$3(s,a,i));case"slice_join":return V(()=>R3(s,a,i));case"spectral":return V(()=>F3(s,a,i));case"transformation":return V(()=>O3(s,a,i));case"hash_table":return S3(s,a,i,o);case"custom":let l=Xx(s.op);if(l&&l.customExecutor)return l.customExecutor(new P0(s,a,i));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(r,e,t);return y.isPromise(n)?n.then(s=>[].concat(s)):[].concat(n)}var uy=class{constructor(e={},t={},o={},n={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=o,this.functionMap=n,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let o=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(o))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function G0(r,e,t,o){let n=new Set,s=[],a=null,i=null,l=new Set,u=Object.keys(r).map(m=>ro(m)[0]),c=[];o!=null&&(c=o.map(m=>ro(m.name)[0]));let p=[...e];for(;p.length>0;){let m=p.pop();if((V0(m)||Vte(m)||Gte(m))&&a==null&&(a=m,i=a.children.map(f=>f.name).filter(f=>n.has(f))),n.add(m.name),t[m.name]==null&&u.indexOf(m.name)===-1&&c.indexOf(m.name)===-1){if(m.inputs.length===0){s.push(m.name);continue}m.inputs.forEach(f=>{l.has(f.name)||(l.add(f.name),p.push(f))})}}return{inputs:r,outputs:e,usedNodes:n,missingInputs:s,dynamicNode:a,syncInputs:i}}function P3(r,e,t){let{usedNodes:o,inputs:n}=t,s=[],a=Object.keys(n).map(c=>ro(c)[0]).map(c=>r.nodes[c]),i=r.initNodes;a.forEach(c=>{o.has(c.name)&&s.push(c)}),r.weights.forEach(c=>{o.has(c.name)&&s.push(c)}),i!=null&&i.forEach(c=>{o.has(c.name)&&s.push(c)});let l=new Set,u=[];for(;s.length>0;){let c=s.pop();l.add(c.name),e[c.name]||u.push(c),c.children.forEach(p=>{!l.has(p.name)&&o.has(p.name)&&p.inputs.every(m=>l.has(m.name))&&s.push(p)})}return u}var Wte=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],jte=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Ute=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function V0(r){return Wte.indexOf(r.op)>=0}function Vte(r){return jte.indexOf(r.op)>=0}function Gte(r){return Ute.indexOf(r.op)>=0}var Xp=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(o=>{this._functionExecutorMap[o]=new Xp(e.functions[o],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(o=>e[o].map(n=>n.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let o=e.map(s=>s.name).sort(),n=t.map(s=>s.name).sort();return o.join(this.SEPERATOR)+"--"+n.join(this.SEPERATOR)}compile(e,t){let o=G0(e,t,this.weightMap,this._initNodes),{missingInputs:n,dynamicNode:s,syncInputs:a}=o;if(s!=null)throw new Error(`This execution contains the node '${s.name}', which has the dynamic op '${s.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(n.length>0){let i=t.map(u=>u.name),l=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${l}]. Missing the following inputs: [${n}]`)}return P3(this.graph,this.weightMap,o)}execute(e,t){e=this.mapInputs(e);let o=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let n=o.map(p=>this.graph.nodes[ro(p)[0]]),s=t.map(p=>ro(p)[0]),a=s.map(p=>this.graph.nodes[p]);a.length===0&&(a=this._outputs);let i=this.getCompilationKey(n,a),l=this.compiledMap.get(i);l==null&&(l=this.compile(e,a),this.compiledMap.set(i,l));let u={},c={};return V(()=>{let p=new uy(this.weightMap,u,c,this.functionExecutorMap),m=Object.assign({},this.weightMap);Object.keys(e).forEach(h=>{let[g,x]=ro(h),b=[];b[x]=e[h],m[g]=b});let f=this.getFrozenTensorIds(m),d={};for(let h=0;h<l.length;h++){let g=l[h];if(!m[g.name]){let x=B0(g,m,p,this._resourceManager);if(y.isPromise(x))throw new Error(`The execution of the op '${g.op}' returned a promise. Please use model.executeAsync() instead.`);m[g.name]=x,this.checkTensorForDisposal(g.name,g,m,p,f,s,d)}}return this.parent==null&&p.dispose(f),t.map(h=>yr(h,m,p))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(o=>e[o]).map(o=>o.map(n=>n.id)));return new Set(t)}checkTensorForDisposal(e,t,o,n,s,a,i){t.category==="control"||a.indexOf(e)!==-1||(o[e].forEach(l=>{l!=null&&(i[l.id]=(i[l.id]||0)+t.children.length)}),t.inputs.forEach(l=>{if(l.category!=="control"){let u=u3(l.name,o,n);u!=null&&u.forEach(c=>{if(c&&!s.has(c.id)){let p=i[c.id];p===1?(c.dispose(),delete i[c.id]):p!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,o=!1,n={},s={}){o||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new uy(this.weightMap,n,s,this.functionExecutorMap),i=await this.executeWithControlFlow(e,a,t,o),l=t.map(m=>yr(m,i,a)),u=l.map(m=>m.id),c=Object.keys(e).map(m=>e[m].id),p=new Set([...u,...c,...this.weightIds]);return Object.keys(i).forEach(m=>{i[m].forEach(d=>{d&&!d.isDisposed&&!p.has(d.id)&&d.dispose()})}),this.parent==null&&a.dispose(p),l}async executeFunctionAsync(e,t,o){let n=e.reduce((s,a,i)=>(s[this.inputs[i].name]=a,s),{});return this._executeAsync(n,this.outputNodes,!0,t,o)}async executeWithControlFlow(e,t,o,n){let s=Object.keys(e),a=s.map(w=>this.graph.nodes[ro(w)[0]]),i=o.map(w=>ro(w)[0]),l=i.map(w=>this.graph.nodes[w]);l.length===0&&(l=this._outputs);let{usedNodes:u,missingInputs:c,dynamicNode:p,syncInputs:m}=G0(e,l,this.weightMap,this._initNodes),f=[...a,...this.graph.weights,...this._initNodes||[]].map(w=>({node:w,contexts:t.currentContext})),d=Object.assign({},this.weightMap);Object.keys(e).forEach(w=>{let[_,k]=ro(w),D=[];D[k]=e[w],d[_]=D});let h={},g=this.getFrozenTensorIds(d),x={};for(;f.length>0;){let w=this.processStack(a,f,t,d,x,g,i,h,u);await Promise.all(w)}p==null&&!n&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let b=l.filter(w=>!V0(w)&&!yr(w.name,d,t)).map(w=>w.name);if(b.length>0){let w="";throw p!=null&&(w=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${m}]`),new Error(`Cannot compute the outputs [${b}] from the provided inputs [${s}]. Consider providing the following inputs: [${c}]. ${w}`)}return d}processStack(e,t,o,n,s,a,i,l,u){let c=[];for(;t.length>0;){let p=t.pop();o.currentContext=p.contexts;let m="";if(p.node.op==="Enter"&&C("isConstant",p.node,n,o)&&([m]=Es(p.node.name,o)),n[p.node.name]==null){let f=B0(p.node,n,o,this._resourceManager);m||([m]=Es(p.node.name,o));let d=o.currentContext;y.isPromise(f)?c.push(f.then(h=>(n[m]=h,o.currentContext=d,this.checkTensorForDisposal(m,p.node,n,o,a,i,l),this.processChildNodes(p.node,t,o,n,s,u),h))):(n[m]=f,this.checkTensorForDisposal(m,p.node,n,o,a,i,l),this.processChildNodes(p.node,t,o,n,s,u))}else this.processChildNodes(p.node,t,o,n,s,u)}return c}processChildNodes(e,t,o,n,s,a){e.children.forEach(i=>{let[l]=Es(i.name,o);s[l]||!a.has(i.name)||(i.op==="Merge"?i.inputNames.some(u=>!!yr(u,n,o))&&(s[l]=!0,t.push({contexts:o.currentContext,node:i})):i.inputNames.every(u=>!!yr(u,n,o))&&(s[l]=!0,t.push({contexts:o.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let o=e[t],[n]=ro(t),s=this.graph.nodes[n];if(s.attrParams.shape&&s.attrParams.shape.value){let a=s.attrParams.shape.value,i=a.length===o.shape.length&&o.shape.every((l,u)=>a[u]===-1||a[u]===l);y.assert(i,()=>`The shape of dict['${s.name}'] provided in model.execute(dict) must be [${a}], but was [${o.shape}]`)}s.attrParams.dtype&&s.attrParams.dtype.value&&y.assert(o.dtype===s.attrParams.dtype.value,()=>`The dtype of dict['${s.name}'] provided in model.execute(dict) must be ${s.attrParams.dtype.value}, but was ${o.dtype}`)})}mapInputs(e){let t={};for(let o in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[o]!=null){let n=this._signature.inputs[o];t[n.name]=e[o]}else t[o]=e[o];return t}checkInputs(e){let t=Object.keys(e).filter(o=>{let[n]=ro(o);return this.graph.nodes[n]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[o]=ro(t);if(!this.graph.nodes[o])throw new Error(`The output '${t}' is not found in the graph`)})}};var W0=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}};var Hte="?tfjs-format=file",qte="model.json",j0=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new W0}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Nr.browserHTTPRequest(e,this.loadOptions);else{let t=Nr.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Nr.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,o;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?o=this.artifacts.userDefinedMetadata.signature:o=this.artifacts.signature,this.signature=o,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let n=Nr.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Xp(Zx.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(n),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let s=Zx.Instance.transformGraph(e.modelInitializer);this.initializer=new Xp(s),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let o=Nr.getSaveHandlers(e);if(o.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(o.length>1)throw new Error(`Found more than one (${o.length}) save handlers for URL '${e}'`);e=o[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ve)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,o,n)=>(t[o]=e[n],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let o=this.executor.execute(e,t);return o.length>1?o:o[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let o=await this.executor.executeAsync(e,t);return o.length>1?o:o[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,o)=>(t[o]=[e[o]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Kte(r,e={}){if(r==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");e==null&&(e={}),e.fromTFHub&&r.load==null&&(r.endsWith("/")||(r=r+"/"),r=`${r}${qte}${Hte}`);let t=new j0(r,e);return await t.load(),t}var Xte="3.3.0";var sI={};Ge(sI,{CSVDataset:()=>dh,Dataset:()=>mi,FileDataSource:()=>bh,TextLineDataset:()=>mh,URLDataSource:()=>wh,array:()=>bB,csv:()=>AB,func:()=>EB,generator:()=>DB,microphone:()=>RB,version_data:()=>FB,webcam:()=>$B,zip:()=>wB});var yB=sc(Z0());var oB=sc(Z0());function J3(r,e){return py(r,e)}function py(r,e,t=new Map,o=new Set){if(r==null)return null;if(o.has(r))throw new Error("Circular references are not supported.");if(t.has(r))return t.get(r);let n=e(r);if(n.recurse&&n.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(n.recurse)if(El(r)){let s=Array.isArray(r)?[]:{};o.add(r);for(let a in r){let i=r[a],l=py(i,e,t,o);s[a]=l}return o.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return t.set(r,n.value),n.value}function eB(r,e=J0){return Q3(r,e)}function Q3(r,e,t=new Set){let o=r[0];if(t.has(o))throw new Error("Circular references are not supported.");let n=e(r);if(n.recurse&&n.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(n.recurse)if(El(o)){let s=Array.isArray(o)?[]:{};t.add(o);for(let a in o){let i=r.map(u=>u[a]),l=Q3(i,e,t);s[a]=l}return t.delete(o),s}else throw new Error(`Can't recurse into non-iterable type: ${o}`);else return n.value}function J0(r){return r===null?null:El(r[0])?{value:null,recurse:!0}:{value:r,recurse:!1}}async function my(r,e){let t=new Map;py(r,e,t);for(let n of Array.from(t.keys())){let s=t.get(n);if(y.isPromise(s)){let a=await s;t.set(n,a)}}return py(r,e,t)}function El(r){return r!=null&&!ArrayBuffer.isView(r)&&(Array.isArray(r)||typeof r=="object"&&!(r instanceof Ve))}function tB(r){return r==null||rre(r)||Array.isArray(r)||typeof r=="object"&&r instanceof Ve||y.isTypedArray(r)}function rre(r){return r===null||typeof r!="object"&&typeof r!="function"}function rB(r){return J3(r,ore)}function ore(r){return r instanceof Ve?{value:r.clone(),recurse:!1}:El(r)?{value:null,recurse:!0}:{value:r,recurse:!1}}var ch=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),o=this.get(t);return this.set(t,this.pop()),o}};var Yp=class extends ch{constructor(){super(Yp.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),o=this.length();for(let n=0;n<o;n++)t[n]=this.get(this.wrap(this.begin+n));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=o}};Yp.INITIAL_CAPACITY=32;function Q0(r){return new nB(r)}function ph(r){return new sB(r)}function iB(r,e){return new eI(r,e)}function lB(r,e=Fa.FAIL){return new aB(r,e)}var Kt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],o=await e.next();for(;!o.done;)t.push(o.value),o=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),o=e(t.value);for(;!t.done&&o;)t=await this.next(),o=e(t.value)}handleErrors(e){return new hB(this,e)}filter(e){return new fB(this,e)}map(e){return new dB(this,e)}mapAsync(e){return new tI(this,e)}serialMapAsync(e){return new tI(this,e).serial()}flatmap(e){return new gB(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new mB(this,e,t)}columnMajorBatch(e,t=!0,o=J0){return this.rowMajorBatch(e,t).map(s=>eB(s,o))}concatenate(e,t){return new eI(Q0([this,e]),t)}take(e){return e<0||e==null?this:new pB(this,e)}skip(e){return e<0||e==null?this:new cB(this,e)}prefetch(e){return new rI(this,e)}shuffle(e,t){return new xB(this,e,t)}serial(){return new uB(this)}},nB=class extends Kt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:rB(e),done:!1}}},sB=class extends Kt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},uB=class extends Kt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},cB=class extends Kt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Ae(e.value)}return this.upstream.next()}},pB=class extends Kt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},mB=class extends Kt{constructor(e,t,o=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=o,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},fB=class extends Kt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Ae(e.value)}}},dB=class extends Kt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Yo.getTensorsInContainer(e.value),o=this.transform(e.value),n=Yo.getTensorsInContainer(o);for(let s of t)Yo.isTensorInList(s,n)||s.dispose();return{value:o,done:!1}}},hB=class extends Kt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},tI=class extends Kt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Yo.getTensorsInContainer(e.value),o=await this.transform(e.value),n=Yo.getTensorsInContainer(o);for(let s of t)Yo.isTensorInList(s,n)||s.dispose();return{value:o,done:!1}}},Zp=class extends Kt{constructor(){super();this.outputQueue=new Yp,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},gB=class extends Zp{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Yo.getTensorsInContainer(e.value),o=this.transform(e.value),n=Yo.getTensorsInContainer(o);this.outputQueue.pushAll(o);for(let s of t)Yo.isTensorInList(s,n)||s.dispose();return!0}},eI=class extends Kt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let o=await this.moreIterators.next();if(o.done)return{value:null,done:!0};this.iterator=o.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Fa;(function(r){r[r.FAIL=0]="FAIL",r[r.SHORTEST=1]="SHORTEST",r[r.LONGEST=2]="LONGEST"})(Fa||(Fa={}));var aB=class extends Kt{constructor(e,t=Fa.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,o=0;function n(a){return a instanceof Kt?{value:a.next().then(l=>(t++,l.done&&o++,l.value)),recurse:!1}:{value:null,recurse:!0}}let s=await my(this.iterators,n);if(t===o)return{value:null,done:!0};if(o>0)switch(this.mismatchMode){case Fa.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Fa.SHORTEST:return{value:null,done:!0};case Fa.LONGEST:default:}return this.count++,{value:s,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},rI=class extends Kt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new ch(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},xB=class extends rI{constructor(e,t,o){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=oB.alea(o||y.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}};var mi=class{constructor(){this.size=null}batch(e,t=!0){let o=this;y.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let n;return this.size===Infinity||this.size==null?n=this.size:t?n=Math.ceil(this.size/e):n=Math.floor(this.size/e),wo(async()=>(await o.iterator()).columnMajorBatch(e,t,nre),n)}concatenate(e){let t=this,o;return this.size===Infinity||e.size===Infinity?o=Infinity:this.size!=null&&e.size!=null?o=this.size+e.size:o=null,wo(async()=>(await t.iterator()).concatenate(await e.iterator()),o)}filter(e){let t=this,o;return this.size===Infinity?o=Infinity:o=null,wo(async()=>(await t.iterator()).filter(n=>V(()=>e(n))),o)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return wo(async()=>(await t.iterator()).map(o=>V(()=>e(o))),this.size)}mapAsync(e){let t=this;return wo(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return wo(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,o;return this.size!=null&&e>0?o=this.size*e:e===0?o=0:this.size!=null&&(e===void 0||e<0)?o=Infinity:o=null,wo(async()=>{let n=ph(async()=>({value:await t.iterator(),done:!1}));return iB(n.take(e))},o)}skip(e){let t=this,o;return this.size!=null&&e>=0&&this.size>=e?o=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?o=0:o=null,wo(async()=>(await t.iterator()).skip(e),o)}shuffle(e,t,o=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let n=this,s=yB.alea(t||y.now().toString());return wo(async()=>{let a=s.int32();return o&&(a+=s.int32()),(await n.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,o;return this.size!=null&&this.size>e?o=e:this.size!=null&&this.size<=e?o=this.size:o=null,wo(async()=>(await t.iterator()).take(e),o)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};mi.MAX_BUFFER_SIZE=1e4;function wo(r,e=null){return new class extends mi{constructor(){super(...arguments);this.size=e}async iterator(){return r()}}}function bB(r){return wo(async()=>Q0(r),r.length)}function wB(r){if(!El(r))throw new Error("The argument to zip() must be an object or array.");let e;if(Array.isArray(r))for(let t=0;t<r.length;t++)e=e==null?r[t].size:Math.min(e,r[t].size);else if(r instanceof Object)for(let t in r)e=e==null?r[t].size:Math.min(e,r[t].size);return wo(async()=>{let t=await my(r,o=>{if(o instanceof mi)return{value:o.iterator(),recurse:!1};if(El(o))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return lB(t,Fa.SHORTEST)},e)}function nre(r){if(r===null)return null;let e=r[0];return tB(e)?{value:sre(r),recurse:!1}:{value:null,recurse:!0}}function sre(r){if(r.length===0)throw new Error("Can't make a batch of zero elements.");return r[0]instanceof Ve?Bt(r):Pr(r)}var mh=class extends mi{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(n=>(n.endsWith("\r")&&(n=n.slice(0,-1)),n))}};var fy='"',fh=Symbol("out"),_B=Symbol("field"),dy=Symbol("quote"),oI=Symbol("quoteafterquote"),kB=Symbol("quoteinquote"),dh=class extends mi{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new mh(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(y.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&y.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((n,s)=>(n[s]=n[s]+1||1,n),{}),o=Object.keys(t).filter(n=>t[n]>1);if(y.assert(o.length===0,()=>"Duplicate column names found: "+o.toString()),this.columnConfigs){for(let n of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(n)===-1)throw new Error('The key "'+n+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let o=t.value;return this.parseRow(o,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),o={},n={};for(let s=0;s<this.fullColumnNames.length;s++){let a=this.fullColumnNames[s],i=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!i)){let l=t[s],u=null;if(l==="")if(i&&i.default!==void 0)u=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);u=void 0}else{let c=Number(l);if(isNaN(c))i&&i.dtype==="bool"?u=this.getBoolean(l):u=l;else if(!i||!i.dtype)u=c;else switch(i.dtype){case"float32":u=c;break;case"int32":u=Math.floor(c);break;case"bool":u=this.getBoolean(l);break;default:u=c}}i&&i.isLabel?n[a]=u:o[a]=u}}return Object.keys(n).length===0?o:{xs:o,ys:n}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let o=[],n=0,s=e.length,a=fh;for(let i=0;i<s;i++)switch(a){case fh:switch(e.charAt(i)){case fy:n=i+1,a=dy;break;case this.delimiter:if(n=i+1,this.delimiter===" "&&this.delimWhitespace)break;o.push(""),a=fh;break;default:a=_B,n=i;break}break;case _B:switch(e.charAt(i)){case this.delimiter:o.push(e.substring(n,i)),a=fh,n=i+1;break;default:}break;case dy:switch(e.charAt(i)){case fy:a=oI;break;default:}break;case oI:switch(e.charAt(i)){case this.delimiter:o.push(e.substring(n,i-1)),a=fh,n=i+1;break;case fy:a=dy;break;default:a=kB;break}break;case kB:switch(e.charAt(i)){case fy:a=dy;break;default:}break;default:}if(a===oI?o.push(e.substring(n,s-1)):o.push(e.substring(n)),t&&o.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${o}`);return o}};var hh=class extends Kt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(W().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new hh(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(o){throw new Error(`Error thrown while initializing video stream: ${o.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,o=await this.getAudioData();if(this.includeSpectrogram){let n=this.flattenQueue(o.freqDataQueue);e=this.getTensorFromAudioDataArray(n,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let n=this.flattenQueue(o.timeDataQueue);t=this.getTensorFromAudioDataArray(n,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],o=0;return new Promise(n=>{let s=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&n({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++o===this.numFrames&&(clearInterval(s),n({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,o=new Float32Array(e.length*t);return e.forEach((n,s)=>o.set(n,s*t)),o}getTensorFromAudioDataArray(e,t){let o=new Float32Array(y.sizeFromShape(t));return o.set(e,o.length-e.length),Pr(o,t)}};var gh=class extends Kt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Vt([0],"int32"),this.webcamConfig.centerCrop){let o=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,n=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,s=(1-o)/2,a=(1-n)/2,i=s+o,l=n+a;this.cropBox=ri([a,s,l,i],[1,4])}else this.cropBox=ri([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(W().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let o=new gh(e,t);return await o.start(),o}async start(){this.webcamConfig.facingMode&&y.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=eg.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return V(()=>{let t=lr(ne(e,"float32"),0),o;o=oi.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let n=o.shape;return L(o,n.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}};var xh=class{};var hy=class extends Kt{split(e){return new vB(this,e)}},vB=class extends hy{constructor(e,t){super();this.upstream=e,this.impl=new CB(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},CB=class extends Zp{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let o of t.slice(0,-1))this.outputQueue.push(o);return this.carryover=t[t.length-1],!0}};var nI=class extends Kt{decodeUTF8(){return new NB(this)}},NB=class extends hy{constructor(e){super();this.upstream=e,this.impl=new SB(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},SB=class extends Zp{constructor(e){super();if(this.upstream=e,W().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=IB();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let o;return W().get("IS_BROWSER")?o=this.decoder.decode(t,{stream:!0}):o=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(o),!0}};var yh=class extends nI{constructor(e,t={}){super();this.file=e,this.options=t,y.assert(e instanceof Uint8Array||(W().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,o)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,n)));else{let s=new FileReader;s.onload=i=>{let l=s.result;if(l instanceof ArrayBuffer&&(l=new Uint8Array(l)),!(l instanceof Uint8Array))return o(new TypeError("FileReader returned unknown type."));t(l)},s.onabort=i=>o(new Error("Aborted")),s.onerror=i=>o(new Error(i.type));let a=this.file.slice(this.offset,n);s.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function TB(r,e={}){let t,o;typeof r=="string"?t=r:(t=r.url,o=ire(r));let n=await y.fetch(t,o);if(n.ok){let s=new Uint8Array(await n.arrayBuffer());return new yh(s,e)}else throw new Error(n.statusText)}var ire=r=>({method:r.method,headers:r.headers,body:r.body,mode:r.mode,credentials:r.credentials,cache:r.cache,redirect:r.redirect,referrer:r.referrer,integrity:r.integrity});function gy(r){return typeof r=="string"&&r.substr(0,7)==="file://"}var bh=class extends xh{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(gy(this.input)&&W().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new yh(this.input,this.options)}};var wh=class extends xh{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return gy(this.url)?new bh(this.url,this.fileOptions).iterator():TB(this.url,this.fileOptions)}};function AB(r,e={}){return new dh(new wh(r),e)}function EB(r){let e=ph(r);return wo(async()=>e)}function DB(r){return wo(async()=>{let e=await r();return ph(()=>e.next())})}async function $B(r,e){return gh.create(r,e)}async function RB(r){return hh.create(r)}var FB="3.3.0";var VVt={tfjs:(lm==null?void 0:lm.version)||void 0,"tfjs-core":(um==null?void 0:um.version)||void 0,"tfjs-data":(cm==null?void 0:cm.version)||void 0,"tfjs-layers":(pm==null?void 0:pm.version)||void 0,"tfjs-converter":(mm==null?void 0:mm.version)||void 0,"tfjs-backend-cpu":k_||void 0,"tfjs-backend-webgl":$k||void 0,"tfjs-backend-wasm":dC||void 0};export{Os as Abs,yi as Acos,bi as Acosh,sf as AdadeltaOptimizer,af as AdagradOptimizer,lf as AdamOptimizer,uf as AdamaxOptimizer,Fo as Add,kn as AddN,cc as All,pc as Any,vn as ArgMax,Ga as ArgMin,wi as Asin,_i as Asinh,ki as Atan,Ci as Atan2,vi as Atanh,Cn as AvgPool,Wa as AvgPool3D,fc as AvgPool3DGrad,mc as AvgPoolGrad,mC as BackendWasm,In as BatchMatMul,ja as BatchToSpaceND,dc as Bincount,QN as BroadcastTo,h0 as Callback,TC as CallbackList,Ho as Cast,Nn as Ceil,qo as ClipByValue,hc as Complex,Ua as ComplexAbs,Ps as Concat,Sn as Conv2D,gc as Conv2DBackpropFilter,Tn as Conv2DBackpropInput,Ha as Conv3D,xc as Conv3DBackpropFilterV2,yc as Conv3DBackpropInputV2,An as Cos,Ii as Cosh,Ni as CropAndResize,En as Cumsum,EC as CustomCallback,Va as DataStorage,bc as DenseBincount,Si as DepthToSpace,Dn as DepthwiseConv2dNative,wc as DepthwiseConv2dNativeBackpropFilter,_c as DepthwiseConv2dNativeBackpropInput,kc as Diag,qa as Dilation2D,ym as Dilation2DBackpropFilter,xm as Dilation2DBackpropInput,Mb as ENV,g0 as EarlyStopping,Ti as Elu,vc as EluGrad,jh as Environment,Ei as Equal,Ai as Erf,Rn as Exp,Ms as ExpandDims,Di as Expm1,Cc as FFT,Ka as Fill,$i as FlipLeftRight,Fn as Floor,On as FloorDiv,bm as FromPixels,Pn as FusedBatchNorm,Xs as FusedConv2D,Ys as FusedDepthwiseConv2D,Nk as GPGPUContext,Ri as GatherNd,Ls as GatherV2,j0 as GraphModel,Fi as Greater,Mn as GreaterEqual,AC as History,Ic as IFFT,Ko as Identity,Nc as Imag,At as InputSpec,Oi as IsFinite,Pi as IsInf,Mi as IsNan,$s as KernelBackend,Xa as LRN,Tc as LRNGrad,Dx as LayerVariable,Wo as LayersModel,Ln as LeakyRelu,Li as Less,zi as LessEqual,Sc as LinSpace,zn as Log,Bi as Log1p,eS as LogSoftmax,Vi as LogicalAnd,Ml as LogicalNot,Ll as LogicalOr,np as MathBackendCPU,bp as MathBackendWebGL,Bn as Max,Gn as MaxPool,Ya as MaxPool3D,Ec as MaxPool3DGrad,Ac as MaxPoolGrad,Dc as MaxPoolWithArgmax,Vn as Maximum,Wn as Mean,jn as Min,Un as Minimum,Za as MirrorPad,Gi as Mod,cf as MomentumOptimizer,$c as Multinomial,Hn as Multiply,zs as Neg,ji as NonMaxSuppressionV3,Ui as NonMaxSuppressionV4,Hi as NonMaxSuppressionV5,Wi as NotEqual,bG as OP_SCOPE_SUFFIX,qn as OneHot,Bs as OnesLike,zr as Optimizer,Vs as Pack,Kn as PadV2,dre as Pool,Xn as Pow,Yn as Prelu,qi as Prod,pf as RMSPropOptimizer,Eo as RNN,Ja as Range,jb as Rank,Rc as Real,$n as RealDiv,Ki as Reciprocal,qt as Reduction,Zn as Relu,Qn as Relu6,Gs as Reshape,Jn as ResizeBilinear,Oc as ResizeBilinearGrad,Qa as ResizeNearestNeighbor,Fc as ResizeNearestNeighborGrad,es as Reverse,oa as RotateWithOffset,ts as Round,rs as Rsqrt,yu as SGDOptimizer,Xi as ScatterNd,Ws as Select,Yi as Selu,$a as Sequential,ns as Sigmoid,Ji as Sign,os as Sin,Zi as Sinh,js as Slice,as as Softmax,Qi as Softplus,el as SpaceToBatchND,Pc as SparseToDense,Us as SplitV,ss as Sqrt,tl as Square,ls as SquaredDifference,Xo as Step,ea as StridedSlice,us as Sub,is as Sum,eo as SymbolicTensor,ta as Tan,cs as Tanh,Ve as Tensor,lt as TensorBuffer,Oo as Tile,ra as TopK,Mc as Transform,ps as Transpose,Lc as Unique,Hs as Unpack,rl as UnsortedSegmentSum,nl as Variable,qs as ZerosLike,Ks as _FusedMatMul,It as abs,Tm as acos,Am as acosh,ee as add,xw as addN,Hl as all,al as any,ll as argMax,Em as argMin,Dm as asin,$m as asinh,Rm as atan,Fm as atan2,Om as atanh,ua as avgPool,Pm as avgPool3d,lT as backend,N as backend_util,qle as basicLSTMCell,Jo as batchNorm,_w as batchNorm2d,kw as batchNorm3d,vw as batchNorm4d,ca as batchToSpaceND,Cw as bincount,YCe as booleanMaskAsync,ul as broadcastTo,eg as browser,ve as buffer,wte as callbacks,ne as cast,Mm as ceil,ar as clipByValue,Po as clone,Co as complex,Ze as concat,Iw as concat1d,Nw as concat2d,Sw as concat3d,Tw as concat4d,tz as constraints,Xl as conv1d,Yr as conv2d,Yl as conv2dTranspose,Lm as conv3d,Yce as conv3dTranspose,wre as copyRegisteredKernels,pa as cos,Zl as cosh,xg as cosineWindow,Jl as cumsum,po as customGrad,sI as data,Aw as denseBincount,gw as deprecationWarn,zm as depthToSpace,ds as depthwiseConv2d,kte as deregisterOp,Wl as device_util,Ppe as diag,Bm as dilation2d,Jse as disableDeprecationWarnings,Ae as dispose,Qse as disposeVariables,me as div,Vm as divNoNan,mT as dot,OT as dropout,hs as elu,Zse as enableDebugMode,Yse as enableProdMode,PT as enclosingPowerOfTwo,Zo as engine,W as env,Io as equal,Gm as erf,Zt as exp,lr as expandDims,Wm as expm1,Yc as eye,ba as fft,ma as fill,sie as findBackend,iie as findBackendFactory,gs as floor,Ul as floorDiv,lD as forceHalfFloat,rn as fused,Qo as gather,RT as gatherND,tg as gather_util,oie as getBackend,Vb as getGradient,_m as getKernel,Uh as getKernelsForBackend,f5 as gpgpu_util,Kde as grad,Xde as grads,tr as greater,co as greaterEqual,ti as ifft,Ql as imag,oi as image,iIe as inTopKAsync,kz as initializers,zC as input,Nr as io,pu as irfft,Ew as isFinite,Dw as isInf,$w as isNaN,Et as keep,Er as kernel_impls,Qz as layers,fa as leakyRelu,eu as less,zo as lessEqual,m1 as linalg,Rw as linspace,Kte as loadGraphModel,RQ as loadLayersModel,jm as localResponseNormalization,ur as log,tu as log1p,Ow as logSigmoid,ru as logSoftmax,ug as logSumExp,hr as logicalAnd,da as logicalNot,ou as logicalOr,dT as logicalXor,Z$e as losses,je as matMul,ZG as math,cr as max,ha as maxPool,Hm as maxPool3d,zw as maxPoolWithArgmax,Zr as maximum,dt as mean,Sm as memory,n3 as metrics,ei as min,ys as minimum,qm as mirrorPad,Km as mod,DQ as model,s3 as models,Zc as moments,k0e as movingAverage,P as mul,Xxe as multiRNNCell,Bw as multinomial,He as neg,mf as nextFrame,rp as norm,tn as notEqual,fs as oneHot,Sr as ones,rr as onesLike,S as op,Aye as outerProduct,Mr as pad,zye as pad1d,jye as pad2d,Xye as pad3d,ebe as pad4d,hT as pool,Lr as pow,xa as prelu,OS as print,nu as prod,eie as profile,Lbe as rand,Kbe as randomGamma,mg as randomNormal,bs as randomUniform,Qc as range,rie as ready,cl as real,Xm as reciprocal,qc as registerBackend,FQ as registerCallbackConstructor,tS as registerGradient,zl as registerKernel,_te as registerOp,i3 as regularizers,Tr as relu,iu as relu6,nie as removeBackend,L as reshape,Ht as reverse,Pwe as reverse1d,Gwe as reverse2d,Kwe as reverse3d,e_e as reverse4d,wa as rfft,Ym as round,au as rsqrt,le as scalar,DT as scatterND,rg as scatter_util,lu as selu,Zm as separableConv2d,$Q as sequential,Q as serialization,xW as setBackend,aie as setPlatform,Rht as setWasmPath,Fht as setWasmPaths,u2 as setWebGLContext,Zw as setdiff1dAsync,__ as shared,Xr as sigmoid,Jm as sign,Y$e as signal,uu as sin,cu as sinh,Re as slice,Qm as slice1d,fg as slice2d,ef as slice3d,ep as slice4d,er as slice_util,ya as softmax,xs as softplus,ga as spaceToBatchND,gg as sparseToDense,X$e as spectral,pr as split,gt as sqrt,Oe as square,mu as squaredDifference,No as squeeze,Bt as stack,ws as step,tf as stridedSlice,ce as sub,ge as sum,Vl as sumOutType,rf as tan,Qs as tanh,Pr as tensor,Vt as tensor1d,ri as tensor2d,HS as tensor3d,Jve as tensor4d,oCe as tensor5d,lCe as tensor6d,Yo as tensor_util,uW as test_util,V as tidy,Lo as tile,tie as time,of as topk,bu as train,Ke as transpose,fu as truncatedNormal,tp as unique,bre as unregisterGradient,yre as unregisterKernel,dg as unsortedSegmentSum,mr as unstack,ir as upcastType,y as util,Yde as valueAndGrad,Zde as valueAndGrads,Jw as variable,Fw as variableGrads,VVt as version,Xte as version_converter,jse as version_core,k_ as version_cpu,ld as version_layers,dC as version_wasm,$k as version_webgl,F5e as webgl,t5 as webgl_util,Dt as where,nf as whereAsync,ht as zeros,Ce as zerosLike};
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */
//# sourceMappingURL=tfjs.esm.js.map