Human: AI-powered 3D Face Detection & Rotation Tracking, Face Description & Recognition, Body Pose Tracking, 3D Hand & Finger Tracking, Iris Analysis, Age & Gender & Emotion Prediction, Gaze Tracking, Gesture Recognition
 
 
 
 
Go to file
Vladimir Mandic 4b44d7829a update badges 2021-04-08 19:16:17 -04:00
.github update github templates 2021-03-18 11:58:46 -04:00
assets added face3d demo 2021-03-30 09:03:18 -04:00
demo update 2021-04-08 12:10:15 -04:00
dist update 2021-04-08 12:10:15 -04:00
models experimental: add efficientpose 2021-03-27 15:43:48 -04:00
server update 2021-04-08 12:10:15 -04:00
src update 2021-04-08 12:10:15 -04:00
test fix linting and tests 2021-04-03 10:49:14 -04:00
types update tslib 2021-04-06 11:38:01 -04:00
wiki@f5850bc4ed update cdn links 2021-04-08 18:37:58 -04:00
.eslintrc.json fix linting and tests 2021-04-03 10:49:14 -04:00
.gitignore fix box clamping and raw output 2021-03-17 14:35:11 -04:00
.gitmodules updated wiki 2020-11-07 09:42:54 -05:00
.hintrc implement webhint 2021-04-04 09:25:18 -04:00
.markdownlint.json update badges 2021-03-08 15:06:56 -05:00
.npmignore fix linting and tests 2021-04-03 10:49:14 -04:00
CHANGELOG.md update 2021-04-08 12:10:15 -04:00
CODE_OF_CONDUCT update github templates 2021-03-18 11:58:46 -04:00
CONTRIBUTING update contributing guide 2021-03-26 15:37:43 -04:00
LICENSE update github templates 2021-03-18 11:58:46 -04:00
README.md update badges 2021-04-08 19:16:17 -04:00
SECURITY.md update github templates 2021-03-18 11:58:46 -04:00
TODO.md fix for seedrandom 2021-03-16 07:16:25 -04:00
favicon.ico new icons 2021-03-29 15:01:16 -04:00
human.service fix box clamping and raw output 2021-03-17 14:35:11 -04:00
package.json update 2021-04-08 12:10:15 -04:00
tsconfig.json new serve module and demo structure 2021-03-29 14:40:34 -04:00

README.md

Git Version NPM Version Last Commit License GitHub Status Checks Vulnerabilities

Human Library

3D Face Detection & Rotation Tracking, Face Description & Recognition,
Body Pose Tracking, 3D Hand & Finger Tracking,
Iris Analysis, Age & Gender & Emotion Prediction,
Gesture Recognition


JavaScript module using TensorFlow/JS Machine Learning library

  • Browser:
    Compatible with both desktop and mobile platforms
    Compatible with CPU, WebGL, WASM backends
    Compatible with WebWorker execution
  • NodeJS:
    Compatible with both software tfjs-node and
    GPU accelerated backends tfjs-node-gpu using CUDA libraries

Check out Live Demo for processing of live WebCam video or static images


Demos

Project pages


Wiki pages


Additional notes


See issues and discussions for list of known limitations and planned enhancements

Suggestions are welcome!




Options

As presented in the demo application...

Options visible in demo


Examples


Training image:

Example Training Image

Using static images:

Example Using Image

Live WebCam view:

Example Using WebCam

Face Similarity Matching:

Face Matching

Face3D OpenGL Rendering:

Face Matching

468-Point Face Mesh Defails:

FaceMesh




Quick Start

Simply load Human directly from a CDN in your HTML file:

<script src="https://cdn.jsdelivr.net/npm/@vladmandic/human/dist/human.js"></script>

or

<script src="https://unpkg.dev/@vladmandic/human/dist/human.js"></script>

For details, including how to use Browser ESM version or NodeJS version of Human, see Installation


Example

Example simple app that uses Human to process video input and
draw output on screen using internal draw helper functions

// create instance of human with simple configuration using default values
const config = { backend: 'webgl' };
const human = new Human(config);

function detectVideo() {
  // select input HTMLVideoElement and output HTMLCanvasElement from page
  const inputVideo = document.getElementById('video-id');
  const outputCanvas = document.getElementById('canvas-id');
  // perform processing using default configuration
  human.detect(inputVideo).then((result) => {
    // result object will contain detected details
    // as well as the processed canvas itself
    // so lets first draw processed frame on canvas
    human.draw.canvas(result.canvas, outputCanvas);
    // then draw results on the same canvas
    human.draw.face(outputCanvas, result.face);
    human.draw.body(outputCanvas, result.body);
    human.draw.hand(outputCanvas, result.hand);
    human.draw.gesture(outputCanvas, result.gesture);
    // and loop immediate to next frame
    requestAnimationFrame(detectVideo);
  });
}

detectVideo();




Default models

Default models in Human library are:

  • Face Detection: MediaPipe BlazeFace-Back
  • Face Mesh: MediaPipe FaceMesh
  • Face Description: HSE FaceRes
  • Face Iris Analysis: MediaPipe Iris
  • Emotion Detection: Oarriaga Emotion
  • Body Analysis: PoseNet

Note that alternative models are provided and can be enabled via configuration
For example, PoseNet model can be switched for BlazePose model depending on the use case

For more info, see Configuration Details and List of Models




Human library is written in TypeScript 4.3
Conforming to JavaScript ECMAScript version 2020 standard
Build target is JavaScript EMCAScript version 2018


For details see Wiki Pages
and API Specification


Stars Forks Code Size CDN
Downloads Downloads Downloads