mirror of https://github.com/vladmandic/human
69 lines
3.2 KiB
TypeScript
69 lines
3.2 KiB
TypeScript
import { log } from '../log';
|
|
import * as tf from '../../dist/tfjs.esm.js';
|
|
import * as profile from '../profile';
|
|
import * as annotations from './annotations';
|
|
|
|
let model;
|
|
|
|
export async function load(config) {
|
|
if (!model) {
|
|
model = await tf.loadGraphModel(config.body.modelPath);
|
|
// blazepose inputSize is 256x256px, but we can find that out dynamically
|
|
model.width = parseInt(model.signature.inputs['input_1:0'].tensorShape.dim[2].size);
|
|
model.height = parseInt(model.signature.inputs['input_1:0'].tensorShape.dim[1].size);
|
|
if (config.debug) log(`load model: ${config.body.modelPath.match(/\/(.*)\./)[1]}`);
|
|
}
|
|
return model;
|
|
}
|
|
|
|
export async function predict(image, config) {
|
|
if (!model) return null;
|
|
if (!config.body.enabled) return null;
|
|
const imgSize = { width: image.shape[2], height: image.shape[1] };
|
|
const resize = tf.image.resizeBilinear(image, [model.width || config.body.inputSize, model.height || config.body.inputSize], false);
|
|
const normalize = tf.div(resize, [255.0]);
|
|
resize.dispose();
|
|
// let segmentation; // not used right now since we have keypoints and don't need to go through matrix using strides
|
|
// let poseflag; // irrelevant
|
|
let points;
|
|
if (!config.profile) { // run through profiler or just execute
|
|
const resT = await model.predict(normalize);
|
|
// segmentation = resT[0].dataSync();
|
|
// poseflag = resT[1].dataSync();
|
|
points = resT.find((t) => (t.size === 195 || t.size === 155)).dataSync(); // order of output tensors may change between models, full has 195 and upper has 155 items
|
|
resT.forEach((t) => t.dispose());
|
|
} else {
|
|
const profileData = await tf.profile(() => model.predict(normalize));
|
|
points = profileData.result.find((t) => (t.size === 195 || t.size === 155)).dataSync();
|
|
profileData.result.forEach((t) => t.dispose());
|
|
profile.run('blazepose', profileData);
|
|
}
|
|
normalize.dispose();
|
|
const keypoints: Array<{ id, part, position: { x, y, z }, score, presence }> = [];
|
|
const labels = points.length === 195 ? annotations.full : annotations.upper; // full model has 39 keypoints, upper has 31 keypoints
|
|
const depth = 5; // each points has x,y,z,visibility,presence
|
|
for (let i = 0; i < points.length / depth; i++) {
|
|
keypoints.push({
|
|
id: i,
|
|
part: labels[i],
|
|
position: {
|
|
x: Math.trunc(imgSize.width * points[depth * i + 0] / 255), // return normalized x value istead of 0..255
|
|
y: Math.trunc(imgSize.height * points[depth * i + 1] / 255), // return normalized y value istead of 0..255
|
|
z: Math.trunc(points[depth * i + 2]) + 0, // fix negative zero
|
|
},
|
|
score: (100 - Math.trunc(100 / (1 + Math.exp(points[depth * i + 3])))) / 100, // reverse sigmoid value
|
|
presence: (100 - Math.trunc(100 / (1 + Math.exp(points[depth * i + 4])))) / 100, // reverse sigmoid value
|
|
});
|
|
}
|
|
// console.log('POINTS', imgSize, pts.length, pts);
|
|
return [{ keypoints }];
|
|
}
|
|
|
|
/*
|
|
Model card:
|
|
- https://drive.google.com/file/d/10IU-DRP2ioSNjKFdiGbmmQX81xAYj88s/view
|
|
Download:
|
|
- https://github.com/PINTO0309/PINTO_model_zoo/tree/main/058_BlazePose_Full_Keypoints/10_new_256x256/saved_model/tfjs_model_float16
|
|
- https://github.com/PINTO0309/PINTO_model_zoo/tree/main/053_BlazePose/20_new_256x256/saved_model/tfjs_model_float16
|
|
*/
|