import { log } from '../log'; import * as tf from '../../dist/tfjs.esm.js'; import * as profile from '../profile'; import * as annotations from './annotations'; let model; export async function load(config) { if (!model) { model = await tf.loadGraphModel(config.body.modelPath); // blazepose inputSize is 256x256px, but we can find that out dynamically model.width = parseInt(model.signature.inputs['input_1:0'].tensorShape.dim[2].size); model.height = parseInt(model.signature.inputs['input_1:0'].tensorShape.dim[1].size); if (config.debug) log(`load model: ${config.body.modelPath.match(/\/(.*)\./)[1]}`); } return model; } export async function predict(image, config) { if (!model) return null; if (!config.body.enabled) return null; const imgSize = { width: image.shape[2], height: image.shape[1] }; const resize = tf.image.resizeBilinear(image, [model.width || config.body.inputSize, model.height || config.body.inputSize], false); const normalize = tf.div(resize, [255.0]); resize.dispose(); // let segmentation; // not used right now since we have keypoints and don't need to go through matrix using strides // let poseflag; // irrelevant let points; if (!config.profile) { // run through profiler or just execute const resT = await model.predict(normalize); // segmentation = resT[0].dataSync(); // poseflag = resT[1].dataSync(); points = resT.find((t) => (t.size === 195 || t.size === 155)).dataSync(); // order of output tensors may change between models, full has 195 and upper has 155 items resT.forEach((t) => t.dispose()); } else { const profileData = await tf.profile(() => model.predict(normalize)); points = profileData.result.find((t) => (t.size === 195 || t.size === 155)).dataSync(); profileData.result.forEach((t) => t.dispose()); profile.run('blazepose', profileData); } normalize.dispose(); const keypoints: Array<{ id, part, position: { x, y, z }, score, presence }> = []; const labels = points.length === 195 ? annotations.full : annotations.upper; // full model has 39 keypoints, upper has 31 keypoints const depth = 5; // each points has x,y,z,visibility,presence for (let i = 0; i < points.length / depth; i++) { keypoints.push({ id: i, part: labels[i], position: { x: Math.trunc(imgSize.width * points[depth * i + 0] / 255), // return normalized x value istead of 0..255 y: Math.trunc(imgSize.height * points[depth * i + 1] / 255), // return normalized y value istead of 0..255 z: Math.trunc(points[depth * i + 2]) + 0, // fix negative zero }, score: (100 - Math.trunc(100 / (1 + Math.exp(points[depth * i + 3])))) / 100, // reverse sigmoid value presence: (100 - Math.trunc(100 / (1 + Math.exp(points[depth * i + 4])))) / 100, // reverse sigmoid value }); } // console.log('POINTS', imgSize, pts.length, pts); return [{ keypoints }]; } /* Model card: - https://drive.google.com/file/d/10IU-DRP2ioSNjKFdiGbmmQX81xAYj88s/view Download: - https://github.com/PINTO0309/PINTO_model_zoo/tree/main/058_BlazePose_Full_Keypoints/10_new_256x256/saved_model/tfjs_model_float16 - https://github.com/PINTO0309/PINTO_model_zoo/tree/main/053_BlazePose/20_new_256x256/saved_model/tfjs_model_float16 */