mirror of https://github.com/vladmandic/human
176 lines
8.0 KiB
TypeScript
176 lines
8.0 KiB
TypeScript
/**
|
|
* Human demo for browsers
|
|
* @default Human Library
|
|
* @summary <https://github.com/vladmandic/human>
|
|
* @author <https://github.com/vladmandic>
|
|
* @copyright <https://github.com/vladmandic>
|
|
* @license MIT
|
|
*/
|
|
|
|
import { Human } from '../../dist/human.esm.js'; // equivalent of @vladmandic/Human
|
|
|
|
const humanConfig = { // user configuration for human, used to fine-tune behavior
|
|
modelBasePath: '../../models',
|
|
filter: { equalization: true }, // lets run with histogram equilizer
|
|
face: {
|
|
enabled: true,
|
|
detector: { rotation: true, return: true }, // return tensor is not really needed except to draw detected face
|
|
description: { enabled: true },
|
|
iris: { enabled: true }, // needed to determine gaze direction
|
|
emotion: { enabled: false }, // not needed
|
|
antispoof: { enabled: true }, // enable optional antispoof as well
|
|
},
|
|
body: { enabled: false },
|
|
hand: { enabled: false },
|
|
object: { enabled: false },
|
|
gesture: { enabled: true },
|
|
};
|
|
|
|
const options = {
|
|
minConfidence: 0.6, // overal face confidence for box, face, gender, real
|
|
minSize: 224, // min input to face descriptor model before degradation
|
|
maxTime: 10000, // max time before giving up
|
|
};
|
|
|
|
const human = new Human(humanConfig); // create instance of human with overrides from user configuration
|
|
|
|
human.env['perfadd'] = false; // is performance data showing instant or total values
|
|
human.draw.options.font = 'small-caps 18px "Lato"'; // set font used to draw labels when using draw methods
|
|
human.draw.options.lineHeight = 20;
|
|
|
|
const dom = { // grab instances of dom objects so we dont have to look them up later
|
|
video: document.getElementById('video') as HTMLVideoElement,
|
|
canvas: document.getElementById('canvas') as HTMLCanvasElement,
|
|
log: document.getElementById('log') as HTMLPreElement,
|
|
fps: document.getElementById('fps') as HTMLPreElement,
|
|
status: document.getElementById('status') as HTMLPreElement,
|
|
};
|
|
const timestamp = { detect: 0, draw: 0 }; // holds information used to calculate performance and possible memory leaks
|
|
const fps = { detect: 0, draw: 0 }; // holds calculated fps information for both detect and screen refresh
|
|
let startTime = 0;
|
|
|
|
const log = (...msg) => { // helper method to output messages
|
|
dom.log.innerText += msg.join(' ') + '\n';
|
|
// eslint-disable-next-line no-console
|
|
console.log(...msg);
|
|
};
|
|
const printFPS = (msg) => dom.fps.innerText = msg; // print status element
|
|
const printStatus = (msg) => dom.status.innerText = 'status: ' + JSON.stringify(msg).replace(/"|{|}/g, '').replace(/,/g, ' | '); // print status element
|
|
|
|
async function webCam() { // initialize webcam
|
|
printFPS('starting webcam...');
|
|
// @ts-ignore resizeMode is not yet defined in tslib
|
|
const cameraOptions: MediaStreamConstraints = { audio: false, video: { facingMode: 'user', resizeMode: 'none', width: { ideal: document.body.clientWidth } } };
|
|
const stream: MediaStream = await navigator.mediaDevices.getUserMedia(cameraOptions);
|
|
const ready = new Promise((resolve) => { dom.video.onloadeddata = () => resolve(true); });
|
|
dom.video.srcObject = stream;
|
|
dom.video.play();
|
|
await ready;
|
|
dom.canvas.width = dom.video.videoWidth;
|
|
dom.canvas.height = dom.video.videoHeight;
|
|
const track: MediaStreamTrack = stream.getVideoTracks()[0];
|
|
const capabilities: MediaTrackCapabilities | string = track.getCapabilities ? track.getCapabilities() : '';
|
|
const settings: MediaTrackSettings | string = track.getSettings ? track.getSettings() : '';
|
|
const constraints: MediaTrackConstraints | string = track.getConstraints ? track.getConstraints() : '';
|
|
log('video:', dom.video.videoWidth, dom.video.videoHeight, track.label, { stream, track, settings, constraints, capabilities });
|
|
dom.canvas.onclick = () => { // pause when clicked on screen and resume on next click
|
|
if (dom.video.paused) dom.video.play();
|
|
else dom.video.pause();
|
|
};
|
|
}
|
|
|
|
async function detectionLoop() { // main detection loop
|
|
if (!dom.video.paused) {
|
|
await human.detect(dom.video); // actual detection; were not capturing output in a local variable as it can also be reached via human.result
|
|
const now = human.now();
|
|
fps.detect = 1000 / (now - timestamp.detect);
|
|
timestamp.detect = now;
|
|
requestAnimationFrame(detectionLoop); // start new frame immediately
|
|
}
|
|
}
|
|
|
|
const ok = { // must meet all rules
|
|
faceCount: false,
|
|
faceConfidence: false,
|
|
facingCenter: false,
|
|
eyesOpen: false,
|
|
blinkDetected: false,
|
|
faceSize: false,
|
|
antispoofCheck: false,
|
|
livenessCheck: false,
|
|
elapsedMs: 0,
|
|
};
|
|
const allOk = () => ok.faceCount && ok.faceSize && ok.blinkDetected && ok.facingCenter && ok.faceConfidence && ok.antispoofCheck;
|
|
|
|
async function validationLoop(): Promise<typeof human.result.face> { // main screen refresh loop
|
|
const interpolated = await human.next(human.result); // smoothen result using last-known results
|
|
await human.draw.canvas(dom.video, dom.canvas); // draw canvas to screen
|
|
await human.draw.all(dom.canvas, interpolated); // draw labels, boxes, lines, etc.
|
|
const now = human.now();
|
|
fps.draw = 1000 / (now - timestamp.draw);
|
|
timestamp.draw = now;
|
|
printFPS(`fps: ${fps.detect.toFixed(1).padStart(5, ' ')} detect | ${fps.draw.toFixed(1).padStart(5, ' ')} draw`); // write status
|
|
|
|
const gestures: string[] = Object.values(human.result.gesture).map((gesture) => gesture.gesture); // flatten all gestures
|
|
ok.faceCount = human.result.face.length === 1; // must be exactly detected face
|
|
ok.eyesOpen = ok.eyesOpen || !(gestures.includes('blink left eye') || gestures.includes('blink right eye')); // blink validation is only ok once both eyes are open
|
|
ok.blinkDetected = ok.eyesOpen && ok.blinkDetected || gestures.includes('blink left eye') || gestures.includes('blink right eye'); // need to detect blink only once
|
|
ok.facingCenter = gestures.includes('facing center') && gestures.includes('looking center'); // must face camera and look at camera
|
|
ok.faceConfidence = (human.result.face[0].boxScore || 0) > options.minConfidence && (human.result.face[0].faceScore || 0) > options.minConfidence && (human.result.face[0].genderScore || 0) > options.minConfidence;
|
|
ok.antispoofCheck = (human.result.face[0].real || 0) > options.minConfidence;
|
|
ok.faceSize = human.result.face[0].box[2] >= options.minSize && human.result.face[0].box[3] >= options.minSize;
|
|
|
|
printStatus(ok);
|
|
|
|
if (allOk()) { // all criteria met
|
|
dom.video.pause();
|
|
return human.result.face;
|
|
} else {
|
|
human.tf.dispose(human.result.face[0].tensor); // results are not ok, so lets dispose tensor
|
|
}
|
|
if (ok.elapsedMs > options.maxTime) { // give up
|
|
dom.video.pause();
|
|
return human.result.face;
|
|
} else { // run again
|
|
ok.elapsedMs = Math.trunc(human.now() - startTime);
|
|
return new Promise((resolve) => {
|
|
setTimeout(async () => {
|
|
const res = await validationLoop(); // run validation loop until conditions are met
|
|
if (res) resolve(human.result.face); // recursive promise resolve
|
|
}, 30); // use to slow down refresh from max refresh rate to target of 30 fps
|
|
});
|
|
}
|
|
}
|
|
|
|
async function detectFace(face) {
|
|
// draw face and dispose face tensor immediatey afterwards
|
|
dom.canvas.width = face.tensor.shape[2];
|
|
dom.canvas.height = face.tensor.shape[1];
|
|
dom.canvas.style.width = '';
|
|
human.tf.browser.toPixels(face.tensor, dom.canvas);
|
|
human.tf.dispose(face.tensor);
|
|
|
|
// run detection using human.match and use face.embedding as input descriptor
|
|
// tbd
|
|
}
|
|
|
|
async function main() { // main entry point
|
|
log('human version:', human.version, '| tfjs version:', human.tf.version_core);
|
|
printFPS('loading...');
|
|
await human.load(); // preload all models
|
|
printFPS('initializing...');
|
|
await human.warmup(); // warmup function to initialize backend for future faster detection
|
|
await webCam(); // start webcam
|
|
await detectionLoop(); // start detection loop
|
|
startTime = human.now();
|
|
const face = await validationLoop(); // start validation loop
|
|
if (!allOk()) log('did not find valid input', face);
|
|
else {
|
|
log('found valid face', face);
|
|
await detectFace(face[0]);
|
|
}
|
|
dom.fps.style.display = 'none';
|
|
}
|
|
|
|
window.onload = main;
|