/** * Human demo for browsers * @default Human Library * @summary * @author * @copyright * @license MIT */ import { Human } from '../../dist/human.esm.js'; // equivalent of @vladmandic/Human const humanConfig = { // user configuration for human, used to fine-tune behavior modelBasePath: '../../models', filter: { equalization: true }, // lets run with histogram equilizer face: { enabled: true, detector: { rotation: true, return: true }, // return tensor is not really needed except to draw detected face description: { enabled: true }, iris: { enabled: true }, // needed to determine gaze direction emotion: { enabled: false }, // not needed antispoof: { enabled: true }, // enable optional antispoof as well }, body: { enabled: false }, hand: { enabled: false }, object: { enabled: false }, gesture: { enabled: true }, }; const options = { minConfidence: 0.6, // overal face confidence for box, face, gender, real minSize: 224, // min input to face descriptor model before degradation maxTime: 10000, // max time before giving up }; const human = new Human(humanConfig); // create instance of human with overrides from user configuration human.env['perfadd'] = false; // is performance data showing instant or total values human.draw.options.font = 'small-caps 18px "Lato"'; // set font used to draw labels when using draw methods human.draw.options.lineHeight = 20; const dom = { // grab instances of dom objects so we dont have to look them up later video: document.getElementById('video') as HTMLVideoElement, canvas: document.getElementById('canvas') as HTMLCanvasElement, log: document.getElementById('log') as HTMLPreElement, fps: document.getElementById('fps') as HTMLPreElement, status: document.getElementById('status') as HTMLPreElement, }; const timestamp = { detect: 0, draw: 0 }; // holds information used to calculate performance and possible memory leaks const fps = { detect: 0, draw: 0 }; // holds calculated fps information for both detect and screen refresh let startTime = 0; const log = (...msg) => { // helper method to output messages dom.log.innerText += msg.join(' ') + '\n'; // eslint-disable-next-line no-console console.log(...msg); }; const printFPS = (msg) => dom.fps.innerText = msg; // print status element const printStatus = (msg) => dom.status.innerText = 'status: ' + JSON.stringify(msg).replace(/"|{|}/g, '').replace(/,/g, ' | '); // print status element async function webCam() { // initialize webcam printFPS('starting webcam...'); // @ts-ignore resizeMode is not yet defined in tslib const cameraOptions: MediaStreamConstraints = { audio: false, video: { facingMode: 'user', resizeMode: 'none', width: { ideal: document.body.clientWidth } } }; const stream: MediaStream = await navigator.mediaDevices.getUserMedia(cameraOptions); const ready = new Promise((resolve) => { dom.video.onloadeddata = () => resolve(true); }); dom.video.srcObject = stream; dom.video.play(); await ready; dom.canvas.width = dom.video.videoWidth; dom.canvas.height = dom.video.videoHeight; const track: MediaStreamTrack = stream.getVideoTracks()[0]; const capabilities: MediaTrackCapabilities | string = track.getCapabilities ? track.getCapabilities() : ''; const settings: MediaTrackSettings | string = track.getSettings ? track.getSettings() : ''; const constraints: MediaTrackConstraints | string = track.getConstraints ? track.getConstraints() : ''; log('video:', dom.video.videoWidth, dom.video.videoHeight, track.label, { stream, track, settings, constraints, capabilities }); dom.canvas.onclick = () => { // pause when clicked on screen and resume on next click if (dom.video.paused) dom.video.play(); else dom.video.pause(); }; } async function detectionLoop() { // main detection loop if (!dom.video.paused) { await human.detect(dom.video); // actual detection; were not capturing output in a local variable as it can also be reached via human.result const now = human.now(); fps.detect = 1000 / (now - timestamp.detect); timestamp.detect = now; requestAnimationFrame(detectionLoop); // start new frame immediately } } const ok = { // must meet all rules faceCount: false, faceConfidence: false, facingCenter: false, eyesOpen: false, blinkDetected: false, faceSize: false, antispoofCheck: false, livenessCheck: false, elapsedMs: 0, }; const allOk = () => ok.faceCount && ok.faceSize && ok.blinkDetected && ok.facingCenter && ok.faceConfidence && ok.antispoofCheck; async function validationLoop(): Promise { // main screen refresh loop const interpolated = await human.next(human.result); // smoothen result using last-known results await human.draw.canvas(dom.video, dom.canvas); // draw canvas to screen await human.draw.all(dom.canvas, interpolated); // draw labels, boxes, lines, etc. const now = human.now(); fps.draw = 1000 / (now - timestamp.draw); timestamp.draw = now; printFPS(`fps: ${fps.detect.toFixed(1).padStart(5, ' ')} detect | ${fps.draw.toFixed(1).padStart(5, ' ')} draw`); // write status const gestures: string[] = Object.values(human.result.gesture).map((gesture) => gesture.gesture); // flatten all gestures ok.faceCount = human.result.face.length === 1; // must be exactly detected face ok.eyesOpen = ok.eyesOpen || !(gestures.includes('blink left eye') || gestures.includes('blink right eye')); // blink validation is only ok once both eyes are open ok.blinkDetected = ok.eyesOpen && ok.blinkDetected || gestures.includes('blink left eye') || gestures.includes('blink right eye'); // need to detect blink only once ok.facingCenter = gestures.includes('facing center') && gestures.includes('looking center'); // must face camera and look at camera ok.faceConfidence = (human.result.face[0].boxScore || 0) > options.minConfidence && (human.result.face[0].faceScore || 0) > options.minConfidence && (human.result.face[0].genderScore || 0) > options.minConfidence; ok.antispoofCheck = (human.result.face[0].real || 0) > options.minConfidence; ok.faceSize = human.result.face[0].box[2] >= options.minSize && human.result.face[0].box[3] >= options.minSize; printStatus(ok); if (allOk()) { // all criteria met dom.video.pause(); return human.result.face; } else { human.tf.dispose(human.result.face[0].tensor); // results are not ok, so lets dispose tensor } if (ok.elapsedMs > options.maxTime) { // give up dom.video.pause(); return human.result.face; } else { // run again ok.elapsedMs = Math.trunc(human.now() - startTime); return new Promise((resolve) => { setTimeout(async () => { const res = await validationLoop(); // run validation loop until conditions are met if (res) resolve(human.result.face); // recursive promise resolve }, 30); // use to slow down refresh from max refresh rate to target of 30 fps }); } } async function detectFace(face) { // draw face and dispose face tensor immediatey afterwards dom.canvas.width = face.tensor.shape[2]; dom.canvas.height = face.tensor.shape[1]; dom.canvas.style.width = ''; human.tf.browser.toPixels(face.tensor, dom.canvas); human.tf.dispose(face.tensor); // run detection using human.match and use face.embedding as input descriptor // tbd } async function main() { // main entry point log('human version:', human.version, '| tfjs version:', human.tf.version_core); printFPS('loading...'); await human.load(); // preload all models printFPS('initializing...'); await human.warmup(); // warmup function to initialize backend for future faster detection await webCam(); // start webcam await detectionLoop(); // start detection loop startTime = human.now(); const face = await validationLoop(); // start validation loop if (!allOk()) log('did not find valid input', face); else { log('found valid face', face); await detectFace(face[0]); } dom.fps.style.display = 'none'; } window.onload = main;