new samples gallery and major code folder restructure

pull/356/head
Vladimir Mandic 2021-09-25 11:51:15 -04:00
parent 776f20a6bb
commit ad2866bab6
81 changed files with 352 additions and 128 deletions

View File

@ -9,11 +9,13 @@
## Changelog ## Changelog
### **HEAD -> main** 2021/09/24 mandic00@live.com
- new release
### **2.2.3** 2021/09/24 mandic00@live.com ### **2.2.3** 2021/09/24 mandic00@live.com
- optimize model loading
### **origin/main** 2021/09/23 mandic00@live.com
- support segmentation for nodejs - support segmentation for nodejs
- redo segmentation and handtracking - redo segmentation and handtracking
- prototype handtracking - prototype handtracking

View File

@ -42,6 +42,7 @@ Check out [**Live Demo**](https://vladmandic.github.io/human/demo/index.html) ap
- [*Live:* **Face Extraction and 3D Rendering**](https://vladmandic.github.io/human/demo/face3d/index.html) - [*Live:* **Face Extraction and 3D Rendering**](https://vladmandic.github.io/human/demo/face3d/index.html)
- [*Live:* **Multithreaded Detection Showcasing Maximum Performance**](https://vladmandic.github.io/human/demo/multithread/index.html) - [*Live:* **Multithreaded Detection Showcasing Maximum Performance**](https://vladmandic.github.io/human/demo/multithread/index.html)
- [*Live:* **VR Model with Head, Face, Eye, Body and Hand tracking**](https://vladmandic.github.io/human-vrm/src/human-vrm.html) - [*Live:* **VR Model with Head, Face, Eye, Body and Hand tracking**](https://vladmandic.github.io/human-vrm/src/human-vrm.html)
- [Examples galery](https://vladmandic.github.io/human/samples/samples.html)
## Project pages ## Project pages
@ -75,6 +76,7 @@ Check out [**Live Demo**](https://vladmandic.github.io/human/demo/index.html) ap
- [**Platform Support**](https://github.com/vladmandic/human/wiki/Platforms) - [**Platform Support**](https://github.com/vladmandic/human/wiki/Platforms)
- [**Diagnostic and Performance trace information**](https://github.com/vladmandic/human/wiki/Diag) - [**Diagnostic and Performance trace information**](https://github.com/vladmandic/human/wiki/Diag)
- [**List of Models & Credits**](https://github.com/vladmandic/human/wiki/Models) - [**List of Models & Credits**](https://github.com/vladmandic/human/wiki/Models)
- [**Models Download Repository**](https://github.com/vladmandic/human-models)
- [**Security & Privacy Policy**](https://github.com/vladmandic/human/blob/main/SECURITY.md) - [**Security & Privacy Policy**](https://github.com/vladmandic/human/blob/main/SECURITY.md)
- [**License & Usage Restrictions**](https://github.com/vladmandic/human/blob/main/LICENSE) - [**License & Usage Restrictions**](https://github.com/vladmandic/human/blob/main/LICENSE)
@ -86,6 +88,15 @@ Check out [**Live Demo**](https://vladmandic.github.io/human/demo/index.html) ap
<hr><br> <hr><br>
## Examples
Visit [Examples galery](https://vladmandic.github.io/human/samples/samples.html) for more examples
<https://vladmandic.github.io/human/samples/samples.html>
![samples](assets/samples.jpg)
<br>
## Options ## Options
All options as presented in the demo application... All options as presented in the demo application...
@ -95,52 +106,15 @@ All options as presented in the demo application...
<br> <br>
## Examples
<br>
**Face Close-up:**
![Face](assets/screenshot-face.jpg)
<br>
**Face under a high angle:**
![Angle](assets/screenshot-angle.jpg)
<br>
**Full Person Details:**
![Pose](assets/screenshot-person.jpg)
<br>
**Pose Detection:**
![Pose](assets/screenshot-pose.jpg)
<br>
**Body Segmentation and Background Replacement:**
![Pose](assets/screenshot-segmentation.jpg)
<br>
**Large Group:**
![Group](assets/screenshot-group.jpg)
<br>
**VR Model Tracking:**
![vrmodel](assets/screenshot-vrm.jpg)
<br>
**Results Browser:** **Results Browser:**
[ *Demo -> Display -> Show Results* ]<br> [ *Demo -> Display -> Show Results* ]<br>
![Results](assets/screenshot-results.png) ![Results](assets/screenshot-results.png)
<br> <br>
**Face Similarity Matching:** ## Advanced Examples
1. **Face Similarity Matching:**
Extracts all faces from provided input images, Extracts all faces from provided input images,
sorts them by similarity to selected face sorts them by similarity to selected face
and optionally matches detected face with database of known people to guess their names and optionally matches detected face with database of known people to guess their names
@ -150,13 +124,18 @@ and optionally matches detected face with database of known people to guess thei
<br> <br>
**Face3D OpenGL Rendering:** 2. **Face3D OpenGL Rendering:**
> [demo/face3d](demo/face3d/index.html) > [demo/face3d](demo/face3d/index.html)
![Face Matching](assets/screenshot-face3d.jpg) ![Face Matching](assets/screenshot-face3d.jpg)
<br> <br>
3. **VR Model Tracking:**
![vrmodel](assets/screenshot-vrm.jpg)
<br>
**468-Point Face Mesh Defails:** **468-Point Face Mesh Defails:**
(view in full resolution to see keypoints) (view in full resolution to see keypoints)

BIN
assets/samples.jpg Executable file

Binary file not shown.

After

Width:  |  Height:  |  Size: 297 KiB

View File

@ -12,7 +12,7 @@ const Human = require('../../dist/human.node.js'); // this is 'const Human = req
const config = { // just enable all and leave default settings const config = { // just enable all and leave default settings
debug: false, debug: false,
face: { enabled: true }, // includes mesh, iris, emotion, descriptor face: { enabled: true }, // includes mesh, iris, emotion, descriptor
hand: { enabled: true }, hand: { enabled: true, maxDetected: 2, minConfidence: 0.5, detector: { modelPath: 'handtrack.json' } }, // use alternative hand model
body: { enabled: true }, body: { enabled: true },
object: { enabled: true }, object: { enabled: true },
gestures: { enabled: true }, gestures: { enabled: true },

View File

@ -66,14 +66,14 @@
"@tensorflow/tfjs-layers": "^3.9.0", "@tensorflow/tfjs-layers": "^3.9.0",
"@tensorflow/tfjs-node": "^3.9.0", "@tensorflow/tfjs-node": "^3.9.0",
"@tensorflow/tfjs-node-gpu": "^3.9.0", "@tensorflow/tfjs-node-gpu": "^3.9.0",
"@types/node": "^16.9.6", "@types/node": "^16.10.1",
"@typescript-eslint/eslint-plugin": "^4.31.2", "@typescript-eslint/eslint-plugin": "^4.31.2",
"@typescript-eslint/parser": "^4.31.2", "@typescript-eslint/parser": "^4.31.2",
"@vladmandic/build": "^0.5.3", "@vladmandic/build": "^0.5.3",
"@vladmandic/pilogger": "^0.3.3", "@vladmandic/pilogger": "^0.3.3",
"canvas": "^2.8.0", "canvas": "^2.8.0",
"dayjs": "^1.10.7", "dayjs": "^1.10.7",
"esbuild": "^0.13.0", "esbuild": "^0.13.2",
"eslint": "^7.32.0", "eslint": "^7.32.0",
"eslint-config-airbnb-base": "^14.2.1", "eslint-config-airbnb-base": "^14.2.1",
"eslint-plugin-import": "^2.24.2", "eslint-plugin-import": "^2.24.2",

View File

@ -2,3 +2,11 @@
Sample Images used by `Human` library demos and automated tests Sample Images used by `Human` library demos and automated tests
Not required for normal funcioning of library Not required for normal funcioning of library
Samples were generated using default configuration without any fine-tuning using command:
```shell
node test/test-node-canvas.js samples/in/ samples/out/
```
Samples galery viewer: <https://vladmandic.github.io/human/samples/samples.html>

View File

Before

Width:  |  Height:  |  Size: 32 KiB

After

Width:  |  Height:  |  Size: 32 KiB

View File

Before

Width:  |  Height:  |  Size: 8.4 KiB

After

Width:  |  Height:  |  Size: 8.4 KiB

View File

Before

Width:  |  Height:  |  Size: 41 KiB

After

Width:  |  Height:  |  Size: 41 KiB

View File

Before

Width:  |  Height:  |  Size: 381 KiB

After

Width:  |  Height:  |  Size: 381 KiB

View File

Before

Width:  |  Height:  |  Size: 137 KiB

After

Width:  |  Height:  |  Size: 137 KiB

View File

Before

Width:  |  Height:  |  Size: 295 KiB

After

Width:  |  Height:  |  Size: 295 KiB

View File

Before

Width:  |  Height:  |  Size: 359 KiB

After

Width:  |  Height:  |  Size: 359 KiB

View File

Before

Width:  |  Height:  |  Size: 464 KiB

After

Width:  |  Height:  |  Size: 464 KiB

View File

Before

Width:  |  Height:  |  Size: 216 KiB

After

Width:  |  Height:  |  Size: 216 KiB

View File

Before

Width:  |  Height:  |  Size: 206 KiB

After

Width:  |  Height:  |  Size: 206 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

BIN
samples/in/person-linda.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 142 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 79 KiB

BIN
samples/in/person-vlado.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 110 KiB

BIN
samples/out/ai-body.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

BIN
samples/out/ai-face.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.2 KiB

BIN
samples/out/ai-upper.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

BIN
samples/out/group-1.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 340 KiB

BIN
samples/out/group-2.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 127 KiB

BIN
samples/out/group-3.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 305 KiB

BIN
samples/out/group-4.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 296 KiB

BIN
samples/out/group-5.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 386 KiB

BIN
samples/out/group-6.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 214 KiB

BIN
samples/out/group-7.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 215 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 113 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 97 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 182 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 139 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 79 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 166 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 266 KiB

57
samples/samples.html Normal file
View File

@ -0,0 +1,57 @@
<!DOCTYPE html>
<html lang="en">
<head>
<title>Human Examples Gallery</title>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<meta name="viewport" content="width=device-width, shrink-to-fit=yes">
<meta name="keywords" content="Human">
<meta name="application-name" content="Human">
<meta name="description" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
<meta name="msapplication-tooltip" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
<meta name="theme-color" content="#000000">
<link rel="manifest" href="../manifest.webmanifest">
<link rel="shortcut icon" href="../../favicon.ico" type="image/x-icon">
<link rel="apple-touch-icon" href="../../assets/icon.png">
<style>
@font-face { font-family: 'Lato'; font-display: swap; font-style: normal; font-weight: 100; src: local('Lato'), url('../../assets/lato-light.woff2') }
html { font-family: 'Lato', 'Segoe UI'; font-size: 24px; font-variant: small-caps; }
body { margin: 24px; background: black; color: white; overflow-x: hidden; overflow-y: auto; text-align: -webkit-center; min-height: 100%; max-height: 100%; }
::-webkit-scrollbar { height: 8px; border: 0; border-radius: 0; }
::-webkit-scrollbar-thumb { background: grey }
::-webkit-scrollbar-track { margin: 3px; }
.text { margin: 24px }
.strip { display: flex; width: 100%; overflow: auto; }
.thumb { height: 150px; margin: 2px; padding: 2px; }
.thumb:hover { filter: grayscale(1); background: white; }
.image-container { margin: 24px 3px 3px 3px }
.image { max-width: -webkit-fill-available; }
</style>
</head>
<body>
<div class="text">Human Examples Gallery</div>
<div id="strip" class="strip"></div>
<div class="image-container">
<img id="image" src="" alt="" class="image" />
</div>
<script>
const samples = [
'ai-body.jpg', 'ai-upper.jpg',
'person-vlado.jpg', 'person-linda.jpg', 'person-celeste.jpg', 'person-tetiana.jpg',
'group-1.jpg', 'group-2.jpg', 'group-3.jpg', 'group-4.jpg', 'group-5.jpg', 'group-6.jpg', 'group-7.jpg',
'daz3d-brianna.jpg', 'daz3d-chiyo.jpg', 'daz3d-cody.jpg', 'daz3d-drew-01.jpg', 'daz3d-drew-02.jpg', 'daz3d-ella-01.jpg', 'daz3d-ella-02.jpg', 'daz3d-gillian.jpg',
'daz3d-hye-01.jpg', 'daz3d-hye-02.jpg', 'daz3d-kaia.jpg', 'daz3d-karen.jpg', 'daz3d-kiaria-01.jpg', 'daz3d-kiaria-02.jpg', 'daz3d-lilah-01.jpg', 'daz3d-lilah-02.jpg',
'daz3d-lilah-03.jpg', 'daz3d-lila.jpg', 'daz3d-lindsey.jpg', 'daz3d-megah.jpg', 'daz3d-selina-01.jpg', 'daz3d-selina-02.jpg', 'daz3d-snow.jpg',
'daz3d-sunshine.jpg', 'daz3d-taia.jpg', 'daz3d-tuesday-01.jpg', 'daz3d-tuesday-02.jpg', 'daz3d-tuesday-03.jpg', 'daz3d-zoe.jpg', 'daz3d-ginnifer.jpg',
'daz3d-_emotions01.jpg', 'daz3d-_emotions02.jpg', 'daz3d-_emotions03.jpg', 'daz3d-_emotions04.jpg', 'daz3d-_emotions05.jpg',
];
const image = document.getElementById('image');
for (const sample of samples) {
const el = document.createElement('img');
el.className = 'thumb';
el.src = el.title = el.alt = `/samples/in/${sample}`;
el.addEventListener('click', () => image.src = image.alt = image.title = el.src.replace('/in/', '/out/'));
document.getElementById('strip')?.appendChild(el);
}
</script>
</body>
</html>

View File

@ -1,3 +1,8 @@
/**
* BlazeFace, FaceMesh & Iris model implementation
* See `facemesh.ts` for entry point
*/
export const MESH_ANNOTATIONS = { export const MESH_ANNOTATIONS = {
silhouette: [ silhouette: [
10, 338, 297, 332, 284, 251, 389, 356, 454, 323, 361, 288, 10, 338, 297, 332, 284, 251, 389, 356, 454, 323, 361, 288,

View File

@ -3,7 +3,7 @@
*/ */
import { TRI468 as triangulation } from './blazeface/coords'; import { TRI468 as triangulation } from './blazeface/coords';
import { mergeDeep, now } from './helpers'; import { mergeDeep, now } from './util';
import type { Result, FaceResult, BodyResult, HandResult, ObjectResult, GestureResult, PersonResult } from './result'; import type { Result, FaceResult, BodyResult, HandResult, ObjectResult, GestureResult, PersonResult } from './result';
/** /**

View File

@ -1,8 +1,10 @@
/** /**
* EfficientPose Module * EfficientPose model implementation
*
* Based on: [**EfficientPose**](https://github.com/daniegr/EfficientPose)
*/ */
import { log, join } from '../helpers'; import { log, join } from '../util';
import * as tf from '../../dist/tfjs.esm.js'; import * as tf from '../../dist/tfjs.esm.js';
import type { BodyResult } from '../result'; import type { BodyResult } from '../result';
import type { GraphModel, Tensor } from '../tfjs/types'; import type { GraphModel, Tensor } from '../tfjs/types';

View File

@ -1,8 +1,10 @@
/** /**
* Emotion Module * Emotion model implementation
*
* [**Oarriaga**](https://github.com/oarriaga/face_classification)
*/ */
import { log, join } from '../helpers'; import { log, join } from '../util';
import type { Config } from '../config'; import type { Config } from '../config';
import type { GraphModel, Tensor } from '../tfjs/types'; import type { GraphModel, Tensor } from '../tfjs/types';
import * as tf from '../../dist/tfjs.esm.js'; import * as tf from '../../dist/tfjs.esm.js';

View File

@ -1,6 +1,6 @@
import * as tf from '../dist/tfjs.esm.js'; import * as tf from '../dist/tfjs.esm.js';
import * as image from './image/image'; import * as image from './image/image';
import { mergeDeep } from './helpers'; import { mergeDeep } from './util';
export type Env = { export type Env = {
browser: undefined | boolean, browser: undefined | boolean,

View File

@ -1,9 +1,9 @@
/** /**
* Module that analyzes person age * Face algorithm implementation
* Obsolete * Uses FaceMesh, Emotion and FaceRes models to create a unified pipeline
*/ */
import { log, now } from './helpers'; import { log, now } from './util';
import * as tf from '../dist/tfjs.esm.js'; import * as tf from '../dist/tfjs.esm.js';
import * as facemesh from './blazeface/facemesh'; import * as facemesh from './blazeface/facemesh';
import * as emotion from './emotion/emotion'; import * as emotion from './emotion/emotion';

View File

@ -1,10 +1,13 @@
/** /**
* HSE-FaceRes Module * FaceRes model implementation
*
* Returns Age, Gender, Descriptor * Returns Age, Gender, Descriptor
* Implements Face simmilarity function * Implements Face simmilarity function
*
* Based on: [**HSE-FaceRes**](https://github.com/HSE-asavchenko/HSE_FaceRec_tf)
*/ */
import { log, join } from '../helpers'; import { log, join } from '../util';
import * as tf from '../../dist/tfjs.esm.js'; import * as tf from '../../dist/tfjs.esm.js';
import type { Tensor, GraphModel } from '../tfjs/types'; import type { Tensor, GraphModel } from '../tfjs/types';
import type { Config } from '../config'; import type { Config } from '../config';

View File

@ -1,3 +1,8 @@
/**
* FingerPose algorithm implementation
* See `fingerpose.ts` for entry point
*/
import { Finger, FingerCurl, FingerDirection } from './description'; import { Finger, FingerCurl, FingerDirection } from './description';
const options = { const options = {

View File

@ -1,3 +1,8 @@
/**
* FingerPose algorithm implementation
* See `fingerpose.ts` for entry point
*/
export default class Gesture { export default class Gesture {
name; name;
curls; curls;

View File

@ -1,3 +1,8 @@
/**
* FingerPose algorithm implementation
* See `fingerpose.ts` for entry point
*/
import { Finger, FingerCurl, FingerDirection } from './description'; import { Finger, FingerCurl, FingerDirection } from './description';
import Gesture from './gesture'; import Gesture from './gesture';

View File

@ -1,5 +1,5 @@
/** /**
* Gesture detection module * Gesture detection algorithm
*/ */
import type { GestureResult } from '../result'; import type { GestureResult } from '../result';

View File

@ -1,3 +1,8 @@
/**
* HandPose model implementation constants
* See `handpose.ts` for entry point
*/
export const anchors = [ export const anchors = [
{ x: 0.015625, y: 0.015625 }, { x: 0.015625, y: 0.015625 },
{ x: 0.015625, y: 0.015625 }, { x: 0.015625, y: 0.015625 },

View File

@ -1,3 +1,8 @@
/**
* HandPose model implementation
* See `handpose.ts` for entry point
*/
import * as tf from '../../dist/tfjs.esm.js'; import * as tf from '../../dist/tfjs.esm.js';
export function getBoxSize(box) { export function getBoxSize(box) {

View File

@ -1,3 +1,8 @@
/**
* HandPose model implementation
* See `handpose.ts` for entry point
*/
import * as tf from '../../dist/tfjs.esm.js'; import * as tf from '../../dist/tfjs.esm.js';
import * as box from './box'; import * as box from './box';
import * as anchors from './anchors'; import * as anchors from './anchors';

View File

@ -1,3 +1,8 @@
/**
* HandPose model implementation
* See `handpose.ts` for entry point
*/
import * as tf from '../../dist/tfjs.esm.js'; import * as tf from '../../dist/tfjs.esm.js';
import * as box from './box'; import * as box from './box';
import * as util from './util'; import * as util from './util';

View File

@ -1,8 +1,10 @@
/** /**
* HandPose module entry point * HandPose model implementation
*
* Based on: [**MediaPipe HandPose**](https://drive.google.com/file/d/1sv4sSb9BSNVZhLzxXJ0jBv9DqD-4jnAz/view)
*/ */
import { log, join } from '../helpers'; import { log, join } from '../util';
import * as tf from '../../dist/tfjs.esm.js'; import * as tf from '../../dist/tfjs.esm.js';
import * as handdetector from './handdetector'; import * as handdetector from './handdetector';
import * as handpipeline from './handpipeline'; import * as handpipeline from './handpipeline';

View File

@ -1,8 +1,12 @@
/** /**
* Hand Detection and Segmentation * HandTrack model implementation
*
* Based on:
* - Hand Detection & Skeleton: [**MediaPipe HandPose**](https://drive.google.com/file/d/1sv4sSb9BSNVZhLzxXJ0jBv9DqD-4jnAz/view)
* - Hand Tracking: [**HandTracking**](https://github.com/victordibia/handtracking)
*/ */
import { log, join } from '../helpers'; import { log, join } from '../util';
import * as tf from '../../dist/tfjs.esm.js'; import * as tf from '../../dist/tfjs.esm.js';
import type { HandResult } from '../result'; import type { HandResult } from '../result';
import type { GraphModel, Tensor } from '../tfjs/types'; import type { GraphModel, Tensor } from '../tfjs/types';

View File

@ -2,7 +2,7 @@
* Human main module * Human main module
*/ */
import { log, now, mergeDeep, validate } from './helpers'; import { log, now, mergeDeep, validate } from './util';
import { Config, defaults } from './config'; import { Config, defaults } from './config';
import type { Result, FaceResult, HandResult, BodyResult, ObjectResult, GestureResult, PersonResult } from './result'; import type { Result, FaceResult, HandResult, BodyResult, ObjectResult, GestureResult, PersonResult } from './result';
import * as tf from '../dist/tfjs.esm.js'; import * as tf from '../dist/tfjs.esm.js';
@ -168,7 +168,6 @@ export class Human {
this.config = JSON.parse(JSON.stringify(defaults)); this.config = JSON.parse(JSON.stringify(defaults));
Object.seal(this.config); Object.seal(this.config);
if (userConfig) this.config = mergeDeep(this.config, userConfig); if (userConfig) this.config = mergeDeep(this.config, userConfig);
validate(defaults, this.config);
this.tf = tf; this.tf = tf;
this.state = 'idle'; this.state = 'idle';
this.#numTensors = 0; this.#numTensors = 0;
@ -229,21 +228,25 @@ export class Human {
} }
/** Reset configuration to default values */ /** Reset configuration to default values */
reset = () => { reset() {
const currentBackend = this.config.backend; // save backend; const currentBackend = this.config.backend; // save backend;
this.config = JSON.parse(JSON.stringify(defaults)); this.config = JSON.parse(JSON.stringify(defaults));
this.config.backend = currentBackend; this.config.backend = currentBackend;
} }
/** Validate current configuration schema */ /** Validate current configuration schema */
validate = (userConfig?: Partial<Config>) => validate(defaults, userConfig || this.config); validate(userConfig?: Partial<Config>) {
return validate(defaults, userConfig || this.config);
}
/** Process input as return canvas and tensor /** Process input as return canvas and tensor
* *
* @param input: {@link Input} * @param input: {@link Input}
* @returns { tensor, canvas } * @returns { tensor, canvas }
*/ */
image = (input: Input) => image.process(input, this.config); image(input: Input) {
return image.process(input, this.config);
}
/** Simmilarity method calculates simmilarity between two provided face descriptors (face embeddings) /** Simmilarity method calculates simmilarity between two provided face descriptors (face embeddings)
* - Calculation is based on normalized Minkowski distance between two descriptors * - Calculation is based on normalized Minkowski distance between two descriptors

View File

@ -1,5 +1,5 @@
/** /**
* Image Processing module used by Human * Image Processing algorithm implementation
*/ */
import * as tf from '../../dist/tfjs.esm.js'; import * as tf from '../../dist/tfjs.esm.js';
@ -7,7 +7,7 @@ import * as fxImage from './imagefx';
import type { Tensor } from '../tfjs/types'; import type { Tensor } from '../tfjs/types';
import type { Config } from '../config'; import type { Config } from '../config';
import { env } from '../env'; import { env } from '../env';
import { log } from '../helpers'; import { log } from '../util';
type Input = Tensor | ImageData | ImageBitmap | HTMLImageElement | HTMLMediaElement | HTMLVideoElement | HTMLCanvasElement | OffscreenCanvas | typeof Image | typeof env.Canvas; type Input = Tensor | ImageData | ImageBitmap | HTMLImageElement | HTMLMediaElement | HTMLVideoElement | HTMLCanvasElement | OffscreenCanvas | typeof Image | typeof env.Canvas;
@ -84,11 +84,11 @@ export function process(input: Input, config: Config): { tensor: Tensor | null,
let targetHeight = originalHeight; let targetHeight = originalHeight;
if (targetWidth > maxSize) { if (targetWidth > maxSize) {
targetWidth = maxSize; targetWidth = maxSize;
targetHeight = targetWidth * originalHeight / originalWidth; targetHeight = Math.trunc(targetWidth * originalHeight / originalWidth);
} }
if (targetHeight > maxSize) { if (targetHeight > maxSize) {
targetHeight = maxSize; targetHeight = maxSize;
targetWidth = targetHeight * originalWidth / originalHeight; targetWidth = Math.trunc(targetHeight * originalWidth / originalHeight);
} }
// create our canvas and resize it if needed // create our canvas and resize it if needed

View File

@ -1,5 +1,9 @@
/* /**
WebGLImageFilter by Dominic Szablewski: <https://github.com/phoboslab/WebGLImageFilter> * Image Filters in WebGL algoritm implementation
*
* Based on: [WebGLImageFilter](https://github.com/phoboslab/WebGLImageFilter)
*
* This module is written in ES5 JS and does not conform to code and style standards
*/ */
// @ts-nocheck // @ts-nocheck

View File

@ -1,5 +1,5 @@
/** /**
* Module that interpolates results for smoother animations * Results interpolation for smoothening of video detection results inbetween detected frames
*/ */
import type { Result, FaceResult, BodyResult, HandResult, ObjectResult, GestureResult, PersonResult } from './result'; import type { Result, FaceResult, BodyResult, HandResult, ObjectResult, GestureResult, PersonResult } from './result';

View File

@ -1,4 +1,8 @@
import { log } from './helpers'; /**
* Loader and Validator for all models used by Human
*/
import { log } from './util';
import type { GraphModel } from './tfjs/types'; import type { GraphModel } from './tfjs/types';
import * as facemesh from './blazeface/facemesh'; import * as facemesh from './blazeface/facemesh';
import * as faceres from './faceres/faceres'; import * as faceres from './faceres/faceres';

View File

@ -1,8 +1,10 @@
/** /**
* EfficientPose Module * MoveNet model implementation
*
* Based on: [**MoveNet**](https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html)
*/ */
import { log, join } from '../helpers'; import { log, join } from '../util';
import * as tf from '../../dist/tfjs.esm.js'; import * as tf from '../../dist/tfjs.esm.js';
import type { BodyResult } from '../result'; import type { BodyResult } from '../result';
import type { GraphModel, Tensor } from '../tfjs/types'; import type { GraphModel, Tensor } from '../tfjs/types';

View File

@ -1,8 +1,10 @@
/** /**
* CenterNet object detection module * CenterNet object detection model implementation
*
* Based on: [**NanoDet**](https://github.com/RangiLyu/nanodet)
*/ */
import { log, join } from '../helpers'; import { log, join } from '../util';
import * as tf from '../../dist/tfjs.esm.js'; import * as tf from '../../dist/tfjs.esm.js';
import { labels } from './labels'; import { labels } from './labels';
import type { ObjectResult } from '../result'; import type { ObjectResult } from '../result';

View File

@ -1,5 +1,5 @@
/** /**
* CoCo Labels used by object detection modules * CoCo Labels used by object detection implementations
*/ */
export const labels = [ export const labels = [
{ class: 1, label: 'person' }, { class: 1, label: 'person' },

View File

@ -1,8 +1,10 @@
/** /**
* NanoDet object detection module * NanoDet object detection model implementation
*
* Based on: [**MB3-CenterNet**](https://github.com/610265158/mobilenetv3_centernet)
*/ */
import { log, join } from '../helpers'; import { log, join } from '../util';
import * as tf from '../../dist/tfjs.esm.js'; import * as tf from '../../dist/tfjs.esm.js';
import { labels } from './labels'; import { labels } from './labels';
import type { ObjectResult } from '../result'; import type { ObjectResult } from '../result';

View File

@ -1,5 +1,5 @@
/** /**
* Module that analyzes existing results and recombines them into a unified person object * Analyze detection Results and sort&combine them into per-person view
*/ */
import type { FaceResult, BodyResult, HandResult, GestureResult, PersonResult } from './result'; import type { FaceResult, BodyResult, HandResult, GestureResult, PersonResult } from './result';

View File

@ -1,3 +1,8 @@
/**
* PoseNet body detection model implementation
* See `posenet.ts` for entry point
*/
import * as utils from './utils'; import * as utils from './utils';
import * as kpt from './keypoints'; import * as kpt from './keypoints';

View File

@ -1,3 +1,8 @@
/**
* PoseNet body detection model implementation constants
* See `posenet.ts` for entry point
*/
import * as kpt from './keypoints'; import * as kpt from './keypoints';
import type { BodyResult } from '../result'; import type { BodyResult } from '../result';

View File

@ -1,8 +1,9 @@
/** /**
* Profiling calculations * Profiling calculations
* Debug only
*/ */
import { log } from './helpers'; import { log } from './util';
export const data = {}; export const data = {};

View File

@ -1,9 +1,12 @@
/** /**
* Module that analyzes person age * Age model implementation
* Obsolete *
* Based on: [**SSR-Net**](https://github.com/shamangary/SSR-Net)
*
* Obsolete and replaced by `faceres` that performs age/gender/descriptor analysis
*/ */
import { log, join } from '../helpers'; import { log, join } from '../util';
import * as tf from '../../dist/tfjs.esm.js'; import * as tf from '../../dist/tfjs.esm.js';
import type { Config } from '../config'; import type { Config } from '../config';
import type { GraphModel, Tensor } from '../tfjs/types'; import type { GraphModel, Tensor } from '../tfjs/types';

View File

@ -1,9 +1,12 @@
/** /**
* Module that analyzes person gender * Gender model implementation
* Obsolete *
* Based on: [**SSR-Net**](https://github.com/shamangary/SSR-Net)
*
* Obsolete and replaced by `faceres` that performs age/gender/descriptor analysis
*/ */
import { log, join } from '../helpers'; import { log, join } from '../util';
import * as tf from '../../dist/tfjs.esm.js'; import * as tf from '../../dist/tfjs.esm.js';
import type { Config } from '../config'; import type { Config } from '../config';
import type { GraphModel, Tensor } from '../tfjs/types'; import type { GraphModel, Tensor } from '../tfjs/types';

View File

@ -1,4 +1,6 @@
import { log, now } from '../helpers'; /** TFJS backend initialization and customization */
import { log, now } from '../util';
import * as humangl from './humangl'; import * as humangl from './humangl';
import * as env from '../env'; import * as env from '../env';
import * as tf from '../../dist/tfjs.esm.js'; import * as tf from '../../dist/tfjs.esm.js';

View File

@ -1,9 +1,6 @@
/** /** TFJS custom backend registration */
* Custom TFJS backend for Human based on WebGL
* Not used by default
*/
import { log } from '../helpers'; import { log } from '../util';
import * as tf from '../../dist/tfjs.esm.js'; import * as tf from '../../dist/tfjs.esm.js';
import * as image from '../image/image'; import * as image from '../image/image';
import * as models from '../models'; import * as models from '../models';

View File

@ -1,6 +1,4 @@
/** /** TFJS common types exports */
* Export common TensorFlow types
*/
/** /**
* TensorFlow Tensor type * TensorFlow Tensor type

View File

@ -1,4 +1,8 @@
import { log, now, mergeDeep } from './helpers'; /**
* Warmup algorithm that uses embedded images to excercise loaded models for faster future inference
*/
import { log, now, mergeDeep } from './util';
import * as sample from './sample'; import * as sample from './sample';
import * as tf from '../dist/tfjs.esm.js'; import * as tf from '../dist/tfjs.esm.js';
import * as image from './image/image'; import * as image from './image/image';

View File

@ -196,7 +196,7 @@ async function test(Human, inputConfig) {
human.reset(); human.reset();
config.async = true; config.async = true;
config.cacheSensitivity = 0; config.cacheSensitivity = 0;
res = await testDetect(human, 'samples/ai-body.jpg', 'default'); res = await testDetect(human, 'samples/in/ai-body.jpg', 'default');
if (!res || res?.face?.length !== 1 || res?.face[0].gender !== 'female') log('error', 'failed: default result face mismatch', res?.face?.length, res?.body?.length, res?.hand?.length, res?.gesture?.length); if (!res || res?.face?.length !== 1 || res?.face[0].gender !== 'female') log('error', 'failed: default result face mismatch', res?.face?.length, res?.body?.length, res?.hand?.length, res?.gesture?.length);
else log('state', 'passed: default result face match'); else log('state', 'passed: default result face match');
@ -205,13 +205,13 @@ async function test(Human, inputConfig) {
human.reset(); human.reset();
config.async = false; config.async = false;
config.cacheSensitivity = 0; config.cacheSensitivity = 0;
res = await testDetect(human, 'samples/ai-body.jpg', 'default'); res = await testDetect(human, 'samples/in/ai-body.jpg', 'default');
if (!res || res?.face?.length !== 1 || res?.face[0].gender !== 'female') log('error', 'failed: default sync', res?.face?.length, res?.body?.length, res?.hand?.length, res?.gesture?.length); if (!res || res?.face?.length !== 1 || res?.face[0].gender !== 'female') log('error', 'failed: default sync', res?.face?.length, res?.body?.length, res?.hand?.length, res?.gesture?.length);
else log('state', 'passed: default sync'); else log('state', 'passed: default sync');
// test image processing // test image processing
const img1 = await human.image(null); const img1 = await human.image(null);
const img2 = await human.image(await getImage(human, 'samples/ai-face.jpg')); const img2 = await human.image(await getImage(human, 'samples/in/ai-face.jpg'));
if (!img1 || !img2 || img1.tensor !== null || img2.tensor?.shape?.length !== 4) log('error', 'failed: image input', img1?.tensor?.shape, img2?.tensor?.shape); if (!img1 || !img2 || img1.tensor !== null || img2.tensor?.shape?.length !== 4) log('error', 'failed: image input', img1?.tensor?.shape, img2?.tensor?.shape);
else log('state', 'passed: image input', img1?.tensor?.shape, img2?.tensor?.shape); else log('state', 'passed: image input', img1?.tensor?.shape, img2?.tensor?.shape);
@ -225,9 +225,9 @@ async function test(Human, inputConfig) {
human.reset(); human.reset();
config.async = false; config.async = false;
config.cacheSensitivity = 0; config.cacheSensitivity = 0;
let res1 = await testDetect(human, 'samples/ai-face.jpg', 'default'); let res1 = await testDetect(human, 'samples/in/ai-face.jpg', 'default');
let res2 = await testDetect(human, 'samples/ai-body.jpg', 'default'); let res2 = await testDetect(human, 'samples/in/ai-body.jpg', 'default');
let res3 = await testDetect(human, 'samples/ai-upper.jpg', 'default'); let res3 = await testDetect(human, 'samples/in/ai-upper.jpg', 'default');
const desc1 = res1 && res1.face && res1.face[0] && res1.face[0].embedding ? [...res1.face[0].embedding] : null; const desc1 = res1 && res1.face && res1.face[0] && res1.face[0].embedding ? [...res1.face[0].embedding] : null;
const desc2 = res2 && res2.face && res2.face[0] && res2.face[0].embedding ? [...res2.face[0].embedding] : null; const desc2 = res2 && res2.face && res2.face[0] && res2.face[0].embedding ? [...res2.face[0].embedding] : null;
const desc3 = res3 && res3.face && res3.face[0] && res3.face[0].embedding ? [...res3.face[0].embedding] : null; const desc3 = res3 && res3.face && res3.face[0] && res3.face[0].embedding ? [...res3.face[0].embedding] : null;
@ -257,7 +257,7 @@ async function test(Human, inputConfig) {
log('info', 'test object'); log('info', 'test object');
human.reset(); human.reset();
config.object = { enabled: true }; config.object = { enabled: true };
res = await testDetect(human, 'samples/ai-body.jpg', 'default'); res = await testDetect(human, 'samples/in/ai-body.jpg', 'default');
if (!res || res?.object?.length !== 1 || res?.object[0]?.label !== 'person') log('error', 'failed: object result mismatch', res?.object?.length); if (!res || res?.object?.length !== 1 || res?.object[0]?.label !== 'person') log('error', 'failed: object result mismatch', res?.object?.length);
else log('state', 'passed: object result match'); else log('state', 'passed: object result match');
@ -268,7 +268,7 @@ async function test(Human, inputConfig) {
config.face = { detector: { minConfidence: 0.0001, maxDetected: 1 } }; config.face = { detector: { minConfidence: 0.0001, maxDetected: 1 } };
config.body = { minConfidence: 0.0001, maxDetected: 1 }; config.body = { minConfidence: 0.0001, maxDetected: 1 };
config.hand = { minConfidence: 0.0001, maxDetected: 3 }; config.hand = { minConfidence: 0.0001, maxDetected: 3 };
res = await testDetect(human, 'samples/ai-body.jpg', 'default'); res = await testDetect(human, 'samples/in/ai-body.jpg', 'default');
if (!res || res?.face?.length !== 1 || res?.body?.length !== 1 || res?.hand?.length !== 3 || res?.gesture?.length !== 9) log('error', 'failed: sensitive result mismatch', res?.face?.length, res?.body?.length, res?.hand?.length, res?.gesture?.length); if (!res || res?.face?.length !== 1 || res?.body?.length !== 1 || res?.hand?.length !== 3 || res?.gesture?.length !== 9) log('error', 'failed: sensitive result mismatch', res?.face?.length, res?.body?.length, res?.hand?.length, res?.gesture?.length);
else log('state', 'passed: sensitive result match'); else log('state', 'passed: sensitive result match');
@ -293,7 +293,7 @@ async function test(Human, inputConfig) {
human.reset(); human.reset();
config.face = { mesh: { enabled: false }, iris: { enabled: false }, description: { enabled: false }, emotion: { enabled: false } }; config.face = { mesh: { enabled: false }, iris: { enabled: false }, description: { enabled: false }, emotion: { enabled: false } };
config.hand = { landmarks: false }; config.hand = { landmarks: false };
res = await testDetect(human, 'samples/ai-body.jpg', 'default'); res = await testDetect(human, 'samples/in/ai-body.jpg', 'default');
if (!res || res?.face?.length !== 1 || res?.face[0]?.gender || res?.face[0]?.age || res?.face[0]?.embedding) log('error', 'failed: detectors result face mismatch', res?.face); if (!res || res?.face?.length !== 1 || res?.face[0]?.gender || res?.face[0]?.age || res?.face[0]?.embedding) log('error', 'failed: detectors result face mismatch', res?.face);
else log('state', 'passed: detector result face match'); else log('state', 'passed: detector result face match');
if (!res || res?.hand?.length !== 1 || res?.hand[0]?.landmarks) log('error', 'failed: detectors result hand mismatch', res?.hand?.length); if (!res || res?.hand?.length !== 1 || res?.hand[0]?.landmarks) log('error', 'failed: detectors result hand mismatch', res?.hand?.length);
@ -302,22 +302,22 @@ async function test(Human, inputConfig) {
// test posenet and movenet // test posenet and movenet
log('info', 'test body variants'); log('info', 'test body variants');
config.body = { modelPath: 'posenet.json' }; config.body = { modelPath: 'posenet.json' };
res = await testDetect(human, 'samples/ai-body.jpg', 'posenet'); res = await testDetect(human, 'samples/in/ai-body.jpg', 'posenet');
if (!res || res?.body?.length !== 1) log('error', 'failed: body posenet'); if (!res || res?.body?.length !== 1) log('error', 'failed: body posenet');
else log('state', 'passed: body posenet'); else log('state', 'passed: body posenet');
config.body = { modelPath: 'movenet-lightning.json' }; config.body = { modelPath: 'movenet-lightning.json' };
res = await testDetect(human, 'samples/ai-body.jpg', 'movenet'); res = await testDetect(human, 'samples/in/ai-body.jpg', 'movenet');
if (!res || res?.body?.length !== 1) log('error', 'failed: body movenet'); if (!res || res?.body?.length !== 1) log('error', 'failed: body movenet');
else log('state', 'passed: body movenet'); else log('state', 'passed: body movenet');
// test handdetect and handtrack // test handdetect and handtrack
log('info', 'test hand variants'); log('info', 'test hand variants');
config.hand = { enabled: true, maxDetected: 2, minConfidence: 0.1, detector: { modelPath: 'handdetect.json' } }; config.hand = { enabled: true, maxDetected: 2, minConfidence: 0.1, detector: { modelPath: 'handdetect.json' } };
res = await testDetect(human, 'samples/ai-body.jpg', 'handdetect'); res = await testDetect(human, 'samples/in/ai-body.jpg', 'handdetect');
if (!res || res?.hand?.length !== 2) log('error', 'failed: hand handdetect'); if (!res || res?.hand?.length !== 2) log('error', 'failed: hand handdetect');
else log('state', 'passed: hand handdetect'); else log('state', 'passed: hand handdetect');
config.hand = { enabled: true, maxDetected: 2, minConfidence: 0.1, detector: { modelPath: 'handtrack.json' } }; config.hand = { enabled: true, maxDetected: 2, minConfidence: 0.1, detector: { modelPath: 'handtrack.json' } };
res = await testDetect(human, 'samples/ai-body.jpg', 'handtrack'); res = await testDetect(human, 'samples/in/ai-body.jpg', 'handtrack');
if (!res || res?.hand?.length !== 2) log('error', 'failed: hand handdetect'); if (!res || res?.hand?.length !== 2) log('error', 'failed: hand handdetect');
else log('state', 'passed: hand handdetect'); else log('state', 'passed: hand handdetect');
@ -326,28 +326,28 @@ async function test(Human, inputConfig) {
const second = new Human(config); const second = new Human(config);
await testDetect(human, null, 'default'); await testDetect(human, null, 'default');
log('info', 'test: first instance'); log('info', 'test: first instance');
await testDetect(first, 'samples/ai-upper.jpg', 'default'); await testDetect(first, 'samples/in/ai-upper.jpg', 'default');
log('info', 'test: second instance'); log('info', 'test: second instance');
await testDetect(second, 'samples/ai-upper.jpg', 'default'); await testDetect(second, 'samples/in/ai-upper.jpg', 'default');
// test async multiple instances // test async multiple instances
log('info', 'test: concurrent'); log('info', 'test: concurrent');
await Promise.all([ await Promise.all([
testDetect(human, 'samples/ai-face.jpg', 'default', false), testDetect(human, 'samples/in/ai-face.jpg', 'default', false),
testDetect(first, 'samples/ai-face.jpg', 'default', false), testDetect(first, 'samples/in/ai-face.jpg', 'default', false),
testDetect(second, 'samples/ai-face.jpg', 'default', false), testDetect(second, 'samples/in/ai-face.jpg', 'default', false),
testDetect(human, 'samples/ai-body.jpg', 'default', false), testDetect(human, 'samples/in/ai-body.jpg', 'default', false),
testDetect(first, 'samples/ai-body.jpg', 'default', false), testDetect(first, 'samples/in/ai-body.jpg', 'default', false),
testDetect(second, 'samples/ai-body.jpg', 'default', false), testDetect(second, 'samples/in/ai-body.jpg', 'default', false),
testDetect(human, 'samples/ai-upper.jpg', 'default', false), testDetect(human, 'samples/in/ai-upper.jpg', 'default', false),
testDetect(first, 'samples/ai-upper.jpg', 'default', false), testDetect(first, 'samples/in/ai-upper.jpg', 'default', false),
testDetect(second, 'samples/ai-upper.jpg', 'default', false), testDetect(second, 'samples/in/ai-upper.jpg', 'default', false),
]); ]);
// test monkey-patch // test monkey-patch
globalThis.Canvas = canvasJS.Canvas; // monkey-patch to use external canvas library globalThis.Canvas = canvasJS.Canvas; // monkey-patch to use external canvas library
globalThis.ImageData = canvasJS.ImageData; // monkey-patch to use external canvas library globalThis.ImageData = canvasJS.ImageData; // monkey-patch to use external canvas library
const inputImage = await canvasJS.loadImage('samples/ai-face.jpg'); // load image using canvas library const inputImage = await canvasJS.loadImage('samples/in/ai-face.jpg'); // load image using canvas library
const inputCanvas = new canvasJS.Canvas(inputImage.width, inputImage.height); // create canvas const inputCanvas = new canvasJS.Canvas(inputImage.width, inputImage.height); // create canvas
const ctx = inputCanvas.getContext('2d'); const ctx = inputCanvas.getContext('2d');
ctx.drawImage(inputImage, 0, 0); // draw input image onto canvas ctx.drawImage(inputImage, 0, 0); // draw input image onto canvas

90
test/test-node-canvas.js Normal file
View File

@ -0,0 +1,90 @@
const fs = require('fs');
const path = require('path');
const process = require('process');
const log = require('@vladmandic/pilogger');
const canvas = require('canvas');
const tf = require('@tensorflow/tfjs-node'); // for nodejs, `tfjs-node` or `tfjs-node-gpu` should be loaded before using Human
const Human = require('../dist/human.node.js'); // this is 'const Human = require('../dist/human.node-gpu.js').default;'
const config = { // just enable all and leave default settings
debug: true,
async: false,
cacheSensitivity: 0,
face: { enabled: true },
hand: { enabled: true },
body: { enabled: true },
object: { enabled: true },
gesture: { enabled: true },
/*
face: { enabled: true, detector: { minConfidence: 0.1 } },
hand: { enabled: true, maxDetected: 2, minConfidence: 0.1, detector: { modelPath: 'handtrack.json' } }, // use alternative hand model
body: { enabled: true, minConfidence: 0.1 },
object: { enabled: true, minConfidence: 0.1 },
gesture: { enabled: true },
*/
};
async function main() {
log.header();
globalThis.Canvas = canvas.Canvas; // patch global namespace with canvas library
globalThis.ImageData = canvas.ImageData; // patch global namespace with canvas library
const human = new Human.Human(config); // create instance of human
log.info('Human:', human.version);
const configErrors = await human.validate();
if (configErrors.length > 0) log.error('Configuration errors:', configErrors);
await human.load(); // pre-load models
log.info('Loaded models:', Object.keys(human.models).filter((a) => human.models[a]));
const inDir = process.argv[2];
const outDir = process.argv[3];
if (process.argv.length !== 4) {
log.error('Parameters: <input-directory> <output-directory> missing');
return;
}
if (!fs.existsSync(inDir) || !fs.statSync(inDir).isDirectory() || !fs.existsSync(outDir) || !fs.statSync(outDir).isDirectory()) {
log.error('Invalid directory specified:', 'input:', fs.existsSync(inDir) ?? fs.statSync(inDir).isDirectory(), 'output:', fs.existsSync(outDir) ?? fs.statSync(outDir).isDirectory());
return;
}
const dir = fs.readdirSync(inDir);
const images = dir.filter((f) => fs.statSync(path.join(inDir, f)).isFile() && (f.toLocaleLowerCase().endsWith('.jpg') || f.toLocaleLowerCase().endsWith('.jpeg')));
log.info(`Processing folder: ${inDir} entries:`, dir.length, 'images', images.length);
for (const image of images) {
const inFile = path.join(inDir, image);
/*
const inputImage = await canvas.loadImage(inFile); // load image using canvas library
log.state('Loaded image:', inFile, inputImage.width, inputImage.height);
const inputCanvas = new canvas.Canvas(inputImage.width, inputImage.height); // create canvas
const inputCtx = inputCanvas.getContext('2d');
inputCtx.drawImage(inputImage, 0, 0); // draw input image onto canvas
*/
const buffer = fs.readFileSync(inFile);
const tensor = human.tf.tidy(() => {
const decode = human.tf.node.decodeImage(buffer, 3);
const expand = human.tf.expandDims(decode, 0);
const cast = human.tf.cast(expand, 'float32');
return cast;
});
log.state('Loaded image:', inFile, tensor.shape);
const result = await human.detect(tensor);
tf.dispose(tensor);
log.data(`Detected: ${image}:`, 'Face:', result.face.length, 'Body:', result.body.length, 'Hand:', result.hand.length, 'Objects:', result.object.length, 'Gestures:', result.gesture.length);
const outputCanvas = new canvas.Canvas(tensor.shape[2], tensor.shape[1]); // create canvas
const outputCtx = outputCanvas.getContext('2d');
const inputImage = await canvas.loadImage(buffer); // load image using canvas library
outputCtx.drawImage(inputImage, 0, 0); // draw input image onto canvas
human.draw.all(outputCanvas, result); // use human build-in method to draw results as overlays on canvas
const outFile = path.join(outDir, image);
const outStream = fs.createWriteStream(outFile); // write canvas to new image file
outStream.on('finish', () => log.state('Output image:', outFile, outputCanvas.width, outputCanvas.height));
outStream.on('error', (err) => log.error('Output error:', outFile, err));
const stream = outputCanvas.createJPEGStream({ quality: 0.5, progressive: true, chromaSubsampling: true });
stream.pipe(outStream);
}
}
main();

2
wiki

@ -1 +1 @@
Subproject commit a0497b6d14059099b2764b8f70390f4b6af8db9f Subproject commit c4642bde54506afd70a5fc32617414fa84b9fc0e