human/src/object/centernet.ts

95 lines
3.4 KiB
TypeScript
Raw Normal View History

2021-05-25 14:58:20 +02:00
/**
* CenterNet object detection model implementation
*
* Based on: [**NanoDet**](https://github.com/RangiLyu/nanodet)
2021-05-25 14:58:20 +02:00
*/
2022-01-17 17:03:21 +01:00
import { log, now } from '../util/util';
import * as tf from '../../dist/tfjs.esm.js';
2022-01-16 15:49:55 +01:00
import { loadModel } from '../tfjs/load';
import { labels } from './labels';
2021-12-15 15:26:32 +01:00
import type { ObjectResult, ObjectType, Box } from '../result';
2021-09-13 19:28:35 +02:00
import type { GraphModel, Tensor } from '../tfjs/types';
import type { Config } from '../config';
2021-09-27 19:58:13 +02:00
import { env } from '../util/env';
2021-09-17 17:23:00 +02:00
let model: GraphModel | null;
let inputSize = 0;
2021-09-12 05:54:35 +02:00
let last: ObjectResult[] = [];
2021-10-22 22:09:52 +02:00
let lastTime = 0;
let skipped = Number.MAX_SAFE_INTEGER;
2021-06-03 15:41:53 +02:00
export async function load(config: Config): Promise<GraphModel> {
2021-09-17 17:23:00 +02:00
if (env.initial) model = null;
if (!model) {
2021-11-05 18:36:53 +01:00
// fakeOps(['floormod'], config);
2022-01-17 17:03:21 +01:00
model = await loadModel(config.object.modelPath);
const inputs = Object.values(model.modelSignature['inputs']);
2021-09-17 17:23:00 +02:00
inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;
} else if (config.debug) log('cached model:', model['modelUrl']);
return model;
}
2021-12-28 17:39:54 +01:00
async function process(res: Tensor | null, outputShape: [number, number], config: Config) {
2021-05-30 18:03:34 +02:00
if (!res) return [];
2021-11-17 02:16:49 +01:00
const t: Record<string, Tensor> = {};
2021-09-12 05:54:35 +02:00
const results: Array<ObjectResult> = [];
2021-12-28 17:39:54 +01:00
const detections = await res.array() as number[][][];
2021-11-17 02:16:49 +01:00
t.squeeze = tf.squeeze(res);
const arr = tf.split(t.squeeze, 6, 1) as Tensor[]; // x1, y1, x2, y2, score, class
t.stack = tf.stack([arr[1], arr[0], arr[3], arr[2]], 1); // reorder dims as tf.nms expects y, x
t.boxes = tf.squeeze(t.stack);
t.scores = tf.squeeze(arr[4]);
t.classes = tf.squeeze(arr[5]);
tf.dispose([res, ...arr]);
2022-08-10 19:44:38 +02:00
t.nms = tf.image.nonMaxSuppression(t.boxes, t.scores, config.object.maxDetected, config.object.iouThreshold, (config.object.minConfidence || 0));
2021-11-17 02:16:49 +01:00
const nms = await t.nms.data();
2021-05-24 13:16:38 +02:00
let i = 0;
2021-11-17 02:16:49 +01:00
for (const id of Array.from(nms)) {
2021-05-30 18:03:34 +02:00
const score = Math.trunc(100 * detections[0][id][4]) / 100;
const classVal = detections[0][id][5];
2021-12-15 15:26:32 +01:00
const label = labels[classVal].label as ObjectType;
2021-06-11 22:12:24 +02:00
const [x, y] = [
detections[0][id][0] / inputSize,
detections[0][id][1] / inputSize,
2021-06-11 22:12:24 +02:00
];
2021-09-27 15:19:43 +02:00
const boxRaw: Box = [
2021-06-11 22:12:24 +02:00
x,
y,
detections[0][id][2] / inputSize - x,
detections[0][id][3] / inputSize - y,
2021-09-27 15:19:43 +02:00
];
const box: Box = [
Math.trunc(boxRaw[0] * outputShape[0]),
Math.trunc(boxRaw[1] * outputShape[1]),
Math.trunc(boxRaw[2] * outputShape[0]),
Math.trunc(boxRaw[3] * outputShape[1]),
2021-09-27 15:19:43 +02:00
];
2021-05-24 13:16:38 +02:00
results.push({ id: i++, score, class: classVal, label, box, boxRaw });
}
2021-11-17 02:16:49 +01:00
Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));
return results;
}
2021-09-12 05:54:35 +02:00
export async function predict(input: Tensor, config: Config): Promise<ObjectResult[]> {
2021-10-23 15:38:52 +02:00
const skipTime = (config.object.skipTime || 0) > (now() - lastTime);
const skipFrame = skipped < (config.object.skipFrames || 0);
if (config.skipAllowed && skipTime && skipFrame && (last.length > 0)) {
skipped++;
return last;
}
skipped = 0;
return new Promise(async (resolve) => {
2021-12-28 17:39:54 +01:00
const outputSize = [input.shape[2] || 0, input.shape[1] || 0] as [number, number];
2021-09-17 17:23:00 +02:00
const resize = tf.image.resizeBilinear(input, [inputSize, inputSize]);
const objectT = config.object.enabled ? model?.execute(resize, ['tower_0/detections']) as Tensor : null;
2021-10-22 22:09:52 +02:00
lastTime = now();
2021-07-29 22:06:03 +02:00
tf.dispose(resize);
2021-09-17 17:23:00 +02:00
const obj = await process(objectT, outputSize, config);
last = obj;
2021-09-13 19:28:35 +02:00
resolve(obj);
});
}