mirror of https://github.com/vladmandic/human
initial work on skipTime
parent
2791ee9fa9
commit
87465f99fd
|
@ -11,6 +11,9 @@
|
|||
|
||||
### **HEAD -> main** 2021/10/22 mandic00@live.com
|
||||
|
||||
|
||||
### **origin/main** 2021/10/22 mandic00@live.com
|
||||
|
||||
- add optional autodetected custom wasm path
|
||||
|
||||
### **2.3.6** 2021/10/21 mandic00@live.com
|
||||
|
|
|
@ -137,6 +137,7 @@
|
|||
"format": "esm",
|
||||
"input": "tfjs/tf-browser.ts",
|
||||
"output": "dist/tfjs.esm.js",
|
||||
"minify": true,
|
||||
"sourcemap": true,
|
||||
"external": ["fs", "os", "buffer", "util"]
|
||||
},
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
*/
|
||||
|
||||
import * as tf from '../../dist/tfjs.esm.js';
|
||||
import { log, join } from '../util/util';
|
||||
import { log, join, now } from '../util/util';
|
||||
import type { BodyKeypoint, BodyResult, Box, Point } from '../result';
|
||||
import type { GraphModel, Tensor } from '../tfjs/types';
|
||||
import type { Config } from '../config';
|
||||
|
@ -16,6 +16,7 @@ let skipped = Number.MAX_SAFE_INTEGER;
|
|||
let outputNodes: string[]; // different for lite/full/heavy
|
||||
let cache: BodyResult | null = null;
|
||||
let padding: [number, number][] = [[0, 0], [0, 0], [0, 0], [0, 0]];
|
||||
let last = 0;
|
||||
|
||||
export async function loadDetect(config: Config): Promise<GraphModel> {
|
||||
if (env.initial) models[0] = null;
|
||||
|
@ -135,10 +136,11 @@ async function detectParts(input: Tensor, config: Config, outputSize: [number, n
|
|||
|
||||
export async function predict(input: Tensor, config: Config): Promise<BodyResult[]> {
|
||||
const outputSize: [number, number] = [input.shape[2] || 0, input.shape[1] || 0];
|
||||
if ((skipped < (config.body.skipFrames || 0)) && config.skipFrame && cache !== null) {
|
||||
if ((skipped < (config.body.skipFrames || 0)) && ((config.body.skipTime || 0) <= (now() - last)) && config.skipFrame && cache !== null) {
|
||||
skipped++;
|
||||
} else {
|
||||
cache = await detectParts(input, config, outputSize);
|
||||
last = now();
|
||||
skipped = 0;
|
||||
}
|
||||
if (cache) return [cache];
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
* Based on: [**EfficientPose**](https://github.com/daniegr/EfficientPose)
|
||||
*/
|
||||
|
||||
import { log, join } from '../util/util';
|
||||
import { log, join, now } from '../util/util';
|
||||
import * as tf from '../../dist/tfjs.esm.js';
|
||||
import * as coords from './efficientposecoords';
|
||||
import type { BodyResult, Point } from '../result';
|
||||
|
@ -13,7 +13,7 @@ import type { Config } from '../config';
|
|||
import { env } from '../util/env';
|
||||
|
||||
let model: GraphModel | null;
|
||||
|
||||
let last = 0;
|
||||
const cache: BodyResult = { id: 0, keypoints: [], box: [0, 0, 0, 0], boxRaw: [0, 0, 0, 0], score: 0, annotations: {} };
|
||||
|
||||
// const keypoints: Array<BodyKeypoint> = [];
|
||||
|
@ -50,12 +50,7 @@ function max2d(inputs, minScore) {
|
|||
}
|
||||
|
||||
export async function predict(image: Tensor, config: Config): Promise<BodyResult[]> {
|
||||
/** blazepose caching
|
||||
* not fully implemented
|
||||
* 1. if skipFrame returned cached
|
||||
* 2. run detection based on squared full frame
|
||||
*/
|
||||
if ((skipped < (config.body?.skipFrames || 0)) && config.skipFrame && Object.keys(cache.keypoints).length > 0) {
|
||||
if ((skipped < (config.body?.skipFrames || 0)) && config.skipFrame && Object.keys(cache.keypoints).length > 0 && ((config.body.skipTime || 0) <= (now() - last))) {
|
||||
skipped++;
|
||||
return [cache];
|
||||
}
|
||||
|
@ -71,6 +66,7 @@ export async function predict(image: Tensor, config: Config): Promise<BodyResult
|
|||
|
||||
let resT;
|
||||
if (config.body.enabled) resT = await model?.predict(tensor);
|
||||
last = now();
|
||||
tf.dispose(tensor);
|
||||
|
||||
if (resT) {
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
* Based on: [**MoveNet**](https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html)
|
||||
*/
|
||||
|
||||
import { log, join } from '../util/util';
|
||||
import { log, join, now } from '../util/util';
|
||||
import * as box from '../util/box';
|
||||
import * as tf from '../../dist/tfjs.esm.js';
|
||||
import * as coords from './movenetcoords';
|
||||
|
@ -23,9 +23,11 @@ let skipped = Number.MAX_SAFE_INTEGER;
|
|||
const cache: {
|
||||
boxes: Array<Box>, // unused
|
||||
bodies: Array<BodyResult>;
|
||||
last: number,
|
||||
} = {
|
||||
boxes: [],
|
||||
bodies: [],
|
||||
last: 0,
|
||||
};
|
||||
|
||||
export async function load(config: Config): Promise<GraphModel> {
|
||||
|
@ -129,17 +131,10 @@ async function parseMultiPose(res, config, image, inputBox) {
|
|||
}
|
||||
|
||||
export async function predict(input: Tensor, config: Config): Promise<BodyResult[]> {
|
||||
/** movenet caching
|
||||
* 1. if skipFrame returned cached
|
||||
* 2. if enough cached boxes run using cached boxes
|
||||
* 3. if not enough detected bodies rerun using full frame
|
||||
* 4. regenerate cached boxes based on current keypoints
|
||||
*/
|
||||
|
||||
if (!model || !model?.inputs[0].shape) return []; // something is wrong with the model
|
||||
if (!config.skipFrame) cache.boxes.length = 0; // allowed to use cache or not
|
||||
skipped++; // increment skip frames
|
||||
if (config.skipFrame && (skipped <= (config.body.skipFrames || 0))) {
|
||||
if (config.skipFrame && (skipped <= (config.body.skipFrames || 0) && ((config.body.skipTime || 0) <= (now() - cache.last)))) {
|
||||
return cache.bodies; // return cached results without running anything
|
||||
}
|
||||
return new Promise(async (resolve) => {
|
||||
|
@ -181,6 +176,7 @@ export async function predict(input: Tensor, config: Config): Promise<BodyResult
|
|||
// run detection on squared input and no cached boxes
|
||||
t.input = fix.padInput(input, inputSize);
|
||||
t.res = await model?.predict(t.input) as Tensor;
|
||||
cache.last = now();
|
||||
const res = await t.res.array();
|
||||
cache.bodies = (t.res.shape[2] === 17)
|
||||
? await parseSinglePose(res, config, input, [0, 0, 1, 1])
|
||||
|
|
|
@ -1,53 +1,42 @@
|
|||
/* eslint-disable indent */
|
||||
/* eslint-disable no-multi-spaces */
|
||||
|
||||
/** Dectector part of face configuration */
|
||||
export interface FaceDetectorConfig {
|
||||
export interface GenericConfig {
|
||||
enabled: boolean,
|
||||
modelPath: string,
|
||||
skipFrames: number,
|
||||
skipTime: number,
|
||||
}
|
||||
|
||||
/** Dectector part of face configuration */
|
||||
export interface FaceDetectorConfig extends GenericConfig {
|
||||
rotation: boolean,
|
||||
maxDetected: number,
|
||||
skipFrames: number,
|
||||
minConfidence: number,
|
||||
iouThreshold: number,
|
||||
return: boolean,
|
||||
}
|
||||
|
||||
/** Mesh part of face configuration */
|
||||
export interface FaceMeshConfig {
|
||||
enabled: boolean,
|
||||
modelPath: string,
|
||||
}
|
||||
export type FaceMeshConfig = GenericConfig
|
||||
|
||||
/** Iris part of face configuration */
|
||||
export interface FaceIrisConfig {
|
||||
enabled: boolean,
|
||||
modelPath: string,
|
||||
}
|
||||
export type FaceIrisConfig = GenericConfig
|
||||
|
||||
/** Description or face embedding part of face configuration
|
||||
* - also used by age and gender detection
|
||||
*/
|
||||
export interface FaceDescriptionConfig {
|
||||
enabled: boolean,
|
||||
modelPath: string,
|
||||
skipFrames: number,
|
||||
export interface FaceDescriptionConfig extends GenericConfig {
|
||||
minConfidence: number,
|
||||
}
|
||||
|
||||
/** Emotion part of face configuration */
|
||||
export interface FaceEmotionConfig {
|
||||
enabled: boolean,
|
||||
export interface FaceEmotionConfig extends GenericConfig {
|
||||
minConfidence: number,
|
||||
skipFrames: number,
|
||||
modelPath: string,
|
||||
}
|
||||
|
||||
/** Emotion part of face configuration */
|
||||
export interface FaceAntiSpoofConfig {
|
||||
enabled: boolean,
|
||||
skipFrames: number,
|
||||
modelPath: string,
|
||||
}
|
||||
export type FaceAntiSpoofConfig = GenericConfig
|
||||
|
||||
/** Controlls and configures all face-specific options:
|
||||
* - face detection, face mesh detection, age, gender, emotion detection and face description
|
||||
|
@ -86,18 +75,15 @@ export interface FaceConfig {
|
|||
* Changing `modelPath` will change module responsible for hand detection and tracking
|
||||
* Allowed values are `posenet.json`, `blazepose.json`, `efficientpose.json`, `movenet-lightning.json`, `movenet-thunder.json`, `movenet-multipose.json`
|
||||
*/
|
||||
export interface BodyConfig {
|
||||
enabled: boolean,
|
||||
modelPath: string,
|
||||
export interface BodyConfig extends GenericConfig {
|
||||
maxDetected: number,
|
||||
minConfidence: number,
|
||||
skipFrames: number,
|
||||
detector?: {
|
||||
modelPath: string
|
||||
},
|
||||
}
|
||||
|
||||
/** Controlls and configures all hand detection specific options
|
||||
/** Controls and configures all hand detection specific options
|
||||
*
|
||||
* Parameters:
|
||||
* - enabled: true/false
|
||||
|
@ -113,10 +99,8 @@ export interface BodyConfig {
|
|||
* Changing `detector.modelPath` will change module responsible for hand detection and tracking
|
||||
* Allowed values are `handdetect.json` and `handtrack.json`
|
||||
*/
|
||||
export interface HandConfig {
|
||||
enabled: boolean,
|
||||
export interface HandConfig extends GenericConfig {
|
||||
rotation: boolean,
|
||||
skipFrames: number,
|
||||
minConfidence: number,
|
||||
iouThreshold: number,
|
||||
maxDetected: number,
|
||||
|
@ -139,13 +123,10 @@ export interface HandConfig {
|
|||
* Changing `modelPath` will change module responsible for hand detection and tracking
|
||||
* Allowed values are `mb3-centernet.json` and `nanodet.json`
|
||||
*/
|
||||
export interface ObjectConfig {
|
||||
enabled: boolean,
|
||||
modelPath: string,
|
||||
export interface ObjectConfig extends GenericConfig {
|
||||
minConfidence: number,
|
||||
iouThreshold: number,
|
||||
maxDetected: number,
|
||||
skipFrames: number,
|
||||
}
|
||||
|
||||
/** Controlls and configures all body segmentation module
|
||||
|
@ -368,9 +349,8 @@ const config: Config = {
|
|||
// should be set to the minimum number for performance
|
||||
skipFrames: 11, // how many max frames to go without re-running the face bounding box detector
|
||||
// only used when cacheSensitivity is not zero
|
||||
// e.g., if model is running st 25 FPS, we can re-use existing bounding
|
||||
// box for updated face analysis as the head does not move fast
|
||||
// in short time (10 * 1/25 = 0.25 sec)
|
||||
skipTime: 2000, // how many ms to go without re-running the face bounding box detector
|
||||
// only used when cacheSensitivity is not zero
|
||||
minConfidence: 0.2, // threshold for discarding a prediction
|
||||
iouThreshold: 0.1, // ammount of overlap between two detected objects before one object is removed
|
||||
return: false, // return extracted face as tensor
|
||||
|
@ -393,6 +373,8 @@ const config: Config = {
|
|||
minConfidence: 0.1, // threshold for discarding a prediction
|
||||
skipFrames: 12, // how max many frames to go without re-running the detector
|
||||
// only used when cacheSensitivity is not zero
|
||||
skipTime: 2000, // how many ms to go without re-running the face bounding box detector
|
||||
// only used when cacheSensitivity is not zero
|
||||
modelPath: 'emotion.json', // face emotion model, can be absolute path or relative to modelBasePath
|
||||
},
|
||||
|
||||
|
@ -403,6 +385,8 @@ const config: Config = {
|
|||
// can be either absolute path or relative to modelBasePath
|
||||
skipFrames: 13, // how many max frames to go without re-running the detector
|
||||
// only used when cacheSensitivity is not zero
|
||||
skipTime: 2000, // how many ms to go without re-running the face bounding box detector
|
||||
// only used when cacheSensitivity is not zero
|
||||
minConfidence: 0.1, // threshold for discarding a prediction
|
||||
},
|
||||
|
||||
|
@ -410,6 +394,8 @@ const config: Config = {
|
|||
enabled: false,
|
||||
skipFrames: 14, // how max many frames to go without re-running the detector
|
||||
// only used when cacheSensitivity is not zero
|
||||
skipTime: 2000, // how many ms to go without re-running the face bounding box detector
|
||||
// only used when cacheSensitivity is not zero
|
||||
modelPath: 'antispoof.json', // face description model
|
||||
// can be either absolute path or relative to modelBasePath
|
||||
},
|
||||
|
@ -429,6 +415,8 @@ const config: Config = {
|
|||
minConfidence: 0.3, // threshold for discarding a prediction
|
||||
skipFrames: 1, // how many max frames to go without re-running the detector
|
||||
// only used when cacheSensitivity is not zero
|
||||
skipTime: 2000, // how many ms to go without re-running the face bounding box detector
|
||||
// only used when cacheSensitivity is not zero
|
||||
},
|
||||
|
||||
hand: {
|
||||
|
@ -438,9 +426,8 @@ const config: Config = {
|
|||
// only valid for `handdetect` variation
|
||||
skipFrames: 2, // how many max frames to go without re-running the hand bounding box detector
|
||||
// only used when cacheSensitivity is not zero
|
||||
// e.g., if model is running st 25 FPS, we can re-use existing bounding
|
||||
// box for updated hand skeleton analysis as the hand
|
||||
// hasn't moved much in short time (10 * 1/25 = 0.25 sec)
|
||||
skipTime: 2000, // how many ms to go without re-running the face bounding box detector
|
||||
// only used when cacheSensitivity is not zero
|
||||
minConfidence: 0.50, // threshold for discarding a prediction
|
||||
iouThreshold: 0.2, // ammount of overlap between two detected objects before one object is removed
|
||||
maxDetected: -1, // maximum number of hands detected in the input
|
||||
|
@ -465,6 +452,8 @@ const config: Config = {
|
|||
maxDetected: 10, // maximum number of objects detected in the input
|
||||
skipFrames: 15, // how many max frames to go without re-running the detector
|
||||
// only used when cacheSensitivity is not zero
|
||||
skipTime: 2000, // how many ms to go without re-running the face bounding box detector
|
||||
// only used when cacheSensitivity is not zero
|
||||
},
|
||||
|
||||
segmentation: {
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
* Anti-spoofing model implementation
|
||||
*/
|
||||
|
||||
import { log, join } from '../util/util';
|
||||
import { log, join, now } from '../util/util';
|
||||
import type { Config } from '../config';
|
||||
import type { GraphModel, Tensor } from '../tfjs/types';
|
||||
import * as tf from '../../dist/tfjs.esm.js';
|
||||
|
@ -12,6 +12,7 @@ let model: GraphModel | null;
|
|||
const cached: Array<number> = [];
|
||||
let skipped = Number.MAX_SAFE_INTEGER;
|
||||
let lastCount = 0;
|
||||
let last = 0;
|
||||
|
||||
export async function load(config: Config): Promise<GraphModel> {
|
||||
if (env.initial) model = null;
|
||||
|
@ -25,7 +26,7 @@ export async function load(config: Config): Promise<GraphModel> {
|
|||
|
||||
export async function predict(image: Tensor, config: Config, idx, count) {
|
||||
if (!model) return null;
|
||||
if ((skipped < (config.face.antispoof?.skipFrames || 0)) && config.skipFrame && (lastCount === count) && cached[idx]) {
|
||||
if ((skipped < (config.face.antispoof?.skipFrames || 0)) && ((config.face.antispoof?.skipTime || 0) <= (now() - last)) && config.skipFrame && (lastCount === count) && cached[idx]) {
|
||||
skipped++;
|
||||
return cached[idx];
|
||||
}
|
||||
|
@ -36,6 +37,7 @@ export async function predict(image: Tensor, config: Config, idx, count) {
|
|||
const num = (await res.data())[0];
|
||||
cached[idx] = Math.round(100 * num) / 100;
|
||||
lastCount = count;
|
||||
last = now();
|
||||
tf.dispose([resize, res]);
|
||||
resolve(cached[idx]);
|
||||
});
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
* - Eye Iris Details: [**MediaPipe Iris**](https://drive.google.com/file/d/1bsWbokp9AklH2ANjCfmjqEzzxO1CNbMu/view)
|
||||
*/
|
||||
|
||||
import { log, join } from '../util/util';
|
||||
import { log, join, now } from '../util/util';
|
||||
import * as tf from '../../dist/tfjs.esm.js';
|
||||
import * as blazeface from './blazeface';
|
||||
import * as util from './facemeshutil';
|
||||
|
@ -23,11 +23,14 @@ let boxCache: Array<BoxCache> = [];
|
|||
let model: GraphModel | null = null;
|
||||
let inputSize = 0;
|
||||
let skipped = Number.MAX_SAFE_INTEGER;
|
||||
let lastTime = 0;
|
||||
let detectedFaces = 0;
|
||||
|
||||
export async function predict(input: Tensor, config: Config): Promise<FaceResult[]> {
|
||||
if (!config.skipFrame || (((detectedFaces !== config.face.detector?.maxDetected) || !config.face.mesh?.enabled)) && (skipped > (config.face.detector?.skipFrames || 0))) { // reset cached boxes
|
||||
// reset cached boxes
|
||||
if (!config.skipFrame || (((detectedFaces !== config.face.detector?.maxDetected) || !config.face.mesh?.enabled)) && (skipped > (config.face.detector?.skipFrames || 0) && ((config.face.description?.skipTime || 0) <= (now() - lastTime)))) {
|
||||
const newBoxes = await blazeface.getBoxes(input, config); // get results from blazeface detector
|
||||
lastTime = now();
|
||||
boxCache = []; // empty cache
|
||||
for (const possible of newBoxes.boxes) { // extract data from detector
|
||||
const startPoint = await possible.box.startPoint.data() as unknown as Point;
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
* Based on: [**HSE-FaceRes**](https://github.com/HSE-asavchenko/HSE_FaceRec_tf)
|
||||
*/
|
||||
|
||||
import { log, join } from '../util/util';
|
||||
import { log, join, now } from '../util/util';
|
||||
import * as tf from '../../dist/tfjs.esm.js';
|
||||
import type { Tensor, GraphModel } from '../tfjs/types';
|
||||
import type { Config } from '../config';
|
||||
|
@ -21,6 +21,7 @@ const last: Array<{
|
|||
descriptor: number[],
|
||||
}> = [];
|
||||
|
||||
let lastTime = 0;
|
||||
let lastCount = 0;
|
||||
let skipped = Number.MAX_SAFE_INTEGER;
|
||||
|
||||
|
@ -90,15 +91,12 @@ export function enhance(input): Tensor {
|
|||
|
||||
export async function predict(image: Tensor, config: Config, idx, count) {
|
||||
if (!model) return null;
|
||||
if ((skipped < (config.face.description?.skipFrames || 0)) && config.skipFrame && (lastCount === count) && last[idx]?.age && (last[idx]?.age > 0)) {
|
||||
if ((skipped < (config.face.description?.skipFrames || 0)) && ((config.face.description?.skipTime || 0) <= (now() - lastTime)) && config.skipFrame && (lastCount === count) && last[idx]?.age && (last[idx]?.age > 0)) {
|
||||
skipped++;
|
||||
return last[idx];
|
||||
}
|
||||
skipped = 0;
|
||||
return new Promise(async (resolve) => {
|
||||
const enhanced = enhance(image);
|
||||
|
||||
let resT;
|
||||
const obj = {
|
||||
age: <number>0,
|
||||
gender: <string>'unknown',
|
||||
|
@ -106,11 +104,13 @@ export async function predict(image: Tensor, config: Config, idx, count) {
|
|||
descriptor: <number[]>[],
|
||||
};
|
||||
|
||||
if (config.face.description?.enabled) resT = await model?.predict(enhanced);
|
||||
tf.dispose(enhanced);
|
||||
|
||||
if (resT) {
|
||||
const gender = await resT.find((t) => t.shape[1] === 1).data();
|
||||
if (config.face.description?.enabled) {
|
||||
const enhanced = enhance(image);
|
||||
const resT = await model?.predict(enhanced) as Tensor[];
|
||||
lastTime = now();
|
||||
tf.dispose(enhanced);
|
||||
const genderT = await resT.find((t) => t.shape[1] === 1) as Tensor;
|
||||
const gender = await genderT.data();
|
||||
const confidence = Math.trunc(200 * Math.abs((gender[0] - 0.5))) / 100;
|
||||
if (confidence > (config.face.description?.minConfidence || 0)) {
|
||||
obj.gender = gender[0] <= 0.5 ? 'female' : 'male';
|
||||
|
@ -119,15 +119,16 @@ export async function predict(image: Tensor, config: Config, idx, count) {
|
|||
const argmax = tf.argMax(resT.find((t) => t.shape[1] === 100), 1);
|
||||
const age = (await argmax.data())[0];
|
||||
tf.dispose(argmax);
|
||||
const all = await resT.find((t) => t.shape[1] === 100).data();
|
||||
const ageT = resT.find((t) => t.shape[1] === 100) as Tensor;
|
||||
const all = await ageT.data();
|
||||
obj.age = Math.round(all[age - 1] > all[age + 1] ? 10 * age - 100 * all[age - 1] : 10 * age + 100 * all[age + 1]) / 10;
|
||||
|
||||
const desc = resT.find((t) => t.shape[1] === 1024);
|
||||
// const reshape = desc.reshape([128, 8]); // reshape large 1024-element descriptor to 128 x 8
|
||||
// const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it which leaves us with 128-element descriptor
|
||||
|
||||
const descriptor = await desc.data();
|
||||
obj.descriptor = [...descriptor];
|
||||
const descriptor = desc ? await desc.data() : <number[]>[];
|
||||
// obj.descriptor = [...descriptor];
|
||||
obj.descriptor = Array.from(descriptor);
|
||||
resT.forEach((t) => tf.dispose(t));
|
||||
}
|
||||
last[idx] = obj;
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
* [**Oarriaga**](https://github.com/oarriaga/face_classification)
|
||||
*/
|
||||
|
||||
import { log, join } from '../util/util';
|
||||
import { log, join, now } from '../util/util';
|
||||
import type { Config } from '../config';
|
||||
import type { GraphModel, Tensor } from '../tfjs/types';
|
||||
import * as tf from '../../dist/tfjs.esm.js';
|
||||
|
@ -15,6 +15,7 @@ let model: GraphModel | null;
|
|||
// let last: Array<{ score: number, emotion: string }> = [];
|
||||
const last: Array<Array<{ score: number, emotion: string }>> = [];
|
||||
let lastCount = 0;
|
||||
let lastTime = 0;
|
||||
let skipped = Number.MAX_SAFE_INTEGER;
|
||||
|
||||
// tuning values
|
||||
|
@ -32,39 +33,40 @@ export async function load(config: Config): Promise<GraphModel> {
|
|||
|
||||
export async function predict(image: Tensor, config: Config, idx, count) {
|
||||
if (!model) return null;
|
||||
if ((skipped < (config.face.emotion?.skipFrames || 0)) && config.skipFrame && (lastCount === count) && last[idx] && (last[idx].length > 0)) {
|
||||
if ((skipped < (config.face.emotion?.skipFrames || 0)) && ((config.face.emotion?.skipTime || 0) <= (now() - lastTime)) && config.skipFrame && (lastCount === count) && last[idx] && (last[idx].length > 0)) {
|
||||
skipped++;
|
||||
return last[idx];
|
||||
}
|
||||
skipped = 0;
|
||||
return new Promise(async (resolve) => {
|
||||
const resize = tf.image.resizeBilinear(image, [model?.inputs[0].shape ? model.inputs[0].shape[2] : 0, model?.inputs[0].shape ? model.inputs[0].shape[1] : 0], false);
|
||||
const [red, green, blue] = tf.split(resize, 3, 3);
|
||||
tf.dispose(resize);
|
||||
// weighted rgb to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html
|
||||
const redNorm = tf.mul(red, rgb[0]);
|
||||
const greenNorm = tf.mul(green, rgb[1]);
|
||||
const blueNorm = tf.mul(blue, rgb[2]);
|
||||
tf.dispose(red);
|
||||
tf.dispose(green);
|
||||
tf.dispose(blue);
|
||||
const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);
|
||||
tf.dispose(redNorm);
|
||||
tf.dispose(greenNorm);
|
||||
tf.dispose(blueNorm);
|
||||
const normalize = tf.tidy(() => tf.mul(tf.sub(grayscale, 0.5), 2));
|
||||
tf.dispose(grayscale);
|
||||
const obj: Array<{ score: number, emotion: string }> = [];
|
||||
if (config.face.emotion?.enabled) {
|
||||
const resize = tf.image.resizeBilinear(image, [model?.inputs[0].shape ? model.inputs[0].shape[2] : 0, model?.inputs[0].shape ? model.inputs[0].shape[1] : 0], false);
|
||||
const [red, green, blue] = tf.split(resize, 3, 3);
|
||||
tf.dispose(resize);
|
||||
// weighted rgb to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html
|
||||
const redNorm = tf.mul(red, rgb[0]);
|
||||
const greenNorm = tf.mul(green, rgb[1]);
|
||||
const blueNorm = tf.mul(blue, rgb[2]);
|
||||
tf.dispose(red);
|
||||
tf.dispose(green);
|
||||
tf.dispose(blue);
|
||||
const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);
|
||||
tf.dispose(redNorm);
|
||||
tf.dispose(greenNorm);
|
||||
tf.dispose(blueNorm);
|
||||
const normalize = tf.tidy(() => tf.mul(tf.sub(grayscale, 0.5), 2));
|
||||
tf.dispose(grayscale);
|
||||
const emotionT = await model?.predict(normalize) as Tensor; // result is already in range 0..1, no need for additional activation
|
||||
lastTime = now();
|
||||
const data = await emotionT.data();
|
||||
tf.dispose(emotionT);
|
||||
for (let i = 0; i < data.length; i++) {
|
||||
if (data[i] > (config.face.emotion?.minConfidence || 0)) obj.push({ score: Math.min(0.99, Math.trunc(100 * data[i]) / 100), emotion: annotations[i] });
|
||||
}
|
||||
obj.sort((a, b) => b.score - a.score);
|
||||
tf.dispose(normalize);
|
||||
}
|
||||
tf.dispose(normalize);
|
||||
last[idx] = obj;
|
||||
lastCount = count;
|
||||
resolve(obj);
|
||||
|
|
|
@ -6,15 +6,15 @@
|
|||
* Obsolete and replaced by `faceres` that performs age/gender/descriptor analysis
|
||||
*/
|
||||
|
||||
import { log, join } from '../util/util';
|
||||
import { log, join, now } from '../util/util';
|
||||
import * as tf from '../../dist/tfjs.esm.js';
|
||||
import type { Config } from '../config';
|
||||
import type { GraphModel, Tensor } from '../tfjs/types';
|
||||
import { env } from '../util/env';
|
||||
|
||||
let model: GraphModel | null;
|
||||
|
||||
let last = { age: 0 };
|
||||
let lastTime = 0;
|
||||
let skipped = Number.MAX_SAFE_INTEGER;
|
||||
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
|
@ -33,7 +33,7 @@ export async function load(config: Config | any) {
|
|||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
export async function predict(image: Tensor, config: Config | any) {
|
||||
if (!model) return null;
|
||||
if ((skipped < config.face.age.skipFrames) && config.skipFrame && last.age && (last.age > 0)) {
|
||||
if ((skipped < config.face.age.skipFrames) && ((config.face.age.skipTime || 0) <= (now() - lastTime)) && config.skipFrame && last.age && (last.age > 0)) {
|
||||
skipped++;
|
||||
return last;
|
||||
}
|
||||
|
@ -48,6 +48,7 @@ export async function predict(image: Tensor, config: Config | any) {
|
|||
const obj = { age: 0 };
|
||||
|
||||
if (config.face.age.enabled) ageT = await model.predict(enhance);
|
||||
lastTime = now();
|
||||
tf.dispose(enhance);
|
||||
|
||||
if (ageT) {
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
* Obsolete and replaced by `faceres` that performs age/gender/descriptor analysis
|
||||
*/
|
||||
|
||||
import { log, join } from '../util/util';
|
||||
import { log, join, now } from '../util/util';
|
||||
import * as tf from '../../dist/tfjs.esm.js';
|
||||
import type { Config } from '../config';
|
||||
import type { GraphModel, Tensor } from '../tfjs/types';
|
||||
|
@ -14,6 +14,7 @@ import { env } from '../util/env';
|
|||
|
||||
let model: GraphModel | null;
|
||||
let last = { gender: '' };
|
||||
let lastTime = 0;
|
||||
let skipped = Number.MAX_SAFE_INTEGER;
|
||||
let alternative = false;
|
||||
|
||||
|
@ -35,7 +36,7 @@ export async function load(config: Config | any) {
|
|||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
export async function predict(image: Tensor, config: Config | any) {
|
||||
if (!model) return null;
|
||||
if ((skipped < config.face.gender.skipFrames) && config.skipFrame && last.gender !== '') {
|
||||
if ((skipped < config.face.gender.skipFrames) && ((config.face.gender.skipTime || 0) <= (now() - lastTime)) && config.skipFrame && last.gender !== '') {
|
||||
skipped++;
|
||||
return last;
|
||||
}
|
||||
|
@ -63,6 +64,7 @@ export async function predict(image: Tensor, config: Config | any) {
|
|||
const obj = { gender: '', confidence: 0 };
|
||||
|
||||
if (config.face.gender.enabled) genderT = await model.predict(enhance);
|
||||
lastTime = now();
|
||||
tf.dispose(enhance);
|
||||
|
||||
if (genderT) {
|
||||
|
|
|
@ -8,12 +8,14 @@ import * as util from './handposeutil';
|
|||
import type * as detector from './handposedetector';
|
||||
import type { Tensor, GraphModel } from '../tfjs/types';
|
||||
import { env } from '../util/env';
|
||||
import { now } from '../util/util';
|
||||
|
||||
const palmBoxEnlargeFactor = 5; // default 3
|
||||
const handBoxEnlargeFactor = 1.65; // default 1.65
|
||||
const palmLandmarkIds = [0, 5, 9, 13, 17, 1, 2];
|
||||
const palmLandmarksPalmBase = 0;
|
||||
const palmLandmarksMiddleFingerBase = 2;
|
||||
let lastTime = 0;
|
||||
|
||||
export class HandPipeline {
|
||||
handDetector: detector.HandDetector;
|
||||
|
@ -90,7 +92,7 @@ export class HandPipeline {
|
|||
let boxes;
|
||||
|
||||
// console.log('handpipeline:estimateHands:skip criteria', this.skipped, config.hand.skipFrames, !config.hand.landmarks, !config.skipFrame); // should skip hand detector?
|
||||
if ((this.skipped === 0) || (this.skipped > config.hand.skipFrames) || !config.hand.landmarks || !config.skipFrame) {
|
||||
if ((this.skipped === 0) || ((this.skipped > config.hand.skipFrames) && ((config.hand.skipTime || 0) <= (now() - lastTime))) || !config.hand.landmarks || !config.skipFrame) {
|
||||
boxes = await this.handDetector.estimateHandBounds(image, config);
|
||||
this.skipped = 0;
|
||||
}
|
||||
|
@ -121,6 +123,7 @@ export class HandPipeline {
|
|||
tf.dispose(croppedInput);
|
||||
tf.dispose(rotatedImage);
|
||||
const [confidenceT, keypoints] = await this.handPoseModel.predict(handImage) as Array<Tensor>;
|
||||
lastTime = now();
|
||||
tf.dispose(handImage);
|
||||
const confidence = (await confidenceT.data())[0];
|
||||
tf.dispose(confidenceT);
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
* - Hand Tracking: [**HandTracking**](https://github.com/victordibia/handtracking)
|
||||
*/
|
||||
|
||||
import { log, join } from '../util/util';
|
||||
import { log, join, now } from '../util/util';
|
||||
import * as box from '../util/box';
|
||||
import * as tf from '../../dist/tfjs.esm.js';
|
||||
import type { HandResult, Box, Point } from '../result';
|
||||
|
@ -29,6 +29,7 @@ const maxDetectorResolution = 512;
|
|||
const detectorExpandFact = 1.4;
|
||||
|
||||
let skipped = 0;
|
||||
let lastTime = 0;
|
||||
let outputSize: [number, number] = [0, 0];
|
||||
|
||||
type HandDetectResult = {
|
||||
|
@ -184,7 +185,7 @@ async function detectFingers(input: Tensor, h: HandDetectResult, config: Config)
|
|||
export async function predict(input: Tensor, config: Config): Promise<HandResult[]> {
|
||||
/** handtrack caching
|
||||
* 1. if skipFrame returned cached
|
||||
* 2. if any cached results but although not sure if its enough we continute anyhow for 5x skipframes
|
||||
* 2. if any cached results but although not sure if its enough we continute anyhow for 3x skipframes
|
||||
* 3. if not skipframe or eventually rerun detector to generated new cached boxes and reset skipped
|
||||
* 4. generate cached boxes based on detected keypoints
|
||||
*/
|
||||
|
@ -192,16 +193,17 @@ export async function predict(input: Tensor, config: Config): Promise<HandResult
|
|||
outputSize = [input.shape[2] || 0, input.shape[1] || 0];
|
||||
|
||||
skipped++; // increment skip frames
|
||||
if (config.skipFrame && (skipped <= (config.hand.skipFrames || 0))) {
|
||||
if (config.skipFrame && (skipped <= (config.hand.skipFrames || 0)) && ((config.hand.skipTime || 0) <= (now() - lastTime))) {
|
||||
return cache.hands; // return cached results without running anything
|
||||
}
|
||||
return new Promise(async (resolve) => {
|
||||
if (config.skipFrame && cache.hands.length === config.hand.maxDetected) { // we have all detected hands
|
||||
cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config)));
|
||||
} else if (config.skipFrame && skipped < 3 * (config.hand.skipFrames || 0) && cache.hands.length > 0) { // we have some cached results but although not sure if its enough we continute anyhow for bit longer
|
||||
} else if (config.skipFrame && skipped < 3 * (config.hand.skipFrames || 0) && ((config.hand.skipTime || 0) <= 3 * (now() - lastTime)) && cache.hands.length > 0) { // we have some cached results: maybe not enough but anyhow continue for bit longer
|
||||
cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config)));
|
||||
} else { // finally rerun detector
|
||||
cache.boxes = await detectHands(input, config);
|
||||
lastTime = now();
|
||||
cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config)));
|
||||
skipped = 0;
|
||||
}
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
* Based on: [**NanoDet**](https://github.com/RangiLyu/nanodet)
|
||||
*/
|
||||
|
||||
import { log, join } from '../util/util';
|
||||
import { log, join, now } from '../util/util';
|
||||
import * as tf from '../../dist/tfjs.esm.js';
|
||||
import { labels } from './labels';
|
||||
import type { ObjectResult, Box } from '../result';
|
||||
|
@ -16,6 +16,7 @@ import { fakeOps } from '../tfjs/backend';
|
|||
let model: GraphModel | null;
|
||||
let inputSize = 0;
|
||||
let last: ObjectResult[] = [];
|
||||
let lastTime = 0;
|
||||
let skipped = Number.MAX_SAFE_INTEGER;
|
||||
|
||||
export async function load(config: Config): Promise<GraphModel> {
|
||||
|
@ -78,7 +79,7 @@ async function process(res: Tensor | null, outputShape, config: Config) {
|
|||
}
|
||||
|
||||
export async function predict(input: Tensor, config: Config): Promise<ObjectResult[]> {
|
||||
if ((skipped < (config.object.skipFrames || 0)) && config.skipFrame && (last.length > 0)) {
|
||||
if ((skipped < (config.object.skipFrames || 0)) && ((config.object.skipTime || 0) <= (now() - lastTime)) && config.skipFrame && (last.length > 0)) {
|
||||
skipped++;
|
||||
return last;
|
||||
}
|
||||
|
@ -88,6 +89,7 @@ export async function predict(input: Tensor, config: Config): Promise<ObjectResu
|
|||
const outputSize = [input.shape[2], input.shape[1]];
|
||||
const resize = tf.image.resizeBilinear(input, [inputSize, inputSize]);
|
||||
const objectT = config.object.enabled ? model?.execute(resize, ['tower_0/detections']) as Tensor : null;
|
||||
lastTime = now();
|
||||
tf.dispose(resize);
|
||||
|
||||
const obj = await process(objectT, outputSize, config);
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
* Based on: [**MB3-CenterNet**](https://github.com/610265158/mobilenetv3_centernet)
|
||||
*/
|
||||
|
||||
import { log, join } from '../util/util';
|
||||
import { log, join, now } from '../util/util';
|
||||
import * as tf from '../../dist/tfjs.esm.js';
|
||||
import { labels } from './labels';
|
||||
import type { ObjectResult, Box } from '../result';
|
||||
|
@ -14,6 +14,7 @@ import { env } from '../util/env';
|
|||
|
||||
let model;
|
||||
let last: Array<ObjectResult> = [];
|
||||
let lastTime = 0;
|
||||
let skipped = Number.MAX_SAFE_INTEGER;
|
||||
|
||||
const scaleBox = 2.5; // increase box size
|
||||
|
@ -106,7 +107,7 @@ async function process(res, inputSize, outputShape, config) {
|
|||
}
|
||||
|
||||
export async function predict(image: Tensor, config: Config): Promise<ObjectResult[]> {
|
||||
if ((skipped < (config.object.skipFrames || 0)) && config.skipFrame && (last.length > 0)) {
|
||||
if ((skipped < (config.object.skipFrames || 0)) && ((config.object.skipTime || 0) <= (now() - lastTime)) && config.skipFrame && (last.length > 0)) {
|
||||
skipped++;
|
||||
return last;
|
||||
}
|
||||
|
@ -122,6 +123,7 @@ export async function predict(image: Tensor, config: Config): Promise<ObjectResu
|
|||
|
||||
let objectT;
|
||||
if (config.object.enabled) objectT = await model.predict(transpose);
|
||||
lastTime = now();
|
||||
tf.dispose(transpose);
|
||||
|
||||
const obj = await process(objectT, model.inputSize, outputSize, config);
|
||||
|
|
Loading…
Reference in New Issue