human/src/emotion/emotion.ts

80 lines
3.0 KiB
TypeScript
Raw Normal View History

2021-02-08 17:39:09 +01:00
import { log } from '../log';
2020-11-18 14:26:28 +01:00
import * as tf from '../../dist/tfjs.esm.js';
2020-11-10 02:13:38 +01:00
import * as profile from '../profile.js';
2020-10-15 00:22:38 +02:00
2021-01-06 12:51:20 +01:00
const annotations = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'];
2021-02-08 18:47:38 +01:00
let model;
let last: Array<{ score: number, emotion: string }> = [];
2020-12-11 16:11:49 +01:00
let skipped = Number.MAX_SAFE_INTEGER;
2020-11-05 21:38:09 +01:00
// tuning values
const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale
const scale = 1; // score multiplication factor
2020-10-15 00:22:38 +02:00
2021-02-08 17:39:09 +01:00
export async function load(config) {
2021-02-08 18:47:38 +01:00
if (!model) {
model = await tf.loadGraphModel(config.face.emotion.modelPath);
log(`load model: ${config.face.emotion.modelPath.match(/\/(.*)\./)[1]}`);
2020-11-07 16:37:19 +01:00
}
2021-02-08 18:47:38 +01:00
return model;
2020-10-15 00:22:38 +02:00
}
2021-02-08 17:39:09 +01:00
export async function predict(image, config) {
2021-02-08 18:47:38 +01:00
if (!model) return null;
2020-12-11 16:11:49 +01:00
if ((skipped < config.face.emotion.skipFrames) && config.videoOptimized && (last.length > 0)) {
skipped++;
2020-11-06 19:50:16 +01:00
return last;
}
2020-12-11 16:11:49 +01:00
if (config.videoOptimized) skipped = 0;
else skipped = Number.MAX_SAFE_INTEGER;
2020-11-06 17:39:39 +01:00
return new Promise(async (resolve) => {
2020-11-13 22:13:35 +01:00
/*
const zoom = [0, 0]; // 0..1 meaning 0%..100%
2020-11-06 17:39:39 +01:00
const box = [[
(image.shape[1] * zoom[0]) / image.shape[1],
(image.shape[2] * zoom[1]) / image.shape[2],
(image.shape[1] - (image.shape[1] * zoom[0])) / image.shape[1],
(image.shape[2] - (image.shape[2] * zoom[1])) / image.shape[2],
]];
const resize = tf.image.cropAndResize(image, box, [0], [config.face.emotion.inputSize, config.face.emotion.inputSize]);
2020-11-13 22:13:35 +01:00
*/
const resize = tf.image.resizeBilinear(image, [config.face.emotion.inputSize, config.face.emotion.inputSize], false);
2020-11-06 17:39:39 +01:00
const [red, green, blue] = tf.split(resize, 3, 3);
resize.dispose();
// weighted rgb to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html
const redNorm = tf.mul(red, rgb[0]);
const greenNorm = tf.mul(green, rgb[1]);
const blueNorm = tf.mul(blue, rgb[2]);
red.dispose();
green.dispose();
blue.dispose();
const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);
redNorm.dispose();
greenNorm.dispose();
blueNorm.dispose();
const normalize = tf.tidy(() => grayscale.sub(0.5).mul(2));
grayscale.dispose();
2021-02-08 18:47:38 +01:00
const obj: Array<{ score: number, emotion: string }> = [];
2020-11-06 17:39:39 +01:00
if (config.face.emotion.enabled) {
let data;
if (!config.profile) {
2021-02-08 18:47:38 +01:00
const emotionT = await model.predict(normalize);
2020-11-06 17:39:39 +01:00
data = emotionT.dataSync();
tf.dispose(emotionT);
} else {
2021-02-08 18:47:38 +01:00
const profileData = await tf.profile(() => model.predict(normalize));
2020-11-06 17:39:39 +01:00
data = profileData.result.dataSync();
profileData.result.dispose();
profile.run('emotion', profileData);
}
for (let i = 0; i < data.length; i++) {
if (scale * data[i] > config.face.emotion.minConfidence) obj.push({ score: Math.min(0.99, Math.trunc(100 * scale * data[i]) / 100), emotion: annotations[i] });
}
obj.sort((a, b) => b.score - a.score);
2020-10-15 00:22:38 +02:00
}
2020-11-06 17:39:39 +01:00
normalize.dispose();
last = obj;
resolve(obj);
});
2020-10-15 00:22:38 +02:00
}