import { log } from '../log'; import * as tf from '../../dist/tfjs.esm.js'; import * as profile from '../profile.js'; // based on https://github.com/sirius-ai/MobileFaceNet_TF // model converted from https://github.com/sirius-ai/MobileFaceNet_TF/files/3551493/FaceMobileNet192_train_false.zip const models = { embedding: null }; export async function load(config) { if (!models.embedding) { models.embedding = await tf.loadGraphModel(config.face.embedding.modelPath); log(`load model: ${config.face.embedding.modelPath.match(/\/(.*)\./)[1]}`); } return models.embedding; } export function simmilarity(embedding1, embedding2) { if (embedding1?.length !== embedding2?.length) return 0; // general minkowski distance // euclidean distance is limited case where order is 2 const order = 2; const distance = 10.0 * ((embedding1.map((val, i) => (val - embedding2[i])).reduce((dist, diff) => dist + (diff ** order), 0) ** (1 / order))); return (Math.trunc(1000 * (1 - distance)) / 1000); } export async function predict(image, config) { if (!models.embedding) return null; return new Promise(async (resolve) => { const resize = tf.image.resizeBilinear(image, [config.face.embedding.inputSize, config.face.embedding.inputSize], false); // const normalize = tf.tidy(() => resize.div(127.5).sub(0.5)); // this is -0.5...0.5 ??? let data = []; if (config.face.embedding.enabled) { if (!config.profile) { const embeddingT = await models.embedding.predict({ img_inputs: resize }); data = [...embeddingT.dataSync()]; // convert object array to standard array tf.dispose(embeddingT); } else { const profileData = await tf.profile(() => models.embedding.predict({ img_inputs: resize })); data = [...profileData.result.dataSync()]; profileData.result.dispose(); profile.run('emotion', profileData); } } resize.dispose(); // normalize.dispose(); resolve(data); }); }