update

master
Vladimir Mandic 2020-11-07 09:13:14 -05:00
parent 26e765023c
commit 8357fda561
5 changed files with 441 additions and 0 deletions

152
Configuration.md Normal file

@ -0,0 +1,152 @@
## Configuration
Detailed configuration options are explained below, but they are best seen in the menus present in the `demo` application:
![Menus](assets/screenshot-menu.png)
Below is output of `human.defaults` object
Any property can be overriden by passing user object during `human.detect()`
Note that user object and default configuration are merged using deep-merge, so you do not need to redefine entire configuration
All configuration details can be changed in real-time!
```js
config = {
backend: 'webgl', // select tfjs backend to use
console: true, // enable debugging output to console
async: true, // execute enabled models in parallel
// this disables per-model performance data but slightly increases performance
// cannot be used if profiling is enabled
profile: false, // enable tfjs profiling
// this has significant performance impact, only enable for debugging purposes
// currently only implemented for age,gender,emotion models
deallocate: false, // aggresively deallocate gpu memory after each usage
// only valid for webgl backend and only during first call, cannot be changed unless library is reloaded
// this has significant performance impact, only enable on low-memory devices
scoped: false, // enable scoped runs
// some models *may* have memory leaks, this wrapps everything in a local scope at a cost of performance
// typically not needed
videoOptimized: true, // perform additional optimizations when input is video, must be disabled for images
filter: { // note: image filters are only available in Browser environments and not in NodeJS as they require WebGL for processing
enabled: true, // enable image pre-processing filters
return: true, // return processed canvas imagedata in result
width: 0, // resize input width
height: 0, // resize input height
// usefull on low-performance devices to reduce the size of processed input
// if both width and height are set to 0, there is no resizing
// if just one is set, second one is scaled automatically
// if both are set, values are used as-is
brightness: 0, // range: -1 (darken) to 1 (lighten)
contrast: 0, // range: -1 (reduce contrast) to 1 (increase contrast)
sharpness: 0, // range: 0 (no sharpening) to 1 (maximum sharpening)
blur: 0, // range: 0 (no blur) to N (blur radius in pixels)
saturation: 0, // range: -1 (reduce saturation) to 1 (increase saturation)
hue: 0, // range: 0 (no change) to 360 (hue rotation in degrees)
negative: false, // image negative
sepia: false, // image sepia colors
vintage: false, // image vintage colors
kodachrome: false, // image kodachrome colors
technicolor: false, // image technicolor colors
polaroid: false, // image polaroid camera effect
pixelate: 0, // range: 0 (no pixelate) to N (number of pixels to pixelate)
},
face: {
enabled: true, // controls if specified modul is enabled
// face.enabled is required for all face models: detector, mesh, iris, age, gender, emotion
// note: module is not loaded until it is required
detector: {
modelPath: '../models/blazeface/back/model.json', // can be 'front' or 'back'.
// 'front' is optimized for large faces such as front-facing camera and 'back' is optimized for distanct faces.
inputSize: 256, // fixed value: 128 for front and 256 for 'back'
maxFaces: 10, // maximum number of faces detected in the input, should be set to the minimum number for performance
skipFrames: 10, // how many frames to go without re-running the face bounding box detector
// only used for video inputs, ignored for static inputs
// if model is running st 25 FPS, we can re-use existing bounding box for updated face mesh analysis
// as the face probably hasn't moved much in short time (10 * 1/25 = 0.25 sec)
minConfidence: 0.5, // threshold for discarding a prediction
iouThreshold: 0.3, // threshold for deciding whether boxes overlap too much in non-maximum suppression
scoreThreshold: 0.7, // threshold for deciding when to remove boxes based on score in non-maximum suppression
},
mesh: {
enabled: true,
modelPath: '../models/facemesh/model.json',
inputSize: 192, // fixed value
},
iris: {
enabled: true,
modelPath: '../models/iris/model.json',
enlargeFactor: 2.3, // empiric tuning
inputSize: 64, // fixed value
},
age: {
enabled: true,
modelPath: '../models/ssrnet-age/imdb/model.json', // can be 'imdb' or 'wiki'
// which determines training set for model
inputSize: 64, // fixed value
skipFrames: 10, // how many frames to go without re-running the detector, only used for video inputs
},
gender: {
enabled: true,
minConfidence: 0.8, // threshold for discarding a prediction
modelPath: '../models/ssrnet-gender/imdb/model.json',
},
emotion: {
enabled: true,
inputSize: 64, // fixed value
minConfidence: 0.5, // threshold for discarding a prediction
skipFrames: 10, // how many frames to go without re-running the detector, only used for video inputs
modelPath: '../models/emotion/model.json',
},
},
body: {
enabled: true,
modelPath: '../models/posenet/model.json',
inputResolution: 257, // fixed value
outputStride: 16, // fixed value
maxDetections: 10, // maximum number of people detected in the input, should be set to the minimum number for performance
scoreThreshold: 0.7, // threshold for deciding when to remove boxes based on score in non-maximum suppression
nmsRadius: 20, // radius for deciding points are too close in non-maximum suppression
},
hand: {
enabled: true,
inputSize: 256, // fixed value
skipFrames: 10, // how many frames to go without re-running the hand bounding box detector
// only used for video inputs
// if model is running st 25 FPS, we can re-use existing bounding box for updated hand skeleton analysis
// as the hand probably hasn't moved much in short time (10 * 1/25 = 0.25 sec)
minConfidence: 0.5, // threshold for discarding a prediction
iouThreshold: 0.3, // threshold for deciding whether boxes overlap too much in non-maximum suppression
scoreThreshold: 0.7, // threshold for deciding when to remove boxes based on score in non-maximum suppression
enlargeFactor: 1.65, // empiric tuning as skeleton prediction prefers hand box with some whitespace
maxHands: 10, // maximum number of hands detected in the input, should be set to the minimum number for performance
detector: {
modelPath: '../models/handdetect/model.json',
},
skeleton: {
modelPath: '../models/handskeleton/model.json',
},
},
gesture: {
enabled: true, // enable simple gesture recognition
// takes processed data and based on geometry detects simple gestures
// easily expandable via code, see `src/gesture.js`
},
};
```
Any user configuration and default configuration are merged using deep-merge, so you do not need to redefine entire configuration
Configurtion object is large, but typically you only need to modify few values:
- `enabled`: Choose which models to use
- `modelPath`: Update as needed to reflect your application's relative path
for example,
```js
const myConfig = {
backend: 'wasm',
filter: { enabled: false },
}
const result = await human.detect(image, myConfig)
```

45
Demos.md Normal file

@ -0,0 +1,45 @@
## Demos
Demos are included in `/demo`:
**Browser**:
- `index.html`: Full demo using Browser with ESM module, includes selectable backends and webworkers
it loads `dist/demo-browser-index.js` which is built from sources in `demo`, starting with `demo/browser`
alternatively you can load `demo/browser.js` directly
*You can run browser demo either live from git pages, by serving demo folder from your web server or use
included micro http2 server with source file monitoring and dynamic rebuild*
### Dev Server
To start micro http2 dev server, you must provide your own SSL certificate (production or self-signed)
and place them in `dev-server.js`
Once SSL certificates have been provided, simply run
```shell
npm run dev
```
On first start, it will install all development dependencies required to rebuild `Human` library
```log
> @vladmandic/human@0.7.5 dev /home/vlado/dev/human
> npm install && node --trace-warnings --unhandled-rejections=strict --trace-uncaught --no-deprecation dev-server.js
audited 321 packages in 2.506s
found 0 vulnerabilities
2020-11-06 16:19:09 INFO: @vladmandic/human version 0.7.5
2020-11-06 16:19:09 INFO: User: vlado Platform: linux Arch: x64 Node: v15.0.1
2020-11-06 16:19:09 STATE: HTTP2 server listening: 8000
2020-11-06 16:19:09 STATE: Monitoring: [ 'package.json', 'config.js', 'demo', 'src', [length]: 4 ]
2020-11-06 16:19:16 DATA: GET/2.0 200 text/html 4866 / ::ffff:192.168.0.200
2020-11-06 16:19:16 DATA: GET/2.0 200 text/javascript 1708910 /dist/demo-browser-index.js ::ffff:192.168.0.200
```
*If you want to test `wasm` or `webgpu` backends, enable loading in `index.html`*
**NodeJS**:
- `node.js`: Demo using NodeJS with CommonJS module
This is a very simple demo as althought `Human` library is compatible with NodeJS execution
and is able to load images and models from local filesystem,

126
Install.md Normal file

@ -0,0 +1,126 @@
## Installation
**Important**
*The packaged (IIFE and ESM) version of `Human` includes `TensorFlow/JS (TFJS) 2.7.0` library which can be accessed via `human.tf`*
*You should NOT manually load another instance of `tfjs`, but if you do, be aware of possible version conflicts*
There are multiple ways to use `Human` library, pick one that suits you:
### Included
- `dist/human.js`: IIFE format bundle with TFJS for Browsers
- `dist/human.esm.js`: ESM format bundle with TFJS for Browsers
- `dist/human.esm-nobundle.js`: ESM format bundle without TFJS for Browsers
- `dist/human.node.js`: CommonJS format bundle with TFJS for NodeJS
- `dist/human.node-nobundle.js`: CommonJS format bundle without TFJS for NodeJS
All versions include `sourcemap` *(.map)* and build `manifest` *(.json)*
While `Human` is in pre-release mode, all bundles are non-minified
Defaults:
```json
{
"main": "dist/human.node.js",
"module": "dist/human.esm.js",
"browser": "dist/human.esm.js",
}
```
### 1. [IIFE](https://developer.mozilla.org/en-US/docs/Glossary/IIFE) script
*Simplest way for usage within Browser*
Simply download `dist/human.js`, include it in your `HTML` file & it's ready to use.
```html
<script src="dist/human.js"><script>
```
IIFE script auto-registers global namespace `Human` within global `Window` object
Which you can use to create instance of `human` library:
```js
const human = new Human();
```
This way you can also use `Human` library within embbedded `<script>` tag within your `html` page for all-in-one approach
### 2. [ESM](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import) module
*Recommended for usage within `Browser`*
#### **2.1 Using Script Module**
You could use same syntax within your main `JS` file if it's imported with `<script type="module">`
```html
<script src="./index.js" type="module">
```
and then in your `index.js`
```js
import Human from 'dist/human.esm.js'; // for direct import must use path to module, not package name
const human = new Human();
```
#### **2.2 With Bundler**
If you're using bundler *(such as rollup, webpack, parcel, browserify, esbuild)* to package your client application,
you can import ESM version of `Human` library which supports full tree shaking
Install with:
```shell
npm install @vladmandic/human
```
```js
import Human from '@vladmandic/human'; // points to @vladmandic/human/dist/human.esm.js
// you can also force-load specific version
// for example: `@vladmandic/human/dist/human.esm-nobundle.js`
const human = new Human();
```
Or if you prefer to package your version of `tfjs`, you can use `nobundle` version
Install with:
```shell
npm install @vladmandic/human @tensorflow/tfjs-node
```
```js
import tf from '@tensorflow/tfjs'
import Human from '@vladmandic/human/dist/human.esm-nobundle.js'; // same functionality as default import, but without tfjs bundled
const human = new Human();
```
### 3. [NPM](https://www.npmjs.com/) module
*Recommended for `NodeJS` projects that will execute in the backend*
Entry point is bundle in CommonJS format `dist/human.node.js`
You also need to install and include `tfjs-node` or `tfjs-node-gpu` in your project so it can register an optimized backend
Install with:
```shell
npm install @vladmandic/human @tensorflow/tfjs-node
```
And then use with:
```js
const tf = require('@tensorflow/tfjs-node'); // can also use '@tensorflow/tfjs-node-gpu' if you have environment with CUDA extensions
const Human = require('@vladmandic/human').default; // points to @vladmandic/human/dist/human.node.js
const human = new Human();
```
Since NodeJS projects load `weights` from local filesystem instead of using `http` calls, you must modify default configuration to include correct paths with `file://` prefix
For example:
```js
const config = {
body: { enabled: true, modelPath: 'file://models/posenet/model.json' },
}
```
### Weights
Pretrained model weights are includes in `./models`
Default configuration uses relative paths to you entry script pointing to `../models`
If your application resides in a different folder, modify `modelPath` property in configuration of each module
<hr>

63
Outputs Normal file

@ -0,0 +1,63 @@
## Outputs
Result of `humand.detect()` is a single object that includes data for all enabled modules and all detected objects:
```js
result = {
version: // <string> version string of the human library
face: // <array of detected objects>
[
{
confidence, // <number>
box, // <array [x, y, width, height]>
mesh, // <array of 3D points [x, y, z]> 468 base points & 10 iris points
annotations, // <list of object { landmark: array of points }> 32 base annotated landmarks & 2 iris annotations
iris, // <number> relative distance of iris to camera, multiple by focal lenght to get actual distance
age, // <number> estimated age
gender, // <string> 'male', 'female'
}
],
body: // <array of detected objects>
[
{
score, // <number>,
keypoints, // <array of 2D landmarks [ score, landmark, position [x, y] ]> 17 annotated landmarks
}
],
hand: // <array of detected objects>
[
{
confidence, // <number>,
box, // <array [x, y, width, height]>,
landmarks, // <array of 3D points [x, y,z]> 21 points
annotations, // <array of 3D landmarks [ landmark: <array of points> ]> 5 annotated landmakrs
}
],
emotion: // <array of emotions>
[
{
score, // <number> probabily of emotion
emotion, // <string> 'angry', 'discust', 'fear', 'happy', 'sad', 'surpise', 'neutral'
}
],
gesture: // object containing parsed gestures
{
face, // <array of string>
body, // <array of string>
hand, // <array of string>
}
performance = { // performance data of last execution for each module measuredin miliseconds
// note that per-model performance data is not available in async execution mode
backend, // time to initialize tf backend, keeps longest value measured
load, // time to load models, keeps longest value measured
image, // time for image processing
gesture, // gesture analysis time
body, // model time
hand, // model time
face, // model time
agegender, // model time
emotion, // model time
total, // end to end time
}
}
```

55
Usage.md Normal file

@ -0,0 +1,55 @@
## Usage
`Human` library does not require special initialization.
All configuration is done in a single JSON object and all model weights will be dynamically loaded upon their first usage
(and only then, `Human` will not load weights that it doesn't need according to configuration).
There is only *ONE* method you need:
```js
// 'image': can be of any type of an image object: HTMLImage, HTMLVideo, HTMLMedia, Canvas, Tensor4D
// 'config': optional parameter used to override any options present in default configuration
// configuration is fully dynamic and can change between different calls to 'detect()'
const result = await human.detect(image, config?)
```
or if you want to use promises
```js
human.detect(image, config?).then((result) => {
// your code
})
```
Additionally, `Human` library exposes several objects and methods:
```js
human.config // access to configuration object, normally set as parameter to detect()
human.defaults // read-only view of default configuration object
human.models // dynamically maintained list of object of any loaded models
human.tf // instance of tfjs used by human
human.state // <string> describing current operation in progress
// progresses through: 'config', 'check', 'backend', 'load', 'run:<model>', 'idle'
human.load(config) // explicitly call load method that loads configured models
// if you want to pre-load them instead of on-demand loading during 'human.detect()'
```
Note that when using `Human` library in `NodeJS`, you must load and parse the image *before* you pass it for detection and dispose it afterwards
Input format is `Tensor4D[1, width, height, 3]` of type `float32`
For example:
```js
const imageFile = '../assets/sample1.jpg';
const buffer = fs.readFileSync(imageFile);
const decoded = tf.node.decodeImage(buffer);
const casted = decoded.toFloat();
const image = casted.expandDims(0);
decoded.dispose();
casted.dispose();
logger.log('Processing:', image.shape);
const human = new Human.Human();
const result = await human.detect(image, config);
image.dispose();
```
<hr>