update readme

master
Vladimir Mandic 2021-11-06 10:26:00 -04:00
parent e5a6342e4e
commit 55876f5dbb
1 changed files with 238 additions and 2 deletions

240
Home.md

@ -18,10 +18,22 @@ JavaScript module using TensorFlow/JS Machine Learning library
<br>
*Check out [**Simple Live Demo**](https://vladmandic.github.io/human/demo/typescript/index.html) fully annotated app as a good start starting point ([html](https://github.com/vladmandic/human/blob/main/demo/typescript/index.html))([code](https://github.com/vladmandic/human/blob/main/demo/typescript/index.ts))*
*Check out [**Main Live Demo**](https://vladmandic.github.io/human/demo/index.html) app for advanced processing of of webcam, video stream or images static images with all possible tunable options*
- To start video detection, simply press *Play*
- To process images, simply drag & drop in your Browser window
- Note: For optimal performance, select only models you'd like to use
- Note: If you have modern GPU, WebGL (default) backend is preferred, otherwise select WASM backend
<br>
## Demos
- [**List of all Demo applications**](https://github.com/vladmandic/human/wiki/Demos)
- [*Live:* **Main Application**](https://vladmandic.github.io/human/demo/index.html)
- [*Live:* **Simple Application**](https://vladmandic.github.io/human/demo/typescript/index.html)
- [*Live:* **Face Extraction, Description, Identification and Matching**](https://vladmandic.github.io/human/demo/facematch/index.html)
- [*Live:* **Face Extraction and 3D Rendering**](https://vladmandic.github.io/human/demo/face3d/index.html)
- [*Live:* **Multithreaded Detection Showcasing Maximum Performance**](https://vladmandic.github.io/human/demo/multithread/index.html)
@ -45,6 +57,7 @@ JavaScript module using TensorFlow/JS Machine Learning library
- [**Configuration Details**](https://github.com/vladmandic/human/wiki/Config)
- [**Result Details**](https://github.com/vladmandic/human/wiki/Result)
- [**Caching & Smoothing**](https://github.com/vladmandic/human/wiki/Caching)
- [**Input Processing**](https://github.com/vladmandic/human/wiki/Image)
- [**Face Recognition & Face Description**](https://github.com/vladmandic/human/wiki/Embedding)
- [**Gesture Recognition**](https://github.com/vladmandic/human/wiki/Gesture)
- [**Common Issues**](https://github.com/vladmandic/human/wiki/Issues)
@ -72,8 +85,231 @@ JavaScript module using TensorFlow/JS Machine Learning library
*Suggestions are welcome!*
<hr><br>
## Examples
Visit [Examples galery](https://vladmandic.github.io/human/samples/samples.html) for more examples
<https://vladmandic.github.io/human/samples/samples.html>
![samples](assets/samples.jpg)
<br>
## Options
All options as presented in the demo application...
> [demo/index.html](demo/index.html)
![Options visible in demo](assets/screenshot-menu.png)
<br>
**Results Browser:**
[ *Demo -> Display -> Show Results* ]<br>
![Results](assets/screenshot-results.png)
<br>
## Advanced Examples
1. **Face Similarity Matching:**
Extracts all faces from provided input images,
sorts them by similarity to selected face
and optionally matches detected face with database of known people to guess their names
> [demo/facematch](demo/facematch/index.html)
![Face Matching](assets/screenshot-facematch.jpg)
<br>
2. **Face3D OpenGL Rendering:**
> [demo/face3d](demo/face3d/index.html)
![Face Matching](assets/screenshot-face3d.jpg)
<br>
3. **VR Model Tracking:**
![vrmodel](assets/screenshot-vrm.jpg)
<br>
**468-Point Face Mesh Defails:**
(view in full resolution to see keypoints)
![FaceMesh](assets/facemesh.png)
<br><hr><br>
## Quick Start
Simply load `Human` (*IIFE version*) directly from a cloud CDN in your HTML file:
(pick one: `jsdelirv`, `unpkg` or `cdnjs`)
```html
<script src="https://cdn.jsdelivr.net/npm/@vladmandic/human/dist/human.js"></script>
<script src="https://unpkg.dev/@vladmandic/human/dist/human.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/human/2.1.5/human.js"></script>
```
For details, including how to use `Browser ESM` version or `NodeJS` version of `Human`, see [**Installation**](https://github.com/vladmandic/human/wiki/Install)
<br>
## Inputs
`Human` library can process all known input types:
- `Image`, `ImageData`, `ImageBitmap`, `Canvas`, `OffscreenCanvas`, `Tensor`,
- `HTMLImageElement`, `HTMLCanvasElement`, `HTMLVideoElement`, `HTMLMediaElement`
Additionally, `HTMLVideoElement`, `HTMLMediaElement` can be a standard `<video>` tag that links to:
- WebCam on user's system
- Any supported video type
For example: `.mp4`, `.avi`, etc.
- Additional video types supported via *HTML5 Media Source Extensions*
Live streaming examples:
- **HLS** (*HTTP Live Streaming*) using `hls.js`
- **DASH** (Dynamic Adaptive Streaming over HTTP) using `dash.js`
- **WebRTC** media track using built-in support
<br>
## Example
Example simple app that uses Human to process video input and
draw output on screen using internal draw helper functions
```js
// create instance of human with simple configuration using default values
const config = { backend: 'webgl' };
const human = new Human(config);
// select input HTMLVideoElement and output HTMLCanvasElement from page
const inputVideo = document.getElementById('video-id');
const outputCanvas = document.getElementById('canvas-id');
function detectVideo() {
// perform processing using default configuration
human.detect(inputVideo).then((result) => {
// result object will contain detected details
// as well as the processed canvas itself
// so lets first draw processed frame on canvas
human.draw.canvas(result.canvas, outputCanvas);
// then draw results on the same canvas
human.draw.face(outputCanvas, result.face);
human.draw.body(outputCanvas, result.body);
human.draw.hand(outputCanvas, result.hand);
human.draw.gesture(outputCanvas, result.gesture);
// and loop immediate to the next frame
requestAnimationFrame(detectVideo);
});
}
detectVideo();
```
or using `async/await`:
```js
// create instance of human with simple configuration using default values
const config = { backend: 'webgl' };
const human = new Human(config); // create instance of Human
const inputVideo = document.getElementById('video-id');
const outputCanvas = document.getElementById('canvas-id');
async function detectVideo() {
const result = await human.detect(inputVideo); // run detection
human.draw.all(outputCanvas, result); // draw all results
requestAnimationFrame(detectVideo); // run loop
}
detectVideo(); // start loop
```
or using `Events`:
```js
// create instance of human with simple configuration using default values
const config = { backend: 'webgl' };
const human = new Human(config); // create instance of Human
const inputVideo = document.getElementById('video-id');
const outputCanvas = document.getElementById('canvas-id');
human.events.addEventListener('detect', () => { // event gets triggered when detect is complete
human.draw.all(outputCanvas, human.result); // draw all results
});
function detectVideo() {
human.detect(inputVideo) // run detection
.then(() => requestAnimationFrame(detectVideo)); // upon detect complete start processing of the next frame
}
detectVideo(); // start loop
```
or using interpolated results for smooth video processing by separating detection and drawing loops:
```js
const human = new Human(); // create instance of Human
const inputVideo = document.getElementById('video-id');
const outputCanvas = document.getElementById('canvas-id');
let result;
async function detectVideo() {
result = await human.detect(inputVideo); // run detection
requestAnimationFrame(detectVideo); // run detect loop
}
async function drawVideo() {
if (result) { // check if result is available
const interpolated = human.next(result); // calculate next interpolated frame
human.draw.all(outputCanvas, interpolated); // draw the frame
}
requestAnimationFrame(drawVideo); // run draw loop
}
detectVideo(); // start detection loop
drawVideo(); // start draw loop
```
And for even better results, you can run detection in a separate web worker thread
<br><hr><br>
## Default models
Default models in Human library are:
- **Face Detection**: MediaPipe BlazeFace Back variation
- **Face Mesh**: MediaPipe FaceMesh
- **Face Iris Analysis**: MediaPipe Iris
- **Face Description**: HSE FaceRes
- **Emotion Detection**: Oarriaga Emotion
- **Body Analysis**: MoveNet Lightning variation
- **Hand Analysis**: HandTrack & MediaPipe HandLandmarks
- **Body Segmentation**: Google Selfie
- **Object Detection**: CenterNet with MobileNet v3
Note that alternative models are provided and can be enabled via configuration
For example, `PoseNet` model can be switched for `BlazePose`, `EfficientPose` or `MoveNet` model depending on the use case
For more info, see [**Configuration Details**](https://github.com/vladmandic/human/wiki/Configuration) and [**List of Models**](https://github.com/vladmandic/human/wiki/Models)
<br><hr><br>
## Diagnostics
- [How to get diagnostic information or performance trace information](https://github.com/vladmandic/human/wiki/Diag)
<br><hr><br>
`Human` library is written in `TypeScript` [4.4](https://www.typescriptlang.org/docs/handbook/intro.html)
Conforming to `JavaScript` [ECMAScript version 2020](https://www.ecma-international.org/ecma-262/11.0/index.html) standard
Build target is `JavaScript` [EMCAScript version 2018](https://262.ecma-international.org/9.0/)
Conforming to latest `JavaScript` [ECMAScript version 2021](https://262.ecma-international.org/) standard
Build target is `JavaScript` [EMCAScript version 2018](https://262.ecma-international.org/11.0/)
<br>
For details see [**Wiki Pages**](https://github.com/vladmandic/human/wiki)
and [**API Specification**](https://vladmandic.github.io/human/typedoc/classes/Human.html)