human/dist/human.esm.js

4950 lines
1.3 MiB

/*
Human library
homepage: <https://github.com/vladmandic/human>
author: <https://github.com/vladmandic>'
*/
var C4=Object.create,Kc=Object.defineProperty,R4=Object.getPrototypeOf,F4=Object.prototype.hasOwnProperty,M4=Object.getOwnPropertyNames,$4=Object.getOwnPropertyDescriptor;var x1=e=>Kc(e,"__esModule",{value:!0});var Z2=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),_r=(e,t)=>{for(var n in t)Kc(e,n,{get:t[n],enumerable:!0})},O4=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of M4(t))!F4.call(e,r)&&r!=="default"&&Kc(e,r,{get:()=>t[r],enumerable:!(n=$4(t,r))||n.enumerable});return e},Zc=e=>e&&e.__esModule?e:O4(x1(Kc(e!=null?C4(R4(e)):{},"default",{value:e,enumerable:!0})),e);var Pv=Z2(zv=>{x1(zv);_r(zv,{MediaPipeFaceMesh:()=>Xy,load:()=>Dre});var Xy=class{constructor(t,n,r,a){this.facePipeline=new qy(t,n,r,a),this.config=a}async estimateFaces(t,n){let r=await this.facePipeline.predict(t,n),a=[];for(let s of r||[]){if(s.isDisposedInternal)continue;let i=s.coords?s.coords.arraySync():null,o=s.rawCoords,l={};if(i&&i.length>0)for(let h of Object.keys(Lr))l[h]=Lr[h].map(d=>i[d]);let u=n.face.mesh.returnRawData&&s.box?{topLeft:s.box.startPoint,bottomRight:s.box.endPoint}:null,c=s.box?[Math.max(0,s.box.startPoint[0]),Math.max(0,s.box.startPoint[1]),Math.min(t.shape[2],s.box.endPoint[0])-s.box.startPoint[0],Math.min(t.shape[1],s.box.endPoint[1])-s.box.startPoint[1]]:0;a.push({confidence:s.confidence||0,box:c,mesh:i,boxRaw:u,meshRaw:o,annotations:l,image:s.image?Jn(s.image):null}),s.coords&&s.coords.dispose(),s.image&&s.image.dispose()}return a}},xi=[null,null,null];async function Dre(e){xi=await Promise.all([!xi[0]&&e.face.enabled?Ev(e):null,!xi[1]&&e.face.mesh.enabled?Tt(e.face.mesh.modelPath,{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!xi[2]&&e.face.iris.enabled?Tt(e.face.iris.modelPath,{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]);let t=new Xy(xi[0],xi[1],xi[2],e);return e.face.mesh.enabled&&e.debug&&Te(`load model: ${e.face.mesh.modelPath.match(/\/(.*)\./)[1]}`),e.face.iris.enabled&&e.debug&&Te(`load model: ${e.face.iris.modelPath.match(/\/(.*)\./)[1]}`),t}zv.triangulation=Dv});var Zp=Z2(y2=>{x1(y2);_r(y2,{NUM_KEYPOINTS:()=>jre,connectedPartIndices:()=>Gre,partChannels:()=>Xre,partIds:()=>g2,partNames:()=>Ure,poseChain:()=>qre});var Ure=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],jre=y2.partNames.length,g2=y2.partNames.reduce((e,t,n)=>(e[t]=n,e),{}),Hre=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Gre=Hre.map(([e,t])=>[g2[e],g2[t]]),qre=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]],Xre=["left_face","right_face","right_upper_leg_front","right_lower_leg_back","right_upper_leg_back","left_lower_leg_front","left_upper_leg_front","left_upper_leg_back","left_lower_leg_back","right_feet","right_lower_leg_front","left_feet","torso_front","torso_back","right_upper_arm_front","right_upper_arm_back","right_lower_arm_back","left_lower_arm_front","left_upper_arm_front","left_upper_arm_back","left_lower_arm_back","right_hand","right_lower_arm_front","left_hand"]});function Te(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var Yc={};_r(Yc,{Abs:()=>Di,Acos:()=>zi,Acosh:()=>Pi,AdadeltaOptimizer:()=>vd,AdagradOptimizer:()=>kd,AdamOptimizer:()=>Id,AdamaxOptimizer:()=>Nd,Add:()=>ma,AddN:()=>Xa,All:()=>rh,Any:()=>ah,ArgMax:()=>Ka,ArgMin:()=>ql,Asin:()=>Li,Asinh:()=>Wi,Atan:()=>Bi,Atan2:()=>Ui,Atanh:()=>Vi,AvgPool:()=>Za,AvgPool3D:()=>Xl,AvgPool3DGrad:()=>ih,AvgPoolGrad:()=>sh,BackendWasm:()=>Ob,BatchMatMul:()=>Ya,BatchToSpaceND:()=>Kl,Bincount:()=>oh,BroadcastTo:()=>hg,Callback:()=>N7,CallbackList:()=>k3,Cast:()=>Ja,Ceil:()=>Qa,ClipByValue:()=>Aa,Complex:()=>lh,ComplexAbs:()=>Zl,Concat:()=>ji,Conv2D:()=>es,Conv2DBackpropFilter:()=>uh,Conv2DBackpropInput:()=>ts,Conv3D:()=>Yl,Conv3DBackpropFilterV2:()=>ch,Conv3DBackpropInputV2:()=>hh,Cos:()=>ns,Cosh:()=>Hi,CropAndResize:()=>Gi,Cumsum:()=>rs,CustomCallback:()=>N3,DataStorage:()=>Qc,DenseBincount:()=>dh,DepthToSpace:()=>qi,DepthwiseConv2dNative:()=>as,DepthwiseConv2dNativeBackpropFilter:()=>ph,DepthwiseConv2dNativeBackpropInput:()=>fh,Diag:()=>mh,Dilation2D:()=>Jl,Dilation2DBackpropFilter:()=>yh,Dilation2DBackpropInput:()=>Ah,ENV:()=>qa,EarlyStopping:()=>T7,Elu:()=>Xi,EluGrad:()=>gh,Environment:()=>ug,Equal:()=>Zi,Erf:()=>Ki,Exp:()=>is,ExpandDims:()=>Yi,Expm1:()=>Ji,FFT:()=>xh,Fill:()=>Ql,FlipLeftRight:()=>Qi,Floor:()=>os,FloorDiv:()=>ls,FromPixels:()=>Mh,FusedBatchNorm:()=>us,FusedConv2D:()=>Bs,FusedDepthwiseConv2D:()=>Vs,GPGPUContext:()=>Ud,GatherNd:()=>to,GatherV2:()=>eo,GraphModel:()=>av,Greater:()=>no,GreaterEqual:()=>cs,History:()=>I3,IFFT:()=>wh,Identity:()=>hs,Imag:()=>_h,InputSpec:()=>jt,IsFinite:()=>ro,IsInf:()=>ao,IsNan:()=>so,KernelBackend:()=>jl,LRN:()=>nu,LRNGrad:()=>vh,LayerVariable:()=>x3,LayersModel:()=>na,LeakyRelu:()=>ds,Less:()=>io,LessEqual:()=>oo,LinSpace:()=>bh,Log:()=>ps,Log1p:()=>lo,LogSoftmax:()=>dg,LogicalAnd:()=>uo,LogicalNot:()=>eu,LogicalOr:()=>tu,MathBackendCPU:()=>Cd,MathBackendWebGL:()=>yl,Max:()=>fs,MaxPool:()=>As,MaxPool3D:()=>ru,MaxPool3DGrad:()=>Ih,MaxPoolGrad:()=>kh,MaxPoolWithArgmax:()=>Nh,Maximum:()=>ms,Mean:()=>ys,Min:()=>gs,Minimum:()=>xs,MirrorPad:()=>au,Mod:()=>co,MomentumOptimizer:()=>Sd,Multinomial:()=>Sh,Multiply:()=>ws,Neg:()=>ho,NonMaxSuppressionV3:()=>fo,NonMaxSuppressionV4:()=>mo,NonMaxSuppressionV5:()=>Ao,NotEqual:()=>po,OP_SCOPE_SUFFIX:()=>vg,OneHot:()=>_s,OnesLike:()=>yo,Optimizer:()=>Jr,Pack:()=>go,PadV2:()=>bs,Pool:()=>H8,Pow:()=>vs,Prelu:()=>ks,Prod:()=>xo,RMSPropOptimizer:()=>Td,RNN:()=>zr,Range:()=>su,Rank:()=>R1,Real:()=>Th,RealDiv:()=>ss,Reciprocal:()=>wo,Reduction:()=>sn,Relu:()=>Is,Relu6:()=>Ss,Reshape:()=>_o,ResizeBilinear:()=>Ns,ResizeBilinearGrad:()=>Ch,ResizeNearestNeighbor:()=>iu,ResizeNearestNeighborGrad:()=>Eh,Reverse:()=>Ts,RotateWithOffset:()=>Oo,Round:()=>Es,Rsqrt:()=>Cs,SGDOptimizer:()=>Pu,ScatterNd:()=>bo,Select:()=>vo,Selu:()=>ko,Sequential:()=>Sl,Sigmoid:()=>Fs,Sign:()=>So,Sin:()=>Rs,Sinh:()=>No,Slice:()=>Io,Softmax:()=>Os,Softplus:()=>To,SpaceToBatchND:()=>ou,SparseToDense:()=>Rh,SplitV:()=>Eo,Sqrt:()=>Ms,Square:()=>lu,SquaredDifference:()=>Ds,Step:()=>ga,StridedSlice:()=>Co,Sub:()=>zs,Sum:()=>$s,SymbolicTensor:()=>Ar,Tan:()=>Ro,Tanh:()=>Ps,Tensor:()=>Xe,TensorBuffer:()=>Ft,Tile:()=>ya,TopK:()=>Fo,Transpose:()=>Ls,Unique:()=>Fh,Unpack:()=>Mo,UnsortedSegmentSum:()=>uu,Variable:()=>Au,ZerosLike:()=>$o,_FusedMatMul:()=>Ws,abs:()=>Mt,acos:()=>rf,acosh:()=>af,add:()=>se,addN:()=>Go,all:()=>Gh,any:()=>wu,argMax:()=>_u,argMin:()=>sf,asin:()=>of,asinh:()=>lf,atan:()=>uf,atan2:()=>cf,atanh:()=>hf,avgPool:()=>vu,avgPool3d:()=>ff,backend:()=>r5,backend_util:()=>C,basicLSTMCell:()=>xI,batchNorm:()=>Ks,batchNorm2d:()=>o5,batchNorm3d:()=>l5,batchNorm4d:()=>u5,batchToSpaceND:()=>ku,bincount:()=>c5,booleanMaskAsync:()=>kT,broadcastTo:()=>Iu,browser:()=>Uo,buffer:()=>Pe,callbacks:()=>Rte,cast:()=>fe,ceil:()=>mf,clipByValue:()=>An,clone:()=>Jn,complex:()=>xa,concat:()=>nt,concat1d:()=>h5,concat2d:()=>Ko,concat3d:()=>d5,concat4d:()=>p5,constraints:()=>Gb,conv1d:()=>Xh,conv2d:()=>Xr,conv2dTranspose:()=>Kh,conv3d:()=>yf,conv3dTranspose:()=>BI,copyRegisteredKernels:()=>X8,cos:()=>Nu,cosh:()=>Zh,cosineWindow:()=>jf,cumsum:()=>Yh,customGrad:()=>Sr,data:()=>sv,denseBincount:()=>m5,deprecationWarn:()=>tf,depthToSpace:()=>gf,depthwiseConv2d:()=>Zo,deregisterOp:()=>Mte,device_util:()=>Lh,diag:()=>KI,dilation2d:()=>xf,disableDeprecationWarnings:()=>M9,dispose:()=>Se,disposeVariables:()=>$9,div:()=>we,divNoNan:()=>wf,dot:()=>A5,dropout:()=>z5,elu:()=>Yo,enableDebugMode:()=>F9,enableProdMode:()=>R9,enclosingPowerOfTwo:()=>P5,engine:()=>Ir,env:()=>J,equal:()=>ka,erf:()=>_f,exp:()=>Vn,expandDims:()=>Nn,expm1:()=>bf,eye:()=>vf,fft:()=>Du,fill:()=>Su,findBackend:()=>nf,findBackendFactory:()=>W9,floor:()=>Jo,floorDiv:()=>Hh,forceHalfFloat:()=>Xw,fused:()=>Ta,gather:()=>Zs,gatherND:()=>D5,gather_util:()=>X1,getBackend:()=>P9,getGradient:()=>T1,getKernel:()=>$h,getKernelsForBackend:()=>zo,gpgpu_util:()=>gw,grad:()=>kN,grads:()=>IN,greater:()=>Qn,greaterEqual:()=>Na,ifft:()=>rl,imag:()=>Jh,image:()=>Ke,inTopKAsync:()=>OT,initializers:()=>Qb,input:()=>d3,io:()=>mn,irfft:()=>fd,isFinite:()=>y5,isInf:()=>g5,isNaN:()=>x5,keep:()=>Wt,kernel_impls:()=>Rr,layers:()=>h3,leakyRelu:()=>Tu,less:()=>Qh,lessEqual:()=>Ys,linalg:()=>Z5,linspace:()=>w5,loadGraphModel:()=>Tt,loadLayersModel:()=>Yee,localResponseNormalization:()=>kf,log:()=>Sn,log1p:()=>ed,logSigmoid:()=>b5,logSoftmax:()=>nd,logSumExp:()=>Sf,logicalAnd:()=>er,logicalNot:()=>Eu,logicalOr:()=>rd,logicalXor:()=>N5,losses:()=>ZE,matMul:()=>Ue,math:()=>Lg,max:()=>Un,maxPool:()=>Cu,maxPool3d:()=>Tf,maxPoolWithArgmax:()=>S5,maximum:()=>Tr,mean:()=>wt,memory:()=>jh,metrics:()=>v7,min:()=>el,minimum:()=>tl,mirrorPad:()=>Ef,mod:()=>Cf,model:()=>Kee,models:()=>k7,moments:()=>ad,movingAverage:()=>ST,mul:()=>P,multiRNNCell:()=>eS,multinomial:()=>T5,neg:()=>xt,nextFrame:()=>Ed,norm:()=>gd,notEqual:()=>Qs,oneHot:()=>Vo,ones:()=>Er,onesLike:()=>Tn,op:()=>O,outerProduct:()=>sS,pad:()=>Kr,pad1d:()=>lS,pad2d:()=>cS,pad3d:()=>dS,pad4d:()=>fS,pool:()=>E5,pow:()=>Zr,prelu:()=>Fu,print:()=>Mg,prod:()=>sd,profile:()=>cr,rand:()=>vS,randomGamma:()=>SS,randomNormal:()=>C5,randomUniform:()=>nl,range:()=>id,ready:()=>z9,real:()=>Mu,reciprocal:()=>Mf,registerBackend:()=>Ho,registerCallbackConstructor:()=>Jee,registerGradient:()=>pg,registerKernel:()=>Us,registerOp:()=>Fte,regularizers:()=>I7,relu:()=>Cr,relu6:()=>od,removeBackend:()=>L9,reshape:()=>H,reverse:()=>En,reverse1d:()=>DS,reverse2d:()=>PS,reverse3d:()=>WS,reverse4d:()=>VS,rfft:()=>zu,round:()=>$f,rsqrt:()=>ld,scalar:()=>_e,scatterND:()=>O5,scatter_util:()=>K1,selu:()=>ud,separableConv2d:()=>Of,sequential:()=>Zee,serialization:()=>re,setBackend:()=>D9,setPlatform:()=>B9,setWasmPath:()=>GK,setWasmPaths:()=>qK,setWebGLContext:()=>Ld,setdiff1dAsync:()=>R5,shared:()=>Xf,sigmoid:()=>In,sign:()=>Df,signal:()=>KE,sin:()=>cd,sinh:()=>hd,slice:()=>Ee,slice1d:()=>dd,slice2d:()=>zf,slice3d:()=>pd,slice4d:()=>$u,slice_util:()=>an,softmax:()=>Ou,softplus:()=>Qo,spaceToBatchND:()=>Ru,sparseToDense:()=>Uf,spectral:()=>XE,split:()=>Zt,sqrt:()=>Yt,square:()=>st,squaredDifference:()=>md,squeeze:()=>Sa,stack:()=>Cn,step:()=>al,stridedSlice:()=>Pf,sub:()=>me,sum:()=>Ne,sumOutType:()=>Ph,tan:()=>Lf,tanh:()=>Xo,tensor:()=>ur,tensor1d:()=>Bt,tensor2d:()=>gn,tensor3d:()=>Vh,tensor4d:()=>fT,tensor5d:()=>mT,tensor6d:()=>AT,tensor_util:()=>lr,test_util:()=>e5,tidy:()=>B,tile:()=>Ia,time:()=>O9,topk:()=>Wf,train:()=>ti,transpose:()=>tt,truncatedNormal:()=>Ad,unique:()=>yd,unregisterGradient:()=>q8,unregisterKernel:()=>G8,unsortedSegmentSum:()=>Bf,unstack:()=>tr,upcastType:()=>Yn,util:()=>v,valueAndGrad:()=>NN,valueAndGrads:()=>SN,variable:()=>F5,variableGrads:()=>_5,version:()=>gre,version_converter:()=>Fne,version_core:()=>C9,version_cpu:()=>Nx,version_layers:()=>pA,version_wasm:()=>zb,version_webgl:()=>qw,webgl:()=>pP,webgl_util:()=>Gx,where:()=>yn,whereAsync:()=>Vf,zeros:()=>Nt,zerosLike:()=>Be});var D4=Object.create,Jc=Object.defineProperty,z4=Object.getPrototypeOf,P4=Object.prototype.hasOwnProperty,L4=Object.getOwnPropertyNames,W4=Object.getOwnPropertyDescriptor,B4=e=>Jc(e,"__esModule",{value:!0}),Ye=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),Oe=(e,t)=>{for(var n in t)Jc(e,n,{get:t[n],enumerable:!0})},V4=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of L4(t))!P4.call(e,r)&&r!=="default"&&Jc(e,r,{get:()=>t[r],enumerable:!(n=W4(t,r))||n.enumerable});return e},Mi=e=>e&&e.__esModule?e:V4(B4(Jc(e!=null?D4(z4(e)):{},"default",{value:e,enumerable:!0})),e),U4=Ye(()=>{}),j4=Ye((e,t)=>{(function(n,r,a){function s(u){var c=this,h=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=h(" "),c.s1=h(" "),c.s2=h(" "),c.s0-=h(u),c.s0<0&&(c.s0+=1),c.s1-=h(u),c.s1<0&&(c.s1+=1),c.s2-=h(u),c.s2<0&&(c.s2+=1),h=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var h=new s(u),d=c&&c.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var u=4022871197,c=function(h){h=h.toString();for(var d=0;d<h.length;d++){u+=h.charCodeAt(d);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),H4=Ye((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),G4=Ye((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,h==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),q4=Ye((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.x,d=u.i,p,m,f;return p=h[d],p^=p>>>7,m=p^p<<24,p=h[d+1&7],m^=p^p>>>10,p=h[d+3&7],m^=p^p>>>3,p=h[d+4&7],m^=p^p<<7,p=h[d+7&7],p=p^p<<13,m^=p^p<<9,h[d]=m,u.i=d+1&7,m};function c(h,d){var p,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,p=0;p<d.length;++p)f[p&7]=f[p&7]<<15^d.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],h.x=f,h.i=0,p=256;p>0;--p)h.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(h.x&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),X4=Ye((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.w,d=u.X,p=u.i,m,f;return u.w=h=h+1640531527|0,f=d[p+34&127],m=d[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[p]=f^m,u.i=p,f+(h^h>>>16)|0};function c(h,d){var p,m,f,A,y,g=[],_=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,_=Math.max(_,d.length)),f=0,A=-32;A<_;++A)d&&(m^=d.charCodeAt((A+32)%d.length)),A===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=m+y,f=p==0?f+1:0);for(f>=128&&(g[(d&&d.length||0)&127]=-1),f=127,A=4*128;A>0;--A)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;h.w=y,h.X=g,h.i=f}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(h.X&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),K4=Ye((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.b,p=u.c,m=u.d,f=u.a;return d=d<<25^d>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-d|0,u.b=d=d<<20^d>>>12^p,u.c=p=p-m|0,u.d=m<<16^p>>>16^f,u.a=f-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var h=0;h<c.length+20;h++)u.b^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),w1=Ye(()=>{}),Z4=Ye((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",u=r.pow(s,i),c=r.pow(2,o),h=c*2,d=s-1,p;function m(w,x,N){var T=[];x=x==!0?{entropy:!0}:x||{};var E=g(y(x.entropy?[w,b(n)]:w==null?_():w,3),T),M=new f(T),D=function(){for(var L=M.g(i),W=u,U=0;L<c;)L=(L+U)*s,W*=s,U=M.g(1);for(;L>=h;)L/=2,W/=2,U>>>=1;return(L+U)/W};return D.int32=function(){return M.g(4)|0},D.quick=function(){return M.g(4)/4294967296},D.double=D,g(b(M.S),n),(x.pass||N||function(L,W,U,j){return j&&(j.S&&A(j,M),L.state=function(){return A(M,{})}),U?(r[l]=L,W):L})(D,E,"global"in x?x.global:this==r,x.state)}r["seed"+l]=m;function f(w){var x,N=w.length,T=this,E=0,M=T.i=T.j=0,D=T.S=[];for(N||(w=[N++]);E<s;)D[E]=E++;for(E=0;E<s;E++)D[E]=D[M=d&M+w[E%N]+(x=D[E])],D[M]=x;(T.g=function(L){for(var W,U=0,j=T.i,X=T.j,G=T.S;L--;)W=G[j=d&j+1],U=U*s+G[d&(G[j]=G[X=d&X+W])+(G[X]=W)];return T.i=j,T.j=X,U})(s)}function A(w,x){return x.i=w.i,x.j=w.j,x.S=w.S.slice(),x}function y(w,x){var N=[],T=typeof w,E;if(x&&T=="object")for(E in w)try{N.push(y(w[E],x-1))}catch(M){}return N.length?N:T=="string"?w:w+"\0"}function g(w,x){for(var N=w+"",T,E=0;E<N.length;)x[d&E]=d&(T^=x[d&E]*19)+N.charCodeAt(E++);return b(x)}function _(){try{var w;return p&&(w=p.randomBytes)?w=w(s):(w=new Uint8Array(s),(a.crypto||a.msCrypto).getRandomValues(w)),b(w)}catch(T){var x=a.navigator,N=x&&x.plugins;return[+new Date,a,N,a.screen,b(n)]}}function b(w){return String.fromCharCode.apply(0,w)}if(g(r.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{p=w1()}catch(w){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),Y4=Ye((e,t)=>{var n=j4(),r=H4(),a=G4(),s=q4(),i=X4(),o=K4(),l=Z4();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),J4=Ye((e,t)=>{(function(n,r,a){function s(u){var c=this,h=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=h(" "),c.s1=h(" "),c.s2=h(" "),c.s0-=h(u),c.s0<0&&(c.s0+=1),c.s1-=h(u),c.s1<0&&(c.s1+=1),c.s2-=h(u),c.s2<0&&(c.s2+=1),h=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var h=new s(u),d=c&&c.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var u=4022871197,c=function(h){h=h.toString();for(var d=0;d<h.length;d++){u+=h.charCodeAt(d);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Q4=Ye((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),e8=Ye((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,h==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),t8=Ye((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.x,d=u.i,p,m,f;return p=h[d],p^=p>>>7,m=p^p<<24,p=h[d+1&7],m^=p^p>>>10,p=h[d+3&7],m^=p^p>>>3,p=h[d+4&7],m^=p^p<<7,p=h[d+7&7],p=p^p<<13,m^=p^p<<9,h[d]=m,u.i=d+1&7,m};function c(h,d){var p,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,p=0;p<d.length;++p)f[p&7]=f[p&7]<<15^d.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],h.x=f,h.i=0,p=256;p>0;--p)h.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(h.x&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),n8=Ye((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.w,d=u.X,p=u.i,m,f;return u.w=h=h+1640531527|0,f=d[p+34&127],m=d[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[p]=f^m,u.i=p,f+(h^h>>>16)|0};function c(h,d){var p,m,f,A,y,g=[],_=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,_=Math.max(_,d.length)),f=0,A=-32;A<_;++A)d&&(m^=d.charCodeAt((A+32)%d.length)),A===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=m+y,f=p==0?f+1:0);for(f>=128&&(g[(d&&d.length||0)&127]=-1),f=127,A=4*128;A>0;--A)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;h.w=y,h.X=g,h.i=f}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(h.X&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),r8=Ye((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.b,p=u.c,m=u.d,f=u.a;return d=d<<25^d>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-d|0,u.b=d=d<<20^d>>>12^p,u.c=p=p-m|0,u.d=m<<16^p>>>16^f,u.a=f-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var h=0;h<c.length+20;h++)u.b^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),a8=Ye((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",u=r.pow(s,i),c=r.pow(2,o),h=c*2,d=s-1,p;function m(w,x,N){var T=[];x=x==!0?{entropy:!0}:x||{};var E=g(y(x.entropy?[w,b(n)]:w==null?_():w,3),T),M=new f(T),D=function(){for(var L=M.g(i),W=u,U=0;L<c;)L=(L+U)*s,W*=s,U=M.g(1);for(;L>=h;)L/=2,W/=2,U>>>=1;return(L+U)/W};return D.int32=function(){return M.g(4)|0},D.quick=function(){return M.g(4)/4294967296},D.double=D,g(b(M.S),n),(x.pass||N||function(L,W,U,j){return j&&(j.S&&A(j,M),L.state=function(){return A(M,{})}),U?(r[l]=L,W):L})(D,E,"global"in x?x.global:this==r,x.state)}r["seed"+l]=m;function f(w){var x,N=w.length,T=this,E=0,M=T.i=T.j=0,D=T.S=[];for(N||(w=[N++]);E<s;)D[E]=E++;for(E=0;E<s;E++)D[E]=D[M=d&M+w[E%N]+(x=D[E])],D[M]=x;(T.g=function(L){for(var W,U=0,j=T.i,X=T.j,G=T.S;L--;)W=G[j=d&j+1],U=U*s+G[d&(G[j]=G[X=d&X+W])+(G[X]=W)];return T.i=j,T.j=X,U})(s)}function A(w,x){return x.i=w.i,x.j=w.j,x.S=w.S.slice(),x}function y(w,x){var N=[],T=typeof w,E;if(x&&T=="object")for(E in w)try{N.push(y(w[E],x-1))}catch(M){}return N.length?N:T=="string"?w:w+"\0"}function g(w,x){for(var N=w+"",T,E=0;E<N.length;)x[d&E]=d&(T^=x[d&E]*19)+N.charCodeAt(E++);return b(x)}function _(){try{var w;return p&&(w=p.randomBytes)?w=w(s):(w=new Uint8Array(s),(a.crypto||a.msCrypto).getRandomValues(w)),b(w)}catch(T){var x=a.navigator,N=x&&x.plugins;return[+new Date,a,N,a.screen,b(n)]}}function b(w){return String.fromCharCode.apply(0,w)}if(g(r.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{p=w1()}catch(w){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),s8=Ye((e,t)=>{var n=J4(),r=Q4(),a=e8(),s=t8(),i=n8(),o=r8(),l=a8();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),Ul=Ye(()=>{}),i8=Ye(()=>{}),o8=Ye(()=>{}),l8=Ye((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};function s(){return Q.buffer!=Le&&Xt(Q.buffer),cn}function i(){return Q.buffer!=Le&&Xt(Q.buffer),yt}function o(){return Q.buffer!=Le&&Xt(Q.buffer),hn}function l(){return Q.buffer!=Le&&Xt(Q.buffer),Ln}function u(){return Q.buffer!=Le&&Xt(Q.buffer),rn}var c=typeof a!="undefined"?a:{},h,d;c.ready=new Promise(function(I,S){h=I,d=S});var p={},m;for(m in c)c.hasOwnProperty(m)&&(p[m]=c[m]);var f=[],A="./this.program",y=function(I,S){throw S},g=!1,_=!1,b=!1,w=!1;g=typeof window=="object",_=typeof importScripts=="function",b=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",w=!g&&!b&&!_;var x=c.ENVIRONMENT_IS_PTHREAD||!1;x&&(Le=c.buffer);var N="";function T(I){return c.locateFile?c.locateFile(I,N):N+I}var E,M,D,L,W,U;if(b){_?N=Ul().dirname(N)+"/":N=__dirname+"/",E=function(I,S){return W||(W=require("fs")),U||(U=Ul()),I=U.normalize(I),W.readFileSync(I,S?null:"utf8")},D=function(I){var S=E(I,!0);return S.buffer||(S=new Uint8Array(S)),de(S.buffer),S},process.argv.length>1&&(A=process.argv[1].replace(/\\/g,"/")),f=process.argv.slice(2),process.on("uncaughtException",function(I){if(!(I instanceof Vl))throw I}),process.on("unhandledRejection",Ur),y=function(I){process.exit(I)},c.inspect=function(){return"[Emscripten Module object]"};var j;try{j=i8()}catch(I){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),I}global.Worker=j.Worker}else w?(typeof read!="undefined"&&(E=function(I){return read(I)}),D=function(I){var S;return typeof readbuffer=="function"?new Uint8Array(readbuffer(I)):(S=read(I,"binary"),de(typeof S=="object"),S)},typeof scriptArgs!="undefined"?f=scriptArgs:typeof arguments!="undefined"&&(f=arguments),typeof quit=="function"&&(y=function(I){quit(I)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(g||_)&&(_?N=self.location.href:typeof document!="undefined"&&document.currentScript&&(N=document.currentScript.src),typeof r!="undefined"&&r&&(N=r),N.indexOf("blob:")!==0?N=N.substr(0,N.lastIndexOf("/")+1):N="",b?(E=function(I,S){return W||(W=require("fs")),U||(U=Ul()),I=U.normalize(I),W.readFileSync(I,S?null:"utf8")},D=function(I){var S=E(I,!0);return S.buffer||(S=new Uint8Array(S)),de(S.buffer),S}):(E=function(I){var S=new XMLHttpRequest;return S.open("GET",I,!1),S.send(null),S.responseText},_&&(D=function(I){var S=new XMLHttpRequest;return S.open("GET",I,!1),S.responseType="arraybuffer",S.send(null),new Uint8Array(S.response)}),M=function(I,S,z){var q=new XMLHttpRequest;q.open("GET",I,!0),q.responseType="arraybuffer",q.onload=function(){if(q.status==200||q.status==0&&q.response){S(q.response);return}z()},q.onerror=z,q.send(null)}),L=function(I){document.title=I});b&&typeof performance=="undefined"&&(global.performance=o8().performance);var X=c.print||console.log.bind(console),G=c.printErr||console.warn.bind(console);for(m in p)p.hasOwnProperty(m)&&(c[m]=p[m]);p=null,c.arguments&&(f=c.arguments),c.thisProgram&&(A=c.thisProgram),c.quit&&(y=c.quit);var ee=Atomics.load,Y=Atomics.store,ae=Atomics.compareExchange,te;c.wasmBinary&&(te=c.wasmBinary);var ie=c.noExitRuntime||!0;typeof WebAssembly!="object"&&Ur("no native wasm support detected");var Q,ce,oe=!1,pe;function de(I,S){I||Ur("Assertion failed: "+S)}function be(I){var S=c["_"+I];return de(S,"Cannot call unknown function "+I+", make sure it is exported"),S}function ke(I,S,z,q,he){var le={string:function(fn){var Fi=0;if(fn!=null&&fn!==0){var K2=(fn.length<<2)+1;Fi=Ei(K2),Qe(fn,Fi,K2)}return Fi},array:function(fn){var Fi=Ei(fn.length);return Ge(fn,Fi),Fi}};function ue(fn){return S==="string"?Fe(fn):S==="boolean"?Boolean(fn):fn}var ge=be(I),et=[],Pt=0;if(q)for(var Ct=0;Ct<q.length;Ct++){var da=le[z[Ct]];da?(Pt===0&&(Pt=Bl()),et[Ct]=da(q[Ct])):et[Ct]=q[Ct]}var Ri=ge.apply(null,et);return Ri=ue(Ri),Pt!==0&&Ti(Pt),Ri}function Re(I,S,z,q){z=z||[];var he=z.every(function(ue){return ue==="number"}),le=S!=="string";return le&&he&&!q?be(I):function(){return ke(I,S,z,arguments,q)}}function $e(I,S,z){for(var q=S+z,he="";!(S>=q);){var le=I[S++];if(!le)return he;if(!(le&128)){he+=String.fromCharCode(le);continue}var ue=I[S++]&63;if((le&224)==192){he+=String.fromCharCode((le&31)<<6|ue);continue}var ge=I[S++]&63;if((le&240)==224?le=(le&15)<<12|ue<<6|ge:le=(le&7)<<18|ue<<12|ge<<6|I[S++]&63,le<65536)he+=String.fromCharCode(le);else{var et=le-65536;he+=String.fromCharCode(55296|et>>10,56320|et&1023)}}return he}function Fe(I,S){return I?$e(i(),I,S):""}function Je(I,S,z,q){if(!(q>0))return 0;for(var he=z,le=z+q-1,ue=0;ue<I.length;++ue){var ge=I.charCodeAt(ue);if(ge>=55296&&ge<=57343){var et=I.charCodeAt(++ue);ge=65536+((ge&1023)<<10)|et&1023}if(ge<=127){if(z>=le)break;S[z++]=ge}else if(ge<=2047){if(z+1>=le)break;S[z++]=192|ge>>6,S[z++]=128|ge&63}else if(ge<=65535){if(z+2>=le)break;S[z++]=224|ge>>12,S[z++]=128|ge>>6&63,S[z++]=128|ge&63}else{if(z+3>=le)break;S[z++]=240|ge>>18,S[z++]=128|ge>>12&63,S[z++]=128|ge>>6&63,S[z++]=128|ge&63}}return S[z]=0,z-he}function Qe(I,S,z){return Je(I,i(),S,z)}function at(I){for(var S=0,z=0;z<I.length;++z){var q=I.charCodeAt(z);q>=55296&&q<=57343&&(q=65536+((q&1023)<<10)|I.charCodeAt(++z)&1023),q<=127?++S:q<=2047?S+=2:q<=65535?S+=3:S+=4}return S}function Ge(I,S){s().set(I,S)}function ct(I,S){return I%S>0&&(I+=S-I%S),I}var Le,cn,yt,Pn,qt,hn,Ln,kn,rn;function Xt(I){Le=I,c.HEAP8=cn=new Int8Array(I),c.HEAP16=Pn=new Int16Array(I),c.HEAP32=hn=new Int32Array(I),c.HEAPU8=yt=new Uint8Array(I),c.HEAPU16=qt=new Uint16Array(I),c.HEAPU32=Ln=new Uint32Array(I),c.HEAPF32=kn=new Float32Array(I),c.HEAPF64=rn=new Float64Array(I)}var wr=c.INITIAL_MEMORY||16777216;if(x)Q=c.wasmMemory,Le=c.buffer;else if(c.wasmMemory)Q=c.wasmMemory;else if(Q=new WebAssembly.Memory({initial:wr/65536,maximum:2147483648/65536,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw G("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(Le=Q.buffer),wr=Le.byteLength,Xt(Le);var qn,Xn=[],ia=[],Br=[],oa=[],_i=[],or=!1,Nc=!1;x||ia.push({func:function(){Vc()}}),x&&(or=!0);function a0(){if(!x){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)Ec(c.preRun.shift());vi(Xn)}}function Sc(){or=!0,vi(ia)}function s0(){x||vi(Br)}function Tc(){x||(Nc=!0)}function dn(){if(!x){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)i0(c.postRun.shift());vi(_i)}}function Ec(I){Xn.unshift(I)}function i0(I){_i.unshift(I)}var Vr=0,la=null,Va=null;function o0(I){de(!x,"addRunDependency cannot be used in a pthread worker"),Vr++,c.monitorRunDependencies&&c.monitorRunDependencies(Vr)}function l0(I){if(Vr--,c.monitorRunDependencies&&c.monitorRunDependencies(Vr),Vr==0&&(la!==null&&(clearInterval(la),la=null),Va)){var S=Va;Va=null,S()}}c.preloadedImages={},c.preloadedAudios={};function Ur(I){c.onAbort&&c.onAbort(I),x&&console.error("Pthread aborting at "+new Error().stack),I+="",G(I),oe=!0,pe=1,I="abort("+I+"). Build with -s ASSERTIONS=1 for more info.";var S=new WebAssembly.RuntimeError(I);throw d(S),S}function Cc(I,S){return String.prototype.startsWith?I.startsWith(S):I.indexOf(S)===0}var bi="data:application/octet-stream;base64,";function Rc(I){return Cc(I,bi)}var u0="file://";function Fc(I){return Cc(I,u0)}var pn="tfjs-backend-wasm-threaded-simd.wasm";Rc(pn)||(pn=T(pn));function c0(I){try{if(I==pn&&te)return new Uint8Array(te);if(D)return D(I);throw"both async and sync fetching of the wasm failed"}catch(S){Ur(S)}}function Mc(){if(!te&&(g||_)){if(typeof fetch=="function"&&!Fc(pn))return fetch(pn,{credentials:"same-origin"}).then(function(I){if(!I.ok)throw"failed to load wasm binary file at '"+pn+"'";return I.arrayBuffer()}).catch(function(){return c0(pn)});if(M)return new Promise(function(I,S){M(pn,function(z){I(new Uint8Array(z))},S)})}return Promise.resolve().then(function(){return c0(pn)})}function h0(){var I={a:t1};function S(ue,ge){var et=ue.exports;if(c.asm=et,qn=c.asm.F,ce=ge,!x){var Pt=ve.unusedWorkers.length;ve.unusedWorkers.forEach(function(Ct){ve.loadWasmModuleToWorker(Ct,function(){--Pt||l0("wasm-instantiate")})})}}x||o0("wasm-instantiate");function z(ue){S(ue.instance,ue.module)}function q(ue){return Mc().then(function(ge){return WebAssembly.instantiate(ge,I)}).then(ue,function(ge){G("failed to asynchronously prepare wasm: "+ge),Ur(ge)})}function he(){return!te&&typeof WebAssembly.instantiateStreaming=="function"&&!Rc(pn)&&!Fc(pn)&&typeof fetch=="function"?fetch(pn,{credentials:"same-origin"}).then(function(ue){var ge=WebAssembly.instantiateStreaming(ue,I);return ge.then(z,function(et){return G("wasm streaming compile failed: "+et),G("falling back to ArrayBuffer instantiation"),q(z)})}):q(z)}if(c.instantiateWasm)try{var le=c.instantiateWasm(I,S);return le}catch(ue){return G("Module.instantiateWasm callback failed with error: "+ue),!1}return he().catch(d),{}}var $c={8991:function(I,S){setTimeout(function(){U2(I,S)},0)}};function d0(){ve.initRuntime()}function vi(I){for(;I.length>0;){var S=I.shift();if(typeof S=="function"){S(c);continue}var z=S.func;typeof z=="number"?S.arg===void 0?qn.get(z)():qn.get(z)(S.arg):z(S.arg===void 0?null:S.arg)}}function ki(I,S){if(I<=0||I>s().length||I&!0||S<0)return-28;if(S==0)return 0;S>=2147483647&&(S=Infinity);var z=Atomics.load(o(),Ci>>2),q=0;if(z==I){var he=Atomics.compareExchange(o(),Ci>>2,z,0);if(he==z&&(--S,q=1,S<=0))return 1}var le=Atomics.notify(o(),I>>2,S);if(le>=0)return le+q;throw"Atomics.notify returned an unexpected value "+le}c._emscripten_futex_wake=ki;function p0(I){if(x)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in killThread!";o()[I+12>>2]=0;var S=ve.pthreads[I];S.worker.terminate(),ve.freeThreadData(S),ve.runningWorkers.splice(ve.runningWorkers.indexOf(S.worker),1),S.worker.pthread=void 0}function f0(I){if(x)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cancelThread!";var S=ve.pthreads[I];S.worker.postMessage({cmd:"cancel"})}function m0(I){if(x)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cleanupThread!";o()[I+12>>2]=0;var S=ve.pthreads[I];if(S){var z=S.worker;ve.returnWorkerToPool(z)}}var ve={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var I=8,S=0;S<I;++S)ve.allocateUnusedWorker()},initRuntime:function(){for(var I=ja(228),S=0;S<228/4;++S)l()[I/4+S]=0;o()[I+12>>2]=I;var z=I+152;o()[z>>2]=z;for(var q=ja(512),S=0;S<128;++S)l()[q/4+S]=0;Atomics.store(l(),I+100>>2,q),Atomics.store(l(),I+40>>2,I),qc(I,!_,1),V2(I)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;ve.threadExitHandlers.length>0;)ve.threadExitHandlers.pop()();x&&Si()&&B2()},threadExit:function(I){var S=Si();S&&(Atomics.store(l(),S+4>>2,I),Atomics.store(l(),S+0>>2,1),Atomics.store(l(),S+56>>2,1),Atomics.store(l(),S+60>>2,0),ve.runExitHandlers(),ki(S+0,2147483647),qc(0,0,0),x&&postMessage({cmd:"exit"}))},threadCancel:function(){ve.runExitHandlers();var I=Si();Atomics.store(l(),I+4>>2,-1),Atomics.store(l(),I+0>>2,1),ki(I+0,2147483647),qc(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var I in ve.pthreads){var S=ve.pthreads[I];S&&S.worker&&ve.returnWorkerToPool(S.worker)}ve.pthreads={};for(var z=0;z<ve.unusedWorkers.length;++z){var q=ve.unusedWorkers[z];q.terminate()}ve.unusedWorkers=[];for(var z=0;z<ve.runningWorkers.length;++z){var q=ve.runningWorkers[z],S=q.pthread;ve.freeThreadData(S),q.terminate()}ve.runningWorkers=[]},freeThreadData:function(I){if(I){if(I.threadInfoStruct){var S=o()[I.threadInfoStruct+100>>2];o()[I.threadInfoStruct+100>>2]=0,Wl(S),Wl(I.threadInfoStruct)}I.threadInfoStruct=0,I.allocatedOwnStack&&I.stackBase&&Wl(I.stackBase),I.stackBase=0,I.worker&&(I.worker.pthread=null)}},returnWorkerToPool:function(I){ve.runWithoutMainThreadQueuedCalls(function(){delete ve.pthreads[I.pthread.threadInfoStruct],ve.unusedWorkers.push(I),ve.runningWorkers.splice(ve.runningWorkers.indexOf(I),1),ve.freeThreadData(I.pthread),I.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(I){o()[X2>>2]=0;try{I()}finally{o()[X2>>2]=1}},receiveObjectTransfer:function(I){},loadWasmModuleToWorker:function(I,S){I.onmessage=function(z){var q=z.data,he=q.cmd;if(I.pthread&&(ve.currentProxiedOperationCallerThread=I.pthread.threadInfoStruct),q.targetThread&&q.targetThread!=Si()){var le=ve.pthreads[q.targetThread];le?le.worker.postMessage(z.data,q.transferList):console.error('Internal error! Worker sent a message "'+he+'" to target pthread '+q.targetThread+", but that thread no longer exists!"),ve.currentProxiedOperationCallerThread=void 0;return}if(he==="processQueuedMainThreadWork")A1();else if(he==="spawnThread")Wc(z.data);else if(he==="cleanupThread")m0(q.thread);else if(he==="killThread")p0(q.thread);else if(he==="cancelThread")f0(q.thread);else if(he==="loaded")I.loaded=!0,S&&S(I),I.runPthread&&(I.runPthread(),delete I.runPthread);else if(he==="print")X("Thread "+q.threadId+": "+q.text);else if(he==="printErr")G("Thread "+q.threadId+": "+q.text);else if(he==="alert")alert("Thread "+q.threadId+": "+q.text);else if(he==="exit"){var ue=I.pthread&&Atomics.load(l(),I.pthread.threadInfoStruct+64>>2);ue&&ve.returnWorkerToPool(I)}else if(he==="exitProcess")try{E4(q.returnCode)}catch(ge){if(ge instanceof Vl)return;throw ge}else he==="cancelDone"?ve.returnWorkerToPool(I):he==="objectTransfer"?ve.receiveObjectTransfer(z.data):z.data.target==="setimmediate"?I.postMessage(z.data):G("worker sent an unknown command "+he);ve.currentProxiedOperationCallerThread=void 0},I.onerror=function(z){G("pthread sent an error! "+z.filename+":"+z.lineno+": "+z.message)},b&&(I.on("message",function(z){I.onmessage({data:z})}),I.on("error",function(z){I.onerror(z)}),I.on("exit",function(z){})),I.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||r,wasmMemory:Q,wasmModule:ce})},allocateUnusedWorker:function(){var I=T("tfjs-backend-wasm-threaded-simd.worker.js");ve.unusedWorkers.push(new Worker(I))},getNewWorker:function(){return ve.unusedWorkers.length==0&&(ve.allocateUnusedWorker(),ve.loadWasmModuleToWorker(ve.unusedWorkers[0])),ve.unusedWorkers.length>0?ve.unusedWorkers.pop():null},busySpinWait:function(I){for(var S=performance.now()+I;performance.now()<S;);}};function A0(I,S){G2(I,S),Ti(I)}c.establishStackSpace=A0;function y0(){return ie}c.getNoExitRuntime=y0;function g0(I,S){return qn.get(I)(S)}c.invokeEntryPoint=g0;function x0(I,S,z,q){Ur("Assertion failed: "+Fe(I)+", at: "+[S?Fe(S):"unknown filename",z,q?Fe(q):"unknown function"])}function w0(I,S){var z=_main(I,S)}var Ua;b?Ua=function(){var I=process.hrtime();return I[0]*1e3+I[1]/1e6}:x?Ua=function(){return performance.now()-c.__performance_now_clock_drift}:typeof dateNow!="undefined"?Ua=dateNow:Ua=function(){return performance.now()};function _0(I){return o()[L2()>>2]=I,I}function b0(I,S){if(x)return ua(1,1,I,S)}function v0(I,S){if(I==S)postMessage({cmd:"processQueuedMainThreadWork"});else if(x)postMessage({targetThread:I,cmd:"processThreadQueue"});else{var z=ve.pthreads[I],q=z&&z.worker;if(!q)return;q.postMessage({cmd:"processThreadQueue"})}return 1}function k0(){Ur()}function I0(I,S,z){var q=C0(S,z);return $c[I].apply(null,q)}function N0(I,S){}function S0(I,S,z){if(I<=0||I>s().length||I&!0)return-28;if(g){if(Atomics.load(o(),I>>2)!=S)return-6;for(var q=performance.now(),he=q+z,le=Atomics.exchange(o(),Ci>>2,I);;){if(q=performance.now(),q>he)return le=Atomics.exchange(o(),Ci>>2,0),-73;if(le=Atomics.exchange(o(),Ci>>2,0),le==0)break;if(A1(),Atomics.load(o(),I>>2)!=S)return-6;le=Atomics.exchange(o(),Ci>>2,I)}return 0}else{var ue=Atomics.wait(o(),I>>2,S,z);if(ue==="timed-out")return-73;if(ue==="not-equal")return-6;if(ue==="ok")return 0;throw"Atomics.wait returned an unexpected value "+ue}}function T0(I,S,z){i().copyWithin(I,S,S+z)}function E0(){return b?require("os").cpus().length:navigator.hardwareConcurrency}function ua(I,S){for(var z=arguments.length-2,q=Bl(),he=z,le=Ei(he*8),ue=le>>3,ge=0;ge<z;ge++){var et=arguments[2+ge];u()[ue+ge]=et}var Pt=H2(I,he,le,S);return Ti(q),Pt}var $l=[],Ol=[];function C0(I,S){Ol.length=0;var z;for(S>>=2;z=i()[I++];){var q=z<105;q&&S&1&&S++,Ol.push(q?u()[S++>>1]:o()[S]),++S}return Ol}function R0(I,S,z){$l.length=S;for(var q=z>>3,he=0;he<S;he++)$l[he]=u()[q+he];var le=I<0,ue=le?$c[-I-1]:e1[I];return ue.apply(null,$l)}function F0(){return i().length}function M0(I){try{return Q.grow(I-Le.byteLength+65535>>>16),Xt(Q.buffer),1}catch(S){}}function $0(I){var S=F0();if(I<=S)return!1;var z=2147483648;if(I>z)return!1;for(var q=1;q<=4;q*=2){var he=S*(1+.2/q);he=Math.min(he,I+100663296);var le=Math.min(z,ct(Math.max(I,he),65536)),ue=M0(le);if(ue)return!0}return!1}var ze={inEventHandler:0,removeAllEventListeners:function(){for(var I=ze.eventHandlers.length-1;I>=0;--I)ze._removeHandler(I);ze.eventHandlers=[],ze.deferredCalls=[]},registerRemoveEventListeners:function(){ze.removeEventListenersRegistered||(oa.push(ze.removeAllEventListeners),ze.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(I,S,z){function q(ue,ge){if(ue.length!=ge.length)return!1;for(var et in ue)if(ue[et]!=ge[et])return!1;return!0}for(var he in ze.deferredCalls){var le=ze.deferredCalls[he];if(le.targetFunction==I&&q(le.argsList,z))return}ze.deferredCalls.push({targetFunction:I,precedence:S,argsList:z}),ze.deferredCalls.sort(function(ue,ge){return ue.precedence<ge.precedence})},removeDeferredCalls:function(I){for(var S=0;S<ze.deferredCalls.length;++S)ze.deferredCalls[S].targetFunction==I&&(ze.deferredCalls.splice(S,1),--S)},canPerformEventHandlerRequests:function(){return ze.inEventHandler&&ze.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(ze.canPerformEventHandlerRequests())for(var I=0;I<ze.deferredCalls.length;++I){var S=ze.deferredCalls[I];ze.deferredCalls.splice(I,1),--I,S.targetFunction.apply(null,S.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(I,S){for(var z=0;z<ze.eventHandlers.length;++z)ze.eventHandlers[z].target==I&&(!S||S==ze.eventHandlers[z].eventTypeString)&&ze._removeHandler(z--)},_removeHandler:function(I){var S=ze.eventHandlers[I];S.target.removeEventListener(S.eventTypeString,S.eventListenerFunc,S.useCapture),ze.eventHandlers.splice(I,1)},registerOrRemoveHandler:function(I){var S=function(q){++ze.inEventHandler,ze.currentEventHandler=I,ze.runDeferredCalls(),I.handlerFunc(q),ze.runDeferredCalls(),--ze.inEventHandler};if(I.callbackfunc)I.eventListenerFunc=S,I.target.addEventListener(I.eventTypeString,S,I.useCapture),ze.eventHandlers.push(I),ze.registerRemoveEventListeners();else for(var z=0;z<ze.eventHandlers.length;++z)ze.eventHandlers[z].target==I.target&&ze.eventHandlers[z].eventTypeString==I.eventTypeString&&ze._removeHandler(z--)},queueEventHandlerOnThread_iiii:function(I,S,z,q,he){var le=Bl(),ue=Ei(12);o()[ue>>2]=z,o()[ue+4>>2]=q,o()[ue+8>>2]=he,y1(0,I,637534208,S,q,ue),Ti(le)},getTargetThreadForEventCallback:function(I){switch(I){case 1:return 0;case 2:return ve.currentProxiedOperationCallerThread;default:return I}},getNodeNameForTarget:function(I){return I?I==window?"#window":I==screen?"#screen":I&&I.nodeName?I.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function O0(I){var S=at(I)+1,z=ja(S);return Qe(I,z,S),z}function D0(I,S,z,q){var he=Bl(),le=Ei(12),ue=0;S&&(ue=O0(S)),o()[le>>2]=ue,o()[le+4>>2]=z,o()[le+8>>2]=q,y1(0,I,657457152,0,ue,le),Ti(he)}function z0(I,S,z,q){S=S?Fe(S):"",D0(I,S,z,q)}function P0(I){return I>2?Fe(I):I}var L0=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function W0(I){I=P0(I);var S=L0[I]||(typeof document!="undefined"?document.querySelector(I):void 0);return S}function Dl(I){return W0(I)}function Oc(I,S,z){var q=Dl(I);if(!q)return-4;if(q.canvasSharedPtr&&(o()[q.canvasSharedPtr>>2]=S,o()[q.canvasSharedPtr+4>>2]=z),q.offscreenCanvas||!q.controlTransferredOffscreen){q.offscreenCanvas&&(q=q.offscreenCanvas);var he=!1;if(q.GLctxObject&&q.GLctxObject.GLctx){var le=q.GLctxObject.GLctx.getParameter(2978);he=le[0]===0&&le[1]===0&&le[2]===q.width&&le[3]===q.height}q.width=S,q.height=z,he&&q.GLctxObject.GLctx.viewport(0,0,S,z)}else if(q.canvasSharedPtr){var ue=o()[q.canvasSharedPtr+8>>2];return z0(ue,I,S,z),1}else return-4;return 0}function Dc(I,S,z){return x?ua(2,1,I,S,z):Oc(I,S,z)}function B0(I,S,z){var q=Dl(I);return q?Oc(I,S,z):Dc(I,S,z)}function V0(I){}function U0(I,S){}function j0(I){var S=I.getExtension("ANGLE_instanced_arrays");if(S)return I.vertexAttribDivisor=function(z,q){S.vertexAttribDivisorANGLE(z,q)},I.drawArraysInstanced=function(z,q,he,le){S.drawArraysInstancedANGLE(z,q,he,le)},I.drawElementsInstanced=function(z,q,he,le,ue){S.drawElementsInstancedANGLE(z,q,he,le,ue)},1}function H0(I){var S=I.getExtension("OES_vertex_array_object");if(S)return I.createVertexArray=function(){return S.createVertexArrayOES()},I.deleteVertexArray=function(z){S.deleteVertexArrayOES(z)},I.bindVertexArray=function(z){S.bindVertexArrayOES(z)},I.isVertexArray=function(z){return S.isVertexArrayOES(z)},1}function G0(I){var S=I.getExtension("WEBGL_draw_buffers");if(S)return I.drawBuffers=function(z,q){S.drawBuffersWEBGL(z,q)},1}function q0(I){return!!(I.multiDrawWebgl=I.getExtension("WEBGL_multi_draw"))}var Ze={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(I){Ze.lastError||(Ze.lastError=I)},getNewId:function(I){for(var S=Ze.counter++,z=I.length;z<S;z++)I[z]=null;return S},getSource:function(I,S,z,q){for(var he="",le=0;le<S;++le){var ue=q?o()[q+le*4>>2]:-1;he+=Fe(o()[z+le*4>>2],ue<0?void 0:ue)}return he},createContext:function(I,S){var z=I.getContext("webgl",S);if(!z)return 0;var q=Ze.registerContext(z,S);return q},registerContext:function(I,S){var z=ja(8);o()[z+4>>2]=Si();var q={handle:z,attributes:S,version:S.majorVersion,GLctx:I};return I.canvas&&(I.canvas.GLctxObject=q),Ze.contexts[z]=q,(typeof S.enableExtensionsByDefault=="undefined"||S.enableExtensionsByDefault)&&Ze.initExtensions(q),z},makeContextCurrent:function(I){return Ze.currentContext=Ze.contexts[I],c.ctx=ca=Ze.currentContext&&Ze.currentContext.GLctx,!(I&&!ca)},getContext:function(I){return Ze.contexts[I]},deleteContext:function(I){Ze.currentContext===Ze.contexts[I]&&(Ze.currentContext=null),typeof ze=="object"&&ze.removeAllHandlersOnTarget(Ze.contexts[I].GLctx.canvas),Ze.contexts[I]&&Ze.contexts[I].GLctx.canvas&&(Ze.contexts[I].GLctx.canvas.GLctxObject=void 0),Wl(Ze.contexts[I].handle),Ze.contexts[I]=null},initExtensions:function(I){if(I||(I=Ze.currentContext),!I.initExtensionsDone){I.initExtensionsDone=!0;var S=I.GLctx;j0(S),H0(S),G0(S),S.disjointTimerQueryExt=S.getExtension("EXT_disjoint_timer_query"),q0(S);var z=S.getSupportedExtensions()||[];z.forEach(function(q){q.indexOf("lose_context")<0&&q.indexOf("debug")<0&&S.getExtension(q)})}},populateUniformTable:function(I){for(var S=Ze.programs[I],z=Ze.programInfos[I]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},q=z.uniforms,he=ca.getProgramParameter(S,35718),le=0;le<he;++le){var ue=ca.getActiveUniform(S,le),ge=ue.name;z.maxUniformLength=Math.max(z.maxUniformLength,ge.length+1),ge.slice(-1)=="]"&&(ge=ge.slice(0,ge.lastIndexOf("[")));var et=ca.getUniformLocation(S,ge);if(et){var Pt=Ze.getNewId(Ze.uniforms);q[ge]=[ue.size,Pt],Ze.uniforms[Pt]=et;for(var Ct=1;Ct<ue.size;++Ct){var da=ge+"["+Ct+"]";et=ca.getUniformLocation(S,da),Pt=Ze.getNewId(Ze.uniforms),Ze.uniforms[Pt]=et}}}}},X0=["default","low-power","high-performance"];function K0(I,S){var z=S>>2,q=o()[z+(24>>2)],he={alpha:!!o()[z+(0>>2)],depth:!!o()[z+(4>>2)],stencil:!!o()[z+(8>>2)],antialias:!!o()[z+(12>>2)],premultipliedAlpha:!!o()[z+(16>>2)],preserveDrawingBuffer:!!o()[z+(20>>2)],powerPreference:X0[q],failIfMajorPerformanceCaveat:!!o()[z+(28>>2)],majorVersion:o()[z+(32>>2)],minorVersion:o()[z+(36>>2)],enableExtensionsByDefault:o()[z+(40>>2)],explicitSwapControl:o()[z+(44>>2)],proxyContextToMainThread:o()[z+(48>>2)],renderViaOffscreenBackBuffer:o()[z+(52>>2)]},le=Dl(I);if(!le||he.explicitSwapControl)return 0;var ue=Ze.createContext(le,he);return ue}function Z0(I,S){return K0(I,S)}var Ii={mappings:{},buffers:[null,[],[]],printChar:function(I,S){var z=Ii.buffers[I];S===0||S===10?((I===1?X:G)($e(z,0)),z.length=0):z.push(S)},varargs:void 0,get:function(){Ii.varargs+=4;var I=o()[Ii.varargs-4>>2];return I},getStr:function(I){var S=Fe(I);return S},get64:function(I,S){return I}};function zc(I){return x?ua(3,1,I):0}function Pc(I,S,z,q,he){if(x)return ua(4,1,I,S,z,q,he)}function Lc(I,S,z,q){if(x)return ua(5,1,I,S,z,q);for(var he=0,le=0;le<z;le++){for(var ue=o()[S+le*8>>2],ge=o()[S+(le*8+4)>>2],et=0;et<ge;et++)Ii.printChar(I,i()[ue+et]);he+=ge}return o()[q>>2]=he,0}function Y0(I){var S=ve.threadExitHandlers.pop();I&&S()}function J0(I,S){ve.threadExitHandlers.push(function(){qn.get(I)(S)})}function Wc(I){if(x)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var S=ve.getNewWorker();if(S.pthread!==void 0)throw"Internal error!";if(!I.pthread_ptr)throw"Internal error, no pthread ptr!";ve.runningWorkers.push(S);for(var z=ja(128*4),q=0;q<128;++q)o()[z+q*4>>2]=0;var he=I.stackBase+I.stackSize,le=ve.pthreads[I.pthread_ptr]={worker:S,stackBase:I.stackBase,stackSize:I.stackSize,allocatedOwnStack:I.allocatedOwnStack,threadInfoStruct:I.pthread_ptr},ue=le.threadInfoStruct>>2;Atomics.store(l(),ue+(64>>2),I.detached),Atomics.store(l(),ue+(100>>2),z),Atomics.store(l(),ue+(40>>2),le.threadInfoStruct),Atomics.store(l(),ue+(80>>2),I.stackSize),Atomics.store(l(),ue+(76>>2),he),Atomics.store(l(),ue+(104>>2),I.stackSize),Atomics.store(l(),ue+(104+8>>2),he),Atomics.store(l(),ue+(104+12>>2),I.detached);var ge=W2(),et=ge+40;Atomics.store(l(),ue+(172>>2),et),S.pthread=le;var Pt={cmd:"run",start_routine:I.startRoutine,arg:I.arg,threadInfoStruct:I.pthread_ptr,stackBase:I.stackBase,stackSize:I.stackSize};S.runPthread=function(){Pt.time=performance.now(),S.postMessage(Pt,I.transferList)},S.loaded&&(S.runPthread(),delete S.runPthread)}function Q0(I,S,z,q){if(typeof SharedArrayBuffer=="undefined")return G("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!I)return G("pthread_create called with a null thread pointer!"),28;var he=[],le=0;if(x&&(he.length===0||le))return j2(687865856,I,S,z,q);if(le)return le;var ue=0,ge=0,et=0;S&&S!=-1?(ue=o()[S>>2],ue+=81920,ge=o()[S+8>>2],et=o()[S+12>>2]!==0):ue=2097152;var Pt=ge==0;Pt?ge=q2(16,ue):(ge-=ue,de(ge>0));for(var Ct=ja(228),da=0;da<228>>2;++da)l()[(Ct>>2)+da]=0;o()[I>>2]=Ct,o()[Ct+12>>2]=Ct;var Ri=Ct+152;o()[Ri>>2]=Ri;var fn={stackBase:ge,stackSize:ue,allocatedOwnStack:Pt,detached:et,startRoutine:z,pthread_ptr:Ct,arg:q,transferList:he};return x?(fn.cmd="spawnThread",postMessage(fn,he)):Wc(fn),0}function Bc(I){if(x)return ua(6,1,I);switch(I){case 30:return 16384;case 85:var S=2147483648;return S/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return _0(28),-1}x||ve.initMainThreadBlock();var ca,e1=[null,b0,Dc,zc,Pc,Lc,Bc],t1={e:x0,r:w0,x:v0,b:k0,y:I0,j:N0,c:S0,d:ki,f:Ua,p:T0,z:E0,u:R0,q:$0,v:B0,i:V0,t:U0,w:Z0,m:zc,n:Pc,g:Lc,o:d0,a:Q||c.wasmMemory,k:Y0,l:J0,h:Q0,s:Bc},P2=h0(),Vc=c.___wasm_call_ctors=function(){return(Vc=c.___wasm_call_ctors=c.asm.A).apply(null,arguments)},n1=c._init=function(){return(n1=c._init=c.asm.B).apply(null,arguments)},r1=c._register_tensor=function(){return(r1=c._register_tensor=c.asm.C).apply(null,arguments)},a1=c._dispose_data=function(){return(a1=c._dispose_data=c.asm.D).apply(null,arguments)},s1=c._dispose=function(){return(s1=c._dispose=c.asm.E).apply(null,arguments)},i1=c._Abs=function(){return(i1=c._Abs=c.asm.G).apply(null,arguments)},o1=c._Add=function(){return(o1=c._Add=c.asm.H).apply(null,arguments)},l1=c._AddN=function(){return(l1=c._AddN=c.asm.I).apply(null,arguments)},u1=c._ArgMax=function(){return(u1=c._ArgMax=c.asm.J).apply(null,arguments)},c1=c._AvgPool=function(){return(c1=c._AvgPool=c.asm.K).apply(null,arguments)},h1=c._BatchMatMul=function(){return(h1=c._BatchMatMul=c.asm.L).apply(null,arguments)},d1=c._Ceil=function(){return(d1=c._Ceil=c.asm.M).apply(null,arguments)},p1=c._ClipByValue=function(){return(p1=c._ClipByValue=c.asm.N).apply(null,arguments)},f1=c._Conv2D=function(){return(f1=c._Conv2D=c.asm.O).apply(null,arguments)},Uc=c._Conv2DBackpropInput=function(){return(Uc=c._Conv2DBackpropInput=c.asm.P).apply(null,arguments)},jc=c._Cos=function(){return(jc=c._Cos=c.asm.Q).apply(null,arguments)},zl=c._CropAndResize=function(){return(zl=c._CropAndResize=c.asm.R).apply(null,arguments)},Ni=c._Cumsum=function(){return(Ni=c._Cumsum=c.asm.S).apply(null,arguments)},m1=c._DepthToSpace=function(){return(m1=c._DepthToSpace=c.asm.T).apply(null,arguments)},Pl=c._DepthwiseConv2dNative=function(){return(Pl=c._DepthwiseConv2dNative=c.asm.U).apply(null,arguments)},K=c._Equal=function(){return(K=c._Equal=c.asm.V).apply(null,arguments)},ne=c._Exp=function(){return(ne=c._Exp=c.asm.W).apply(null,arguments)},Ie=c._FlipLeftRight=function(){return(Ie=c._FlipLeftRight=c.asm.X).apply(null,arguments)},qe=c._Floor=function(){return(qe=c._Floor=c.asm.Y).apply(null,arguments)},bt=c._FloorDiv=function(){return(bt=c._FloorDiv=c.asm.Z).apply(null,arguments)},dt=c._FusedBatchNorm=function(){return(dt=c._FusedBatchNorm=c.asm._).apply(null,arguments)},We=c._FusedConv2D=function(){return(We=c._FusedConv2D=c.asm.$).apply(null,arguments)},Ve=c._FusedDepthwiseConv2D=function(){return(Ve=c._FusedDepthwiseConv2D=c.asm.aa).apply(null,arguments)},Kt=c._Gather=function(){return(Kt=c._Gather=c.asm.ba).apply(null,arguments)},jr=c._GatherNd=function(){return(jr=c._GatherNd=c.asm.ca).apply(null,arguments)},Hr=c._Greater=function(){return(Hr=c._Greater=c.asm.da).apply(null,arguments)},Hc=c._GreaterEqual=function(){return(Hc=c._GreaterEqual=c.asm.ea).apply(null,arguments)},Ll=c._LeakyRelu=function(){return(Ll=c._LeakyRelu=c.asm.fa).apply(null,arguments)},Wn=c._Less=function(){return(Wn=c._Less=c.asm.ga).apply(null,arguments)},ha=c._LessEqual=function(){return(ha=c._LessEqual=c.asm.ha).apply(null,arguments)},Gc=c._Log=function(){return(Gc=c._Log=c.asm.ia).apply(null,arguments)},P6=c._LogicalAnd=function(){return(P6=c._LogicalAnd=c.asm.ja).apply(null,arguments)},L6=c._Max=function(){return(L6=c._Max=c.asm.ka).apply(null,arguments)},W6=c._MaxPool=function(){return(W6=c._MaxPool=c.asm.la).apply(null,arguments)},B6=c._Maximum=function(){return(B6=c._Maximum=c.asm.ma).apply(null,arguments)},V6=c._Mean=function(){return(V6=c._Mean=c.asm.na).apply(null,arguments)},U6=c._Min=function(){return(U6=c._Min=c.asm.oa).apply(null,arguments)},j6=c._Minimum=function(){return(j6=c._Minimum=c.asm.pa).apply(null,arguments)},H6=c._Multiply=function(){return(H6=c._Multiply=c.asm.qa).apply(null,arguments)},G6=c._Neg=function(){return(G6=c._Neg=c.asm.ra).apply(null,arguments)},q6=c._NonMaxSuppressionV3=function(){return(q6=c._NonMaxSuppressionV3=c.asm.sa).apply(null,arguments)},X6=c._NonMaxSuppressionV4=function(){return(X6=c._NonMaxSuppressionV4=c.asm.ta).apply(null,arguments)},K6=c._NonMaxSuppressionV5=function(){return(K6=c._NonMaxSuppressionV5=c.asm.ua).apply(null,arguments)},Z6=c._NotEqual=function(){return(Z6=c._NotEqual=c.asm.va).apply(null,arguments)},Y6=c._OneHot=function(){return(Y6=c._OneHot=c.asm.wa).apply(null,arguments)},J6=c._PadV2=function(){return(J6=c._PadV2=c.asm.xa).apply(null,arguments)},Q6=c._Pow=function(){return(Q6=c._Pow=c.asm.ya).apply(null,arguments)},e4=c._Prelu=function(){return(e4=c._Prelu=c.asm.za).apply(null,arguments)},t4=c._Prod=function(){return(t4=c._Prod=c.asm.Aa).apply(null,arguments)},n4=c._RealDiv=function(){return(n4=c._RealDiv=c.asm.Ba).apply(null,arguments)},r4=c._Relu=function(){return(r4=c._Relu=c.asm.Ca).apply(null,arguments)},a4=c._Relu6=function(){return(a4=c._Relu6=c.asm.Da).apply(null,arguments)},s4=c._ResizeBilinear=function(){return(s4=c._ResizeBilinear=c.asm.Ea).apply(null,arguments)},i4=c._Reverse=function(){return(i4=c._Reverse=c.asm.Fa).apply(null,arguments)},o4=c._RotateWithOffset=function(){return(o4=c._RotateWithOffset=c.asm.Ga).apply(null,arguments)},l4=c._Round=function(){return(l4=c._Round=c.asm.Ha).apply(null,arguments)},u4=c._Rsqrt=function(){return(u4=c._Rsqrt=c.asm.Ia).apply(null,arguments)},c4=c._ScatterNd=function(){return(c4=c._ScatterNd=c.asm.Ja).apply(null,arguments)},h4=c._SelectV2=function(){return(h4=c._SelectV2=c.asm.Ka).apply(null,arguments)},d4=c._Sigmoid=function(){return(d4=c._Sigmoid=c.asm.La).apply(null,arguments)},p4=c._Sin=function(){return(p4=c._Sin=c.asm.Ma).apply(null,arguments)},f4=c._Softmax=function(){return(f4=c._Softmax=c.asm.Na).apply(null,arguments)},m4=c._Sqrt=function(){return(m4=c._Sqrt=c.asm.Oa).apply(null,arguments)},A4=c._Square=function(){return(A4=c._Square=c.asm.Pa).apply(null,arguments)},y4=c._SquaredDifference=function(){return(y4=c._SquaredDifference=c.asm.Qa).apply(null,arguments)},g4=c._Step=function(){return(g4=c._Step=c.asm.Ra).apply(null,arguments)},x4=c._StridedSlice=function(){return(x4=c._StridedSlice=c.asm.Sa).apply(null,arguments)},w4=c._Sub=function(){return(w4=c._Sub=c.asm.Ta).apply(null,arguments)},_4=c._Sum=function(){return(_4=c._Sum=c.asm.Ua).apply(null,arguments)},b4=c._Tanh=function(){return(b4=c._Tanh=c.asm.Va).apply(null,arguments)},v4=c._Tile=function(){return(v4=c._Tile=c.asm.Wa).apply(null,arguments)},k4=c._TopK=function(){return(k4=c._TopK=c.asm.Xa).apply(null,arguments)},I4=c._Transpose=function(){return(I4=c._Transpose=c.asm.Ya).apply(null,arguments)},N4=c.__FusedMatMul=function(){return(N4=c.__FusedMatMul=c.asm.Za).apply(null,arguments)},ja=c._malloc=function(){return(ja=c._malloc=c.asm._a).apply(null,arguments)},Wl=c._free=function(){return(Wl=c._free=c.asm.$a).apply(null,arguments)},L2=c.___errno_location=function(){return(L2=c.___errno_location=c.asm.ab).apply(null,arguments)},W2=c._emscripten_get_global_libc=function(){return(W2=c._emscripten_get_global_libc=c.asm.bb).apply(null,arguments)},Si=c._pthread_self=function(){return(Si=c._pthread_self=c.asm.cb).apply(null,arguments)},B2=c.___pthread_tsd_run_dtors=function(){return(B2=c.___pthread_tsd_run_dtors=c.asm.db).apply(null,arguments)},A1=c._emscripten_main_thread_process_queued_calls=function(){return(A1=c._emscripten_main_thread_process_queued_calls=c.asm.eb).apply(null,arguments)},S4=c._emscripten_current_thread_process_queued_calls=function(){return(S4=c._emscripten_current_thread_process_queued_calls=c.asm.fb).apply(null,arguments)},V2=c._emscripten_register_main_browser_thread_id=function(){return(V2=c._emscripten_register_main_browser_thread_id=c.asm.gb).apply(null,arguments)},U2=c.__emscripten_do_dispatch_to_thread=function(){return(U2=c.__emscripten_do_dispatch_to_thread=c.asm.hb).apply(null,arguments)},j2=c._emscripten_sync_run_in_main_thread_4=function(){return(j2=c._emscripten_sync_run_in_main_thread_4=c.asm.ib).apply(null,arguments)},H2=c._emscripten_run_in_main_runtime_thread_js=function(){return(H2=c._emscripten_run_in_main_runtime_thread_js=c.asm.jb).apply(null,arguments)},y1=c.__emscripten_call_on_thread=function(){return(y1=c.__emscripten_call_on_thread=c.asm.kb).apply(null,arguments)},T4=c._emscripten_tls_init=function(){return(T4=c._emscripten_tls_init=c.asm.lb).apply(null,arguments)},qc=c.__emscripten_thread_init=function(){return(qc=c.__emscripten_thread_init=c.asm.mb).apply(null,arguments)},Bl=c.stackSave=function(){return(Bl=c.stackSave=c.asm.nb).apply(null,arguments)},Ti=c.stackRestore=function(){return(Ti=c.stackRestore=c.asm.ob).apply(null,arguments)},Ei=c.stackAlloc=function(){return(Ei=c.stackAlloc=c.asm.pb).apply(null,arguments)},G2=c._emscripten_stack_set_limits=function(){return(G2=c._emscripten_stack_set_limits=c.asm.qb).apply(null,arguments)},q2=c._memalign=function(){return(q2=c._memalign=c.asm.rb).apply(null,arguments)},X2=c.__emscripten_allow_main_runtime_queued_calls=9880,Ci=c.__emscripten_main_thread_futex=11368;c.cwrap=Re,c.PThread=ve,c.PThread=ve,c.wasmMemory=Q,c.ExitStatus=Vl;var Xc;function Vl(I){this.name="ExitStatus",this.message="Program terminated with exit("+I+")",this.status=I}Va=function I(){Xc||g1(),Xc||(Va=I)};function g1(I){if(I=I||f,Vr>0)return;if(x){h(c),postMessage({cmd:"loaded"});return}if(a0(),Vr>0)return;function S(){Xc||(Xc=!0,c.calledRun=!0,!oe&&(Sc(),s0(),h(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),dn()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),S()},1)):S()}c.run=g1;function E4(I,S){if(!(S&&ie&&I===0)){if(!S&&x)throw postMessage({cmd:"exitProcess",returnCode:I}),new Vl(I);ie||(ve.terminateAllThreads(),pe=I,Tc(),c.onExit&&c.onExit(I),oe=!0),y(I,new Vl(I))}}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();return x&&(ie=!1,ve.initWorker()),g1(),a.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),u8=Ye((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};var s=typeof a!="undefined"?a:{},i,o;s.ready=new Promise(function(K,ne){i=K,o=ne});var l={},u;for(u in s)s.hasOwnProperty(u)&&(l[u]=s[u]);var c=[],h="./this.program",d=function(K,ne){throw ne},p=!1,m=!1,f=!1,A=!1;p=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",A=!p&&!f&&!m;var y="";function g(K){return s.locateFile?s.locateFile(K,y):y+K}var _,b,w,x,N,T;f?(m?y=Ul().dirname(y)+"/":y=__dirname+"/",_=function(K,ne){return N||(N=require("fs")),T||(T=Ul()),K=T.normalize(K),N.readFileSync(K,ne?null:"utf8")},w=function(K){var ne=_(K,!0);return ne.buffer||(ne=new Uint8Array(ne)),X(ne.buffer),ne},process.argv.length>1&&(h=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(K){if(!(K instanceof m1))throw K}),process.on("unhandledRejection",or),d=function(K){process.exit(K)},s.inspect=function(){return"[Emscripten Module object]"}):A?(typeof read!="undefined"&&(_=function(K){return read(K)}),w=function(K){var ne;return typeof readbuffer=="function"?new Uint8Array(readbuffer(K)):(ne=read(K,"binary"),X(typeof ne=="object"),ne)},typeof scriptArgs!="undefined"?c=scriptArgs:typeof arguments!="undefined"&&(c=arguments),typeof quit=="function"&&(d=function(K){quit(K)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(p||m)&&(m?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),r&&(y=r),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",_=function(K){var ne=new XMLHttpRequest;return ne.open("GET",K,!1),ne.send(null),ne.responseText},m&&(w=function(K){var ne=new XMLHttpRequest;return ne.open("GET",K,!1),ne.responseType="arraybuffer",ne.send(null),new Uint8Array(ne.response)}),b=function(K,ne,Ie){var qe=new XMLHttpRequest;qe.open("GET",K,!0),qe.responseType="arraybuffer",qe.onload=function(){if(qe.status==200||qe.status==0&&qe.response){ne(qe.response);return}Ie()},qe.onerror=Ie,qe.send(null)},x=function(K){document.title=K});var E=s.print||console.log.bind(console),M=s.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(s[u]=l[u]);l=null,s.arguments&&(c=s.arguments),s.thisProgram&&(h=s.thisProgram),s.quit&&(d=s.quit);var D;s.wasmBinary&&(D=s.wasmBinary);var L=s.noExitRuntime||!0;typeof WebAssembly!="object"&&or("no native wasm support detected");var W,U=!1,j;function X(K,ne){K||or("Assertion failed: "+ne)}function G(K){var ne=s["_"+K];return X(ne,"Cannot call unknown function "+K+", make sure it is exported"),ne}function ee(K,ne,Ie,qe,bt){var dt={string:function(Wn){var ha=0;if(Wn!=null&&Wn!==0){var Gc=(Wn.length<<2)+1;ha=zl(Gc),ce(Wn,ha,Gc)}return ha},array:function(Wn){var ha=zl(Wn.length);return oe(Wn,ha),ha}};function We(Wn){return ne==="string"?ie(Wn):ne==="boolean"?Boolean(Wn):Wn}var Ve=G(K),Kt=[],jr=0;if(qe)for(var Hr=0;Hr<qe.length;Hr++){var Hc=dt[Ie[Hr]];Hc?(jr===0&&(jr=Uc()),Kt[Hr]=Hc(qe[Hr])):Kt[Hr]=qe[Hr]}var Ll=Ve.apply(null,Kt);return Ll=We(Ll),jr!==0&&jc(jr),Ll}function Y(K,ne,Ie,qe){Ie=Ie||[];var bt=Ie.every(function(We){return We==="number"}),dt=ne!=="string";return dt&&bt&&!qe?G(K):function(){return ee(K,ne,Ie,arguments,qe)}}var ae=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function te(K,ne,Ie){for(var qe=ne+Ie,bt=ne;K[bt]&&!(bt>=qe);)++bt;if(bt-ne>16&&K.subarray&&ae)return ae.decode(K.subarray(ne,bt));for(var dt="";ne<bt;){var We=K[ne++];if(!(We&128)){dt+=String.fromCharCode(We);continue}var Ve=K[ne++]&63;if((We&224)==192){dt+=String.fromCharCode((We&31)<<6|Ve);continue}var Kt=K[ne++]&63;if((We&240)==224?We=(We&15)<<12|Ve<<6|Kt:We=(We&7)<<18|Ve<<12|Kt<<6|K[ne++]&63,We<65536)dt+=String.fromCharCode(We);else{var jr=We-65536;dt+=String.fromCharCode(55296|jr>>10,56320|jr&1023)}}return dt}function ie(K,ne){return K?te(ke,K,ne):""}function Q(K,ne,Ie,qe){if(!(qe>0))return 0;for(var bt=Ie,dt=Ie+qe-1,We=0;We<K.length;++We){var Ve=K.charCodeAt(We);if(Ve>=55296&&Ve<=57343){var Kt=K.charCodeAt(++We);Ve=65536+((Ve&1023)<<10)|Kt&1023}if(Ve<=127){if(Ie>=dt)break;ne[Ie++]=Ve}else if(Ve<=2047){if(Ie+1>=dt)break;ne[Ie++]=192|Ve>>6,ne[Ie++]=128|Ve&63}else if(Ve<=65535){if(Ie+2>=dt)break;ne[Ie++]=224|Ve>>12,ne[Ie++]=128|Ve>>6&63,ne[Ie++]=128|Ve&63}else{if(Ie+3>=dt)break;ne[Ie++]=240|Ve>>18,ne[Ie++]=128|Ve>>12&63,ne[Ie++]=128|Ve>>6&63,ne[Ie++]=128|Ve&63}}return ne[Ie]=0,Ie-bt}function ce(K,ne,Ie){return Q(K,ke,ne,Ie)}function oe(K,ne){be.set(K,ne)}function pe(K,ne){return K%ne>0&&(K+=ne-K%ne),K}var de,be,ke,Re,$e,Fe,Je,Qe,at;function Ge(K){de=K,s.HEAP8=be=new Int8Array(K),s.HEAP16=Re=new Int16Array(K),s.HEAP32=Fe=new Int32Array(K),s.HEAPU8=ke=new Uint8Array(K),s.HEAPU16=$e=new Uint16Array(K),s.HEAPU32=Je=new Uint32Array(K),s.HEAPF32=Qe=new Float32Array(K),s.HEAPF64=at=new Float64Array(K)}var ct=s.INITIAL_MEMORY||16777216,Le,cn=[],yt=[],Pn=[],qt=[],hn=!1;yt.push({func:function(){Mc()}});function Ln(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)wr(s.preRun.shift());la(cn)}function kn(){hn=!0,la(yt)}function rn(){la(Pn)}function Xt(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)qn(s.postRun.shift());la(qt)}function wr(K){cn.unshift(K)}function qn(K){qt.unshift(K)}var Xn=0,ia=null,Br=null;function oa(K){Xn++,s.monitorRunDependencies&&s.monitorRunDependencies(Xn)}function _i(K){if(Xn--,s.monitorRunDependencies&&s.monitorRunDependencies(Xn),Xn==0&&(ia!==null&&(clearInterval(ia),ia=null),Br)){var ne=Br;Br=null,ne()}}s.preloadedImages={},s.preloadedAudios={};function or(K){s.onAbort&&s.onAbort(K),K+="",M(K),U=!0,j=1,K="abort("+K+"). Build with -s ASSERTIONS=1 for more info.";var ne=new WebAssembly.RuntimeError(K);throw o(ne),ne}function Nc(K,ne){return String.prototype.startsWith?K.startsWith(ne):K.indexOf(ne)===0}var a0="data:application/octet-stream;base64,";function Sc(K){return Nc(K,a0)}var s0="file://";function Tc(K){return Nc(K,s0)}var dn="tfjs-backend-wasm.wasm";Sc(dn)||(dn=g(dn));function Ec(K){try{if(K==dn&&D)return new Uint8Array(D);if(w)return w(K);throw"both async and sync fetching of the wasm failed"}catch(ne){or(ne)}}function i0(){if(!D&&(p||m)){if(typeof fetch=="function"&&!Tc(dn))return fetch(dn,{credentials:"same-origin"}).then(function(K){if(!K.ok)throw"failed to load wasm binary file at '"+dn+"'";return K.arrayBuffer()}).catch(function(){return Ec(dn)});if(b)return new Promise(function(K,ne){b(dn,function(Ie){K(new Uint8Array(Ie))},ne)})}return Promise.resolve().then(function(){return Ec(dn)})}function Vr(){var K={a:pn};function ne(We,Ve){var Kt=We.exports;s.asm=Kt,W=s.asm.g,Ge(W.buffer),Le=s.asm.m,_i("wasm-instantiate")}oa("wasm-instantiate");function Ie(We){ne(We.instance)}function qe(We){return i0().then(function(Ve){return WebAssembly.instantiate(Ve,K)}).then(We,function(Ve){M("failed to asynchronously prepare wasm: "+Ve),or(Ve)})}function bt(){return!D&&typeof WebAssembly.instantiateStreaming=="function"&&!Sc(dn)&&!Tc(dn)&&typeof fetch=="function"?fetch(dn,{credentials:"same-origin"}).then(function(We){var Ve=WebAssembly.instantiateStreaming(We,K);return Ve.then(Ie,function(Kt){return M("wasm streaming compile failed: "+Kt),M("falling back to ArrayBuffer instantiation"),qe(Ie)})}):qe(Ie)}if(s.instantiateWasm)try{var dt=s.instantiateWasm(K,ne);return dt}catch(We){return M("Module.instantiateWasm callback failed with error: "+We),!1}return bt().catch(o),{}}function la(K){for(;K.length>0;){var ne=K.shift();if(typeof ne=="function"){ne(s);continue}var Ie=ne.func;typeof Ie=="number"?ne.arg===void 0?Le.get(Ie)():Le.get(Ie)(ne.arg):Ie(ne.arg===void 0?null:ne.arg)}}function Va(){or()}function o0(K,ne,Ie){ke.copyWithin(K,ne,ne+Ie)}function l0(){return ke.length}function Ur(K){try{return W.grow(K-de.byteLength+65535>>>16),Ge(W.buffer),1}catch(ne){}}function Cc(K){var ne=l0(),Ie=2147483648;if(K>Ie)return!1;for(var qe=1;qe<=4;qe*=2){var bt=ne*(1+.2/qe);bt=Math.min(bt,K+100663296);var dt=Math.min(Ie,pe(Math.max(K,bt),65536)),We=Ur(dt);if(We)return!0}return!1}var bi={mappings:{},buffers:[null,[],[]],printChar:function(K,ne){var Ie=bi.buffers[K];ne===0||ne===10?((K===1?E:M)(te(Ie,0)),Ie.length=0):Ie.push(ne)},varargs:void 0,get:function(){bi.varargs+=4;var K=Fe[bi.varargs-4>>2];return K},getStr:function(K){var ne=ie(K);return ne},get64:function(K,ne){return K}};function Rc(K){return 0}function u0(K,ne,Ie,qe,bt){}function Fc(K,ne,Ie,qe){for(var bt=0,dt=0;dt<Ie;dt++){for(var We=Fe[ne+dt*8>>2],Ve=Fe[ne+(dt*8+4)>>2],Kt=0;Kt<Ve;Kt++)bi.printChar(K,ke[We+Kt]);bt+=Ve}return Fe[qe>>2]=bt,0}var pn={a:Va,d:o0,e:Cc,f:Rc,c:u0,b:Fc},c0=Vr(),Mc=s.___wasm_call_ctors=function(){return(Mc=s.___wasm_call_ctors=s.asm.h).apply(null,arguments)},h0=s._init=function(){return(h0=s._init=s.asm.i).apply(null,arguments)},$c=s._register_tensor=function(){return($c=s._register_tensor=s.asm.j).apply(null,arguments)},d0=s._dispose_data=function(){return(d0=s._dispose_data=s.asm.k).apply(null,arguments)},vi=s._dispose=function(){return(vi=s._dispose=s.asm.l).apply(null,arguments)},ki=s._Abs=function(){return(ki=s._Abs=s.asm.n).apply(null,arguments)},p0=s._Add=function(){return(p0=s._Add=s.asm.o).apply(null,arguments)},f0=s._AddN=function(){return(f0=s._AddN=s.asm.p).apply(null,arguments)},m0=s._ArgMax=function(){return(m0=s._ArgMax=s.asm.q).apply(null,arguments)},ve=s._AvgPool=function(){return(ve=s._AvgPool=s.asm.r).apply(null,arguments)},A0=s._BatchMatMul=function(){return(A0=s._BatchMatMul=s.asm.s).apply(null,arguments)},y0=s._Ceil=function(){return(y0=s._Ceil=s.asm.t).apply(null,arguments)},g0=s._ClipByValue=function(){return(g0=s._ClipByValue=s.asm.u).apply(null,arguments)},x0=s._Conv2D=function(){return(x0=s._Conv2D=s.asm.v).apply(null,arguments)},w0=s._Conv2DBackpropInput=function(){return(w0=s._Conv2DBackpropInput=s.asm.w).apply(null,arguments)},Ua=s._Cos=function(){return(Ua=s._Cos=s.asm.x).apply(null,arguments)},_0=s._CropAndResize=function(){return(_0=s._CropAndResize=s.asm.y).apply(null,arguments)},b0=s._Cumsum=function(){return(b0=s._Cumsum=s.asm.z).apply(null,arguments)},v0=s._DepthToSpace=function(){return(v0=s._DepthToSpace=s.asm.A).apply(null,arguments)},k0=s._DepthwiseConv2dNative=function(){return(k0=s._DepthwiseConv2dNative=s.asm.B).apply(null,arguments)},I0=s._Equal=function(){return(I0=s._Equal=s.asm.C).apply(null,arguments)},N0=s._Exp=function(){return(N0=s._Exp=s.asm.D).apply(null,arguments)},S0=s._FlipLeftRight=function(){return(S0=s._FlipLeftRight=s.asm.E).apply(null,arguments)},T0=s._Floor=function(){return(T0=s._Floor=s.asm.F).apply(null,arguments)},E0=s._FloorDiv=function(){return(E0=s._FloorDiv=s.asm.G).apply(null,arguments)},ua=s._FusedBatchNorm=function(){return(ua=s._FusedBatchNorm=s.asm.H).apply(null,arguments)},$l=s._FusedConv2D=function(){return($l=s._FusedConv2D=s.asm.I).apply(null,arguments)},Ol=s._FusedDepthwiseConv2D=function(){return(Ol=s._FusedDepthwiseConv2D=s.asm.J).apply(null,arguments)},C0=s._Gather=function(){return(C0=s._Gather=s.asm.K).apply(null,arguments)},R0=s._GatherNd=function(){return(R0=s._GatherNd=s.asm.L).apply(null,arguments)},F0=s._Greater=function(){return(F0=s._Greater=s.asm.M).apply(null,arguments)},M0=s._GreaterEqual=function(){return(M0=s._GreaterEqual=s.asm.N).apply(null,arguments)},$0=s._LeakyRelu=function(){return($0=s._LeakyRelu=s.asm.O).apply(null,arguments)},ze=s._Less=function(){return(ze=s._Less=s.asm.P).apply(null,arguments)},O0=s._LessEqual=function(){return(O0=s._LessEqual=s.asm.Q).apply(null,arguments)},D0=s._Log=function(){return(D0=s._Log=s.asm.R).apply(null,arguments)},z0=s._LogicalAnd=function(){return(z0=s._LogicalAnd=s.asm.S).apply(null,arguments)},P0=s._Max=function(){return(P0=s._Max=s.asm.T).apply(null,arguments)},L0=s._MaxPool=function(){return(L0=s._MaxPool=s.asm.U).apply(null,arguments)},W0=s._Maximum=function(){return(W0=s._Maximum=s.asm.V).apply(null,arguments)},Dl=s._Mean=function(){return(Dl=s._Mean=s.asm.W).apply(null,arguments)},Oc=s._Min=function(){return(Oc=s._Min=s.asm.X).apply(null,arguments)},Dc=s._Minimum=function(){return(Dc=s._Minimum=s.asm.Y).apply(null,arguments)},B0=s._Multiply=function(){return(B0=s._Multiply=s.asm.Z).apply(null,arguments)},V0=s._Neg=function(){return(V0=s._Neg=s.asm._).apply(null,arguments)},U0=s._NonMaxSuppressionV3=function(){return(U0=s._NonMaxSuppressionV3=s.asm.$).apply(null,arguments)},j0=s._NonMaxSuppressionV4=function(){return(j0=s._NonMaxSuppressionV4=s.asm.aa).apply(null,arguments)},H0=s._NonMaxSuppressionV5=function(){return(H0=s._NonMaxSuppressionV5=s.asm.ba).apply(null,arguments)},G0=s._NotEqual=function(){return(G0=s._NotEqual=s.asm.ca).apply(null,arguments)},q0=s._OneHot=function(){return(q0=s._OneHot=s.asm.da).apply(null,arguments)},Ze=s._PadV2=function(){return(Ze=s._PadV2=s.asm.ea).apply(null,arguments)},X0=s._Pow=function(){return(X0=s._Pow=s.asm.fa).apply(null,arguments)},K0=s._Prelu=function(){return(K0=s._Prelu=s.asm.ga).apply(null,arguments)},Z0=s._Prod=function(){return(Z0=s._Prod=s.asm.ha).apply(null,arguments)},Ii=s._RealDiv=function(){return(Ii=s._RealDiv=s.asm.ia).apply(null,arguments)},zc=s._Relu=function(){return(zc=s._Relu=s.asm.ja).apply(null,arguments)},Pc=s._Relu6=function(){return(Pc=s._Relu6=s.asm.ka).apply(null,arguments)},Lc=s._ResizeBilinear=function(){return(Lc=s._ResizeBilinear=s.asm.la).apply(null,arguments)},Y0=s._Reverse=function(){return(Y0=s._Reverse=s.asm.ma).apply(null,arguments)},J0=s._RotateWithOffset=function(){return(J0=s._RotateWithOffset=s.asm.na).apply(null,arguments)},Wc=s._Round=function(){return(Wc=s._Round=s.asm.oa).apply(null,arguments)},Q0=s._Rsqrt=function(){return(Q0=s._Rsqrt=s.asm.pa).apply(null,arguments)},Bc=s._ScatterNd=function(){return(Bc=s._ScatterNd=s.asm.qa).apply(null,arguments)},ca=s._SelectV2=function(){return(ca=s._SelectV2=s.asm.ra).apply(null,arguments)},e1=s._Sigmoid=function(){return(e1=s._Sigmoid=s.asm.sa).apply(null,arguments)},t1=s._Sin=function(){return(t1=s._Sin=s.asm.ta).apply(null,arguments)},P2=s._Softmax=function(){return(P2=s._Softmax=s.asm.ua).apply(null,arguments)},Vc=s._Sqrt=function(){return(Vc=s._Sqrt=s.asm.va).apply(null,arguments)},n1=s._Square=function(){return(n1=s._Square=s.asm.wa).apply(null,arguments)},r1=s._SquaredDifference=function(){return(r1=s._SquaredDifference=s.asm.xa).apply(null,arguments)},a1=s._Step=function(){return(a1=s._Step=s.asm.ya).apply(null,arguments)},s1=s._StridedSlice=function(){return(s1=s._StridedSlice=s.asm.za).apply(null,arguments)},i1=s._Sub=function(){return(i1=s._Sub=s.asm.Aa).apply(null,arguments)},o1=s._Sum=function(){return(o1=s._Sum=s.asm.Ba).apply(null,arguments)},l1=s._Tanh=function(){return(l1=s._Tanh=s.asm.Ca).apply(null,arguments)},u1=s._Tile=function(){return(u1=s._Tile=s.asm.Da).apply(null,arguments)},c1=s._TopK=function(){return(c1=s._TopK=s.asm.Ea).apply(null,arguments)},h1=s._Transpose=function(){return(h1=s._Transpose=s.asm.Fa).apply(null,arguments)},d1=s.__FusedMatMul=function(){return(d1=s.__FusedMatMul=s.asm.Ga).apply(null,arguments)},p1=s._malloc=function(){return(p1=s._malloc=s.asm.Ha).apply(null,arguments)},f1=s._free=function(){return(f1=s._free=s.asm.Ia).apply(null,arguments)},Uc=s.stackSave=function(){return(Uc=s.stackSave=s.asm.Ja).apply(null,arguments)},jc=s.stackRestore=function(){return(jc=s.stackRestore=s.asm.Ka).apply(null,arguments)},zl=s.stackAlloc=function(){return(zl=s.stackAlloc=s.asm.La).apply(null,arguments)};s.cwrap=Y;var Ni;function m1(K){this.name="ExitStatus",this.message="Program terminated with exit("+K+")",this.status=K}Br=function K(){Ni||Pl(),Ni||(Br=K)};function Pl(K){if(K=K||c,Xn>0||(Ln(),Xn>0))return;function ne(){Ni||(Ni=!0,s.calledRun=!0,!U&&(kn(),rn(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),Xt()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ne()},1)):ne()}if(s.run=Pl,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return Pl(),a.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),c8=Ye((e,t)=>{(function(n,r,a){function s(u){var c=this,h=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=h(" "),c.s1=h(" "),c.s2=h(" "),c.s0-=h(u),c.s0<0&&(c.s0+=1),c.s1-=h(u),c.s1<0&&(c.s1+=1),c.s2-=h(u),c.s2<0&&(c.s2+=1),h=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var h=new s(u),d=c&&c.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var u=4022871197,c=function(h){h=String(h);for(var d=0;d<h.length;d++){u+=h.charCodeAt(d);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),h8=Ye((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),d8=Ye((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,h==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),p8=Ye((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.x,d=u.i,p,m,f;return p=h[d],p^=p>>>7,m=p^p<<24,p=h[d+1&7],m^=p^p>>>10,p=h[d+3&7],m^=p^p>>>3,p=h[d+4&7],m^=p^p<<7,p=h[d+7&7],p=p^p<<13,m^=p^p<<9,h[d]=m,u.i=d+1&7,m};function c(h,d){var p,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,p=0;p<d.length;++p)f[p&7]=f[p&7]<<15^d.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],h.x=f,h.i=0,p=256;p>0;--p)h.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(h.x&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),f8=Ye((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.w,d=u.X,p=u.i,m,f;return u.w=h=h+1640531527|0,f=d[p+34&127],m=d[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[p]=f^m,u.i=p,f+(h^h>>>16)|0};function c(h,d){var p,m,f,A,y,g=[],_=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,_=Math.max(_,d.length)),f=0,A=-32;A<_;++A)d&&(m^=d.charCodeAt((A+32)%d.length)),A===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=m+y,f=p==0?f+1:0);for(f>=128&&(g[(d&&d.length||0)&127]=-1),f=127,A=4*128;A>0;--A)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;h.w=y,h.X=g,h.i=f}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(h.X&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),m8=Ye((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.b,p=u.c,m=u.d,f=u.a;return d=d<<25^d>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-d|0,u.b=d=d<<20^d>>>12^p,u.c=p=p-m|0,u.d=m<<16^p>>>16^f,u.a=f-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var h=0;h<c.length+20;h++)u.b^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),A8=Ye((e,t)=>{(function(n,r,a){var s=256,i=6,o=52,l="random",u=a.pow(s,i),c=a.pow(2,o),h=c*2,d=s-1,p;function m(w,x,N){var T=[];x=x==!0?{entropy:!0}:x||{};var E=g(y(x.entropy?[w,b(r)]:w==null?_():w,3),T),M=new f(T),D=function(){for(var L=M.g(i),W=u,U=0;L<c;)L=(L+U)*s,W*=s,U=M.g(1);for(;L>=h;)L/=2,W/=2,U>>>=1;return(L+U)/W};return D.int32=function(){return M.g(4)|0},D.quick=function(){return M.g(4)/4294967296},D.double=D,g(b(M.S),r),(x.pass||N||function(L,W,U,j){return j&&(j.S&&A(j,M),L.state=function(){return A(M,{})}),U?(a[l]=L,W):L})(D,E,"global"in x?x.global:this==a,x.state)}function f(w){var x,N=w.length,T=this,E=0,M=T.i=T.j=0,D=T.S=[];for(N||(w=[N++]);E<s;)D[E]=E++;for(E=0;E<s;E++)D[E]=D[M=d&M+w[E%N]+(x=D[E])],D[M]=x;(T.g=function(L){for(var W,U=0,j=T.i,X=T.j,G=T.S;L--;)W=G[j=d&j+1],U=U*s+G[d&(G[j]=G[X=d&X+W])+(G[X]=W)];return T.i=j,T.j=X,U})(s)}function A(w,x){return x.i=w.i,x.j=w.j,x.S=w.S.slice(),x}function y(w,x){var N=[],T=typeof w,E;if(x&&T=="object")for(E in w)try{N.push(y(w[E],x-1))}catch(M){}return N.length?N:T=="string"?w:w+"\0"}function g(w,x){for(var N=w+"",T,E=0;E<N.length;)x[d&E]=d&(T^=x[d&E]*19)+N.charCodeAt(E++);return b(x)}function _(){try{var w;return p&&(w=p.randomBytes)?w=w(s):(w=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(w)),b(w)}catch(T){var x=n.navigator,N=x&&x.plugins;return[+new Date,n,N,n.screen,b(r)]}}function b(w){return String.fromCharCode.apply(0,w)}if(g(a.random(),r),typeof t=="object"&&t.exports){t.exports=m;try{p=w1()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return m}):a["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),Y2=Ye((e,t)=>{var n=c8(),r=h8(),a=d8(),s=p8(),i=f8(),o=m8(),l=A8();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),y8=Ye(()=>{}),g8="3.2.0",x8="3.2.0",w8="3.2.0",_8="3.2.0",b8="3.2.0",v8=1e-7,k8=1e-4,Qc=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},jl=class{refCount(e){return Kn("refCount")}incRef(e){return Kn("incRef")}timerAvailable(){return!0}time(e){return Kn("time")}read(e){return Kn("read")}readSync(e){return Kn("readSync")}numDataIds(){return Kn("numDataIds")}disposeData(e,t){return Kn("disposeData")}write(e,t,n){return Kn("write")}move(e,t,n,r,a){return Kn("move")}memory(){return Kn("memory")}floatPrecision(){return Kn("floatPrecision")}epsilon(){return this.floatPrecision()===32?v8:k8}dispose(){return Kn("dispose")}};function Kn(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function J2(e){let t=e.length,n=0,r=0;for(;t>0;)r=Math.random()*t|0,t--,n=e[t],e[t]=e[r],e[r]=n}function I8(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,r,a,s=0;for(;n>0;)s=Math.random()*n|0,n--,r=e[n],a=t[n],e[n]=e[s],t[n]=t[s],e[s]=r,t[s]=a}function Hl(e,t,n){return Math.max(e,Math.min(t,n))}function N8(e){return e%2==0?e:e+1}function S8(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function T8(e,t){let n=Math.random();return t*n+(1-n)*e}function E8(e,t){let n=0;for(let r=0;r<e.length;r++){let a=Number(e[r])-Number(t[r]);n+=a*a}return n}function F(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function tn(e,t,n=""){F(Gr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function Ha(e){F(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Ga(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||nn(e)&&!n)for(let r=0;r<e.length;++r)Ga(e[r],t,n);else t.push(e);return t}function Rt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function C8(e){return e.length===0}function Gr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Lt(e){return e%1==0}function R8(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function F8(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function M8(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return J2(t),t}function Gl(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function $8(e,t=r=>0,n){return new Promise((r,a)=>{let s=0,i=()=>{if(e()){r();return}s++;let o=t(s);if(n!=null&&s>=n){a();return}setTimeout(i,o)};i()})}function O8(e,t){let n=1,r=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${s}`);r=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let a=e.slice();return a[r]=t/n,a}function Zn(e,t){let n=t.length;return e=e==null?t.map((r,a)=>a):[].concat(e),F(e.every(r=>r>=-n&&r<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),F(e.every(r=>Lt(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function Q2(e,t){let n=[],r=[],a=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||a?null:Zn(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),r.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),r.push(o))}return{newShape:n,keptDims:r}}function eg(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function tg(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function ng(e,t){for(let n=0;n<e.length;n++){let r=e[n];if(isNaN(r)||!isFinite(r))throw Error(`A tensor of type ${t} being uploaded contains ${r}.`)}}function rg(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function D8(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function nn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function _1(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function ag(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function pa(e){return typeof e=="string"||e instanceof String}function sg(e){return typeof e=="boolean"}function ig(e){return typeof e=="number"}function eh(e){return Array.isArray(e)?eh(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":ig(e)?"float32":pa(e)?"string":sg(e)?"bool":"float32"}function fa(e){return!!(e&&e.constructor&&e.call&&e.apply)}function th(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function $i(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let r=t-3;r>=0;--r)n[r]=n[r+1]*e[r+1];return n}function og(e,t,n){let r=new Array;if(t.length===1){let a=t[0];for(let s=0;s<a;s++)r[s]=n[e+s]}else{let a=t[0],s=t.slice(1),i=s.reduce((o,l)=>o*l);for(let o=0;o<a;o++)r[o]=og(e+o*i,s,n)}return r}function Oi(e,t){if(e.length===0)return t[0];let n=e.reduce((r,a)=>r*a);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}.`);return og(0,e,t)}function b1(e,t){let n=nh(e,t);for(let r=0;r<n.length;r++)n[r]=1;return n}function nh(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function z8(e,t){let n=e.reduce((r,a)=>r*a,1);if(t==null||t==="float32")return Oi(e,new Float32Array(n));if(t==="int32")return Oi(e,new Int32Array(n));if(t==="bool")return Oi(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function v1(e){e.forEach(t=>{F(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function P8(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let a=0;a<e.length-1;++a)r+=n[a]*e[a];return r}function L8(e,t,n){if(t===0)return[];if(t===1)return[e];let r=new Array(t);for(let a=0;a<r.length-1;++a)r[a]=Math.floor(e/n[a]),e-=r[a]*n[a];return r[r.length-1]=e,r}function k1(e){return e&&e.then&&typeof e.then=="function"}var lg="tfjsflags",ug=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let r=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${r}.`),this.set(e,r)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(k1(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=W8(this.global.location.search);lg in e&&e[lg].split(",").forEach(t=>{let[n,r]=t.split(":");this.urlFlags[n]=B8(n,r)})}};function W8(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(V8(t,r[0],r[1]),r.join("="))),t}function V8(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function B8(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function J(){return qa}var qa=null;function U8(e){qa=e}var I1;function cg(){if(I1==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");I1=e}return I1}function j8(){let e=cg();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function N1(e,t){let n=j8();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var Di="Abs",zi="Acos",Pi="Acosh",ma="Add",Xa="AddN",rh="All",ah="Any",Ka="ArgMax",ql="ArgMin",Li="Asin",Wi="Asinh",Bi="Atan",Vi="Atanh",Ui="Atan2",Za="AvgPool",sh="AvgPoolGrad",Xl="AvgPool3D",ih="AvgPool3DGrad",Ya="BatchMatMul",Kl="BatchToSpaceND",oh="Bincount",hg="BroadcastTo",Ja="Cast",Qa="Ceil",Aa="ClipByValue",lh="Complex",Zl="ComplexAbs",ji="Concat",es="Conv2D",uh="Conv2DBackpropFilter",ts="Conv2DBackpropInput",Yl="Conv3D",ch="Conv3DBackpropFilterV2",hh="Conv3DBackpropInputV2",ns="Cos",Hi="Cosh",rs="Cumsum",Gi="CropAndResize",dh="DenseBincount",qi="DepthToSpace",as="DepthwiseConv2dNative",ph="DepthwiseConv2dNativeBackpropFilter",fh="DepthwiseConv2dNativeBackpropInput",mh="Diag",Jl="Dilation2D",Ah="Dilation2DBackpropInput",yh="Dilation2DBackpropFilter",ss="RealDiv",Xi="Elu",gh="EluGrad",Ki="Erf",Zi="Equal",is="Exp",Yi="ExpandDims",Ji="Expm1",xh="FFT",Ql="Fill",Qi="FlipLeftRight",os="Floor",ls="FloorDiv",us="FusedBatchNorm",eo="GatherV2",to="GatherNd",no="Greater",cs="GreaterEqual",hs="Identity",wh="IFFT",_h="Imag",ro="IsFinite",ao="IsInf",so="IsNan",ds="LeakyRelu",io="Less",oo="LessEqual",bh="LinSpace",ps="Log",lo="Log1p",uo="LogicalAnd",eu="LogicalNot",tu="LogicalOr",dg="LogSoftmax",nu="LRN",vh="LRNGrad",fs="Max",ms="Maximum",As="MaxPool",kh="MaxPoolGrad",ru="MaxPool3D",Ih="MaxPool3DGrad",Nh="MaxPoolWithArgmax",ys="Mean",gs="Min",xs="Minimum",au="MirrorPad",co="Mod",Sh="Multinomial",ws="Multiply",ho="Neg",po="NotEqual",fo="NonMaxSuppressionV3",mo="NonMaxSuppressionV4",Ao="NonMaxSuppressionV5",yo="OnesLike",_s="OneHot",go="Pack",bs="PadV2",H8="Pool",vs="Pow",ks="Prelu",xo="Prod",su="Range",Th="Real",wo="Reciprocal",Is="Relu",_o="Reshape",iu="ResizeNearestNeighbor",Eh="ResizeNearestNeighborGrad",Ns="ResizeBilinear",Ch="ResizeBilinearGrad",Ss="Relu6",Ts="Reverse",Es="Round",Cs="Rsqrt",bo="ScatterNd",vo="Select",ko="Selu",Io="Slice",Rs="Sin",No="Sinh",So="Sign",Fs="Sigmoid",To="Softplus",Ms="Sqrt",$s="Sum",ou="SpaceToBatchND",Eo="SplitV",Os="Softmax",Ds="SquaredDifference",lu="Square",zs="Sub",Rh="SparseToDense",Co="StridedSlice",Ro="Tan",Ps="Tanh",ya="Tile",Fo="TopK",Ls="Transpose",Fh="Unique",Mo="Unpack",uu="UnsortedSegmentSum",$o="ZerosLike",ga="Step",Mh="FromPixels",Oo="RotateWithOffset",Ws="_FusedMatMul",Bs="FusedConv2D",Vs="FusedDepthwiseConv2D",Do=N1("kernelRegistry",()=>new Map),cu=N1("gradRegistry",()=>new Map);function $h(e,t){let n=S1(e,t);return Do.get(n)}function T1(e){return cu.get(e)}function zo(e){let t=Do.entries(),n=[];for(;;){let{done:r,value:a}=t.next();if(r)break;let[s,i]=a,[o]=s.split("_");o===e&&n.push(i)}return n}function Us(e){let{kernelName:t,backendName:n}=e,r=S1(t,n);Do.has(r)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),Do.set(r,e)}function pg(e){let{kernelName:t}=e;cu.has(t)&&J().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),cu.set(t,e)}function G8(e,t){let n=S1(e,t);if(!Do.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Do.delete(n)}function q8(e){if(!cu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);cu.delete(e)}function X8(e,t){zo(e).forEach(n=>{let r=Object.assign({},n,{backendName:t});Us(r)})}function S1(e,t){return`${t}_${e}`}var v={};Oe(v,{arraysEqual:()=>Gr,assert:()=>F,assertNonNegativeIntegerDimensions:()=>v1,assertNonNull:()=>Ha,assertShapesMatch:()=>tn,bytesFromStringArray:()=>ag,bytesPerElement:()=>_1,checkConversionForErrors:()=>ng,clamp:()=>Hl,computeStrides:()=>$i,createScalarValue:()=>K8,createShuffledIndices:()=>M8,decodeString:()=>Dh,distSquared:()=>E8,encodeString:()=>du,fetch:()=>Z8,flatten:()=>Ga,getArrayFromDType:()=>tg,getTypedArrayFromDType:()=>eg,hasEncodingLoss:()=>D8,indexToLoc:()=>L8,inferDtype:()=>eh,inferFromImplicitShape:()=>O8,isBoolean:()=>sg,isFunction:()=>fa,isInt:()=>Lt,isNumber:()=>ig,isPromise:()=>k1,isScalarShape:()=>C8,isString:()=>pa,isTypedArray:()=>nn,isValidDtype:()=>rg,locToIndex:()=>P8,makeOnesTypedArray:()=>b1,makeZerosNestedTypedArray:()=>z8,makeZerosTypedArray:()=>nh,nearestDivisor:()=>th,nearestLargerEven:()=>N8,now:()=>hu,parseAxisParam:()=>Zn,randUniform:()=>T8,repeatedTry:()=>$8,rightPad:()=>Gl,shuffle:()=>J2,shuffleCombo:()=>I8,sizeFromShape:()=>Rt,sizeToSquarishShape:()=>F8,squeezeShape:()=>Q2,sum:()=>S8,tanh:()=>R8,toNestedArray:()=>Oi,toTypedArray:()=>Oh});function K8(e,t){return t==="string"?du(e):Oh([e],t)}function Y8(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Oh(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Ga(e)),J().getBool("DEBUG")&&ng(e,t),Y8(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r<n.length;++r)Math.round(e[r])!==0&&(n[r]=1);return n}else throw new Error(`Unknown data type ${t}`)}function hu(){return J().platform.now()}function Z8(e,t){return J().platform.fetch(e,t)}function du(e,t="utf-8"){return t=t||"utf-8",J().platform.encode(e,t)}function Dh(e,t="utf-8"){return t=t||"utf-8",J().platform.decode(e,t)}var ek=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new Q8)}profileKernel(e,t,n){let r,a=()=>{r=n()},s,i=hu();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(a);else{a();for(let o of r)o.dataSync();s=Promise.resolve({kernelMs:hu()-i})}if(J().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<r.length;o++){let l=r[o];l.data().then(u=>{J8(u,l.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:a,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),r,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],a,o[2])})})}};function J8(e,t,n){if(t!=="float32")return!1;for(let r=0;r<e.length;r++){let a=e[r];if(isNaN(a)||!isFinite(a))return console.warn(`Found ${a} in the result of '${n}'`),!0}return!1}var Q8=class{logKernelProfile(e,t,n,r,a,s){let i=typeof r=="number"?Gl(`${r}ms`,9):r.error,o=Gl(e,25),l=t.rank,u=t.size,c=Gl(t.shape.toString(),14),h="";for(let d in a){let p=a[d];if(p!=null){let m=p.shape||t.shape,f=m.length;h+=`${d}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${c} %c${u} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function tk(e,t,n){let r={},a={};for(let l=0;l<t.length;l++)r[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],c=u.inputs;for(let h in c){let d=c[h],p=!1;for(let m=0;m<t.length;m++)if(r[d.id]){u.outputs.forEach(f=>r[f.id]=!0),p=!0,a[u.id]=!0;break}if(p)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let h=0;h<u.outputs.length;h++)if(s[u.outputs[h].id]){for(let d in c)s[c[d].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(a[u.id]&&i[u.id]){let c={};for(let d in u.inputs){let p=u.inputs[d];r[p.id]&&(c[d]=p)}let h=Object.assign({},u);h.inputs=c,h.outputs=u.outputs,o.push(h)}}return o}function nk(e,t,n,r){for(let a=t.length-1;a>=0;a--){let s=t[a],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=s.inputs[l];if(!Gr(u.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let h=e[c.id];e[c.id]=r(h,u),h.dispose()}}}}var fg=20,pu=3,E1=7;function ak(e,t,n,r){let a=$i(t),s=rk(e,t,n,a),i=t.length,o=zh(e,t,n,a,s),l=["Tensor"];return r&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
`)),l.join(`
`)}function rk(e,t,n,r){let a=Rt(t),s=r[r.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?mu(e):e;if(o>1)for(let u=0;u<a/s;u++){let c=u*s;for(let h=0;h<s;h++)i[h]=Math.max(i[h],fu(l[c+h],0,n).length)}return i}function fu(e,t,n){let r;return Array.isArray(e)?r=`${parseFloat(e[0].toFixed(E1))} + ${parseFloat(e[1].toFixed(E1))}j`:pa(e)?r=`'${e}'`:n==="bool"?r=mg(e):r=parseFloat(e.toFixed(E1)).toString(),Gl(r,t)}function mg(e){return e===0?"false":"true"}function zh(e,t,n,r,a,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=mu(e);return[fu(f[0],0,n)]}return n==="bool"?[mg(e[0])]:[e[0].toString()]}if(l===1){if(o>fg){let A=pu*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-pu)*i,o*i));return n==="complex64"&&(y=mu(y),g=mu(g)),["["+y.map((_,b)=>fu(_,a[b],n)).join(", ")+", ..., "+g.map((_,b)=>fu(_,a[o-pu+b],n)).join(", ")+"]"]}let f=n==="complex64"?mu(e):Array.from(e);return["["+f.map((A,y)=>fu(A,a[y],n)).join(", ")+"]"]}let u=t.slice(1),c=r.slice(1),h=r[0]*i,d=[];if(o>fg){for(let f=0;f<pu;f++){let A=f*h,y=A+h;d.push(...zh(e.slice(A,y),u,n,c,a,!1))}d.push("...");for(let f=o-pu;f<o;f++){let A=f*h,y=A+h;d.push(...zh(e.slice(A,y),u,n,c,a,f===o-1))}}else for(let f=0;f<o;f++){let A=f*h,y=A+h;d.push(...zh(e.slice(A,y),u,n,c,a,f===o-1))}let p=l===2?",":"";d[0]="["+d[0]+p;for(let f=1;f<d.length-1;f++)d[f]=" "+d[f]+p;let m=`,
`;for(let f=2;f<l;f++)m+=`
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(s?"":m),d}function mu(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Ft=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Rt(e),n!=null){let r=n.length;F(r===this.size,()=>`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||tg(t,this.size),this.strides=$i(e)}set(e,...t){t.length===0&&(t=[0]),F(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let n=e[e.length-1];for(let r=0;r<e.length-1;++r)n+=this.strides[r]*e[r];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return br().makeTensor(this.values,this.shape,this.dtype)}},br=null,Po=null,sk=null;function ik(e){br=e}function ok(e){Po=e}function lk(e){sk=e}var Xe=class{constructor(e,t,n,r){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Rt(e),this.strides=$i(e),this.dataId=n,this.id=r,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Po.buffer(this.shape,this.dtype,e)}bufferSync(){return Po.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Oi(this.shape,e)}arraySync(){return Oi(this.shape,this.dataSync())}async data(){this.throwIfDisposed();let e=br().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Dh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=br().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Dh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await br().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(br().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Po.print(this,e)}clone(){return this.throwIfDisposed(),Po.clone(this)}toString(e=!1){let t=this.dataSync();return ak(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Po.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),br().makeVariable(this,e,t,n)}};Object.defineProperty(Xe,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Z(){return N1("Tensor",()=>Xe)}Z();var Au=class extends Xe{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Gr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);br().disposeTensor(this),this.dataId=e.dataId,br().incRef(this,null)}dispose(){br().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Au,Symbol.hasInstance,{value:e=>e instanceof Xe&&e.assign!=null&&e.assign instanceof Function});var lr={};Oe(lr,{assertTypesMatch:()=>Ag,getTensorsInContainer:()=>C1,isTensorInList:()=>uk,makeTypesMatch:()=>gt});var R1;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(R1||(R1={}));var F1;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(F1||(F1={}));var M1;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(M1||(M1={}));var $1;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})($1||($1={}));var O1;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(O1||(O1={}));var ck={float32:$1,int32:F1,bool:M1,complex64:O1};function Yn(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return ck[e][t]}function Ph(e){return Yn(e,"int32")}function gt(e,t){if(e.dtype===t.dtype)return[e,t];let n=Yn(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function Ag(e,t){F(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function uk(e,t){return t.some(n=>n.id===e.id)}function C1(e){let t=[],n=new Set;return yg(e,t,n),t}function yg(e,t,n){if(e==null)return;if(e instanceof Xe){t.push(e);return}if(!hk(e))return;let r=e;for(let a in r){let s=r[a];n.has(s)||(n.add(s),yg(s,t,n))}}function hk(e){return Array.isArray(e)||typeof e=="object"}function D1(e){return e.kernelName!=null}var gg=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},yu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new gg}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new ek(this.backendInstance),!0}setupRegisteredKernels(){zo(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){zo(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof jl)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,a=n.then(s=>r<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(r<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=a,{success:a,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:r,asyncInit:a}=this.initializeBackend(n);if(a||r)return{name:n,asyncInit:a}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),r=n.backend,a=this.readSync(t),s=r.refCount(t);r.disposeData(t,!0),n.backend=e,e.move(t,a,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let r;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return yu.nextTensorId++}nextVariableId(){return yu.nextVariableId++}clone(e){let t=$.runKernel(hs,{x:e}),n={x:e},r=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return $.runKernel(Ja,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,a,{}),t}runKernel(e,t,n){if($h(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),a=0;n.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=r-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=D1(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(D1(e)){let{kernelName:p,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let A=$h(p,this.backendName);F(A!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=A.kernelFunc({inputs:m,attrs:f,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,y,g);let _=g.map(b=>{if(b.rank!=null)return b;let{dataId:w,shape:x,dtype:N}=b;return this.makeTensorFromDataId(w,x,N)});if(r){let b=this.getTensorsForGradient(p,m,_);n=this.saveTensorsForBackwardMode(b)}return _}}else{let{forwardFunc:p}=e,m=f=>{!r||(n=f.map(A=>this.keep(this.clone(A))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>p(this.backend,m));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,A),A}}let{inputs:u,attrs:c}=e,h=D1(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),r&&this.addTapeNode(l,u,t,h,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(p=>u[p]!=null?u[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let r=T1(e);if(r!=null){let a=r.inputsToSave||[],s=r.outputsToSave||[],i;r.saveAllInputs?(F(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let a=e;n==="string"&&pa(e[0])&&(a=e.map(o=>du(o)));let s=r.write(a,t,n),i=new Xe(t,n,s,this.nextTensorId());if(this.trackTensor(i,r),n==="string"){let o=this.state.tensorInfo.get(s),l=ag(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,r){n=n||"float32";let a=new Xe(t,n,e,this.nextTensorId());return this.trackTensor(a,r),a}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let a=new Au(e,t,n,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*_1(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Au||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*_1(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:a},o=T1(e);o!=null&&(r=o.gradFunc),r!=null&&(i.gradient=l=>(l=l.map((u,c)=>{if(u==null){let h=n[c],d=nh(h.size,h.dtype);return this.makeTensor(d,h.shape,h.dtype)}return u}),r(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=C1(e),n=new Set(t.map(a=>a.id));for(let a=0;a<this.state.activeScope.track.length;a++){let s=this.state.activeScope.track[a];!s.kept&&!n.has(s.id)&&s.dispose()}let r=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(a=>{!a.kept&&a.scopeId===r.id&&this.track(a)})}gradients(e,t,n,r=!1){if(F(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));F(a instanceof Xe,()=>"The result y returned by f() must be a tensor.");let s=tk(this.state.activeTape,t,a);if(!r&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=n==null?dk(a.shape):n,nk(i,s,l=>this.tidy(l),pk);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return F(fa(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{F(t.every(i=>i instanceof Xe),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((i,o)=>{r[o]=i});let a=(i,o)=>(n=e(...t,o),F(n.value instanceof Xe,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),F(fa(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];F(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),F(u.every(h=>h instanceof Xe),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((h,d)=>{c[d]=()=>h}),c};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=hu(),n=await this.backend.time(e);return n.wallMs=hu()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new gg;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};yu.nextTensorId=0;yu.nextVariableId=0;function dk(e){let t=b1(Rt(e),"float32");return $.makeTensor(t,e,"float32")}function xg(){let e=cg();if(e._tfengine==null){let t=new ug(e);e._tfengine=new yu(t)}return U8(e._tfengine.ENV),ik(()=>e._tfengine),e._tfengine}var $=xg();function pk(e,t){let n={a:e,b:t};return $.runKernel(ma,n)}var Lh={};Oe(Lh,{isBrowser:()=>wg,isMobile:()=>fk});function mk(){return typeof navigator!="undefined"&&navigator!=null}function fk(){if(mk()){let e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function wg(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var vr=J();vr.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});vr.registerFlag("IS_BROWSER",()=>wg());vr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");vr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));vr.registerFlag("PROD",()=>!1);vr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>vr.getBool("DEBUG"));vr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);vr.registerFlag("IS_TEST",()=>!1);vr.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);function kr(e,t){let n=e;if(nn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||nn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&J().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&_g(e,r,[]),r}function _g(e,t,n){if(n=n||[],!Array.isArray(e)&&!nn(e)){F(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}F(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),F(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let a=0;a<e.length;++a)_g(e[a],r,n.concat(a))}function bg(e,t,n,r){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${r}' must be ${e} tensor, but got ${t} tensor`)}}function R(e,t,n,r="numeric"){if(e instanceof Xe)return bg(r,e.dtype,t,n),e;let a=eh(e);if(a!=="string"&&["bool","int32","float32"].indexOf(r)>=0&&(a=r),bg(r,a,t,n),e==null||!nn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=kr(e,a);!nn(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?Oh(e,a):Ga(e,[],!0);return $.makeTensor(i,s,a)}function gu(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>R(a,`${t}[${s}]`,n,r))}var vg="__op";function O(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+vg;let a=(...s)=>{$.startScope(n);try{let i=r(...s);return k1(i)&&console.error("Cannot return a Promise inside of tidy."),$.endScope(i),i}catch(i){throw $.endScope(null),i}};return Object.defineProperty(a,"name",{value:n,configurable:!0}),a}function Ak(e,t){let n=R(e,"real","complex"),r=R(t,"imag","complex");tn(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let a={real:n,imag:r};return $.runKernel(lh,a)}var xa=O({complex_:Ak});function wa(e,t,n,r){if(r==null&&(r=eh(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!nn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){v1(t);let a=Rt(t),s=Rt(n);F(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==Rt(t.slice(i)):!0;F(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!nn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?Oh(e,r):Ga(e,[],!0),$.makeTensor(e,t,r)}function ur(e,t,n){let r=kr(e,n);return wa(e,t,r,n)}var z1={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Wh=4;async function gk(e,t){let n=[],r=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<a.length;++i){let o=a[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async h=>{let d=await l.bytes(),p=d.reduce((A,y)=>A+y.length,0)+Wh*d.length,m=new Uint8Array(p),f=0;for(let A=0;A<d.length;A++){let y=d[A],g=new Uint8Array(new Uint32Array([y.length]).buffer);m.set(g,f),f+=Wh,m.set(y,f),f+=y.length}h(m)});r.push(c)}else r.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(r);return{data:yk(s),specs:n}}function kg(e,t){let n={},r,a=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=Rt(l),c;if("quantization"in s){let h=s.quantization;if(h.dtype==="uint8"||h.dtype==="uint16"){if(!("min"in h&&"scale"in h))throw new Error(`Weight ${s.name} with quantization ${h.dtype} doesn't have corresponding metadata min and scale.`)}else if(h.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${h.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${h.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=z1[h.dtype],p=e.slice(a,a+u*d),m=h.dtype==="uint8"?new Uint8Array(p):new Uint16Array(p);if(o==="float32")if(h.dtype==="uint8"||h.dtype==="uint16"){c=new Float32Array(m.length);for(let f=0;f<m.length;f++){let A=m[f];c[f]=A*h.scale+h.min}}else if(h.dtype==="float16")r===void 0&&(r=xk()),c=r(m);else throw new Error(`Unsupported quantization type ${h.dtype} for weight type float32.`);else if(o==="int32"){if(h.dtype!=="uint8"&&h.dtype!=="uint16")throw new Error(`Unsupported quantization type ${h.dtype} for weight type int32.`);c=new Int32Array(m.length);for(let f=0;f<m.length;f++){let A=m[f];c[f]=Math.round(A*h.scale+h.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=u*d}else if(o==="string"){let h=Rt(s.shape);c=[];for(let d=0;d<h;d++){let p=new Uint32Array(e.slice(a,a+Wh))[0];a+=Wh;let m=new Uint8Array(e.slice(a,a+p));c.push(m),a+=p}}else{let h=z1[o],d=e.slice(a,a+u*h);if(o==="float32")c=new Float32Array(d);else if(o==="int32")c=new Int32Array(d);else if(o==="bool")c=new Uint8Array(d);else if(o==="complex64"){c=new Float32Array(d);let p=new Float32Array(c.length/2),m=new Float32Array(c.length/2);for(let y=0;y<p.length;y++)p[y]=c[y*2],m[y]=c[y*2+1];let f=ur(p,l,"float32"),A=ur(m,l,"float32");n[i]=xa(f,A),f.dispose(),A.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=u*h}o!=="complex64"&&(n[i]=ur(c,l,o))}return n}function yk(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),a=0;return n.forEach(s=>{r.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),r.buffer}var P1=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Ig(e){return P1?Buffer.byteLength(e):new Blob([e]).size}function wk(e){if(P1)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,a=t.length;r<a;r++)n+=String.fromCharCode(t[r]);return btoa(n)}function _k(e){if(P1){let r=Buffer.from(e,"base64");return r.buffer.slice(r.byteOffset,r.byteOffset+r.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let r=0;r<t.length;++r)n.set([t.charCodeAt(r)],r);return n.buffer}function L1(e){if(e.length===1)return e[0];let t=0;e.forEach(a=>{t+=a.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(a=>{n.set(new Uint8Array(a),r),r+=a.byteLength}),n.buffer}function Ng(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function xu(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Ig(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Ig(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function bk(){let e=n=>{let r=n<<13,a=0;for(;(r&8388608)==0;)a-=8388608,r<<=1;return r&=~8388608,a+=947912704,r|a},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function vk(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function kk(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function xk(){let e=bk(),t=vk(),n=kk();return r=>{let a=new ArrayBuffer(4*r.length),s=new Uint32Array(a);for(let i=0;i<r.length;i++){let o=r[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var vt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return vt.instance==null&&(vt.instance=new vt),vt.instance}static registerSaveRouter(e){vt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){vt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return vt.getHandlers(e,"save")}static getLoadHandlers(e,t){return vt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?vt.getInstance().loadRouters:vt.getInstance().saveRouters).forEach(a=>{let s=a(e,n);s!==null&&r.push(s)}),r}},Ik=e=>vt.registerSaveRouter(e),Nk=e=>vt.registerLoadRouter(e),Sk=e=>vt.getSaveHandlers(e),Tk=(e,t)=>vt.getLoadHandlers(e,t),W1="tensorflowjs",B1=1,js="models_store",_a="model_info_store";function Sg(){if(!J().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function V1(e){let t=e.result;t.createObjectStore(js,{keyPath:"modelPath"}),t.createObjectStore(_a,{keyPath:"modelPath"})}var Hs=class{constructor(e){if(this.indexedDB=Sg(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let a=this.indexedDB.open(W1,B1);a.onupgradeneeded=()=>V1(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(js,"readonly"),o=i.objectStore(js).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),r(o.error)),i.oncomplete=()=>s.close()}else{let i=xu(t),o=s.transaction(_a,"readwrite"),l=o.objectStore(_a),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),c;u.onsuccess=()=>{c=s.transaction(js,"readwrite");let h=c.objectStore(js).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=d=>{l=o.objectStore(_a);let p=l.delete(this.modelPath);p.onsuccess=()=>(s.close(),r(h.error)),p.onerror=m=>(s.close(),r(h.error))}},u.onerror=h=>(s.close(),r(u.error)),o.oncomplete=()=>{c==null?s.close():c.oncomplete=()=>s.close()}}},a.onerror=s=>r(a.error)})}};Hs.URL_SCHEME="indexeddb://";var Tg=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Hs.URL_SCHEME)?Ek(e.slice(Hs.URL_SCHEME.length)):null;vt.registerSaveRouter(Tg);vt.registerLoadRouter(Tg);function Ek(e){return new Hs(e)}function Ck(e){return e.startsWith(Hs.URL_SCHEME)?e.slice(Hs.URL_SCHEME.length):e}var Rk=class{constructor(){this.indexedDB=Sg()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(W1,B1);n.onupgradeneeded=()=>V1(n),n.onsuccess=()=>{let r=n.result,a=r.transaction(_a,"readonly"),s=a.objectStore(_a).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(r.close(),t(s.error)),a.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=Ck(e),new Promise((t,n)=>{let r=this.indexedDB.open(W1,B1);r.onupgradeneeded=()=>V1(r),r.onsuccess=()=>{let a=r.result,s=a.transaction(_a,"readwrite"),i=s.objectStore(_a),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),c=()=>{l=a.transaction(js,"readwrite");let h=l.objectStore(js).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=d=>n(o.error)};u.onsuccess=c,u.onerror=h=>(c(),a.close(),n(o.error))}},o.onerror=u=>(a.close(),n(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},r.onerror=a=>n(r.error)})}},qr="/",Lo="tensorflowjs_models",Eg="info",Fk="model_topology",Mk="weight_specs",$k="weight_data",Ok="model_metadata";function Cg(e){return{info:[Lo,e,Eg].join(qr),topology:[Lo,e,Fk].join(qr),weightSpecs:[Lo,e,Mk].join(qr),weightData:[Lo,e,$k].join(qr),modelMetadata:[Lo,e,Ok].join(qr)}}function Dk(e){let t=e.split(qr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(qr)}function zk(e){return e.startsWith(Gs.URL_SCHEME)?e.slice(Gs.URL_SCHEME.length):e}var Gs=class{constructor(e){if(!J().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Cg(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=xu(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,wk(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:r}}catch(a){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=_k(s),t}};Gs.URL_SCHEME="localstorage://";var Rg=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Gs.URL_SCHEME)?Pk(e.slice(Gs.URL_SCHEME.length)):null;vt.registerSaveRouter(Rg);vt.registerLoadRouter(Rg);function Pk(e){return new Gs(e)}var Lk=class{constructor(){F(J().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),F(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Lo+qr,n=qr+Eg;for(let r=0;r<this.LS.length;++r){let a=this.LS.key(r);if(a.startsWith(t)&&a.endsWith(n)){let s=Dk(a);e[s]=JSON.parse(this.LS.getItem(a))}}return e}async removeModel(e){e=zk(e);let t=Cg(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},Wo="://",Bn=class{constructor(){this.managers={}}static getInstance(){return Bn.instance==null&&(Bn.instance=new Bn),Bn.instance}static registerManager(e,t){F(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Wo)&&(e=e.slice(0,e.indexOf(Wo))),F(e.length>0,()=>"scheme must not be an empty string.");let n=Bn.getInstance();F(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Bh(e){if(e.indexOf(Wo)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Bn.getSchemes().join(",")}`);return{scheme:e.split(Wo)[0],path:e.split(Wo)[1]}}async function Fg(e,t,n=!1){F(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=vt.getLoadHandlers(e);F(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),F(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let a=r[0],s=vt.getSaveHandlers(t);F(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),F(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let i=s[0],o=Bh(e).scheme,l=Bh(e).path,u=o===Bh(e).scheme,c=await a.load();n&&u&&await Bn.getManager(o).removeModel(l);let h=await i.save(c);return n&&!u&&await Bn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function Wk(){let e=Bn.getSchemes(),t={};for(let n of e){let r=await Bn.getManager(n).listModels();for(let a in r){let s=n+Wo+a;t[s]=r[a]}}return t}async function Bk(e){let t=Bh(e);return Bn.getManager(t.scheme).removeModel(t.path)}async function Vk(e,t){return Fg(e,t,!1)}async function Uk(e,t){return Fg(e,t,!0)}var jk=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(J().get("IS_BROWSER")){J().setPlatform("browser",new jk);try{Bn.registerManager(Gs.URL_SCHEME,new Lk)}catch(e){}try{Bn.registerManager(Hs.URL_SCHEME,new Rk)}catch(e){}}var Hk={importFetch:()=>U4()},U1,Gk=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return J().global.fetch!=null?J().global.fetch(e,t):(U1==null&&(U1=Hk.importFetch()),U1(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};J().get("IS_NODE")&&J().setPlatform("node",new Gk);function Pe(e,t="float32",n){return t=t||"float32",v1(e),new Ft(e,t,n)}function qk(e,t){let n=R(e,"x","cast");if(!rg(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},a={dtype:t};return $.runKernel(Ja,r,a)}var fe=O({cast_:qk});function Xk(e){let t={x:R(e,"x","clone","string_or_numeric")};return $.runKernel(hs,t)}var Jn=O({clone_:Xk});function Mg(e,t=!1){console.log(e.toString(t))}xg();var Kk={buffer:Pe,cast:fe,clone:Jn,print:Mg};ok(Kk);var mn={};Oe(mn,{browserFiles:()=>Zk,browserHTTPRequest:()=>Jk,concatenateArrayBuffers:()=>L1,copyModel:()=>Vk,decodeWeights:()=>kg,encodeWeights:()=>gk,fromMemory:()=>Qk,getLoadHandlers:()=>Tk,getModelArtifactsInfoForJSON:()=>xu,getSaveHandlers:()=>Sk,http:()=>H1,isHTTPScheme:()=>j1,listModels:()=>Wk,loadWeights:()=>Yk,moveModel:()=>Uk,registerLoadRouter:()=>Nk,registerSaveRouter:()=>Ik,removeModel:()=>Bk,weightsLoaderFactory:()=>$g,withSaveHandler:()=>e9});var t9="model",n9=".json",r9=".weights.bin";function Og(e){return new Promise(t=>setTimeout(t)).then(e)}var Bo=class{constructor(e){if(!J().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Bo.URL_SCHEME)&&(e=e.slice(Bo.URL_SCHEME.length)),(e==null||e.length===0)&&(e=t9),this.modelTopologyFileName=e+n9,this.weightDataFileName=e+r9}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let a=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=a,await Og(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await Og(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:xu(e)}}}};Bo.URL_SCHEME="downloads://";var a9=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let a=new FileReader;a.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let u;try{u=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let c=[],h=[],d=[];l.forEach(p=>{p.paths.forEach(m=>{h.push(m),d.push(null)}),c.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(m=>{let f=new FileReader;f.onload=A=>{let y=A.target.result,g=h.indexOf(m);if(d[g]=y,d.indexOf(null)===-1){let _={modelTopology:o,weightSpecs:c,weightData:L1(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(_.signature=i.signature),i.userDefinedMetadata!=null&&(_.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(_.modelInitializer=i.modelInitializer),n(_)}},f.onerror=A=>r(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(u[m])})})},a.onerror=s=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(s=>Ng(s.name)),a={};for(let s of e)s.paths.forEach(i=>{let o=Ng(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),r.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);a[i]=t[r.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return a}},i9=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Bo.URL_SCHEME)?s9(e.slice(Bo.URL_SCHEME.length)):null;vt.registerSaveRouter(i9);function s9(e="model"){return new Bo(e)}function Zk(e){return new a9(e)}function Dg(e,t,n,r){i(e),n=n==null?0:n,r=r==null?1:r,o(n,r);let a=0,s=l=>(l.then(u=>{let c=n+ ++a/e.length*(r-n);return t(c),u}),l);function i(l){F(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){F(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),F(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),F(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function zg(e,t){t==null&&(t={});let n=t.fetchFunc==null?J().platform.fetch:t.fetchFunc,r=e.map(u=>n(u,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(r):await Dg(r,t.onProgress,a,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await Dg(i,t.onProgress,o,l)}async function Yk(e,t="",n,r){return $g(a=>zg(a,{requestInit:r}))(e,t,n)}function $g(e){return async(t,n="",r)=>{let a=t.map(()=>!1),s={},i=r!=null?r.map(()=>!1):[],o=[];if(t.forEach((p,m)=>{let f=0;p.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=z1[y]*Rt(A.shape),_=()=>{a[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:A,groupOffset:f,sizeBytes:g})};r!=null?r.forEach((b,w)=>{b===A.name&&(_(),i[w]=!0)}):_(),o.push(A.name),f+=g})}),!i.every(p=>p)){let p=r.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}.
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((p,m,f)=>(m&&p.push(f),p),[]),u=[];l.forEach(p=>{t[p].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let c=await e(u),h={},d=0;return l.forEach(p=>{let m=t[p].paths.length,f=0;for(let _=0;_<m;_++)f+=c[d+_].byteLength;let A=new ArrayBuffer(f),y=new Uint8Array(A),g=0;for(let _=0;_<m;_++){let b=new Uint8Array(c[d+_]);y.set(b,g),g+=b.byteLength}s[p].forEach(_=>{let b=A.slice(_.groupOffset,_.groupOffset+_.sizeBytes),w=kg(b,[_.manifestEntry]);for(let x in w)h[x]=w[x]}),d+=m}),h}}var o9="application/octet-stream",l9="application/json",G1=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(F(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=J().platform.fetch,F(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&F(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:l9}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:o9}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:xu(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,r=t.weightsManifest,a=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let u,c;r!=null&&([u,c]=await this.loadWeights(r));let h={modelTopology:n,weightSpecs:u,weightData:c,generatedBy:a,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(h.modelInitializer=d),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=u9(t),a=this.weightPathPrefix||n,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(c)):i.push(a+c+r);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await zg(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,L1(l)]}};G1.URL_SCHEME_REGEX=/^https?:\/\//;function u9(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),a=n>t?e.substring(n):"";return[r+"/",a]}function j1(e){return e.match(G1.URL_SCHEME_REGEX)!=null}var Pg=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>j1(r)):n=j1(e),n)return H1(e,t)}return null};vt.registerSaveRouter(Pg);vt.registerLoadRouter(Pg);function H1(e,t){return new G1(e,t)}function Jk(e,t){return H1(e,t)}var q1=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},c9=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function Qk(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new q1(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new q1({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new q1({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function e9(e){return new c9(e)}var Lg={};Oe(Lg,{confusionMatrix:()=>h9});function d9(e,t,n=!1,r=!1){let a=R(e,"a","matMul"),s=R(t,"b","matMul");[a,s]=gt(a,s);let i={a,b:s},o={transposeA:n,transposeB:r};return $.runKernel(Ya,i,o)}var Ue=O({matMul_:d9});function p9(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:R(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:r};return $.runKernel(_s,a,s)}var Vo=O({oneHot_:p9});function f9(e,t){let n=R(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{F(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},a={perm:t};return $.runKernel(Ls,r,a)}var tt=O({transpose_:f9});function m9(e,t,n){let r=R(e,"labels","confusionMatrix"),a=R(t,"predictions","confusionMatrix");F(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),F(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),F(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),F(r.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),F(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=Vo(fe(r,"int32"),n),i=Vo(fe(a,"int32"),n),o=tt(s),l=Ue(o,i);return fe(l,"int32")}var h9=O({confusionMatrix_:m9}),Uo={};Oe(Uo,{fromPixels:()=>y9,toPixels:()=>A9});function Vh(e,t,n){if(Ha(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=kr(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return wa(e,t,r,n)}var jo;function g9(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a){let d=2;if(a&&e.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if($h(Mh,$.backendName)!=null){let d={pixels:e},p={numChannels:t};return $.runKernel(Mh,d,p)}let[l,u]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],c;i?c=e.getContext("2d").getImageData(0,0,l,u).data:r||n?c=e.data:(s||a||o)&&(jo==null&&(jo=document.createElement("canvas").getContext("2d")),jo.canvas.width=l,jo.canvas.height=u,jo.drawImage(e,0,0,l,u),c=jo.getImageData(0,0,l,u).data);let h;if(t===4)h=new Int32Array(c);else{let d=l*u;h=new Int32Array(d*t);for(let p=0;p<d;p++)for(let m=0;m<t;++m)h[p*t+m]=c[p*4+m]}return Vh(h,[u,l,t],"int32")}async function A9(e,t){let n=R(e,"img","toPixels");if(!(e instanceof Xe)){let u=n;n=fe(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[r,a]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*r*4);for(let u=0;u<r*a;++u){let c=[0,0,0,255];for(let d=0;d<s;d++){let p=i[u*s+d];if(n.dtype==="float32"){if(p<0||p>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);s===1?(c[0]=p*o,c[1]=p*o,c[2]=p*o):c[d]=p*o}let h=u*4;l[h+0]=Math.round(c[0]),l[h+1]=Math.round(c[1]),l[h+2]=Math.round(c[2]),l[h+3]=Math.round(c[3])}if(t!=null){t.width=a,t.height=r;let u=t.getContext("2d"),c=new ImageData(l,a,r);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var y9=O({fromPixels_:g9}),X1={};Oe(X1,{prepareAndValidate:()=>Wg});function Wg(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Rt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;h<a.length-1;++h)i*=a[h];let o=e.shape,l=a.slice();l.pop();let u=1;for(let h=s;h<n;++h)u*=o[h],l.push(o[h]);let c=[...$i(e.shape).map(h=>h/u),1].slice(0,s);return[l,i,u,c]}var K1={};Oe(K1,{calculateShapes:()=>Bg,validateInput:()=>Y1,validateUpdateShape:()=>Z1});function Z1(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${a}.`;if(n.rank<a)throw new Error(s+` update.rank < ${a}. `);if(e.length<r+(n.rank-a))throw new Error(s+` Output shape length < ${r+(n.rank-a)}`);if(n.rank!==a+e.length-r)throw new Error(s+` update.rank != ${a+e.length-r}`);for(let i=0;i<a;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-a;++i)if(n.shape[i+a]!==e[i+r])throw new Error(s+` updates.shape[${i+a}] (${n.shape[i+a]}) != shape[${i+a}] (${e[i+a]})`)}function Y1(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Z1(n,t,e)}function Bg(e,t,n){let r=t.shape.length,a=r>1?t.shape[r-1]:1,s=n.length,i=1;for(let h=a;h<s;++h)i*=n[h];let o=a<1?1:a,l=Rt(t.shape)/o,u=[...$i(n.slice(0,a)),1],c=Rt(n);return{sliceRank:a,numUpdates:l,sliceSize:i,strides:u,outputSize:c}}var an={};Oe(an,{assertParamsValid:()=>x9,computeFlatOffset:()=>_9,computeOutShape:()=>Vg,getNormalizedAxes:()=>jg,isSliceContinous:()=>w9,maskToAxes:()=>Uh,parseSliceParams:()=>Zg,sliceInfo:()=>b9,startForAxis:()=>Xg,startIndicesWithElidedDims:()=>Hg,stopForAxis:()=>Kg,stopIndicesWithElidedDims:()=>Gg,stridesForAxis:()=>qg,stridesWithElidedDims:()=>Ug});function x9(e,t,n){let r=e.shape.length;F(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),F(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let a=0;a<r;++a)F(t[a]+n[a]<=e.shape[a],()=>`Error in slice${r}D: begin[${a}] + size[${a}] (${t[a]+n[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function Uh(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function Vg(e,t,n){let r=[];for(let a=0;a<e.length;a++)r[a]=Math.ceil((t[a]-e[a])/n[a]);return r}function Ug(e,t,n,r){let a=[...e];for(let s=a.length;s<r.length;s++)a.push(1);for(let s=0;s<n;s++)s===0?a[t]=1:(a.splice(t,0,1),a.pop());return a}function Yg(e,t,n){return n<=e?n:n-(t-1)}function Jg(e,t){let n=[];for(let r=0;r<e;r++)n.push(t+r);return n}function jg(e,t,n,r,a,s,i,o,l){let u=e.length,c=new Array(u),h=new Array(u),d=new Array(u);if(t.length&&n>0){let p=t[0],m=n+1;c=Hg(i,p,m,r,e),h=Gg(o,p,m,a,e),d=Ug(s,p,m,e)}else for(let p=0;p<u;p++)c[p]=Xg(i,r,s,e,p,l),h[p]=Kg(o,a,s,e,p,l),d[p]=qg(s,p,l);return{begin:c,end:h,strides:d}}function Hg(e,t,n,r,a){let s=[...a],i=Jg(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=Yg(t,n,o),u=r[l];e&1<<l&&(u=0),s[o]=u}return s}function Gg(e,t,n,r,a){let s=[...a],i=Jg(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=Yg(t,n,o),u=r[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=a[o];s[o]<0&&(s[o]+=l),s[o]=Hl(0,s[o],a[o])}return s}function qg(e,t,n){let r=e[t];return(n&1<<t||r==null)&&(r=1),r}function Xg(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),i=Hl(0,i,l-1),i}function Kg(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),o>0?i=Hl(0,i,l):i=Hl(-1,i,l-1),i}function w9(e,t,n){let r=n.length;for(let a=0;a<n.length;a++)if(n[a]>1){r=a;break}for(let a=r+1;a<n.length;a++)if(t[a]>0||n[a]!==e[a])return!1;return!0}function _9(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r<e.length-1;r++)n+=e[r]*t[r];return n}function Zg(e,t,n){let r,a=e.shape.length;typeof t=="number"?r=[t,...new Array(a-1).fill(0)]:t.length<a?r=t.concat(new Array(a-t.length).fill(0)):r=t.slice(),r.forEach(i=>{F(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(a).fill(-1):typeof n=="number"?s=[n,...new Array(a-1).fill(-1)]:n.length<a?s=n.concat(new Array(a-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(F(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-r[o])),[r,s]}function b9(e,t,n,r,a,s,i,o,l){let u=t.slice(),c=n.slice(),h=r;r==null&&(h=new Array(u.length));let d=Uh(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-u.length,m=Uh(o),f=e.slice();m.forEach(x=>{u[x]=0,c[x]=1,f.splice(x,0,1)});let{begin:A,end:y,strides:g}=jg(f,d,p,u,c,h,a,s,i);u=A,c=y,h=g;let _=Uh(l);_.forEach(x=>{c[x]=u[x]+1,h[x]=1});let b=Vg(u,c,h),w=b.filter((x,N)=>_.indexOf(N)===-1);return{nonStrided:h.every(x=>x===1),$begin:u,$end:c,$strides:h,size:b,newShape:f,outShape:w}}var re={};Oe(re,{Serializable:()=>Qg,SerializationMap:()=>qs,registerClass:()=>ba});var Qg=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},qs=class{constructor(){this.classNameMap={}}static getMap(){return qs.instance==null&&(qs.instance=new qs),qs.instance}static register(e){qs.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function ba(e){F(e.className!=null,()=>"Class being registered does not have the static className property defined."),F(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),F(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),qs.register(e)}var e5={};Oe(e5,{TEST_EPSILON_FLOAT16:()=>t5,encodeStrings:()=>n5,expectArrayBuffersEqual:()=>T9,expectArraysClose:()=>v9,expectArraysEqual:()=>I9,expectNumbersClose:()=>N9,expectPromiseToFail:()=>k9,expectValuesInRange:()=>S9,testEpsilon:()=>J1});var E9=.001,t5=.1;function v9(e,t,n){return n==null&&(n=J1()),Q1(e,t,(r,a)=>ef(r,a,n))}function J1(){return $.backend.floatPrecision()===32?E9:t5}function Q1(e,t,n){let r=!0;if((nn(e)||nn(t))&&(r=!1),nn(e)&&nn(t)&&(r=!0),r){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=kr(e),o=kr(t);if(!Gr(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=nn(e)?e:Ga(e),s=nn(t)?t:Ga(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}.
Actual: ${a}.
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=a[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
Actual: ${a}.
Expected: ${s}.`)}}function k9(e,t){e().then(()=>t.fail(),()=>t())}function I9(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return pa(e)||pa(e[0])||pa(t)||pa(t[0])?Q1(e,n,(r,a)=>r==a):Q1(e,t,(r,a)=>ef(r,a,0))}function N9(e,t,n){if(n==null&&(n=J1()),!ef(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function ef(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function S9(e,t,n){for(let r=0;r<e.length;r++)if(e[r]<t||e[r]>n)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function T9(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function n5(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?n5(n):e[t]=du(n)}return e}var C9="3.2.0";function R9(){J().set("PROD",!0)}function F9(){J().set("DEBUG",!0)}function M9(){J().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function tf(e){J().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}lk(tf);function $9(){$.disposeVariables()}function Ir(){return $}function jh(){return $.memory()}function cr(e){return $.profile(e)}function B(e,t){return $.tidy(e,t)}function Se(e){C1(e).forEach(t=>t.dispose())}function Wt(e){return $.keep(e)}function O9(e){return $.time(e)}function D9(e){return $.setBackend(e)}function z9(){return $.ready()}function P9(){return $.backendName}function L9(e){$.removeBackend(e)}function nf(e){return $.findBackend(e)}function W9(e){return $.findBackendFactory(e)}function Ho(e,t,n=1){return $.registerBackend(e,t,n)}function r5(){return $.backend}function B9(e,t){J().setPlatform(e,t)}function V9(e,t){let n=R(e,"a","add"),r=R(t,"b","add");[n,r]=gt(n,r);let a={a:n,b:r};return $.runKernel(ma,a)}var se=O({add_:V9});function U9(e,t){let n=R(e,"a","floorDiv"),r=R(t,"b","floorDiv");[n,r]=gt(n,r);let a={a:n,b:r};return $.runKernel(ls,a)}var Hh=O({floorDiv_:U9});function j9(e,t){let n=R(e,"a","div"),r=R(t,"b","div");if([n,r]=gt(n,r),n.dtype==="int32"&&r.dtype==="int32")return Hh(n,r);let a={a:n,b:r},s={};return $.runKernel(ss,a,s)}var we=O({div_:j9});function H9(e,t){let n=R(e,"a","mul"),r=R(t,"b","mul");[n,r]=gt(n,r);let a={a:n,b:r};return $.runKernel(ws,a)}var P=O({mul_:H9});function G9(e){let t=R(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return $.runKernel(Zl,n)}else{let n={x:t};return $.runKernel(Di,n)}}var Mt=O({abs_:G9});function q9(e){let t={x:R(e,"x","acos")};return $.runKernel(zi,t)}var rf=O({acos_:q9});function X9(e){let t={x:R(e,"x","acosh")};return $.runKernel(Pi,t)}var af=O({acosh_:X9});function K9(e){F(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),F(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>R(a,`tensors${s}`,"addN")),n=t[0];t.forEach(a=>{if(a.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!Gr(a.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return $.runKernel(Xa,r)}var Go=O({addN_:K9});function Z9(e,t=null,n=!1){let r={x:R(e,"x","all","bool")},a={axis:t,keepDims:n};return $.runKernel(rh,r,a)}var Gh=O({all_:Z9});function Y9(e,t=null,n=!1){let r={x:R(e,"x","any","bool")},a={axis:t,keepDims:n};return $.runKernel(ah,r,a)}var wu=O({any_:Y9});function J9(e,t=0){let n={x:R(e,"x","argMax")},r={axis:t};return $.runKernel(Ka,n,r)}var _u=O({argMax_:J9});function Q9(e,t=0){let n={x:R(e,"x","argMin")},r={axis:t};return $.runKernel(ql,n,r)}var sf=O({argMin_:Q9});function eI(e){let t={x:R(e,"x","asin")};return $.runKernel(Li,t)}var of=O({asin_:eI});function tI(e){let t={x:R(e,"x","asinh")};return $.runKernel(Wi,t)}var lf=O({asinh_:tI});function nI(e){let t={x:R(e,"x","atan")};return $.runKernel(Bi,t)}var uf=O({atan_:nI});function rI(e,t){let n=R(e,"a","atan2"),r=R(t,"b","atan2");[n,r]=gt(n,r);let a={a:n,b:r};return $.runKernel(Ui,a)}var cf=O({atan2_:rI});function aI(e){let t={x:R(e,"x","atanh")};return $.runKernel(Vi,t)}var hf=O({atanh_:aI});function sI(e,t,n,r,a="NHWC",s){let i=e[3],o=[...t,i],l=a5(a);return bu(e,o,n,s,r,null,null,l)}function s5(e,t,n,r,a,s,i="channelsLast"){let[o,l]=qh(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return bu(e,u,n,r,a,s,!1,i)}function iI(e,t,n,r,a,s,i="NDHWC"){let[o,l,u]=df(t),c,h;if(i==="NDHWC")h="channelsLast",c=[o,l,u,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",c=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return i5(e,c,n,r,a,!1,h,s)}function bu(e,t,n,r,a,s,i=!1,o="channelsLast"){let[l,u,c,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,h]=e;else if(o==="channelsFirst")[l,h,u,c]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,p,,m]=t,[f,A]=qh(n),[y,g]=qh(r),_=qo(d,y),b=qo(p,g),{padInfo:w,outHeight:x,outWidth:N}=oI(a,u,c,f,A,_,b,s,o),T=i?m*h:m,E;return o==="channelsFirst"?E=[l,T,x,N]:o==="channelsLast"&&(E=[l,x,N,T]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:c,inChannels:h,outHeight:x,outWidth:N,outChannels:T,padInfo:w,strideHeight:f,strideWidth:A,filterHeight:d,filterWidth:p,effectiveFilterHeight:_,effectiveFilterWidth:b,dilationHeight:y,dilationWidth:g,inShape:e,outShape:E,filterShape:t}}function i5(e,t,n,r,a,s=!1,i="channelsLast",o){let[l,u,c,h,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,h,d]=e;else if(i==="channelsFirst")[l,d,u,c,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,m,f,,A]=t,[y,g,_]=df(n),[b,w,x]=df(r),N=qo(p,b),T=qo(m,w),E=qo(f,x),{padInfo:M,outDepth:D,outHeight:L,outWidth:W}=lI(a,u,c,h,y,g,_,N,T,E,o),U=s?A*d:A,j;return i==="channelsFirst"?j=[l,U,D,L,W]:i==="channelsLast"&&(j=[l,D,L,W,U]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:c,inWidth:h,inChannels:d,outDepth:D,outHeight:L,outWidth:W,outChannels:U,padInfo:M,strideDepth:y,strideHeight:g,strideWidth:_,filterDepth:p,filterHeight:m,filterWidth:f,effectiveFilterDepth:N,effectiveFilterHeight:T,effectiveFilterWidth:E,dilationDepth:b,dilationHeight:w,dilationWidth:x,inShape:e,outShape:j,filterShape:t}}function uI(e,t,n,r,a){r==null&&(r=pf(e,t,n));let s=e[0],i=e[1],o=Xs((s-t+2*r)/n+1,a),l=Xs((i-t+2*r)/n+1,a);return[o,l]}function cI(e,t,n,r,a,s){a==null&&(a=pf(e,t,r));let i=e[0],o=e[1],l=e[2],u=Xs((i-t+2*a)/r+1,s),c=Xs((o-t+2*a)/r+1,s),h=Xs((l-t+2*a)/r+1,s);return[u,c,h,n]}function pf(e,t,n,r=1){let a=qo(t,r);return Math.floor((e[0]*(n-1)-n+a)/2)}function qh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function df(e){return typeof e=="number"?[e,e,e]:e}function qo(e,t){return t<=1?e:e+(e-1)*(t-1)}function oI(e,t,n,r,a,s,i,o,l){let u,c,h;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=uI([t,n],s,r,e,o);c=d[0],h=d[1]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/a);let d=Math.max(0,(c-1)*r+s-t),p=Math.max(0,(h-1)*a+i-n),m=Math.floor(d/2),f=d-m,A=Math.floor(p/2),y=p-A;u={top:m,bottom:f,left:A,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-s+1)/r),h=Math.ceil((n-i+1)/a);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:d,bottom:p,left:m,right:f,type:d===0&&p===0&&m===0&&f===0?"VALID":"EXPLICIT"},c=Xs((t-s+d+p)/r+1,o),h=Xs((n-i+m+f)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:h}}function lI(e,t,n,r,a,s,i,o,l,u,c){let h,d,p,m;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=cI([t,n,r,1],o,1,a,e,c);d=f[0],p=f[1],m=f[2]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/s),m=Math.ceil(r/i);let f=(d-1)*a+o-t,A=(p-1)*s+l-n,y=(m-1)*i+u-r,g=Math.floor(f/2),_=f-g,b=Math.floor(A/2),w=A-b,x=Math.floor(y/2),N=y-x;h={top:b,bottom:w,left:x,right:N,front:g,back:_,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/a),p=Math.ceil((n-l+1)/s),m=Math.ceil((r-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:d,outHeight:p,outWidth:m}}function Xs(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function va(e){let[t,n,r]=qh(e);return t===1&&n===1&&r===1}function Nr(e,t){return va(e)||va(t)}function a5(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function hI(e,t){let n={x:R(e,"x","reshape","string_or_numeric")},r={shape:t};return $.runKernel(_o,n,r)}var H=O({reshape_:hI});function dI(e,t,n,r,a){let s=R(e,"x","avgPool","float32"),i=1;F(Nr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),a!=null&&F(Lt(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(Za,u,c);return h=fe(h,s.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var vu=O({avgPool_:dI});function pI(e,t,n,r,a,s="NDHWC"){let i=R(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&F(Lt(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(Xl,u,c);return h=fe(h,o.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var ff=O({avgPool3d_:pI});function fI(e,t=0){F(e.length>=1,()=>"Pass at least one tensor to concat");let n=gu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),n.length===1)return Jn(n[0]);let r=n,a={axis:t};return $.runKernel(ji,r,a)}var nt=O({concat_:fI});function mI(e){let t={x:R(e,"x","sigmoid")};return $.runKernel(Fs,t)}var In=O({sigmoid_:mI});function AI(e,t,n){let r=R(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let a={x:r},s={begin:t,size:n};return $.runKernel(Io,a,s)}var Ee=O({slice_:AI});function yI(e){let t={x:R(e,"x","tanh")};return $.runKernel(Ps,t)}var Xo=O({tanh_:yI});function gI(e,t,n,r,a,s){let i=R(e,"forgetBias","basicLSTMCell"),o=R(t,"lstmKernel","basicLSTMCell"),l=R(n,"lstmBias","basicLSTMCell"),u=R(r,"data","basicLSTMCell"),c=R(a,"c","basicLSTMCell"),h=R(s,"h","basicLSTMCell"),d=nt([u,h],1),p=Ue(d,o),m=se(p,l),f=m.shape[0],A=m.shape[1]/4,y=[f,A],g=Ee(m,[0,0],y),_=Ee(m,[0,A],y),b=Ee(m,[0,A*2],y),w=Ee(m,[0,A*3],y),x=se(P(In(g),Xo(_)),P(c,In(se(i,b)))),N=P(Xo(x),In(w));return[x,N]}var xI=O({basicLSTMCell_:gI});function wI(e,t,n){let r=R(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);F(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),F(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),F(r.shape[0]%a==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:r},i={blockShape:t,crops:n};return $.runKernel(Kl,s,i)}var ku=O({batchToSpaceND_:wI});function _I(e){let t;return e.rank===0||e.rank===1?t=H(e,[1,1,1,e.size]):e.rank===2?t=H(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function bI(e,t,n,r,a,s){s==null&&(s=.001);let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;r!=null&&(c=R(r,"offset","batchNorm")),F(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),F(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),F(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:_I(i),scale:u,offset:c,mean:o,variance:l},d={varianceEpsilon:s},p=$.runKernel(us,h,d);return H(p,i.shape)}var Ks=O({batchNorm_:bI});function vI(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;return r!=null&&(c=R(r,"offset","batchNorm")),F(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),F(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),F(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Ks(i,o,l,c,u,s)}var o5=O({batchNorm2d_:vI});function kI(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;return r!=null&&(c=R(r,"offset","batchNorm")),F(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),F(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),F(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Ks(i,o,l,c,u,s)}var l5=O({batchNorm3d_:kI});function II(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;return r!=null&&(c=R(r,"offset","batchNorm")),F(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),F(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),F(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Ks(i,o,l,c,u,s)}var u5=O({batchNorm4d_:II});function NI(e,t,n){let r=R(e,"x","bincount"),a=R(t,"weights","bincount");F(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(a.size===r.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${a.shape}.`);let s={x:r,weights:a},i={size:n};return $.runKernel(oh,s,i)}var c5=O({bincount_:NI});function SI(e,t){let n=R(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=H(n,l)}let a=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(a[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return Jn(n);let i={x:n},o={reps:s};return $.runKernel(ya,i,o)}var Iu=O({broadcastTo_:SI});function TI(e){let t={x:R(e,"x","ceil")};return $.runKernel(Qa,t)}var mf=O({ceil_:TI});function EI(e,t,n){let r=R(e,"x","clipByValue");F(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let a={x:r},s={clipValueMin:t,clipValueMax:n};return $.runKernel(Aa,a,s)}var An=O({clipByValue_:EI});function CI(e){return nt(e,0)}var h5=O({concat1d_:CI});function RI(e,t){return nt(e,t)}var Ko=O({concat2d_:RI});function FI(e,t){return nt(e,t)}var d5=O({concat3d_:FI});function MI(e,t){return nt(e,t)}var p5=O({concat4d_:MI});function $I(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","conv2d"),l=R(t,"filter","conv2d"),u=o,c=!1;o.rank===3&&(c=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&F(Lt(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h=a==="NHWC"?u.shape[3]:u.shape[1];F(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),F(Nr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:u,filter:l},p={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},m=$.runKernel(es,d,p);return c?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Xr=O({conv2d_:$I});function OI(e,t,n,r,a="NWC",s=1,i){let o=R(e,"x","conv1d"),l=R(t,"filter","conv1d"),u=o,c=!1;o.rank===2&&(c=!0,u=H(o,[1,o.shape[0],o.shape[1]])),F(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),F(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&F(Lt(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),F(Nr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),F(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=H(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=H(u,[u.shape[0],1,u.shape[1],u.shape[2]]),p=Xr(d,h,[1,n],r,"NHWC",[1,s],i);return c?H(p,[p.shape[2],p.shape[3]]):H(p,[p.shape[0],p.shape[2],p.shape[3]])}var Xh=O({conv1d_:OI});function DI(e,t,n,r,a,s="NHWC",i){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),F(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),F(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),F(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];F(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),F(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&F(Lt(a),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let d={dy:l,filter:n},p={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},m=$.runKernel(ts,d,p);return u?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Af=O({conv2DBackpropInput_:DI});function zI(e,t,n,r,a,s){let i=R(e,"x","conv2dTranspose"),o=R(t,"filter","conv2dTranspose");return Af(n,i,o,r,a,"NHWC",s)}var Kh=O({conv2dTranspose_:zI});function PI(e,t,n,r,a="NDHWC",s=[1,1,1]){let i=R(e,"x","conv3d"),o=R(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),F(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),F(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),F(Nr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let c={x:l,filter:o},h={strides:n,pad:r,dataFormat:a,dilations:s},d=$.runKernel(Yl,c,h);return u?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var yf=O({conv3d_:PI});function LI(e,t,n,r,a){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];F(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),F(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),F(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),F(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),F(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:i,filter:n},h={pad:a,strides:r,inputShape:s},d=$.runKernel(hh,c,h);return o?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var f5=O({conv3DBackpropInput_:LI});function WI(e,t,n,r,a){let s=R(e,"x","conv3dTranspose"),i=R(t,"filter","conv3dTranspose");return f5(n,s,i,r,a)}var BI=O({conv3dTranspose_:WI});function VI(e){let t={x:R(e,"x","cos")};return $.runKernel(ns,t)}var Nu=O({cos_:VI});function UI(e){let t={x:R(e,"x","cosh")};return $.runKernel(Hi,t)}var Zh=O({cosh_:UI});function jI(e,t=0,n=!1,r=!1){let a={x:R(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:r};return $.runKernel(rs,a,s)}var Yh=O({cumsum_:jI});function HI(e,t,n,r=!1){let a=R(e,"x","denseBincount"),s=R(t,"weights","denseBincount");F(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),F(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:n,binaryOutput:r};return $.runKernel(dh,i,o)}var m5=O({denseBincount_:HI});function GI(e,t,n="NHWC"){let r=R(e,"x","depthToSpace"),a=n==="NHWC"?r.shape[1]:r.shape[2],s=n==="NHWC"?r.shape[2]:r.shape[3],i=n==="NHWC"?r.shape[3]:r.shape[1];F(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${a} and ${t} for depthToSpace with input shape
${r.shape}`),F(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${t} for depthToSpace with input shape
${r.shape}`),F(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${r.shape}`);let o={x:r},l={blockSize:t,dataFormat:n};return $.runKernel(qi,o,l)}var gf=O({depthToSpace_:GI});function qI(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","depthwiseConv2d"),l=R(t,"filter","depthwiseConv2d"),u=o,c=!1;o.rank===3&&(c=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&F(Lt(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:u,filter:l},d={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},p=$.runKernel(as,h,d);return c?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Zo=O({depthwiseConv2d_:qI});function XI(e){let t={x:R(e,"x","diag")};return $.runKernel(mh,t)}var KI=O({diag_:XI});function ZI(e,t,n,r,a=[1,1],s="NHWC"){let i=R(e,"x","dilation2d"),o=R(t,"filter","dilation2d");F(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),F(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),F(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let c={x:l,filter:o},h={strides:n,pad:r,dilations:a},d=$.runKernel(Jl,c,h);return u?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var xf=O({dilation2d_:ZI});function YI(e,t){let n=e.length,r=[];for(let a=0;a<n;a++){let s=n-1-a,i=e[s]||1;(t[t.length-1-a]||1)>1&&i===1&&r.unshift(s)}return r}function $t(e,t){let n=[];for(let r=0;r<t.length;r++){let a=e[e.length-r-1],s=t.length-r-1,i=t[s];(a==null||a===1&&i>1)&&n.unshift(s)}return n}function pt(e,t){let n=[],r=Math.max(e.length,t.length);for(let a=0;a<r;a++){let s=e[e.length-a-1];s==null&&(s=1);let i=t[t.length-a-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function JI(e,t){let n=R(e,"a","equal"),r=R(t,"b","equal");[n,r]=gt(n,r),pt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Zi,a)}var ka=O({equal_:JI});function QI(e,t,n){let r=R(t,"a","where"),a=R(n,"b","where"),s=R(e,"condition","where","bool"),i=pt(r.shape,a.shape),o=Iu(r,i),l=Iu(a,i);s.rank===1&&F(s.shape[0]===r.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&tn(s.shape,l.shape,"Error in where: ");let u={condition:s,t:o,e:l};return $.runKernel(vo,u)}var yn=O({where_:QI});function eN(e){let t={x:R(e,"x","zerosLike")};return $.runKernel($o,t)}var Be=O({zerosLike_:eN});function tN(e,t){let n=R(e,"a","div"),r=R(t,"b","div");[n,r]=gt(n,r);let a=we(n,r),s=Be(a),i=ka(r,s);return yn(i,s,a)}var wf=O({divNoNan_:tN});function nN(e,t){let n=R(e,"t1","dot"),r=R(t,"t2","dot");F((n.rank===1||n.rank===2)&&(r.rank===1||r.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let a=n.rank===1?n.size:n.shape[1],s=r.rank===1?r.size:r.shape[0];if(F(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),n.rank===1&&r.rank===1){let i=H(n,[1,-1]),o=H(r,[-1,1]),l=Ue(i,o);return H(l,[])}else if(n.rank===1&&r.rank===2){let i=H(n,[1,-1]),o=H(r,[r.shape[0],r.shape[1]]),l=Ue(i,o);return H(l,[l.size])}else if(n.rank===2&&r.rank===1){let i=H(r,[-1,1]),o=Ue(n,i);return H(o,[o.size])}else{let i=H(r,[r.shape[0],r.shape[1]]);return Ue(n,i)}}var A5=O({dot_:nN});function rN(e){let t={x:R(e,"x","elu")};return $.runKernel(Xi,t)}var Yo=O({elu_:rN});function aN(e){let t=R(e,"x","erf");F(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=fe(t,"float32"));let n={x:t};return $.runKernel(Ki,n)}var _f=O({erf_:aN});function sN(e){let t={x:R(e,"x","exp")};return $.runKernel(is,t)}var Vn=O({exp_:sN});function iN(e,t=0){let n=R(e,"x","expandDims","string_or_numeric");F(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},a={dim:t};return $.runKernel(Yi,r,a)}var Nn=O({expandDims_:iN});function oN(e){let t={x:R(e,"x","expm1")};return $.runKernel(Ji,t)}var bf=O({expm1_:oN});function lN(e,t){let n=R(e,"x","tile","string_or_numeric");F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},a={reps:t};return $.runKernel(ya,r,a)}var Ia=O({tile_:lN});function uN(e,t,n,r="float32"){t==null&&(t=e);let a=Pe([e,t],r),s=e<=t?e:t;for(let o=0;o<s;++o)a.set(1,o,o);let i=H(a.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Ia(Nn(i,0),[n[0],1,1]);if(n.length===2)return Ia(Nn(Nn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Ia(Nn(Nn(Nn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var vf=O({eye_:uN});function Su(e,t,n){let r={shape:e,value:t,dtype:n};return $.runKernel(Ql,{},r)}function cN(e){let t={x:R(e,"x","floor")};return $.runKernel(os,t)}var Jo=O({floor_:cN});function hN(e,t,n=0,r=0){let a=R(e,"x","gather"),s=R(t,"indices","gather","int32"),i={x:a,indices:s},o={axis:n,batchDims:r};return $.runKernel(eo,i,o)}var Zs=O({gather_:hN});function dN(e,t){let n=R(e,"a","greater"),r=R(t,"b","greater");[n,r]=gt(n,r),pt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(no,a)}var Qn=O({greater_:dN});function pN(e,t){let n=R(e,"a","greaterEqual"),r=R(t,"b","greaterEqual");[n,r]=gt(n,r),pt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(cs,a)}var Na=O({greaterEqual_:pN});function fN(e){let t={input:R(e,"input","imag")};return $.runKernel(_h,t)}var Jh=O({imag_:fN});function mN(e){let t={x:R(e,"x","isFinite")};return $.runKernel(ro,t)}var y5=O({isFinite_:mN});function AN(e){let t={x:R(e,"x","isInf")};return $.runKernel(ao,t)}var g5=O({isInf_:AN});function yN(e){let t={x:R(e,"x","isNaN")};return $.runKernel(so,t)}var x5=O({isNaN_:yN});function gN(e,t=.2){let n={x:R(e,"x","leakyRelu")},r={alpha:t};return $.runKernel(ds,n,r)}var Tu=O({leakyRelu_:gN});function xN(e,t){let n=R(e,"a","less"),r=R(t,"b","less");[n,r]=gt(n,r),pt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(io,a)}var Qh=O({less_:xN});function wN(e,t){let n=R(e,"a","lessEqual"),r=R(t,"b","lessEqual");[n,r]=gt(n,r),pt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(oo,a)}var Ys=O({lessEqual_:wN});function w5(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let r={start:e,stop:t,num:n};return $.runKernel(bh,{},r)}function _N(e,t=5,n=1,r=1,a=.5){let s=R(e,"x","localResponseNormalization");F(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),F(Lt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=H(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:r,beta:a},c=$.runKernel(nu,l,u);return o?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var kf=O({localResponseNormalization_:_N});function bN(e){let t={x:R(e,"x","log")};return $.runKernel(ps,t)}var Sn=O({log_:bN});function vN(e){let t={x:R(e,"x","log1p")};return $.runKernel(lo,t)}var ed=O({log1p_:vN});function kN(e){return F(fa(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=R(t,"x","tf.grad","string_or_numeric"),a=n!=null?R(n,"dy","tf.grad"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(r),[r],a);return a!=null&&tn(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),td(i),i[0]})}}function IN(e){return F(fa(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{F(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=gu(t,"args","tf.grads","string_or_numeric"),a=n!=null?R(n,"dy","tf.grads"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(...r),r,a);return a!=null&&tn(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),td(i),i})}}function NN(e){return F(fa(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{F(t instanceof Xe,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),F(n==null||n instanceof Xe,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:a}=$.gradients(()=>e(t),[t],n);return td(r),{grad:r[0],value:a}}}function SN(e){return F(fa(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{F(Array.isArray(t)&&t.every(a=>a instanceof Xe),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),F(n==null||n instanceof Xe,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=$.gradients(()=>e(...t),t,n);return n!=null&&tn(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),td(r.grads),r}}function _5(e,t){F(fa(e),()=>"The f passed in variableGrads(f) must be a function"),F(t==null||Array.isArray(t)&&t.every(u=>u instanceof Au),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in $.registeredVariables)t.push($.registeredVariables[u])}let r=n?t.filter(u=>!u.trainable):null,a=t.length;t=t.filter(u=>u.trainable),F(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=$.gradients(e,t,null,s);F(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),F(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,c)=>{o[c]!=null&&(l[u.name]=o[c])}),r!=null&&r.forEach(u=>l[u.name]=null),{value:i,grads:l}}function Sr(e){return $.customGrad(e)}function td(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function TN(e){let t={x:R(e,"x","neg")};return $.runKernel(ho,t)}var xt=O({neg_:TN});function EN(e){let t={x:R(e,"x","softplus")};return $.runKernel(To,t)}var Qo=O({softplus_:EN});function CN(e){let t=R(e,"x","logSigmoid");return Sr(n=>({value:xt(Qo(xt(n))),gradFunc:r=>P(r,In(xt(n)))}))(t)}var b5=O({logSigmoid_:CN});function RN(e,t=null,n=!1){let r={x:R(e,"x","max")},a={reductionIndices:t,keepDims:n};return $.runKernel(fs,r,a)}var Un=O({max_:RN});function FN(e,t){let n=R(e,"a","sub"),r=R(t,"b","sub");[n,r]=gt(n,r);let a={a:n,b:r};return $.runKernel(zs,a)}var me=O({sub_:FN});function MN(e,t=null,n=!1){let r=R(e,"x","sum");r.dtype==="bool"&&(r=fe(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel($s,a,s)}var Ne=O({sum_:MN});function $N(e,t=-1){let n=R(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Sr((r,a)=>{let s=!0,i=Un(r,t,!0),o=me(r,i),l=me(fe(o,"float32"),Sn(Ne(Vn(o),t,s)));return a([l]),{value:l,gradFunc:(u,c)=>{let[h]=c,d=!0,p=Vn(h);return me(u,P(Ne(u,t,d),p))}}})(n)}var nd=O({logSoftmax_:$N});function If(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function v5(e,t,n){let r=e.length+t.length,a=[],s=0,i=0;for(let o=0;o<r;o++)n.indexOf(o)===-1?a.push(e[s++]):a.push(t[i++]);return a}function k5(e,t){let n=[],r=e.length;for(let s=0;s<r;s++)t.indexOf(s)===-1&&n.push(e[s]);let a=t.map(s=>e[s]);return[n,a]}function Js(e,t){let n=t.map(r=>1);return v5(e,n,t)}function ON(e,t,n){F(If(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function I5(e,t){if(If(e,t))return null;let n=[];for(let r=0;r<t;++r)e.indexOf(r)===-1&&n.push(r);return e.forEach(r=>n.push(r)),n}function Nf(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function DN(e,t){let n=[];for(let r=t-e;r<t;++r)n.push(r);return n}function zN(e,t=null,n=!1){let r=R(e,"x","logSumExp"),a=Zn(t,r.shape),s=Un(r,a,!0),i=me(r,s),o=Vn(i),l=Ne(o,a),u=Sn(l),c=se(H(s,u.shape),u);if(n){let h=Js(c.shape,a);return H(c,h)}return c}var Sf=O({logSumExp_:zN});function PN(e,t){let n=R(e,"a","logicalAnd","bool"),r=R(t,"b","logicalAnd","bool");pt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(uo,a)}var er=O({logicalAnd_:PN});function LN(e){let t={x:R(e,"x","logicalNot","bool")};return $.runKernel(eu,t)}var Eu=O({logicalNot_:LN});function WN(e,t){let n=R(e,"a","logicalOr","bool"),r=R(t,"b","logicalOr","bool");pt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(tu,a)}var rd=O({logicalOr_:WN});function BN(e,t){let n=R(e,"a","logicalXor","bool"),r=R(t,"b","logicalXor","bool");return pt(n.shape,r.shape),er(rd(e,t),Eu(er(e,t)))}var N5=O({logicalXor_:BN});function VN(e,t,n,r,a){let s=R(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),F(Nr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&F(Lt(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(As,u,c);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Cu=O({maxPool_:VN});function UN(e,t=[1,1,1],n,r,a,s="NDHWC"){let i=R(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&F(Lt(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(ru,u,c);return l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Tf=O({maxPool3d_:UN});function jN(e,t,n,r,a=!1){let s={x:R(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:a},o=$.runKernel(Nh,s,i);return{result:o[0],indexes:o[1]}}var S5=O({maxPoolWithArgmax_:jN});function HN(e,t){let n=R(e,"a","maximum"),r=R(t,"b","maximum");[n,r]=gt(n,r),n.dtype==="bool"&&(n=fe(n,"int32"),r=fe(r,"int32")),pt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(ms,a)}var Tr=O({maximum_:HN});function GN(e,t=null,n=!1){let r={x:R(e,"x","mean")},a={axis:t,keepDims:n};return $.runKernel(ys,r,a)}var wt=O({mean_:GN});function qN(e,t=null,n=!1){let r={x:R(e,"x","min")},a={axis:t,keepDims:n};return $.runKernel(gs,r,a)}var el=O({min_:qN});function XN(e,t){let n=R(e,"a","minimum"),r=R(t,"b","minimum");[n,r]=gt(n,r),n.dtype==="bool"&&(n=fe(n,"int32"),r=fe(r,"int32")),pt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(xs,a)}var tl=O({minimum_:XN});function KN(e,t,n){F(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=R(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");F(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let a=n==="reflect"?1:0;for(let o=0;o<r.rank;o++)F(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),F(t[o][0]>=0&&t[o][0]<=r.shape[o]-a&&t[o][1]>=0&&t[o][1]<=r.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${r.shape[o]-a} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:n},i={x:r};return $.runKernel(au,i,s)}var Ef=O({mirrorPad_:KN});function ZN(e,t){let n=R(e,"a","mod"),r=R(t,"b","mod");[n,r]=gt(n,r);let a={a:n,b:r};return $.runKernel(co,a)}var Cf=O({mod_:ZN});function YN(e){let t=R(e,"x","square"),n={};return $.runKernel("Square",{x:t},n)}var st=O({square_:YN});function JN(e,t=null,n=!1){e=R(e,"x","moments");let r=Zn(t,e.shape),a=wt(e,r,n),s=a.shape;n||(s=Js(a.shape,r));let i=st(me(fe(e,"float32"),H(a,s))),o=wt(i,r,n);return{mean:a,variance:o}}var ad=O({moments_:JN});function QN(e,t,n,r){let a=R(t,"data","multiRNNCell"),s=gu(n,"c","multiRNNCell"),i=gu(r,"h","multiRNNCell"),o=a,l=[];for(let h=0;h<e.length;h++){let d=e[h](o,s[h],i[h]);l.push(d[0]),l.push(d[1]),o=d[1]}let u=[],c=[];for(let h=0;h<l.length;h+=2)u.push(l[h]),c.push(l[h+1]);return[u,c]}var eS=O({multiRNNCell_:QN});function tS(e,t,n,r=!1){let a=R(e,"logits","multinomial"),s=a.size,i=a.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?H(a,[1,-1]):a},l={numSamples:t,seed:n,normalized:r},u=$.runKernel(Sh,o,l);return i===1?H(u,[u.size]):u}var T5=O({multinomial_:tS});function nS(e,t){let n=R(e,"a","notEqual"),r=R(t,"b","notEqual");[n,r]=gt(n,r),pt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(po,a)}var Qs=O({notEqual_:nS});function Nt(e,t="float32"){if(t==="complex64"){let r=Nt(e,"float32"),a=Nt(e,"float32");return xa(r,a)}let n=nh(Rt(e),t);return $.makeTensor(n,e,t)}function Er(e,t="float32"){if(t==="complex64"){let r=Er(e,"float32"),a=Nt(e,"float32");return xa(r,a)}let n=b1(Rt(e),t);return $.makeTensor(n,e,t)}function rS(e){let t={x:R(e,"x","onesLike")};return $.runKernel(yo,t)}var Tn=O({onesLike_:rS});function aS(e,t){let n=R(e,"v1","outerProduct"),r=R(t,"v2","outerProduct");F(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let a=H(n,[-1,1]),s=H(r,[1,-1]);return Ue(a,s)}var sS=O({outerProduct_:aS});function iS(e,t,n=0){let r=R(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:n},s={x:r};return $.runKernel(bs,s,a)}var Kr=O({pad_:iS});function oS(e,t,n=0){return F(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Kr(e,[t],n)}var lS=O({pad1d_:oS});function uS(e,t,n=0){return F(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Kr(e,t,n)}var cS=O({pad2d_:uS});function hS(e,t,n=0){return F(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Kr(e,t,n)}var dS=O({pad3d_:hS});function pS(e,t,n=0){return F(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Kr(e,t,n)}var fS=O({pad4d_:pS});function mS(e,t,n){let r=R(e,"x","spaceToBatchND");F(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),F(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),F(r.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:r},s={blockShape:t,paddings:n};return $.runKernel(ou,a,s)}var Ru=O({spaceToBatchND_:mS});function gS(e,t,n,r,a,s){a==null&&(a=[1,1]),s==null&&(s=1),r===0&&(r="valid");let i=R(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),F(Nr(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let u=s5(o.shape,t,s,a,r),c=[u.dilationHeight,u.dilationWidth],h;r==="same"?h=yS([u.filterHeight,u.filterWidth],c):h=[[0,0],[0,0]];let d=c[0]===1&&c[1]===1,[p,m]=AS([u.inHeight,u.inWidth],c,h),f=d?r:"valid",A=d?o:Ru(o,c,p),y=(n==="avg"?()=>vu(A,t,s,f):()=>Cu(A,t,s,f))(),g=d?y:ku(y,c,m);return l?H(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function AS(e,t,n){let r=n.map(c=>c[0]),a=n.map(c=>c[1]),s=e.concat(r,a),i=t.map((c,h)=>(c-s[h]%c)%c),o=a.map((c,h)=>c+i[h]),l=t.map((c,h)=>[r[h],o[h]]),u=t.map((c,h)=>[0,i[h]]);return[l,u]}function yS(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),r=n.map(s=>Math.floor(s/2)),a=n.map((s,i)=>s-r[i]);return n.map((s,i)=>[r[i],a[i]])}var E5=O({pool_:gS});function xS(e,t){let n=R(e,"base","pow"),r=R(t,"exp","pow");[n,r]=gt(n,r);let a={a:n,b:r};return $.runKernel(vs,a)}var Zr=O({pow_:xS});function wS(e,t){let n=R(e,"x","prelu"),r=R(t,"alpha","prelu"),a={x:n,alpha:r};return $.runKernel(ks,a)}var Fu=O({prelu_:wS});function _S(e,t=null,n=!1){let r=R(e,"x","prod");r.dtype==="bool"&&(r=fe(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(xo,a,s)}var sd=O({prod_:_S});function bS(e,t,n){let r=Rt(e),a=null;if(n==null||n==="float32")a=new Float32Array(r);else if(n==="int32")a=new Int32Array(r);else if(n==="bool")a=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<r;s++)a[s]=t();return $.makeTensor(a,e,n)}var vS=O({rand_:bS}),Rf=Mi(Y4()),Ff=class{constructor(e,t,n,r,a){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=r,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=a||Math.random();this.random=Rf.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let r=this.nextVal;return this.nextVal=NaN,r}let e,t,n=!1;for(;!n;){let r,a,s;do r=2*this.random()-1,a=2*this.random()-1,s=r*r+a*a;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*r*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},kS=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let a=r||Math.random();this.randu=Rf.alea(a.toString()),this.randn=new Ff(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,a,s;for(;;){do r=this.randn.nextValue(),s=1+this.c*r;while(s<=0);if(s*=s*s,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),a<t||Math.log(a)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},IS=class{constructor(e=0,t=1,n,r){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Rf.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function NS(e,t,n=1,r="float32",a){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let s=new kS(t,n,r,a),i=Pe(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var SS=O({randomGamma_:NS});function TS(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error(`Unsupported data type ${r}`);let s=new Ff(t,n,r,!1,a),i=Pe(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var C5=O({randomNormal_:TS});function ES(e,t=0,n=1,r="float32",a){let s=Pe(e,r),i=new IS(t,n,null,a);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var nl=O({randomUniform_:ES});function id(e,t,n=1,r="float32"){if(n===0)throw new Error("Cannot have a step of zero");let a={start:e,stop:t,step:n,dtype:r};return $.runKernel(su,{},a)}function CS(e){let t={input:R(e,"input","real")};return $.runKernel(Th,t)}var Mu=O({real_:CS});function RS(e){let t={x:R(e,"x","reciprocal")};return $.runKernel(wo,t)}var Mf=O({reciprocal_:RS});function FS(e){let t={x:R(e,"x","relu")};return $.runKernel(Is,t)}var Cr=O({relu_:FS});function MS(e){let t={x:R(e,"x","relu6")};return $.runKernel(Ss,t)}var od=O({relu6_:MS});function $S(e,t){let n={x:R(e,"x","reverse")},r={dims:t};return $.runKernel(Ts,n,r)}var En=O({reverse_:$S});function OS(e){let t=R(e,"x","reverse");return F(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),En(t,0)}var DS=O({reverse1d_:OS});function zS(e,t){let n=R(e,"x","reverse");return F(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),En(n,t)}var PS=O({reverse2d_:zS});function LS(e,t){let n=R(e,"x","reverse");return F(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),En(n,t)}var WS=O({reverse3d_:LS});function BS(e,t){let n=R(e,"x","reverse");return F(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),En(n,t)}var VS=O({reverse4d_:BS});function US(e){let t={x:R(e,"x","round")};return $.runKernel(Es,t)}var $f=O({round_:US});function jS(e){let t={x:R(e,"x","rsqrt")};return $.runKernel(Cs,t)}var ld=O({rsqrt_:jS});function _e(e,t){if((nn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&nn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return wa(e,[],[],t)}function HS(e){let t={x:R(e,"x","selu")};return $.runKernel(ko,t)}var ud=O({selu_:HS});function GS(e,t,n,r,a,s=[1,1],i="NHWC"){let o=R(e,"x","separableConv2d"),l=R(t,"depthwiseFilter","separableConv2d"),u=R(n,"pointwiseFilter","separableConv2d"),c=o,h=!1;if(o.rank===3&&(h=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");F(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),F(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),F(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let d=l.shape[2],p=l.shape[3];F(u.shape[2]===d*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*p}, but got ${u.shape[2]}.`);let m=Zo(c,l,r,a,i,s),f=Xr(m,u,1,"valid",i);return h?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Of=O({separableConv2d_:GS});async function qS(e,t){let n=R(e,"x","setdiff1d"),r=R(t,"y","setdiff1d");F(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),F(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),F(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let a=await n.data(),s=await r.data(),i=new Set(s),o=0;for(let c=0;c<a.length;c++)i.has(a[c])||o++;let l=new Ft([o],n.dtype),u=new Ft([o],"int32");for(let c=0,h=0;c<a.length;c++)i.has(a[c])||(l.values[h]=a[c],u.values[h]=c,h++);return[l.toTensor(),u.toTensor()]}var R5=qS;function XS(e){let t={x:R(e,"x","sign")};return $.runKernel(So,t)}var Df=O({sign_:XS});function KS(e){let t={x:R(e,"x","sin")};return $.runKernel(Rs,t)}var cd=O({sin_:KS});function ZS(e){let t={x:R(e,"x","sinh")};return $.runKernel(No,t)}var hd=O({sinh_:ZS});function YS(e,t,n){let r=R(e,"x","slice1d");return F(r.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Ee(r,[t],[n])}var dd=O({slice1d_:YS});function JS(e,t,n){let r=R(e,"x","slice2d");return F(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Ee(r,t,n)}var zf=O({slice2d_:JS});function QS(e,t,n){let r=R(e,"x","slice3d");return F(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Ee(r,t,n)}var pd=O({slice3d_:QS});function eT(e,t,n){let r=R(e,"x","slice4d");return F(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Ee(r,t,n)}var $u=O({slice4d_:eT});function tT(e,t=-1){let n=R(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},a={dim:t};return $.runKernel(Os,r,a)}var Ou=O({softmax_:tT});function nT(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(xh,t)}var Du=O({fft_:nT});function rT(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(wh,t)}var rl=O({ifft_:rT});function aT(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let a=H(e,[n,t]);r=rl(a)}else{let a=[n,2*(t-1)],s=H(Mu(e),[n,t]),i=H(Jh(e),[n,t]),o=En(Ee(s,[0,1],[n,t-2]),1),l=P(En(Ee(i,[0,1],[n,t-2]),1),_e(-1)),u=nt([s,o],1),c=nt([i,l],1),h=H(xa(u,c),[a[0],a[1]]);r=rl(h)}if(r=Mu(r),e.rank===3&&e.shape[0]!==0){let a=r,s=e.shape[0];r=H(r,[s,r.shape[0]/s,r.shape[1]]),a.dispose()}return r}var fd=O({irfft_:aT});function sT(e,t,n=0){let r={x:R(e,"x","split")},a={numOrSizeSplits:t,axis:n};return $.runKernel(Eo,r,a)}var Zt=O({split_:sT});function iT(e,t){F(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,a;if(t!=null&&t<n){let m=e.shape.map(A=>0),f=e.shape.map(A=>A);f[e.shape.length-1]=t,a=Ee(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,a=nt([e,Nt(m)],e.shape.length-1),n=t}else a=e;let s=Be(a),i=H(xa(a,s),[r,n]),o=Du(i),l=Math.floor(n/2)+1,u=Mu(o),c=Jh(o),h=Zt(u,[l,n-l],u.shape.length-1),d=Zt(c,[l,n-l],c.shape.length-1),p=a.shape.slice();return p[a.shape.length-1]=l,H(xa(h[0],d[0]),p)}var zu=O({rfft_:iT});function oT(e){let t={x:R(e,"x","sqrt")};return $.runKernel(Ms,t)}var Yt=O({sqrt_:oT});function lT(e,t){let n=R(e,"a","squaredDifference"),r=R(t,"b","squaredDifference");[n,r]=gt(n,r),pt(n.shape,r.shape);let a={a:n,b:r},s={};return $.runKernel(Ds,a,s)}var md=O({squaredDifference_:lT});function uT(e,t){let n=R(e,"x","squeeze");return H(n,Q2(n.shape,t).newShape)}var Sa=O({squeeze_:uT});function cT(e,t=0){let n=gu(e,"tensors","stack","string_or_numeric");F(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&F(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,a={axis:t};return $.runKernel(go,r,a)}var Cn=O({stack_:cT});function hT(e,t=0){let n={x:R(e,"x","step")},r={alpha:t};return $.runKernel(ga,n,r)}var al=O({step_:hT});function dT(e,t,n,r,a=0,s=0,i=0,o=0,l=0){let u={x:R(e,"x","stridedSlice")},c={begin:t,end:n,strides:r,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return $.runKernel(Co,u,c)}var Pf=O({stridedSlice_:dT});function pT(e){let t={x:R(e,"x","tan")};return $.runKernel(Ro,t)}var Lf=O({tan_:pT});function Bt(e,t){Ha(e);let n=kr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return wa(e,null,n,t)}function gn(e,t,n){if(Ha(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=kr(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return wa(e,t,r,n)}function fT(e,t,n){if(Ha(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=kr(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return wa(e,t,r,n)}function mT(e,t,n){if(Ha(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=kr(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return wa(e,t,r,n)}function AT(e,t,n){if(Ha(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=kr(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,wa(e,t,r,n)}function yT(e,t=1,n=!0){let r=R(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=r.shape[r.shape.length-1];if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:r},i={k:t,sorted:n},[o,l]=$.runKernel(Fo,s,i);return{values:o,indices:l}}var Wf=O({topk_:yT});function gT(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Ff(t,n,r,!0,a),i=Pe(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Ad=O({truncatedNormal_:gT});function xT(e,t=0){let n=R(e,"x","unique","string_or_numeric");F(n.rank>0,()=>"The input tensor must be at least 1D");let r={x:n},a={axis:t},[s,i]=$.runKernel(Fh,r,a);return{values:s,indices:i}}var yd=O({unique_:xT});function wT(e,t,n){let r=R(e,"x","unsortedSegmentSum"),a=R(t,"segmentIds","unsortedSegmentSum","int32");F(Lt(n),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:a},i={numSegments:n};return $.runKernel(uu,s,i)}var Bf=O({unsortedSegmentSum_:wT});function _T(e,t=0){let n=R(e,"x","unstack","string_or_numeric");F(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},a={axis:t};return $.runKernel(Mo,r,a)}var tr=O({unstack_:_T});function F5(e,t=!0,n,r){return $.makeVariable(e,t,n,r)}function M5(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let r=Pe(e,"int32"),a=Pe([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=r.indexToLoc(n[s]),o=s*e.length;a.values.set(i,o)}return a.toTensor()}async function bT(e){let t=R(e,"condition","whereAsync","bool"),n=await t.data(),r=M5(t.shape,n);return e!==t&&t.dispose(),r}var Vf=bT;async function vT(e,t,n){let r=R(e,"tensor","boolMask"),a=R(t,"mask","boolMask","bool"),s=n==null?0:n,i=a.rank,o=r.shape;F(i>0,()=>"mask cannot be scalar"),tn(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let u=o.slice(0,s).concat([l],o.slice(s+i)),c=H(r,u),h=H(a,[-1]),d=await Vf(h),p=Sa(d,[1]),m=Zs(c,p,s);return e!==r&&r.dispose(),t!==a&&a.dispose(),p.dispose(),c.dispose(),h.dispose(),d.dispose(),m}var kT=vT;function IT(e,t="euclidean",n=null,r=!1){e=R(e,"x","norm");let a=$5(e,t,n),s=a.shape;if(r){let i=Zn(n,e.shape);s=Js(a.shape,i)}return H(a,s)}function $5(e,t,n=null){if(e.rank===0)return Mt(e);if(e.rank!==1&&n===null)return $5(H(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Ne(Mt(e),n);if(t===Infinity)return Un(Mt(e),n);if(t===-Infinity)return el(Mt(e),n);if(t==="euclidean"||t===2)return Yt(Ne(Zr(Mt(e),_e(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Un(Ne(Mt(e),n[0]),n[1]-1);if(t===Infinity)return Un(Ne(Mt(e),n[1]),n[0]);if(t===-Infinity)return el(Ne(Mt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return Yt(Ne(st(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var gd=O({norm_:IT});function NT(e,t,n,r,a=!0){let s=R(e,"v","movingAverage"),i=R(t,"x","movingAverage"),o=R(n,"decay","movingAverage");Ag(s,i),F(Gr(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=_e(1),u=me(l,o),c=P(me(i,s),u);if(a){F(r!=null,()=>"When using zeroDebias: true, step is required.");let h=R(r,"step","movingAverage");c=we(c,me(l,Zr(o,h)))}return se(s,c)}var ST=O({movingAverage_:NT});function TT(e,t,n){let r=R(e,"indices","scatterND","int32"),a=R(t,"updates","scatterND");Y1(a,r,n);let s={indices:r,updates:a},i={shape:n};return $.runKernel(bo,s,i)}var O5=O({scatterND_:TT});function ET(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function CT(e,t,n,r=0){let a=R(e,"sparseIndices","sparseToDense","int32"),s=R(t,"sparseValues","sparseToDense"),i=R(r,"defaultValue","sparseToDense",s.dtype);ET(a,s,n,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:n};return $.runKernel(Rh,o,l)}var Uf=O({sparseToDense_:CT});function RT(e,t){let n=R(t,"indices","gatherND","int32"),r={params:R(e,"x","gatherND"),indices:n};return $.runKernel(to,r)}var D5=O({gatherND_:RT});function FT(e,t){if(t==null)return e.shape.slice();if(Gr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r<e.shape.length;r++)t[r]==null&&e.shape[r]!=null?n.push(e.shape[r]):n.push(t[r]);return n}return t}function MT(e,t,n,r){let a=R(e,"x","dropout");if(F(a.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),F(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Xe?a.clone():a;let s=FT(a,n),i=1-t,o=we(Jo(se(nl(s,0,1,"float32",r),i)),i);return P(a,o)}var z5=O({dropout_:MT});function P5(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function jf(e,t,n){let r=1-e%2,a=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+r-1);a[s]=t-n*Math.cos(i)}return Bt(a,"float32")}async function $T(e,t,n=1){let r=R(e,"predictions","inTopK"),a=R(t,"targets","inTopK");F(r.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),F(r.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${a.rank}`),tn(r.shape.slice(0,r.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];F(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await r.data(),o=await a.data(),[l,u]=[i.length/s,s],c=eg("bool",l);for(let h=0;h<l;h++){let d=h*u,p=i.subarray(d,d+u),m=[];for(let f=0;f<p.length;f++)m.push({value:p[f],index:f});m.sort((f,A)=>A.value-f.value),c[h]=0;for(let f=0;f<n;f++)if(m[f].index===o[h]){c[h]=1;break}}return e!==r&&r.dispose(),t!==a&&a.dispose(),ur(c,a.shape,"bool")}var OT=$T,Ta={};Oe(Ta,{conv2d:()=>DT,depthwiseConv2d:()=>zT,matMul:()=>PT});function LT(e,t,n,r,a,s="NHWC",i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]])),F(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),F(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),F(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],c=s==="NHWC"?l.shape[3]:l.shape[1];F(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),F(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),i!=null&&F(Lt(a),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:o,dy:l},d={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:n};return $.runKernel(uh,h,d)}var Hf=O({conv2DBackpropFilter_:LT});function xd(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return P(e,al(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function wd(e,t){let n=t,r=$t(e.shape,t.shape);return r.length>0&&(n=Ne(n,r)),H(n,e.shape)}function _d(e,t,n,r){if(t==="linear")return e;if(t==="relu")return Cr(e);if(t==="elu")return Yo(e);if(t==="relu6")return od(e);if(t==="prelu")return Fu(e,n);if(t==="leakyrelu")return Tu(e,r);throw new Error(`Unknown fused activation ${t}.`)}var bd=(e,t)=>!(e>0)||t==="linear";function WT({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",bd($.state.gradientDepth,l)===!1){let w=Xr(e,t,n,r,a,s,i);return o!=null&&(w=se(w,o)),_d(w,l,u,c)}let h=R(e,"x","conv2d"),d=R(t,"filter","conv2d"),p=h,m=!1;h.rank===3&&(m=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),F(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&F(Lt(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(p.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${d.shape[2]}.`),F(Nr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let f=bu(p.shape,d.shape,n,s,r,i),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=gt(A,h),pt(f.outShape,A.shape));let y;u!=null&&(y=R(u,"prelu weights","fused conv2d"));let g=(w,x)=>{let[N,T,E,M]=x,D=xd(w,E,l);F(va(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let L=Af(T.shape,D,N,n,r),W=Hf(T,D,N.shape,n,r),U=[L,W];if(M!=null){let j=wd(M,D);U.push(j)}return U},_={x:p,filter:d,bias:A,preluActivationWeights:y},b={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:c};return o==null?Sr((w,x,N)=>{let T=$.runKernel(Bs,_,b);return N([x,w,T]),m&&(T=H(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(p,d):Sr((w,x,N,T)=>{let E=$.runKernel(Bs,_,b);return T([x,w,E,N]),m&&(E=H(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:g}})(p,d,A)}var DT=O({fusedConv2d_:WT});function BT(e,t,n,r,a,s=[1,1],i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},c={strides:r,pad:a,dimRoundingMode:i,dilations:s,filterShape:n};return $.runKernel(ph,u,c)}var L5=O({depthwiseConv2dNativeBackpropFilter_:BT});function VT(e,t,n,r,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},c={strides:r,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=$.runKernel(fh,u,c);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var W5=O({depthwiseConv2dNativeBackpropInput_:VT});function UT({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(bd($.state.gradientDepth,l)===!1){let w=Zo(e,t,n,r,a,s,i);return o!=null&&(w=se(w,o)),_d(w,l,u,c)}let h=R(e,"x","depthwiseConv2d"),d=R(t,"filter","depthwiseConv2d"),p=h,m=!1;h.rank===3&&(m=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),F(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),F(p.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),F(Nr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&F(Lt(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${r}.`);let f=bu(p.shape,d.shape,n,s,r,i,!0),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=gt(A,h),pt(f.outShape,A.shape));let y;u!=null&&(y=R(u,"prelu weights","fused depthwiseConv2d"));let g=(w,x)=>{F(va(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[N,T,E,M]=x,D=xd(w,E,l),L=W5(T.shape,D,N,n,r,s,i),W=L5(T,D,N.shape,n,r,s,i);if(M!=null){let U=wd(A,D);return[L,W,U]}return[L,W]},_={x:p,filter:d,bias:A,preluActivationWeights:y},b={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:c};return o==null?Sr((w,x,N)=>{let T=$.runKernel(Vs,_,b);return N([x,w,T]),m&&(T=H(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(p,d):Sr((w,x,N,T)=>{let E=$.runKernel(Vs,_,b);return T([x,w,E,N]),m&&(E=H(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:g}})(p,d,A)}var zT=O({fusedDepthwiseConv2d_:UT});function jT({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(bd($.state.gradientDepth,s)===!1){let M=Ue(e,t,n,r);return a!=null&&(M=se(M,a)),_d(M,s,i,o)}let l=R(e,"a","fused matMul"),u=R(t,"b","fused matMul");[l,u]=gt(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=r?u.shape[u.rank-1]:u.shape[u.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),A=Rt(m),y=Rt(f);F(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),F(Gr(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),F(c===h,()=>`Error in fused matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${r} must match.`);let g=l.shape.slice(0,-2).concat([d,p]),_=n?H(l,[A,c,d]):H(l,[A,d,c]),b=r?H(u,[y,p,h]):H(u,[y,h,p]),w;a!=null&&(w=R(a,"bias","fused matMul"),[w]=gt(w,l),pt(g,w.shape));let x;i!=null&&(x=R(i,"prelu weights","fused matMul"));let N=(M,D)=>{let[L,W,U,j]=D,X=xd(H(M,U.shape),U,s),G,ee;if(!n&&!r?(G=Ue(X,W,!1,!0),ee=Ue(L,X,!0,!1)):!n&&r?(G=Ue(X,W,!1,!1),ee=Ue(X,L,!0,!1)):n&&!r?(G=Ue(W,X,!1,!0),ee=Ue(L,X,!1,!1)):(G=Ue(W,X,!0,!0),ee=Ue(X,L,!0,!0)),a!=null){let Y=wd(j,X);return[G,ee,Y]}else return[G,ee]},T={a:_,b,bias:w,preluActivationWeights:x},E={transposeA:n,transposeB:r,activation:s,leakyreluAlpha:o};return a==null?Sr((M,D,L)=>{let W=$.runKernel(Ws,T,E);return L([M,D,W]),{value:H(W,g),gradFunc:N}})(_,b):Sr((M,D,L,W)=>{let U=$.runKernel(Ws,T,E);return W([M,D,U,L]),{value:H(U,g),gradFunc:N}})(_,b,w)}var PT=O({fusedMatMul_:jT});function HT(e){return jf(e,.54,.46)}var GT=O({hammingWindow_:HT});function qT(e){return jf(e,.5,.5)}var B5=O({hannWindow_:qT});function XT(e,t,n,r=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Ee(e,s,t)),s+=n;if(r)for(;s<e.size;){let o=s+t-e.size,l=nt([Ee(e,s,t-o),Su([o],a)]);i.push(l),s+=n}return i.length===0?gn([],[0,t]):H(nt(i),[i.length,t])}var V5=O({frame_:XT});function KT(e,t,n,r,a=B5){r==null&&(r=P5(t));let s=V5(e,t,n),i=P(s,a(t)),o=[];for(let l=0;l<s.shape[0];l++)o.push(zu(Ee(i,[l,0],[1,t]),r));return nt(o)}var ZT=O({stft_:KT});function YT(e,t,n,r,a="bilinear",s=0){let i=R(e,"image","cropAndResize"),o=R(t,"boxes","cropAndResize","float32"),l=R(n,"boxInd","cropAndResize","int32"),u=o.shape[0];F(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),F(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),F(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),F(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),F(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let c={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:r};return $.runKernel(Gi,c,h)}var JT=O({cropAndResize_:YT});function QT(e){let t=R(e,"image","flipLeftRight","float32");F(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return $.runKernel(Qi,n,{})}var eE=O({flipLeftRight_:QT});function tE(e,t,n=0,r=.5){let a=R(e,"image","rotateWithOffset","float32");F(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:n,center:r};return $.runKernel(Oo,s,i)}var nE=O({rotateWithOffset_:tE});function sl(e,t,n,r,a,s){r==null&&(r=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),F(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),F(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),F(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),F(t.rank===1,()=>"scores must be a 1D tensor"),F(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),F(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s}}function rE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppression"),i=R(t,"scores","nonMaxSuppression"),o=sl(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:a};return $.runKernel(fo,{boxes:s,scores:i},l)}var aE=O({nonMaxSuppression_:rE});function iE(e,t,n){let r=sE(e,t,n),a=r<0?-(r+1):r;e.splice(a,0,t)}function sE(e,t,n){return lE(e,t,n||oE)}function oE(e,t){return e>t?1:e<t?-1:0}function lE(e,t,n){let r=0,a=e.length,s=0,i=!1;for(;r<a;){s=r+(a-r>>>1);let o=n(t,e[s]);o>0?r=s+1:(a=s,i=!o)}return i?r:-r-1}function U5(e,t,n,r,a){return Gf(e,t,n,r,a,0)}function j5(e,t,n,r,a,s){return Gf(e,t,n,r,a,0,!1,s,!0)}function H5(e,t,n,r,a,s){return Gf(e,t,n,r,a,s,!0)}function Gf(e,t,n,r,a,s,i=!1,o=!1,l=!1){let u=[];for(let A=0;A<t.length;A++)t[A]>a&&u.push({score:t[A],boxIndex:A,suppressBeginIndex:0});u.sort(G5);let c=s>0?-.5/s:0,h=[],d=[];for(;h.length<n&&u.length>0;){let A=u.pop(),{score:y,boxIndex:g,suppressBeginIndex:_}=A;if(y<a)break;let b=!1;for(let w=h.length-1;w>=_;--w){let x=uE(e,g,h[w]);if(x>=r){b=!0;break}if(A.score=A.score*cE(r,c,x),A.score<=a)break}A.suppressBeginIndex=h.length,b||(A.score===y?(h.push(g),d.push(A.score)):A.score>a&&iE(u,A,G5))}let p=h.length,m=n-p;o&&m>0&&(h.push(...new Array(m).fill(0)),d.push(...new Array(m).fill(0)));let f={selectedIndices:h};return i&&(f.selectedScores=d),l&&(f.validOutputs=p),f}function uE(e,t,n){let r=e.subarray(t*4,t*4+4),a=e.subarray(n*4,n*4+4),s=Math.min(r[0],r[2]),i=Math.min(r[1],r[3]),o=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),u=Math.min(a[0],a[2]),c=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),d=Math.max(a[1],a[3]),p=(o-s)*(l-i),m=(h-u)*(d-c);if(p<=0||m<=0)return 0;let f=Math.max(s,u),A=Math.max(i,c),y=Math.min(o,h),g=Math.min(l,d),_=Math.max(y-f,0)*Math.max(g-A,0);return _/(p+m-_)}function cE(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function G5(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function hE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppressionAsync"),i=R(t,"scores","nonMaxSuppressionAsync"),o=sl(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],c=l[1],{selectedIndices:h}=U5(u,c,n,r,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),Bt(h,"int32")}var dE=hE;function pE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=sl(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},c={maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s},h=$.runKernel(Ao,u,c);return{selectedIndices:h[0],selectedScores:h[1]}}var fE=O({nonMaxSuppressionWithScore_:pE});async function mE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=sl(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),c=u[0],h=u[1],{selectedIndices:d,selectedScores:p}=H5(c,h,n,r,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Bt(d,"int32"),selectedScores:Bt(p)}}var AE=mE;function yE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=sl(i,o,n,r,a,null),u=l.maxOutputSize,c=l.iouThreshold,h=l.scoreThreshold,d={boxes:i,scores:o},p={maxOutputSize:u,iouThreshold:c,scoreThreshold:h,padToMaxOutputSize:s},m=$.runKernel(mo,d,p);return{selectedIndices:m[0],validOutputs:m[1]}}var gE=O({nonMaxSuppressionPadded_:yE});async function xE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=sl(i,o,n,r,a,null),u=l.maxOutputSize,c=l.iouThreshold,h=l.scoreThreshold,[d,p]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=j5(d,p,u,c,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Bt(m,"int32"),validOutputs:_e(f,"int32")}}var wE=xE;function _E(e,t,n=!1,r=!1){let a=R(e,"images","resizeBilinear");F(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),F(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},u=$.runKernel(Ns,o,l);return i?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var q5=O({resizeBilinear_:_E});function bE(e,t,n=!1,r=!1){let a=R(e,"images","resizeNearestNeighbor");F(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),F(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),F(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},u=$.runKernel(iu,o,l);return i?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var X5=O({resizeNearestNeighbor_:bE});function vE(e,t,n){F(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),F(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=R(e,"a","bandPart");F(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let a=r.shape,[s,i]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=H(id(0,s,1,"int32"),[-1,1]),l=id(0,i,1,"int32"),u=me(o,l),c=er(Ys(u,_e(+t,"int32")),Na(u,_e(-n,"int32"))),h=Nt([s,i],r.dtype);return H(Cn(tr(H(r,[-1,s,i])).map(d=>yn(c,d,h))),a)}var kE=O({bandPart_:vE});function IE(e){let t;if(Array.isArray(e)){t=!1,F(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s<e.length;++s)F(e[s].shape[0]===a,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=Zt(e,e.shape[0],0).map(a=>Sa(a,[0]));F(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let a=0;a<e.length;++a)n.push($.tidy(()=>{let s=r[a];if(a>0)for(let i=0;i<a;++i){let o=P(Ne(P(n[i],s)),n[i]);s=me(s,o)}return we(s,gd(s,"euclidean"))}));return t?Cn(n,0):n}var NE=O({gramSchmidt_:IE});function SE(e,t=!1){if(F(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return K5(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),r=tr(H(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];r.forEach(l=>{let[u,c]=K5(l,t);a.push(u),s.push(c)});let i=H(Cn(a,0),e.shape),o=H(Cn(s,0),e.shape);return[i,o]}}function K5(e,t=!1){return $.tidy(()=>{F(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],a=vf(n),s=Jn(e),i=gn([[1]],[1,1]),o=Jn(i),l=n>=r?r:n;for(let u=0;u<l;++u){let c=s,h=o,d=a;[o,s,a]=$.tidy(()=>{let p=Ee(s,[u,u],[n-u,1]),m=gd(p),f=Ee(s,[u,u],[1,1]),A=yn(Qn(f,0),gn([[-1]]),gn([[1]])),y=me(f,P(A,m)),g=we(p,y);g.shape[0]===1?o=Jn(i):o=nt([i,Ee(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let _=xt(we(Ue(A,y),m)),b=Ee(s,[u,0],[n-u,r]),w=P(_,o),x=tt(o);if(u===0)s=me(b,Ue(w,Ue(x,b)));else{let E=me(b,Ue(w,Ue(x,b)));s=nt([Ee(s,[0,0],[u,r]),E],0)}let N=tt(w),T=Ee(a,[0,u],[n,a.shape[1]-u]);if(u===0)a=me(T,Ue(Ue(T,o),N));else{let E=me(T,Ue(Ue(T,o),N));a=nt([Ee(a,[0,0],[n,u]),E],1)}return[o,s,a]}),Se([c,h,d])}return!t&&n>r&&(a=Ee(a,[0,0],[n,r]),s=Ee(s,[0,0],[r,r])),[a,s]})}var TE=O({qr_:SE}),sn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(sn||(sn={}));function EE(e,t,n=sn.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=R(t,"weights","computeWeightedLoss"));let s=a==null?r:P(r,a);if(n===sn.NONE)return s;if(n===sn.SUM)return Ne(s);if(n===sn.MEAN){if(a==null)return wt(s);{let i=r.size/a.size,o=we(Ne(s),Ne(a));return i>1?we(o,_e(i)):o}}if(n===sn.SUM_BY_NONZERO_WEIGHTS){if(a==null)return we(Ne(s),_e(r.size));{let i=P(a,Er(r.shape)),o=fe(Ne(Qs(i,_e(0))),"float32");return we(Ne(s),o)}}throw Error(`Unknown reduction: ${n}`)}var Yr=O({computeWeightedLoss_:EE});function CE(e,t,n,r=sn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","absoluteDifference"),s=R(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=R(n,"weights","absoluteDifference")),tn(a.shape,s.shape,"Error in absoluteDifference: ");let o=Mt(me(a,s));return Yr(o,i,r)}var RE=O({absoluteDifference_:CE});function FE(e,t,n,r,a=sn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","cosineDistance"),i=R(t,"predictions","cosineDistance"),o=null;r!=null&&(o=R(r,"weights","cosineDistance")),tn(s.shape,i.shape,"Error in cosineDistance: ");let l=_e(1),u=me(l,Ne(P(s,i),n,!0));return Yr(u,o,a)}var ME=O({cosineDistance_:FE});function $E(e,t,n,r=sn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","hingeLoss"),s=R(t,"predictions","hingeLoss"),i=null;n!=null&&(i=R(n,"weights","hingeLoss")),tn(a.shape,s.shape,"Error in hingeLoss: ");let o=_e(1);a=me(P(_e(2),a),o);let l=Cr(me(o,P(a,s)));return Yr(l,i,r)}var OE=O({hingeLoss_:$E});function DE(e,t,n,r=1,a=sn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","huberLoss"),i=R(t,"predictions","huberLoss"),o=null;n!=null&&(o=R(n,"weights","huberLoss")),tn(s.shape,i.shape,"Error in huberLoss: ");let l=_e(r),u=Mt(me(i,s)),c=tl(u,l),h=me(u,c),d=se(P(_e(.5),st(c)),P(l,h));return Yr(d,o,a)}var zE=O({huberLoss_:DE});function PE(e,t,n,r=1e-7,a=sn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","logLoss"),i=R(t,"predictions","logLoss"),o=null;n!=null&&(o=R(n,"weights","logLoss")),tn(s.shape,i.shape,"Error in logLoss: ");let l=_e(1),u=_e(r),c=xt(P(s,Sn(se(i,u)))),h=P(me(l,s),Sn(se(me(l,i),u))),d=me(c,h);return Yr(d,o,a)}var LE=O({logLoss_:PE});function WE(e,t,n,r=sn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","meanSquaredError"),s=R(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=R(n,"weights","meanSquaredError")),tn(a.shape,s.shape,"Error in meanSquaredError: ");let o=md(a,s);return Yr(o,i,r)}var BE=O({meanSquaredError_:WE});function VE(e,t){let n=R(e,"labels","sigmoidCrossEntropyWithLogits"),r=R(t,"logits","sigmoidCrossEntropyWithLogits");tn(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=Cr(r),s=P(r,n),i=ed(Vn(xt(Mt(r))));return se(me(a,s),i)}function UE(e,t,n,r=0,a=sn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"multiClassLabels","sigmoidCrossEntropy"),i=R(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","sigmoidCrossEntropy")),tn(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),r>0){let u=_e(r),c=_e(1),h=_e(.5);s=se(P(s,me(c,u)),P(h,u))}let l=VE(s,i);return Yr(l,o,a)}var jE=O({sigmoidCrossEntropy_:UE});function HE(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Sr((r,a,s)=>{let i=Sf(a,[n],!0),o=me(fe(a,"float32"),i);s([r,o]);let l=xt(P(o,r));return{value:Ne(l,[n]),gradFunc:(u,c)=>{let[h,d]=c,p=Js(u.shape,[n]);return[P(H(u,p),me(fe(h,"float32"),Vn(d))),P(H(u,p),me(Vn(d),fe(h,"float32")))]}}})(e,t)}function GE(e,t,n,r=0,a=sn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"onehotLabels","softmaxCrossEntropy"),i=R(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","softmaxCrossEntropy")),tn(s.shape,i.shape,"Error in softmaxCrossEntropy: "),r>0){let u=_e(r),c=_e(1),h=_e(s.shape[1]);s=se(P(s,me(c,u)),we(u,h))}let l=HE(s,i);return Yr(l,o,a)}var qE=O({softmaxCrossEntropy_:GE}),XE={fft:Du,ifft:rl,rfft:zu,irfft:fd},KE={hammingWindow:GT,hannWindow:B5,frame:V5,stft:ZT},Ke={flipLeftRight:eE,resizeNearestNeighbor:X5,resizeBilinear:q5,rotateWithOffset:nE,cropAndResize:JT,nonMaxSuppression:aE,nonMaxSuppressionAsync:dE,nonMaxSuppressionWithScore:fE,nonMaxSuppressionWithScoreAsync:AE,nonMaxSuppressionPadded:gE,nonMaxSuppressionPaddedAsync:wE},Z5={bandPart:kE,gramSchmidt:NE,qr:TE},ZE={absoluteDifference:RE,computeWeightedLoss:Yr,cosineDistance:ME,hingeLoss:OE,huberLoss:zE,logLoss:LE,meanSquaredError:BE,sigmoidCrossEntropy:jE,softmaxCrossEntropy:qE},Jr=class extends Qg{minimize(e,t=!1,n){let{value:r,grads:a}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return Se(a),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return _5(e,t)}dispose(){this.iterations_!=null&&Se(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:_e(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Jr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var vd=class extends Jr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:B(()=>Be(r).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:B(()=>Be(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;B(()=>{let l=se(P(i,this.rho),P(st(s),1-this.rho)),u=P(we(Yt(se(o,this.epsilon)),Yt(se(i,this.epsilon))),s),c=se(P(o,this.rho),P(st(u),1-this.rho));i.assign(l),o.assign(c);let h=se(P(u,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Se(this.accumulatedGrads.map(e=>e.variable)),Se(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};vd.className="Adadelta";ba(vd);var kd=class extends Jr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:B(()=>Su(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[n].variable;B(()=>{let i=se(s,st(a));s.assign(i);let o=se(P(we(a,Yt(se(i,$.backend.epsilon()))),-this.learningRate),r);r.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Se(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};kd.className="Adagrad";ba(kd);var Id=class extends Jr{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],B(()=>{this.accBeta1=_e(t).variable(),this.accBeta2=_e(n).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);B(()=>{let n=me(1,this.accBeta1),r=me(1,this.accBeta2);t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:B(()=>Be(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:B(()=>Be(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,c=this.accumulatedSecondMoment[s].variable,h=se(P(u,this.beta1),P(l,1-this.beta1)),d=se(P(c,this.beta2),P(st(l),1-this.beta2)),p=we(h,n),m=we(d,r);u.assign(h),c.assign(d);let f=se(P(we(p,se(Yt(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(P(this.accBeta1,this.beta1)),this.accBeta2.assign(P(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Se(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Se(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),B(()=>{this.accBeta1.assign(Zr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Zr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Id.className="Adam";ba(Id);var Nd=class extends Jr{constructor(e,t,n,r=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],B(()=>{this.iteration=_e(0).variable(),this.accBeta1=_e(t).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);B(()=>{let n=me(1,this.accBeta1),r=we(-this.learningRate,se(P(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:Be(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:Be(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,c=this.accumulatedWeightedInfNorm[s].variable,h=se(P(u,this.beta1),P(l,1-this.beta1)),d=P(c,this.beta2),p=Mt(l),m=Tr(d,p);u.assign(h),c.assign(m);let f=se(P(we(r,n),we(h,se(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(se(this.iteration,1)),this.accBeta1.assign(P(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Se(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Se(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Nd.className="Adamax";ba(Nd);var Pu=class extends Jr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let a=$.registeredVariables[t];B(()=>{let s=se(P(this.c,r),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Wt(_e(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Pu.className="SGD";ba(Pu);var Sd=class extends Pu{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=_e(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:B(()=>Be(r).variable(i))}}let a=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&B(()=>{let i,o=se(P(this.m,a),s);this.useNesterov?i=se(P(this.c,se(s,P(o,this.m))),r):i=se(P(this.c,o),r),a.assign(o),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Se(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Sd.className="Momentum";ba(Sd);var Td=class extends Jr{constructor(e,t=.9,n=0,r=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,r==null&&(this.epsilon=$.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:B(()=>Be(r).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:B(()=>Be(r).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:B(()=>Be(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;B(()=>{let l=se(P(i,this.decay),P(st(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,c=se(P(u,this.decay),P(s,1-this.decay)),h=we(P(s,this.learningRate),Yt(me(l,se(st(c),this.epsilon)))),d=se(P(o,this.momentum),h);i.assign(l),u.assign(c),o.assign(d);let p=me(r,d);r.assign(p)}else{let u=se(P(i,this.decay),P(st(s),1-this.decay)),c=se(P(o,this.momentum),we(P(s,this.learningRate),Yt(se(u,this.epsilon))));i.assign(u),o.assign(c);let h=me(r,c);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Se(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Se(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Se(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Td.className="RMSProp";ba(Td);var ei=class{static sgd(e){return new Pu(e)}static momentum(e,t,n=!1){return new Sd(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,a=!1){return new Td(e,t,n,r,a)}static adam(e=.001,t=.9,n=.999,r=null){return new Id(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new vd(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,a=0){return new Nd(e,t,n,r,a)}static adagrad(e,t=.1){return new kd(e,t)}},ti={sgd:ei.sgd,momentum:ei.momentum,adadelta:ei.adadelta,adagrad:ei.adagrad,rmsprop:ei.rmsprop,adamax:ei.adamax,adam:ei.adam},YE=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Ed(){return new Promise(e=>YE(()=>e()))}var C={};Oe(C,{ERF_A1:()=>lC,ERF_A2:()=>uC,ERF_A3:()=>cC,ERF_A4:()=>hC,ERF_A5:()=>dC,ERF_P:()=>oC,PARALLELIZE_THRESHOLD:()=>qf,SELU_SCALE:()=>J5,SELU_SCALEALPHA:()=>Y5,applyActivation:()=>_d,assertAndGetBroadcastShape:()=>pt,assertAxesAreInnerMostDims:()=>ON,assertParamsConsistent:()=>JE,assignToTypedArray:()=>wC,axesAreInnerMostDims:()=>If,calculateShapes:()=>Bg,combineLocations:()=>v5,complexWithEvenIndex:()=>yC,complexWithOddIndex:()=>gC,computeConv2DInfo:()=>bu,computeConv3DInfo:()=>i5,computeDefaultPad:()=>pf,computeDilation2DInfo:()=>sI,computeOptimalWindowSize:()=>eC,computeOutAndReduceShapes:()=>k5,computeOutShape:()=>QE,computePool2DInfo:()=>s5,computePool3DInfo:()=>iI,convertConv2DDataFormat:()=>a5,eitherStridesOrDilationsAreOne:()=>Nr,expandShapeToKeepDim:()=>Js,exponent:()=>bC,exponents:()=>_C,fromStringArrayToUint8:()=>IC,fromUint8ToStringArray:()=>kC,getAxesPermutation:()=>I5,getBroadcastDims:()=>YI,getComplexWithIndex:()=>xC,getFusedBiasGradient:()=>wd,getFusedDyActivation:()=>xd,getImageCenter:()=>tC,getInnerMostAxes:()=>DN,getPermuted:()=>rC,getReductionAxes:()=>$t,getReshaped:()=>nC,getReshapedPermuted:()=>aC,getSliceBeginCoords:()=>sC,getSliceSize:()=>iC,getUndoAxesPermutation:()=>Nf,log:()=>fC,mergeRealAndImagArrays:()=>mC,prepareAndValidate:()=>Wg,prepareSplitSize:()=>vC,segment_util:()=>Q5,shouldFuse:()=>bd,slice_util:()=>an,splitRealAndImagArrays:()=>AC,tupleValuesAreOne:()=>va,upcastType:()=>Yn,validateInput:()=>Y1,validateUpdateShape:()=>Z1,warn:()=>pC});function JE(e,t){let n=e[0].length;e.forEach((a,s)=>{F(a.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),F(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((a,s)=>{for(let i=0;i<n;i++)F(i===t||a[i]===r[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function QE(e,t){let n=e[0].slice();for(let r=1;r<e.length;r++)n[t]+=e[r][t];return n}var qf=30;function eC(e){return e<=qf?e:th(e,Math.floor(Math.sqrt(e)))}function tC(e,t,n){let r=n*(typeof e=="number"?e:e[0]),a=t*(typeof e=="number"?e:e[1]);return[r,a]}function nC(e,t,n,r=!0){let a=[];if(r)a=a.concat(t.slice(0)),a.push(e[0]/n),a=a.concat(e.slice(1));else{a=a.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)a=a.concat([e[i+1]/t[i],t[i]]);a=a.concat(e.slice(s+1))}return a}function rC(e,t,n=!0){let r=[];if(n){r.push(t);for(let a=t+1;a<e;++a)a<=2*t?(r.push(a),r.push(a-(t+1))):r.push(a)}else{let a=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):a.push(i);r.push(...a),r.push(0),r.push(...s)}return r}function aC(e,t,n,r=!0){let a=[];r?a.push(e[0]/n):a.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?r?a.push(t[s-1]*e[s]):a.push(e[s]/t[s-1]):a.push(e[s]);return a}function sC(e,t){let n=[0];for(let r=0;r<t;++r)n.push(e[r][0]);return n}function iC(e,t,n){let r=e.slice(0,1);for(let a=0;a<n;++a)r.push(e[a+1]-t[a][0]-t[a][1]);return r}var Y5=1.7580993408473768,J5=1.0507009873554805,oC=.3275911,lC=.254829592,uC=-.284496736,cC=1.421413741,hC=-1.453152027,dC=1.061405429;function pC(...e){J().getBool("IS_TEST")||console.warn(...e)}function fC(...e){J().getBool("IS_TEST")||console.log(...e)}function mC(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let r=0;r<n.length;r+=2)n[r]=e[r/2],n[r+1]=t[r/2];return n}function AC(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let r=0;r<e.length;r+=2)t[r/2]=e[r],n[r/2]=e[r+1];return{real:t,imag:n}}function yC(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let a=0;a<e.length;a+=4)n[Math.floor(a/4)]=e[a],r[Math.floor(a/4)]=e[a+1];return{real:n,imag:r}}function gC(e){let t=Math.floor(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let a=2;a<e.length;a+=4)n[Math.floor(a/4)]=e[a],r[Math.floor(a/4)]=e[a+1];return{real:n,imag:r}}function xC(e,t){let n=e[t*2],r=e[t*2+1];return{real:n,imag:r}}function wC(e,t,n,r){e[r*2]=t,e[r*2+1]=n}function _C(e,t){let n=new Float32Array(e/2),r=new Float32Array(e/2);for(let a=0;a<Math.ceil(e/2);a++){let s=(t?2:-2)*Math.PI*(a/e);n[a]=Math.cos(s),r[a]=Math.sin(s)}return{real:n,imag:r}}function bC(e,t,n){let r=(n?2:-2)*Math.PI*(e/t),a=Math.cos(r),s=Math.sin(r);return{real:a,imag:s}}function vC(e,t,n=0){let r=[];if(typeof t=="number")F(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);F(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}F(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var Q5={};Oe(Q5,{collectGatherOpShapeInfo:()=>TC,computeOutShape:()=>SC,segOpComputeOptimalWindowSize:()=>NC});function NC(e,t){let n=!1,r;for(e<=qf?(r=e,n=!0):r=th(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=th(e,r+1);return r}function SC(e,t,n){let r=[],a=e.length;for(let s=0;s<a;s++)s!==t?r.push(e[s]):r.push(n);return r}function TC(e,t,n,r){let a=t.shape.length,s=e.shape.length;if(r!==0&&(r<-a||r>a))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${r}`);if(r<0&&(r+=a),r>s)throw new Error(`batchDims (${r}) must be less than rank(x) (
${s}).`);if(n<r)throw new Error(`batchDims (${r}) must be less than or equal to axis (${n}).`);for(let h=0;h<r;++h)if(e.shape[h]!==t.shape[h])throw new Error(`x.shape[${h}]: ${e.shape[h]} should be equal to indices.shape[${h}]: ${t.shape[h]}.`);let i=e.shape[n],o=[],l=1,u=1,c=1;for(let h=0;h<r;++h)o.push(e.shape[h]),l*=e.shape[h];for(let h=r;h<n;h++)o.push(e.shape[h]),u*=e.shape[h];for(let h=r;h<a;h++)o.push(t.shape[h]);for(let h=n+1;h<s;h++)o.push(e.shape[h]),c*=e.shape[h];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:i,outputShape:o}}function kC(e){try{return e.map(t=>Dh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function IC(e){return e.map(t=>du(t))}var Rr={};Oe(Rr,{nonMaxSuppressionV3Impl:()=>U5,nonMaxSuppressionV4Impl:()=>j5,nonMaxSuppressionV5Impl:()=>H5,whereImpl:()=>M5});function xe(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var EC=Rr.whereImpl,Cd=class extends jl{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Qc(this,Ir())}nextDataId(){return Cd.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,J().get("IS_NODE")&&C.warn(`
============================
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let r={id:this.nextDataId()};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let a=n.map(s=>v.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r,a){this.data.set(e,{values:t,dtype:r,refCount:a})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),a=this.readSync(n.imag.dataId);return C.mergeRealAndImagArrays(r,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>v.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Pe(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return Ir().makeTensorFromDataId(r,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){xe([e],"where");let t=this.readSync(e.dataId);return EC(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Cd.nextDataId=0;var Xf={};Oe(Xf,{addImpl:()=>tx,bincountImpl:()=>Kf,bincountReduceImpl:()=>nx,ceilImpl:()=>rx,concatImpl:()=>Zf,expImpl:()=>ax,expm1Impl:()=>sx,floorImpl:()=>ix,gatherV2Impl:()=>ox,greaterImpl:()=>lx,lessImpl:()=>ux,linSpaceImpl:()=>cx,logImpl:()=>hx,maxImpl:()=>dx,maximumImpl:()=>px,minimumImpl:()=>fx,multiplyImpl:()=>Yf,negImpl:()=>mx,notEqualImpl:()=>Ax,prodImpl:()=>yx,rangeImpl:()=>Qf,rsqrtImpl:()=>gx,simpleAbsImpl:()=>ex,sliceImpl:()=>Rd,squaredDifferenceImpl:()=>xx,stridedSliceImpl:()=>wx,subImpl:()=>_x,tileImpl:()=>bx,topKImpl:()=>vx,transposeImpl:()=>Jf,uniqueImpl:()=>kx});function ex(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var CC=e=>{let{x:t}=e.inputs,n=e.backend;xe(t,"abs");let r=new Float32Array(v.sizeFromShape(t.shape)),a=n.data.get(t.dataId).values;return r=ex(a),n.makeOutput(r,t.shape,"float32")},RC={kernelName:Di,backendName:"cpu",kernelFunc:CC};function St(e){return(t,n,r,a,s)=>{let i=C.assertAndGetBroadcastShape(t,n),o=i.length,l=v.computeStrides(i),u=v.sizeFromShape(i),c=v.getTypedArrayFromDType(s,u),h=t.length,d=n.length,p=v.computeStrides(t),m=v.computeStrides(n),f=C.getBroadcastDims(t,i),A=C.getBroadcastDims(n,i);if(f.length+A.length===0)for(let y=0;y<c.length;++y)c[y]=e(r[y%r.length],a[y%a.length]);else for(let y=0;y<c.length;++y){let g=v.indexToLoc(y,o,l),_=g.slice(-h);f.forEach(N=>_[N]=0);let b=v.locToIndex(_,h,p),w=g.slice(-d);A.forEach(N=>w[N]=0);let x=v.locToIndex(w,d,m);c[y]=e(r[b],a[x])}return[c,i]}}function Rn(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,o=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",s),imag:n.makeTensorInfo(a.shape,"float32",i)},o}var FC={kernelName:lh,backendName:"cpu",kernelFunc:Rn};function Fd(e,t,n="float32"){if(n==="complex64"){let a=Fd(e,t,"float32"),s=Fd(e,t,"float32");return Rn({inputs:{real:a,imag:s},backend:e})}let r=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function Fr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var MC={kernelName:hs,backendName:"cpu",kernelFunc:Fr};function ni(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.real,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var $C={kernelName:Th,backendName:"cpu",kernelFunc:ni};function Ea(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Fr({inputs:{x:a},backend:n});let i=Fd(n,a.shape,a.dtype),o=Ea({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Rn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=ni({inputs:{input:a},backend:n}),o=Ea({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=Fr({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(a.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=n.data.get(a.dataId).values,o=v.toTypedArray([0],a.dtype),[l,u]=St((c,h)=>c!==h?1:0)(a.shape,[],i,o,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var OC={kernelName:Ja,backendName:"cpu",kernelFunc:Ea};function Vt(e,t,n,r){return n==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;xe([i,o],e);let u=l.data.get(i.dataId).values,c=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,u,c,h);return l.makeTensorInfo(p,h,d)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=Ea({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),h=c.complexTensorInfos.real,d=c.complexTensorInfos.imag,p=l.data.get(h.dataId).values,m=l.data.get(d.dataId).values,f=Ea({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(f.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,_=l.data.get(y.dataId).values,b=l.data.get(g.dataId).values,[w,x,N]=n(i.shape,o.shape,p,m,_,b),T=l.makeTensorInfo(N,"float32",w),E=l.makeTensorInfo(N,"float32",x),M=Rn({inputs:{real:T,imag:E},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(T),l.disposeIntermediateTensorInfo(E),M}else{let u=l.data.get(i.dataId).values,c=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,u,c,h);return l.makeTensorInfo(p,h,d)}}}function em(e){return(t,n,r,a,s,i)=>{let o=C.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(o),u=o.length,c=v.computeStrides(o),h=v.getTypedArrayFromDType("float32",l),d=v.getTypedArrayFromDType("float32",l),p=C.getBroadcastDims(t,o),m=C.getBroadcastDims(n,o),f=C.mergeRealAndImagArrays(r,a),A=C.mergeRealAndImagArrays(s,i),y=t.length,g=v.computeStrides(t),_=n.length,b=v.computeStrides(n);if(p.length+m.length===0)for(let w=0;w<h.length;w++){let x=w%f.length,N=w%A.length,T=e(f[x*2],f[x*2+1],A[N*2],A[N*2+1]);h[w]=T.real,d[w]=T.imag}else for(let w=0;w<h.length;w++){let x=v.indexToLoc(w,u,c),N=x.slice(-y);p.forEach(L=>N[L]=0);let T=v.locToIndex(N,y,g),E=x.slice(-_);m.forEach(L=>E[L]=0);let M=v.locToIndex(E,_,b),D=e(f[T*2],f[T*2+1],A[M*2],A[M*2+1]);h[w]=D.real,d[w]=D.imag}return[h,d,o]}}var tx=St((e,t)=>e+t),DC=em((e,t,n,r)=>({real:e+n,imag:t+r})),Lu=Vt(ma,tx,DC),zC={kernelName:ma,backendName:"cpu",kernelFunc:Lu};function Kf(e,t,n,r,a){let s=v.sizeFromShape(r),i=v.makeZerosTypedArray(a,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function nx(e,t,n,r=!1){let a=e.shape[0],s=e.shape[1],i=Pe([a,n],t.dtype);for(let o=0;o<a;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(r?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function il(e){return(t,n,r)=>{let a=v.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)a[s]=e(t[s],r);return a}}function rt(e,t,n){return({inputs:r,attrs:a,backend:s})=>{let{x:i}=r;if(xe(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=v.sizeFromShape(i.shape),c=n||i.dtype,h=v.getArrayFromDType(c,u);for(let d=0;d<u;++d)h[d]=t(l[d],a);return o.makeTensorInfo(i.shape,c,h)}}function ol(e,t,n){return({inputs:r,attrs:a,backend:s})=>{let{x:i}=r;if(xe(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,c=t(l,u,a);return o.makeTensorInfo(i.shape,u,c)}}var rx=il(e=>Math.ceil(e)),PC=ol(Qa,rx),LC={kernelName:Qa,backendName:"cpu",kernelFunc:PC};function Zf(e,t,n,r){let a=v.getArrayFromDType(n,v.sizeFromShape(t));if(r&&n!=="string"){let s=0;e.forEach(i=>{let o=v.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?C.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let c=u*t[1]+s;for(let h=0;h<i.shape[1];++h)a[c+h]=o[l++]}s+=i.shape[1]})}return a}var ax=il(e=>Math.exp(e)),Ix=ol(is,ax),WC={kernelName:is,backendName:"cpu",kernelFunc:Ix},sx=il(e=>Math.expm1(e)),BC=ol(Ji,sx),VC={kernelName:Ji,backendName:"cpu",kernelFunc:BC},ix=il(e=>Math.floor(e)),UC=ol(os,ix),jC={kernelName:os,backendName:"cpu",kernelFunc:UC};function ox(e,t,n){let r=Pe(n,e.dtype);for(let a=0;a<r.size;++a){let s=r.indexToLoc(a).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);r.values[a]=e.values[u]}return r}var lx=St((e,t)=>e>t?1:0),HC=Vt(no,lx,null,"bool"),GC={kernelName:no,backendName:"cpu",kernelFunc:HC},ux=St((e,t)=>e<t?1:0),qC=Vt(io,ux,null,"bool"),XC={kernelName:io,backendName:"cpu",kernelFunc:qC};function cx(e,t,n){let r=(t-e)/(n-1),a=v.makeZerosTypedArray(n,"float32");a[0]=e;for(let s=1;s<a.length;s++)a[s]=a[s-1]+r;return a}var hx=il(e=>Math.log(e)),KC=ol(ps,hx),ZC={kernelName:ps,backendName:"cpu",kernelFunc:KC};function dx(e,t,n,r){let a=v.getTypedArrayFromDType(r,v.sizeFromShape(n));for(let s=0;s<a.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];u>o&&(o=u)}a[s]=o}return a}var px=St((e,t)=>Math.max(e,t)),YC=Vt(ms,px),JC={kernelName:ms,backendName:"cpu",kernelFunc:YC},fx=St((e,t)=>Math.min(e,t)),QC=Vt(xs,fx),eR={kernelName:xs,backendName:"cpu",kernelFunc:QC},Yf=St((e,t)=>e*t),tR=em((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),tm=Vt(ws,Yf,tR),nR={kernelName:ws,backendName:"cpu",kernelFunc:tm};function mx(e,t,n){let r=v.createScalarValue(-1,n);return Yf([],t,r,e,n)}function rR(e){let{inputs:t,backend:n}=e,{x:r}=t;xe(r,"neg");let a=n.data.get(r.dataId).values,[s,i]=mx(a,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,s)}var aR={kernelName:ho,backendName:"cpu",kernelFunc:rR},Ax=St((e,t)=>e!==t?1:0),sR=Vt(po,Ax,null,"bool"),iR={kernelName:po,backendName:"cpu",kernelFunc:sR};function Jf(e,t,n,r,a){let s=t.length,i=v.sizeFromShape(t),o=v.computeStrides(t),l=v.computeStrides(a),u=v.getTypedArrayFromDType(n,v.sizeFromShape(a));for(let c=0;c<i;++c){let h=v.indexToLoc(c,s,o),d=new Array(h.length);for(let m=0;m<d.length;m++)d[m]=h[r[m]];let p=v.locToIndex(d,s,l);u[p]=e[c]}return u}function nr(e){let{inputs:t,attrs:n,backend:r}=e,{x:a}=t,{perm:s}=n;xe(a,"transpose");let i=a.shape.length,o=new Array(i);for(let c=0;c<o.length;c++)o[c]=a.shape[s[c]];let l=r.data.get(a.dataId).values,u=Jf(l,a.shape,a.dtype,s,o);return{dataId:r.write(u,o,a.dtype),shape:o,dtype:a.dtype}}var oR={kernelName:Ls,backendName:"cpu",kernelFunc:nr};function yx(e,t,n,r){let[a,s]=C.computeOutAndReduceShapes(e,r),i=Yn(t,"int32"),o=v.makeZerosTypedArray(v.sizeFromShape(a),i),l=v.sizeFromShape(s);for(let u=0;u<o.length;++u){let c=u*l,h=1;for(let d=0;d<l;++d)h*=n[c+d];o[u]=h}return{outVals:o,outShape:a,outDtype:i}}function lR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;xe(a,"prod");let o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=C.getAxesPermutation(l,o),c=l,h=a,d=[];u!=null&&(h=nr({inputs:{x:a},backend:n,attrs:{perm:u}}),d.push(h),c=C.getInnerMostAxes(c.length,o));let p=n.data.get(h.dataId).values,{outVals:m,outShape:f,outDtype:A}=yx(h.shape,h.dtype,p,c),y=f;return i&&(y=C.expandShapeToKeepDim(f,l)),d.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,m)}var uR={kernelName:xo,backendName:"cpu",kernelFunc:lR};function Qf(e,t,n,r){let a=e===t,s=e<t&&n<0,i=t<e&&n>1;if(a||s||i)return v.makeZerosTypedArray(0,r);let o=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(o,r);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var gx=il(e=>1/Math.sqrt(e)),cR=ol(Cs,gx),hR={kernelName:Cs,backendName:"cpu",kernelFunc:cR};function Rd(e,t,n,r,a){let s=an.isSliceContinous(r,t,n),i=v.sizeFromShape(n),o=v.computeStrides(r);if(s){let h=an.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?C.fromUint8ToStringArray(e):e,u=Pe(r,a,l),c=Pe(n,a);for(let h=0;h<c.size;++h){let d=c.indexToLoc(h),p=d.map((m,f)=>m+t[f]);c.set(u.get(...p),...d)}return a==="string"?C.fromStringArrayToUint8(c.values):c.values}function ri(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r;xe(a,"slice");let[o,l]=an.parseSliceParams(a,s,i);an.assertParamsValid(a,o,l);let u=n.data.get(a.dataId).values,c=Rd(u,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,c)}var dR={kernelName:Io,backendName:"cpu",kernelFunc:ri},xx=St((e,t)=>{let n=e-t;return n*n}),pR=Vt(Ds,xx),fR={kernelName:Ds,backendName:"cpu",kernelFunc:pR};function wx(e,t,n,r){let a=Pe(e,t.dtype);for(let s=0;s<a.size;s++){let i=a.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+r[l];a.set(t.get(...o),...i)}return a}var _x=St((e,t)=>e-t),mR=em((e,t,n,r)=>({real:e-n,imag:t-r})),nm=Vt(zs,_x,mR),AR={kernelName:zs,backendName:"cpu",kernelFunc:nm};function bx(e,t){let n=new Array(e.rank);for(let a=0;a<n.length;a++)n[a]=e.shape[a]*t[a];let r=Pe(n,e.dtype);for(let a=0;a<r.values.length;++a){let s=r.indexToLoc(a),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);r.values[a]=e.values[o]}return r}function vx(e,t,n,r,a){let s=t[t.length-1],[i,o]=[e.length/s,s],l=v.getTypedArrayFromDType(n,i*r),u=v.getTypedArrayFromDType("int32",i*r);for(let h=0;h<i;h++){let d=h*o,p=e.subarray(d,d+o),m=[];for(let g=0;g<p.length;g++)m.push({value:p[g],index:g});m.sort((g,_)=>_.value-g.value);let f=h*r,A=l.subarray(f,f+r),y=u.subarray(f,f+r);for(let g=0;g<r;g++)A[g]=m[g].value,y[g]=m[g].index}let c=t.slice();return c[c.length-1]=r,[Pe(c,n,l),Pe(c,"int32",u)]}function kx(e,t,n,r){let a=v.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<a;m++)s[0]*=n[m];s[1]=n[a];for(let m=a+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[a]),l=new Ft(s,r,e),u=[],c=s[0]===1&&s[2]===1;for(let m=0;m<n[a];m++){let f;if(c)f=e[m].toString();else{let A=[];for(let y=0;y<s[0];y++)for(let g=0;g<s[2];g++)A.push(l.get(y,m,g));f=A.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let A=Object.keys(i).length;i[f]=A,o[m]=A,u.push(m)}}let h=s.slice();h[1]=Object.keys(i).length;let d=new Ft(h,r);u.forEach((m,f)=>{for(let A=0;A<s[0];A++)for(let y=0;y<s[2];y++)d.set(l.get(A,m,y),A,f,y)});let p=n.slice();return p[a]=h[1],{outputValues:d.values,outputShape:p,indices:o}}var Nx="3.2.0";Ho("cpu",()=>new Cd,1);var Sx=rt(Xi,e=>e>=0?e:Math.exp(e)-1),yR={kernelName:Xi,backendName:"cpu",kernelFunc:Sx};function Tx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r;xe([a],"leakyRelu");let i=v.sizeFromShape(a.shape),o=n.data.get(a.dataId).values,l=v.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(a.shape,"float32",l)}var gR={kernelName:ds,backendName:"cpu",kernelFunc:Tx},xR=St((e,t)=>e<0?t*e:e);function Ex(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t;xe([r,a],"prelu");let s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,[o,l]=xR(r.shape,a.shape,s,i,r.dtype);return n.makeTensorInfo(l,r.dtype,o)}var wR={kernelName:ks,backendName:"cpu",kernelFunc:Ex},Cx=rt(Is,e=>Math.max(0,e)),_R={kernelName:Is,backendName:"cpu",kernelFunc:Cx},Rx=rt(Ss,e=>Math.min(Math.max(0,e),6)),bR={kernelName:Ss,backendName:"cpu",kernelFunc:Rx};function rm(e,t,n,r,a){if(n==="linear")return Fr({inputs:{x:t},backend:e});if(n==="relu")return Cx({inputs:{x:t},backend:e});if(n==="elu")return Sx({inputs:{x:t},backend:e});if(n==="relu6")return Rx({inputs:{x:t},backend:e});if(n==="prelu")return Ex({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return Tx({inputs:{x:t},backend:e,attrs:{alpha:a}});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function ft(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=v.sizeFromShape(a.shape),o=v.inferFromImplicitShape(s,i),l=v.sizeFromShape(o);v.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(a.dataId);let u=n.data.get(a.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,h=u.complexTensorInfos.imag;c.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var vR={kernelName:_o,backendName:"cpu",kernelFunc:ft};function Fx(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;xe([a,s],"matMul");let l=a.shape.length,u=s.shape.length,c=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[u-2]:s.shape[u-1],m=a.shape.slice(0,-2),f=s.shape.slice(0,-2),A=v.sizeFromShape(m),y=v.sizeFromShape(f),g=A===y||A===1||y===1;v.assert(l>=2&&u>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let _=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);v.assert(c===h,()=>`Error in matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let b=i?[A,c,d]:[A,d,c],w=o?[y,p,h]:[y,h,p],x=ft({inputs:{x:a},backend:n,attrs:{shape:b}}),N=ft({inputs:{x:s},backend:n,attrs:{shape:w}}),T=i?x.shape[1]:x.shape[2],E=i?x.shape[2]:x.shape[1],M=o?N.shape[1]:N.shape[2],D=Math.max(A,y),L=n.data.get(x.dataId).values,W=n.data.get(N.dataId).values,U=v.computeStrides(x.shape),j=v.computeStrides(N.shape),[X,G,ee]=i?[U[0],1,U[1]]:[U[0],U[1],1],[Y,ae,te]=o?[1,j[1],j[0]]:[j[1],1,j[0]],ie=E*M,Q=Pe([D,E,M],x.dtype),ce=Q.values,oe=n.blockSize;for(let pe=0;pe<D;pe++)for(let de=0;de<E;de+=oe)for(let be=0;be<M;be+=oe)for(let ke=0;ke<T;ke+=oe){let Re=Math.min(de+oe,E),$e=Math.min(be+oe,M),Fe=Math.min(ke+oe,T);for(let Je=de;Je<Re;Je++)for(let Qe=be;Qe<$e;Qe++){let at=0;for(let Ge=ke;Ge<Fe;Ge++){let ct=Math.min(pe,A-1)*X,Le=Math.min(pe,y-1)*te,cn=L[ct+Je*G+Ge*ee],yt=W[Ge*Y+Qe*ae+Le];at+=cn*yt}ce[pe*ie+(Je*M+Qe)]+=at}}return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(N),n.makeTensorInfo(_,Q.dtype,Q.values)}var kR={kernelName:Ya,backendName:"cpu",kernelFunc:Fx};function IR(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:h}=r,d,p,m,f=[];d=Fx({inputs:{a,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(p=Lu({inputs:{a:d,b:i},backend:n}),f.push(d),d=p),c&&(m=rm(n,d,c,o,h),f.push(d),d=m);for(let A of f)n.disposeIntermediateTensorInfo(A);return d}var NR={kernelName:Ws,backendName:"cpu",kernelFunc:IR},SR=rt(zi,e=>Math.acos(e)),TR={kernelName:zi,backendName:"cpu",kernelFunc:SR},ER=rt(Pi,e=>Math.acosh(e)),CR={kernelName:Pi,backendName:"cpu",kernelFunc:ER};function RR(e){let{inputs:t,backend:n}=e,r=t;xe(t,"addN");let a=r.map(o=>n.data.get(o.dataId).values),s=Pe(r[0].shape,r[0].dtype),i=s.values;for(let o=0;o<r.length;o++){let l=a[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var FR={kernelName:Xa,backendName:"cpu",kernelFunc:RR};function MR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;xe(a,"all");let o=v.parseAxisParam(s,a.shape),l=o,u=C.getAxesPermutation(l,a.shape.length),c=a;u!=null&&(c=nr({inputs:{x:a},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("all",l,c.shape.length);let[h,d]=C.computeOutAndReduceShapes(c.shape,l),p=v.sizeFromShape(d),m=v.makeZerosTypedArray(v.sizeFromShape(h),c.dtype),f=n.data.get(c.dataId).values;for(let y=0;y<m.length;++y){let g=y*p,_=f[g];for(let b=0;b<p;++b){let w=f[g+b];_=_&&w}m[y]=_}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(h,c.dtype,m);if(i){let y=C.expandShapeToKeepDim(h,o),g=ft({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var $R={kernelName:rh,backendName:"cpu",kernelFunc:MR};function OR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;xe(a,"any");let o=v.parseAxisParam(s,a.shape),l=o,u=C.getAxesPermutation(l,a.shape.length),c=a;u!=null&&(c=nr({inputs:{x:a},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("any",l,c.shape.length);let[h,d]=C.computeOutAndReduceShapes(c.shape,l),p=v.sizeFromShape(d),m=v.makeZerosTypedArray(v.sizeFromShape(h),c.dtype),f=n.data.get(c.dataId).values;for(let y=0;y<m.length;++y){let g=y*p,_=f[g];for(let b=0;b<p;++b){let w=f[g+b];_=_||w}m[y]=_}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(h,c.dtype,m);if(i){let y=C.expandShapeToKeepDim(h,o),g=ft({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var DR={kernelName:ah,backendName:"cpu",kernelFunc:OR};function zR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;xe(a,"argMax");let i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=nr({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[c,h]=C.computeOutAndReduceShapes(l.shape,i),d=v.sizeFromShape(c),p=v.makeZerosTypedArray(d,"int32"),m=v.sizeFromShape(h),f=n.data.get(l.dataId).values;for(let A=0;A<p.length;++A){let y=A*m,g=f[y],_=0;for(let b=0;b<m;++b){let w=f[y+b];w>g&&(g=w,_=b)}p[A]=_}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var PR={kernelName:Ka,backendName:"cpu",kernelFunc:zR};function LR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;xe(a,"argMin");let i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=nr({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[c,h]=C.computeOutAndReduceShapes(l.shape,i),d=v.sizeFromShape(c),p=v.makeZerosTypedArray(d,"int32"),m=v.sizeFromShape(h),f=n.data.get(l.dataId).values;for(let A=0;A<p.length;++A){let y=A*m,g=f[y],_=0;for(let b=0;b<m;++b){let w=f[y+b];w<g&&(g=w,_=b)}p[A]=_}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var WR={kernelName:ql,backendName:"cpu",kernelFunc:LR},BR=rt(Li,e=>Math.asin(e)),VR={kernelName:Li,backendName:"cpu",kernelFunc:BR},UR=rt(Wi,e=>Math.asinh(e)),jR={kernelName:Wi,backendName:"cpu",kernelFunc:UR},HR=rt(Bi,e=>Math.atan(e)),GR={kernelName:Bi,backendName:"cpu",kernelFunc:HR},qR=St((e,t)=>Math.atan2(e,t)),XR=Vt(Ui,qR),KR={kernelName:Ui,backendName:"cpu",kernelFunc:XR},ZR=rt(Vi,e=>Math.atanh(e)),YR={kernelName:Vi,backendName:"cpu",kernelFunc:ZR};function am(e,t,n,r,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,u=a.dilationWidth,c=a.effectiveFilterHeight,h=a.effectiveFilterWidth,d=a.padInfo.top,p=a.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Pe(a.outShape,n),A=f.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],g=a.outShape[2]*a.outShape[3],_=a.outShape[3];for(let b=0;b<a.batchSize;++b){let w=b*y,x=b*r[0];for(let N=0;N<a.inChannels;++N)for(let T=0;T<a.outHeight;++T){let E=T*i-d,M=Math.max(0,E),D=Math.min(a.inHeight,c+E),L=w+T*g;for(let W=0;W<a.outWidth;++W){let U=W*o-p,j=Math.max(0,U),X=Math.min(a.inWidth,h+U),G=m,ee=0,Y=0;for(let te=M;te<D;te+=l){let ie=x+te*r[1];for(let Q=j;Q<X;Q+=u){let ce=ie+Q*r[2],oe=e[ce+N];s==="max"&&oe>G?G=oe:s==="avg"&&(ee+=oe,Y++)}if(isNaN(G))break}let ae=L+W*_+N;A[ae]=s==="avg"?ee/Y:G}}}return f}function Mx(e,t,n,r,a=!1,s=!1){let i=Pe(r.outShape,"int32"),o=r.strideHeight,l=r.strideWidth,u=r.dilationHeight,c=r.dilationWidth,h=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,m=r.padInfo.left,f=Pe(t,n,e);for(let A=0;A<r.batchSize;++A)for(let y=0;y<r.inChannels;++y)for(let g=0;g<r.outHeight;++g){let _=g*o-p,b=_;for(;b<0;)b+=u;let w=Math.min(r.inHeight,h+_);for(let x=0;x<r.outWidth;++x){let N=x*l-m,T=N;for(;T<0;)T+=c;let E=Math.min(r.inWidth,d+N),M=Number.NEGATIVE_INFINITY,D=-1;for(let L=b;L<w;L+=u){let W=L-_;for(let U=T;U<E;U+=c){let j=U-N,X=f.get(A,L,U,y);X>M&&(M=X,a?D=s?((A*r.inHeight+L)*r.inWidth+U)*r.inChannels+y:(L*r.inWidth+U)*r.inChannels+y:D=W*d+j)}}i.set(D,A,g,x,y)}}return i}function $x(e,t,n,r,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,u=a.dilationDepth,c=a.dilationHeight,h=a.dilationWidth,d=a.effectiveFilterDepth,p=a.effectiveFilterHeight,m=a.effectiveFilterWidth,f=a.padInfo.front,A=a.padInfo.top,y=a.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,_=Pe(a.outShape,n),b=_.values,w=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],x=a.outShape[2]*a.outShape[3]*a.outShape[4],N=a.outShape[3]*a.outShape[4],T=a.outShape[4];for(let E=0;E<a.batchSize;++E){let M=E*w,D=E*r[0];for(let L=0;L<a.inChannels;++L)for(let W=0;W<a.outDepth;++W){let U=W*i-f,j=U;for(;j<0;)j+=u;let X=Math.min(a.inDepth,d+U),G=M+W*x;for(let ee=0;ee<a.outHeight;++ee){let Y=ee*o-A,ae=Y;for(;ae<0;)ae+=c;let te=Math.min(a.inHeight,p+Y),ie=G+ee*N;for(let Q=0;Q<a.outWidth;++Q){let ce=Q*l-y,oe=ce;for(;oe<0;)oe+=h;let pe=Math.min(a.inWidth,m+ce),de=ie+Q*T,be=g,ke=0,Re=0;for(let Fe=j;Fe<X;Fe+=u){let Je=D+Fe*r[1];for(let Qe=ae;Qe<te;Qe+=c){let at=Je+Qe*r[2];for(let Ge=oe;Ge<pe;Ge+=h){let ct=at+Ge*r[3],Le=e[ct+L];if(s==="max"&&Le>be?be=Le:s==="avg"&&(ke+=Le,Re++),isNaN(be))break}if(isNaN(be))break}if(isNaN(be))break}let $e=de+L;b[$e]=s==="avg"?ke/Re:be}}}}return _}function JR(e,t){let n=Pe(t.outShape,"int32"),r=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,h=t.effectiveFilterWidth,d=t.padInfo.front,p=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let A=0;A<t.inChannels;++A)for(let y=0;y<t.outDepth;++y){let g=y*r-d,_=g;for(;_<0;)_+=i;let b=Math.min(t.inDepth,u+g);for(let w=0;w<t.outHeight;++w){let x=w*a-p,N=x;for(;N<0;)N+=o;let T=Math.min(t.inHeight,c+x);for(let E=0;E<t.outWidth;++E){let M=E*s-m,D=M;for(;D<0;)D+=l;let L=Math.min(t.inWidth,h+M),W=Number.NEGATIVE_INFINITY,U=-1;for(let j=_;j<b;j+=i){let X=j-g;for(let G=N;G<T;G+=o){let ee=G-x;for(let Y=D;Y<L;Y+=l){let ae=Y-M,te=e.get(f,j,G,Y,A);te>=W&&(W=te,U=X*c*h+ee*c+ae)}}}n.set(U,f,y,w,E,A)}}}return n}function QR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;xe(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=C.computePool2DInfo(a.shape,s,i,u,o,l),h;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))h=Fr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=v.computeStrides(a.shape),m=am(d,a.shape,a.dtype,p,c,"avg");h=n.makeTensorInfo(c.outShape,a.dtype,m.values)}return h}var eF={kernelName:Za,backendName:"cpu",kernelFunc:QR};function tF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r;xe(a,"avgPool3d");let c=C.computePool3DInfo(a.shape,s,i,1,o,l,u),h=n.data.get(a.dataId).values,d=$x(h,a.shape,a.dtype,v.computeStrides(a.shape),c,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var nF={kernelName:Xl,backendName:"cpu",kernelFunc:tF};function rF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r;xe([a,s],"avgPool3DGrad");let c=C.computePool3DInfo(s.shape,i,o,1,l,u),h=c.strideDepth,d=c.strideHeight,p=c.strideWidth,m=c.filterDepth,f=c.filterHeight,A=c.filterWidth,y=c.dilationDepth,g=c.dilationHeight,_=c.dilationWidth,b=c.effectiveFilterDepth,w=c.effectiveFilterHeight,x=c.effectiveFilterWidth,N=b-1-c.padInfo.front,T=x-1-c.padInfo.left,E=w-1-c.padInfo.top,M=Pe(s.shape,"float32"),D=1/(m*f*A),L=n.bufferSync(a);for(let W=0;W<c.batchSize;++W)for(let U=0;U<c.inChannels;++U)for(let j=0;j<c.inDepth;++j)for(let X=0;X<c.inHeight;++X)for(let G=0;G<c.inWidth;++G){let ee=j-N,Y=X-E,ae=G-T,te=0;for(let ie=0;ie<b;ie+=y){let Q=(ee+ie)/h;if(!(Q<0||Q>=c.outDepth||Math.floor(Q)!==Q))for(let ce=0;ce<w;ce+=g){let oe=(Y+ce)/d;if(!(oe<0||oe>=c.outHeight||Math.floor(oe)!==oe))for(let pe=0;pe<x;pe+=_){let de=(ae+pe)/p;de<0||de>=c.outWidth||Math.floor(de)!==de||(te+=L.get(W,Q,oe,de,U))}}}M.set(te*D,W,j,X,G,U)}return n.makeTensorInfo(M.shape,M.dtype,M.values)}var aF={kernelName:ih,backendName:"cpu",kernelFunc:rF};function sF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;xe([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=r,c=C.computePool2DInfo(i.shape,o,l,1,u),h=c.strideHeight,d=c.strideWidth,p=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,A=c.dilationWidth,y=c.effectiveFilterHeight,g=c.effectiveFilterWidth,_=g-1-c.padInfo.left,b=y-1-c.padInfo.top,w=Pe(i.shape,"float32"),x=1/(p*m),N=n.data.get(a.dataId).values,T=Pe(a.shape,"float32",N);for(let E=0;E<c.batchSize;++E)for(let M=0;M<c.inChannels;++M)for(let D=0;D<c.inHeight;++D)for(let L=0;L<c.inWidth;++L){let W=D-b,U=L-_,j=0;for(let X=0;X<y;X+=f){let G=(W+X)/h;if(!(G<0||G>=c.outHeight||Math.floor(G)!==G))for(let ee=0;ee<g;ee+=A){let Y=(U+ee)/d;Y<0||Y>=c.outWidth||Math.floor(Y)!==Y||(j+=T.get(E,G,Y,M))}}w.set(j*x,E,D,L,M)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var iF={kernelName:sh,backendName:"cpu",kernelFunc:sF};function oF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;v.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),xe([a,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=r;u==null&&(u=.001);let c=n.data.get(a.dataId).values,h=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,p=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(c.length),A=m.length,y=p.length,g=d.length,_=h.length,b=0,w=0,x=0,N=0;for(let T=0;T<c.length;++T)f[T]=m[b++]+(c[T]-h[w++])*p[x++]/Math.sqrt(d[N++]+u),b>=A&&(b=0),w>=_&&(w=0),x>=y&&(x=0),N>=g&&(N=0);return n.makeTensorInfo(a.shape,a.dtype,f)}var lF={kernelName:us,backendName:"cpu",kernelFunc:oF};function uF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;xe([a],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=C.getReshaped(a.shape,s,o),u=C.getPermuted(l.length,s.length),c=C.getReshapedPermuted(a.shape,s,o),h=C.getSliceBeginCoords(i,s.length),d=C.getSliceSize(c,i,s.length),p=ft({inputs:{x:a},backend:n,attrs:{shape:l}}),m=nr({inputs:{x:p},backend:n,attrs:{perm:u}}),f=ft({inputs:{x:m},backend:n,attrs:{shape:c}}),A=ri({inputs:{x:f},backend:n,attrs:{begin:h,size:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var cF={kernelName:Kl,backendName:"cpu",kernelFunc:uF};function hF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.data.get(a.dataId).values,l=n.data.get(s.dataId).values,u=Kf(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var dF={kernelName:oh,backendName:"cpu",kernelFunc:hF},pF=rt(Aa,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),fF={kernelName:Aa,backendName:"cpu",kernelFunc:pF},mF=e=>{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(v.sizeFromShape(t.shape)),a=n.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let c=o[u],h=l[u];r[u]=Math.hypot(c,h)}return n.makeOutput(r,t.shape,"float32")},AF={kernelName:Zl,backendName:"cpu",kernelFunc:mF};function ll(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.imag,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var yF={kernelName:_h,backendName:"cpu",kernelFunc:ll};function ul(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=v.parseAxisParam(a,t[0].shape)[0],i=C.computeOutShape(t.map(f=>f.shape),s);if(v.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>v.sizeFromShape(f.shape)>0);if(o.length===1)return Fr({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(C.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(b=>ni({inputs:{input:b},backend:n})),A=o.map(b=>ll({inputs:{input:b},backend:n})),y=ul({inputs:f,backend:n,attrs:{axis:s}}),g=ul({inputs:A,backend:n,attrs:{axis:s}}),_=Rn({inputs:{real:y,imag:g},backend:n});return f.forEach(b=>n.disposeIntermediateTensorInfo(b)),A.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),_}let u=o.map(f=>{let A=v.sizeFromShape(f.shape.slice(s));return ft({inputs:{x:f},backend:n,attrs:{shape:[-1,A]}})}),c=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=C.computeOutShape(u.map(f=>f.shape),1);let h=u[0].shape[0]===1,d=Zf(c,i,t[0].dtype,h),p=C.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(p,t[0].dtype,d);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var gF={kernelName:ji,backendName:"cpu",kernelFunc:ul};function Ox(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:c}=r;xe([a,s],"conv2d");let h=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!1,h),p=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,A=d.dilationWidth,y=d.padInfo.left,g=d.padInfo.top,_=d.dataFormat==="channelsLast",b=new Ft(d.outShape,a.dtype),w=v.computeStrides(a.shape),x=v.computeStrides(s.shape),N=w[0],T=_?w[1]:w[2],E=_?w[2]:1,M=_?1:w[1],D=b.strides[0],L=_?b.strides[1]:b.strides[2],W=_?b.strides[2]:1,U=_?1:b.strides[1],j=n.data.get(a.dataId).values,X=n.data.get(s.dataId).values,G=b.values;for(let ee=0;ee<d.batchSize;++ee){let Y=ee*N,ae=ee*D;for(let te=0;te<d.outHeight;++te){let ie=ae+te*L,Q=te*d.strideHeight-g;for(let ce=0;ce<p;++ce){let oe=Q+ce*f;if(oe<0||oe>=d.inHeight)continue;let pe=ce*x[0],de=Y+oe*T;for(let be=0;be<d.outWidth;++be){let ke=ie+be*W,Re=be*d.strideWidth-y;for(let $e=0;$e<m;++$e){let Fe=Re+$e*A;if(Fe<0||Fe>=d.inWidth)continue;let Je=pe+$e*x[1],Qe=de+Fe*E,at=Je;for(let Ge=0;Ge<d.inChannels;++Ge){let ct=j[Qe+Ge*M];for(let Le=0;Le<d.outChannels;++Le)G[ke+Le*U]+=ct*X[at+Le];at+=d.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,G)}var xF={kernelName:es,backendName:"cpu",kernelFunc:Ox};function wF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:c}=r;xe([a,s],"conv2dBackpropFilter");let h=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(a.shape,c,i,1,o,u,!1,h),{strideHeight:p,strideWidth:m,filterHeight:f,filterWidth:A}=d,y=d.dataFormat==="channelsLast",g=new Ft(d.filterShape,"float32"),_=d.padInfo.left,b=d.padInfo.top,w=n.data.get(a.dataId).values,x=n.data.get(s.dataId).values,N=new Ft(a.shape,a.dtype,w),T=new Ft(s.shape,s.dtype,x);for(let E=0;E<f;++E){let M=Math.max(0,Math.ceil((b-E)/p)),D=Math.min(d.outHeight,(d.inHeight+b-E)/p);for(let L=0;L<A;++L){let W=Math.max(0,Math.ceil((_-L)/m)),U=Math.min(d.outWidth,(d.inWidth+_-L)/m);for(let j=0;j<d.inChannels;++j)for(let X=0;X<d.outChannels;++X){let G=0;for(let ee=0;ee<d.batchSize;++ee)for(let Y=M;Y<D;++Y){let ae=E+Y*p-b;for(let te=W;te<U;++te){let ie=L+te*m-_;y?G+=N.get(ee,ae,ie,j)*T.get(ee,Y,te,X):G+=N.get(ee,j,ae,ie)*T.get(ee,X,Y,te)}}g.set(G,E,L,j,X)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var _F={kernelName:uh,backendName:"cpu",kernelFunc:wF};function bF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:c}=r;xe([a,s],"conv2dBackpropInput");let h=v.computeStrides(s.shape),d=v.computeStrides(a.shape),p=C.convertConv2DDataFormat(u),m=C.computeConv2DInfo(i,s.shape,o,1,l,c,!1,p),f=new Ft(m.inShape,"float32"),A=f.values,y=n.data.get(a.dataId).values,g=n.data.get(s.dataId).values,[_,b,w]=h,{batchSize:x,filterHeight:N,filterWidth:T,inChannels:E,inHeight:M,inWidth:D,outChannels:L,outHeight:W,outWidth:U,strideHeight:j,strideWidth:X}=m;p=m.dataFormat;let G=N-1-m.padInfo.top,ee=T-1-m.padInfo.left,Y=p==="channelsLast",ae=f.strides[0],te=Y?f.strides[1]:f.strides[2],ie=Y?f.strides[2]:1,Q=Y?1:f.strides[1],ce=d[0],oe=Y?d[1]:d[2],pe=Y?d[2]:1,de=Y?1:d[1];for(let be=0;be<x;++be)for(let ke=0;ke<E;++ke)for(let Re=0;Re<M;++Re){let $e=Re-G,Fe=Math.max(0,Math.ceil($e/j)),Je=Math.min(W,(N+$e)/j);for(let Qe=0;Qe<D;++Qe){let at=Qe-ee,Ge=Math.max(0,Math.ceil(at/X)),ct=Math.min(U,(T+at)/X),Le=0;for(let yt=Fe;yt<Je;++yt){let Pn=yt*j-$e;for(let qt=Ge;qt<ct;++qt){let hn=qt*X-at,Ln=ce*be+oe*yt+pe*qt,kn=_*(N-1-Pn)+b*(T-1-hn)+w*ke;for(let rn=0;rn<L;++rn){let Xt=y[Ln+de*rn],wr=g[kn+rn];Le+=Xt*wr}}}let cn=ae*be+te*Re+ie*Qe+Q*ke;A[cn]=Le}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var vF={kernelName:ts,backendName:"cpu",kernelFunc:bF};function kF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r;xe([a,s],"conv3d");let u=C.computeConv3DInfo(a.shape,s.shape,i,l,o),{filterDepth:c,filterHeight:h,filterWidth:d,dilationDepth:p,dilationHeight:m,dilationWidth:f,padInfo:A}=u,y=A.front,g=A.left,_=A.top,b=new Ft(u.outShape,a.dtype),w=n.data.get(a.dataId).values,x=n.data.get(s.dataId).values,N=b.values,T=v.computeStrides(a.shape),E=v.computeStrides(s.shape);for(let M=0;M<u.batchSize;++M){let D=M*T[0],L=M*b.strides[0];for(let W=0;W<u.outDepth;++W){let U=L+W*b.strides[1],j=W*u.strideDepth-y;for(let X=0;X<c;++X){let G=j+X*p;if(G<0||G>=u.inDepth)continue;let ee=X*E[0],Y=D+G*T[1];for(let ae=0;ae<u.outHeight;++ae){let te=U+ae*b.strides[2],ie=ae*u.strideHeight-_;for(let Q=0;Q<h;++Q){let ce=ie+Q*m;if(ce<0||ce>=u.inHeight)continue;let oe=ee+Q*E[1],pe=Y+ce*T[2];for(let de=0;de<u.outWidth;++de){let be=te+de*u.outChannels,ke=de*u.strideWidth-g;for(let Re=0;Re<d;++Re){let $e=ke+Re*f;if($e<0||$e>=u.inWidth)continue;let Fe=oe+Re*E[2],Je=pe+$e*u.inChannels,Qe=Fe;for(let at=0;at<u.inChannels;++at){let Ge=w[Je+at];for(let ct=0;ct<u.outChannels;++ct)N[be+ct]+=Ge*x[Qe+ct];Qe+=u.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var IF={kernelName:Yl,backendName:"cpu",kernelFunc:kF};function NF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r;xe([a,s],"conv3dBackpropFilterV2");let u=v.computeStrides(a.shape),c=v.computeStrides(s.shape),h=C.computeConv3DInfo(a.shape,l,i,1,o),d=h.strideDepth,p=h.strideHeight,m=h.strideWidth,f=h.filterDepth,A=h.filterHeight,y=h.filterWidth,g=new Ft(h.filterShape,"float32"),_=g.values,[b,w,x,N]=g.strides,T=n.data.get(s.dataId).values,[E,M,D,L]=c,W=n.data.get(a.dataId).values,[U,j,X,G]=u,ee=h.padInfo.front,Y=h.padInfo.left,ae=h.padInfo.top;for(let te=0;te<f;++te){let ie=Math.max(0,Math.ceil((ee-te)/d)),Q=Math.min(h.outDepth,(h.inDepth+ee-te)/d),ce=te*b;for(let oe=0;oe<A;++oe){let pe=Math.max(0,Math.ceil((ae-oe)/p)),de=Math.min(h.outHeight,(h.inHeight+ae-oe)/p),be=oe*w+ce;for(let ke=0;ke<y;++ke){let Re=Math.max(0,Math.ceil((Y-ke)/m)),$e=Math.min(h.outWidth,(h.inWidth+Y-ke)/m),Fe=ke*x+be;for(let Je=0;Je<h.inChannels;++Je){let Qe=Je*N+Fe;for(let at=0;at<h.outChannels;++at){let Ge=0;for(let ct=0;ct<h.batchSize;++ct){let Le=ct*U,cn=ct*E;for(let yt=ie;yt<Q;++yt){let Pn=(te+yt*d-ee)*j+Le,qt=yt*M+cn;for(let hn=pe;hn<de;++hn){let Ln=(oe+hn*p-ae)*X+Pn,kn=hn*D+qt;for(let rn=Re;rn<$e;++rn){let Xt=(ke+rn*m-Y)*G+Ln,wr=rn*L+kn;Ge+=W[Xt+Je]*T[wr+at]}}}}_[Qe+at]=Ge}}}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var SF={kernelName:ch,backendName:"cpu",kernelFunc:NF};function TF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r;xe([a],"conv3dBackpropInputV2");let u=v.computeStrides(a.shape),c=v.computeStrides(s.shape),h=C.computeConv3DInfo(l,s.shape,o,1,i),d=new Ft(h.inShape,"float32"),p=d.values,[m,f,A,y]=d.strides,g=n.data.get(a.dataId).values,[_,b,w,x]=u,N=n.data.get(s.dataId).values,[T,E,M,D]=c,{batchSize:L,filterDepth:W,filterHeight:U,filterWidth:j,inChannels:X,inDepth:G,inHeight:ee,inWidth:Y,outChannels:ae,outDepth:te,outHeight:ie,outWidth:Q,strideDepth:ce,strideHeight:oe,strideWidth:pe}=h,de=W-1-h.padInfo.front,be=U-1-h.padInfo.top,ke=j-1-h.padInfo.left;for(let Re=0;Re<L;++Re)for(let $e=0;$e<X;++$e)for(let Fe=0;Fe<G;++Fe){let Je=Fe-de,Qe=Math.max(0,Math.ceil(Je/ce)),at=Math.min(te,(W+Je)/ce);for(let Ge=0;Ge<ee;++Ge){let ct=Ge-be,Le=Math.max(0,Math.ceil(ct/oe)),cn=Math.min(ie,(U+ct)/oe);for(let yt=0;yt<Y;++yt){let Pn=yt-ke,qt=Math.max(0,Math.ceil(Pn/pe)),hn=Math.min(Q,(j+Pn)/pe),Ln=0;for(let kn=Qe;kn<at;++kn){let rn=kn*ce-Je;for(let Xt=Le;Xt<cn;++Xt){let wr=Xt*oe-ct;for(let qn=qt;qn<hn;++qn){let Xn=qn*pe-Pn,ia=_*Re+b*kn+w*Xt+x*qn,Br=T*(W-1-rn)+E*(U-1-wr)+M*(j-1-Xn)+D*$e;for(let oa=0;oa<ae;++oa){let _i=g[ia+oa],or=N[Br+oa];Ln+=_i*or}}}}p[m*Re+f*Fe+A*Ge+y*yt+$e]=Ln}}}return n.makeTensorInfo(d.shape,d.dtype,d.values)}var EF={kernelName:hh,backendName:"cpu",kernelFunc:TF},CF=rt(ns,e=>Math.cos(e)),RF={kernelName:ns,backendName:"cpu",kernelFunc:CF},FF=rt(Hi,e=>Math.cosh(e)),MF={kernelName:Hi,backendName:"cpu",kernelFunc:FF};function $F(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=r,[c,h,d,p]=a.shape,m=s.shape[0],[f,A]=o,y=Pe([m,f,A,p],"float32"),g=n.data.get(s.dataId).values,_=n.data.get(i.dataId).values,b=n.data.get(a.dataId).values,w=v.computeStrides(a.shape),x=v.computeStrides(y.shape);for(let N=0;N<m;N++){let T=N*4,E=g[T],M=g[T+1],D=g[T+2],L=g[T+3],W=_[N];if(W>=c)continue;let U=f>1?(D-E)*(h-1)/(f-1):0,j=A>1?(L-M)*(d-1)/(A-1):0;for(let X=0;X<f;X++){let G=f>1?E*(h-1)+X*U:.5*(E+D)*(h-1);if(G<0||G>h-1){for(let ee=0;ee<A;ee++)for(let Y=0;Y<p;Y++){let ae=Y+ee*x[2]+X*x[1]+N*x[0];y.values[ae]=u}continue}if(l==="bilinear"){let ee=Math.floor(G),Y=Math.ceil(G),ae=G-ee;for(let te=0;te<A;te++){let ie=A>1?M*(d-1)+te*j:.5*(M+L)*(d-1);if(ie<0||ie>d-1){for(let pe=0;pe<p;pe++){let de=pe+te*x[2]+X*x[1]+N*x[0];y.values[de]=u}continue}let Q=Math.floor(ie),ce=Math.ceil(ie),oe=ie-Q;for(let pe=0;pe<p;pe++){let de=pe+Q*w[2]+ee*w[1]+W*w[0],be=b[de];de=pe+ce*w[2]+ee*w[1]+W*w[0];let ke=b[de];de=pe+Q*w[2]+Y*w[1]+W*w[0];let Re=b[de];de=pe+ce*w[2]+Y*w[1]+W*w[0];let $e=b[de],Fe=be+(ke-be)*oe,Je=Re+($e-Re)*oe;de=pe+te*x[2]+X*x[1]+N*x[0],y.values[de]=Fe+(Je-Fe)*ae}}}else for(let ee=0;ee<A;++ee){let Y=A>1?M*(d-1)+ee*j:.5*(M+L)*(d-1);if(Y<0||Y>d-1){for(let ie=0;ie<p;ie++){let Q=ie+ee*x[2]+X*x[1]+N*x[0];y.values[Q]=u}continue}let ae=Math.round(Y),te=Math.round(G);for(let ie=0;ie<p;ie++){let Q=ie+ae*w[2]+te*w[1]+W*w[0],ce=ie+ee*x[2]+X*x[1]+N*x[0];y.values[ce]=b[Q]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var OF={kernelName:Gi,backendName:"cpu",kernelFunc:$F};function DF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r;xe(a,"cumsum");let l=C.getAxesPermutation([s],a.shape.length),u=a;l!=null&&(u=nr({inputs:{x:a},backend:n,attrs:{perm:l}}));let c=C.getInnerMostAxes(1,a.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let h=Yn(u.dtype,"int32"),d=v.makeZerosTypedArray(v.sizeFromShape(u.shape),h),p=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(y,g)=>y+m-g-1:(y,g)=>y+g;for(let y=0;y<p.length;y+=m)for(let g=0;g<m;g++){let _=f(y,g);if(g===0)d[_]=i?0:p[_];else{let b=f(y,g-1);d[_]=i?p[b]+d[b]:p[_]+d[b]}}let A=n.makeTensorInfo(u.shape,h,d);if(l!=null){let y=C.getUndoAxesPermutation(l),g=nr({inputs:{x:A},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(u),g}return A}var zF={kernelName:rs,backendName:"cpu",kernelFunc:DF};function PF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.data.get(a.dataId).values,u=n.data.get(s.dataId).values,c=Kf(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}else if(a.shape.length===2){let l=n.bufferSync(a),u=n.bufferSync(s),c=nx(l,u,i,o);return n.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var LF={kernelName:dh,backendName:"cpu",kernelFunc:PF};function WF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;v.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),v.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=a.shape[1],u=a.shape[2],c=a.shape[3],h=l*s,d=u*s,p=c/(s*s),m=n.data.get(a.dataId).values,f=new Float32Array(o*h*d*p),A=0;for(let y=0;y<o;++y)for(let g=0;g<h;++g){let _=Math.floor(g/s),b=g%s;for(let w=0;w<d;++w){let x=Math.floor(w/s),N=w%s,T=(b*s+N)*p;for(let E=0;E<p;++E){let M=E+T+c*(x+u*(_+l*y));f[A++]=m[M]}}}return n.makeTensorInfo([o,h,d,p],a.dtype,f)}var BF={kernelName:qi,backendName:"cpu",kernelFunc:WF};function Dx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=r;xe([a,s],"depthwiseConv2DNative");let c=v.computeStrides(a.shape),h=v.computeStrides(s.shape),d=l;d==null&&(d=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=C.computeConv2DInfo(a.shape,s.shape,i,d,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:A,dilationWidth:y,padInfo:g}=p,_=g.left,b=g.top,w=p.outChannels/p.inChannels,x=new Ft(p.outShape,a.dtype),N=n.data.get(a.dataId).values,T=n.data.get(s.dataId).values,E=x.values;for(let M=0;M<p.batchSize;++M){let D=M*c[0],L=M*x.strides[0];for(let W=0;W<p.outHeight;++W){let U=L+W*x.strides[1],j=W*p.strideHeight-_;for(let X=0;X<m;++X){let G=j+X*A;if(G<0||G>=p.inHeight)continue;let ee=X*h[0],Y=D+G*c[1];for(let ae=0;ae<p.outWidth;++ae){let te=U+ae*x.strides[2],ie=ae*p.strideWidth-b;for(let Q=0;Q<f;++Q){let ce=ie+Q*y;if(ce<0||ce>=p.inWidth)continue;let oe=ee+Q*h[1],pe=Y+ce*p.inChannels,de=te,be=oe;for(let ke=0;ke<p.inChannels;++ke){let Re=N[pe+ke];for(let $e=0;$e<w;++$e)E[de+$e]+=Re*T[be+$e];de+=w,be+=w}}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var VF={kernelName:as,backendName:"cpu",kernelFunc:Dx};function UF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:c}=r;xe([a,s],"depthwiseConv2dNativeBackpropFilter");let h=C.computeConv2DInfo(a.shape,c,i,o,l,u,!0),{strideHeight:d,strideWidth:p,filterHeight:m,filterWidth:f}=h,A=new Ft(h.filterShape,"float32"),y=h.padInfo.left,g=h.padInfo.top,_=h.outChannels/h.inChannels,b=n.data.get(a.dataId).values,w=new Ft(a.shape,a.dtype,b),x=n.data.get(s.dataId).values,N=new Ft(s.shape,s.dtype,x);for(let T=0;T<m;++T){let E=Math.max(0,Math.ceil((g-T)/d)),M=Math.min(h.outHeight,(h.inHeight+g-T)/d);for(let D=0;D<f;++D){let L=Math.max(0,Math.ceil((y-D)/p)),W=Math.min(h.outWidth,(h.inWidth+y-D)/p);for(let U=0;U<h.outChannels;++U){let j=Math.trunc(U/_),X=U%_,G=0;for(let ee=0;ee<h.batchSize;++ee)for(let Y=E;Y<M;++Y){let ae=T+Y*d-g;for(let te=L;te<W;++te){let ie=D+te*p-y;G+=w.get(ee,ae,ie,j)*N.get(ee,Y,te,U)}}A.set(G,T,D,j,X)}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var jF={kernelName:ph,backendName:"cpu",kernelFunc:UF};function HF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:c}=r;xe([a,s],"depthwiseConv2DNativeBackpropInput");let h=v.computeStrides(a.shape),d=v.computeStrides(s.shape),p=C.computeConv2DInfo(c,s.shape,i,o,l,u,!0),m=new Ft(p.inShape,"float32"),f=m.values,[A,y,g]=m.strides,_=n.data.get(a.dataId).values,[b,w,x]=h,N=n.data.get(s.dataId).values,[T,E,M]=d,{batchSize:D,filterHeight:L,filterWidth:W,inChannels:U,inHeight:j,inWidth:X,outChannels:G,outHeight:ee,outWidth:Y,strideHeight:ae,strideWidth:te}=p,ie=L-1-p.padInfo.top,Q=W-1-p.padInfo.left,ce=G/U;for(let oe=0;oe<D;++oe)for(let pe=0;pe<U;++pe)for(let de=0;de<j;++de){let be=de-ie,ke=Math.max(0,Math.ceil(be/ae)),Re=Math.min(ee,(L+be)/ae);for(let $e=0;$e<X;++$e){let Fe=$e-Q,Je=Math.max(0,Math.ceil(Fe/te)),Qe=Math.min(Y,(W+Fe)/te),at=0;for(let Ge=ke;Ge<Re;++Ge){let ct=Ge*ae-be;for(let Le=Je;Le<Qe;++Le){let cn=Le*te-Fe,yt=b*oe+w*Ge+x*Le,Pn=T*(L-1-ct)+E*(W-1-cn)+M*pe;for(let qt=0;qt<ce;++qt){let hn=pe*ce+qt,Ln=_[yt+hn],kn=N[Pn+qt];at+=Ln*kn}}}f[A*oe+y*de+g*$e+pe]=at}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var GF={kernelName:fh,backendName:"cpu",kernelFunc:HF};function qF(e){let{inputs:t,backend:n}=e,{x:r}=t,a=v.sizeFromShape(r.shape),s=n.data.get(r.dataId).values,i=Pe([a,a],r.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*a+u]=s[u];let l=[...r.shape,...r.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var XF={kernelName:mh,backendName:"cpu",kernelFunc:qF},KF={kernelName:Jl,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(r.dataId).values,c=r.shape.length,h=l.data.get(a.dataId).values,d=a.shape.length,{batchSize:p,inHeight:m,inWidth:f,inChannels:A,outHeight:y,outWidth:g,padInfo:_,strideHeight:b,strideWidth:w,filterHeight:x,filterWidth:N,dilationHeight:T,dilationWidth:E,outShape:M}=C.computeDilation2DInfo(r.shape,a.shape,s,i,"NHWC",o),D=v.sizeFromShape(M),L=M.length,W=v.getArrayFromDType(r.dtype,D);for(let U=0;U<p;++U)for(let j=0;j<y;++j){let X=j*b-_.top;for(let G=0;G<g;++G){let ee=G*w-_.left;for(let Y=0;Y<A;++Y){let ae=Number.MIN_SAFE_INTEGER;for(let ie=0;ie<x;++ie){let Q=X+ie*T;if(Q>=0&&Q<m)for(let ce=0;ce<N;++ce){let oe=ee+ce*E;if(oe>=0&&oe<f){let pe=v.locToIndex([U,Q,oe,Y],c,v.computeStrides(r.shape)),de=v.locToIndex([ie,ce,Y],d,v.computeStrides(a.shape)),be=u[pe]+h[de];be>ae&&(ae=be)}}}let te=v.locToIndex([U,j,G,Y],L,v.computeStrides(M));W[te]=ae}}}return{dataId:l.write(v.toTypedArray(W,r.dtype),M,r.dtype),shape:M,dtype:r.dtype}}},ZF={kernelName:yh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,c=v.toNestedArray(r.shape,u.data.get(r.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:_,strideWidth:b,filterHeight:w,filterWidth:x,dilationHeight:N,dilationWidth:T,outShape:E}=C.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===E.length,()=>`Error in ${yh}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let M=v.toNestedArray(E,u.data.get(s.dataId).values),D=v.makeZerosNestedTypedArray(a.shape,a.dtype);for(let L=0;L<d;++L)for(let W=0;W<A;++W){let U=W*_-g.top;for(let j=0;j<y;++j){let X=j*b-g.left;for(let G=0;G<f;++G){let ee=Number.MIN_SAFE_INTEGER,Y=0,ae=0;for(let te=0;te<w;++te){let ie=U+te*N;if(ie>=0&&ie<p)for(let Q=0;Q<x;++Q){let ce=X+Q*T;if(ce>=0&&ce<m){let oe=c[L][ie][ce][G]+h[te][Q][G];oe>ee&&(ee=oe,Y=te,ae=Q)}}}D[Y][ae][G]+=M[L][W][j][G]}}}return{dataId:u.write(v.toTypedArray(D,r.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},YF={kernelName:Ah,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,c=v.toNestedArray(r.shape,u.data.get(r.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:_,strideWidth:b,filterHeight:w,filterWidth:x,dilationHeight:N,dilationWidth:T,outShape:E}=C.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===E.length,()=>`Error in ${Ah}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let M=v.toNestedArray(E,u.data.get(s.dataId).values),D=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let L=0;L<d;++L)for(let W=0;W<A;++W){let U=W*_-g.top;for(let j=0;j<y;++j){let X=j*b-g.left;for(let G=0;G<f;++G){let ee=Number.MIN_SAFE_INTEGER,Y=U<0?0:U,ae=X<0?0:X;for(let te=0;te<w;++te){let ie=U+te*N;if(ie>=0&&ie<p)for(let Q=0;Q<x;++Q){let ce=X+Q*T;if(ce>=0&&ce<m){let oe=c[L][ie][ce][G]+h[te][Q][G];oe>ee&&(ee=oe,Y=ie,ae=ce)}}}D[L][Y][ae][G]+=M[L][W][j][G]}}}return{dataId:u.write(v.toTypedArray(D,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function JF(e){let{inputs:t,backend:n}=e,{dy:r,y:a}=t;xe([r,a],"eluGrad");let s=new Float32Array(v.sizeFromShape(a.shape)),i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(a.shape,"float32",s)}var QF={kernelName:gh,backendName:"cpu",kernelFunc:JF},eM=St((e,t)=>e===t?1:0),zx=Vt(Zi,eM,null,"bool"),tM={kernelName:Zi,backendName:"cpu",kernelFunc:zx},nM=C.ERF_P,rM=C.ERF_A1,aM=C.ERF_A2,sM=C.ERF_A3,iM=C.ERF_A4,oM=C.ERF_A5,lM=rt(Ki,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+nM*n);return t*(1-((((oM*r+iM)*r+sM)*r+aM)*r+rM)*r*Math.exp(-n*n))}),uM={kernelName:Ki,backendName:"cpu",kernelFunc:lM};function Md(e){let{inputs:t,backend:n,attrs:r}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),ft({inputs:{x:a},backend:n,attrs:{shape:o}})}var cM={kernelName:Yi,backendName:"cpu",kernelFunc:Md},hM=St((e,t)=>e/t),sm=Vt(ss,hM),im={kernelName:ss,backendName:"cpu",kernelFunc:sm};function Px(e,t,n){let r=e.shape,a=r[0],s=r[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[a,s],c=v.sizeFromShape(u),h=v.getTypedArrayFromDType("float32",c),d=v.getTypedArrayFromDType("float32",c);for(let A=0;A<a;A++){let y=ri({inputs:{x:o},backend:n,attrs:{begin:[A,0],size:[1,s]}}),g=ri({inputs:{x:l},backend:n,attrs:{begin:[A,0],size:[1,s]}}),_=Rn({inputs:{real:y,imag:g},backend:n}),{real:b,imag:w}=dM(_,t,n),x=C.mergeRealAndImagArrays(b,w);for(let N=0;N<s;N++){let T=C.getComplexWithIndex(x,N);h[A*s+N]=T.real,d[A*s+N]=T.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(_)}let p=n.makeTensorInfo(u,"float32",h),m=n.makeTensorInfo(u,"float32",d),f=Rn({inputs:{real:p,imag:m},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),f}function dM(e,t,n){let r=v.sizeFromShape(e.shape),a=n.data.get(e.dataId),s=n.data.get(a.complexTensorInfos.real.dataId).values,i=n.data.get(a.complexTensorInfos.imag.dataId).values;if(pM(r)){let o=om(s,i,r,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),c=n.makeTensorInfo(l,"float32",o.imag),h=n.makeTensorInfo([],"float32",v.createScalarValue(r,"float32")),d=Fr({inputs:{x:h},backend:n}),p=im.kernelFunc({inputs:{a:u,b:h},backend:n}),m=im.kernelFunc({inputs:{a:c,b:d},backend:n}),f=n.data.get(p.dataId).values,A=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),{real:f,imag:A}}return o}else{let o=C.mergeRealAndImagArrays(s,i),l=fM(o,r,t);return C.splitRealAndImagArrays(l)}}function pM(e){return(e&e-1)==0}function om(e,t,n,r,a){if(n===1)return{real:e,imag:t};let s=C.mergeRealAndImagArrays(e,t),i=n/2,o=C.complexWithEvenIndex(s),l=o.real,u=o.imag,c=[l.length],h=a.makeTensorInfo(c,"float32",l),d=a.makeTensorInfo(c,"float32",u),p=Rn({inputs:{real:h,imag:d},backend:a}),m=C.complexWithOddIndex(s),f=m.real,A=m.imag,y=[f.length],g=a.makeTensorInfo(y,"float32",f),_=a.makeTensorInfo(y,"float32",A),b=Rn({inputs:{real:g,imag:_},backend:a}),w=om(l,u,i,r,a),x=w.real,N=w.imag,T=[x.length],E=a.makeTensorInfo(T,"float32",x),M=a.makeTensorInfo(T,"float32",N),D=Rn({inputs:{real:E,imag:M},backend:a}),L=om(f,A,i,r,a),W=L.real,U=L.imag,j=[W.length],X=a.makeTensorInfo(j,"float32",W),G=a.makeTensorInfo(j,"float32",U),ee=Rn({inputs:{real:X,imag:G},backend:a}),Y=C.exponents(n,r),ae=[Y.real.length],te=a.makeTensorInfo(ae,"float32",Y.real),ie=a.makeTensorInfo(ae,"float32",Y.imag),Q=Rn({inputs:{real:te,imag:ie},backend:a}),ce=tm({inputs:{a:Q,b:ee},backend:a}),oe=Lu({inputs:{a:D,b:ce},backend:a}),pe=nm({inputs:{a:D,b:ce},backend:a}),de=ni({inputs:{input:oe},backend:a}),be=ni({inputs:{input:pe},backend:a}),ke=ll({inputs:{input:oe},backend:a}),Re=ll({inputs:{input:pe},backend:a}),$e=ul({inputs:[de,be],backend:a,attrs:{axis:0}}),Fe=ul({inputs:[ke,Re],backend:a,attrs:{axis:0}}),Je=a.data.get($e.dataId).values,Qe=a.data.get(Fe.dataId).values;return a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(d),a.disposeIntermediateTensorInfo(p),a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(_),a.disposeIntermediateTensorInfo(b),a.disposeIntermediateTensorInfo(E),a.disposeIntermediateTensorInfo(M),a.disposeIntermediateTensorInfo(D),a.disposeIntermediateTensorInfo(X),a.disposeIntermediateTensorInfo(G),a.disposeIntermediateTensorInfo(ee),a.disposeIntermediateTensorInfo(te),a.disposeIntermediateTensorInfo(ie),a.disposeIntermediateTensorInfo(Q),a.disposeIntermediateTensorInfo(ce),a.disposeIntermediateTensorInfo(oe),a.disposeIntermediateTensorInfo(pe),a.disposeIntermediateTensorInfo(de),a.disposeIntermediateTensorInfo(ke),a.disposeIntermediateTensorInfo(be),a.disposeIntermediateTensorInfo(Re),a.disposeIntermediateTensorInfo($e),a.disposeIntermediateTensorInfo(Fe),{real:Je,imag:Qe}}function fM(e,t,n){let r=new Float32Array(t*2);for(let a=0;a<t;a++){let s=0,i=0;for(let o=0;o<t;o++){let l=C.exponent(a*o,t,n),u=C.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),C.assignToTypedArray(r,s,i,a)}return r}function mM(e){let{inputs:t,backend:n}=e,{input:r}=t,a=v.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=ft({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=Px(o,!1,n),u=ft({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var AM={kernelName:xh,backendName:"cpu",kernelFunc:mM};function lm(e){let{backend:t,attrs:n}=e,{shape:r,value:a,dtype:s}=n,i=s||v.inferDtype(a),o=v.getArrayFromDType(i,v.sizeFromShape(r));return yM(o,a,i),t.makeTensorInfo(r,i,o)}var gM={kernelName:Ql,backendName:"cpu",kernelFunc:lm};function yM(e,t,n){e.fill(t)}var xM={kernelName:Qi,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,a=n,s=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(r.shape)),[i,o,l,u]=r.shape,c=a.data.get(r.dataId).values;for(let h=0;h<i;h++){let d=h*l*o*u;for(let p=0;p<o;p++){let m=p*(l*u);for(let f=0;f<l;f++){let A=f*u;for(let y=0;y<u;y++){let g=[i,p,f,y][2],_=Math.round(l-g),b=d+m+A+y,w=c[b];if(_>=0&&_<l){let x=_*u,N=d+m+x+y;w=c[N]}s[b]=w}}}}return{dataId:a.write(s,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},wM=St((e,t)=>Math.floor(e/t)),_M=Vt(ls,wM,null,"int32"),bM={kernelName:ls,backendName:"cpu",kernelFunc:_M};function vM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=Ox({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d}});if(i){let A=f;f=Lu({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=f;f=rm(n,f,p,o,m),n.disposeIntermediateTensorInfo(A)}return f}var kM={kernelName:Bs,backendName:"cpu",kernelFunc:vM};function IM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=Dx({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d}});if(i){let A=f;f=Lu({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=f;f=rm(n,f,p,o,m),n.disposeIntermediateTensorInfo(A)}return f}var NM={kernelName:Vs,backendName:"cpu",kernelFunc:IM};function SM(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=v.sizeFromShape(r.shape),i=a.shape,o=i[i.length-1],[l,u,c,h]=C.prepareAndValidate(r,a);if(u===0)return n.makeTensorInfo(l,r.dtype,[]);let d=Pe([u,c],r.dtype),p=n.data.get(a.dataId).values,m=n.data.get(r.dataId).values;for(let f=0;f<u;f++){let A=[],y=0;for(let g=0;g<o;g++){let _=p[f*o+g];y+=_*h[g],A.push(_)}if(y<0||y>=s/c)throw new Error(`Invalid indices: ${A} does not index into ${r.shape}`);for(let g=0;g<c;g++)d.values[f*c+g]=m[y*c+g]}return n.makeTensorInfo(l,d.dtype,d.values)}var TM={kernelName:to,backendName:"cpu",kernelFunc:SM};function EM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=r;xe([a,s],"gatherV2");let l=o;o==null&&(l=0);let u=v.sizeFromShape(s.shape),c=v.parseAxisParam(i,a.shape)[0],h=C.segment_util.collectGatherOpShapeInfo(a,s,c,l),d=ft({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),p=ft({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,u/h.batchSize]}}),m=[h.batchSize,h.outerSize,u/h.batchSize,h.sliceSize],f=n.bufferSync(p),A=n.bufferSync(d),y=ox(A,f,m);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.makeTensorInfo(h.outputShape,y.dtype,y.values)}var CM={kernelName:eo,backendName:"cpu",kernelFunc:EM},RM=St((e,t)=>e>=t?1:0),FM=Vt(cs,RM,null,"bool"),MM={kernelName:cs,backendName:"cpu",kernelFunc:FM};function $M(e){let{inputs:t,backend:n}=e,{input:r}=t,a=v.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=ft({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=Px(o,!0,n),u=ft({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var OM={kernelName:wh,backendName:"cpu",kernelFunc:$M},DM=rt(ro,e=>Number.isFinite(e)?1:0,"bool"),zM={kernelName:ro,backendName:"cpu",kernelFunc:DM},PM=rt(ao,e=>Math.abs(e)===Infinity?1:0,"bool"),LM={kernelName:ao,backendName:"cpu",kernelFunc:PM},WM=rt(so,e=>Number.isNaN(e)?1:0,"bool"),BM={kernelName:so,backendName:"cpu",kernelFunc:WM},VM=St((e,t)=>e<=t?1:0),UM=Vt(oo,VM,null,"bool"),jM={kernelName:oo,backendName:"cpu",kernelFunc:UM};function HM(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=cx(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var GM={kernelName:bh,backendName:"cpu",kernelFunc:HM},qM=rt(lo,e=>Math.log1p(e)),XM={kernelName:lo,backendName:"cpu",kernelFunc:qM},KM=St((e,t)=>e&&t),ZM=Vt(uo,KM,null,"bool"),YM={kernelName:uo,backendName:"cpu",kernelFunc:ZM},JM=rt(eu,e=>e?0:1,"bool"),QM={kernelName:eu,backendName:"cpu",kernelFunc:JM},e$=St((e,t)=>e||t),t$=Vt(tu,e$,null,"bool"),n$={kernelName:tu,backendName:"cpu",kernelFunc:t$};function r$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;xe(a,"LRN");let u=a.shape[3],c=u-1,h=n.data.get(a.dataId).values,d=v.sizeFromShape(a.shape),p=new Float32Array(d);function m(f){let A=f%u,y=f-A+Math.max(0,A-s),g=f-A+Math.min(A+s,c),_=0;for(;y<=g;y++){let b=h[y];_+=b*b}return _}for(let f=0;f<d;f++){let A=m(f),y=h[f]*Math.pow(i+o*A,-l);p[f]=y}return n.makeTensorInfo(a.shape,a.dtype,p)}var a$={kernelName:nu,backendName:"cpu",kernelFunc:r$};function s$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:c}=r;xe(i,"LRNGrad");let h=v.sizeFromShape(i.shape),d=i.shape[3],p=n.data.get(i.dataId).values,m=n.data.get(a.dataId).values,f=n.data.get(s.dataId).values,A=new Float32Array(h),y=h;for(let g=0;g<y;g++){let _=g%d,b=g-_+Math.max(0,_-o),w=g-_+Math.min(d,_+o+1),x=0;for(let N=b;N<w;N++)x+=Math.pow(m[N],2);x=u*x+l;for(let N=b;N<w;N++){let T=-2*u*c*m[N]*f[g]/x;g===N&&(T+=Math.pow(x,-c)),T*=p[g],A[N]+=T}}return n.makeTensorInfo(i.shape,a.dtype,A)}var i$={kernelName:vh,backendName:"cpu",kernelFunc:s$};function Lx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=n,l=a.shape,u=l.length,c=v.parseAxisParam(s,l),h=c,d=C.getAxesPermutation(h,u),p=o.data.get(a.dataId).values;if(d!=null){let b=new Array(u);for(let w=0;w<b.length;w++)b[w]=l[d[w]];p=Jf(p,l,a.dtype,d,b),h=C.getInnerMostAxes(h.length,u),l=b}xe(a,"max"),C.assertAxesAreInnerMostDims("max",h,u);let[m,f]=C.computeOutAndReduceShapes(l,h),A=v.sizeFromShape(f),y=dx(p,A,m,a.dtype),g=o.write(y,m,a.dtype),_=m;return i&&(_=C.expandShapeToKeepDim(m,c)),{dataId:g,shape:_,dtype:a.dtype}}var o$={kernelName:fs,backendName:"cpu",kernelFunc:Lx};function l$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;xe(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=C.computePool2DInfo(a.shape,s,i,u,o,l),h;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))h=Fr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=v.computeStrides(a.shape),m=am(d,a.shape,a.dtype,p,c,"max");h=n.makeTensorInfo(c.outShape,a.dtype,m.values)}return h}var u$={kernelName:As,backendName:"cpu",kernelFunc:l$};function c$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r;xe(a,"maxPool3d");let c=C.computePool3DInfo(a.shape,s,i,1,o,l,u),h=n.data.get(a.dataId).values,d=$x(h,a.shape,a.dtype,v.computeStrides(a.shape),c,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var h$={kernelName:ru,backendName:"cpu",kernelFunc:c$};function d$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r;xe([a,s],"maxPool3DGrad");let c=C.computePool3DInfo(s.shape,i,o,1,l,u),h=n.bufferSync(s),d=JR(h,c),p=c.strideDepth,m=c.strideHeight,f=c.strideWidth,A=c.dilationDepth,y=c.dilationHeight,g=c.dilationWidth,_=c.effectiveFilterDepth,b=c.effectiveFilterHeight,w=c.effectiveFilterWidth,x=_-1-c.padInfo.front,N=w-1-c.padInfo.left,T=b-1-c.padInfo.top,E=Pe(s.shape,"float32"),M=n.bufferSync(a);for(let D=0;D<c.batchSize;++D)for(let L=0;L<c.inChannels;++L)for(let W=0;W<c.inDepth;++W)for(let U=0;U<c.inHeight;++U)for(let j=0;j<c.inWidth;++j){let X=W-x,G=U-T,ee=j-N,Y=0;for(let ae=0;ae<_;ae+=A){let te=(X+ae)/p;if(!(te<0||te>=c.outDepth||Math.floor(te)!==te))for(let ie=0;ie<b;ie+=y){let Q=(G+ie)/m;if(!(Q<0||Q>=c.outHeight||Math.floor(Q)!==Q))for(let ce=0;ce<w;ce+=g){let oe=(ee+ce)/f;if(oe<0||oe>=c.outWidth||Math.floor(oe)!==oe)continue;let pe=_*b*w-1-d.get(D,te,Q,oe,L),de=ae*b*w+ie*w+ce,be=pe===de?1:0;be!==0&&(Y+=M.get(D,te,Q,oe,L)*be)}}}E.set(Y,D,W,U,j,L)}return n.makeTensorInfo(E.shape,E.dtype,E.values)}var p$={kernelName:Ih,backendName:"cpu",kernelFunc:d$};function f$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;xe([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:h}=r,d=C.computePool2DInfo(o.shape,l,u,1,c,h),p=n.data.get(o.dataId).values,m=Pe(d.outShape,o.dtype,Mx(p,o.shape,o.dtype,d).values),f=d.strideHeight,A=d.strideWidth,y=d.dilationHeight,g=d.dilationWidth,_=d.effectiveFilterHeight,b=d.effectiveFilterWidth,w=b-1-d.padInfo.left,x=_-1-d.padInfo.top,N=Pe(o.shape,"float32"),T=n.data.get(a.dataId).values,E=Pe(a.shape,"float32",T);for(let M=0;M<d.batchSize;++M)for(let D=0;D<d.inChannels;++D)for(let L=0;L<d.inHeight;++L)for(let W=0;W<d.inWidth;++W){let U=L-x,j=W-w,X=0;for(let G=0;G<_;G+=y){let ee=(U+G)/f;if(!(ee<0||ee>=d.outHeight||Math.floor(ee)!==ee))for(let Y=0;Y<b;Y+=g){let ae=(j+Y)/A;if(ae<0||ae>=d.outWidth||Math.floor(ae)!==ae)continue;let te=_*b-1-m.get(M,ee,ae,D),ie=G*b+Y,Q=te===ie?1:0;Q!==0&&(X+=E.get(M,ee,ae,D)*Q)}}N.set(X,M,L,W,D)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var m$={kernelName:kh,backendName:"cpu",kernelFunc:f$};function A$(e,t,n,r,a){let s=v.computeStrides(t),i=am(e,t,n,s,a,"max"),o=Mx(e,t,n,a,!0,r);return[i.values,o.values]}var y$={kernelName:Nh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;xe(r,"MaxPoolWithArgmax");let u=l.data.get(r.dataId).values,c=C.computePool2DInfo(r.shape,a,s,[1,1],i),[h,d]=A$(u,r.shape,r.dtype,o,c),p=l.write(h,c.outShape,r.dtype),m=l.write(d,c.outShape,r.dtype);return[{dataId:p,shape:c.outShape,dtype:r.dtype},{dataId:m,shape:c.outShape,dtype:"int32"}]}};function $d(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;xe(a,"sum");let o;a.dtype==="bool"?o=Ea({inputs:{x:a},backend:n,attrs:{dtype:"int32"}}):o=Fr({inputs:{x:a},backend:n});let l=o.shape.length,u=v.parseAxisParam(s,o.shape),c=C.getAxesPermutation(u,l),h=u,d=o;c!=null&&(d=nr({inputs:{x:o},backend:n,attrs:{perm:c}}),h=C.getInnerMostAxes(h.length,l)),C.assertAxesAreInnerMostDims("sum",h,d.shape.length);let[p,m]=C.computeOutAndReduceShapes(d.shape,h),f=C.upcastType(d.dtype,"int32"),A=Fd(n,p,f),y=v.sizeFromShape(m),g=n.data.get(A.dataId).values,_=n.data.get(d.dataId).values;for(let b=0;b<g.length;++b){let w=b*y,x=0;for(let N=0;N<y;++N)x+=_[w+N];g[b]=x}if(i){let b=C.expandShapeToKeepDim(A.shape,u),w=A;A=ft({inputs:{x:A},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(w)}return n.disposeIntermediateTensorInfo(o),c!=null&&n.disposeIntermediateTensorInfo(d),A}var g$={kernelName:$s,backendName:"cpu",kernelFunc:$d};function x$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=v.parseAxisParam(s,a.shape),l=C.computeOutAndReduceShapes(a.shape,o)[1],u=v.sizeFromShape(l),c=[],h=n.makeTensorInfo([],"float32",new Float32Array([u]));c.push(h);let d=Ea({inputs:{x:a},backend:n,attrs:{dtype:"float32"}});c.push(d);let p=sm({inputs:{a:d,b:h},backend:n});c.push(p);let m=$d({inputs:{x:p},backend:n,attrs:{axis:s,keepDims:i}});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var w$={kernelName:ys,backendName:"cpu",kernelFunc:x$};function _$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;xe(a,"min");let o=v.parseAxisParam(s,a.shape),l=o,u=C.getAxesPermutation(l,a.shape.length),c=a;u!=null&&(c=nr({inputs:{x:a},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("min",l,c.shape.length);let[h,d]=C.computeOutAndReduceShapes(c.shape,l),p=v.sizeFromShape(d),m=v.makeZerosTypedArray(v.sizeFromShape(h),c.dtype),f=n.data.get(c.dataId).values;for(let y=0;y<m.length;++y){let g=y*p,_=f[g];for(let b=0;b<p;++b){let w=f[g+b];w<_&&(_=w)}m[y]=_}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(h,c.dtype,m);if(i){let y=C.expandShapeToKeepDim(h,o),g=ft({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var b$={kernelName:gs,backendName:"cpu",kernelFunc:_$};function v$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,mode:i}=r;xe(a,"mirrorPad");let o=s.map((g,_)=>g[0]+a.shape[_]+g[1]),l=s.map(g=>g[0]),u=s.map((g,_)=>g[0]+a.shape[_]),c=i==="reflect"?0:1,h=n.data.get(a.dataId).values,d=a.shape.length,p=v.computeStrides(a.shape),m=v.sizeFromShape(o),f=o.length,A=v.computeStrides(o),y=v.getTypedArrayFromDType(a.dtype,m);for(let g=0;g<m;g++){let _=v.indexToLoc(g,f,A);for(let w=0;w<f;w++)_[w]<l[w]?_[w]=l[w]*2-_[w]-c:_[w]>=u[w]&&(_[w]=(u[w]-1)*2-_[w]+c);_=_.map((w,x)=>w-l[x]);let b=v.locToIndex(_,d,p);y[g]=h[b]}return{dataId:n.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var k$={kernelName:au,backendName:"cpu",kernelFunc:v$},I$=St((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),N$=Vt(co,I$),S$={kernelName:co,backendName:"cpu",kernelFunc:N$},T$=Mi(s8());function Wx(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=v.parseAxisParam([o],a.shape),u=Lx({inputs:{x:a},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=C.expandShapeToKeepDim(u.shape,l),h=ft({inputs:{x:u},backend:n,attrs:{shape:c}}),d=nm({inputs:{a,b:h},backend:n}),p=Ix({inputs:{x:d},backend:n}),m=$d({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),f=ft({inputs:{x:m},backend:n,attrs:{shape:c}}),A=sm({inputs:{a:p,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var E$={kernelName:Os,backendName:"cpu",kernelFunc:Wx};function C$(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r;xe(a,"multinomial");let l=o?a:Wx({inputs:{logits:a},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],h=n.data.get(l.dataId).values,d=[u,s],p=v.makeZerosTypedArray(v.sizeFromShape(d),"int32");for(let m=0;m<u;++m){let f=m*c,A=new Float32Array(c-1);A[0]=h[f];for(let _=1;_<A.length;++_)A[_]=A[_-1]+h[f+_];let y=T$.alea(i.toString()),g=m*s;for(let _=0;_<s;++_){let b=y();p[g+_]=A.length;for(let w=0;w<A.length;w++)if(b<A[w]){p[g+_]=w;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(d,"int32",p)}var R$={kernelName:Sh,backendName:"cpu",kernelFunc:C$},F$=Rr.nonMaxSuppressionV3Impl;function M$(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r;xe(a,"NonMaxSuppression");let u=n.data.get(a.dataId).values,c=n.data.get(s.dataId).values,{selectedIndices:h}=F$(u,c,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var $$={kernelName:fo,backendName:"cpu",kernelFunc:M$},O$=Rr.nonMaxSuppressionV4Impl;function D$(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=r;xe(a,"NonMaxSuppressionPadded");let c=n.data.get(a.dataId).values,h=n.data.get(s.dataId).values,{selectedIndices:d,validOutputs:p}=O$(c,h,i,o,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var z$={kernelName:mo,backendName:"cpu",kernelFunc:D$},P$=Rr.nonMaxSuppressionV5Impl;function L$(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=r;xe(a,"NonMaxSuppressionWithScore");let c=n.data.get(a.dataId).values,h=n.data.get(s.dataId).values,d=i,p=o,m=l,f=u,{selectedIndices:A,selectedScores:y}=P$(c,h,d,p,m,f);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var W$={kernelName:Ao,backendName:"cpu",kernelFunc:L$};function B$(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r;xe(a,"oneHot");let l=v.sizeFromShape(a.shape),u=new Float32Array(l*s);u.fill(o);let c=n.data.get(a.dataId).values;for(let h=0;h<l;++h)c[h]>=0&&c[h]<s&&(u[h*s+c[h]]=i);return n.makeTensorInfo([...a.shape,s],"int32",u)}var V$={kernelName:_s,backendName:"cpu",kernelFunc:B$};function Od(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(r.dtype==="complex64"){let a=ni({inputs:{input:r},backend:n}),s=Od({inputs:{x:a},backend:n}),i=ll({inputs:{input:r},backend:n}),o=Od({inputs:{x:i},backend:n}),l=Rn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return lm({backend:n,attrs:{shape:r.shape,value:0,dtype:r.dtype}})}var U$={kernelName:$o,backendName:"cpu",kernelFunc:Od};function Bx(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(r.dtype==="complex64"){let a=ni({inputs:{input:r},backend:n}),s=Bx({inputs:{x:a},backend:n}),i=ll({inputs:{input:r},backend:n}),o=Od({inputs:{x:i},backend:n}),l=Rn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return lm({backend:n,attrs:{shape:r.shape,value:1,dtype:r.dtype}})}var j$={kernelName:yo,backendName:"cpu",kernelFunc:Bx};function Vx(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return Md({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let h=Md({inputs:{input:c},backend:n,attrs:{dim:a}});return o.push(h),h}),u=ul({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var H$={kernelName:go,backendName:"cpu",kernelFunc:Vx};function G$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r;xe(a,"pad");let o=s.map((y,g)=>y[0]+a.shape[g]+y[1]),l=s.map(y=>y[0]),u=n.data.get(a.dataId).values,c=v.sizeFromShape(a.shape),h=a.shape.length,d=v.computeStrides(a.shape),p=v.sizeFromShape(o),m=o.length,f=v.computeStrides(o),A=v.getTypedArrayFromDType(a.dtype,p);i!==0&&A.fill(i);for(let y=0;y<c;y++){let g=v.indexToLoc(y,h,d).map((b,w)=>b+l[w]),_=v.locToIndex(g,m,f);A[_]=u[y]}return{dataId:n.write(A,o,a.dtype),shape:o,dtype:a.dtype}}var Ux={kernelName:bs,backendName:"cpu",kernelFunc:G$},q$=St((e,t)=>Math.pow(e,t)),X$=Vt(vs,q$),K$={kernelName:vs,backendName:"cpu",kernelFunc:X$};function Z$(e){let{backend:t,attrs:n}=e,{start:r,stop:a,dtype:s,step:i}=n,o=Qf(r,a,i,s);return t.makeTensorInfo([o.length],s,o)}var Y$={kernelName:su,backendName:"cpu",kernelFunc:Z$},J$=rt(wo,e=>1/e),Q$={kernelName:wo,backendName:"cpu",kernelFunc:J$};function eO(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;xe(a,"resizeBilinear");let l=v.computeStrides(a.shape),[u,c]=o,[h,d,p,m]=a.shape,f=n.data.get(a.dataId).values,A=new Float32Array(v.sizeFromShape([h,u,c,m])),y=[s&&u>1?d-1:d,s&&c>1?p-1:p],g=[s&&u>1?u-1:u,s&&c>1?c-1:c],_=0,b=y[0]/g[0],w=y[1]/g[1];for(let x=0;x<h;x++)for(let N=0;N<u;N++){let T;i?T=b*(N+.5)-.5:T=b*N;let E=Math.max(0,Math.floor(T)),M=T-E,D=Math.min(d-1,Math.ceil(T)),L=x*l[0]+E*l[1],W=x*l[0]+D*l[1];for(let U=0;U<c;U++){let j;i?j=w*(U+.5)-.5:j=w*U;let X=Math.max(0,Math.floor(j)),G=j-X,ee=Math.min(p-1,Math.ceil(j)),Y=L+X*l[2],ae=W+X*l[2],te=L+ee*l[2],ie=W+ee*l[2];for(let Q=0;Q<m;Q++){let ce=f[Y+Q],oe=f[ae+Q],pe=f[te+Q],de=f[ie+Q],be=ce+(pe-ce)*G,ke=oe+(de-oe)*G,Re=be+(ke-be)*M;A[_++]=Re}}}return n.makeTensorInfo([h,u,c,m],"float32",A)}var tO={kernelName:Ns,backendName:"cpu",kernelFunc:eO};function nO(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r;xe([s,a],"resizeBilinearGrad");let o=v.computeStrides(a.shape),[l,u,c,h]=a.shape,[,d,p]=s.shape,m=new Float32Array(l*u*c*h),f=[i&&d>1?u-1:u,i&&p>1?c-1:c],A=[i&&d>1?d-1:d,i&&p>1?p-1:p],y=f[0]/A[0],g=f[1]/A[1],_=n.data.get(s.dataId).values,b=0;for(let w=0;w<l;w++){let x=w*o[0];for(let N=0;N<d;N++){let T=N*y,E=Math.floor(T),M=Math.min(Math.ceil(T),u-1),D=x+E*o[1],L=x+M*o[1],W=T-E,U=1-W;for(let j=0;j<p;j++){let X=j*g,G=Math.floor(X),ee=Math.min(Math.ceil(X),c-1),Y=X-G,ae=1-Y,te=D+G*o[2],ie=D+ee*o[2],Q=L+G*o[2],ce=L+ee*o[2],oe=U*ae,pe=U*Y,de=W*ae,be=W*Y;for(let ke=0;ke<h;ke++){let Re=_[b++];m[te+ke]+=Re*oe,m[ie+ke]+=Re*pe,m[Q+ke]+=Re*de,m[ce+ke]+=Re*be}}}}return n.makeTensorInfo([l,c,u,h],"float32",m)}var rO={kernelName:Ch,backendName:"cpu",kernelFunc:nO};function aO(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;xe(a,"resizeNearestNeighbor");let l=v.computeStrides(a.shape),[u,c]=o,[h,d,p,m]=a.shape,f=n.data.get(a.dataId).values,A=new Float32Array(h*u*c*m),y=[s&&u>1?d-1:d,s&&c>1?p-1:p],g=[s&&u>1?u-1:u,s&&c>1?c-1:c],_=y[0]/g[0],b=y[1]/g[1],w=0;for(let x=0;x<h;x++){let N=x*l[0];for(let T=0;T<u;T++){let E=i?_*(T+.5):_*T,M=Math.min(d-1,s?Math.round(E):Math.floor(E));i&&(M=Math.max(0,M));let D=N+M*l[1];for(let L=0;L<c;L++){let W=i?b*(L+.5):b*L,U=Math.min(p-1,s?Math.round(W):Math.floor(W));i&&(U=Math.max(0,U));let j=D+U*l[2];for(let X=0;X<m;X++){let G=f[j+X];A[w++]=G}}}}return n.makeTensorInfo([h,u,c,m],a.dtype,A)}var sO={kernelName:iu,backendName:"cpu",kernelFunc:aO};function iO(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r;xe([s,a],"resizeNearestNeighborGrad");let o=v.computeStrides(a.shape),l=v.computeStrides(s.shape),[u,c,h,d]=a.shape,[,p,m]=s.shape,f=new Float32Array(u*c*h*d),A=n.data.get(s.dataId).values,y=[i&&p>1?c-1:c,i&&m>1?h-1:h],g=[i&&p>1?p-1:p,i&&m>1?m-1:m],_=y[0]/g[0],b=y[1]/g[1],w=1/_,x=1/b,N=Math.ceil(w)*2+2,T=Math.ceil(x)*2+2;for(let E=0;E<u;E++){let M=E*o[0];for(let D=0;D<c;D++){let L=M+D*o[1],W=Math.floor(D*w),U=Math.floor(W-N/2);for(let j=0;j<h;j++){let X=L+j*o[2],G=Math.floor(j*x),ee=Math.floor(G-T/2);for(let Y=0;Y<d;Y++){let ae=0;for(let te=0;te<N;te++){let ie=te+U;if(ie<0||ie>=p)continue;let Q=M+ie*l[1],ce=ie*_,oe=Math.min(c-1,i?Math.round(ce):Math.floor(ce));if(D===oe)for(let pe=0;pe<T;pe++){let de=pe+ee;if(de<0||de>=m)continue;let be=Q+de*l[2],ke=de*b,Re=Math.min(h-1,i?Math.round(ke):Math.floor(ke));j===Re&&(ae+=A[be+Y])}}f[X+Y]=ae}}}}return n.makeTensorInfo(a.shape,a.dtype,f)}var oO={kernelName:Eh,backendName:"cpu",kernelFunc:iO};function lO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r;xe(a,"reverse");let i=a.shape.length,o=v.parseAxisParam(s,a.shape);if(i===0)return Fr({inputs:{x:a},backend:n});let l=new Ft(a.shape,a.dtype),u=n.bufferSync(a);for(let c=0;c<l.size;c++){let h=l.indexToLoc(c),d=h.slice();o.forEach(p=>d[p]=a.shape[p]-1-d[p]),l.set(u.get(...d),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var uO={kernelName:Ts,backendName:"cpu",kernelFunc:lO},cO={kernelName:Oo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(r.shape)),[u,c,h,d]=r.shape,[p,m]=C.getImageCenter(i,c,h),f=255,A=Math.sin(a),y=Math.cos(a),g=o.data.get(r.dataId).values;for(let _=0;_<u;_++){let b=_*h*c*d;for(let w=0;w<c;w++){let x=w*(h*d);for(let N=0;N<h;N++){let T=N*d;for(let E=0;E<d;E++){let M=[u,w,N,E],D=M[2],L=M[1],W=(D-p)*y-(L-m)*A,U=(D-p)*A+(L-m)*y;W=Math.round(W+p),U=Math.round(U+m);let j=s;if(typeof s!="number"&&(E===3?j=f:j=s[E]),W>=0&&W<h&&U>=0&&U<c){let G=U*(h*d),ee=W*d,Y=b+G+ee+E;j=g[Y]}let X=b+x+T+E;l[X]=j}}}}return{dataId:o.write(l,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},hO=rt(Es,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),dO={kernelName:Es,backendName:"cpu",kernelFunc:hO};function jx(e,t,n,r,a,s,i,o,l,u){let c=[r/a,a],h=e.values,d=t.values;if(r===0)return Pe(n,t.dtype);let p=Pe(c,t.dtype);p.values.fill(l);for(let m=0;m<s;m++){let f=[],A=0;for(let y=0;y<i;y++){let g=h[m*i+y];f.push(g),A+=g*o[y]}if(A<0||A>=r/a)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y<a;y++)u?p.values[A*a+y]+=d[m*a+y]:p.values[A*a+y]=t.rank===0?d[0]:d[m*a+y]}return p}function pO(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:u,strides:c,outputSize:h}=C.calculateShapes(s,a,i),d=!0,p=n.bufferSync(a),m=n.bufferSync(s),f=jx(p,m,i,h,u,l,o,c,0,d);return n.makeTensorInfo(i,f.dtype,f.values)}var fO={kernelName:bo,backendName:"cpu",kernelFunc:pO};function mO(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t;xe([r,a,s],"select");let i=r.shape.length,o=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=n.data.get(s.dataId).values,c=Yn(a.dtype,s.dtype),h=v.makeZerosTypedArray(v.sizeFromShape(a.shape),c),d=0,p=i===0||i>1||a.shape.length===1?1:v.sizeFromShape(a.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<p;f++)o[m]===1?h[d++]=l[m]:h[d++]=u[m];return n.makeTensorInfo(a.shape,c,h)}var AO={kernelName:vo,backendName:"cpu",kernelFunc:mO},yO=C.SELU_SCALEALPHA,gO=C.SELU_SCALE,xO=rt(ko,e=>e>=0?gO*e:yO*(Math.exp(e)-1)),wO={kernelName:ko,backendName:"cpu",kernelFunc:xO},_O=rt(Fs,e=>1/(1+Math.exp(-e))),bO={kernelName:Fs,backendName:"cpu",kernelFunc:_O},vO=rt(So,e=>e<0?-1:e>0?1:0),kO={kernelName:So,backendName:"cpu",kernelFunc:vO},IO=rt(Rs,e=>Math.sin(e)),NO={kernelName:Rs,backendName:"cpu",kernelFunc:IO},SO=rt(No,e=>Math.sinh(e)),TO={kernelName:No,backendName:"cpu",kernelFunc:SO},EO=11920928955078125e-23,Hx=Math.log(EO)+2,CO=rt(To,e=>{let t=e>-Hx,n=e<Hx,r=Math.exp(e),a;return n?a=r:t?a=e:a=Math.log(1+r),a}),RO={kernelName:To,backendName:"cpu",kernelFunc:CO};function FO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;xe([a],"spaceToBatchND");let o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let A=1+s.length;A<a.shape.length;++A)l.push([0,0]);let u=Ux.kernelFunc({inputs:{x:a},backend:n,attrs:{paddings:l,constantValue:0}}),c=C.getReshaped(u.shape,s,o,!1),h=C.getPermuted(c.length,s.length,!1),d=C.getReshapedPermuted(u.shape,s,o,!1),p=ft({inputs:{x:u},backend:n,attrs:{shape:c}}),m=nr({inputs:{x:p},backend:n,attrs:{perm:h}}),f=ft({inputs:{x:m},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),f}var MO={kernelName:ou,backendName:"cpu",kernelFunc:FO};function $O(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:u,sliceSize:c,strides:h,outputSize:d}=C.calculateShapes(s,a,o),p=!1,m=n.bufferSync(a),f=n.bufferSync(s),A=n.data.get(i.dataId).values[0],y=jx(m,f,o,d,c,u,l,h,A,p);return n.makeTensorInfo(o,y.dtype,y.values)}var OO={kernelName:Rh,backendName:"cpu",kernelFunc:$O};function DO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=v.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),u=new Array(a.shape.length).fill(0),c=a.shape.slice();return l.map(h=>{let d=[...c];d[o]=h;let p=ri({inputs:{x:a},backend:n,attrs:{begin:u,size:d}});return u[o]+=h,p})}var zO={kernelName:Eo,backendName:"cpu",kernelFunc:DO},PO=rt(Ms,e=>Math.sqrt(e)),LO={kernelName:Ms,backendName:"cpu",kernelFunc:PO},WO={kernelName:lu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;xe(n,"square");let a=r.data.get(n.dataId).values,s=new Float32Array(a.length);for(let i=0;i<a.length;++i){let o=a[i];s[i]=o*o}return{dataId:r.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},BO=rt(ga,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),VO={kernelName:ga,backendName:"cpu",kernelFunc:BO};function UO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r;xe(a,"stridedSlice");let{nonStrided:p,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=an.sliceInfo(a.shape,s,i,o,l,u,c,h,d),_=ft({inputs:{x:a},backend:n,attrs:{shape:y}}),b;if(p){let x=ri({inputs:{x:_},backend:n,attrs:{begin:m,size:A}});b=ft({inputs:{x},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(x)}else if(g.some(x=>x===0))b=n.makeTensorInfo(g,a.dtype,[]);else{let x=n.bufferSync(_),N=wx(g,x,f,m);b=n.makeTensorInfo(N.shape,N.dtype,N.values)}let w=ft({inputs:{x:b},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(_),n.disposeIntermediateTensorInfo(b),w}var jO={kernelName:Co,backendName:"cpu",kernelFunc:UO},HO=rt(Ro,e=>Math.tan(e)),GO={kernelName:Ro,backendName:"cpu",kernelFunc:HO},qO=rt(Ps,e=>Math.tanh(e)),XO={kernelName:Ps,backendName:"cpu",kernelFunc:qO};function KO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;xe(a,"tile");let i=bx(n.bufferSync(a),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var ZO={kernelName:ya,backendName:"cpu",kernelFunc:KO};function YO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r;xe(a,"topk");let o=n.data.get(a.dataId).values,[l,u]=vx(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var JO={kernelName:Fo,backendName:"cpu",kernelFunc:YO};function QO(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;xe(s,"unique");let i=r.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=kx(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([u.length],"int32",u)]}var eD={kernelName:Fh,backendName:"cpu",kernelFunc:QO};function tD(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape.length,o=a.shape[s],l=new Array(i-1),u=0;for(let p=0;p<i;p++)p!==s&&(l[u++]=a.shape[p]);let c=new Array(i).fill(0),h=a.shape.slice();h[s]=1;let d=new Array(o);for(let p=0;p<d.length;p++){c[s]=p;let m=ri({inputs:{x:a},backend:n,attrs:{begin:c,size:h}});d[p]=ft({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return d}var nD={kernelName:Mo,backendName:"cpu",kernelFunc:tD};function rD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r;xe(a,"unsortedSegmentSum");let o=a.shape.length,l=s.shape.length,u=[],c=[],h=o-l,d=s;for(let m=0;m<h;++m){let f=Md({inputs:{input:d},backend:n,attrs:{dim:m+1}});d=f,c.push(f)}for(let m=0;m<i;++m){let f=v.createScalarValue(m,"int32"),A=n.makeTensorInfo([],"int32",f),y=zx({inputs:{a:A,b:d},backend:n}),g=Ea({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),_=tm({inputs:{a:g,b:a},backend:n}),b=$d({inputs:{x:_},backend:n,attrs:{axis:0,keepDims:!1}});u.push(b),c.push(A),c.push(y),c.push(g),c.push(_),c.push(b)}let p=Vx({inputs:u,backend:n,attrs:{axis:0}});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),p}var aD={kernelName:uu,backendName:"cpu",kernelFunc:rD},sD=[NR,RC,TR,CR,zC,FR,$R,DR,PR,WR,VR,jR,GR,KR,YR,eF,nF,aF,iF,kR,lF,cF,dF,OC,LC,fF,FC,AF,gF,_F,vF,xF,SF,EF,IF,RF,MF,OF,zF,LF,BF,VF,jF,GF,XF,KF,YF,ZF,im,yR,QF,tM,uM,WC,cM,VC,AM,gM,xM,jC,bM,kM,NM,TM,CM,GC,MM,MC,OM,yF,zM,LM,BM,gR,XC,jM,GM,ZC,XM,YM,QM,n$,a$,i$,JC,u$,h$,p$,m$,y$,o$,w$,b$,eR,k$,S$,R$,nR,aR,$$,z$,W$,iR,V$,j$,H$,Ux,K$,wR,uR,Y$,$C,Q$,_R,bR,vR,tO,rO,sO,oO,uO,cO,dO,hR,fO,AO,wO,bO,kO,NO,TO,dR,E$,RO,MO,OO,zO,LO,WO,fR,VO,jO,AR,g$,GO,XO,ZO,JO,oR,eD,nD,aD,U$];for(let e of sD)Us(e);var Gx={};Oe(Gx,{assertNotComplex:()=>cl,bindCanvasToFramebuffer:()=>lD,bindColorTextureToFramebuffer:()=>zd,bindTextureToProgramUniformSampler:()=>ow,bindTextureUnit:()=>aw,bindVertexBufferToProgramAttribute:()=>um,callAndCheck:()=>ye,canBeRepresented:()=>qx,createFragmentShader:()=>Zx,createFramebuffer:()=>rw,createProgram:()=>Yx,createStaticIndexBuffer:()=>ew,createStaticVertexBuffer:()=>Qx,createTexture:()=>tw,createVertexShader:()=>Kx,getBatchDim:()=>ai,getExtensionOrThrow:()=>Wu,getFramebufferErrorMessage:()=>lw,getMaxTexturesInShader:()=>hw,getNumChannels:()=>iD,getProgramUniformLocation:()=>iw,getProgramUniformLocationOrThrow:()=>sw,getRowsCols:()=>si,getShapeAs3D:()=>Pd,getTextureShapeFromLogicalShape:()=>uw,getWebGLDisjointQueryTimerVersion:()=>dw,getWebGLErrorMessage:()=>Xx,getWebGLMaxTextureSize:()=>cw,hasExtension:()=>jn,isCapableOfRenderingToFloatTexture:()=>pw,isDownloadFloatTextureEnabled:()=>fw,isReshapeFree:()=>Vu,isWebGLFenceEnabled:()=>mw,isWebGLVersionEnabled:()=>hm,linkProgram:()=>Jx,resetMaxTextureSize:()=>uD,resetMaxTexturesInShader:()=>cD,unbindColorTextureFromFramebuffer:()=>cm,unbindTextureUnit:()=>oD,validateFramebuffer:()=>Bu,validateProgram:()=>Dd,validateTextureSize:()=>nw});var ii={},dm={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Ld(e,t){ii[e]=t}function Mr(e){if(!(e in ii)){let n=hD(e);if(n!==null)ii[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=ii[e];return t.isContextLost()?(delete ii[e],Mr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),ii[e])}function dD(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function hD(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=dD(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete ii[e]},!1),e===1?t.getContext("webgl",dm)||t.getContext("experimental-webgl",dm):t.getContext("webgl2",dm)}var Uu;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Uu||(Uu={}));var Hn;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Hn||(Hn={}));var Jt;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Jt||(Jt={}));function ju(e,t){return[t,e]}function pD(e,t){return e*t}function Hu(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function hl(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function fD(e,t){let[n,r]=hl(e,t);return n*r*4}function pm(e,t){let n=e,r,a,s,i,o,l,u,c,h,d;return J().getNumber("WEBGL_VERSION")===2?(r=n.R32F,a=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,c=1,h=n.HALF_FLOAT,d=n.FLOAT):(r=e.RGBA,a=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,c=4,h=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:h,textureTypeFloat:d}}function ye(e,t){let n=t();return J().getBool("DEBUG")&&mD(e),n}function mD(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+Xx(e,t))}var AD=596e-10,yD=65504;function qx(e){return!!(J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||AD<Math.abs(e)&&Math.abs(e)<yD)}function Xx(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Wu(e,t){return Qr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function Kx(e,t){let n=Qr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(ye(e,()=>e.shaderSource(n,t)),ye(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function Zx(e,t){let n=Qr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(ye(e,()=>e.shaderSource(n,t)),ye(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw gD(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var xD=/ERROR: [0-9]+:([0-9]+):/g;function gD(e,t){let n=xD.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],a=e.split(`
`),s=a.length.toString().length+2,i=a.map((h,d)=>v.rightPad((d+1).toString(),s)+h),o=0;for(let h=0;h<i.length;h++)o=Math.max(i[h].length,o);let l=i.slice(0,r-1),u=i.slice(r-1,r),c=i.slice(r);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${v.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
`))}function Yx(e){return Qr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function Jx(e,t){if(ye(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Dd(e,t){if(ye(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function Qx(e,t){let n=Qr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ye(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ye(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function ew(e,t){let n=Qr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ye(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),ye(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function iD(){return J().getNumber("WEBGL_VERSION")===2?1:4}function tw(e){return Qr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function nw(e,t){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,a=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+a+".")}}function rw(e){return Qr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function um(e,t,n,r,a,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(ye(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),ye(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),ye(e,()=>e.enableVertexAttribArray(o)),!0)}function aw(e,t,n){Aw(e,n),ye(e,()=>e.activeTexture(e.TEXTURE0+n)),ye(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function oD(e,t){Aw(e,t),ye(e,()=>e.activeTexture(e.TEXTURE0+t)),ye(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function sw(e,t,n){return Qr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function iw(e,t,n){return e.getUniformLocation(t,n)}function ow(e,t,n,r){ye(e,()=>aw(e,t,r)),ye(e,()=>e.uniform1i(n,r))}function lD(e){ye(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ye(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),ye(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function zd(e,t,n){ye(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),ye(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function cm(e,t){ye(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),ye(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Bu(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+lw(e,t))}function lw(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Qr(e,t,n){let r=ye(e,()=>t());if(r==null)throw new Error(n);return r}function Aw(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(r<e.TEXTURE0||r>n){let a=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${a}.`)}}function ai(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function si(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Pd(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[ai(e),...si(e)]),t}function uw(e,t=!1){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((a,s)=>s>=e.length-2?v.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let r=v.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let a=ai(e),s=2,i=2;return e.length&&([s,i]=si(e)),r=a*(s/2)*(i/2),v.sizeToSquarishShape(r).map(o=>o*2)}return v.sizeToSquarishShape(r)}function Wd(e){return e%2==0}function Vu(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||Wd(n)&&Wd(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Wd(e[0])&&Wd(t[0])}var Bd,Vd;function cw(e){if(Bd==null){let t=Mr(e);Bd=t.getParameter(t.MAX_TEXTURE_SIZE)}return Bd}function uD(){Bd=null}function cD(){Vd=null}function hw(e){if(Vd==null){let t=Mr(e);Vd=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Vd)}function dw(e){if(e===0)return 0;let t,n=Mr(e);return jn(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:jn(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function jn(e,t){return e.getExtension(t)!=null}function hm(e){try{if(Mr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function pw(e){if(e===0)return!1;let t=Mr(e);if(e===1){if(!jn(t,"OES_texture_float"))return!1}else if(!jn(t,"EXT_color_buffer_float"))return!1;return fm(t)}function fw(e){if(e===0)return!1;let t=Mr(e);if(e===1){if(!jn(t,"OES_texture_float")||!jn(t,"WEBGL_color_buffer_float"))return!1}else{if(jn(t,"EXT_color_buffer_float"))return fm(t);let n="EXT_color_buffer_half_float";if(jn(t,n)){let r=t.getExtension(n);return wD(t,r)}return!1}return fm(t)}function fm(e){let t=pm(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function wD(e,t){let n=pm(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,a,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(i),o}function mw(e){return e!==2?!1:Mr(e).fenceSync!=null}function cl(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ce=J();Ce.registerFlag("HAS_WEBGL",()=>Ce.getNumber("WEBGL_VERSION")>0);Ce.registerFlag("WEBGL_VERSION",()=>hm(2)?2:hm(1)?1:0);Ce.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ce.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ce.get("WEBGL_VERSION")===2);Ce.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ce.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ce.registerFlag("WEBGL_PACK",()=>Ce.getBool("HAS_WEBGL"));Ce.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_CLIP",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);Ce.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_REDUCE",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_CONV_IM2COL",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>cw(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>hw(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ce.getNumber("WEBGL_VERSION");return e===0?0:dw(e)});Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ce.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Lh.isMobile());Ce.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>pw(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ce.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ce.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ce.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>fw(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_FENCE_API_ENABLED",()=>mw(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ce.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ce.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ce.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function on(){let e,t,n,r,a,s,i,o,l,u;return J().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=`
bool isnan_custom(float val) {
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",u=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",r="varying",a="texture2D",s="gl_FragColor",i="",o=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,u=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function oi(e,t,n="index"){let r=v.computeStrides(t);return r.map((a,s)=>{let i=`int ${e[s]} = ${n} / ${a}`,o=s===r.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function mm(e){let t=v.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}var yw=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,_D=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Uu.DENSE;let t=Hu(e),n=on();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${oi(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${n.output} = result;
}
`}},bD=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Uu.DENSE;let t=Hu(e),n=on();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${oi(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${n.output} = result;
}
`}},vD=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Hn.DOWNLOAD;let t=on();this.outputShape=e,this.userCode=`
${yw}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},kD=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Hn.DOWNLOAD;let t=on();this.outputShape=e,this.userCode=`
${yw}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},ID=class{constructor(e,t,n=!1){this.variableNames=["A"];let r=on(),[a,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
${mm(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / ${s};
int c = imod(flatIndex, ${s});
vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0);
vec4 values = ${r.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${r.output} = vec4(${i}, 0., 0., 0.);
}
`}},ND=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let r=on(),[a,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let u=0;u<=1;u++){let c=l*2+u;i+=`
localCoords = coords;
if(localCoords[2] + ${u} < ${e[2]}) {
localCoords[2] += ${u};
if(localCoords[1] + ${l} < ${e[1]}) {
localCoords[1] += ${l};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
r = flatIndex / ${s};
c = imod(flatIndex, ${s});
uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0);
values = ${r.texture2D}(A, uv);
if(offset == 0) {
result[${c}] = values[0];
} else if(offset == 1) {
result[${c}] = values[1];
} else if(offset == 2) {
result[${c}] = values[2];
} else {
result[${c}] = values[3];
}
}
}
`}this.userCode=`
${mm(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${i}
${r.output} = ${o};
}
`}},gw={};Oe(gw,{bindVertexProgramAttributeStreams:()=>Sw,createBufferFromOutputTexture:()=>Cw,createFloat16MatrixTexture:()=>vw,createFloat16PackedMatrixTexture:()=>Nw,createFloat32MatrixTexture:()=>bw,createIndexBuffer:()=>_w,createPackedMatrixTexture:()=>Iw,createUnsignedBytesMatrixTexture:()=>kw,createVertexBuffer:()=>ww,createVertexShader:()=>xw,downloadByteEncodedFloatMatrixFromOutputTexture:()=>Fw,downloadFloat32MatrixFromBuffer:()=>Rw,downloadMatrixFromPackedOutputTexture:()=>$w,downloadPackedMatrixFromBuffer:()=>Mw,getInternalFormatForFloat16MatrixTexture:()=>ym,getInternalFormatForFloat16PackedMatrixTexture:()=>wm,getInternalFormatForFloat32MatrixTexture:()=>Am,getInternalFormatForPackedMatrixTexture:()=>xm,getInternalFormatForUnsignedBytesMatrixTexture:()=>gm,uploadDenseMatrixToTexture:()=>Tw,uploadPixelDataToTexture:()=>Ew});function xw(e){let t=on(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return Kx(e,n)}function ww(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return Qx(e,t)}function _w(e){let t=new Uint16Array([0,1,2,2,1,3]);return ew(e,t)}function Gu(e,t,n,r,a,s){nw(t,n);let i=tw(e),o=e.TEXTURE_2D;return ye(e,()=>e.bindTexture(o,i)),ye(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),ye(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),ye(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),ye(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),ye(e,()=>e.texImage2D(o,0,r,t,n,0,a,s,null)),ye(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function Am(e){return e.internalFormatFloat}function bw(e,t,n,r){let[a,s]=ju(t,n);return Gu(e,a,s,Am(r),r.textureFormatFloat,e.FLOAT)}function ym(e){return e.internalFormatHalfFloat}function vw(e,t,n,r){let[a,s]=ju(t,n);return Gu(e,a,s,ym(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function gm(e){return e.downloadTextureFormat}function kw(e,t,n,r){let[a,s]=ju(t,n);return Gu(e,a,s,gm(r),e.RGBA,e.UNSIGNED_BYTE)}function xm(e){return e.internalFormatPackedFloat}function Iw(e,t,n,r){let[a,s]=hl(t,n);return Gu(e,a,s,xm(r),e.RGBA,e.FLOAT)}function wm(e){return e.internalFormatPackedHalfFloat}function Nw(e,t,n,r){let[a,s]=hl(t,n);return Gu(e,a,s,wm(r),e.RGBA,r.textureTypeHalfFloat)}function Sw(e,t,n){let r=0,a=3*4,s=3*4+2*4;return ye(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),um(e,t,"clipSpacePos",n,3,s,r)&&um(e,t,"uv",n,2,s,a)}function Tw(e,t,n,r,a,s){ye(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(n*r*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*r*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),ye(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,r,0,e.RGBA,o,i)),ye(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Ew(e,t,n){ye(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?ye(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):ye(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),ye(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Cw(e,t,n,r){let a=e.createBuffer();ye(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*n;return ye(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),ye(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),ye(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function Rw(e,t,n){let r=e,a=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,a),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),a}function Fw(e,t,n,r){let[a,s]=ju(t,n),i=4,o=new Uint8Array(pD(t*n,i));return ye(e,()=>e.readPixels(0,0,a,s,r.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function Mw(e,t,n,r,a,s,i,o){let l=e,u=new Float32Array(fD(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function $w(e,t,n){let r=new Float32Array(t*n*4);return ye(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var Ud=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=J().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,Ld(t,e)):this.gl=Mr(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(J().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Wu(this.gl,a),jn(this.gl,s))this.textureHalfFloatExtension=Wu(this.gl,s);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),jn(this.gl,r))this.colorBufferHalfFloatExtension=Wu(this.gl,r);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",jn(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(jn(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=ww(this.gl),this.indexBuffer=_w(this.gl),this.framebuffer=rw(this.gl),this.textureConfig=pm(this.gl,this.textureHalfFloatExtension)}get debug(){return J().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;ye(e,()=>e.finish()),ye(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ye(e,()=>e.deleteFramebuffer(this.framebuffer)),ye(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),ye(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),ye(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),bw(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),vw(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),kw(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),Ew(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),Tw(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),Nw(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),Iw(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(cm(this.gl,this.framebuffer),this.outputTexture=null),ye(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>Fw(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,a,s){return Mw(this.gl,e,t,n,r,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return Rw(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=Cw(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(J().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,a=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=r.clientWaitSync(a,0,0);return s===r.ALREADY_SIGNALED||s===r.CONDITION_SATISFIED},t=a}else J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>$w(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=Zx(t,e),r=xw(t),a=Yx(t);return ye(t,()=>t.attachShader(a,r)),ye(t,()=>t.attachShader(a,n)),Jx(t,a),this.debug&&Dd(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=Sw(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&ye(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Dd(this.gl,this.program),ye(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?sw(this.gl,e,t):iw(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),ye(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),ow(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,a]=hl(t,n);this.setOutputMatrixTextureDriver(e,r,a)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Dd(this.gl,this.program),Bu(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),ye(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),ye(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Wu(this.gl,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=SD(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),zd(this.gl,e,this.framebuffer),this.debug&&Bu(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(zd(this.gl,this.outputTexture,this.framebuffer),this.debug&&Bu(this.gl)):cm(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;zd(r,e,this.framebuffer),this.debug&&Bu(r),this.outputTexture=e,ye(r,()=>r.viewport(0,0,t,n)),ye(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),ye(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function SD(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:Ow}=C;function DD(e,t,n,r){let a=[];e.forEach(p=>{let m=v.sizeFromShape(p.shapeInfo.logicalShape);p.shapeInfo.isUniform?a.push(`uniform float ${p.name}${m>1?`[${m}]`:""};`):(a.push(`uniform sampler2D ${p.name};`),a.push(`uniform int offset${p.name};`))});let s=a.join(`
`),i=e.map(p=>TD(p,t,r)).join(`
`),o=t.texShape,l=on(),u=RD(l),c,h,d=$D(l);return t.isPacked?(c=ED(t.logicalShape,o),h=MD(l)):(c=CD(t.logicalShape,o),h=FD(l)),r&&(d+=OD),[d,u,h,s,c,i,n].join(`
`)}function dl(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return zD(e);case 1:return PD(e);case 2:return LD(e);case 3:return WD(e);case 4:return BD(e);case 5:return VD(e);case 6:return UD(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function Dw(e){switch(e.shapeInfo.logicalShape.length){case 0:return jD(e);case 1:return HD(e);case 2:return GD(e);case 3:return qD(e);default:return XD(e)}}function TD(e,t,n=!1){let r="";n?r+=Dw(e):r+=dl(e);let a=e.shapeInfo.logicalShape,s=t.logicalShape;return a.length<=s.length&&(n?r+=KD(e,t):r+=ZD(e,t)),r}function ED(e,t){switch(e.length){case 0:return zw();case 1:return YD(e,t);case 2:return ez(e,t);case 3:return JD(e,t);default:return QD(e,t)}}function CD(e,t){switch(e.length){case 0:return zw();case 1:return tz(e,t);case 2:return iz(e,t);case 3:return nz(e,t);case 4:return rz(e,t);case 5:return az(e,t);case 6:return sz(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function RD(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function FD(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function MD(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function $D(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${oz}
${lz}
${uz}
`}var oz=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,lz=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,uz=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,OD=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function zw(){return`
int getOutputCoords() {
return 0;
}
`}function YD(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
int getOutputCoords() {
return 2 * int(resultUV.x * ${n[1]}.0);
}
`:n[1]===1?`
int getOutputCoords() {
return 2 * int(resultUV.y * ${n[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
}
`}function tz(e,t){return t[0]===1?`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function JD(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec3(b, r, c);
}
`}function nz(e,t){let n=oi(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec3(r, c, d);
}
`}function QD(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),s=a,i="",o="b, r, c";for(let l=2;l<e.length-1;l++)s*=e[e.length-l-1],i=`
int b${l} = index / ${s};
index -= b${l} * ${s};
`+i,o=`b${l}, `+o;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
${i}
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec${e.length}(${o});
}
`}function rz(e,t){let n=oi(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec4(r, c, d, d2);
}
`}function az(e,t){let n=oi(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function sz(e,t){let n=oi(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function ez(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
}
`;let r=Math.ceil(e[1]/2);return`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec2(r, c);
}
`}function iz(e,t){return v.arraysEqual(e,t)?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function li(e){return`offset${e}`}function jD(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),r=on();return`
vec4 ${n}() {
return ${r.texture2D}(${t}, halfCR);
}
`}function zD(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
float ${n}() {
return sampleTexture(${t}, halfCR);
}
`;let[s,i]=e.shapeInfo.texShape,o=li(t);return`
float ${n}() {
vec2 uv = uvFromFlat(${s}, ${i}, ${o});
return sampleTexture(${t}, uv);
}
`}function HD(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),r=e.shapeInfo.texShape,a=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],s=on();return`
vec4 ${n}(int index) {
vec2 uv = packedUVfrom1D(
${a[0]}, ${a[1]}, index);
return ${s.texture2D}(${t}, uv);
}
`}function PD(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
float ${n}(int index) {
${pl(e)}
}
`;let r=e.shapeInfo.texShape,a=r[0],s=r[1];if(s===1&&a===1)return`
float ${n}(int index) {
return sampleTexture(${t}, halfCR);
}
`;let i=li(t);return s===1?`
float ${n}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
return sampleTexture(${t}, uv);
}
`:a===1?`
float ${n}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${s}.0, 0.5);
return sampleTexture(${t}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = uvFromFlat(${a}, ${s}, index + ${i});
return sampleTexture(${t}, uv);
}
`}function GD(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape,s=a[0],i=a[1],o=on();if(a!=null&&v.arraysEqual(t,a))return`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${s}.0);
return ${o.texture2D}(${n}, uv);
}
`;let l=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],u=Math.ceil(t[1]/2);return`
vec4 ${r}(int row, int col) {
vec2 uv = packedUVfrom2D(${u}, ${l[0]}, ${l[1]}, row, col);
return ${o.texture2D}(${n}, uv);
}
`}function LD(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape;if(a!=null&&v.arraysEqual(t,a)){let h=a[0],d=a[1];return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${d}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`}let{newShape:s,keptDims:i}=v.squeezeShape(t),o=s;if(o.length<t.length){let h=fl(e,o),d=["row","col"];return`
${dl(h)}
float ${r}(int row, int col) {
return ${r}(${ml(d,i)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
${pl(e)}
}
`;let l=a[0],u=a[1],c=li(n);return u===1?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${c}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
return sampleTexture(${n}, uv);
}
`:l===1?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${c}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${t[1]} + col + ${c};
vec2 uv = uvFromFlat(${l}, ${u}, index);
return sampleTexture(${n}, uv);
}
`}function qD(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape,s=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(t[0]===1){let h=t.slice(1),d=[1,2],p=fl(e,h),m=["b","row","col"];return`
${Dw(p)}
vec4 ${r}(int b, int row, int col) {
return ${r}(${ml(m,d)});
}
`}let i=s[0],o=s[1],l=Math.ceil(t[2]/2),u=l*Math.ceil(t[1]/2),c=on();return`
vec4 ${r}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${i}, ${o}, ${u}, ${l}, b, row, col);
return ${c.texture2D}(${n}, uv);
}
`}function WD(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[1]*t[2],s=t[2],{newShape:i,keptDims:o}=v.squeezeShape(t),l=i;if(l.length<t.length){let m=fl(e,l),f=["row","col","depth"];return`
${dl(m)}
float ${r}(int row, int col, int depth) {
return ${r}(${ml(f,o)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${a}, ${s}, 1)));
${pl(e)}
}
`;let u=e.shapeInfo.texShape,c=u[0],h=u[1],d=e.shapeInfo.flatOffset;if(h===a&&d==null)return`
float ${r}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${n}, uv);
}
`;if(h===s&&d==null)return`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${h}.0, ${c}.0);
return sampleTexture(${n}, uv);
}
`;let p=li(n);return`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${s} + depth + ${p};
vec2 uv = uvFromFlat(${c}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function XD(e){let t=e.shapeInfo.logicalShape,n=t.length,r=e.name,a="get"+r.charAt(0).toUpperCase()+r.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=i[0],l=i[1],u=Math.ceil(t[n-1]/2),c=u*Math.ceil(t[n-2]/2),h="int b, int row, int col",d=`b * ${c} + (row / 2) * ${u} + (col / 2)`;for(let m=2;m<n-1;m++)h=`int b${m}, `+h,c*=t[n-m-1],d=`b${m} * ${c} + `+d;let p=on();return`
vec4 ${a}(${h}) {
int index = ${d};
int texR = index / ${l};
int texC = index - texR * ${l};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${o});
return ${p.texture2D}(${r}, uv);
}
`}function BD(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[3],s=t[2]*a,i=t[1]*s,{newShape:o,keptDims:l}=v.squeezeShape(t);if(o.length<t.length){let m=fl(e,o),f=["row","col","depth","depth2"];return`
${dl(m)}
float ${r}(int row, int col, int depth, int depth2) {
return ${r}(${ml(f,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${i}, ${s}, ${a}, 1)));
${pl(e)}
}
`;let u=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],d=c[1];if(d===i&&u==null)return`
float ${r}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${s}, ${a}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(d===a&&u==null)return`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${t[1]*t[2]}, ${t[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let p=li(n);return`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${s} +
depth * ${a} + depth2;
vec2 uv = uvFromFlat(${h}, ${d}, index + ${p});
return sampleTexture(${n}, uv);
}
`}function VD(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[4],s=t[3]*a,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(t);if(l.length<t.length){let f=fl(e,l),A=["row","col","depth","depth2","depth3"];return`
${dl(f)}
float ${r}(int row, int col, int depth, int depth2, int depth3) {
return ${r}(${ml(A,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, ${a})) +
depth3;
${pl(e)}
}
`;let c=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,d=h[0],p=h[1];if(p===o&&c==null)return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${i}, ${s}, ${a}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;if(p===a&&c==null)return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;let m=li(n);return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} + depth * ${s} +
depth2 * ${a} + depth3 + ${m};
vec2 uv = uvFromFlat(${d}, ${p}, index);
return sampleTexture(${n}, uv);
}
`}function UD(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:a,keptDims:s}=v.squeezeShape(t);if(a.length<t.length){let A=fl(e,a),y=["row","col","depth","depth2","depth3","depth4"];return`
${dl(A)}
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${r}(${ml(y,s)});
}
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,c=t[1]*u;if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${c}, ${u}, ${l}, ${o})) +
dot(
vec2(depth3, depth4),
vec2(${i}, 1)));
${pl(e)}
}
`;let h=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],m=d[1];if(m===c&&h==null)return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${u}, ${l}, ${o}, ${i})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;if(m===i&&h==null)return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;let f=li(n);return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${c} + col * ${u} + depth * ${l} +
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
vec2 uv = uvFromFlat(${p}, ${m}, index);
return sampleTexture(${n}, uv);
}
`}function pl(e){let t=e.name,n=v.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function KD(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=Ow(e.shapeInfo.logicalShape,t.logicalShape),l=it(i),u=i-s,c,h=["x","y","z","w","u","v"];s===0?c="":i<2&&o.length>=1?c="coords = 0;":c=o.map(A=>`coords.${h[A+u]} = 0;`).join(`
`);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((A,y)=>`coords.${h[y+u]}`).join(", ");let p="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,f=v.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)p=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(m&&!f)i===1?p=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:p=`
return vec4(outputValue.x);
`;else if(o.length){let A=s-2,y=s-1;o.indexOf(A)>-1&&o.indexOf(y)>-1?p="return vec4(outputValue.x);":o.indexOf(A)>-1?p="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(p="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${a}() {
${l} coords = getOutputCoords();
${c}
vec4 outputValue = get${r}(${d});
${p}
}
`}function ZD(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(i,s))return`
float ${a}() {
return sampleTexture(${n}, resultUV);
}
`;let u=it(l),c=Ow(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,d,p=["x","y","z","w","u","v"];o===0?d="":l<2&&c.length>=1?d="coords = 0;":d=c.map(f=>`coords.${p[f+h]} = 0;`).join(`
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,A)=>`coords.${p[A+h]}`).join(", "),`
float ${a}() {
${u} coords = getOutputCoords();
${d}
return get${r}(${m});
}
`}function it(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function fl(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function ml(e,t){return t.map(n=>e[n]).join(", ")}function cz(e,t,n,r){let a=t.userCode,s=n.map((p,m)=>{let f={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(f.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[m],shapeInfo:f}}),i=s.map(p=>p.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},l=DD(s,o,a,t.packedInputs),u=e.createProgram(l),c=null,h=e.getUniformLocation(u,"NAN",!1);J().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(u,"INFINITY",!1));let d={};for(let p=0;p<t.variableNames.length;p++){let m=t.variableNames[p],f=!1;d[m]=e.getUniformLocation(u,m,f),d[`offset${m}`]=e.getUniformLocation(u,`offset${m}`,f)}return{program:t,source:l,webGLProgram:u,uniformLocations:d,inShapeInfos:i,outShapeInfo:o,infLoc:c,nanLoc:h}}function Pw(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,r)=>{let a=n.logicalShape,s=t[r],i=s.shape;if(!v.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!v.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function hz(e,t,n,r,a){Pw(t.inShapeInfos,n),Pw([t.outShapeInfo],[r]);let s=r.texData.texture,i=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),J().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let u=t.program.variableNames[l],c=t.uniformLocations[u],h=t.uniformLocations[`offset${u}`];if(c!=null){if(o.isUniform){if(v.sizeFromShape(o.shape)<2)e.gl.uniform1f(c,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(c,d)}return}o.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,c,l)}}),a!=null&&a(e,t.webGLProgram),e.executeProgram()}function dz(e,t,n){let r="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;r+=`${i.shape}_${l}_${o}`});let a=e.userCode,s=e.constructor.name;return s+="_"+r+"_"+a,s}var{addImpl:pz,bincountImpl:Lw,bincountReduceImpl:fz,ceilImpl:mz,concatImpl:Az,expImpl:yz,expm1Impl:gz,floorImpl:xz,gatherV2Impl:wz,greaterImpl:_z,lessImpl:bz,linSpaceImpl:vz,logImpl:kz,maxImpl:Iz,maximumImpl:Nz,minimumImpl:Sz,multiplyImpl:Tz,negImpl:Ez,prodImpl:Cz,rangeImpl:Rz,rsqrtImpl:Fz,simpleAbsImpl:Ww,sliceImpl:Mz,stridedSliceImpl:$z,subImpl:Oz,tileImpl:Dz,topKImpl:zz,transposeImpl:_m,uniqueImpl:Pz}=Xf;function Bw(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function ln(e,t){return t===1?[e]:Bw(e,t)}function Lz(e,t){if(e===1)return"rc";let n="";for(let r=0;r<e;r++)n+=t[r],r<e-1&&(n+=",");return n}var Uz=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let n=ln("rc",t),r=it(t),a=Wz(t,e,n),s=Bz(t,e[e.length-1],e[e.length-2],n),i=Vz(e,n);this.userCode=`
void main() {
${r} rc = getOutputCoords();
if(${a}) {
setOutput(vec4(0));
} else {
${s}
setOutput(vec4(${i}));
}
}
`}}};function jz(e,t){let n=[];for(let r=0;r<=1;r++)for(let a=0;a<=1;a++){let s=`${r===0?"r":"rp1"}, ${a===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function Wz(e,t,n){if(e===1)return`rc > ${t[0]}`;let r="";for(let a=e-2;a<e;a++)r+=`${n[a]} >= ${t[a]}`,a<e-1&&(r+="||");return r}function Bz(e,t,n,r){if(e===1)return"";let a=r.slice(-2);return`
int r = ${a[0]};
int c = ${a[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${t};
bool rEdge = rp1 >= ${n};
`}function Vz(e,t){let n=e.length,r=jz(n,t);return n===1?`getA(rc),
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
0, 0`:`getA(${r[0]}),
cEdge ? 0. : getA(${r[1]}),
rEdge ? 0. : getA(${r[2]}),
rEdge || cEdge ? 0. : getA(${r[3]})`}var Vw=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let r=0;r<4;r++){let a="thisRC = rc;";r%2==1&&(a+="thisRC.z += 1;"),r>1&&(a+="thisRC.y += 1;"),n+=`
${a}
${r>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${r}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${r>0?"}":""}
`}this.userCode=`
${Hz(t)}
${mm(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${e[1]};
int cols = ${e[2]};
${n}
setOutput(result);
}
`}};function Hz(e){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${oi(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var Gz=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=jw(t,n),a=Hw(e,r,n);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=Uw(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return r===Jt.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===Jt.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===Jt.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===Jt.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===Jt.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let a=jw(n,r),s=Hw(t,a,r);s in this.freeTextures||(this.freeTextures[s]=[]);let i=Uw(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,r),o=J().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function qz(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function Uw(e,t,n,r,a){let s=Xz(t,r),i;if(a){let[l,u]=hl(e[0],e[1]);i=l*u}else{let[l,u]=ju(e[0],e[1]);i=l*u}let o=qz(n,s);return i*o}function Xz(e,t){switch(e){case Jt.PACKED_2X2_FLOAT32:return xm(t);case Jt.PACKED_2X2_FLOAT16:return wm(t);case Jt.UNPACKED_FLOAT32:return Am(t);case Jt.UNPACKED_FLOAT16:return ym(t);case Jt.PACKED_4X1_UNSIGNED_BYTE:return gm(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function Kz(e){return J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Jt.PACKED_2X2_FLOAT32:Jt.UNPACKED_FLOAT32:e?Jt.PACKED_2X2_FLOAT16:Jt.UNPACKED_FLOAT16}function jw(e,t){if(e===Hn.UPLOAD)return Jt.PACKED_2X2_FLOAT32;if(e===Hn.RENDER||e==null)return Kz(t);if(e===Hn.DOWNLOAD||e===Hn.PIXELS)return Jt.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function Hw(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Ca=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},hr="if (isnan(x)) return x;",Zz="return x;",Gw="return abs(x);",Yz="return (x >= 0.0) ? x : (exp(x) - 1.0);",Jz=hr+`
return (x < 0.0) ? 0.0 : x;
`,Qz=hr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,jd="return x;",eP="return x;",tP=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,nP=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,rP=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Al=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},aP=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=ln("rc",t),r=it(t),a=Lz(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
void main() {
${r} rc = getOutputCoords();
vec4 packedInput = getA(${a});
setOutput(getChannel(packedInput, ${i}));
}
`}},sP=Rr.whereImpl,iP=1e-7,oP=1e-4,bm={};function lP(e){return e in bm||(bm[e]={}),bm[e]}var uP=128,cP=600;function hP(){return J().global.screen==null?1024:J().global.screen.height*J().global.screen.width*window.devicePixelRatio*cP/1024/1024}var yl=class extends jl{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!J().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Mr(J().getNumber("WEBGL_VERSION"));this.binaryCache=lP(J().getNumber("WEBGL_VERSION")),this.gpgpu=new Ud(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new Gz(this.gpgpu),this.numMBBeforeWarning=hP(),this.texData=new Qc(this,Ir())}nextDataId(){return yl.nextDataId++}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,n){if((J().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||J().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={id:this.nextDataId()};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:Hn.UPLOAD,refCount:1}),r}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,r,a){if(J().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:Hn.UPLOAD,refCount:a})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new Al(i,jd):h=new Ca(i,jd);let d=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:r}],r),p=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let l=this.activeTimers!=null,u;l&&(u=v.now());let c;if(r==="complex64"){let h=this.readSync(a.real.dataId),d=this.readSync(a.imag.dataId);c=C.mergeRealAndImagArrays(h,d)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(m=>p.push(m))}let t=this.texData.get(e),{values:n,shape:r,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let p;o?p=new Al(r,jd):p=new Ca(r,jd);let m=this.runWebGLProgram(p,[{dataId:e,shape:r,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&J().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&J().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let p=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...Hu(r))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(s==="complex64"){let p=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=p[0],f=p[1];c=C.mergeRealAndImagArrays(m,f)}else if(l==null)c=this.getValuesFromTexture(e);else{let p=v.sizeFromShape(r);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}u!=null&&this.disposeIntermediateTensorInfo(u);let h=this.convertAndCacheOnCPU(e,c),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(p=>p(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Ir().removeDataId(e,this),this.pendingDeletes--),h}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>v.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Pe(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!qx(n))throw J().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:r}=this.texData.get(e),a=v.sizeFromShape(t);if(J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let h=this.decode(e),d=this.texData.get(h.dataId),p=this.gpgpu.downloadMatrixFromPackedTexture(d.texture,...Hu(t)).subarray(0,a);return this.disposeIntermediateTensorInfo(h),p}let s=J().getBool("WEBGL_PACK")&&r===!0,i=s?Pd(t):t,o=s?new kD(i):new vD(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),c=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture,u.texShape[0],u.texShape[1]).subarray(0,a);return this.disposeIntermediateTensorInfo(l),c}timerAvailable(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let a=v.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=v.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,a,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return J().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Ir().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=uP){let n=this.getCPUBackend();return!J().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&n==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),n!=null&&e.every(r=>this.texData.get(r.dataId).texture==null&&v.sizeFromShape(r.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){C.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return sP(e.shape,t)}packedUnaryOp(e,t,n){let r=new Al(e.shape,t),a=this.compileAndRun(r,[e],n);return Ir().makeTensorFromDataId(a.dataId,a.shape,a.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let r=Ww(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,r)}if(J().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Gw,e.dtype);let t=new Ca(e.shape,Gw),n=this.compileAndRun(t,[e]);return Ir().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let a=n.map(s=>v.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return Ir().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new aP(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new Uz(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[ai(e.shape),...si(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},a=[ai(t),...si(t)],s=new Vw(a,n),i=!0,o=this.runWebGLProgram(s,[r],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:a}=t,s=Pd(r),i;n?i=new bD(s):i=new _D(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:a,dataId:e}],a,null,o);return{dtype:a,shape:r,dataId:l.dataId}}runWebGLProgram(e,t,n,r,a=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===Uu.DENSE){let f=Hu(e.outputShape);i.texShape=f.map(A=>A*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),v.sizeFromShape(s.shape)===0)return i.values=v.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let A=this.texData.get(f.dataId);if(A.texture==null){if(!e.packedInputs&&v.sizeFromShape(f.shape)<=J().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:A.values};e.packedInputs&&(A.isPacked=!0,A.shape=f.shape)}else if(!!A.isPacked!=!!e.packedInputs)f=A.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),A=this.texData.get(f.dataId);else if(A.isPacked&&!Vu(A.shape,f.shape)){let y=f,g=f.shape;f.shape=A.shape,f=this.packedReshape(f,g),o.push(f),A=this.texData.get(f.dataId),y.shape=g}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:A,isUniform:!1}});this.uploadToGPU(s.dataId);let u={shape:s.shape,texData:i,isUniform:!1},c=dz(e,l,u),h=this.getAndSaveBinary(c,()=>cz(this.gpgpu,e,l,u)),d=this.activeTimers!=null,p;d&&(p=this.startTimer()),hz(this.gpgpu,h,l,u,r),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),d&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)}));let m=J().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let f=v.now();f-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=f)}if(!J().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&a===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,r,a=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,r,a)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(J().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=B(()=>{if(!J().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=J().getBool("DEBUG");J().set("DEBUG",!1);let t=this.abs(_e(1e-8)).dataSync()[0];if(J().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?iP:oP}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let c=t.texShape;if(c==null&&(c=uw(n,o),t.texShape=c),a!=null){let h=Pd(n),d,p=c[1],m=c[0],f=a instanceof Uint8Array;o?([p,m]=hl(c[0],c[1]),d=new ND(h,[m,p],f)):d=new ID(h,[m,p],f);let A=this.makeTensorInfo([m,p],r);f?this.texData.get(A.dataId).usage=Hn.PIXELS:this.texData.get(A.dataId).usage=Hn.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),p,m,a);let y=!0,g=this.runWebGLProgram(d,[A],r,null,y),_=this.texData.get(g.dataId);t.texture=_.texture,t.texShape=_.texShape,t.isPacked=_.isPacked,t.usage=_.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(g.dataId),t.values=null,l&&(this.uploadWaitMs+=v.now()-u)}else{let h=this.acquireTexture(c,i,r,o);t.texture=h}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=dP(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}};yl.nextDataId=0;function dP(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;r<n.length;++r)n[r]=Math.round(e[r]);return n}else throw new Error(`Unknown dtype ${t}`)}var qw="3.2.0";function Xw(){J().set("WEBGL_FORCE_F16_TEXTURES",!0)}Lh.isBrowser()&&Ho("webgl",()=>new yl,2);var pP={forceHalfFloat:Xw},Kw=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,gl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},Hd=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`,qu=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n);let a=this.outputShape.length,s="";if(r)if(a===0||v.sizeFromShape(this.outputShape)===1)s=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(s=`
${it(a)} coords = getOutputCoords();
`,a===1)s+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=ln("coords",a);s+=`
bool nextRowOutOfBounds =
(${i[a-2]} + 1) >= ${this.outputShape[a-2]};
bool nextColOutOfBounds =
(${i[a-1]} + 1) >= ${this.outputShape[a-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${s}
setOutput(result);
}
`}};function Fn(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var fP={kernelName:hs,backendName:"webgl",kernelFunc:Fn};function Ra(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.makeTensorInfo(r.shape,"complex64"),i=n.texData.get(s.dataId),o=Fn({inputs:{x:r},backend:n}),l=Fn({inputs:{x:a},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var mP={kernelName:lh,backendName:"webgl",kernelFunc:Ra},Zw="return (a < 0.) ? b * a : a;",Yw=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function AP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r,i=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),o=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new qu(Yw,a.shape,i.shape):new gl(Zw,a.shape,i.shape),l=n.runWebGLProgram(o,[a,i],a.dtype);return n.disposeIntermediateTensorInfo(i),l}var yP={kernelName:ds,backendName:"webgl",kernelFunc:AP},Jw="return (a < 0.) ? b * a : a;",Qw=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function gP(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new qu(Qw,r.shape,a.shape):new gl(Jw,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)}var xP={kernelName:ks,backendName:"webgl",kernelFunc:gP},e_="if (isnan(x)) return x;",wP=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,_P=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function He({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=r||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let h=o.texData.get(i.dataId),d=n(h.values,l);return o.makeTensorInfo(i.shape,l,d)}let u=J().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new Al(i.shape,t):c=new Ca(i.shape,e),o.runWebGLProgram(c,[i],l)}}function Qt({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,c=o;if(r&&l.dtype==="complex64"){let m=c.texData.get(l.dataId),f=c.texData.get(u.dataId),[A,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(_=>{let[b,w]=_,x={dataId:b.dataId,dtype:b.dtype,shape:l.shape},N={dataId:w.dataId,dtype:w.dtype,shape:u.shape},T=new gl(e,l.shape,u.shape);return c.runWebGLProgram(T,[x,N],Yn(b.dtype,w.dtype))}),g=Ra({inputs:{real:A,imag:y},backend:c});return c.disposeIntermediateTensorInfo(A),c.disposeIntermediateTensorInfo(y),g}let h=s||Yn(l.dtype,u.dtype);if(c.shouldExecuteOnCPU([l,u])&&a!=null){let m=c.texData.get(l.dataId),f=c.texData.get(u.dataId),[A,y]=a(l.shape,u.shape,m.values,f.values,h),g=c.makeTensorInfo(y,h),_=c.texData.get(g.dataId);return _.values=A,g}let d=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return d?p=new qu(t,l.shape,u.shape,n):p=new gl(e,l.shape,u.shape),c.runWebGLProgram(p,[l,u],h)}}function Gd(e,t=!1){if(e==="linear")return t?eP:Zz;if(e==="relu")return t?nP:Jz;if(e==="elu")return t?tP:Yz;if(e==="relu6")return t?rP:Qz;if(e==="prelu")return t?Qw:Jw;if(e==="leakyrelu")return t?Yw:Zw;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var t_=class{constructor(e,t,n,r=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let u=r?e[1]:e[2],c=Math.ceil(u/2),h=r?"i * 2, rc.y":"rc.y, i * 2",d=a?"rc.z, i * 2":"i * 2, rc.z",p=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",A="";i&&(o?f=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:l?f=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:f=`vec4 activation(vec4 x) {
${i}
}`,A="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let g="rc.x",_="rc.x";e[0]<t[0]?g=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(_=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${f}
const float sharedDimension = ${c}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${c}; i++) {
int batchA = ${g};
int batchB = ${_};
vec4 a = getMatrixA(batchA, ${h});
vec4 b = getMatrixB(batchB, ${d});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${p[0]} * ${m[0]});
result += (${p[1]} * ${m[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${y}
${A}
setOutput(result);
}
`}},n_={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},r_=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},a_="return a * b;";function s_(e){let{inputs:t,backend:n}=e,{a:r,b:a}=t,s=C.upcastType(r.dtype,a.dtype);if(r.dtype==="complex64"){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),u=new r_(n_.REAL,r.shape,a.shape),c=new r_(n_.IMAG,r.shape,a.shape),h=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:r.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:r.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:a.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:a.shape}],d=n.runWebGLProgram(u,h,"float32"),p=n.runWebGLProgram(c,h,"float32"),m=Ra({inputs:{real:d,imag:p},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),m}if(n.shouldExecuteOnCPU([r,a])){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),[u,c]=Tz(r.shape,a.shape,o.values,l.values,s),h=n.makeTensorInfo(c,s),d=n.texData.get(h.dataId);return d.values=u,h}let i;return J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new qu(a_,r.shape,a.shape):i=new gl(a_,r.shape,a.shape),n.runWebGLProgram(i,[r,a],s)}var bP={kernelName:ws,backendName:"webgl",kernelFunc:s_};function vP(e,t,n){let r=[ai(e.shape),...si(e.shape)],a={dtype:e.dtype,shape:r,dataId:e.dataId},s=[ai(t),...si(t)],i=new Vw(s,r),o=!0,l=n.runWebGLProgram(i,[a],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function Ae(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=n,o=v.sizeFromShape(a.shape),l=v.inferFromImplicitShape(s,o),u=v.sizeFromShape(l);v.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let c=i.texData.get(a.dataId);return c.isPacked&&!Vu(a.shape,l)&&!(c.texture!==null&&Vu(c.shape,l))?vP(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var kP={kernelName:_o,backendName:"webgl",kernelFunc:Ae},i_=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${v.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";a%n>0&&(u=`
if (inIdx < 0 || inIdx >= ${a}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${u}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${i};
if (${o===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${o===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${o===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},IP=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,h=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${o}(values, minMaxValue);
}
`,d="vec4";t==="all"?(i="1.0",h=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,d="bvec4"):t==="any"&&(i="0.0",h=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,d="bvec4");let p="";a%n>0&&(p=`
if (inIdx < 0 || inIdx >= ${a}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${p}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${h}
}
int inIdx = inOffset + ${u};
if (${c===1}) {
${d} values = ${d}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${h}
} else if (${c===2}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${h}
} else if (${c===3}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${h}
}
setOutput(${l});
}
`}};function NP(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],r=C.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:r,outSize:Math.ceil(n/r)})}return t}function ui(e,t,n,r){let a=NP(e.shape),s=e;for(let i=0;i<a.length;i++){let{inSize:o,windowSize:l,outSize:u}=a[i],c,h;n==="mean"?c=i===0?new i_({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new i_({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):c=new IP({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),h=s,s=r.runWebGLProgram(c,[s],t),h.dataId!==e.dataId&&r.disposeIntermediateTensorInfo(h)}return s}var TP=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let r=it(this.rank),a=SP(t);this.userCode=`
void main() {
${r} resRC = getOutputCoords();
setOutput(getA(${a}));
}
`}};function SP(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let a=0;a<e.length;a++)r[e[a]]=n[a];return r.join()}var EP=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=it(this.rank),a=Bw("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=a[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${a[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
void main() {
${r} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${o}) {
result[1] = ${l};
}
--${a[this.rank-1]};
if(++${a[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${o}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function qd(e,t,n){let r=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new EP(e.shape,t):new TP(e.shape,t);return n.runWebGLProgram(r,[e],e.dtype)}function CP(e,t,n,r){let a=t,s=e.shape.length,i=v.parseAxisParam(a,e.shape),o=i,l=C.getAxesPermutation(o,s),u=l!=null,c=e;u&&(c=qd(e,l,r),o=C.getInnerMostAxes(o.length,s)),C.assertAxesAreInnerMostDims("sum",o,s);let[h,d]=C.computeOutAndReduceShapes(c.shape,o),p=h;n&&(p=C.expandShapeToKeepDim(h,i));let m=v.sizeFromShape(d),f=v.sizeFromShape(e.shape)/m,A=Ae({inputs:{x:c},attrs:{shape:[f,m]},backend:r}),y=Ph(e.dtype),g=ui(A,y,"sum",r),_=Ae({inputs:{x:g},attrs:{shape:p},backend:r});return r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(g),u&&r.disposeIntermediateTensorInfo(c),_}function vm(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;return CP(a,s,i,n)}var RP={kernelName:$s,backendName:"webgl",kernelFunc:vm};function xn(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{perm:s}=r,i=n,o=a.shape.length,l=new Array(o);for(let c=0;c<l.length;c++)l[c]=a.shape[s[c]];let u;if(i.shouldExecuteOnCPU([a])){let c=i.texData.get(a.dataId).values,h=_m(c,a.shape,a.dtype,s,l);u=i.makeTensorInfo(l,a.dtype);let d=i.texData.get(u.dataId);d.values=h}else u=qd(a,s,i);return u}var FP={kernelName:Ls,backendName:"webgl",kernelFunc:xn},o_=1e3;function Xd({a:e,b:t,transposeA:n,transposeB:r,backend:a,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,h=n?e.shape[u-2]:e.shape[u-1],d=r?t.shape[c-1]:t.shape[c-2],p=n?e.shape[u-1]:e.shape[u-2],m=r?t.shape[c-2]:t.shape[c-1],f=e.shape.slice(0,-2),A=t.shape.slice(0,-2),y=v.sizeFromShape(f),g=v.sizeFromShape(A),_=y===g||y===1||g===1;v.assert(u>=2&&c>=2&&_,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${A}).`);let b=(y>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,m]);v.assert(h===d,()=>`Error in matMul: inner shapes (${h}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let w=n?[y,h,p]:[y,p,h],x=r?[g,m,d]:[g,d,m],N=Ae({inputs:{x:e},backend:a,attrs:{shape:w}}),T=Ae({inputs:{x:t},backend:a,attrs:{shape:x}}),E=[N,T],M=Math.max(y,g),D=n?N.shape[1]:N.shape[2],L=s!=null,W=i!=null,U=l==="leakyrelu",j=l!=null?Gd(l,!0):null,X=L||W||U||j!=null,G;if((p===1||m===1)&&D>o_&&X===!1){let Y=N,ae=T;n&&(Y=xn({inputs:{x:N},backend:a,attrs:{perm:[0,2,1]}}),E.push(Y)),r&&(ae=xn({inputs:{x:T},backend:a,attrs:{perm:[0,2,1]}}),E.push(ae));let te=m!==1,ie=m===1,Q=Y;te&&(Q=Ae({inputs:{x:Y},backend:a,attrs:{shape:[M,D,1]}}),E.push(Q));let ce=m===1?2:1,oe=ae;ie&&(oe=Ae({inputs:{x:ae},backend:a,attrs:{shape:[M,1,D]}}),E.push(oe));let pe=s_({inputs:{a:Q,b:oe},backend:a});G=vm({inputs:{x:pe},backend:a,attrs:{axis:ce,keepDims:!0}}),E.push(pe)}else{let Y=Yn(e.dtype,t.dtype),ae=new t_(w,x,[M,p,m],n,r,L,j,W,U),te=[N,T];if(s!=null&&te.push(s),W&&te.push(i),U){let ie=a.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));te.push(ie),E.push(ie)}G=a.runWebGLProgram(ae,te,Y)}let ee=Ae({inputs:{x:G},backend:a,attrs:{shape:b}});E.push(G);for(let Y of E)a.disposeIntermediateTensorInfo(Y);return ee}function MP(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:h}=r;return Xd({a,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:c})}var $P={kernelName:Ws,backendName:"webgl",kernelFunc:MP},l_="return abs(x);";function OP(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let s=n.texData.get(r.dataId),i=Ww(s.values);return n.makeTensorInfo(r.shape,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new Al(r.shape,l_):a=new Ca(r.shape,l_),n.runWebGLProgram(a,[r],r.dtype)}var DP={kernelName:Di,backendName:"webgl",kernelFunc:OP},zP=hr+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,PP=He({opSnippet:zP}),LP={kernelName:zi,backendName:"webgl",kernelFunc:PP},WP=hr+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,BP=He({opSnippet:WP}),VP={kernelName:Pi,backendName:"webgl",kernelFunc:BP},u_="return a + b;",UP=Qt({opSnippet:u_,packedOpSnippet:u_,supportsComplex:!0,cpuKernelImpl:pz}),jP={kernelName:ma,backendName:"webgl",kernelFunc:UP},HP=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`float v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${r};
setOutput(result);
}
`}},GP=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`vec4 v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${r};
setOutput(result);
}
`}};function Kd(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return Fn({inputs:{x:r[0]},backend:n});if(r.length>J().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(r.length/2),l=Kd({inputs:r.slice(0,o),backend:n}),u=Kd({inputs:r.slice(o),backend:n});return Kd({inputs:[l,u],backend:n})}let a=r.map(o=>o.dtype).reduce((o,l)=>Yn(o,l)),s=r.map(o=>o.shape),i=J().getBool("WEBGL_PACK")?new GP(r[0].shape,s):new HP(r[0].shape,s);return n.runWebGLProgram(i,r,a)}var qP={kernelName:Xa,backendName:"webgl",kernelFunc:Kd};function XP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,c=C.getAxesPermutation(u,o),h=a;c!=null&&(h=xn({inputs:{x:a},backend:n,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,o)),C.assertAxesAreInnerMostDims("all",u,o);let[d,p]=C.computeOutAndReduceShapes(h.shape,u),m=v.sizeFromShape(p),f=Ae({inputs:{x:h},backend:n,attrs:{shape:[-1,m]}}),A=ui(f,f.dtype,"all",n),y;if(i){let g=C.expandShapeToKeepDim(d,l);y=Ae({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=Ae({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(h),y}var KP={kernelName:rh,backendName:"webgl",kernelFunc:XP};function ZP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,c=C.getAxesPermutation(u,o),h=a;c!=null&&(h=xn({inputs:{x:a},backend:n,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,o)),C.assertAxesAreInnerMostDims("any",u,o);let[d,p]=C.computeOutAndReduceShapes(h.shape,u),m=v.sizeFromShape(p),f=Ae({inputs:{x:h},backend:n,attrs:{shape:[-1,m]}}),A=ui(f,f.dtype,"any",n),y;if(i){let g=C.expandShapeToKeepDim(d,l);y=Ae({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=Ae({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(h),y}var YP={kernelName:ah,backendName:"webgl",kernelFunc:ZP},JP=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:a,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${r};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${r}; i++) {
int inIdx = ${o};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},QP=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),r||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=it(o),u=ln("coords",o),c,h;if(s===1){h=o+1;let N=it(h);c=`
${N} sourceLocR = ${N}(${u.join()}, 0);
++${u[o-1]};
${N} sourceLocG = ${N}(${u.join()}, 0);
++${u[o-2]};
${N} sourceLocA = ${N}(${u.join()}, 0);
--${u[o-1]};
${N} sourceLocB = ${N}(${u.join()}, 0);
--${u[o-2]};`}else h=o,c=`
${l} sourceLocR = coords;
++${u[o-1]};
${l} sourceLocG = coords;
++${u[o-2]};
${l} sourceLocA = coords;
--${u[o-1]};
${l} sourceLocB = coords;
--${u[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,h),p="."+d[h-1],m=d.map(N=>"int "+N),f=ln("sourceLocR",h-1).concat("inIdx.r"),A=ln("sourceLocG",h-1).concat("inIdx.g"),y=ln("sourceLocB",h-1).concat("inIdx.b"),g=ln("sourceLocA",h-1).concat("inIdx.a"),_=n==="max"?"greaterThan":"lessThan",b=r?"":`
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
getBestIndicesAChannel(${A.join()}),
getBestIndicesAChannel(${y.join()}),
getBestIndicesAChannel(${g.join()})));`,w=`vec4(
getAChannel(${f.join()}),
hasNextCol ? getAChannel(${A.join()}) : 0.,
hasNextRow ? getAChannel(${y.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,x=r?"":`
float getBestIndicesAChannel(${m.join()}) {
return getChannel(getBestIndicesA(${d.join()}),
vec2(${d.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${m.join()}) {
return getChannel(getA(${d.join()}),
vec2(${d.slice(-2).join()}));
}
${x}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
${c}
ivec4 srcIdx = ivec4(sourceLocR${p}, sourceLocG${p},
sourceLocB${p}, sourceLocA${p}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${w};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${b}
vec4 candidate = ${w};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${_}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function c_(e,t,n,r=null){let a=t.shape[0],s=t.shape[1];r!=null&&(a=r.shape[0],s=r.shape[1]);let i=C.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new JP(o,n,r==null),u=[t];r!=null&&u.push(r);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let h=c_(e,t,n,c);return e.disposeIntermediateTensorInfo(c),h}function h_(e,t,n,r=null){let a=r!=null?r.shape:t.shape,s=a[a.length-1],i=C.computeOptimalWindowSize(s),o=new QP(a,i,n,r==null),l=r==null?[t]:[t,r],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let c=h_(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function d_(e,t,n,r){let a=[n];if(C.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),a,t.shape.length),!J().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=C.computeOutAndReduceShapes(t.shape,a),l=v.sizeFromShape(o),u=Ae({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(u);let c=c_(e,u,r);s.push(c);let h=Ae({inputs:{x:c},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),h}return h_(e,t,r)}function eL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=xn({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let c=d_(n,l,i[0],"max");return u.forEach(h=>n.disposeIntermediateTensorInfo(h)),c}var tL={kernelName:Ka,backendName:"webgl",kernelFunc:eL};function nL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=xn({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let c=d_(n,l,i[0],"min");return u.forEach(h=>n.disposeIntermediateTensorInfo(h)),c}var rL={kernelName:ql,backendName:"webgl",kernelFunc:nL},aL=hr+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,sL=He({opSnippet:aL}),iL={kernelName:Li,backendName:"webgl",kernelFunc:sL},oL=hr+"return log(x + sqrt(x * x + 1.0));",lL=He({opSnippet:oL}),uL={kernelName:Wi,backendName:"webgl",kernelFunc:lL},cL=hr+`
return atan(x);
`,hL=He({opSnippet:cL}),dL={kernelName:Bi,backendName:"webgl",kernelFunc:hL},pL=wP+`
return atan(a, b);
`,fL=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+_P+`
return result;
`,mL=Qt({opSnippet:pL,packedOpSnippet:fL}),AL={kernelName:Ui,backendName:"webgl",kernelFunc:mL},yL=hr+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,gL=He({opSnippet:yL}),xL={kernelName:Vi,backendName:"webgl",kernelFunc:gL},Xu=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,h=e.effectiveFilterWidth,d=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let N=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${d}, ${p});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${c};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${h};
wC += ${u}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${N} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${r?a?f:A:`wR * ${h} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let g="max",_=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(_="avgValue / count");let b=Math.floor(s/4)*4,w=s%4,x=`
if (${m}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${g}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${d}, ${p});
const float initializationValue = ${y};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${y});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${c};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${b}; wC += 4) {
int xC = xCCorner + wC * ${u};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
getValue(batch, xR, xC + 3 * ${u}, d)
);
${x}
}
int xC = xCCorner + ${b};
if (${w===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${x}
} else if (${w===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
initializationValue,
initializationValue
);
${x}
} else if (${w===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
initializationValue
);
${x}
}
}
setOutput(${_});
}
`}},km=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,h=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,A=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",_="0.0";if(g||(_="-1.0 / 1e-20"),n){let E=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${A}, ${y});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${d};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${p};
wR += ${c}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${h}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${E} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${r?a?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${p} * ${m} +
wR * ${m} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let b="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let x=Math.floor(s/4)*4,N=s%4,T=`
if (${g}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${b}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${A}, ${y});
const float initializationValue = ${_};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${_});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${d};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${p};
wR += ${c}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${x}; wC += 4) {
int xC = xCCorner + wC * ${h};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${h}, ch),
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
getValue(batch, xD, xR, xC + 3 * ${h}, ch)
);
${T}
}
int xC = xCCorner + ${x};
if (${N===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${T}
} else if (${N===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${h}, ch),
initializationValue,
initializationValue
);
${T}
} else if (${N===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${h}, ch),
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
initializationValue
);
${T}
}
}
setOutput(${w});
}
}
`}};function wL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;cl(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=C.computePool2DInfo(a.shape,s,i,u,o,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return Fn({inputs:{x:a},backend:n});let h=new Xu(c,"avg",!1);return n.runWebGLProgram(h,[a],"float32")}var _L={kernelName:Za,backendName:"webgl",kernelFunc:wL};function bL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r,c=[1,1,1],h=C.computePool3DInfo(a.shape,s,i,c,o,l,u),d=new km(h,"avg",!1);return n.runWebGLProgram(d,[a],"float32")}var vL={kernelName:Xl,backendName:"webgl",kernelFunc:bL},kL=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,c=l-1-e.padInfo.left,h=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${u}, ${c});
const float avgMultiplier = float(${h});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${o};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${r}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},IL=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=c-1-e.padInfo.front,m=h-1-e.padInfo.top,f=d-1-e.padInfo.left,A=1/(t*n*r);this.userCode=`
const ivec3 pads = ivec3(${p}, ${m}, ${f});
const float avgMultiplier = float(${A});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${c};
wD += ${o}) {
float dyD = float(dyDCorner + wD) / ${a}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${h};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${d};
wC += ${u}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function NL(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:c}=r,h=[1,1,1],d=C.computePool3DInfo(i.shape,o,l,h,u,c),p=new IL(d);return n.runWebGLProgram(p,[a],i.dtype)}var SL={kernelName:ih,backendName:"webgl",kernelFunc:NL};function TL(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;cl([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=r,c=C.computePool2DInfo(i.shape,o,l,1,u),h=new kL(c);return n.runWebGLProgram(h,[a],i.dtype)}var EL={kernelName:sh,backendName:"webgl",kernelFunc:TL};function CL(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;return Xd({a,b:s,transposeA:i,transposeB:o,backend:n})}var RL={kernelName:Ya,backendName:"webgl",kernelFunc:CL},FL=class{constructor(e,t,n,r,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="0.0";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${o};
float inv = scale * inversesqrt(variance + float(${s}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},ML=class{constructor(e,t,n,r,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${o};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
setOutput((x - mean) * inv + offset);
}
`}},$L=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:a,variance:s,offset:i,scale:o}=e;v.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[r,a,s],c=null;i!=null&&(c=i.shape,u.push(i));let h=null;o!=null&&(h=o.shape,u.push(o));let d=J().getBool("WEBGL_PACK_NORMALIZATION")?new ML(r.shape,a.shape,s.shape,c,h,l):new FL(r.shape,a.shape,s.shape,c,h,l);return t.runWebGLProgram(d,u,u[0].dtype)},OL={kernelName:us,backendName:"webgl",kernelFunc:$L},zL=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=it(this.rank),n=`uniform int start[${this.rank}];`,r=DL(this.rank),a,s=e.map((i,o)=>`sourceLoc.${Im[o]} = start[${o}] + coords.${Im[o]};`);a=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${s.join(`
`)}
`,this.userCode=`
${n}
void main() {
${a}
setOutput(getSource(${r}));
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},Im=["x","y","z","w","u","v"];function DL(e){if(e===1)return"sourceLoc";if(e<=6)return Im.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var PL=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=it(this.rank),n=ln("coords",this.rank),r=ln("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,s=`getChannel(getSource(${r.join()}), ${a})`,i=`
result.x = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${r[this.rank-1]};
result.y = ${s};
--${r[this.rank-1]};
}
`,o=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${r[this.rank-2]};
result.z = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${r[this.rank-1]};
result.w = ${s};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((u,c)=>`start[${c}]`).join()});`:e.map((u,c)=>`${r[c]} = ${n[c]} + start[${c}];`).join(`
`);this.userCode=`
uniform int start[${this.rank}];
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${i}
${o}
setOutput(result);
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function LL(e,t,n,r){let a=r.texData.get(e.dataId),s=r.makeTensorInfo(n,e.dtype),i=r.texData.get(s.dataId);Object.assign(i,a),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=an.computeFlatOffset(t,v.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=r.dataRefCount.get(i.slice.origDataId)||1;return r.dataRefCount.set(i.slice.origDataId,l+1),s}function Ku(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r,[o,l]=an.parseSliceParams(a,s,i);if(an.assertParamsValid(a,o,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,a.dtype,[]);if(n.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=n.texData.get(a.dataId),d=Mz(h.values,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,d)}let{isPacked:u}=n.texData.get(a.dataId),c=an.isSliceContinous(a.shape,o,l);if(u||!c){let h=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new PL(l):new zL(l),d=h.getCustomSetupFunc(o);return n.runWebGLProgram(h,[a],a.dtype,d)}return n.uploadToGPU(a.dataId),LL(a,o,l,n)}var WL={kernelName:Io,backendName:"webgl",kernelFunc:Ku},BL=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;v.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,_)=>g*_),l=C.getReshaped(a.shape,s,o),u=C.getPermuted(l.length,s.length),c=C.getReshapedPermuted(a.shape,s,o),h=C.getSliceBeginCoords(i,s.length),d=C.getSliceSize(c,i,s.length),p=[],m=Ae({inputs:{x:a},backend:n,attrs:{shape:l}}),f=xn({inputs:{x:m},backend:n,attrs:{perm:u}}),A=Ae({inputs:{x:f},backend:n,attrs:{shape:c}}),y=Ku({inputs:{x:A},backend:n,attrs:{begin:h,size:d}});return p.push(m),p.push(f),p.push(A),p.forEach(g=>n.disposeIntermediateTensorInfo(g)),y},VL={kernelName:Kl,backendName:"webgl",kernelFunc:BL};function UL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.readSync(a.dataId),l=n.readSync(s.dataId),u=Lw(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var jL={kernelName:oh,backendName:"webgl",kernelFunc:UL},HL="return float(a != b);",p_=Qt({opSnippet:HL,dtype:"bool"}),GL={kernelName:po,backendName:"webgl",kernelFunc:p_};function Zu(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Fn({inputs:{x:a.complexTensorInfos.real},backend:n})}var qL={kernelName:Th,backendName:"webgl",kernelFunc:Zu},XL="return float(int(x));";function KL(e,t){let n=new Ca(e.shape,XL),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function Nm(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Fn({inputs:{x:a},backend:n});let i=Nt(a.shape),o=Nm({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Ra({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=Zu({inputs:{input:a},backend:n}),o=Nm({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=Fn({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return KL(a,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=p_({inputs:{a,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var ZL={kernelName:Ja,backendName:"webgl",kernelFunc:Nm},f_="return ceil(x);",YL=He({opSnippet:f_,packedOpSnippet:f_,cpuKernelImpl:mz}),JL={kernelName:Qa,backendName:"webgl",kernelFunc:YL},QL=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},eW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function tW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o;J().getBool("WEBGL_PACK_CLIP")?o=new eW(a.shape):o=new QL(a.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[a],a.dtype,l)}var nW={kernelName:Aa,backendName:"webgl",kernelFunc:tW},rW=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function m_(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function aW(e){let{inputs:t,backend:n}=e,{x:r}=t,a=n.texData.get(r.dataId),s=new rW(r.shape),i=[m_(r,a.complexTensorInfos.real),m_(r,a.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var sW={kernelName:Zl,backendName:"webgl",kernelFunc:aW},iW=class{constructor(e){this.outputShape=[],this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let r=t.length,a=t[t.length-1];n.push(`else setOutput(getT${r}(yR, yC-${a}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},oW=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=C.computeOutShape(e,t);let n=this.outputShape,r=n.length,a=it(r),s=ln("coords",r),i=["x","y","z","w","u","v"].slice(0,r);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],u=i.slice(-2),c=i.join(),h=`if (${l} < ${o[0]}) {
return getChannel(
getT0(${c}), vec2(${u.join()}));
}`;for(let m=1;m<o.length;m++){let f=o[m-1];h+=`
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
return getChannel(
getT${m}(${Zd(i,l,f)}),
vec2(${Zd(u,l,f)}));
}`}let d=o.length,p=o[o.length-1];h+=`
return getChannel(
getT${d}(${Zd(i,l,p)}),
vec2(${Zd(u,l,p)}));`,this.userCode=`
float getValue(${i.map(m=>"int "+m)}) {
${h}
}
void main() {
${a} coords = getOutputCoords();
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
${s[r-1]} = ${s[r-1]} + 1;
if (${s[r-1]} < ${n[r-1]}) {
result.g = getValue(${s});
}
${s[r-2]} = ${s[r-2]} + 1;
if (${s[r-2]} < ${n[r-2]}) {
result.a = getValue(${s});
}
${s[r-1]} = ${s[r-1]} - 1;
if (${s[r-2]} < ${n[r-2]} &&
${s[r-1]} < ${n[r-1]}) {
result.b = getValue(${s});
}
setOutput(result);
}
`}};function Zd(e,t,n){let r=e.indexOf(t);return e.map((a,s)=>s===r?`${a} - ${n}`:a).join()}function Yd(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Fn({inputs:{x:a.complexTensorInfos.imag},backend:n})}var lW={kernelName:_h,backendName:"webgl",kernelFunc:Yd};function xl(e,t,n){let r=e[0].dtype;if(r==="complex64"){let u=e.map(m=>Zu({inputs:{input:m},backend:n})),c=e.map(m=>Yd({inputs:{input:m},backend:n})),h=xl(u,t,n),d=xl(c,t,n),p=Ra({inputs:{real:h,imag:d},backend:n});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),c.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),p}if(r==="string"){let{tensors2D:u,outShape:c}=A_(e,t,n),h=u.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),d=u[0].shape[0]===1,p=Az(h,c,r,d),m=C.computeOutShape(e.map(A=>A.shape),t),f=n.makeTensorInfo(m,r,p);return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),f}if(e.length>J().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),c=xl(e.slice(0,u),t,n),h=xl(e.slice(u),t,n),d=xl([c,h],t,n);return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),d}if(J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new oW(e.map(c=>c.shape),t);return n.runWebGLProgram(u,e,r)}let{tensors2D:a,outShape:s}=A_(e,t,n),i=new iW(a.map(u=>u.shape)),o=n.runWebGLProgram(i,a,r);a.forEach(u=>n.disposeIntermediateTensorInfo(u));let l=Ae({inputs:{x:o},attrs:{shape:s},backend:n});return n.disposeIntermediateTensorInfo(o),l}function A_(e,t,n){let r=C.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>Ae({inputs:{x:a},attrs:{shape:[-1,v.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function y_(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=v.parseAxisParam(a,t[0].shape)[0],i=C.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>v.sizeFromShape(u.shape)>0);if(o.length===1)return Fn({inputs:{x:o[0]},backend:n});let l=o.map(u=>u.shape);return C.assertParamsConsistent(l,s),xl(o,s,n)}var uW={kernelName:ji,backendName:"webgl",kernelFunc:y_},g_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",A=f?1:2,y=f?2:3,g=f?3:1,_="",b="";n&&(r?_=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:a?_=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:_=`
float activation(float x) {
${n}
}
`,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${_}
const ivec2 strides = ivec2(${o}, ${l});
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${g}];
ivec2 xRCCorner =
ivec2(coords[${A}], coords[${y}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${h}; wR++) {
int xR = xRCorner + wR * ${u};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${p}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${f}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${m===1}) {
if (${f}) {
dotProd +=
getX(batch, xR, xC, ${p}) *
getW(wR, wC, ${p}, d2);
} else {
dotProd +=
getX(batch, ${p}, xR, xC) *
getW(wR, wC, ${p}, d2);
}
} else if (${m===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${p}, d2),
getW(wR, wC, ${p} + 1, d2)
);
if (${f}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${p}),
getX(batch, xR, xC, ${p} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${p}, xR, xC),
getX(batch, ${p} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${m===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${p}, d2),
getW(wR, wC, ${p} + 1, d2),
getW(wR, wC, ${p} + 2, d2)
);
if (${f}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${p}),
getX(batch, xR, xC, ${p} + 1),
getX(batch, xR, xC, ${p} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${p}, xR, xC),
getX(batch, ${p} + 1, xR, xC),
getX(batch, ${p} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${w}
${b}
setOutput(result);
}
`}},cW=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${a}, ${s}, ${i});
const ivec3 pads = ivec3(${t}, ${n}, ${r});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${c}; wF++) {
int xF = xFCorner + wF * ${o};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${p}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${m===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${p}) *
getW(wF, wR, wC, ${p}, d2);
} else if (${m===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${p}),
getX(batch, xF, xR, xC, ${p} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${p}, d2),
getW(wF, wR, wC, ${p} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${m===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${p}),
getX(batch, xF, xR, xC, ${p} + 1),
getX(batch, xF, xR, xC, ${p} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${p}, d2),
getW(wF, wR, wC, ${p} + 1, d2),
getW(wF, wR, wC, ${p} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},hW=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:r,inChannels:a,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:u,dilationHeight:c,dataFormat:h}=n,{left:d,top:p}=o,m=a*r,f=on(),A=h==="channelsLast",y=A?0:1,g=A?1:2,_="";for(let b=0;b<=1;b++)for(let w=0;w<=1;w++)_+=`
blockIndex = rc.y + ${w};
pos = rc.x + ${b};
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
offsetY = int(blockIndex / (${l})) * ${i} - ${p};
d0 = offsetY + ${c} * (pos / ${m});
if(d0 < ${t[y]} && d0 >= 0) {
offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${d}.);
d1 = offsetX + ${u} * (int(mod(float(pos), ${m}.) / ${a}.));
if(d1 < ${t[g]} && d1 >= 0) {
ch = int(mod(float(pos), ${a}.));
if (${A}) {
innerDims = vec2(d1, ch);
result[${b*2+w}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${b*2+w}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${_}
${f.output} = result;
}
`}};function x_({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=r.texData.get(e.dataId),c=n.inChannels,h=l[0]*l[1]*l[2],d=n.outChannels,p=n.dataFormat==="channelsLast",m=!1,f=!1,A,y=[],g=(h===1||d===1)&&c>o_,_=l[2]%2!=0&&!!u.isPacked;if(g||!J().getBool("WEBGL_LAZILY_UNPACK")||!J().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!_){let b=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],w=Ae({inputs:{x:e},backend:r,attrs:{shape:[1,b,n.inChannels]}}),x=Ae({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),N=Xd({a:w,b:x,transposeA:m,transposeB:f,backend:r,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=Ae({inputs:{x:N},backend:r,attrs:{shape:n.outShape}}),y.push(w),y.push(x),y.push(N)}else{let b=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),w={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},x=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(Vu(u.shape,w.shape),()=>`packed reshape ${u.shape} to ${w.shape} isn't free`);let N=Ae({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(N);let T=Xd({a:w,b:N,backend:r,transposeA:m,transposeB:f,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),E=r.texData.get(T.dataId);v.assert(E.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=x,E.shape=n.outShape,A=Fn({inputs:{x:T},backend:r}),A.shape=n.outShape,y.push(T)}for(let b of y)r.disposeIntermediateTensorInfo(b);return A}function w_({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:h,outHeight:d,dataFormat:p}=n,m=p==="channelsLast",f=l*u*c,A=d*h,y=[f,A],g=!0,_=!1,b=[],w=Ae({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),x=Ae({inputs:{x:t},backend:r,attrs:{shape:[1,f,v.sizeFromShape(t.shape)/f]}});b.push(w),b.push(x);let N=new hW(y,w.shape,n),T=r.runWebGLProgram(N,[w],"float32"),E=Ae({inputs:{x:T},backend:r,attrs:{shape:[1,y[0],y[1]]}});b.push(T),b.push(E);let M=a!=null,D=s!=null,L=o==="leakyrelu",W=o?Gd(o,!0):null,U=new t_(E.shape,x.shape,[1,A,n.outChannels],g,_,M,W,D,L),j=[E,x];if(a&&j.push(a),D&&j.push(s),L){let Y=r.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));j.push(Y),b.push(Y)}let X=r.runWebGLProgram(U,j,"float32"),G=m?[1,d,h,n.outChannels]:[1,n.outChannels,d,h],ee=Ae({inputs:{x:X},backend:r,attrs:{shape:G}});b.push(X);for(let Y of b)r.disposeIntermediateTensorInfo(Y);return ee}function dW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:c}=r,h=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!1,h),p;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))p=x_({x:a,filter:s,convInfo:d,backend:n});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)p=w_({x:a,filter:s,convInfo:d,backend:n});else{let f=new g_(d);p=n.runWebGLProgram(f,[a,s],"float32")}let m=Ae({inputs:{x:p},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(p),m}var pW={kernelName:es,backendName:"webgl",kernelFunc:dW},fW=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${r};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${a};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${s}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},mW=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,c=s?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${c}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${r}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${s}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},AW=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${a};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${r} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},yW=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=r-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${o}, ${l}, ${u});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${a}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${r}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${r} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function gW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:c}=r,h=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(a.shape,c,i,1,o,u,!1,h),p=new fW(d);return n.runWebGLProgram(p,[a,s],"float32")}var xW={kernelName:uh,backendName:"webgl",kernelFunc:gW};function wW(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:c}=r,h=C.convertConv2DDataFormat(u),d=C.computeConv2DInfo(i,s.shape,o,1,l,c,!1,h),p=new mW(d);return n.runWebGLProgram(p,[a,s],"float32")}var _W={kernelName:ts,backendName:"webgl",kernelFunc:wW};function bW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,u=C.computeConv3DInfo(a.shape,s.shape,i,l,o),c=new cW(u);return n.runWebGLProgram(c,[a,s],"float32")}var vW={kernelName:Yl,backendName:"webgl",kernelFunc:bW};function kW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r,u=C.computeConv3DInfo(a.shape,l,i,1,o),c=new AW(u);return n.runWebGLProgram(c,[a,s],"float32")}var IW={kernelName:ch,backendName:"webgl",kernelFunc:kW};function NW(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r,u=C.computeConv3DInfo(l,s.shape,o,1,i),c=new yW(u);return n.runWebGLProgram(c,[a,s],"float32")}var SW={kernelName:hh,backendName:"webgl",kernelFunc:NW},TW=e_+`
return cos(x);
`,EW=He({opSnippet:TW}),CW={kernelName:ns,backendName:"webgl",kernelFunc:EW},RW=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,FW=He({opSnippet:RW}),MW={kernelName:Hi,backendName:"webgl",kernelFunc:FW},$W=class{constructor(e,t,n,r,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[c,h]=n;this.outputShape=[u,c,h,l];let d=r==="bilinear"?1:0,[p,m]=[`${i-1}.0`,`${o-1}.0`],[f,A,y]=c>1?[`${(i-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[g,_,b]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
const float height_ratio = float(${f});
const float width_ratio = float(${g});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${s}) {
return;
}
float height_scale = ${A};
float width_scale = ${_};
float in_y = ${y};
if( in_y < 0.0 || in_y > ${p} ) {
setOutput(float(${a}));
return;
}
float in_x = ${b};
if( in_x < 0.0 || in_x > ${m} ) {
setOutput(float(${a}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${d} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},OW=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=r,c=new $W(a.shape,s.shape,o,l,u);return n.runWebGLProgram(c,[a,s,i],"float32")},DW={kernelName:Gi,backendName:"webgl",kernelFunc:OW},v_=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let r=e.length,a=t?"0.0":`getX(${__(r,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
uniform float index;
void main() {
${it(r)} coords = getOutputCoords();
int end = ${b_(r,"coords")};
float val = ${a};
int pow2 = int(pow(2.0, index));
if (${i}) {
int idx = ${o};
${b_(r,"coords")} = idx;
val += getX(${__(r,"coords")});
}
setOutput(val);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function __(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function b_(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function zW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length,u=C.getAxesPermutation([s],l),c=a;u!=null&&(c=xn({inputs:{x:a},backend:n,attrs:{perm:u}}));let h=C.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let d=c.shape[h],p=Fn({inputs:{x:c},backend:n});for(let m=0;m<=Math.ceil(Math.log2(d))-1;m++){let f=new v_(c.shape,!1,o),A=f.getCustomSetupFunc(m),y=p;p=n.runWebGLProgram(f,[p],p.dtype,A),n.disposeIntermediateTensorInfo(y)}if(i){let m=new v_(c.shape,i,o),f=p;p=n.runWebGLProgram(m,[p],p.dtype),n.disposeIntermediateTensorInfo(f)}if(u!=null){let m=C.getUndoAxesPermutation(u),f=xn({inputs:{x:p},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),f}return p}var PW={kernelName:rs,backendName:"webgl",kernelFunc:zW};function LW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.readSync(a.dataId),u=n.readSync(s.dataId),c=Lw(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}else if(a.shape.length===2){let l=n.bufferSync(a),u=n.bufferSync(s),c=fz(l,u,i,o);return n.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var WW={kernelName:dh,backendName:"webgl",kernelFunc:LW},BW=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function VW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;v.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],c=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=u*s,p=c/(s*s),m=i==="NHWC"?[o,h,d,p]:[o,p,h,d],f=new BW(m,s,i);return n.runWebGLProgram(f,[a],a.dtype)}var UW={kernelName:qi,backendName:"webgl",kernelFunc:VW},k_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,c=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,m=e.filterWidth,f=e.outChannels/e.inChannels,A="",y="";n&&(r?A=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:a?A=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:A=`
float activation(float x) {
${n}
}
`,y="result = activation(result);");let g=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${A}
const ivec2 strides = ivec2(${u}, ${c});
const ivec2 pads = ivec2(${o}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${f};
int q = d2 - d1 * ${f};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${p}; wR++) {
int xR = xRCorner + wR * ${h};
if (xR < 0 || xR >= ${s}) {
continue;
}
for (int wC = 0; wC < ${m}; wC++) {
int xC = xCCorner + wC * ${d};
if (xC < 0 || xC >= ${i}) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${g}
${y}
setOutput(result);
}
`}},I_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,c=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,m=e.filterWidth,f=m,A="int xR; int xC; int xCOffset;";for(let b=0;b<p;b++)for(let w=0;w<m;w++)A+=`
vec4 xTexelR${b}C${w*2} = vec4(0.);
vec4 wR${b}C${w} = vec4(0.);
vec4 xR${b}C${w} = vec4(0.);`;for(let b=0;b<p;b++)for(let w=0;w<f;w++){let x=w*2;if(A+=`
xR = xRCorner + ${b*h};
xC = xCCorner + ${x*d};
`,c===1){if(x<m&&(l%2==1?A+=`
xCOffset = xC + 1;
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${b}C${x} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
xTexelR${b}C${x}.zw = vec2(0.);
}
} else {
xTexelR${b}C${x} = vec4(0.);
}
xCOffset = xC + 1 - 2;
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
vec4 previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
previous.zw = vec2(0.);
}
xR${b}C${x} = vec4(previous.zw, xTexelR${b}C${x}.xy);
} else {
xR${b}C${x} = vec4(0, 0, xTexelR${b}C${x}.xy);
}
`:A+=`
if(xR >= 0 && xR < ${s} && xC >= 0 && xC < ${i}) {
xTexelR${b}C${x} = getX(batch, xR, xC, d1);
} else {
xTexelR${b}C${x} = vec4(0.);
}
xR${b}C${x} = xTexelR${b}C${x};
`,x+1<m)){let N=l%2==0?v.nearestLargerEven(d):d;d%2==0&&l%2==1||d%2!=0&&l%2!=1?(A+=`
xCOffset = xC + ${l%2} + ${N};
if(xR >= 0 && xR < ${s} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${b}C${x+2} = getX(batch, xR, xCOffset, d1);
}
`,d>1&&(A+=`
xCOffset -= 2;
if(xR >= 0 && xR < ${s} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${b}C${x} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${b}C${x} = vec4(0.);
}
`),A+=`
xR${b}C${x+1} = vec4(
xTexelR${b}C${x}.zw, xTexelR${b}C${x+2}.xy);
`):A+=`
xCOffset = xC + ${N};
if(xR >= 0 && xR < ${s} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${b}C${x+2} = getX(batch, xR, xCOffset, d1);
}
xR${b}C${x+1} = xTexelR${b}C${x+2};
`}}else x<m&&(A+=`
if(xR >= 0 && xR < ${s}) {
`,l%2==1?(A+=`
xCOffset = xC + 1 - ${c};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${b}C${x} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${b}C${x} = vec4(0.);
}
if(xC + 1 >= 0 && xC + 1 < ${i}) {
xTexelR${b}C${x+2} = getX(batch, xR, xC + 1, d1);
} else {
xTexelR${b}C${x+2} = vec4(0.);
}
xR${b}C${x} = vec4(
xTexelR${b}C${x}.zw, xTexelR${b}C${x+2}.zw);
`,x+1<m&&(A+=`
vec4 final = vec4(0.);
xCOffset = xC + 1 + ${c};
if(xCOffset >= 0 && xCOffset < ${i}) {
final = getX(batch, xR, xCOffset, d1);
}
xR${b}C${x+1} = vec4(xTexelR${b}C${x+2}.xy, final.xy);
`)):(A+=`
if(xC >= 0 && xC < ${i}) {
xTexelR${b}C${x} = getX(batch, xR, xC, d1);
} else {
xTexelR${b}C${x} = vec4(0.);
}
xCOffset = xC + ${c};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${b}C${x+2} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${b}C${x+2} = vec4(0.);
}
xR${b}C${x} = vec4(
xTexelR${b}C${x}.xy, xTexelR${b}C${x+2}.xy);
`,x+1<m&&(A+=`
xR${b}C${x+1} = vec4(
xTexelR${b}C${x}.zw, xTexelR${b}C${x+2}.zw);
`)),A+="}");x<m&&(A+=`
vec4 wTexelR${b}C${x} = getW(${b}, ${x}, d1, q);
wR${b}C${x} = vec4(wTexelR${b}C${x}.xz, wTexelR${b}C${x}.xz);
`,x+1<m&&(A+=`
vec4 wTexelR${b}C${x+1} = getW(${b}, ${x+1}, d1, q);
wR${b}C${x+1} =
vec4(wTexelR${b}C${x+1}.xz, wTexelR${b}C${x+1}.xz);`))}for(let b=0;b<p;b++)for(let w=0;w<m;w++)A+=`dotProd += xR${b}C${w} * wR${b}C${w};`;let y="",g="";n&&(r?y=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:a?y=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:y=`vec4 activation(vec4 x) {
${n}
}`,g="result = activation(result);");let _=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${y}
const ivec2 strides = ivec2(${u}, ${c});
const ivec2 pads = ivec2(${o}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2;
int q = 0;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
vec4 dotProd = vec4(0.);
${A}
vec4 result = dotProd;
${_}
${g}
setOutput(result);
}
`}};function jW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=r,c=l;c==null&&(c=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=C.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!0),d;return J().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels==1?d=new I_(h):d=new k_(h),n.runWebGLProgram(d,[a,s],"float32")}var HW={kernelName:as,backendName:"webgl",kernelFunc:jW},GW=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${s} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${r};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${a};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},qW=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${r}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${o}; dm++) {
int d2 = d1 * ${o} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function XW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:c}=r,h=C.computeConv2DInfo(a.shape,c,i,o,l,u,!0),d=new GW(h);return n.runWebGLProgram(d,[a,s],"float32")}var KW={kernelName:ph,backendName:"webgl",kernelFunc:XW};function ZW(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:c}=r,h=C.computeConv2DInfo(c,s.shape,i,o,l,u,!0),d=new qW(h);return n.runWebGLProgram(d,[a,s],"float32")}var YW={kernelName:fh,backendName:"webgl",kernelFunc:ZW},JW=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function QW(e){let{inputs:t,backend:n}=e,{x:r}=t,a=[...r.shape,...r.shape],s=v.sizeFromShape(r.shape),i=Ae({inputs:{x:r},backend:n,attrs:{shape:[s]}}),o=new JW(s),l=n.runWebGLProgram(o,[i],i.dtype),u=Ae({inputs:{x:l},backend:n,attrs:{shape:a}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var eB={kernelName:mh,backendName:"webgl",kernelFunc:QW},tB=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:c,left:h}=r;this.userCode=`
const ivec2 strides = ivec2(${a}, ${s});
const ivec2 pads = ivec2(${c}, ${h});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${o}; w++) {
int wIn = wBeg + w * ${u};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function nB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,u=C.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),c,h=new tB(u);c=n.runWebGLProgram(h,[a,s],"float32");let d=Ae({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),d}var rB={kernelName:Jl,backendName:"webgl",kernelFunc:nB},aB="return (x >= 0.0) ? x : (exp(x) - 1.0);",sB=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,iB=He({opSnippet:aB,packedOpSnippet:sB}),oB={kernelName:Xi,backendName:"webgl",kernelFunc:iB},lB="return (b >= 1.0) ? a : a * (b + 1.0);",uB=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,cB=e=>{let{inputs:t,backend:n}=e,{dy:r,y:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new qu(uB,r.shape,a.shape):new gl(lB,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)},hB={kernelName:gh,backendName:"webgl",kernelFunc:cB},dB=`
return vec4(equal(a, b));
`,pB="return float(a == b);",fB=Qt({opSnippet:pB,packedOpSnippet:dB,dtype:"bool"}),mB={kernelName:Zi,backendName:"webgl",kernelFunc:fB},AB=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${C.ERF_P};
float a1 = ${C.ERF_A1};
float a2 = ${C.ERF_A2};
float a3 = ${C.ERF_A3};
float a4 = ${C.ERF_A4};
float a5 = ${C.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,yB=He({opSnippet:AB}),gB={kernelName:Ki,backendName:"webgl",kernelFunc:yB},N_="return exp(x);",S_=He({opSnippet:N_,packedOpSnippet:N_,cpuKernelImpl:yz}),xB={kernelName:is,backendName:"webgl",kernelFunc:S_};function Sm(e){let{inputs:t,attrs:n,backend:r}=e,{dim:a}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(v.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),Ae({inputs:{x:s},backend:r,attrs:{shape:o}})}var wB={kernelName:Yi,backendName:"webgl",kernelFunc:Sm},T_="return exp(x) - 1.0;",_B=He({opSnippet:T_,packedOpSnippet:T_,cpuKernelImpl:gz}),bB={kernelName:Ji,backendName:"webgl",kernelFunc:_B},E_=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let a=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${r}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${a};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${r});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${r}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${s};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function C_(e,t,n){let r=n.texData.get(e.dataId),a=v.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=Ae({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new E_("real",l,t),c=new E_("imag",l,t),h=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:l},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(u,h,"float32"),p=n.runWebGLProgram(c,h,"float32"),m=Ra({inputs:{real:d,imag:p},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p);let f=Ae({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function vB(e){let{inputs:t,backend:n}=e,{input:r}=t;return C_(r,!1,n)}var kB={kernelName:xh,backendName:"webgl",kernelFunc:vB},IB=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
uniform float value;
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function Tm(e){let{backend:t,attrs:n}=e,{shape:r,value:a}=n,{dtype:s}=n;if(s=s||v.inferDtype(a),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(r));return i.fill(a),t.makeTensorInfo(r,s,i)}else{let i=new IB(r,a),o=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[],s,o)}}var NB={kernelName:Ql,backendName:"webgl",kernelFunc:Tm},SB=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},TB={kernelName:Qi,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,a=new SB(n.shape);return r.runWebGLProgram(a,[n],n.dtype)}},R_="return floor(x);",EB=He({opSnippet:R_,packedOpSnippet:R_,cpuKernelImpl:xz}),CB={kernelName:os,backendName:"webgl",kernelFunc:EB},RB=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,FB=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,MB=Qt({opSnippet:RB,packedOpSnippet:FB,dtype:"int32"}),$B={kernelName:ls,backendName:"webgl",kernelFunc:MB},OB=class{constructor(e){this.variableNames=["A"];let t=on(),[n,r]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${r}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},DB=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=on(),[n,r]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${r}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},PB={kernelName:Mh,backendName:"webgl",kernelFunc:zB},wl;function zB(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:a}=t,{numChannels:s}=r,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,l=typeof ImageBitmap!="undefined"&&a instanceof ImageBitmap,[u,c]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],h=[c,u],d=[c,u,s];(o||i||l)&&(wl==null&&(wl=document.createElement("canvas").getContext("2d")),wl.canvas.width=u,wl.canvas.height=c,wl.drawImage(a,0,0,u,c),a=wl.canvas);let p=n.makeTensorInfo(h,"int32");n.texData.get(p.dataId).usage=Hn.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),a);let m=J().getBool("WEBGL_PACK")?new DB(d):new OB(d),f=n.runWebGLProgram(m,[p],"int32");return n.disposeData(p.dataId),f}function LB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=C.convertConv2DDataFormat(c),A=C.computeConv2DInfo(a.shape,s.shape,l,h,u,d,!1,f),y,g=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))y=x_({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:m});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)y=w_({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:m});else{let b=i!=null,w=o!=null,x=p==="leakyrelu",N=p?Gd(p,!1):null,T=new g_(A,b,N,w,x),E=[a,s];if(i&&E.push(i),o&&E.push(o),x){let M=n.makeTensorInfo([],"float32",v.createScalarValue(m,"float32"));E.push(M),g.push(M)}y=n.runWebGLProgram(T,E,"float32")}let _=Ae({inputs:{x:y},backend:n,attrs:{shape:A.outShape}});return g.push(y),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),_}var WB={kernelName:Bs,backendName:"webgl",kernelFunc:LB};function BB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:h,activation:d,leakyreluAlpha:p}=r,m=[],f=c;f==null&&(f=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let A=C.computeConv2DInfo(a.shape,s.shape,l,f,u,h,!0),y=J().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,g=d?Gd(d,y):null,_=[a,s],b=i!=null,w=o!=null,x=d==="leakyrelu";if(b&&_.push(i),w&&_.push(o),x){let E=n.makeTensorInfo([],"float32",v.createScalarValue(p,"float32"));_.push(E),m.push(E)}let N;y?N=new I_(A,b,g,w,x):N=new k_(A,b,g,w,x);let T=n.runWebGLProgram(N,_,"float32");return m.forEach(E=>n.disposeIntermediateTensorInfo(E)),T}var VB={kernelName:Vs,backendName:"webgl",kernelFunc:BB},UB=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=it(t.length),a=it(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${r} strides = ${r}(${this.strides});
void main() {
${a} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${s};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}};function jB(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=a.shape,i=s[s.length-1],[o,l,u,c]=C.prepareAndValidate(r,a),h=Ae({inputs:{x:a},backend:n,attrs:{shape:[l,i]}}),d=Ae({inputs:{x:r},backend:n,attrs:{shape:[v.sizeFromShape(r.shape)/u,u]}}),p=new UB(i,c,[l,u]),m=n.runWebGLProgram(p,[d,h],d.dtype),f=Ae({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(m),f}var HB={kernelName:to,backendName:"webgl",kernelFunc:jB},qB=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=it(this.rank),r=GB(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function GB(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let a=0;a<e.length;a++)a===2?r.push("int(getIndices(resRC.x, resRC.z))"):r.push(`${n[a]}`);return r.join()}function XB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=r,l=v.parseAxisParam(i,a.shape)[0],u=C.segment_util.collectGatherOpShapeInfo(a,s,l,o),c=v.sizeFromShape(s.shape),h=[],d=Ae({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),p=Ae({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});h.push(d),h.push(p);let m=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([a,s])||a.dtype==="string"){let g=n.bufferSync(p),_=n.bufferSync(d),b=wz(_,g,m);return h.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.makeTensorInfo(u.outputShape,b.dtype,b.values)}let f=new qB(d.shape,m),A=n.runWebGLProgram(f,[d,p],d.dtype);h.push(A);let y=Ae({inputs:{x:A},backend:n,attrs:{shape:u.outputShape}});return h.forEach(g=>n.disposeIntermediateTensorInfo(g)),y}var KB={kernelName:eo,backendName:"webgl",kernelFunc:XB},ZB="return float(a > b);",YB=`
return vec4(greaterThan(a, b));
`,JB=Qt({opSnippet:ZB,packedOpSnippet:YB,cpuKernelImpl:_z,dtype:"bool"}),QB={kernelName:no,backendName:"webgl",kernelFunc:JB},eV="return float(a >= b);",tV=`
return vec4(greaterThanEqual(a, b));
`,nV=Qt({opSnippet:eV,packedOpSnippet:tV,dtype:"bool"}),rV={kernelName:cs,backendName:"webgl",kernelFunc:nV};function aV(e){let{inputs:t,backend:n}=e,{input:r}=t;return C_(r,!0,n)}var sV={kernelName:wh,backendName:"webgl",kernelFunc:aV},iV="return float(!isnan(x) && !isinf(x));",oV=He({opSnippet:iV,dtype:"bool"}),lV={kernelName:ro,backendName:"webgl",kernelFunc:oV},uV="return float(isinf(x));",cV=He({opSnippet:uV,dtype:"bool"}),hV={kernelName:ao,backendName:"webgl",kernelFunc:cV},dV="return float(isnan(x));",pV=He({opSnippet:dV,dtype:"bool"}),fV={kernelName:so,backendName:"webgl",kernelFunc:pV},mV="return float(a < b);",AV=`
return vec4(lessThan(a, b));
`,yV=Qt({opSnippet:mV,packedOpSnippet:AV,cpuKernelImpl:bz,dtype:"bool"}),gV={kernelName:io,backendName:"webgl",kernelFunc:yV},xV="return float(a <= b);",wV=`
return vec4(lessThanEqual(a, b));
`,_V=Qt({opSnippet:xV,packedOpSnippet:wV,dtype:"bool"}),bV={kernelName:oo,backendName:"webgl",kernelFunc:_V};function vV(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=vz(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var kV={kernelName:bh,backendName:"webgl",kernelFunc:vV},IV=`if (x < 0.0) return NAN;
return log(x);`,NV=`
vec4 result = log(x);
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
result.r = isNaN.r == 1.0 ? NAN : result.r;
result.g = isNaN.g == 1.0 ? NAN : result.g;
result.b = isNaN.b == 1.0 ? NAN : result.b;
result.a = isNaN.a == 1.0 ? NAN : result.a;
return result;
`,SV=He({opSnippet:IV,packedOpSnippet:NV,cpuKernelImpl:kz}),TV={kernelName:ps,backendName:"webgl",kernelFunc:SV},EV="return log(1.0 + x);",CV=He({opSnippet:EV}),RV={kernelName:lo,backendName:"webgl",kernelFunc:CV},FV="return float(a >= 1.0 && b >= 1.0);",MV=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,$V=Qt({opSnippet:FV,packedOpSnippet:MV,dtype:"bool"}),OV={kernelName:uo,backendName:"webgl",kernelFunc:$V},DV="return float(!(x >= 1.0));",zV=He({opSnippet:DV}),PV={kernelName:eu,backendName:"webgl",kernelFunc:zV},LV="return float(a >= 1.0 || b >= 1.0);",WV=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,BV=Qt({opSnippet:LV,packedOpSnippet:WV,dtype:"bool"}),VV={kernelName:tu,backendName:"webgl",kernelFunc:BV},UV=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${s}; j <= ${s}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${o};
setOutput(val);
}
`}},jV=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${s};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${s}; j <= ${s}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${o};
setOutput(result);
}
`}},HV=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r,u=J().getBool("WEBGL_PACK_NORMALIZATION")?new jV(a.shape,s,i,o,l):new UV(a.shape,s,i,o,l);return n.runWebGLProgram(u,[a],a.dtype)},GV={kernelName:nu,backendName:"webgl",kernelFunc:HV},qV=class{constructor(e,t,n,r,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=a,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${r}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${r})
* float(${a})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${a});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},XV=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:c}=r,h=new qV(a.shape,o,l,u,c);return n.runWebGLProgram(h,[a,s,i],a.dtype)},KV={kernelName:vh,backendName:"webgl",kernelFunc:XV};function ZV(e,t,n,r){let a=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/a,i=Ae({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=ui(i,e.dtype,"max",r),l=Ae({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}function F_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,c=C.getAxesPermutation(u,o),h=c!=null,d=n.shouldExecuteOnCPU([a]),p=a;if(h){if(d){let g=n.texData.get(p.dataId).values,_=new Array(o);for(let x=0;x<_.length;x++)_[x]=a.shape[c[x]];let b=_m(g,a.shape,a.dtype,c,_);p=n.makeTensorInfo(_,a.dtype);let w=n.texData.get(p.dataId);w.values=b}else p=qd(a,c,n);u=C.getInnerMostAxes(u.length,o)}C.assertAxesAreInnerMostDims("max",u,o);let[m,f]=C.computeOutAndReduceShapes(p.shape,u),A=m;i&&(A=C.expandShapeToKeepDim(m,l));let y;if(d){let g=n.texData.get(p.dataId).values,_=Iz(g,v.sizeFromShape(f),A,a.dtype);y=n.makeTensorInfo(A,a.dtype);let b=n.texData.get(y.dataId);b.values=_}else y=ZV(p,f,A,n);return h&&n.disposeIntermediateTensorInfo(p),y}var YV={kernelName:fs,backendName:"webgl",kernelFunc:F_},JV=Kw+`
return max(a, b);
`,QV=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Hd+`
return result;
`,eU=Qt({opSnippet:JV,packedOpSnippet:QV,cpuKernelImpl:Nz}),tU={kernelName:ms,backendName:"webgl",kernelFunc:eU};function nU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;cl(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=C.computePool2DInfo(a.shape,s,i,u,o,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return Fn({inputs:{x:a},backend:n});let h=new Xu(c,"max",!1);return n.runWebGLProgram(h,[a],a.dtype)}var rU={kernelName:As,backendName:"webgl",kernelFunc:nU};function aU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=r,c=[1,1,1],h=C.computePool3DInfo(a.shape,s,i,c,o,u,l),d=new km(h,"max",!1);return n.runWebGLProgram(d,[a],a.dtype)}var sU={kernelName:ru,backendName:"webgl",kernelFunc:aU},iU=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${a};
wR += ${r}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${s} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},oU=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=o-1-e.padInfo.front,h=l-1-e.padInfo.top,d=u-1-e.padInfo.left,p=o*l*u-1;this.userCode=`
const ivec3 pads = ivec3(${c}, ${h}, ${d});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${o};
wD += ${a}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${u};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${p} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${u} +
wR * ${u} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function lU(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:c}=r,h=[1,1,1],d=C.computePool3DInfo(i.shape,o,l,h,u,c),p=new km(d,"max",!0),m=n.runWebGLProgram(p,[i],i.dtype),f=new oU(d),A=n.runWebGLProgram(f,[a,m],i.dtype);return n.disposeIntermediateTensorInfo(m),A}var uU={kernelName:Ih,backendName:"webgl",kernelFunc:lU};function cU(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;cl([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:h}=r,d=C.computePool2DInfo(o.shape,l,u,1,c,h),p=!0,m=new Xu(d,"max",p),f=n.runWebGLProgram(m,[o],o.dtype),A=new iU(d),y=n.runWebGLProgram(A,[a,f],o.dtype);return n.disposeIntermediateTensorInfo(f),y}var hU={kernelName:kh,backendName:"webgl",kernelFunc:cU};function dU(e,t,n,r){let a=new Xu(n,"max",!1),s=r.runWebGLProgram(a,[e],"float32");a=new Xu(n,"max",!0,!0,t);let i=r.runWebGLProgram(a,[e],"float32");return[s,i]}var pU={kernelName:Nh,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;v.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let u=[1,1];v.assert(C.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let c=C.computePool2DInfo(r.shape,a,s,u,i),[h,d]=dU(r,o,c,l);return[h,d]}};function fU(e,t,n,r){let a=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/a,i=Ae({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=ui(i,"float32","mean",r),l=Ae({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}var mU={kernelName:ys,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:a,axis:s}=t,i=n,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,c=C.getAxesPermutation(u,o),h=c!=null,d=i.shouldExecuteOnCPU([r]),p=[],m=r;if(h){if(d){let _=i.texData.get(m.dataId).values,b=new Array(o);for(let N=0;N<b.length;N++)b[N]=r.shape[c[N]];let w=_m(_,r.shape,r.dtype,c,b);m=i.makeTensorInfo(b,r.dtype);let x=i.texData.get(m.dataId);x.values=w}else m=qd(r,c,i);p.push(m),u=C.getInnerMostAxes(u.length,o)}C.assertAxesAreInnerMostDims("sum",u,o);let[f,A]=C.computeOutAndReduceShapes(m.shape,u),y=f;a&&(y=C.expandShapeToKeepDim(f,l));let g=fU(m,A,y,i);for(let _ of p)i.disposeIntermediateTensorInfo(_);return g}};function AU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,c=C.getAxesPermutation(u,o),h=a;c!=null&&(h=xn({inputs:{x:a},backend:n,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,a.shape.length)),C.assertAxesAreInnerMostDims("min",u,o);let[d,p]=C.computeOutAndReduceShapes(h.shape,u),m=v.sizeFromShape(p),f=Ae({inputs:{x:h},backend:n,attrs:{shape:[-1,m]}}),A=ui(f,f.dtype,"min",n),y;if(i){let g=C.expandShapeToKeepDim(d,l);y=Ae({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=Ae({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(h),y}var yU={kernelName:gs,backendName:"webgl",kernelFunc:AU},gU=Kw+`
return min(a, b);
`,xU=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Hd+`
return result;
`,wU=Qt({opSnippet:gU,packedOpSnippet:xU,cpuKernelImpl:Sz}),_U={kernelName:xs,backendName:"webgl",kernelFunc:wU},bU=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let r=e.length,a=it(r),s=t.map(u=>u[0]).join(","),i=t.map((u,c)=>u[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),l=n==="reflect"?0:1;if(r===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${a} start = ${a}(${s});
${a} end = ${a}(${i});
void main() {
${a} outC = getOutputCoords();
for (int i = 0; i < ${r}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${a} coords = outC - start;
setOutput(getX(${o}));
}
`}},vU=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,m)=>p[0]+e[m]+p[1]);let r=e.length,a=it(r),s=t.map(p=>p[0]).join(","),i=t.map((p,m)=>p[0]+e[m]).join(","),o=ln("rc",r),l=ln("source",r),u=`${o[r-1]} < ${this.outputShape[r-1]}`,c=r===1?"source":`vec2(${l.slice(-2).join()})`,h=n==="reflect"?0:1,d="";if(r===1){let p=`
${a} source = rc;
if (source < start) {
source = start * 2 - source - ${h};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${h};
}
source -= start;
`;d=`
${a} rc = outputLoc;
${p}
result[0] = getChannel(getX(${l.join()}), ${c});
${o[r-1]} += 1;
if(${u}) {
${p}
result[1] = getChannel(getX(${l.join()}), ${c});
}
`}else{let p=`
${a} source = rc;
${a} lt = ${a}(lessThan(source, start));
${a} gte = ${a}(greaterThanEqual(source, end));
${a} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${h}) +
gte * ((end - 1) * 2 - source + ${h});
source -= start;
`;d=`
${a} rc = outputLoc;
${p}
result[0] = getChannel(getX(${l.join()}), ${c});
${o[r-1]} += 1;
if(${u}) {
${p}
result[1] = getChannel(getX(${l.join()}), ${c});
}
rc = outputLoc;
${o[r-2]} += 1;
if(${o[r-2]} < ${this.outputShape[r-2]}) {
${p}
result[2] = getChannel(getX(${l.join()}), ${c});
${o[r-1]} += 1;
if(${u}) {
${p}
result[3] = getChannel(getX(${l.join()}), ${c});
}
}
`}this.userCode=`
const ${a} start = ${a}(${s});
const ${a} end = ${a}(${i});
void main() {
${a} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${d}
setOutput(result);
}
`}},kU=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:a,mode:s}=n,i=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new vU(r.shape,a,s):new bU(r.shape,a,s);return t.runWebGLProgram(i,[r],r.dtype)},IU={kernelName:au,backendName:"webgl",kernelFunc:kU},NU=`if (b == 0.0) return NAN;
return mod(a, b);`,SU=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+Hd+`
return result;
`,TU=Qt({opSnippet:NU,packedOpSnippet:SU}),EU={kernelName:co,backendName:"webgl",kernelFunc:TU},CU=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
uniform float seed;
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},RU=`
if (a == b) {
return 1.0;
};
return a / b;`,FU=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,M_=Qt({opSnippet:RU,packedOpSnippet:FU,checkOutOfBounds:!0}),MU={kernelName:ss,backendName:"webgl",kernelFunc:M_},$_="return a - b;",O_=Qt({opSnippet:$_,packedOpSnippet:$_,supportsComplex:!0,cpuKernelImpl:Oz}),$U={kernelName:zs,backendName:"webgl",kernelFunc:O_};function D_(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=v.parseAxisParam([s],a.shape),o=F_({inputs:{x:a},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=C.expandShapeToKeepDim(o.shape,i),u=Ae({inputs:{x:o},backend:n,attrs:{shape:l}}),c=O_({inputs:{a,b:u},backend:n}),h=S_({inputs:{x:c},backend:n}),d=vm({inputs:{x:h},backend:n,attrs:{axis:i,keepDims:!1}}),p=Ae({inputs:{x:d},backend:n,attrs:{shape:l}}),m=M_({inputs:{a:h,b:p},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),m}var OU={kernelName:Os,backendName:"webgl",kernelFunc:D_};function DU(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r,l=o?a:D_({inputs:{logits:a},backend:n,attrs:{dim:a.shape.length-1}}),u=l.shape[0],c=l.shape[1],h=new CU(u,c,s),d=h.getCustomSetupFunc(i),p=n.runWebGLProgram(h,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),p}var zU={kernelName:Sh,backendName:"webgl",kernelFunc:DU},z_="return -x;";function PU(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let s=n.texData.get(r.dataId),[i,o]=Ez(s.values,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new Al(r.shape,z_):a=new Ca(r.shape,z_),n.runWebGLProgram(a,[r],r.dtype)}var LU={kernelName:ho,backendName:"webgl",kernelFunc:PU},WU=Rr.nonMaxSuppressionV3Impl;function BU(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r,u=n.readSync(a.dataId),c=n.readSync(s.dataId),{selectedIndices:h}=WU(u,c,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var VU={kernelName:fo,backendName:"webgl",kernelFunc:BU},UU=Rr.nonMaxSuppressionV4Impl;function jU(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=r,c=n.readSync(a.dataId),h=n.readSync(s.dataId),{selectedIndices:d,validOutputs:p}=UU(c,h,i,o,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var HU={kernelName:mo,backendName:"webgl",kernelFunc:jU},GU=Rr.nonMaxSuppressionV5Impl;function qU(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=r,c=n.readSync(a.dataId),h=n.readSync(s.dataId),d=i,p=o,m=l,f=u,{selectedIndices:A,selectedScores:y}=GU(c,h,d,p,m,f);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var XU={kernelName:Ao,backendName:"webgl",kernelFunc:qU},KU=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${r}), float(${n}),
float(index == coords.y)));
}
`}},ZU=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=v.sizeFromShape(a.shape),u=new KU(l,s,i,o),c=Ae({inputs:{x:a},backend:n,attrs:{shape:[l]}}),h=n.runWebGLProgram(u,[c],a.dtype);n.disposeIntermediateTensorInfo(c);let d=[...a.shape,s],p=Ae({inputs:{x:h},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(h),p},YU={kernelName:_s,backendName:"webgl",kernelFunc:ZU};function Jd(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let a=Zu({inputs:{input:r},backend:n}),s=Jd({inputs:{x:a},backend:n}),i=Yd({inputs:{input:r},backend:n}),o=Jd({inputs:{x:i},backend:n}),l=Ra({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Tm({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var JU={kernelName:$o,backendName:"webgl",kernelFunc:Jd};function P_(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let a=Zu({inputs:{input:r},backend:n}),s=P_({inputs:{x:a},backend:n}),i=Yd({inputs:{input:r},backend:n}),o=Jd({inputs:{x:i},backend:n}),l=Ra({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Tm({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var QU={kernelName:yo,backendName:"webgl",kernelFunc:P_};function ej(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return Sm({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let h=Sm({inputs:{input:c},backend:n,attrs:{dim:a}});return o.push(h),h}),u=y_({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var tj={kernelName:go,backendName:"webgl",kernelFunc:ej},nj=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let r=e.length,a=it(r),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(float(${n}));
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${a} start = ${a}(${s});
${a} end = ${a}(${i});
void main() {
${a} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(float(${n}));
} else {
${a} coords = outC - start;
setOutput(getX(${o}));
}
}
`}},rj=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let r=e.length,a=it(r),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=ln("rc",r),l=ln("source",r),u=`${o[r-1]} < ${this.outputShape[r-1]}`,c=r===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[r-1]} += 1;
if(${u}) {
`,r===1?"":`}
rc = outputLoc;
${o[r-2]} += 1;
if(${o[r-2]} < ${this.outputShape[r-2]}) {`,r===1?"":` ${o[r-1]} += 1;
if(${u}) {`],d=r===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",p="";for(let m=0,f=r===1?2:4;m<f;m++)p+=`
${h[m]}
if (${d}) {
result[${m}] = float(${n});
} else {
${a} source = rc - start;
result[${m}] = getChannel(getX(${l.join()}), ${c});
}
`;p+=r===1?"} ":"}}",this.userCode=`
const ${a} start = ${a}(${s});
const ${a} end = ${a}(${i});
void main() {
${a} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${p}
setOutput(result);
}
`}},L_=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r,o=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new rj(a.shape,s,i):new nj(a.shape,s,i);return n.runWebGLProgram(o,[a],a.dtype)},aj={kernelName:bs,backendName:"webgl",kernelFunc:L_},sj=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,ij=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+Hd+`
return result;
`,oj=Qt({opSnippet:sj,packedOpSnippet:ij}),lj={kernelName:vs,backendName:"webgl",kernelFunc:oj};function uj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=[],u=v.parseAxisParam(s,a.shape),c=u,h=C.getAxesPermutation(c,o),d=a;h!=null&&(d=xn({inputs:{x:a},backend:n,attrs:{perm:h}}),c=C.getInnerMostAxes(c.length,o),l.push(d)),C.assertAxesAreInnerMostDims("prod",c,o);let p;if(n.shouldExecuteOnCPU([d])){let m=n.texData.get(d.dataId).values,{outVals:f,outShape:A,outDtype:y}=Cz(d.shape,d.dtype,m,c);p=n.makeTensorInfo(A,y,f)}else{let[m,f]=C.computeOutAndReduceShapes(d.shape,c),A=v.sizeFromShape(f),y=Ae({inputs:{x:d},backend:n,attrs:{shape:[-1,A]}}),g=Ph(a.dtype),_=ui(y,g,"prod",n);p=Ae({inputs:{x:_},backend:n,attrs:{shape:m}}),l.push(y),l.push(_)}if(i){l.push(p);let m=C.expandShapeToKeepDim(p.shape,u);p=Ae({inputs:{x:p},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),p}var cj={kernelName:xo,backendName:"webgl",kernelFunc:uj},W_=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=Rz(r,a,s,i);return t.makeTensorInfo([o.length],i,o)},hj={kernelName:su,backendName:"webgl",kernelFunc:W_},dj="return 1.0 / x;",pj=He({opSnippet:dj}),fj={kernelName:wo,backendName:"webgl",kernelFunc:pj},mj=hr+`
return (x < 0.0) ? 0.0 : x;
`,Aj=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,yj=He({opSnippet:mj,packedOpSnippet:Aj}),gj={kernelName:Is,backendName:"webgl",kernelFunc:yj},xj=hr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,wj=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,_j=He({opSnippet:xj,packedOpSnippet:wj}),bj={kernelName:Ss,backendName:"webgl",kernelFunc:_j},vj=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[r&&t>1?i-1:i,r&&n>1?o-1:o],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/c[0]},
${u[1]/c[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${h};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},kj=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[r&&t>1?i-1:i,r&&n>1?o-1:o],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/c[0]},
${u[1]/c[1]},
${u[1]/c[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${h};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function Ij(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,u]=o,c=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new kj(a.shape,l,u,s,i):new vj(a.shape,l,u,s,i);return n.runWebGLProgram(c,[a],"float32")}var Nj={kernelName:Ns,backendName:"webgl",kernelFunc:Ij},Sj=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],c=o[1]/l[1],h=1/u,d=1/c,p=Math.ceil(h)*2+2,m=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${c});
const float invHeightScale = float(${h});
const float invWidthScale = float(${d});
const int winHeight = int(${p});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${r-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${a-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Tj(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new Sj(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Ej={kernelName:Ch,backendName:"webgl",kernelFunc:Tj},Cj=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[r&&t>1?i-1:i,r&&n>1?o-1:o],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],h=r?"0.5":"0.0",d;a?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/c[0]},
${u[1]/c[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}};function Rj(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,u]=o,c=new Cj(a.shape,l,u,s,i);return n.runWebGLProgram(c,[a],a.dtype)}var Fj={kernelName:iu,backendName:"webgl",kernelFunc:Rj},Mj=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],c=o[1]/l[1],h=1/u,d=1/c,p=Math.ceil(h)*2+2,m=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${c});
const float invHeightScale = float(${h});
const float invWidthScale = float(${d});
const int winHeight = int(${p});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${o[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${o[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${a}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function $j(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new Mj(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Oj={kernelName:Eh,backendName:"webgl",kernelFunc:$j},Dj=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let r=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,a=e.map((i,o)=>r(o)).join(","),s=it(n);this.userCode=`
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${a}));
}
`}},zj=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=ln("rc",n),a=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,i=it(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${a}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${o(r.slice())};
if(${a}){
result.g = ${l(r.slice())};
}
if(${s}) {
result.b = ${u(r.slice())};
if(${a}) {
result.a = ${c(r.slice())};
}
}
setOutput(result);
}
`;function o(p){return h(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",h(p)}function u(p){return p[n-2]="("+p[n-2]+" + 1)",h(p)}function c(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",h(p)}function h(p){let m=e.map((y,g)=>d(g,p)),f=m.join(","),A=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${A}))`}function d(p,m){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${m[p]} - 1`:`${m[p]}`}}};function Pj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=a.shape.length,o=v.parseAxisParam(s,a.shape);if(i===0)return Fn({inputs:{x:a},backend:n});let l=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new zj(a.shape,o):new Dj(a.shape,o);return n.runWebGLProgram(l,[a],a.dtype)}var Lj={kernelName:Ts,backendName:"webgl",kernelFunc:Pj},Wj=class{constructor(e,t,n,r){this.variableNames=["Image"],this.outputShape=[];let a=e[1],s=e[2],i=Math.sin(t).toFixed(3),o=Math.cos(t).toFixed(3);this.outputShape=e;let[l,u]=C.getImageCenter(r,a,s),c=l.toFixed(3),h=u.toFixed(3),d="";typeof n=="number"?d=`float outputValue = ${n.toFixed(2)};`:d=`
vec3 fill = vec3(${n.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - ${c}) * ${o} - (float(y) - ${h}) * ${i};
float coordYFloat = (float(x) - ${c}) * ${i} + (float(y) - ${h}) * ${o};
int coordX = int(round(coordXFloat + ${c}));
int coordY = int(round(coordYFloat + ${h}));
${d}
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${a}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}},Bj={kernelName:Oo,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=new Wj(r.shape,a,s,i);return o.runWebGLProgram(l,[r],r.dtype)}},Vj=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,Uj=He({opSnippet:Vj}),jj={kernelName:Es,backendName:"webgl",kernelFunc:Uj},Hj="return inversesqrt(x);",Gj=He({opSnippet:Hj,cpuKernelImpl:Fz}),qj={kernelName:Cs,backendName:"webgl",kernelFunc:Gj},B_=class{constructor(e,t,n,r,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=it(a.length),l=it(s.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,h="";r===1?h="i":r===2&&(h="i, coords[1]");let d=`getUpdates(${h})`,p=t>1?"strides[j]":"strides";this.userCode=`
${o} strides = ${o}(${a});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${c});
flattenedIndex += index * ${p};
}
if (flattenedIndex == coords[0]) {
sum += ${d};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function Xj(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:u,strides:c,outputSize:h}=C.calculateShapes(s,a,i),d=[h/u,u];if(h===0)return n.makeTensorInfo(i,a.dtype);let p=Ae({inputs:{x:a},backend:n,attrs:{shape:[l,o]}}),m=Ae({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),A=new B_(l,o,p.shape.length,m.shape.length,c,d),y=n.runWebGLProgram(A,[m,p,f],m.dtype),g=Ae({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(f),g}var Kj={kernelName:bo,backendName:"webgl",kernelFunc:Xj},Zj=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let r,a;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)a="resRC",r="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);r=o.join(),a=l.join()}let s=it(n);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
float cVal = getC(${r});
if (cVal >= 1.0) {
setOutput(getA(${a}));
} else {
setOutput(getB(${a}));
}
}
`}};function Yj(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=new Zj(r.shape.length,a.shape,a.shape.length);return n.runWebGLProgram(i,[r,a,s],Yn(a.dtype,s.dtype))}var Jj={kernelName:vo,backendName:"webgl",kernelFunc:Yj},Qj=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${C.SELU_SCALEALPHA};
float scale = ${C.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,eH=He({opSnippet:Qj}),tH={kernelName:ko,backendName:"webgl",kernelFunc:eH},nH="return 1.0 / (1.0 + exp(-1.0 * x));",rH=He({opSnippet:nH}),aH={kernelName:Fs,backendName:"webgl",kernelFunc:rH},sH=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,iH=He({opSnippet:sH}),oH={kernelName:So,backendName:"webgl",kernelFunc:iH},lH=e_+`
return sin(x);
`,uH=He({opSnippet:lH}),cH={kernelName:Rs,backendName:"webgl",kernelFunc:uH},hH=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,dH=He({opSnippet:hH}),pH={kernelName:No,backendName:"webgl",kernelFunc:dH},fH=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,mH=He({opSnippet:fH}),AH={kernelName:To,backendName:"webgl",kernelFunc:mH},yH=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;v.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,g)=>y*g),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<a.shape.length;++y)l.push([0,0]);let u=[],c=L_({inputs:{x:a},backend:n,attrs:{paddings:l,constantValue:0}}),h=C.getReshaped(c.shape,s,o,!1),d=C.getPermuted(h.length,s.length,!1),p=C.getReshapedPermuted(c.shape,s,o,!1),m=Ae({inputs:{x:c},backend:n,attrs:{shape:h}}),f=xn({inputs:{x:m},backend:n,attrs:{perm:d}}),A=Ae({inputs:{x:f},backend:n,attrs:{shape:p}});return u.push(c),u.push(m),u.push(f),u.forEach(y=>n.disposeIntermediateTensorInfo(y)),A},gH={kernelName:ou,backendName:"webgl",kernelFunc:yH};function xH(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:u,strides:c,outputSize:h}=C.calculateShapes(s,a,o),d=!1,p=new B_(u,l,a.shape.length,s.shape.length,c,[h,1],d),m=n.runWebGLProgram(p,[s,a,i],s.dtype),f=Ae({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var wH={kernelName:Rh,backendName:"webgl",kernelFunc:xH};function _H(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=v.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),u=a.shape.length,c=new Array(u).fill(0),h=a.shape.slice();return l.map(d=>{let p=[...h];p[o]=d;let m=Ku({inputs:{x:a},backend:n,attrs:{begin:c,size:p}});return c[o]+=d,m})}var bH={kernelName:Eo,backendName:"webgl",kernelFunc:_H},vH="return sqrt(x);",kH=He({opSnippet:vH}),IH={kernelName:Ms,backendName:"webgl",kernelFunc:kH},NH="return x * x;",SH=He({opSnippet:NH}),TH={kernelName:lu,backendName:"webgl",kernelFunc:SH},V_="return (a - b) * (a - b);",EH=Qt({opSnippet:V_,packedOpSnippet:V_}),CH={kernelName:Ds,backendName:"webgl",kernelFunc:EH};function RH({inputs:e,attrs:t,backend:n}){let{x:r}=e,a=hr+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,s=new Ca(r.shape,a);return n.runWebGLProgram(s,[r],r.dtype)}var FH={kernelName:ga,backendName:"webgl",kernelFunc:RH},MH=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,a=it(n.length),s=it(n.length),i="";if(r===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
${a} begin = ${a}(${e});
${a} strides = ${a}(${t});
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function $H(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r,{nonStrided:p,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=an.sliceInfo(a.shape,s,i,o,l,u,c,h,d),_=Ae({inputs:{x:a},backend:n,attrs:{shape:y}}),b;if(p){let x=Ku({inputs:{x:_},backend:n,attrs:{begin:m,size:A}});b=Ae({inputs:{x},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(x)}else if(g.some(x=>x===0))b=n.makeTensorInfo(g,a.dtype,[]);else if(n.shouldExecuteOnCPU([_])){let x=n.texData.get(_.dataId).values,N=Pe(_.shape,_.dtype,x),T=$z(g,N,f,m);b=n.makeTensorInfo(g,_.dtype,T.values)}else{let x=new MH(m,f,g);b=n.runWebGLProgram(x,[_],_.dtype)}let w=Ae({inputs:{x:b},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(_),n.disposeIntermediateTensorInfo(b),w}var OH={kernelName:Co,backendName:"webgl",kernelFunc:$H},DH="return tan(x);",zH=He({opSnippet:DH}),PH={kernelName:Ro,backendName:"webgl",kernelFunc:zH},LH=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,WH=He({opSnippet:LH}),BH={kernelName:Ps,backendName:"webgl",kernelFunc:WH},UH=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let r=it(this.rank),a=VH(e);this.userCode=`
void main() {
${r} resRC = getOutputCoords();
setOutput(getA(${a}));
}
`}};function VH(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let a=0;a<e.length;a++)r.push(`imod(${n[a]}, ${e[a]})`);return r.join()}function U_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;if(a.dtype==="string"){let o=n.readSync(a.dataId).map(c=>v.decodeString(c)),l=Pe(a.shape,a.dtype,o),u=Dz(l,s);return n.makeTensorInfo(u.shape,u.dtype,u.values)}let i=new UH(a.shape,s);return n.runWebGLProgram(i,[a],a.dtype)}var jH={kernelName:ya,backendName:"webgl",kernelFunc:U_};function HH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r,o=n.readSync(a.dataId),[l,u]=zz(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var GH={kernelName:Fo,backendName:"webgl",kernelFunc:HH};function qH(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;cl(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=r.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=Pz(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([u.length],"int32",u)]}var XH={kernelName:Fh,backendName:"webgl",kernelFunc:qH};function KH(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],u=new Array(o-1),c=0;for(let f=0;f<o;f++)f!==s&&(u[c++]=i.shape[f]);let h=[],d=new Array(o).fill(0),p=i.shape.slice();p[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){d[s]=f;let A=Ku({inputs:{x:i},backend:n,attrs:{begin:d,size:p}}),y=Ae({inputs:{x:A},backend:n,attrs:{shape:u}});m[f]=y,h.push(A)}return h.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var ZH={kernelName:Mo,backendName:"webgl",kernelFunc:KH},YH=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/n);this.outputShape=[r,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,h=`
sumValue += dot(values, segFilter);
`,d="";a%n>0&&(d=`
if (inIdx < 0 || inIdx >= ${a}) {
return initializationValue;
}
`);let p="";a%n>0&&(p=`
if (inIdx < 0 || inIdx >= ${a}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${o};
float getValue(int batch, int inIdx) {
${d}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${p}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${s})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${s})));
float sumValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${h}
}
int inIdx = inOffset + ${u};
if (${c===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${h}
} else if (${c===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${h}
} else if (${c===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${h}
}
setOutput(${l});
}
`}};function JH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r,o=a.shape.length,l=[],u=0,c=C.getAxesPermutation([u],o),h=a;c!=null&&(h=xn({inputs:{x:a},backend:n,attrs:{perm:c}}),l.push(h),u=C.getInnerMostAxes(1,o)[0]);let d=C.segment_util.computeOutShape(h.shape,u,i),p=v.sizeFromShape([h.shape[u]]),m=Ae({inputs:{x:h},backend:n,attrs:{shape:[-1,p]}});l.push(m);let f=Ph(a.dtype),A=(b,w,x,N,T)=>{let E=b.shape[0],M=b.shape[1],D=C.segment_util.segOpComputeOptimalWindowSize(M,T),L={windowSize:D,inSize:M,batchSize:E,numSegments:T},W=new YH(L,w),U=n.compileAndRun(W,[b,x],N);if(l.push(U),U.shape[1]===T)return U;let j=W_({backend:n,attrs:{start:0,stop:T,step:1,dtype:"float32"}}),X=U_({inputs:{x:j},backend:n,attrs:{reps:[M/D]}});return l.push(j),l.push(X),A(U,w,X,N,T)},y=A(m,"unsortedSegmentSum",s,f,i),g=Ae({inputs:{x:y},backend:n,attrs:{shape:d}}),_=g;if(c!=null){l.push(g);let b=C.getUndoAxesPermutation(c);_=xn({inputs:{x:_},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),_}var QH={kernelName:uu,backendName:"webgl",kernelFunc:JH},eG=[GV,KV,$P,DP,LP,VP,jP,qP,KP,YP,tL,rL,iL,uL,AL,dL,xL,vL,_L,SL,EL,RL,OL,VL,jL,ZL,JL,nW,sW,mP,uW,xW,_W,pW,IW,SW,vW,CW,MW,DW,PW,WW,UW,KW,YW,HW,eB,rB,oB,hB,mB,gB,xB,wB,bB,kB,NB,TB,CB,$B,PB,WB,VB,HB,KB,QB,rV,fP,sV,lW,lV,hV,fV,yP,gV,bV,kV,RV,TV,OV,PV,VV,YV,sU,rU,uU,hU,pU,tU,mU,yU,_U,IU,EU,zU,bP,LU,VU,HU,XU,GL,YU,QU,tj,aj,lj,xP,cj,hj,qL,MU,fj,bj,gj,kP,Nj,Ej,Fj,Oj,Lj,Bj,jj,qj,Kj,Jj,tH,aH,oH,cH,pH,WL,OU,AH,gH,wH,bH,IH,TH,CH,FH,OH,$U,RP,PH,BH,jH,GH,FP,XH,ZH,QH,JU];for(let e of eG)Us(e);var Mn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Mn||(Mn={}));var Yu;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu"})(Yu||(Yu={}));var j_;function tG(e){j_=e.wasm.cwrap(Ws,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function nG(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:h}=r,d=n.dataIdMap.get(a.dataId).id,p=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let T=n.dataIdMap.get(i.dataId);if(T.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${T.shape.length}.`);m=T.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,A=Yu[c];if(A==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?a.shape[2]:a.shape[1],g=u?s.shape[1]:s.shape[2],_=a.shape[0],b=n.makeOutput([_,y,g],a.dtype),w=n.dataIdMap.get(b.dataId).id,x=new Uint8Array(new Int32Array(a.shape).buffer),N=new Uint8Array(new Int32Array(s.shape).buffer);return j_(d,x,a.shape.length,p,N,s.shape.length,l,u,A,m,f,h||0,w),b}var rG={kernelName:Ws,backendName:"wasm",setupFunc:tG,kernelFunc:nG};function wn(e){let t;function n(a){t=a.wasm.cwrap(e,null,["number","number"])}function r(a){let{backend:s,inputs:{x:i}}=a,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),u=s.dataIdMap.get(l.dataId).id;return v.sizeFromShape(l.shape)===0||t(o,u),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var aG=wn(Di);function un(e,t,n){let r;function a(i){r=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:c}=l,h=o.dataIdMap.get(u.dataId).id,d=o.dataIdMap.get(c.dataId).id,p=n!=null?n:u.dtype,m=C.assertAndGetBroadcastShape(u.shape,c.shape),f=o.makeOutput(m,p);if(v.sizeFromShape(m)===0)return f;let A=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(c.shape).buffer),g=o.dataIdMap.get(f.dataId).id,_=()=>r(h,A,u.shape.length,d,y,c.shape.length,Mn[u.dtype],g);if(t&&u.dtype==="float32")return _(),f;let b=C.getBroadcastDims(u.shape,m),w=C.getBroadcastDims(c.shape,m),x=b.every((T,E)=>T===E),N=w.every((T,E)=>T===E);if(x&&N)return _(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var sG=!0,iG=un(ma,sG),H_;function oG(e){H_=e.wasm.cwrap(Xa,null,["array","number","number","number"])}function lG(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(r.shape)===0)return r;let a=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=n.dataIdMap.get(r.dataId).id;return H_(s,a.length,Mn[r.dtype],i),r}var uG={kernelName:Xa,backendName:"wasm",setupFunc:oG,kernelFunc:lG};function Qd(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),a=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(a),r}var cG={kernelName:hs,backendName:"wasm",kernelFunc:Qd},G_;function hG(e){G_=e.wasm.cwrap(Ls,null,["number","array","number","number","number","array","number"])}function ep(e){let{inputs:t,backend:n,attrs:r}=e,[a,s]=pG(t.x.shape,r.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=dG(t.x.shape,r.perm),l={dataId:t.x.dataId,shape:a,dtype:t.x.dtype};if(i){let m=Qd({inputs:t,backend:n});return m.shape=o,m}let u=n.makeOutput(o,l.dtype),c=n.dataIdMap.get(l.dataId).id,h=n.dataIdMap.get(u.dataId).id,d=new Uint8Array(new Int32Array(s).buffer),p=new Uint8Array(new Int32Array(l.shape).buffer);return G_(c,p,l.shape.length,Mn[l.dtype],h,d,s.length),u}function dG(e,t){let n=new Array(e.length);for(let r=0;r<n.length;r++)n[r]=e[t[r]];return n}function pG(e,t){let n=[],r=[];for(let a=0;a<e.length;++a)e[a]!==1&&n.push(e[a]),e[t[a]]!==1&&r.push(t[a]);for(let a=0;a<r.length;++a){let s=-1;for(let i=0;i<r.length;++i)r[i]>=a&&(s===-1||r[s]>r[i])&&(s=i);r[s]=a}return[n,r]}var fG={kernelName:Ls,backendName:"wasm",kernelFunc:ep,setupFunc:hG};function _l(e,t,n){let r=e.shape,a=e.shape.length,s=v.parseAxisParam(t,r),i=s,o=C.getAxesPermutation(i,a),l=null,u=!1;if(o!=null){let c=new Array(a);for(let d=0;d<c.length;d++)c[d]=r[o[d]];i=C.getInnerMostAxes(i.length,a),l=ep({inputs:{x:e},attrs:{perm:o},backend:n});let h=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==h&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var q_;function mG(e){q_=e.wasm.cwrap(Ka,null,["number","number","number","number","number"])}function AG(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:c,inputWasTransposed:h}=_l(s,a,t);if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(l=u,o=y)}let d=l.shape.slice(0,-1),p=t.makeOutput(d,"int32"),m=t.dataIdMap.get(p.dataId).id,f=v.sizeFromShape(p.shape),A=l.shape[c[0]];return q_(o,Mn[l.dtype],f,A,m),h&&t.disposeData(u.dataId),p}var yG={kernelName:Ka,backendName:"wasm",kernelFunc:AG,setupFunc:mG},X_;function gG(e){X_=e.wasm.cwrap(Za,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function xG(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,c=C.computePool2DInfo(a.shape,i,o,1,l,u),h=c.filterHeight,d=c.filterWidth,p=c.padInfo.top,m=c.padInfo.right,f=c.padInfo.bottom,A=c.padInfo.left,y=c.strideHeight,g=c.strideWidth,_=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let b=r.makeOutput(c.outShape,"float32"),w=r.dataIdMap.get(b.dataId).id;return X_(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,m,f,A,y,g,_,w),b}var wG={kernelName:Za,backendName:"wasm",setupFunc:gG,kernelFunc:xG};function dr(e){let{inputs:t,attrs:n}=e,{x:r}=t,{shape:a}=n,s=v.sizeFromShape(r.shape),i=v.inferFromImplicitShape(a,s);return v.assert(s===v.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(r.dataId),{dataId:r.dataId,shape:i,dtype:r.dtype}}var _G={kernelName:_o,backendName:"wasm",kernelFunc:dr},K_;function bG(e){K_=e.wasm.cwrap(Ya,null,["number","array","number","number","array","number","number","number","number"])}function vG(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,u=s.shape.length,c=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[u-2]:s.shape[u-1],m=a.shape.slice(0,-2),f=s.shape.slice(0,-2),A=v.sizeFromShape(m),y=v.sizeFromShape(f),g=A===y||A===1||y===1;v.assert(l>=2&&u>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let _=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);v.assert(c===h,()=>`Error in matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let b=i?[A,c,d]:[A,d,c],w=o?[y,p,h]:[y,h,p],x=dr({inputs:{x:a},backend:n,attrs:{shape:b}}),N=dr({inputs:{x:s},backend:n,attrs:{shape:w}}),T=n.dataIdMap.get(x.dataId).id,E=n.dataIdMap.get(N.dataId).id,M=i?x.shape[2]:x.shape[1],D=o?N.shape[1]:N.shape[2],L=Math.max(A,y),W=n.makeOutput([L,M,D],x.dtype),U=n.dataIdMap.get(W.dataId).id,j=new Uint8Array(new Int32Array(x.shape).buffer),X=new Uint8Array(new Int32Array(N.shape).buffer);return K_(T,j,x.shape.length,E,X,N.shape.length,i,o,U),n.disposeData(x.dataId),n.disposeData(N.dataId),W.shape=_,W}var kG={kernelName:Ya,backendName:"wasm",setupFunc:bG,kernelFunc:vG};function tp(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,a=r.makeOutput(t.shape,n),s=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(a).set(s),a}var IG={kernelName:Ja,backendName:"wasm",kernelFunc:tp},NG=wn(Qa),Z_;function SG(e){Z_=e.wasm.cwrap(Aa,null,["number","number","number","number"])}function TG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(l.dataId).id;return Z_(o,s,i,u),l}var EG={kernelName:Aa,backendName:"wasm",setupFunc:SG,kernelFunc:TG};function Y_(e){let{inputs:t,backend:n}=e,r=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=C.computeOutShape(t.map(p=>p.shape),r),s=t.filter(p=>v.sizeFromShape(p.shape)>0);if(s.length===1)return Qd({inputs:{x:s[0]},backend:n});let i=n.makeOutput(a,t[0].dtype);if(v.sizeFromShape(a)===0)return i;let o=s.map(p=>p.shape);if(C.assertParamsConsistent(o,r),s[0].dtype==="string"){let p=s.map(_=>{let b=v.sizeFromShape(_.shape.slice(r));return dr({inputs:{x:_},backend:n,attrs:{shape:[-1,b]}})}),m=p.map(_=>({vals:n.readSync(_.dataId),shape:_.shape}));a=C.computeOutShape(p.map(_=>_.shape),1);let f=p[0].shape[0]===1,A=Zf(m,a,t[0].dtype,f),y=C.computeOutShape(s.map(_=>_.shape),r);i.shape=y;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=C.fromStringArrayToUint8(A),p.forEach(_=>n.disposeData(_.dataId)),i}let l=v.sizeFromShape(s[0].shape.slice(0,r)),u=0,c=s.map(p=>{let m=v.sizeFromShape(p.shape.slice(r));return u+=m,m}),h=s.map(p=>n.typedArrayFromHeap(p)),d=n.typedArrayFromHeap(i);for(let p=0;p<l;p++){let m=p*u;for(let f=0;f<h.length;f++){let A=c[f],y=p*A,g=h[f].subarray(y,y+A);d.set(g,m),m+=A}}return i}var CG={kernelName:ji,backendName:"wasm",kernelFunc:Y_},J_;function RG(e){J_=e.wasm.cwrap(es,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function FG(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:h,dataFormat:d}=n,p=C.convertConv2DDataFormat(d),m=C.computeConv2DInfo(a.shape,s.shape,l,u,c,h,!1,p),f=m.filterHeight,A=m.filterWidth,y=m.padInfo.top,g=m.padInfo.right,_=m.padInfo.bottom,b=m.padInfo.left,w=m.dilationHeight,x=m.dilationWidth,N=m.strideHeight,T=m.strideWidth,E=m.inChannels,M=m.outChannels,D=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let L=r.makeOutput(m.outShape,"float32"),W=r.dataIdMap.get(L.dataId).id;return J_(i,a.shape[0],a.shape[1],a.shape[2],o,f,A,y,g,_,b,D,w,x,N,T,E,M,W),L}var MG={kernelName:es,backendName:"wasm",setupFunc:RG,kernelFunc:FG},Q_;function $G(e){Q_=e.wasm.cwrap(ts,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function OG(e){let{backend:t,inputs:n,attrs:r}=e,{dy:a,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:c}=r,h=1,d=C.convertConv2DDataFormat(l),p=C.computeConv2DInfo(c,s.shape,i,h,o,u,!1,d),{batchSize:m,filterHeight:f,filterWidth:A,inChannels:y,inHeight:g,inWidth:_,outChannels:b,outHeight:w,outWidth:x,strideHeight:N,strideWidth:T}=p,E=f-1-p.padInfo.top,M=A-1-p.padInfo.left,D=p.dataFormat==="channelsLast",L=v.computeStrides(p.inShape),W=v.computeStrides(a.shape),[U,j,X]=v.computeStrides(s.shape),G=L[0],ee=D?L[1]:L[2],Y=D?L[2]:1,ae=D?1:L[1],te=W[0],ie=D?W[1]:W[2],Q=D?W[2]:1,ce=D?1:W[1],oe=t.makeOutput(p.inShape,"float32"),pe=t.dataIdMap.get(oe.dataId).id,de=t.dataIdMap.get(a.dataId).id,be=t.dataIdMap.get(s.dataId).id;return Q_(de,be,m,f,A,g,_,y,w,x,b,N,T,E,M,U,j,X,G,ee,Y,ae,te,ie,Q,ce,pe),oe}var DG={kernelName:ts,backendName:"wasm",setupFunc:$G,kernelFunc:OG},zG=wn(ns),Em;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(Em||(Em={}));var eb;function PG(e){eb=e.wasm.cwrap(Gi,null,["number","number","number","number","array","number","number","number","number","number"])}function LG(e){let{backend:t,inputs:n,attrs:r}=e,{method:a,extrapolationValue:s,cropSize:i}=r,{image:o,boxes:l,boxInd:u}=n,c=l.shape[0],[h,d]=i,p=[c,h,d,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=tp({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let A=m.id,y=t.dataIdMap.get(l.dataId).id,g=t.dataIdMap.get(u.dataId).id,_=t.makeOutput(p,"float32"),b=t.dataIdMap.get(_.dataId).id,w=new Uint8Array(new Int32Array(o.shape).buffer);return eb(A,y,g,c,w,h,d,Em[a],s,b),f!=null&&t.disposeData(f.dataId),_}var WG={kernelName:Gi,backendName:"wasm",setupFunc:PG,kernelFunc:LG},tb;function BG(e){tb=e.wasm.cwrap(rs,null,["number","number","number","number","number","number"])}function VG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length;v.assert(a.dtype==="float32"||a.dtype==="int32",()=>`cumsum does not support ${a.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([s],l),c=a;u!==null&&(c=ep({inputs:{x:a},attrs:{perm:u},backend:n}));let h=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumsum",[h],l);let d=n.makeOutput(c.shape,c.dtype),p=c.shape[h],m=n.dataIdMap.get(c.dataId).id,f=n.dataIdMap.get(d.dataId).id;tb(m,i?1:0,o?1:0,p,f,Mn[a.dtype]);let A=d;if(u!==null){let y=C.getUndoAxesPermutation(u);A=ep({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return A}var UG={kernelName:rs,backendName:"wasm",setupFunc:BG,kernelFunc:VG},nb;function jG(e){nb=e.wasm.cwrap(qi,null,["number","number","number","array","number","array","array","number","number"])}function HG(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{blockSize:s,dataFormat:i}=r;v.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],c=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=u*s,p=c/(s*s),m=i==="NHWC"?[o,h,d,p]:[o,p,h,d],f=t.makeOutput(m,"float32"),A=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(v.computeStrides(a.shape)).buffer),g=new Uint8Array(new Int32Array(m).buffer),_=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer),b=t.dataIdMap.get(f.dataId).id;return nb(A,s,i==="NHWC"?1:0,y,a.shape.length-1,g,_,m.length,b),f}var GG={kernelName:qi,backendName:"wasm",setupFunc:jG,kernelFunc:HG},rb;function qG(e){rb=e.wasm.cwrap(as,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function XG(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:h}=n,d=u==null?[1,1]:u,p=C.computeConv2DInfo(a.shape,s.shape,l,d,c,h,!0),m=p.filterHeight,f=p.filterWidth,A=p.padInfo.top,y=p.padInfo.right,g=p.padInfo.bottom,_=p.padInfo.left,b=p.dilationHeight,w=p.dilationWidth,x=p.strideHeight,N=p.strideWidth,T=p.inChannels,E=p.outChannels,M=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let D=r.makeOutput(p.outShape,"float32"),L=r.dataIdMap.get(D.dataId).id;return rb(i,a.shape[0],a.shape[1],a.shape[2],o,m,f,A,y,g,_,M,b,w,x,N,T,E,L),D}var KG={kernelName:as,backendName:"wasm",setupFunc:qG,kernelFunc:XG},ZG=!1,YG=un(Zi,ZG,"bool"),JG=wn(is);function Cm(e){let{inputs:t,attrs:n,backend:r}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),dr({inputs:{x:a},backend:r,attrs:{shape:o}})}var QG={kernelName:Yi,backendName:"wasm",kernelFunc:Cm};function eq(e){let{attrs:{shape:t,value:n,dtype:r},backend:a}=e,s=a.makeOutput(t,r);return a.typedArrayFromHeap(s).fill(n),s}var tq={kernelName:Ql,backendName:"wasm",kernelFunc:eq},ab;function nq(e){ab=e.wasm.cwrap(Qi,null,["number","number","number","number","number","number"])}function rq(e){let{inputs:t,backend:n}=e,{image:r}=t,a=n.makeOutput(r.shape,r.dtype),s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,[o,l,u,c]=r.shape;return ab(s,o,l,u,c,i),a}var aq={kernelName:Qi,backendName:"wasm",kernelFunc:rq,setupFunc:nq},sq=wn(os),iq=!1,oq=un(ls,iq),sb;function lq(e){sb=e.wasm.cwrap(us,null,["number","number","number","number","number","number","number"])}function uq(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:a}=r,{x:s,mean:i,variance:o,offset:l,scale:u}=n,c=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(v.sizeFromShape(s.shape)===0)return f;let A=t.dataIdMap.get(f.dataId).id;return sb(c,h,d,p,m,a,A),f}var cq={kernelName:us,backendName:"wasm",setupFunc:lq,kernelFunc:uq},ib;function hq(e){ib=e.wasm.cwrap(Bs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function dq(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=n,f=C.computeConv2DInfo(a.shape,s.shape,l,c,u,d),A=Yu[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,_=f.outChannels,b=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==_)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${_})`);b=Q.id}let w=f.filterHeight,x=f.filterWidth,N=f.padInfo.top,T=f.padInfo.right,E=f.padInfo.bottom,M=f.padInfo.left,D=f.dilationHeight,L=f.dilationWidth,W=f.strideHeight,U=f.strideWidth,j=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(f.outShape,"float32"),te=r.dataIdMap.get(ae.dataId).id,ie=o==null?0:r.dataIdMap.get(o.dataId).id;return ib(y,G,ee,Y,g,w,x,b,N,T,E,M,X,D,L,W,U,j,_,A,ie,m||0,te),ae}var pq={kernelName:Bs,backendName:"wasm",setupFunc:hq,kernelFunc:dq},ob;function fq(e){ob=e.wasm.cwrap(Vs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function mq(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=n,f=C.computeConv2DInfo(a.shape,s.shape,l,c,u,d,!0),A=Yu[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,_=f.outChannels,b=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==_)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${_})`);b=Q.id}let w=f.filterHeight,x=f.filterWidth,N=f.padInfo.top,T=f.padInfo.right,E=f.padInfo.bottom,M=f.padInfo.left,D=f.dilationHeight,L=f.dilationWidth,W=f.strideHeight,U=f.strideWidth,j=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(f.outShape,"float32"),te=r.dataIdMap.get(ae.dataId).id,ie=o==null?0:r.dataIdMap.get(o.dataId).id;return ob(y,G,ee,Y,g,w,x,b,N,T,E,M,X,D,L,W,U,j,_,A,ie,m||0,te),ae}var Aq={kernelName:Vs,backendName:"wasm",setupFunc:fq,kernelFunc:mq},lb;function yq(e){lb=e.wasm.cwrap(to,null,["number","number","number","number","number","number","array","number"])}function gq(e){let{backend:t,inputs:n}=e,{params:r,indices:a}=n,[s,i,o,l]=X1.prepareAndValidate(r,a),u=t.makeOutput(s,r.dtype);if(i===0)return u;let c=a.shape,h=c[c.length-1],d=t.dataIdMap.get(r.dataId).id,p=t.dataIdMap.get(a.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return lb(d,Mn[r.dtype],p,i,h,o,m,f),u}var xq={kernelName:to,backendName:"wasm",setupFunc:yq,kernelFunc:gq},ub;function wq(e){ub=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function _q(e){let{backend:t,inputs:n,attrs:r}=e,{x:a,indices:s}=n,{axis:i,batchDims:o}=r,l=v.parseAxisParam(i,a.shape)[0],u=C.segment_util.collectGatherOpShapeInfo(a,s,l,o),c=dr({inputs:{x:a},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),h=v.sizeFromShape(s.shape),d=dr({inputs:{x:s},attrs:{shape:[u.batchSize,h/u.batchSize]},backend:t}),p=[u.batchSize,u.outerSize,h/u.batchSize,u.sliceSize],m=t.makeOutput(p,a.dtype);if(v.sizeFromShape(a.shape)===0)return m;let f=c.shape.length-1,A=t.dataIdMap.get(c.dataId).id,y=t.dataIdMap.get(d.dataId).id,g=t.dataIdMap.get(m.dataId).id,_=new Uint8Array(new Int32Array(v.computeStrides(c.shape)).buffer),b=new Uint8Array(new Int32Array(v.computeStrides(p)).buffer);return ub(A,Mn[a.dtype],_,f,y,u.batchSize,b,g),t.disposeData(c.dataId),t.disposeData(d.dataId),m.shape=u.outputShape,m}var bq={kernelName:eo,backendName:"wasm",setupFunc:wq,kernelFunc:_q},vq=!1,kq=un(no,vq,"bool"),Iq=!1,Nq=un(cs,Iq,"bool"),cb;function Sq(e){cb=e.wasm.cwrap(ds,null,["number","number","number"])}function Tq(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,a=r.dataIdMap.get(t.dataId).id,s=r.makeOutput(t.shape,t.dtype);if(v.sizeFromShape(t.shape)!==0){let i=r.dataIdMap.get(s.dataId).id;cb(a,n,i)}return s}var Eq={kernelName:ds,backendName:"wasm",setupFunc:Sq,kernelFunc:Tq},Cq=!1,Rq=un(io,Cq,"bool"),Fq=!1,Mq=un(oo,Fq,"bool"),$q=wn(ps),Oq=!1,Dq=un(uo,Oq,"bool"),hb;function zq(e){hb=e.wasm.cwrap(fs,null,["number, number, number"])}function Pq(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:c,originalAxes:h,inputWasTransposed:d}=_l(i,a,t);if(d){let g=t.dataIdMap.get(u.dataId).id;l=u,o=g}let p=l.shape.length;C.assertAxesAreInnerMostDims("max",c,p);let[m,f]=C.computeOutAndReduceShapes(l.shape,c),A=v.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;hb(o,A,g)}if(d&&t.disposeData(u.dataId),s){let g=C.expandShapeToKeepDim(y.shape,h);y.shape=g}return y}var Lq={kernelName:fs,backendName:"wasm",setupFunc:zq,kernelFunc:Pq},Wq=!1,Bq=un(ms,Wq),db;function Vq(e){db=e.wasm.cwrap(As,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Uq(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,c=C.computePool2DInfo(a.shape,i,o,1,l,u),h=c.filterHeight,d=c.filterWidth,p=c.padInfo.top,m=c.padInfo.right,f=c.padInfo.bottom,A=c.padInfo.left,y=c.dilationHeight,g=c.dilationWidth,_=c.strideHeight,b=c.strideWidth,w=c.inChannels,x=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let N=r.makeOutput(c.outShape,"float32"),T=r.dataIdMap.get(N.dataId).id;return db(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,m,f,A,y,g,_,b,w,x,T),N}var jq={kernelName:As,backendName:"wasm",setupFunc:Vq,kernelFunc:Uq},pb;function Hq(e){pb=e.wasm.cwrap(ys,null,["number, number, number"])}function Gq(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=_l(i,a,t),m=h;if(p){let b=t.dataIdMap.get(c.dataId).id;b!==o&&(u=c,l=b,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,A]=C.computeOutAndReduceShapes(u.shape,m),y=v.sizeFromShape(A),g=u;u.dtype!=="float32"&&(g=tp({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(g.dataId).id);let _=t.makeOutput(f,"float32");if(v.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(_.dataId).id;pb(l,y,b)}if(p&&t.disposeData(c.dataId),s){let b=C.expandShapeToKeepDim(_.shape,d);_.shape=b}return u.dtype!=="float32"&&t.disposeData(g.dataId),_}var qq={kernelName:ys,backendName:"wasm",setupFunc:Hq,kernelFunc:Gq},fb;function Xq(e){fb=e.wasm.cwrap(gs,null,["number, number, number"])}function Kq(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=_l(i,a,t);if(p){let _=t.dataIdMap.get(c.dataId).id;_!==o&&(u=c,l=_)}let m=u.shape.length;C.assertAxesAreInnerMostDims("min",h,m);let[f,A]=C.computeOutAndReduceShapes(u.shape,h),y=v.sizeFromShape(A),g=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let _=t.dataIdMap.get(g.dataId).id;fb(l,y,_)}if(p&&t.disposeData(c.dataId),s){let _=C.expandShapeToKeepDim(g.shape,d);g.shape=_}return g}var Zq={kernelName:gs,backendName:"wasm",setupFunc:Xq,kernelFunc:Kq},Yq=!1,Jq=un(xs,Yq),Qq=!0,eX=un(ws,Qq),tX=wn(ho);function Rm(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],a=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var mb;function nX(e){mb=e.wasm.cwrap(fo,"number",["number","number","number","number","number"])}function rX(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=r,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,c=t.dataIdMap.get(l.dataId).id,h=mb(u,c,s,a,i),{pSelectedIndices:d,selectedSize:p,pSelectedScores:m,pValidOutputs:f}=Rm(t,h);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([p],"int32",d)}var aX={kernelName:fo,backendName:"wasm",setupFunc:nX,kernelFunc:rX},Ab;function sX(e){Ab=e.wasm.cwrap(mo,"number",["number","number","number","number","number","bool"])}function iX(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=r,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,d=Ab(c,h,s,a,i,o),{pSelectedIndices:p,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=Rm(t,d);t.wasm._free(f);let y=t.makeOutput([m],"int32",p),g=t.makeOutput([],"int32",A);return[y,g]}var oX={kernelName:mo,backendName:"wasm",setupFunc:sX,kernelFunc:iX},yb;function lX(e){yb=e.wasm.cwrap(Ao,"number",["number","number","number","number","number","number"])}function uX(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=r,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,d=yb(c,h,s,a,i,o),{pSelectedIndices:p,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=Rm(t,d);t.wasm._free(A);let y=t.makeOutput([m],"int32",p),g=t.makeOutput([m],"float32",f);return[y,g]}var cX={kernelName:Ao,backendName:"wasm",setupFunc:lX,kernelFunc:uX},hX=!1,dX=un(po,hX,"bool"),gb;function pX(e){gb=e.wasm.cwrap(_s,null,["number","number","number","number","number"])}function fX(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=n.makeOutput([...a.shape,s],"int32"),u=n.dataIdMap.get(l.dataId).id,c=n.dataIdMap.get(a.dataId).id;return gb(c,s,i,o,u),l}var mX={kernelName:_s,backendName:"wasm",setupFunc:pX,kernelFunc:fX};function AX(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var yX={kernelName:yo,backendName:"wasm",kernelFunc:AX};function gX(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return Cm({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let h=Cm({inputs:{input:c},backend:n,attrs:{dim:a}});return o.push(h),h}),u=Y_({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(c=>n.disposeData(c.dataId)),u}var xX={kernelName:go,backendName:"wasm",kernelFunc:gX},xb;function wX(e){xb=e.wasm.cwrap(bs,null,["number","array","number","number","array","array","number","number"])}function _X(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:a}}=e,s=r.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=r.map(m=>m[0]),h=r.map(m=>m[1]),d=new Uint8Array(new Int32Array(c).buffer),p=new Uint8Array(new Int32Array(h).buffer);return xb(i,u,t.shape.length,Mn[t.dtype],d,p,a,l),o}var bX={kernelName:bs,backendName:"wasm",kernelFunc:_X,setupFunc:wX},vX=!1,kX=un(vs,vX),wb;function IX(e){wb=e.wasm.cwrap(ks,null,["number","number","number"])}function NX(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return wb(s,i,l),o}var SX={kernelName:ks,backendName:"wasm",setupFunc:IX,kernelFunc:NX},_b;function TX(e){_b=e.wasm.cwrap(xo,null,["number","number","number","number"])}function EX(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=_l(i,a,t),m=h;if(p){let _=t.dataIdMap.get(c.dataId).id;_!==o&&(u=c,l=_,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,A]=C.computeOutAndReduceShapes(u.shape,m),y=v.sizeFromShape(A),g=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let _=t.dataIdMap.get(g.dataId).id;_b(l,y,Mn[g.dtype],_)}if(p&&t.disposeData(c.dataId),s){let _=C.expandShapeToKeepDim(g.shape,d);g.shape=_}return g}var CX={kernelName:xo,backendName:"wasm",setupFunc:TX,kernelFunc:EX},RX=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=Qf(r,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},FX={kernelName:su,backendName:"wasm",kernelFunc:RX},MX=!0,$X=un(ss,MX),OX=wn(Is),DX=wn(Ss),bb;function zX(e){bb=e.wasm.cwrap(Ns,null,["number","number","number","number","number","number","number","number","number","number"])}function PX(e){let{backend:t,inputs:n,attrs:r}=e,{images:a}=n,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,u]=o,[c,h,d,p]=a.shape,m=[c,l,u,p],f=t.dataIdMap.get(a.dataId),A;f.dtype!=="float32"&&(A=tp({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(A.dataId));let y=f.id,g=t.makeOutput(m,"float32");if(v.sizeFromShape(a.shape)===0)return g;let _=t.dataIdMap.get(g.dataId).id;return bb(y,c,h,d,p,l,u,s?1:0,i?1:0,_),A!=null&&t.disposeData(A.dataId),g}var LX={kernelName:Ns,backendName:"wasm",setupFunc:zX,kernelFunc:PX},vb;function WX(e){vb=e.wasm.cwrap(Ts,null,["number","array","number","array","number","number"])}function BX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=v.parseAxisParam(s,a.shape);if(a.shape.length===0)return Qd({inputs:{x:a},backend:n});let o=n.makeOutput(a.shape,a.dtype),l=n.dataIdMap.get(a.dataId).id,u=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);vb(l,c,i.length,h,a.shape.length,u);let d=dr({inputs:{x:o},attrs:{shape:a.shape},backend:n});return n.disposeData(o.dataId),d}var VX={kernelName:Ts,backendName:"wasm",kernelFunc:BX,setupFunc:WX},kb;function UX(e){kb=e.wasm.cwrap(Oo,null,["number","number","number","number","number","number","number","number","array","number","number"])}function jX(e){let{inputs:t,backend:n,attrs:r}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=r,l=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(a.dataId).id,c=n.dataIdMap.get(l.dataId).id,[h,d,p,m]=a.shape,[f,A]=C.getImageCenter(o,d,p),y=i===0,g=255,_=typeof i=="number"?[i,i,i,y?0:g]:[...i,g],b=new Uint8Array(new Int32Array(_).buffer);return kb(u,h,d,p,m,s,f,A,b,_.length,c),l}var HX={kernelName:Oo,backendName:"wasm",kernelFunc:jX,setupFunc:UX},GX=wn(Es),qX=wn(Cs),Ib;function XX(e){Ib=e.wasm.cwrap(bo,null,["number","number","number","number","number","number","array","number","number"])}function KX(e){let{backend:t,inputs:n,attrs:r}=e,{indices:a,updates:s}=n,{shape:i}=r,o=t.makeOutput(i,s.dtype);if(v.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:h,outputSize:d}=K1.calculateShapes(s,a,i),p=t.dataIdMap.get(a.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(h).buffer),A=t.dataIdMap.get(o.dataId).id;return Ib(p,m,Mn[s.dtype],l,u,c,f,d,A),o}var ZX={kernelName:bo,backendName:"wasm",setupFunc:XX,kernelFunc:KX},Nb;function YX(e){Nb=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function JX(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(a.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(u.dataId).id,h=r.shape.length,d=a.shape.length,p=h===0||h>1||d===1?1:v.sizeFromShape(a.shape.slice(1));return Nb(i,o,l,p,c),u}var QX={kernelName:vo,backendName:"wasm",kernelFunc:JX,setupFunc:YX},Sb;function eK(e){Sb=e.wasm.cwrap(Fs,null,["number","number"])}function tK(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(a.dataId).id;return v.sizeFromShape(a.shape)===0||Sb(r,s),a}var nK={kernelName:"Sigmoid",backendName:"wasm",setupFunc:eK,kernelFunc:tK},rK=wn(Rs);function np(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:a}=e,[s,i]=an.parseSliceParams(t,n,r),o=an.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),u=a.makeOutput(i,t.dtype),c=v.computeStrides(t.shape),h=a.dataIdMap.get(u.dataId);if(o){let m=an.computeFlatOffset(s,c);return t.dtype==="string"?h.stringBytes=l.slice(m,m+v.sizeFromShape(i)):a.typedArrayFromHeap(u).set(l.subarray(m,m+v.sizeFromShape(i))),u}if(t.dtype==="string"){let m=Rd(l,s,i,t.shape,t.dtype);return h.stringBytes=m,u}let d=a.typedArrayFromHeap(u),p=t.shape.length;if(p===2)aK(l,c[0],d,s,i);else if(p===3)sK(l,c[0],c[1],d,s,i);else if(p===4)iK(l,c[0],c[1],c[2],d,s,i);else{let m=Rd(l,s,i,t.shape,t.dtype);d.set(m)}return u}function aK(e,t,n,r,a){let s=0,i=r[0],o=r[1],l=i+a[0];for(let u=i;u<l;u++){let c=u*t+o;n.set(e.subarray(c,c+a[1]),s),s+=a[1]}}function sK(e,t,n,r,a,s){let i=0,o=a[0],l=a[1],u=a[2],c=o+s[0],h=l+s[1];for(let d=o;d<c;d++)for(let p=l;p<h;p++){let m=d*t+p*n+u;r.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function iK(e,t,n,r,a,s,i){let o=0,l=s[0],u=s[1],c=s[2],h=l+i[0],d=u+i[1],p=c+i[2],m=s[3];for(let f=l;f<h;f++)for(let A=u;A<d;A++)for(let y=c;y<p;y++){let g=f*t+A*n+y*r+m;a.set(e.subarray(g,g+i[3]),o),o+=i[3]}}var oK={kernelName:Io,backendName:"wasm",kernelFunc:np},Tb;function lK(e){Tb=e.wasm.cwrap(Os,null,["number","number","number","number"])}function uK(e){let{backend:t,inputs:{logits:n},attrs:{dim:r}}=e,a=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[r],l=v.sizeFromShape(n.shape)/o;return v.sizeFromShape(s.shape)===0||Tb(a,i,o,l),s}var cK={kernelName:Os,backendName:"wasm",setupFunc:lK,kernelFunc:uK};function hK(e){let{inputs:t,attrs:n,backend:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),u=new Array(a.shape.length).fill(0),c=a.shape.slice();return l.map(h=>{let d=[...c];d[o]=h;let p=np({inputs:{x:a},attrs:{begin:u,size:d},backend:r});return u[o]+=h,p})}var dK={kernelName:Eo,backendName:"wasm",kernelFunc:hK},pK=wn(Ms),fK=wn(lu),mK=!0,AK=un(Ds,mK),Eb;function yK(e){Eb=e.wasm.cwrap(ga,null,["number","number","number"])}function gK(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return Eb(i,a,l),o}var xK={kernelName:ga,backendName:"wasm",setupFunc:yK,kernelFunc:gK},Cb;function wK(e){Cb=e.wasm.cwrap(Co,null,["number","array","number","array","array","array","array","array","number","number"])}function _K(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{begin:s,end:i,strides:o}=r;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r,p=C.slice_util.maskToAxes(c);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&h!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=a.shape.length-s.length,f=C.slice_util.maskToAxes(h),A=a.shape.slice();f.forEach(M=>{s[M]=0,i[M]=1,A.splice(M,0,1)});let y=dr({inputs:{x:a},attrs:{shape:A},backend:t}),{begin:g,end:_,strides:b}=C.slice_util.getNormalizedAxes(y.shape,p,m,s,i,o,l,u,c);s=g,i=_,o=b;let w=C.slice_util.maskToAxes(d);w.forEach(M=>{i[M]=s[M]+1,o[M]=1});let x=C.slice_util.computeOutShape(s,i,o),N=x.filter((M,D)=>w.indexOf(D)===-1);if(o.every(M=>M===1)){let M=np({inputs:{x:a},attrs:{begin:s,size:x},backend:t});t.disposeData(y.dataId);let D=dr({inputs:{x:M},attrs:{shape:N},backend:t});return t.disposeData(M.dataId),D}let T=t.makeOutput(N,"float32");if(!N.some(M=>M===0)){let M=t.dataIdMap.get(y.dataId).id,D=new Uint8Array(new Int32Array(v.computeStrides(y.shape)).buffer),L=new Uint8Array(new Int32Array(s).buffer),W=new Uint8Array(new Int32Array(i).buffer),U=new Uint8Array(new Int32Array(o).buffer),j=new Uint8Array(new Int32Array(N).buffer),X=new Uint8Array(new Int32Array(v.computeStrides(N)).buffer),G=t.dataIdMap.get(T.dataId).id;Cb(M,D,y.shape.length,L,W,U,j,X,N.length,G)}t.disposeData(y.dataId);let E=dr({inputs:{x:T},attrs:{shape:N},backend:t});return t.disposeData(T.dataId),E}var bK={kernelName:Co,backendName:"wasm",setupFunc:wK,kernelFunc:_K},vK=!0,kK=un(zs,vK),Rb;function IK(e){Rb=e.wasm.cwrap($s,null,["number, number, number"])}function NK(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=_l(i,a,t),m=h;if(p){let _=t.dataIdMap.get(c.dataId).id;_!==o&&(u=c,l=_,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,A]=C.computeOutAndReduceShapes(u.shape,m),y=v.sizeFromShape(A),g=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let _=t.dataIdMap.get(g.dataId).id;Rb(l,y,_)}if(p&&t.disposeData(c.dataId),s){let _=C.expandShapeToKeepDim(g.shape,d);g.shape=_}return g}var SK={kernelName:$s,backendName:"wasm",setupFunc:IK,kernelFunc:NK},TK=wn(Ps),Fb;function EK(e){Fb=e.wasm.cwrap(ya,null,["number","array","number","array","number","number"])}function CK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,s=n.dataIdMap.get(a.dataId).id,{reps:i}=r,o=new Array(a.shape.length);for(let d=0;d<o.length;d++)o[d]=a.shape[d]*i[d];let l=new Uint8Array(new Int32Array(a.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),c=n.makeOutput(o,a.dtype),h=n.dataIdMap.get(c.dataId).id;return Fb(s,l,a.shape.length,u,o.length,Mn[c.dtype],h),c}var RK={kernelName:ya,backendName:"wasm",setupFunc:EK,kernelFunc:CK},Mb;function FK(e){Mb=e.wasm.cwrap(Fo,null,["number","array","number","number","number","bool","number","number"])}var MK=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{k:a,sorted:s}=n,i=t.dataIdMap.get(r.dataId).id,o=new Uint8Array(new Int32Array(r.shape).buffer),l=r.shape.slice();l[l.length-1]=a;let u=t.makeOutput(l,r.dtype),c=t.dataIdMap.get(u.dataId).id,h=t.makeOutput(l,"int32"),d=t.dataIdMap.get(h.dataId).id;return Mb(i,o,r.shape.length,Mn[r.dtype],a,s,c,d),[u,h]},$K={kernelName:Fo,backendName:"wasm",setupFunc:FK,kernelFunc:MK};function OK(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),u=0;for(let p=0;p<o;p++)p!==s&&(l[u++]=a.shape[p]);let c=new Array(i),h=new Array(o).fill(0),d=a.shape.slice();d[s]=1;for(let p=0;p<c.length;p++)h[s]=p,c[p]=np({inputs:{x:a},attrs:{begin:h,size:d},backend:n});return c.map(({dataId:p,dtype:m})=>({dataId:p,dtype:m,shape:l}))}var DK={kernelName:Mo,backendName:"wasm",kernelFunc:OK};function zK(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var PK={kernelName:$o,backendName:"wasm",kernelFunc:zK},LK=[aG,iG,uG,yG,wG,kG,IG,NG,EG,CG,MG,DG,zG,WG,UG,GG,KG,YG,JG,QG,tq,aq,sq,oq,rG,cq,pq,Aq,xq,bq,kq,Nq,cG,Eq,Rq,Mq,$q,Dq,Lq,Bq,jq,qq,Zq,Jq,eX,tX,aX,oX,cX,dX,mX,yX,xX,bX,kX,SX,CX,FX,$X,OX,DX,_G,LX,VX,HX,qX,GX,ZX,QX,nK,rK,oK,cK,dK,pK,fK,AK,xK,bK,kK,SK,TK,RK,$K,fG,DK,PK];for(let e of LK)Us(e);var Fm=J();Fm.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Fm.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Fm.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var $b=Mi(l8()),WK='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',BK=Mi(u8()),Ob=class extends jl{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Qc(this,Ir())}write(e,t,n){let r={id:this.dataIdNextNumber++};return this.move(r,e,t,n,1),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,r,a){let s=this.dataIdNextNumber++;if(r==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:r,memoryOffset:null,refCount:a});return}let i=v.sizeFromShape(n),o=i*v.bytesPerElement(r),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:r,refCount:a}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:a}=this.dataIdMap.get(e);if(n==="string")return a;let s=this.wasm.HEAPU8.slice(t,t+v.sizeFromShape(r)*v.bytesPerElement(n));return VK(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{let a=this.dataIdNextNumber++;r={id:a},this.dataIdMap.set(r,{id:a,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(n),s=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,a,s);case"int32":return new Int32Array(r,a,s);case"bool":return new Uint8Array(r,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function UK(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{n(s.instance)})})}),{})}function Db(e,t,n){if(rp!=null)return rp;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),Ju!=null&&Ju[r]!=null?Ju[r]:n+r}async function jK(){let[e,t]=await Promise.all([J().getAsync("WASM_HAS_SIMD_SUPPORT"),J().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let a={};a.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=WK,c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return o.endsWith(".wasm")?Db(e,t,Qu!=null?Qu:l):l+o},Mm&&(a.instantiateWasm=UK(Db(e,t,Qu!=null?Qu:"")));let s=!1;a.onAbort=()=>{s||ec||(ec=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&rp==null?(a.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+$b.default.toString()],{type:"text/javascript"}),i=$b.default(a)):i=BK.default(a),i.then(o=>{s=!0,ec=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function VK(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var HK=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],rp=null,Qu=null,Ju={},ec=!1,Mm=!1;function GK(e,t=!1){if(tf("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),ec)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");rp=e,Mm=t}function qK(e,t=!1){if(ec)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Qu=e;else{Ju=e;let n=HK.filter(r=>Ju[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Mm=t}var zb="3.2.0",XK=2;Ho("wasm",async()=>{let{wasm:e}=await jK();return new Ob(e)},XK);Z().prototype.abs=function(){return this.throwIfDisposed(),Mt(this)};Z().prototype.acos=function(){return this.throwIfDisposed(),rf(this)};Z().prototype.acosh=function(){return this.throwIfDisposed(),af(this)};Z().prototype.add=function(e){return this.throwIfDisposed(),se(this,e)};Z().prototype.all=function(e,t){return this.throwIfDisposed(),Gh(this,e,t)};Z().prototype.any=function(e,t){return this.throwIfDisposed(),wu(this,e,t)};Z().prototype.argMax=function(e){return this.throwIfDisposed(),_u(this,e)};Z().prototype.argMin=function(e){return this.throwIfDisposed(),sf(this,e)};Z().prototype.asScalar=function(){return this.throwIfDisposed(),F(this.size===1,()=>"The array must have only 1 element."),H(this,[])};Z().prototype.asType=function(e){return this.throwIfDisposed(),fe(this,e)};Z().prototype.as1D=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.as2D=function(e,t){return this.throwIfDisposed(),H(this,[e,t])};Z().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),H(this,[e,t,n])};Z().prototype.as4D=function(e,t,n,r){return this.throwIfDisposed(),H(this,[e,t,n,r])};Z().prototype.as5D=function(e,t,n,r,a){return this.throwIfDisposed(),H(this,[e,t,n,r,a])};Z().prototype.asin=function(){return this.throwIfDisposed(),of(this)};Z().prototype.asinh=function(){return this.throwIfDisposed(),lf(this)};Z().prototype.atan=function(){return this.throwIfDisposed(),uf(this)};Z().prototype.atan2=function(e){return this.throwIfDisposed(),cf(this,e)};Z().prototype.atanh=function(){return this.throwIfDisposed(),hf(this)};Z().prototype.avgPool=function(e,t,n,r){return this.throwIfDisposed(),vu(this,e,t,n,r)};Z().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),ku(this,e,t)};Z().prototype.batchNorm=function(e,t,n,r,a){return this.throwIfDisposed(),Ks(this,e,t,n,r,a)};Z().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Iu(this,e)};Z().prototype.cast=function(e){return this.throwIfDisposed(),fe(this,e)};Z().prototype.ceil=function(){return this.throwIfDisposed(),mf(this)};Z().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),An(this,e,t)};Z().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Xe&&(e=[e]),nt([this,...e],t)};Z().prototype.conv1d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Xh(this,e,t,n,r,a,s)};Z().prototype.conv2dTranspose=function(e,t,n,r,a){return this.throwIfDisposed(),Kh(this,e,t,n,r,a)};Z().prototype.conv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Xr(this,e,t,n,r,a,s)};Z().prototype.cos=function(){return this.throwIfDisposed(),Nu(this)};Z().prototype.cosh=function(){return this.throwIfDisposed(),Zh(this)};Z().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Yh(this,e,t,n)};Z().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),gf(this,e,t)};Z().prototype.depthwiseConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Zo(this,e,t,n,r,a,s)};Z().prototype.dilation2d=function(e,t,n,r,a){return this.throwIfDisposed(),xf(this,e,t,n,r,a)};Z().prototype.divNoNan=function(e){return this.throwIfDisposed(),wf(this,e)};Z().prototype.div=function(e){return this.throwIfDisposed(),we(this,e)};Z().prototype.dot=function(e){return this.throwIfDisposed(),A5(this,e)};Z().prototype.elu=function(){return this.throwIfDisposed(),Yo(this)};Z().prototype.equal=function(e){return this.throwIfDisposed(),ka(this,e)};Z().prototype.erf=function(){return this.throwIfDisposed(),_f(this)};Z().prototype.exp=function(){return this.throwIfDisposed(),Vn(this)};Z().prototype.expandDims=function(e){return this.throwIfDisposed(),Nn(this,e)};Z().prototype.expm1=function(){return this.throwIfDisposed(),bf(this)};Z().prototype.fft=function(){return this.throwIfDisposed(),Du(this)};Z().prototype.flatten=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.floor=function(){return this.throwIfDisposed(),Jo(this)};Z().prototype.floorDiv=function(e){return this.throwIfDisposed(),Hh(this,e)};Z().prototype.gather=function(e,t){return this.throwIfDisposed(),Zs(this,e,t)};Z().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Na(this,e)};Z().prototype.greater=function(e){return this.throwIfDisposed(),Qn(this,e)};Z().prototype.ifft=function(){return this.throwIfDisposed(),rl(this)};Z().prototype.irfft=function(){return this.throwIfDisposed(),fd(this)};Z().prototype.isFinite=function(){return this.throwIfDisposed(),y5(this)};Z().prototype.isInf=function(){return this.throwIfDisposed(),g5(this)};Z().prototype.isNaN=function(){return this.throwIfDisposed(),x5(this)};Z().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Tu(this,e)};Z().prototype.lessEqual=function(e){return this.throwIfDisposed(),Ys(this,e)};Z().prototype.less=function(e){return this.throwIfDisposed(),Qh(this,e)};Z().prototype.localResponseNormalization=function(e,t,n,r){return this.throwIfDisposed(),kf(this,e,t,n,r)};Z().prototype.logSigmoid=function(){return this.throwIfDisposed(),b5(this)};Z().prototype.logSoftmax=function(e){return this.throwIfDisposed(),nd(this,e)};Z().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Sf(this,e,t)};Z().prototype.log=function(){return this.throwIfDisposed(),Sn(this)};Z().prototype.log1p=function(){return this.throwIfDisposed(),ed(this)};Z().prototype.logicalAnd=function(e){return this.throwIfDisposed(),er(this,e)};Z().prototype.logicalNot=function(){return this.throwIfDisposed(),Eu(this)};Z().prototype.logicalOr=function(e){return this.throwIfDisposed(),rd(this,e)};Z().prototype.logicalXor=function(e){return this.throwIfDisposed(),N5(this,e)};Z().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Ue(this,e,t,n)};Z().prototype.maxPool=function(e,t,n,r){return this.throwIfDisposed(),Cu(this,e,t,n,r)};Z().prototype.max=function(e,t){return this.throwIfDisposed(),Un(this,e,t)};Z().prototype.maximum=function(e){return this.throwIfDisposed(),Tr(this,e)};Z().prototype.mean=function(e,t){return this.throwIfDisposed(),wt(this,e,t)};Z().prototype.min=function(e,t){return this.throwIfDisposed(),el(this,e,t)};Z().prototype.minimum=function(e){return this.throwIfDisposed(),tl(this,e)};Z().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Ef(this,e,t)};Z().prototype.mod=function(e){return this.throwIfDisposed(),Cf(this,e)};Z().prototype.mul=function(e){return this.throwIfDisposed(),P(this,e)};Z().prototype.neg=function(){return this.throwIfDisposed(),xt(this)};Z().prototype.norm=function(e,t,n){return this.throwIfDisposed(),gd(this,e,t,n)};Z().prototype.notEqual=function(e){return this.throwIfDisposed(),Qs(this,e)};Z().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),Vo(this,e,t,n)};Z().prototype.onesLike=function(){return this.throwIfDisposed(),Tn(this)};Z().prototype.pad=function(e,t){return this.throwIfDisposed(),Kr(this,e,t)};Z().prototype.pool=function(e,t,n,r,a){return this.throwIfDisposed(),E5(this,e,t,n,r,a)};Z().prototype.pow=function(e){return this.throwIfDisposed(),Zr(this,e)};Z().prototype.prelu=function(e){return this.throwIfDisposed(),Fu(this,e)};Z().prototype.prod=function(e,t){return this.throwIfDisposed(),sd(this,e,t)};Z().prototype.reciprocal=function(){return this.throwIfDisposed(),Mf(this)};Z().prototype.relu=function(){return this.throwIfDisposed(),Cr(this)};Z().prototype.relu6=function(){return this.throwIfDisposed(),od(this)};Z().prototype.reshapeAs=function(e){return this.throwIfDisposed(),H(this,e.shape)};Z().prototype.reshape=function(e){return this.throwIfDisposed(),H(this,e)};Z().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),q5(this,e,t,n)};Z().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),X5(this,e,t,n)};Z().prototype.reverse=function(e){return this.throwIfDisposed(),En(this,e)};Z().prototype.rfft=function(){return this.throwIfDisposed(),zu(this)};Z().prototype.round=function(){return this.throwIfDisposed(),$f(this)};Z().prototype.rsqrt=function(){return this.throwIfDisposed(),ld(this)};Z().prototype.selu=function(){return this.throwIfDisposed(),ud(this)};Z().prototype.separableConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Of(this,e,t,n,r,a,s)};Z().prototype.sigmoid=function(){return this.throwIfDisposed(),In(this)};Z().prototype.sign=function(){return this.throwIfDisposed(),Df(this)};Z().prototype.sin=function(){return this.throwIfDisposed(),cd(this)};Z().prototype.sinh=function(){return this.throwIfDisposed(),hd(this)};Z().prototype.slice=function(e,t){return this.throwIfDisposed(),Ee(this,e,t)};Z().prototype.softmax=function(e){return this.throwIfDisposed(),Ou(this,e)};Z().prototype.softplus=function(){return this.throwIfDisposed(),Qo(this)};Z().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Ru(this,e,t)};Z().prototype.split=function(e,t){return this.throwIfDisposed(),Zt(this,e,t)};Z().prototype.sqrt=function(){return this.throwIfDisposed(),Yt(this)};Z().prototype.square=function(){return this.throwIfDisposed(),st(this)};Z().prototype.squaredDifference=function(e){return this.throwIfDisposed(),md(this,e)};Z().prototype.squeeze=function(e){return this.throwIfDisposed(),Sa(this,e)};Z().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Xe?[this,e]:[this,...e];return Cn(n,t)};Z().prototype.step=function(e){return this.throwIfDisposed(),al(this,e)};Z().prototype.stridedSlice=function(e,t,n,r,a,s,i,o){return this.throwIfDisposed(),Pf(this,e,t,n,r,a,s,i,o)};Z().prototype.sub=function(e){return this.throwIfDisposed(),me(this,e)};Z().prototype.sum=function(e,t){return this.throwIfDisposed(),Ne(this,e,t)};Z().prototype.tan=function(){return this.throwIfDisposed(),Lf(this)};Z().prototype.tanh=function(){return this.throwIfDisposed(),Xo(this)};Z().prototype.tile=function(e){return this.throwIfDisposed(),Ia(this,e)};Z().prototype.toBool=function(){return this.throwIfDisposed(),fe(this,"bool")};Z().prototype.toFloat=function(){return this.throwIfDisposed(),fe(this,"float32")};Z().prototype.toInt=function(){return this.throwIfDisposed(),fe(this,"int32")};Z().prototype.topk=function(e,t){return this.throwIfDisposed(),Wf(this,e,t)};Z().prototype.transpose=function(e){return this.throwIfDisposed(),tt(this,e)};Z().prototype.unique=function(e){return this.throwIfDisposed(),yd(this,e)};Z().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Bf(this,e,t)};Z().prototype.unstack=function(e){return this.throwIfDisposed(),tr(this,e)};Z().prototype.where=function(e,t){return this.throwIfDisposed(),yn(e,this,t)};Z().prototype.zerosLike=function(){return this.throwIfDisposed(),Be(this)};var Pb={kernelName:Di,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,al(fe(n,"float32"),-1))}}},KK={kernelName:zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=st(fe(n,"float32")),a=Yt(me(_e(1),r));return xt(we(e,a))}}}},ZK={kernelName:Pi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Yt(me(st(fe(n,"float32")),1));return we(e,r)}}}},YK={kernelName:ma,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=pt(n.shape,r.shape);return{a:()=>{let s=e,i=$t(n.shape,a);return i.length>0&&(s=Ne(s,i)),H(s,n.shape)},b:()=>{let s=e,i=$t(r.shape,a);return i.length>0&&(s=Ne(s,i)),H(s,r.shape)}}}},JK={kernelName:Xa,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,a)=>{n[a]=()=>e.clone()}),n}},QK={kernelName:Ka,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Be(n)}}},eZ={kernelName:ql,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Be(n)}}},tZ={kernelName:Li,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>we(e,Yt(me(_e(1),st(fe(n,"float32")))))}}},nZ={kernelName:Wi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Yt(se(_e(1),st(fe(n,"float32"))));return we(e,r)}}}},rZ={kernelName:Ui,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=pt(n.shape,r.shape);return{a:()=>{let s=se(st(n),st(r)),i=P(e,we(r,s)),o=$t(n.shape,a);return o.length>0&&(i=Ne(i,o)),H(i,n.shape)},b:()=>{let s=se(st(n),st(r)),i=xt(P(e,we(n,s))),o=$t(r.shape,a);return o.length>0&&(i=Ne(i,o)),H(i,r.shape)}}}},aZ={kernelName:Bi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>we(e,se(st(fe(n,"float32")),1))}}},sZ={kernelName:Vi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>we(e,me(_e(1),st(fe(n,"float32"))))}}};function iZ(e,t,n,r,a,s){let i=R(e,"dy","avgPool3dGrad"),o=R(t,"input","avgPool3dGrad"),l=i,u=o,c=!1;o.rank===4&&(c=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),F(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),F(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),s!=null&&F(Lt(a),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${a}.`);let h={dy:l,input:u},d={filterSize:n,strides:r,pad:a,dimRoundingMode:s},p=$.runKernel(ih,h,d);return c?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var oZ=O({avgPool3dGrad_:iZ}),lZ={kernelName:Xl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>oZ(e,r,a,s,i,o)}}};function uZ(e,t,n,r,a){let s=R(e,"dy","avgPoolGrad"),i=R(t,"input","avgPoolGrad");F(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),F(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let c={dy:l,input:o},h={filterSize:n,strides:r,pad:a},d=$.runKernel(sh,c,h);return u?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var cZ=O({avgPoolGrad_:uZ}),hZ={kernelName:Za,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i}=n;return{x:()=>cZ(e,r,a,s,i)}}},dZ={kernelName:Ya,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,a]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Ue(e,a,!1,!0),b:()=>Ue(r,e,!0,!1)}:!s&&i?{a:()=>Ue(e,a,!1,!1),b:()=>Ue(e,r,!0,!1)}:s&&!i?{a:()=>Ue(a,e,!1,!0),b:()=>Ue(r,e,!1,!1)}:{a:()=>Ue(a,e,!0,!0),b:()=>Ue(e,r,!0,!0)}}},pZ={kernelName:Kl,gradFunc:(e,t,n)=>{let{blockShape:r,crops:a}=n;return{x:()=>Ru(e,r,a)}}},fZ={kernelName:hg,gradFunc:(e,t,n)=>{let r=n,a=r.inputShape,s=r.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>Ne(e,o,!0)}}},mZ={kernelName:Ja,gradFunc:e=>({x:()=>e.clone()})},AZ={kernelName:Qa,gradFunc:e=>({x:()=>Be(e)})},yZ={kernelName:Aa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:a,clipValueMax:s}=n;return{x:()=>yn(er(Na(r,a),Ys(r,s)),e,Be(e))}}},gZ={kernelName:Zl,inputsToSave:["x"],gradFunc:Pb.gradFunc},xZ={kernelName:ji,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(o=>o.shape),{axis:a}=n,s=Zn(a,t[0].shape)[0],i=r.map(o=>o[s]);return Zt(e,i,s).map(o=>()=>o)}},wZ={kernelName:es,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return F(va(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>Af(r.shape,e,a,i,o,l),filter:()=>Hf(r,e,a.shape,i,o,l)}}},_Z={kernelName:ts,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>Xr(e,a,s,i,o,1,l),filter:()=>Hf(e,r,a.shape,s,i,o,l)}}};function bZ(e,t,n,r,a){let s=e;e.rank===4&&(s=H(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),F(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),F(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),F(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),F(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),F(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:r,pad:a,filterShape:n};return $.runKernel(ch,o,l)}var vZ=O({conv3DBackpropFilter_:bZ}),kZ={kernelName:Yl,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s}=n;F(va(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[i,o]=t;return{x:()=>f5(i.shape,e,o,a,s),filter:()=>vZ(i,e,o.shape,a,s)}}},IZ={kernelName:ns,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(xt(cd(fe(n,"float32"))),e)}}},NZ={kernelName:Hi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(hd(fe(n,"float32")),e)}}},SZ={kernelName:rs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a,exclusive:s,reverse:i}=n;return{x:()=>{let o=I5([a],r.rank),l=Yh(e,a,s,!i);return o!=null&&(l=tt(l,o)),l}}}},TZ={kernelName:as,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s,dimRoundingMode:i}=n,o=r==null?[1,1]:r;F(va(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return F(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),F(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),F(Nr(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),i!=null&&F(Lt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>W5(l.shape,e,u,a,s,r,i),filter:()=>L5(l,e,u.shape,a,s,r,i)}}},EZ={kernelName:Jl,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,s={x:r,filter:a,dy:e},i={x:r,filter:a,dy:e};return{x:()=>$.runKernel(Ah,s,n),filter:()=>$.runKernel(yh,i,n)}}},CZ={kernelName:Xi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>$.runKernel(gh,r)}}},RZ={kernelName:Ki,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=P(Vn(xt(st(n))),2/Math.sqrt(Math.PI));return{x:()=>P(e,r)}}},FZ={kernelName:is,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,n)}}},MZ={kernelName:Yi,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>H(e,n.shape)}}},$Z={kernelName:Ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,Vn(n))}}},OZ={kernelName:os,gradFunc:e=>({x:()=>Be(e)})},DZ={kernelName:ls,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=pt(n.shape,r.shape);return{a:()=>{let s=we(e,fe(r,"float32")),i=$t(n.shape,a);return i.length>0?H(Ne(s,i),n.shape):s},b:()=>{let s=P(e,fe(n,"float32")),i=$t(r.shape,a);i.length>0&&(s=H(Ne(s,i),r.shape));let o=st(r);return xt(we(s,fe(o,"float32")))}}}},zZ={kernelName:us,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[a,s,i,o]=t,l=o==null?_e(1):o,u=$t(s.shape,a.shape),c=[];if(s.rank===1){for(let f=0;f<a.shape.length-1;++f)c.push(a.shape[f]);c.push(1)}let h=me(a,s),d=P(e,l),p=ld(se(i,_e(r))),m=P(P(P(p,p),p),_e(-.5));return{x:()=>s.rank===1?H(P(P(e,Ia(H(p,[1,1,1,s.shape[0]]),c)),l),a.shape):H(P(P(e,p),l),a.shape),mean:()=>{let f=P(P(p,_e(-1)),d);return s.rank===1&&(f=Ne(f,u)),H(f,s.shape)},variance:()=>{let f=P(P(m,h),d);return s.rank===1&&(f=Ne(f,u)),H(f,s.shape)},scale:()=>{let f=P(h,p),A=P(e,f);return s.rank===1&&(A=Ne(A,u)),H(A,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=Ne(f,u)),H(f,s.shape)}}}},PZ={kernelName:eo,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,a]=t,{axis:s}=n,i=Zn(s,r.shape)[0];return{x:()=>{let o=r.shape,l=a.size,u=o.slice(0,i),c=u.length,h=o.slice(s,o.length).slice(1),d=h.length,p=Lb(0,c),m=Lb(c+1,c+1+d),f=Wb([u,[l],h]),A=H(e,f),y=H(a,[l]),g=Wb([[c],p,m]),_=tt(A,g),b=Bf(_,y,r.shape[i]),w=Nf(g);return b=tt(b,w),b},indices:()=>a}}};function Lb(e,t){let n=[];for(let r=e;r<t;++r)n.push(r);return n}function Wb(e){let t=[];for(let n=0;n<e.length;++n)for(let r=0;r<e[n].length;++r)t.push(e[n][r]);return t}var LZ={kernelName:cs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>Be(n),b:()=>Be(r)}}},WZ={kernelName:hs,gradFunc:e=>({x:()=>fe(e,"float32")})},BZ={kernelName:ro,gradFunc:e=>({x:()=>Be(e)})},VZ={kernelName:ao,gradFunc:e=>({x:()=>Be(e)})},UZ={kernelName:so,gradFunc:e=>({x:()=>Be(e)})},jZ={kernelName:ds,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:a}=n,s=Qn(r,0);return{x:()=>yn(s,e,P(e,a))}}},HZ={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>we(e,se(n,1))}}},GZ={kernelName:ps,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>we(e,fe(n,"float32"))}}},qZ={kernelName:dg,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n;return{logits:()=>{let s=!0,i=Vn(r);return me(e,P(Ne(e,a,s),i))}}}};function XZ(e,t,n,r=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:r,bias:a,alpha:s,beta:i};return $.runKernel(vh,o,l)}var KZ=O({localResponseNormalizationBackprop_:XZ}),ZZ={kernelName:nu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>KZ(r,a,e,s,i,o,l)}}};function Bb(e,t,n,r){return t.rank<n.rank&&(t=H(t,Js(t.shape,r))),e.rank<n.rank&&(e=H(e,Js(e.shape,r))),{x:()=>P(e,fe(ka(n,t),e.dtype))}}var Vb={kernelName:fs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:a}=r,s=t[0],i=t[1],o=Zn(a,s.shape),l=Bb(e,i,s,o);return{x:()=>l.x()}}},YZ={kernelName:ms,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>P(e,fe(Na(n,r),"float32")),b:()=>P(e,fe(Qh(n,r),"float32"))}}};function JZ(e,t,n,r,a,s,i){let o=R(e,"dy","maxPool3dGrad"),l=R(t,"input","maxPool3dGrad"),u=R(n,"output","maxPool3dGrad"),c=o,h=l,d=u,p=!1;l.rank===4&&(p=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),h=H(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=H(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),F(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),F(h.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${h.rank}.`),F(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),i!=null&&F(Lt(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let m={dy:c,input:h,output:d},f={filterSize:r,strides:a,pad:s,dimRoundingMode:i},A=$.runKernel(Ih,m,f);return p?H(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var QZ=O({maxPool3dGrad_:JZ}),eY={kernelName:ru,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>QZ(e,r,a,s,i,o,l)}}};function tY(e,t,n,r,a,s,i){let o=R(e,"dy","maxPoolGrad"),l=R(t,"input","maxPoolGrad"),u=R(n,"output","maxPoolGrad");F(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),F(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),F(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&F(Lt(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let c={dy:o,input:l,output:u},h={filterSize:r,strides:a,pad:s,dimRoundingMode:i};return $.runKernel(kh,c,h)}var nY=O({maxPoolGrad_:tY}),rY={kernelName:As,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>nY(e,r,a,s,i,o)}}},aY={kernelName:ys,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n,s=Zn(a,r.shape),i=k5(r.shape,s)[1],o=Rt(i);return{x:()=>{let l=r.shape.slice();s.forEach(c=>{l[c]=1});let u=H(e,l);return we(P(u,Er(r.shape,"float32")),o)}}}},sY={kernelName:gs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:a}=r,[s,i]=t,o=Zn(a,s.shape),l=Bb(e,i,s,o);return{x:()=>l.x()}}},iY={kernelName:xs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>P(e,fe(Ys(n,r),"float32")),b:()=>P(e,fe(Qn(n,r),"float32"))}}},oY={kernelName:au,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Ee(e,s,r.shape)}}},lY={kernelName:co,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=pt(n.shape,r.shape);return{a:()=>{let s=$t(n.shape,a);return s.length>0?H(Ne(e,s),n.shape):e},b:()=>{let s=P(e,xt(Jo(we(n,r)))),i=$t(r.shape,a);return i.length>0?H(Ne(s,i),r.shape):s}}}},uY={kernelName:ws,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=pt(n.shape,r.shape);return{a:()=>{let s=P(e,fe(r,"float32")),i=$t(n.shape,a);return i.length>0?H(Ne(s,i),n.shape):s},b:()=>{let s=P(e,fe(n,"float32")),i=$t(r.shape,a);return i.length>0?H(Ne(s,i),r.shape):s}}}},cY={kernelName:ho,gradFunc:e=>({x:()=>xt(e)})},hY={kernelName:_s,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Nt(n.shape,"float32")}}},dY={kernelName:yo,gradFunc:e=>({x:()=>Be(e)})},pY={kernelName:go,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return tr(e,r).map(a=>()=>a)}},Ub={kernelName:bs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Ee(e,s,r.shape)}}},fY={kernelName:vs,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,a]=t,s=n,i=r,o=pt(s.shape,i.shape);return{a:()=>{let l=fe(i,"float32"),u=P(e,P(l,Zr(s,me(l,_e(1))))),c=$t(s.shape,o);return c.length>0&&(u=Ne(u,c)),H(u,s.shape)},b:()=>{let l=Qn(s,0),u=yn(l,Sn(s),Be(s)),c=P(e,P(a,u)),h=$t(i.shape,o);return h.length>0&&(c=Ne(c,h)),H(c,i.shape)}}}},mY={kernelName:ks,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,a=Qn(n,0);return{x:()=>yn(a,e,P(e,r)),alpha:()=>{let s=yn(a,Be(e),P(e,n)),i=$t(r.shape,e.shape);return i.length>0&&(s=Ne(s,i)),H(s,r.shape)}}}},AY={kernelName:ss,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=pt(n.shape,r.shape);return{a:()=>{let s=we(e,fe(r,"float32")),i=$t(n.shape,a);return i.length>0?H(Ne(s,i),n.shape):s},b:()=>{let s=P(e,fe(n,"float32")),i=$t(r.shape,a);i.length>0&&(s=H(Ne(s,i),r.shape));let o=st(r);return xt(we(s,fe(o,"float32")))}}}},yY={kernelName:wo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>we(e,xt(st(n)))}}},gY={kernelName:Ss,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=P(Ys(n,6),al(n));return{x:()=>P(e,fe(r,"float32"))}}},xY={kernelName:Is,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,fe(al(n),"float32"))}}},wY={kernelName:_o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>H(e,n.shape)}}},_Y={kernelName:Ns,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(Ch,a,n)}}},bY={kernelName:iu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(Eh,a,n)}}},vY={kernelName:Ts,gradFunc:(e,t,n)=>{let{dims:r}=n,a=Zn(r,e.shape);return{x:()=>En(e,a)}}},kY={kernelName:Es,gradFunc:e=>({x:()=>Be(e)})},IY={kernelName:Cs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xt(we(e,P(Zr(n,1.5),2)))}}},NY={kernelName:vo,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>fe(Be(n),"float32"),t:()=>P(e,fe(n,e.dtype)),e:()=>P(e,fe(Eu(n),e.dtype))}}},SY={kernelName:ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Qn(n,_e(0)),a=_e(Y5),s=_e(J5),i=P(e,s),o=P(P(e,a),Vn(fe(n,"float32")));return yn(r,i,o)}}}},TY={kernelName:Fs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,P(n,me(_e(1),n)))}}},EY={kernelName:So,gradFunc:e=>({x:()=>Be(e)})},CY={kernelName:Rs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(Nu(fe(n,"float32")),e)}}},RY={kernelName:No,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(Zh(fe(n,"float32")),e)}}},FY={kernelName:Io,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:a,size:s}=n,i=r.shape,[o,l]=Zg(r,a,s),u=[];for(let c=0;c<e.rank;c++)u.push([o[c],i[c]-o[c]-l[c]]);return{x:()=>Kr(e,u)}}},MY={kernelName:Os,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:a}=n,s=!0,i=P(e,r);return{logits:()=>me(i,P(Ne(i,[a],s),r))}}},$Y={kernelName:To,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,In(n))}}},jb={kernelName:ou,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:a}=n;return{x:()=>ku(e,r,a)}}},Hb={kernelName:Eo,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>nt(e,r)}}},OY={kernelName:Ms,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>we(e,P(Yt(fe(n,"float32")),2))}}},DY={kernelName:lu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,P(fe(n,"float32"),2))}}},zY={kernelName:Ds,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=_e(2);return{a:()=>P(e,P(a,me(n,r))),b:()=>P(e,P(a,me(r,n)))}}},PY={kernelName:ga,gradFunc:e=>({x:()=>Be(e)})},LY={kernelName:zs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=pt(n.shape,r.shape);return{a:()=>{let s=e,i=$t(n.shape,a);return i.length>0&&(s=Ne(s,i)),H(s,n.shape)},b:()=>{let s=e,i=$t(r.shape,a);return i.length>0&&(s=Ne(s,i)),H(xt(s),r.shape)}}}},WY={kernelName:$s,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,a=r.shape.slice(),{axis:s}=n;Zn(s,r.shape).forEach(l=>{a[l]=1});let i=H(e,a),o=P(i,Er(r.shape,"float32"));return{x:()=>o}}},BY={kernelName:Ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>we(e,st(Nu(n)))}}},VY={kernelName:Ps,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(me(_e(1),st(n)),e)}}},UY={kernelName:ya,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:a}=n;return{x:()=>{let s=Be(r);if(r.rank===1)for(let i=0;i<a[0];++i)s=se(s,Ee(e,[i*r.shape[0]],[r.shape[0]]));else if(r.rank===2)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)s=se(s,Ee(e,[i*r.shape[0],o*r.shape[1]],[r.shape[0],r.shape[1]]));else if(r.rank===3)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)s=se(s,Ee(e,[i*r.shape[0],o*r.shape[1],l*r.shape[2]],[r.shape[0],r.shape[1],r.shape[2]]));else if(r.rank===4)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)for(let u=0;u<a[3];++u)s=se(s,Ee(e,[i*r.shape[0],o*r.shape[1],l*r.shape[2],u*r.shape[3]],[r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${r.rank} tensors yet.`);return s}}}},jY={kernelName:Ls,gradFunc:(e,t,n)=>{let r=n,{perm:a}=r,s=Nf(a);return{x:()=>tt(e,s)}}},HY={kernelName:Mo,gradFunc:(e,t,n)=>{let r=n,{axis:a}=r;return{value:()=>Cn(e,a)}}},qY={kernelName:uu,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>GY(e,n)}}};function GY(e,t){let n=Tr(t,Be(t)),r=Zs(e,n),a=Na(t,_e(0,"int32")),s=r.rank-a.rank;for(let o=0;o<s;++o)a=Nn(a,o+1);a=er(a,Er(r.shape,"bool"));let i=Be(r);return yn(a,r,i)}var XY={kernelName:$o,gradFunc:e=>({x:()=>Be(e)})},KY=[Pb,KK,ZK,YK,JK,QK,eZ,tZ,nZ,rZ,aZ,sZ,lZ,hZ,dZ,pZ,fZ,mZ,AZ,yZ,gZ,xZ,_Z,wZ,kZ,IZ,NZ,SZ,TZ,EZ,AY,CZ,RZ,FZ,MZ,$Z,DZ,OZ,zZ,PZ,LZ,WZ,BZ,VZ,UZ,jZ,HZ,GZ,qZ,ZZ,Vb,Vb,YZ,eY,rY,aY,sY,iY,oY,lY,uY,cY,hY,dY,pY,Ub,Ub,fY,mY,yY,gY,xY,wY,_Y,bY,vY,kY,IY,NY,SY,TY,EY,CY,RY,FY,MY,$Y,jb,jb,Hb,Hb,OY,zY,DY,PY,LY,WY,BY,VY,UY,jY,HY,qY,XY];for(let e of KY)pg(e);var Gb={};Oe(Gb,{maxNorm:()=>ZY,minMaxNorm:()=>QY,nonNeg:()=>JY,unitNorm:()=>YY});var $m;function Ot(){return $m==null&&($m=r5().epsilon()),$m}function pr(){return"channelsLast"}var ea=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ea.prototype)}},fr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,fr.prototype)}},V=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,V.prototype)}},Me=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Me.prototype)}},qb=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,qb.prototype)}};function ci(e,t){if(Array.isArray(e)){let n=[];for(let r=0;r<t;r++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function $r(e,t){if(!e)throw new qb(t)}function Xb(e,t){let n=0;for(let r of e)r===t&&n++;return n}function _n(e){return e.length===1?e[0]:e}function ht(e){return Array.isArray(e)?e:[e]}function ta(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function hi(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var rr={};function Om(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function Dm(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>Dm(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:Dm(r))}}}function tc(e,t={},n={},r="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in rr)i=rr[s];else if(i=t[s],i==null)throw new V(`Unknown ${r}: ${e}. This may be due to one of the following reasons:
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new V(`${r}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in rr?[o,l]=rr.className:i in t&&([o,l]=t[i]),o==null)throw new V(`Unknown ${r}: ${i}. This may be due to one of the following reasons:
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let p of Object.keys(rr))u[p]=rr[p];for(let p of Object.keys(n))u[p]=n[p];let c=s.config;c.customObjects=u;let h=Object.assign({},rr);for(let p of Object.keys(n))rr[p]=n[p];Dm(s.config);let d=l(o,s.config,n,a);return rr=Object.assign({},h),d}else{let u=Object.assign({},rr);for(let h of Object.keys(n))rr[h]=n[h];let c=new o(s.config);return rr=Object.assign({},u),c}}}function eJ(e,t){return e<t?-1:e>t?1:0}function ap(e,t){return-1*eJ(e,t)}function Fa(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function tJ(e){if(e==null)throw new V(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function di(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new V(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function zm(e,t,n=0,r=Infinity){return $r(n>=0),$r(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(a=>typeof a===t)}function Ut(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>Ut(n,`element ${r+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${Kb(e)}.`)}function Kb(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>Kb(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function nJ(e,t){let n=v.now(),r;return(...a)=>{let s=v.now();return s-n<t||(n=s,r=e(...a)),r}}function Zb(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function Pm(e,t){return B(()=>Yt(Ne(P(e,e),t,!0)))}var nc=class extends re.Serializable{getConfig(){return{}}},Lm=class extends nc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return B(()=>{let t=Pm(e,this.axis),n=An(t,0,this.maxValue);return P(e,we(n,se(Ot(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Lm.className="MaxNorm";re.registerClass(Lm);var Wm=class extends nc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return B(()=>we(e,se(Ot(),Pm(e,this.axis))))}getConfig(){return{axis:this.axis}}};Wm.className="UnitNorm";re.registerClass(Wm);var Bm=class extends nc{apply(e){return Cr(e)}};Bm.className="NonNeg";re.registerClass(Bm);var Vm=class extends nc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return B(()=>{let t=Pm(e,this.axis),n=se(P(this.rate,An(t,this.minValue,this.maxValue)),P(1-this.rate,t));return P(e,we(n,se(Ot(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Vm.className="MinMaxNorm";re.registerClass(Vm);var Yb={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Dt(e){return Om(e)}function Jb(e,t={}){return tc(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function zt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in Yb?Yb[e]:e,config:{}};return Jb(t)}else return e instanceof nc?e:Jb(e)}function ZY(e){return new Lm(e)}function YY(e){return new Wm(e)}function JY(){return new Bm}function QY(e){return new Vm(e)}var Qb={};Oe(Qb,{constant:()=>sJ,glorotNormal:()=>dJ,glorotUniform:()=>hJ,heNormal:()=>pJ,heUniform:()=>fJ,identity:()=>uJ,leCunNormal:()=>mJ,leCunUniform:()=>AJ,ones:()=>aJ,orthogonal:()=>yJ,randomNormal:()=>oJ,randomUniform:()=>iJ,truncatedNormal:()=>lJ,varianceScaling:()=>cJ,zeros:()=>rJ});var gJ=["channelsFirst","channelsLast"],xJ=["nearest","bilinear"],wJ=["valid","same","causal"],_J=["max","avg"],bJ=["sum","mul","concat","ave"],bl=new Map;function kt(e){di(gJ,"DataFormat",e)}function vJ(e){di(xJ,"InterpolationFormat",e)}function Gn(e){di(wJ,"PaddingMode",e)}function e3(e){di(_J,"PoolMode",e)}var rc=[],t3="/";function pi(e,t){rc.push(e);try{let n=t();return rc.pop(),n}catch(n){throw rc.pop(),n}}function kJ(){return rc.length===0?"":rc.join(t3)+t3}function r3(e){if(!n3(e))throw new Error("Not a valid tensor name: '"+e+"'");return kJ()+e}function a3(e){if(!n3(e))throw new Error("Not a valid tensor name: '"+e+"'");bl.has(e)||bl.set(e,0);let t=bl.get(e);if(bl.set(e,bl.get(e)+1),t>0){let n=`${e}_${t}`;return bl.set(n,1),n}else return e}var IJ=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function n3(e){return!!e.match(IJ)}function NJ(e){return e===parseInt(e.toString(),10)}function Ma(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let a=t;a<n;++a)r*=e[a];return r}function s3(e){return e=Array.isArray(e)?new Float32Array(e):e,Bt(e)}function vl(e){return el(s3(e)).dataSync()[0]}function $a(e){return Un(s3(e)).dataSync()[0]}function mr(e,t){if(t<e)throw new V(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let r=e;r<t;++r)n.push(r);return n}function ac(e,t){return e.asType(t)}function sc(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function SJ(e,t){return B(()=>{if(e.shape.length!==2)throw new V(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=sc(e,1);return Um(n,[1,t,1])})}function TJ(e){let t=[Ma(e.shape)];return e.reshape(t)}function EJ(e){if(e.rank<=1)throw new V(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Ma(e.shape,1)];return e.reshape(t)}function fi(e,t,n){return B(()=>{switch(e.rank){case 1:return dd(e,t,n);case 2:return zf(e,[t,0],[n,e.shape[1]]);case 3:return pd(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return $u(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Ee(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Ee(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new V(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function jm(e,t,n){return B(()=>{switch(e.rank){case 1:return dd(e,t,n);case 2:return zf(e,[0,t],[e.shape[0],n]);case 3:return pd(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return $u(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function sp(e,t,n,r){return B(()=>{switch(e.rank){case 1:return dd(e,t,n);case 2:switch(r){case 1:return fi(e,t,n);case 2:return jm(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return fi(e,t,n);case 2:return pd(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return jm(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return fi(e,t,n);case 2:return $u(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return $u(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return jm(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${r}`)}default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Hm(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),nt(e,t)}function i3(e,t){switch(e.rank){case 1:return h5([e,t]);case 2:return Ko([e,t],0);case 3:return d5([e,t],0);case 4:return p5([e,t],0);default:throw new V(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Um(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new V(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ia(e,t)}function ip(e,t=0,n=1,r,a){return C5(e,t,n,r,a)}function Or(e,t,n,r){if(e.rank<2||t.rank<2)throw new Me(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new Me(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let a=!1,s=!1;return Ta.matMul({a:e,b:t,transposeA:a,transposeB:s,bias:r?Gm(e.rank,r,pr()):null,activation:n})}else{let a=e.shape.slice(),s=a.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],c=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=t.transpose(c).reshape([l,-1]);let h=[...a,...u],d=!1,p=!1;return Ta.matMul({a:e,b:t,transposeA:d,transposeB:p,bias:r?Gm(e.rank,r,pr()):null,activation:n}).reshape(h)}}function o3(e,t,n){return B(()=>(Array.isArray(t)?t=Bt(t,"int32"):t=t.toInt(),Zs(e,t,n)))}function ic(e){return P(e,e)}function Gm(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new V(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1,1]):t.reshape([1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1]):t.reshape([1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1]):t.reshape([1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,r[0]]):t.reshape([1].concat(r))}else if(e<3)return t;throw new V(`Unsupported input rank by biasAdd: ${t.rank}`)}function Dr(e,t,n){return B(()=>(n==null&&(n=pr()),kt(n),e.add(Gm(e.rank,t,n))))}function CJ(e,t=1){if(t!==1)throw new Me(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Yo(e)}function RJ(e){return B(()=>we(e,Mt(e).add(1)))}function l3(e,t,n,r){return B(()=>z5(e,t,n,r))}function FJ(e){return B(()=>{let t=se(.5,P(.2,e));return An(t,0,1)})}function oc(e,t,n=!1){return n?e():t()}var MJ=["fanIn","fanOut","fanAvg"],$J=["normal","uniform","truncatedNormal"];function OJ(e){di(MJ,"FanMode",e)}function DJ(e){di($J,"Distribution",e)}var ar=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},qm=class extends ar{apply(e,t){return Nt(e,t)}};qm.className="Zeros";re.registerClass(qm);var op=class extends ar{apply(e,t){return Er(e,t)}};op.className="Ones";re.registerClass(op);var Xm=class extends ar{constructor(e){super();if(typeof e!="object")throw new V(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new V(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return B(()=>P(_e(this.value),Er(e,t)))}getConfig(){return{value:this.value}}};Xm.className="Constant";re.registerClass(Xm);var Km=class extends ar{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return nl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Km.className="RandomUniform";re.registerClass(Km);var Zm=class extends ar{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Me(`randomNormal does not support dType ${t}.`);return ip(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Zm.className="RandomNormal";re.registerClass(Zm);var Ym=class extends ar{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Me(`truncatedNormal does not support dType ${t}.`);return Ad(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Ym.className="TruncatedNormal";re.registerClass(Ym);var Jm=class extends ar{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return B(()=>{if(e.length!==2||e[0]!==e[1])throw new V("Identity matrix initializer can only be used for 2D square matrices.");return P(this.gain,vf(e[0]))})}getConfig(){return{gain:this.gain}}};Jm.className="Identity";re.registerClass(Jm);function zJ(e,t="channelsLast"){let n,r;if(kt(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=Ma(e,2);n=e[1]*a,r=e[0]*a}else if(t==="channelsLast"){let a=Ma(e,0,e.length-2);n=e[e.length-2]*a,r=e[e.length-1]*a}}else{let a=Ma(e);n=Math.sqrt(a),r=Math.sqrt(a)}return[n,r]}var bn=class extends ar{constructor(e){super();if(e.scale<0)throw new V(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,OJ(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,DJ(this.distribution),this.seed=e.seed}apply(e,t){let n=zJ(e),r=n[0],a=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,r):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(r+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Me(`${this.getClassName()} does not support dType ${t}.`);return Ad(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return nl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};bn.className="VarianceScaling";re.registerClass(bn);var lp=class extends bn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return bn.className}};lp.className="GlorotUniform";re.registerClass(lp);var up=class extends bn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return bn.className}};up.className="GlorotNormal";re.registerClass(up);var cp=class extends bn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return bn.className}};cp.className="HeNormal";re.registerClass(cp);var hp=class extends bn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return bn.className}};hp.className="HeUniform";re.registerClass(hp);var dp=class extends bn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return bn.className}};dp.className="LeCunNormal";re.registerClass(dp);var pp=class extends bn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return bn.className}};pp.className="LeCunNormal";re.registerClass(pp);var Qm=class extends ar{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Me("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return B(()=>{if(e.length<2)throw new Me("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=ip(n,0,1,"float32"),a=Z5.gramSchmidt(r);return e[0]>e[1]&&(a=a.transpose()),P(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Qm.className="Orthogonal";re.registerClass(Qm);var u3={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function c3(e,t={}){return tc(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function _t(e){return Om(e)}function mt(e){if(typeof e=="string"){let t=e in u3?u3[e]:e;if(t==="GlorotNormal")return new up;if(t==="GlorotUniform")return new lp;if(t==="HeNormal")return new cp;if(t==="HeUniform")return new hp;if(t==="LeCunNormal")return new dp;if(t==="LeCunUniform")return new pp;{let n={};return n.className=t,n.config={},c3(n)}}else return e instanceof ar?e:c3(e)}function rJ(){return new qm}function aJ(){return new op}function sJ(e){return new Xm(e)}function iJ(e){return new Km(e)}function oJ(e){return new Zm(e)}function lJ(e){return new Ym(e)}function uJ(e){return new Jm(e)}function cJ(e){return new bn(e)}function hJ(e){return new lp(e)}function dJ(e){return new up(e)}function pJ(e){return new cp(e)}function fJ(e){return new hp(e)}function mJ(e){return new dp(e)}function AJ(e){return new pp(e)}function yJ(e){return new Qm(e)}var h3={};Oe(h3,{Layer:()=>je,RNN:()=>zr,RNNCell:()=>lc,activation:()=>QJ,add:()=>lQ,alphaDropout:()=>HQ,average:()=>uQ,averagePooling1d:()=>eA,averagePooling2d:()=>tA,averagePooling3d:()=>nA,avgPool1d:()=>gQ,avgPool2d:()=>wQ,avgPool3d:()=>bQ,avgPooling1d:()=>xQ,avgPooling2d:()=>_Q,avgPooling3d:()=>vQ,batchNormalization:()=>mQ,bidirectional:()=>zQ,concatenate:()=>cQ,conv1d:()=>HJ,conv2d:()=>GJ,conv2dTranspose:()=>qJ,conv3d:()=>XJ,convLstm2d:()=>MQ,convLstm2dCell:()=>$Q,cropping2D:()=>ZJ,dense:()=>eQ,depthwiseConv2d:()=>JJ,dot:()=>fQ,dropout:()=>tQ,elu:()=>LJ,embedding:()=>oQ,flatten:()=>rQ,gaussianDropout:()=>jQ,gaussianNoise:()=>UQ,globalAveragePooling1d:()=>kQ,globalAveragePooling2d:()=>IQ,globalMaxPool1d:()=>LQ,globalMaxPool2d:()=>WQ,globalMaxPooling1d:()=>p3,globalMaxPooling2d:()=>f3,gru:()=>SQ,gruCell:()=>TQ,input:()=>d3,inputLayer:()=>PJ,layerNormalization:()=>AQ,leakyReLU:()=>BJ,lstm:()=>EQ,lstmCell:()=>CQ,masking:()=>GQ,maxPool1d:()=>BQ,maxPool2d:()=>VQ,maxPooling1d:()=>m3,maxPooling2d:()=>A3,maxPooling3d:()=>NQ,maximum:()=>hQ,minimum:()=>dQ,multiply:()=>pQ,permute:()=>iQ,prelu:()=>VJ,reLU:()=>WJ,repeatVector:()=>aQ,reshape:()=>sQ,rnn:()=>OQ,separableConv2d:()=>KJ,simpleRNN:()=>RQ,simpleRNNCell:()=>FQ,softmax:()=>UJ,spatialDropout1d:()=>nQ,stackedRNNCells:()=>DQ,thresholdedReLU:()=>jJ,timeDistributed:()=>PQ,upSampling2d:()=>YJ,zeroPadding2d:()=>yQ});var qQ=0;function y3(){return qQ++}var fp={};function mp(e=""){return e in fp||(fp[e]=0),fp[e]+=1,e+fp[e].toString()}function rA(e){return Array.isArray(e)&&Array.isArray(e[0])}function Ap(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function De(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new V(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function ot(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new V(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function yp(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,a)=>r*a);return t}var g3="Variable",x3=class{constructor(e,t="float32",n=g3,r=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=y3(),n=n==null?g3:n,this.originalName=r3(n),this.name=a3(this.originalName),this.trainable_=r,this.constraint=a,this.val=F5(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),XQ(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function XQ(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function aA(e){return e.map(t=>t.read())}function sA(e){e.forEach(t=>{t[0].write(t[1])})}var jt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Ar=class{constructor(e,t,n,r,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=a,this.outputTensorIndex=i,this.id=y3(),s!=null&&(this.originalName=r3(s),this.name=a3(this.originalName)),this.rank=t.length}},KQ=0,gp=class{constructor(e,t){this.callArgs=t,this.id=KQ++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},ZQ=0,je=class extends re.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=ZQ++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=ta(n)+"_"+mp(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),n=[a].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new fr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new V(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return _n(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return _n(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new ea(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new ea(`Layer ${this.name} is not connected, no input to return.`);return _n(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new ea(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new ea(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return _n(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=ht(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=ht(this.inputSpec);if(e.length!==t.length)throw new V(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let r=e[n],a=t[n];if(a==null)continue;let s=r.rank;if(a.ndim!=null&&s!==a.ndim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${a.ndim}, found ndim=${s}`);if(a.maxNDim!=null&&s>a.maxNDim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s<a.minNDim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${a.minNDim}, found ndim=${s}.`);if(a.dtype!=null&&r.dtype!==a.dtype)throw new V(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${a.dtype}, found dtype=${r.dtype}.`);if(a.axes){let i=r.shape;for(let o in a.axes){let l=Number(o),u=a.axes[o],c=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i<a.shape.length;++i){let o=a.shape[i],l=r.shape[i];if(o!=null&&l!=null&&o!==l)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected shape=${a.shape}, found shape=${r.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=ht(e),r=!0;for(let s of n)if(!(s instanceof Ar)){r=!1;break}let a=!0;for(let s of n)if(s instanceof Ar){a=!1;break}if(r===a)throw new V("Arguments to apply() must be all SymbolicTensors or all Tensors");return pi(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of ht(e))s.push(i.shape);this.build(_n(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=ht(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=_n(o),this.activityRegularizer!=null)throw new Me("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=YQ(e),i=this.computeOutputShape(s),o,l=JQ(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,c)=>new Ar(l,u,this,ht(e),t,this.name,c)):o=new Ar(l,i,this,ht(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Me("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new ea(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new ea(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new fr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return yp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return aA(e?this.trainableWeights:this.weights)}setWeights(e){B(()=>{let t=this.weights;if(t.length!==e.length)throw new V(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=aA(t);for(let a=0;a<r.length;++a){let s=r[a],i=t[a],o=e[a];if(!v.arraysEqual(s.shape,o.shape))throw new V(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}sA(n)})}addWeight(e,t,n,r,a,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new V(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(r=mt("zeros"));let o=r.apply(t,n),l=new x3(o,n,e,s,i);return o.dispose(),a!=null&&this.addLoss(()=>a.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=ht(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,a,s,i=null){let o=ht(e);t=ht(t),n=ht(n),r=ht(r),a=Ap(a),s=Ap(s);let l=[],u=[],c=[];for(let h of o)l.push(h.sourceLayer),u.push(h.nodeIndex),c.push(h.tensorIndex);new gp({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:a,outputShapes:s},i);for(let h=0;h<t.length;h++)t[h].sourceLayer=this,t[h].nodeIndex=this.inboundNodes.length-1,t[h].tensorIndex=h}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function YQ(e){e=ht(e);let t=[];for(let n of e)t.push(n.shape);return _n(t)}function JQ(e){return"float32"}function w3(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let a=[];for(let s=0;s<r.inboundLayers.length;s++){let i=r.inputTensors[s],o=r.inboundLayers[s],l=r.nodeIndices[s],u=w3(i,o,l);for(let c of u)a.indexOf(c)===-1&&a.push(c)}return a}}}var kl=class extends je{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:mp("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new V("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new V("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new V("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let r=new Ar(this.dtype,this.batchInputShape,this,[],{},this.name);r.nodeIndex=0,r.tensorIndex=0,new gp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[r],outputTensors:[r],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new V(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};kl.className="InputLayer";re.registerClass(kl);function _3(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new V("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new kl({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Oa(e){if(e==null)return;let t=[],n=[],r=[];for(let a in e){let s=e[a];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(a),r.push(i)}}if(t.length>0){let a=await Promise.all(t);for(let s=0;s<a.length;++s)e[n[s]]=a[s][0];Se(r)}}function b3(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var v3;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(v3||(v3={}));var QQ=125,Il=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},k3=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},eee=class extends Il{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let r in t){let a=t[r];if(typeof a=="number")this.totals.hasOwnProperty(r)||(this.totals[r]=0),this.totals[r]=this.totals[r]+a*n;else{let s;r in this.totals?s=this.totals[r]:this.totals[r]=0;let i=B(()=>se(this.totals[r],P(a,n)));this.totals[r]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:B(()=>{let r=P(we(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),Wt(t[n])}))}},I3=class extends Il{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let a in this.history){let s=this.history[a];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(a),n.push(i)}}let r=await Promise.all(e);for(let a=0;a<r.length;++a)this.history[t[a]][n[a]].dispose(),this.history[t[a]][n[a]]=r[a][0]}},N3=class extends Il{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=QQ),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=nJ(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let r=[];this.yield!=null&&(await Oa(n),r.push(this.yield(e,t,n))),r.push(Ed()),await Promise.all(r)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Oa(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Oa(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(Ed()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Oa(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Oa(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(Ed()):v.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Oa(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Oa(e),await this.trainEnd(e))}};function S3(e,t){return e==null&&(e={}),e instanceof Il?[e]:Array.isArray(e)&&e[0]instanceof Il?e:ht(e).map(n=>new N3(n,t))}var sr=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),sr.checkForDuplicate(t),sr.constructors[e]==null&&(sr.constructors[e]=[]),sr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in sr.constructors)sr.constructors[+t].forEach(n=>{if(n===e)throw new V("Duplicate callback constructor.")})}static clear(){sr.constructors={}}static createCallbacks(e){let t=[];for(let n in sr.constructors){let r=+n;e>=r&&t.push(...sr.constructors[r])}return t.map(n=>new n)}};sr.constructors={};function T3(e,t,n,r,a,s,i,o,l){let u=new I3,c=[new eee,...sr.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let h=new k3(c);return h.setParams({epochs:n,initialEpoch:r,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:u}}function yr(e,t={},n=!1){return tc(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function xp(e,t){return B(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Ne(ic(e),t,!0),r=Su(n.shape,Ot()),a=Yt(Tr(n,r));return we(e,a)})}function mi(e,t){return B(()=>wt(ic(me(t,e)),-1))}function wp(e,t){return B(()=>wt(Mt(me(t,e)),-1))}function Nl(e,t){return B(()=>{let n=me(e,t),r=An(Mt(e),Ot(),Number.MAX_VALUE),a=Mt(we(n,r));return P(100,wt(a,-1))})}function tee(e,t){return B(()=>{let n=An(t,Ot(),Number.MAX_VALUE),r=Sn(se(1,n)),a=An(e,Ot(),Number.MAX_VALUE),s=Sn(se(1,a));return wt(ic(me(r,s)),-1)})}function nee(e,t){return B(()=>{let n=Tr(0,me(1,P(e,t)));return wt(ic(n),-1)})}function ree(e,t){return B(()=>{let n=Tr(0,me(1,P(e,t)));return wt(n,-1)})}function aee(e,t){return B(()=>{let n=Ne(P(e,t),-1),r=Un(P(me(1,e),t),-1);return Tr(0,se(1,me(r,n)))})}function see(e,t){return B(()=>{let n=Math.log(2),r=me(t,e),a=me(se(r,Qo(P(-2,r))),n);return wt(a,-1)})}function uc(e,t,n=!1){return B(()=>{if(n)t=Ou(t);else{let r=Ne(t,t.shape.length-1,!0);t=we(t,r)}return t=An(t,Ot(),1-Ot()),xt(Ne(P(e.toFloat(),Sn(t)),t.shape.length-1))})}function _p(e,t,n=!1){return B(()=>{let r=Jo(TJ(e)).toInt();t=An(t,Ot(),1-Ot());let a=t.shape,s=Vo(r,a[a.length-1]).reshape(a);return uc(s,t,n)})}function iee(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new V(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return B(()=>{let n=t.relu(),r=t.abs().neg();return n.sub(t.mul(e)).add(r.exp().log1p())})}function bp(e,t){return B(()=>{let n;return n=An(t,Ot(),1-Ot()),n=Sn(we(n,me(1,n))),wt(iee(e,n),-1)})}function oee(e,t){return B(()=>{let n=An(e,Ot(),1),r=An(t,Ot(),1);return Ne(P(e,Sn(we(n,r))),-1)})}function lee(e,t){return B(()=>{let n=Sn(se(Ot(),t));return wt(me(t,P(e,n)),-1)})}function iA(e,t){return B(()=>{let n=xp(e,-1),r=xp(t,-1),a=P(n,r);return xt(Ne(a,-1))})}var vp={meanSquaredError:mi,meanAbsoluteError:wp,meanAbsolutePercentageError:Nl,meanSquaredLogarithmicError:tee,squaredHinge:nee,hinge:ree,categoricalHinge:aee,logcosh:see,categoricalCrossentropy:uc,sparseCategoricalCrossentropy:_p,binaryCrossentropy:bp,kullbackLeiblerDivergence:oee,poisson:lee,cosineProximity:iA};function oA(e){if(typeof e=="string"){if(e in vp)return vp[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new V(t)}else return e}function lA(e,t){return B(()=>{let n=P(.5,Tn(t)),r=ac(Qn(t,n),e.dtype);return wt(ka(e,r),-1)})}function uA(e,t){return B(()=>ac(ka(_u(e,-1),_u(t,-1)),"float32"))}function E3(e,t){return B(()=>er(e.equal(1),t.equal(1)).sum().cast("float32"))}function uee(e,t){return B(()=>er(e.equal(1),t.equal(0)).sum().cast("float32"))}function cee(e,t){return B(()=>er(e.equal(0),t.equal(1)).sum().cast("float32"))}function C3(e,t){return B(()=>{let n=E3(e,t),r=cee(e,t),a=n.add(r);return yn(Qn(a,0),n.div(a),0).cast("float32")})}function hee(e,t){return B(()=>{let n=E3(e,t),r=uee(e,t),a=n.add(r);return yn(Qn(a,0),n.div(a),0).cast("float32")})}function R3(e,t){return bp(e,t)}function F3(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),ka(e,t).asType("float32")}var dee=mi,pee=mi,fee=wp,mee=wp,Aee=Nl,yee=Nl,cA=uc,gee=iA,M3=_p,kp={binaryAccuracy:lA,categoricalAccuracy:uA,precision:C3,categoricalCrossentropy:cA,sparseCategoricalCrossentropy:M3,mse:dee,MSE:pee,mae:fee,MAE:mee,mape:Aee,MAPE:yee,cosine:gee};function xee(e){if(typeof e=="string"&&e in kp)return kp[e];if(typeof e!="string"&&e!=null)return e;throw new V(`Unknown metric ${e}`)}function Ip(e){if($r(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(vp))if(vp[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(kp))if(kp[n]===e){t=n;break}return t!==void 0?t:e.name}}function wee(e){let t={Adagrad:()=>ti.adagrad(.01),Adadelta:()=>ti.adadelta(1,.95,Ot()),Adam:()=>ti.adam(.001,.9,.999,Ot()),Adamax:()=>ti.adamax(.002,.9,.999,Ot(),0),RMSProp:()=>ti.rmsprop(.001,.9,0,Ot()),SGD:()=>ti.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new V(`Unknown Optimizer ${e}`)}var $3=1*1024*1024;function O3(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!hA(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>$3&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${$3}.`)}}function hA(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!hA(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!hA(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function Iee(e,t,n,r=console.log){let a=bee(e),s=["Layer (type)","Output shape","Param #"];a?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let i;if(!a){s.push("Receives inputs"),i=[];for(let c in e.nodesByDepth)i.push(...e.nodesByDepth[c])}r("_".repeat(t)),Np(s,n,r),r("=".repeat(t));let o=e.layers;for(let c=0;c<o.length;++c)a?vee(o[c],n,r):kee(o[c],n,i,r),r((c===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=_ee(e),u=yp(e.nonTrainableWeights);r(`Total params: ${l+u}`),r(`Trainable params: ${l}`),r(`Non-trainable params: ${u}`),r("_".repeat(t))}function _ee(e){let t;return e.collectedTrainableWeights!=null?t=yp(e.collectedTrainableWeights):t=yp(e.trainableWeights),t}function bee(e){let t=!0,n=[],r=[];for(let a in e.nodesByDepth)n.push(e.nodesByDepth[a]);for(let a of n){if(a.length>1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}r.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(r.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Np(e,t,n=console.log){let r="";for(let a=0;a<e.length;++a)a>0&&(r=r.slice(0,r.length-1)+" "),r+=e[a],r=r.slice(0,t[a]),r+=" ".repeat(t[a]-r.length);n(r)}function vee(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(o){r="multiple"}let a=e.name,s=e.getClassName(),i=[`${a} (${s})`,r,e.countParams().toString()];Np(i,t,n)}function kee(e,t,n,r){let a;try{a=JSON.stringify(e.outputShape)}catch(c){a="multiple"}let s=[];for(let c of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(c)===-1))for(let h=0;h<c.inboundLayers.length;++h){let d=c.inboundLayers[h].name,p=c.nodeIndices[h],m=c.tensorIndices[h];s.push(`${d}[${p}][${m}]`)}let i=e.name,o=e.getClassName(),l=s.length===0?"":s[0],u=[`${i} (${o})`,a,e.countParams().toString(),l];Np(u,t,r);for(let c=1;c<s.length;++c)Np(["","","",s[c]],t,r)}function D3(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function cc(e,t){if(e===null)return null;if(typeof e=="string")return hi(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let a=0;a<r;++a){let s=e[a];D3(t,a,s)?n.push(s):n.push(cc(s,t))}return n}else{let n={};for(let r of Object.keys(e)){let a=e[r];if(r==="name"&&typeof a=="string")n[r]=a;else{let s=hi(r);n[s]=cc(a,s)}}return n}}function dA(e,t){if(e==null)return null;if(typeof e=="string")return ta(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let a=0;a<r;++a){let s=e[a];D3(t,a,s)?n.push(s):n.push(dA(s,t))}return n}else{let n={};for(let r of Object.keys(e)){let a=e[r],s=ta(r);(r==="name"||r==="className")&&typeof a=="string"?n[s]=a:n[s]=dA(a,r)}return n}}var pA="3.2.0";function Nee(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return fe(t,e.dtype)}catch(n){throw new V(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Ai=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Ai)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=Nee(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new V(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Ar){if(this.id2Value[e.id]==null)throw new V(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new V(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Ar){if(this.id2Value[e.id]==null)throw new V(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new V(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Se(this.id2Mask)}},fA={},z3={};function hc(e,t,n,r){let a=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],u=t.names();for(let m of o)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);r!=null&&(r.maxNumTensors=-Infinity,r.minNumTensors=Infinity);let c=o.join(",")+"|"+t.names().join(","),h,d;if(fA[c]==null){let m=See(i,t);h=m.sorted,d=m.recipientCounts,fA[c]=h,z3[c]=d}h=fA[c],d={},a||Object.assign(d,z3[c]);let p=new Ai(t);for(let m=0;m<h.length;++m){if(r!=null){let E=jh().numTensors;E>r.maxNumTensors&&(r.maxNumTensors=E),E<r.minNumTensors&&(r.minNumTensors=E)}let f=h[m],A=f.sourceLayer;if(A instanceof kl)continue;let y=[],g=[],_=[],b=!1;for(let E of f.inputs){let M=p.getValue(E),D=p.getMask(E);y.push(M),g.push(D),D!=null&&(b=!0),a||(d[E.name]--,d[E.name]===0&&!t.hasKey(E)&&o.indexOf(E.name)===-1&&!M.isDisposed&&E.sourceLayer.stateful!==!0&&_.push(M))}b&&(n=n||{},n.mask=g[0]);let w=ht(A.apply(y,n)),x=null;A.supportsMasking&&(x=A.computeMask(y,g));let N=Tee(f),T=Array.isArray(N)?N:[N];for(let E=0;E<T.length;++E){p.hasKey(T[E])||p.add(T[E],w[E],Array.isArray(x)?x[0]:x);let M=o.indexOf(T[E].name);M!==-1&&(l[M]=w[E])}a||Se(_)}return p.disposeMasks(),s?l:l[0]}function See(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let a=P3(e[0],t);n=a.sorted,r=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=P3(s,t);for(let l of i)a.has(l.name)||(n.push(l),a.add(l.name));for(let l in o)r[l]==null&&(r[l]=new Set),o[l].forEach(u=>r[l].add(u))}}return{sorted:n,recipientCounts:Eee(r)}}function Eee(e){let t={};for(let n in e)t[n]=e[n].size;return t}function P3(e,t){let n=new Set,r=[],a={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),r.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)a[u.name]==null&&(a[u.name]=new Set),a[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:r,recipientMap:a}}function Tee(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;r<e.sourceLayer.inboundNodes.length;++r)for(let a of e.sourceLayer.inboundNodes[r].outputTensors)if(a.id===e.id){n=r;break}t=e.sourceLayer.getOutputAt(n)}return t}var Pr=class extends je{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=mp(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Fa(this.inputs).length!==this.inputs.length)throw new V(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);Fa(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let g=y.sourceLayer,_=y.nodeIndex,b=y.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(_),this.outputLayersTensorIndices.push(b)}for(let y of this.inputs){let g=y.sourceLayer,_=y.nodeIndex,b=y.tensorIndex;$r(_===0,"input layer has >1 nodes"),$r(b===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(_),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let g=this.inputLayers[y];if(!(g instanceof kl))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${g.getClassName()}.`);this.inputNames.push(g.name),this.feedInputShapes.push(g.batchInputShape),this.feedInputNames.push(g.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},r={},a={},s={},i=[],o=(y,g,_,b,w,x)=>{(b==null||w==null||x==null)&&(b=y.sourceLayer,w=y.nodeIndex,x=y.tensorIndex);let N=b.inboundNodes[w];if(_.indexOf(N)!==-1)throw new fr(`The tensor ${y.name} at layer "${b.name}" is part of a cycle.`);if(g.indexOf(N)!==-1)return;this.containerNodes.add(Pr.nodeKey(b,w)),b.id in s||(s[b.id]=Object.keys(s).length),_.indexOf(N)===-1&&_.push(N);let T=N.inboundLayers.length;for(let E=0;E<T;E++){let M=N.inputTensors[E],D=N.inboundLayers[E],L=N.nodeIndices[E],W=N.tensorIndices[E];o(M,g,_,D,L,W)}for(g.push(N);_.indexOf(N)>=0;)_.splice(_.indexOf(N),1);i.push(N)},l=[],u=[];for(let y of this.outputs)o(y,l,u);let c=i.slice().reverse();for(let y of c){n[y.id]=y,y.id in t||(t[y.id]=0);let g=t[y.id],_=r[y.outboundLayer.id]==null?0:r[y.outboundLayer.id];g=Math.max(g,_),r[y.outboundLayer.id]=g,a[y.outboundLayer.id]=y.outboundLayer,t[y.id]=g;for(let b=0;b<y.inboundLayers.length;b++){let w=y.inboundLayers[b],x=y.nodeIndices[b],N=w.inboundNodes[x],T=t[N.id]==null?0:t[N.id];t[N.id]=Math.max(g+1,T),n[N.id]=N}}let h={};for(let y in t){let g=t[y];g in h||(h[g]=[]),h[g].push(n[y])}let d={};for(let y in r){let g=r[y];g in d||(d[g]=[]),d[g].push(a[y])}let p=Object.keys(d).map(y=>parseInt(y,10)).sort(ap);this.layers=[];for(let y of p){let g=d[y];g.sort((_,b)=>{let w=s[_.id],x=s[b.id];return w<x?-1:w>x?1:0});for(let _ of g)_ instanceof Pr&&this.internalContainerRefs.push(_),this.layers.push(_)}this.layersByDepth=d,p=Object.keys(h).map(y=>parseInt(y,10)).sort(ap);let m=this.inputs.slice(),f=[];for(let y of p)for(let g of h[y]){let _=g.outboundLayer;if(_!=null){for(let b of g.inputTensors)if(m.indexOf(b)===-1)throw new fr(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${_.name}". The following previous layers were accessed without issue: ${f}`);for(let b of g.outputTensors)m.push(b);f.push(_.name)}}this.nodesByDepth=h;let A=this.layers.map(y=>y.name);for(let y of A){let g=A.filter(_=>_===y).length;if(g!==1)throw new fr(`The name "${y}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new gp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new V("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new V(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,r++}let a=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)a.push([n[i],e[s]]);else if(t)throw new V(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new V(`${s.length} of ${r} weights are not set: ${s}`)}sA(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${pA}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=dA(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return B(()=>{e=ht(e);let n=new Ai;for(let r=0;r<this.inputs.length;++r)n.add(this.inputs[r],e[r]);return hc(this.outputs,n,t)})}computeMask(e,t){return B(()=>{e=ht(e);let n;return t==null?n=ci(null,e.length):n=ht(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Ap(e);if(t.length!==this.inputLayers.length)throw new V(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let r=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(ap);if(r.length>1)for(let i of r){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let c=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],A=l.nodeIndices[m],y=l.tensorIndices[m],g=`${f.name}_${A}_${y}`,_=n[g];c.push(_)}let h=u.computeOutputShape(_n(c)),d=Ap(h),p=u.inboundNodes.indexOf(l);for(let m=0;m<d.length;m++){let f=`${u.name}_${p}_${m}`;n[f]=d[m]}}}let a=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],c=`${o.name}_${l}_${u}`;s.push(c)}for(let i=0;i<s.length;i++){let o=s[i];$r(o in n),a.push(n[o])}return _n(a)}runInternalGraph(e,t){t==null&&(t=ci(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],c=t[o];n[l.id]=[u,c]}let r=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(ap);for(let o of r){let l=this.nodesByDepth[o];for(let u of l){let c=u.outboundLayer,h=u.inputTensors,d=u.outputTensors,p=new Array;for(let m of h)m.id in n&&p.push(n[m.id]);if(p.length===h.length){let m={},f,A,y,g;if(u.callArgs!=null&&(m=u.callArgs),p.length===1){let[_,b]=p[0];m.mask==null&&(m.mask=b),y=ht(c.call(_,m)),g=ht(c.computeMask(_,b)),f=[_],A=[b]}else f=p.map(_=>_[0]),A=p.map(_=>_[1]),m.mask==null&&(m.mask=A),y=ht(c.call(f,m)),g=ht(c.computeMask(f,A));if(c.activityRegularizer)throw new Me("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let _=0;_<d.length;++_){let b=d[_],w=y[_],x=g[_];n[b.id]=[w,x]}}}}let a=[],s=[],i=[];for(let o of this.outputs){$r(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),a.push(l),s.push(u)}return[a,s,i]}buildNodeConversionMap(e){let t={},n;for(let r of this.layers){n=r instanceof Pr?1:0;for(let a=0;a<r.inboundNodes.length;a++){let s=Pr.nodeKey(r,a);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new V(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new V("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new V(`No such layer: ${e}`)}calculateLosses(){return B(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let r=Pr.nodeKey(t,n);this.containerNodes.has(r)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let c=0;c<s.inboundNodes.length;c++){let h=s.inboundNodes[c],d=Pr.nodeKey(s,c),p={};if(this.containerNodes.has(d)){if(h.callArgs)try{JSON.stringify(h.callArgs),p=h.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${h.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),p={}}if(h.inboundLayers.length>0){let m=[];for(let f=0;f<h.inboundLayers.length;f++){let A=h.inboundLayers[f],y=h.nodeIndices[f],g=h.tensorIndices[f],_=Pr.nodeKey(A,y),b=t[_];b==null&&(b=0),m.push([A.name,b,g,p])}l.push(m)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let r=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=Pr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.inputLayersTensorIndices[s];r.push([i.name,u,c])}e.inputLayers=r;let a=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=Pr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.outputLayersTensorIndices[s];a.push([i.name,u,c])}return e.outputLayers=a,e}static fromConfig(e,t,n={},r=!1){let a={},s={};function i(f,A){f.name in s?s[f.name].push(A):s[f.name]=[A]}function o(f,A){let y=[],g;for(let _ of A){let b=_[0],w=_[1],x=_[2];if(g=_[3]==null?{}:_[3],!(b in a)){i(f,A);return}let N=a[b];if(N.inboundNodes.length<=w){i(f,A);return}let T=N.inboundNodes[w];y.push(T.outputTensors[x])}y.length>0&&f.apply(_n(y),g)}function l(f){let A=f.name,y=yr(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(r),a[A]=y,f.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new V(`Corrupted configuration, expected array for nodeData: ${g}`);i(y,g)})}let u=t.name,c=t.layers;for(let f of c)l(f);for(;!tJ(s);)for(let f of c){let A=a[f.name];if(A.name in s){let y=s[A.name];delete s[A.name];for(let g of y)o(A,g)}}let h=[],d=[],p=t.inputLayers;for(let f of p){let A=f[0],y=f[1],g=f[2];$r(A in a);let _=a[A].inboundNodes[y].outputTensors;h.push(_[g])}let m=t.outputLayers;for(let f of m){let A=f[0],y=f[1],g=f[2];$r(A in a);let _=a[A].inboundNodes[y].outputTensors;d.push(_[g])}return new e({inputs:h,outputs:d,name:u})}get stateful(){if(this._stateful)throw new V("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){B(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function Cee(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function L3(e,t){return Cee(e,t,"classWeight")}async function W3(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let a=B(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());Se(a);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Bt(i,"float32")}else return null}function Ree(e,t){return P(e,t)}var Fee=32;function V3(e,t){let n,r,a=t;n=a.xs,r=a.ys,v.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=B3("input",e.inputNames,n),i=B3("output",e.outputNames,r),o=s[0].shape[0];v.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)v.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)v.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function B3(e,t,n){if(n instanceof Xe)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let a of t){if(n[a]==null)throw new V(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);r.push(n[a])}return r}}function Mee(e){if(e.length===3)throw new Me("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function Oee(e,t,n){let r=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=n.validationData!=null,s,i;if(a)if(U3(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=Mee(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;a?u=l.slice().concat(l.map(A=>"val_"+A)):u=l.slice();let c=S3(n.callbacks,n.yieldEvery),h=n.verbose==null?1:n.verbose,{callbackList:d,history:p}=T3(c,h,n.epochs,null,null,$ee(t,n),null,a,u);d.setModel(e),e.history=p,await d.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let A={};await d.onEpochBegin(m);let y=0,g=0;for(r||(f=await t.iterator());r?y<n.batchesPerEpoch:!0;){let _=await f.next();if(r&&_.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(_.value!=null){let{xs:b,ys:w}=V3(e,_.value),x={};x.batch=g,x.size=b[0].shape[0],await d.onBatchBegin(g,x);let N=[];if(n.classWeight!=null){let M=L3(n.classWeight,e.outputNames);for(let D=0;D<M.length;++D)N.push(await W3(w[D],null,M[D]))}let T=b.concat(w).concat(N),E=o(T);Se(T);for(let M=0;M<l.length;++M){let D=l[M],L=E[M];x[D]=L,Wt(L)}await d.onBatchEnd(g,x),b3(x),g++,y++}if(r?y>=n.batchesPerEpoch:_.done){if(a){let b;U3(n.validationData)?b=ht(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=ht(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?Fee:n.validationBatchSize,verbose:0}));for(let w=0;w<e.metricsNames.length;++w)A[`val_${e.metricsNames[w]}`]=b[w]}break}if(e.stopTraining_)break}if(await d.onEpochEnd(m,A),m++,e.stopTraining_)break}return await d.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function $ee(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function U3(e){return typeof e.iterator=="function"}function Dee(e){return typeof e.next=="function"}async function zee(e,t,n){n=n||{};let r=n.batches!=null,a=e.testFunction,s=[];if(n.verbose>0)throw new Me("Verbose mode is not implemented yet.");v.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=Dee(t)?t:await t.iterator(),o=0,l=0;for(;r?l<n.batches:!0;){let u=await i.next();if(s=B(()=>{if(u.value){let{xs:c,ys:h}=V3(e,u.value),d=c.concat(h),p=B(()=>a(d));if(Se(d),l===0)for(let f=0;f<p.length;++f)s.push(_e(0));let m=d[0].shape[0];for(let f=0;f<p.length;++f){let A=p[f],y=s[f];s[f]=B(()=>se(s[f],P(m,A))),l>0&&Se(y)}Se(p),o+=m,++l}return s}),u.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let c=s[u];s[u]=we(s[u],o),Se(c)}return _n(s)}function mA(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function dc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>fi(r,t,n-t)):fi(e,t,n-t)}function AA(e,t){return B(()=>e==null?null:Array.isArray(e)?e.map(n=>AA(n,t)):o3(e,t.dtype==="int32"?t:t.toInt()))}function yA(e,t){let n=[],r=0,a=null;for(;r<e;)a=r+t,a>=e&&(a=e),n.push([r,a]),r=a;return n}async function Pee(e,t,n,r,a,s,i,o,l,u,c,h,d,p,m){a==null&&(a=32),s==null&&(s=1),c==null&&(c=!0),d==null&&(d=0);let f=!1;if(l!=null&&u!=null&&(f=!0),m!=null&&(f=!0,p==null))throw new V("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,a,p,"steps_per_epoch"),y;A!=null&&(y=mr(0,A)),i==null&&(i=1);let{callbackList:g,history:_}=T3(o,i,s,d,A,p,a,f,h);g.setModel(e),e.history=_,await g.onTrainBegin(),e.stopTraining_=!1;for(let b=d;b<s;++b){await g.onEpochBegin(b);let w={};if(p!=null)throw new Me("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Me("batch shuffling is not implemneted yet");c&&v.shuffle(y);let x=Bt(y),N=yA(A,a);for(let T=0;T<N.length;++T){let E={};if(await g.onBatchBegin(T,E),B(()=>{let M=N[T][0],D=N[T][1],L=fi(x,M,D-M);E.batch=T,E.size=D-M;let W=AA(n,L),U=t(W);for(let j=0;j<r.length;++j){let X=r[j],G=U[j];E[X]=G,Wt(G)}if(T===N.length-1&&f){let j=e.testLoop(l,u,a);for(let X=0;X<r.length;++X){let G=r[X],ee=j[X];Wt(ee),w["val_"+G]=ee}}}),await g.onBatchEnd(T,E),b3(E),e.stopTraining_)break}x.dispose()}if(await g.onEpochEnd(b,w),e.stopTraining_)break}return await g.onTrainEnd(),await e.history.syncData(),e.history}async function Lee(e,t,n,r={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let a,s,i,o,l,u,c;try{let h=r.batchSize==null?32:r.batchSize;mA(h);let d=!1,p=await e.standardizeUserData(t,n,r.sampleWeight,r.classWeight,d,h);a=p[0],s=p[1],c=p[2];let m=!1,f;if(r.validationData!=null&&r.validationData.length>0){if(m=!0,r.validationData.length===2)i=r.validationData[0],o=r.validationData[1];else throw r.validationData.length===3?new Me("validationData including sample weights is not supported yet."):new V(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let x=!0,N=await e.standardizeUserData(i,o,null,null,x,h);l=N[0],u=N[1],f=l.concat(u)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){m=!0;let x=Math.floor(a[0].shape[0]*(1-r.validationSplit)),N=a[0].shape[0];l=dc(a,x,N),a=dc(a,0,x),u=dc(s,x,N),s=dc(s,0,x),f=l.concat(u)}else r.validationSteps!=null&&(m=!0);let A=a.concat(s).concat(c);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),_,b;m?(e.makeTestFunction(),_=e.testFunction,b=g.slice().concat(g.map(x=>"val_"+x))):(_=null,f=[],b=g.slice());let w=S3(r.callbacks,r.yieldEvery);return await Pee(e,y,A,g,h,r.epochs,r.verbose,w,_,f,r.shuffle,b,r.initialEpoch,null,null)}finally{e.isTraining=!1,yi(a,t),yi(s,n),yi(l,i),yi(u,o),c!=null&&Se(c)}}function j3(e){let t=[];e instanceof Xe&&(e=[e]);for(let n=0;n<e.length;++n){let r=e[n];if(r.rank===1)t.push(sc(r,1));else{if(r.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(r)}}return t}function yi(e,t){if(e==null)return;let n=[];if(t instanceof Xe)n.push(t.id);else if(Array.isArray(t))t.forEach(a=>n.push(a.id));else if(t!=null)for(let a in t){let s=t[a];n.push(s.id)}let r=[];if(e instanceof Xe)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(a=>{n.indexOf(a.id)===-1&&r.push(a)});else if(e!=null)for(let a in e){let s=e[a];n.indexOf(s.id)===-1&&r.push(s)}r.forEach(a=>{a.isDisposed||a.dispose()})}function Wee(e){return e instanceof Xe}function gA(e){return Array.isArray(e)}function H3(e){return!Wee(e)&&!gA(e)}function G3(e,t,n,r=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(gA(e)&&e.length>0)i=!0;else if(H3(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new V(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(H3(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new V(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(gA(e)){if(e=e,e.length!==t.length)throw new V(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new V(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=j3(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new V(`Error when checking ${a}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!r)continue;let u=o.shape[l],c=n[i][l];if(c!=null&&c>=0&&u!==c)throw new V(`Error when checking ${a}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function Bee(e,t,n){let r=Fa(e.map(s=>s.shape[0]));r.sort();let a=Fa(t.map(s=>s.shape[0]));if(a.sort(),r.length>1)throw new V(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new V(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(r.length>0&&a.length>0&&!v.arraysEqual(r,a))throw new V(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${a[0]} target sample(s).`)}function Vee(e,t,n){let r=[mi,bp,uc];for(let a=0;a<e.length;++a){let s=e[a],i=t[a],o=n[a];if(i!=null){if(i===uc&&s.shape[s.shape.length-1]===1)throw new V(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(r.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let c=0;c<l.length;++c){let h=l[c],d=u[c];if(d!=null&&h!==d)throw new V(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function q3(e,t,n,r=!0,a=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new V(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new V(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new V(`Error when checking ${a}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!r)continue;let u=o.shape[l],c=n[i][l];if(c!=null&&c!==u)throw new V(`Error when checking ${a}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function Uee(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let a of t){let s=n.hasOwnProperty(a)?n[a]:[];Array.isArray(s)||(s=[s]),r.push(s)}return r}}var jee="layers-model",na=class extends Pr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new V("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");Iee(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=wee(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Jr))throw new V("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new V(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(oA(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new V(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>oA(s))}else{let s=oA(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],pi("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let r=Uee(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};pi("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=r[s];(o=>{let l="",u,c,h;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===bp?["accuracy","acc"].indexOf(d)!==-1?c=lA:["crossentropy","ce"].indexOf(d)!==-1&&(c=R3):this.lossFunctions[s]===_p?["accuracy","acc"].indexOf(d)!==-1?c=F3:["crossentropy","ce"].indexOf(d)!==-1&&(c=M3):["accuracy","acc"].indexOf(d)!==-1?c=uA:["crossentropy","ce"].indexOf(d)!==-1&&(c=cA);let f;["accuracy","acc"].indexOf(d)!==-1?f="acc":["crossentropy","ce"].indexOf(d)!==-1&&(f="ce"),h=c,u=l+f}else h=xee(d),u=l+Ip(d);let p;pi(u,()=>{p=h}),a(s,u,p)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;mA(r);let a=!0,s=this.standardizeUserDataXY(e,t,a,r);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,r,n.verbose,n.steps);return _n(l)}finally{yi(s[0],e),yi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),zee(this,e,t)}checkNumSamples(e,t,n,r="steps"){let a;if(n!=null){if(a=null,t!=null)throw new V(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new V(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new V("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],a=this.retrieveSymbolicTensors(r),s=new Ai;if(e instanceof Xe&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new V(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new V(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=hc(a,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=ci(null,e.length),n=e.length;for(let r of this.layers){let a=Array.isArray(r.output)?r.output:[r.output],s=a.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=a[o],n--),n===0)break}if(n===0)break}if(n>0){let r=[];throw t.forEach((a,s)=>{a==null&&r.push(e[s])}),new V(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return B(()=>{let r=this.checkNumSamples(e);if(n)throw new Me("Verbose predictLoop() is not implemented yet.");let a=yA(r,t),s=this.outputs.map(i=>[]);for(let i=0;i<a.length;++i)B(()=>{let o=a[i][0],l=a[i][1],u=dc(e,o,l),c=[];if(Array.isArray(u))for(let d=0;d<u.length;++d)c.push({key:this.inputs[d],value:u[d]});else c.push({key:this.inputs[0],value:u});let h=new Ai(c);return hc(this.outputs,h)}).forEach((o,l)=>s[l].push(o));return _n(s.map(i=>nt(i,0)))})}predict(e,t={}){let n=j3(e);q3(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return mA(r),this.predictLoop(n,r)}finally{yi(n,e)}}predictOnBatch(e){q3(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new fr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===_p?a.push(i.slice(0,i.length-1).concat([1])):a.push(i)}if(e=G3(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=G3(t,this.feedOutputNames,a,!1,"target"),Bee(e,t,null),Vee(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&r!=null&&r>0&&e[0].shape[0]%r!=0)throw new V(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(r!=null){let u=L3(r,this.outputNames);l=[];for(let c=0;c<u.length;++c)l.push(await W3(o[c],null,u[c]))}return[i,o,l]}testLoop(e,t,n,r=0,a){return B(()=>{let s=this.checkNumSamples(t,n,a,"steps"),i=[];if(r>0)throw new Me("Verbose mode is not implemented yet.");if(a!=null)throw new Me("steps mode in testLoop() is not implemented yet");{let o=yA(s,n),l=Bt(mr(0,s));for(let u=0;u<o.length;++u){let c=o[u][0],h=o[u][1],d=fi(l,c,h-c),p=AA(t,d),m=e(p);if(u===0)for(let f=0;f<m.length;++f)i.push(_e(0));for(let f=0;f<m.length;++f){let A=m[f];i[f]=se(i[f],P(h-c,A))}}for(let u=0;u<i.length;++u)i[u]=we(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let r=e[n],a=r;Xb(e,r)>1&&(a+=`_${Xb(e.slice(0,n),r)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let p=0;p<this.inputs.length;++p)u.push({key:this.inputs[p],value:n[p]});let c=new Ai(u),h=hc(this.outputs,c,{training:!0}),d;for(let p=0;p<this.lossFunctions.length;++p){let m=this.lossFunctions[p](r[p],h[p]);a[p]!=null&&(m=Ree(m,a[p]));let f=wt(m);t.push(f),p===0?d=m:d=se(d,m)}for(let p=0;p<this.metricsTensors.length;++p){let m;if(this.outputs.length>1&&p<this.outputs.length)m=t[p];else{let f=this.metricsTensors[p][0],A=this.metricsTensors[p][1];m=wt(f(r[A],h[A]))}Wt(m),s.push(m)}return d=wt(d),this.calculateLosses().forEach(p=>{d=se(d,p)}),d},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>B(()=>{let t=[],n,r=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:r[l]});let i=new Ai(s),o=hc(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],c=wt(u(a[l],o[l]));l===0?n=c:n=se(n,c),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],c=this.metricsTensors[l][1],h=wt(u(a[c],o[c]));t.push(h)}return t})}async fit(e,t,n={}){return Lee(this,e,t,n)}async fitDataset(e,t){return Oee(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),r=n[0],a=n[1],s=this.makeTrainFunction()(r.concat(a)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Se(s),_n(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,r=n?this.trainableWeights:this.weights,a=this.getWeights(n);for(let s=0;s<r.length;++s)n&&!r[s].trainable||t.push({name:r[s].originalName,tensor:a[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=jh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-jh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=ta(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>ta(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=ta(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ta(Ip(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ta(Ip(e)));{let e={};for(let t in this.metrics)e[t]=ta(Ip(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=cc(e.optimizer_config),n=yr(t),r;if(typeof e.loss=="string")r=hi(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(s=>hi(s));else if(e.loss!=null){r={};for(let s in e.loss)r[s]=hi(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>hi(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=hi(e.metrics[s])}this.compile({loss:r,metrics:a,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=mn.getSaveHandlers(e);if(i.length===0)throw new V(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new V(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new V("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await mn.encodeWeights(this.getNamedWeights(t)),r=!1,a=null,s={modelTopology:this.toJSON(a,r),format:jee,generatedBy:`TensorFlow.js tfjs-layers v${pA}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await mn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=mn.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;O3(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){O3(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};na.className="Model";re.registerClass(na);var X3=class extends na{};X3.className="Functional";re.registerClass(X3);async function Hee(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=cc(n),a=yr(r,t);if(e.weightsManifest!=null){let s=await mn.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),Se(s)}return a}async function qee(e,t){if(t==null&&(t={}),typeof e=="string"){let n=mn.getLoadHandlers(e,t);if(n.length===0)n.push(mn.browserHTTPRequest(e,t));else if(n.length>1)throw new V(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return Gee(e,void 0,t)}async function Gee(e,t,n){if(n==null&&(n={}),e.load==null)throw new V("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),a=r.modelTopology;a.model_config!=null&&(a=a.model_config);let s=n.strict==null?!0:n.strict,i=r.weightData!=null&&r.weightSpecs!=null&&s,o=yr(cc(a),t,i),l=r.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),r.userDefinedMetadata!=null&&o.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new V("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=Xee(r.weightData,r.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&c.length>0&&await o.optimizer.setWeights(c),Se(u),Se(c.map(h=>h.tensor))}return o}function Xee(e,t){let n=mn.decodeWeights(e,t),r={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:n[s.name]}):r[s.name]=n[s.name]}),{modelWeights:r,optimizerWeights:a}}var Sl=class extends na{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:mp("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new V(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Sl||e instanceof na,n;if(t){if(n=e,n.outputs.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new V("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new V("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=_3({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new V(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=w3(this.outputs[0])}this.inboundNodes=[],new gp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:ci(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(ot(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new na({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new fr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new fr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new fr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new fr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new V("Legacy serialization format not supported yet.");a=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Sl))throw new Me(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=yr(o,void 0,r);r&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new V("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new V("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Sl.className="Sequential";re.registerClass(Sl);function Kee(e){return new na(e)}function Zee(e){return new Sl(e)}function Yee(e,t){return t==null&&(t={}),qee(e,t)}function d3(e){return _3(e)}function Jee(e,t){sr.registerCallbackConstructor(e,t)}var $n=class extends re.Serializable{getConfig(){return{}}},K3=class extends $n{apply(e,t=1){return CJ(e,t)}};K3.className="elu";re.registerClass(K3);var Z3=class extends $n{apply(e){return ud(e)}};Z3.className="selu";re.registerClass(Z3);var Y3=class extends $n{apply(e){return Cr(e)}};Y3.className="relu";re.registerClass(Y3);var J3=class extends $n{apply(e){return B(()=>tl(6,Cr(e)))}};J3.className="relu6";re.registerClass(J3);var Q3=class extends $n{apply(e){return e}};Q3.className="linear";re.registerClass(Q3);var e7=class extends $n{apply(e){return In(e)}};e7.className="sigmoid";re.registerClass(e7);var t7=class extends $n{apply(e){return FJ(e)}};t7.className="hardSigmoid";re.registerClass(t7);var n7=class extends $n{apply(e){return Qo(e)}};n7.className="softplus";re.registerClass(n7);var r7=class extends $n{apply(e){return RJ(e)}};r7.className="softsign";re.registerClass(r7);var a7=class extends $n{apply(e){return Xo(e)}};a7.className="tanh";re.registerClass(a7);var xA=class extends $n{apply(e,t=-1){return Ou(e,t)}};xA.className="softmax";re.registerClass(xA);var s7=class extends $n{apply(e,t=-1){return nd(e,t)}};s7.className="logSoftmax";re.registerClass(s7);var i7=class extends $n{apply(e,t=1){return B(()=>In(e.mul(t)).mul(e))}};i7.className="swish";re.registerClass(i7);function Da(e){return e.getClassName()}function wA(e,t={}){return tc(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function za(e){if(e==null){let t={};return t.className="linear",t.config={},wA(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},wA(t)}else return e instanceof $n?e:wA(e)}function _A(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var o7=class extends re.Serializable{},pc=class extends o7{constructor(e){super();_A(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return B(()=>{let t=Nt([1]);return this.hasL1&&(t=se(t,Ne(P(this.l1,Mt(e))))),this.hasL2&&(t=se(t,Ne(P(this.l2,ic(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};pc.className="L1L2";re.registerClass(pc);function Qee(e){return _A(e),new pc({l1:e!=null?e.l1:null,l2:0})}function ete(e){return _A(e),new pc({l2:e!=null?e.l2:null,l1:0})}var l7={l1l2:"L1L2"};function lt(e){return Om(e)}function u7(e,t={}){return tc(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function At(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in l7?l7[e]:e,config:{}};return u7(t)}else return e instanceof o7?e:u7(e)}var bA=class extends je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=De(e);let n=Cr(e);return this.maxValue!=null&&(n=An(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};bA.className="ReLU";re.registerClass(bA);var vA=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=De(e);return Tu(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};vA.className="LeakyReLU";re.registerClass(vA);var kA=class extends je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=mt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=At(e.alphaRegularizer),this.alphaConstraint=zt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new V(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=ot(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r<e.length;++r)n[r]=e[r];this.inputSpec=[new jt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=De(e),Fu(e,this.alpha.read())}getConfig(){let e={alphaInitializer:_t(this.alphaInitializer),alphaRegularizer:lt(this.alphaRegularizer),alphaConstraint:Dt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};kA.className="PReLU";re.registerClass(kA);var IA=class extends je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Me(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=De(e);return Yo(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};IA.className="ELU";re.registerClass(IA);var NA=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=De(e);return n.mul(ac(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};NA.className="ThresholdedReLU";re.registerClass(NA);var SA=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new xA().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=De(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};SA.className="Softmax";re.registerClass(SA);function Tl(e,t,n){if(typeof e=="number")return ci(e,t);if(e.length!==t)throw new V(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let r=0;r<t;++r){let a=e[r];if(!NJ(a))throw new V(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${a}`)}return e}function gr(e,t,n,r,a=1){if(e==null)return e;let s=t+(t-1)*(a-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+r-1)/r)}function Sp(e,t,n,r){if(e==null)return null;if(r==="valid")e=e*t+$a([n-t,0]);else if(r==="same")e=e*t;else throw new V(`Unsupport padding mode: ${r}.`);return e}function TA(e,t){return B(()=>(kt(t),t==="channelsFirst"?tt(e,[0,2,3,1]):e))}function c7(e,t){return B(()=>(kt(t),t==="channelsFirst"?tt(e,[0,2,3,4,1]):e))}function tte(e,t,n,r=1,a="valid",s,i=1){return B(()=>{if(s==null&&(s=pr()),kt(s),e.shape.length!==3)throw new V(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new V(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new V(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=tt(e,[0,2,1])),a==="causal")throw new Me("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Xh(e,t,r,a==="same"?"same":"valid","NWC",i);return n!=null&&(o=Dr(o,n)),o})}function h7(e,t,n,r=[1,1],a="valid",s,i,o=null){return B(()=>{if(s==null&&(s=pr()),kt(s),e.rank!==3&&e.rank!==4)throw new V(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new V(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=TA(e,s);if(a==="causal")throw new Me("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Ta.conv2d({x:l,filter:t,strides:r,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=tt(l,[0,3,1,2])),l})}function nte(e,t,n,r=[1,1,1],a="valid",s,i){return B(()=>{if(s==null&&(s=pr()),kt(s),e.rank!==4&&e.rank!==5)throw new V(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new V(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=c7(e,s);if(a==="causal")throw new Me("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=yf(o,t,r,a==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Dr(o,n)),s==="channelsFirst"&&(o=tt(o,[0,4,1,2,3])),o})}var EA=class extends je{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",EA.verifyArgs(t),this.rank=e,Ut(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Me(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Tl(t.kernelSize,e,"kernelSize"),this.strides=Tl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Gn(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,kt(this.dataFormat),this.activation=za(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=mt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=zt(t.biasConstraint),this.biasRegularizer=At(t.biasRegularizer),this.activityRegularizer=At(t.activityRegularizer),this.dilationRate=Tl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new V(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new V(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new V(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if($r("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!zm(e.kernelSize,"number",1,3))throw new V(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Da(this.activation),useBias:this.useBias,biasInitializer:_t(this.biasInitializer),biasRegularizer:lt(this.biasRegularizer),activityRegularizer:lt(this.activityRegularizer),biasConstraint:Dt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},fc=class extends EA{constructor(e,t){super(e,t);this.kernel=null,fc.verifyArgs(t),this.filters=t.filters,Ut(this.filters,"filters"),this.kernelInitializer=mt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=zt(t.kernelConstraint),this.kernelRegularizer=At(t.kernelRegularizer)}build(e){e=ot(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return B(()=>{e=De(e);let n,r=this.bias==null?null:this.bias.read(),a=Zb(this.activation.getClassName());if(a!=null&&this.rank===2)n=h7(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)n=tte(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=h7(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=nte(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Me("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=ot(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a<n.length;++a){let s=gr(n[a],this.kernelSize[a],this.padding,this.strides[a],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[a]);t.push(s)}let r=[e[0]];return this.dataFormat==="channelsLast"?(r=r.concat(t),r.push(this.filters)):(r.push(this.filters),r=r.concat(t)),r}getConfig(){let e={filters:this.filters,kernelInitializer:_t(this.kernelInitializer),kernelRegularizer:lt(this.kernelRegularizer),kernelConstraint:Dt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new V(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},mc=class extends fc{constructor(e){super(2,e);mc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!zm(e.kernelSize,"number",1,2))throw new V(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};mc.className="Conv2D";re.registerClass(mc);var Tp=class extends fc{constructor(e){super(3,e);Tp.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new V(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Tp.className="Conv3D";re.registerClass(Tp);var CA=class extends mc{constructor(e){super(e);if(this.inputSpec=[new jt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new V(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ot(e),e.length!==4)throw new V("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new jt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return B(()=>{let n=De(e);if(n.shape.length!==4)throw new V(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=r[s],l=r[i],u=this.kernelSize[0],c=this.kernelSize[1],h=this.strides[0],d=this.strides[1],p=Sp(o,h,u,this.padding),m=Sp(l,d,c,this.padding),f=[a,p,m,this.filters];this.dataFormat!=="channelsLast"&&(n=tt(n,[0,2,3,1]));let A=Kh(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=tt(A,[0,3,1,2])),this.bias!=null&&(A=Dr(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=ot(e);let t=e.slice(),n,r,a;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3):(n=3,r=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[r]=Sp(t[r],o,s,this.padding),t[a]=Sp(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};CA.className="Conv2DTranspose";re.registerClass(CA);var d7=class extends fc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new V("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new V("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new V(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=mt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=At(t.depthwiseRegularizer),this.depthwiseConstraint=zt(t.depthwiseConstraint),this.pointwiseInitializer=mt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=At(t.pointwiseRegularizer),this.pointwiseConstraint=zt(t.pointwiseConstraint)}build(e){if(e=ot(e),e.length<this.rank+2)throw new V(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new V(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],r=this.kernelSize.concat([n,this.depthMultiplier]),a=[];for(let i=0;i<this.rank;++i)a.push(1);a.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",r,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",a,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new jt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return B(()=>{e=De(e);let n;if(this.rank===1)throw new Me("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=tt(e,[0,2,3,1])),n=Of(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Dr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=tt(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=_t(this.depthwiseInitializer),e.pointwiseInitializer=_t(this.pointwiseInitializer),e.depthwiseRegularizer=lt(this.depthwiseRegularizer),e.pointwiseRegularizer=lt(this.pointwiseRegularizer),e.depthwiseConstraint=Dt(this.depthwiseConstraint),e.pointwiseConstraint=Dt(this.pointwiseConstraint),e}};d7.className="SeparableConv";var RA=class extends d7{constructor(e){super(2,e)}};RA.className="SeparableConv2D";re.registerClass(RA);var Ep=class extends fc{constructor(e){super(1,e);Ep.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!zm(e.kernelSize,"number",1,1))throw new V(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Ep.className="Conv1D";re.registerClass(Ep);var FA=class extends je{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return B(()=>{if(e=De(e),this.dataFormat==="channelsLast"){let n=sp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return sp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=sp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return sp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};FA.className="Cropping2D";re.registerClass(FA);var MA=class extends je{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,kt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,vJ(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return B(()=>{let n=De(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=tt(n,[0,2,3,1]);let a=this.size[0]*r[2],s=this.size[1]*r[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s]);return tt(i,[0,3,1,2])}else{let a=this.size[0]*r[1],s=this.size[1]*r[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};MA.className="UpSampling2D";re.registerClass(MA);function rte(e,t,n=[1,1],r="valid",a,s){return B(()=>{a==null&&(a=pr()),kt(a);let i=TA(e,a);if(e.rank!==4)throw new V(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new V(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=Zo(i,t,n,r==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=tt(i,[0,3,1,2])),i})}var $A=class extends EA{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=mt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=zt(e.depthwiseConstraint),this.depthwiseRegularizer=At(e.depthwiseRegularizer)}build(e){if(e=ot(e),e.length<4)throw new V(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new V(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return B(()=>{e=De(e);let n=rte(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Dr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=ot(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=gr(t,this.kernelSize[0],this.padding,this.strides[0]),s=gr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,a,s]:[e[0],a,s,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=_t(this.depthwiseInitializer),e.depthwiseRegularizer=lt(this.depthwiseRegularizer),e.depthwiseConstraint=Dt(this.depthwiseRegularizer),e}};$A.className="DepthwiseConv2D";re.registerClass($A);function p7(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new V("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),n=a(n),{inputs:e,initialState:t,constants:n}}function f7(e,t,n,r=!1,a,s,i=!1,o=!1){return B(()=>{let l=t.shape.length;if(l<3)throw new V(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(mr(2,l));if(t=tt(t,u),s!=null)throw new Me("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=a.asType("bool").asType("float32"),a.rank===l-1&&(a=Nn(a,-1)),a=tt(a,u)),r&&(t=En(t,0),a!=null&&(a=En(a,0)));let c=[],h,d=n,p=t.shape[0],m=tr(t),f;a!=null&&(f=tr(a));for(let y=0;y<p;++y){let g=m[y],_=B(()=>e(g,d));if(a==null)h=_[0],d=_[1];else{let b=B(()=>{let w=f[y],x=Tn(w).sub(w),N=_[0].mul(w).add(d[0].mul(x)),T=d.map((E,M)=>_[1][M].mul(w).add(E.mul(x)));return{output:N,newStates:T}});h=b.output,d=b.newStates}o&&c.push(h)}let A;return o&&(A=Cn(c,1)),[h,A,d]})}var zr=class extends je{constructor(e){super(e);let t;if(e.cell==null)throw new V("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Cp({cells:e.cell}):t=e.cell,t.stateSize==null)throw new V("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new jt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return mr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){rA(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[r].concat(a)}else return r}computeMask(e,t){return B(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(a=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Me("Constants support is not implemented in RNN yet.");rA(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,r=e.slice(2);this.inputSpec[0]=new jt({shape:[n,null,...r]});let a=[e[0]].concat(e.slice(2));if(t!=null)throw new Me("Constants support is not implemented in RNN yet.");this.cell.build(a);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new V(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new jt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){B(()=>{if(!this.stateful)throw new ea("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Nt([n,r])):this.states_=[Nt([n,this.cell.stateSize])];else if(e==null)Se(this.states_),this.keptStates!=null&&(Se(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Nt([n,r])):this.states_[0]=Nt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Se(this.states_);for(let r=0;r<this.states_.length;++r){let a=e[r],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[r]:this.cell.stateSize,i=[n,s];if(!v.arraysEqual(a.shape,i))throw new V(`State ${r} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${a.shape}`);this.states_[r]=a}}this.states_=this.states_.map(r=>Wt(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=p7(e,n,r,this.numConstants);e=a.inputs,n=a.initialState,r=a.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new jt({shape:o.shape}));i=i.concat(this.stateSpec)}if(r!=null&&(t.constants=r,s=s.concat(r),this.numConstants=r.length),s[0]instanceof Ar){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let c=super.apply(o,t);return this.inputSpec=u,c}else return super.apply(e,t)}call(e,t){return B(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;e=De(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new V(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:r},o=f7((d,p)=>{let m=this.cell.call([d].concat(p),i);return[m[0],m.slice(1)]},e,a,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],c=o[2];this.stateful&&this.resetStates(c,r);let h=this.returnSequences?u:l;return this.returnState?[h].concat(c):h})}getInitialState(e){return B(()=>{let t=Nt(e.shape);return t=Ne(t,[1,2]),t=sc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Um(t,[1,n]):t):this.cell.stateSize>1?[Um(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===zr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let r=t.cell,a=yr(r,n);return new e(Object.assign(t,{cell:a}))}};zr.className="RNN";re.registerClass(zr);var lc=class extends je{},Rp=class extends lc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ut(this.units,"units"),this.activation=za(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=mt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=mt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=mt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=At(e.kernelRegularizer),this.recurrentRegularizer=At(e.recurrentRegularizer),this.biasRegularizer=At(e.biasRegularizer),this.kernelConstraint=zt(e.kernelConstraint),this.recurrentConstraint=zt(e.recurrentConstraint),this.biasConstraint=zt(e.biasConstraint),this.dropout=vl([1,$a([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=vl([1,$a([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ot(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return B(()=>{if(e=e,e.length!==2)throw new V(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Pa({ones:()=>Tn(e),rate:this.dropout,training:r})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Pa({ones:()=>Tn(n),rate:this.recurrentDropout,training:r}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Or(P(e,s),this.kernel.read()):a=Or(e,this.kernel.read()),this.bias!=null&&(a=Dr(a,this.bias.read())),i!=null&&(n=P(n,i));let o=se(a,Or(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Da(this.activation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),recurrentInitializer:_t(this.recurrentInitializer),biasInitializer:_t(this.biasInitializer),kernelRegularizer:lt(this.kernelRegularizer),recurrentRegularizer:lt(this.recurrentRegularizer),biasRegularizer:lt(this.biasRegularizer),activityRegularizer:lt(this.activityRegularizer),kernelConstraint:Dt(this.kernelConstraint),recurrentConstraint:Dt(this.recurrentConstraint),biasConstraint:Dt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Rp.className="SimpleRNNCell";re.registerClass(Rp);var OA=class extends zr{constructor(e){e.cell=new Rp(e),super(e)}call(e,t){return B(()=>{this.cell.dropoutMask!=null&&(Se(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Se(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return new e(t)}};OA.className="SimpleRNN";re.registerClass(OA);var Fp=class extends lc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new V("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Ut(this.units,"units"),this.activation=za(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=za(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=mt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=mt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=mt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=At(e.kernelRegularizer),this.recurrentRegularizer=At(e.recurrentRegularizer),this.biasRegularizer=At(e.biasRegularizer),this.kernelConstraint=zt(e.kernelConstraint),this.recurrentConstraint=zt(e.recurrentConstraint),this.biasConstraint=zt(e.biasConstraint),this.dropout=vl([1,$a([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=vl([1,$a([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ot(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return B(()=>{if(e=e,e.length!==2)throw new V(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Pa({ones:()=>Tn(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Pa({ones:()=>Tn(r),rate:this.recurrentDropout,training:n,count:3}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=P(e,a[0]));let u=Or(e,this.kernel.read());this.useBias&&(u=Dr(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(r=P(r,s[0]));let c=this.recurrentKernel.read(),[h,d]=Zt(c,[2*this.units,this.units],c.rank-1),p=Or(r,h),[m,f,A]=Zt(u,3,u.rank-1),[y,g]=Zt(p,2,p.rank-1);i=this.recurrentActivation.apply(se(m,y)),o=this.recurrentActivation.apply(se(f,g));let _=Or(P(o,r),d);l=this.activation.apply(se(A,_));let b=se(P(i,r),P(se(1,xt(i)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Da(this.activation),recurrentActivation:Da(this.recurrentActivation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),recurrentInitializer:_t(this.recurrentInitializer),biasInitializer:_t(this.biasInitializer),kernelRegularizer:lt(this.kernelRegularizer),recurrentRegularizer:lt(this.recurrentRegularizer),biasRegularizer:lt(this.biasRegularizer),activityRegularizer:lt(this.activityRegularizer),kernelConstraint:Dt(this.kernelConstraint),recurrentConstraint:Dt(this.recurrentConstraint),biasConstraint:Dt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};Fp.className="GRUCell";re.registerClass(Fp);var DA=class extends zr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Fp(e),super(e)}call(e,t){return B(()=>{this.cell.dropoutMask!=null&&(Se(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Se(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};DA.className="GRU";re.registerClass(DA);var Ac=class extends lc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ut(this.units,"units"),this.activation=za(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=za(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=mt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=mt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=mt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=At(e.kernelRegularizer),this.recurrentRegularizer=At(e.recurrentRegularizer),this.biasRegularizer=At(e.biasRegularizer),this.kernelConstraint=zt(e.kernelConstraint),this.recurrentConstraint=zt(e.recurrentConstraint),this.biasConstraint=zt(e.biasConstraint),this.dropout=vl([1,$a([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=vl([1,$a([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=ot(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;r=new(t=class extends ar{apply(i,o){let l=a.apply([s]),u=new op().apply([s]),c=a.apply([s*2]);return i3(i3(l,u),c)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return B(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new V(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],a=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Pa({ones:()=>Tn(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Pa({ones:()=>Tn(r),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,c;0<this.dropout&&this.dropout<1&&(e=P(e,s[0]));let h=Or(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(r=P(r,i[0])),h=se(h,Or(r,this.recurrentKernel.read())),this.useBias&&(h=Dr(h,this.bias.read()));let[d,p,m,f]=Zt(h,4,h.rank-1);o=this.recurrentActivation.apply(d),l=this.recurrentActivation.apply(p),u=se(P(l,a),P(o,this.activation.apply(m))),c=this.recurrentActivation.apply(f);let A=P(c,this.activation.apply(u));return[A,A,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Da(this.activation),recurrentActivation:Da(this.recurrentActivation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),recurrentInitializer:_t(this.recurrentInitializer),biasInitializer:_t(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:lt(this.kernelRegularizer),recurrentRegularizer:lt(this.recurrentRegularizer),biasRegularizer:lt(this.biasRegularizer),activityRegularizer:lt(this.activityRegularizer),kernelConstraint:Dt(this.kernelConstraint),recurrentConstraint:Dt(this.recurrentConstraint),biasConstraint:Dt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Ac.className="LSTMCell";re.registerClass(Ac);var zA=class extends zr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Ac(e),super(e)}call(e,t){return B(()=>{this.cell.dropoutMask!=null&&(Se(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Se(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};zA.className="LSTM";re.registerClass(zA);var Cp=class extends lc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return B(()=>{e=e;let n=e.slice(1),r=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?r.push(n.splice(0,i.stateSize.length)):r.push(n.splice(0,1));r.reverse();let a=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=r[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),a.push(s.slice(1))}n=[];for(let i of a.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){rA(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,r)=>{pi(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let r=[];for(let a of t.cells)r.push(yr(a,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return aA(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,a=e.splice(r);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],a[s]])}sA(t)}};Cp.className="StackedRNNCells";re.registerClass(Cp);function Pa(e){let{ones:t,rate:n,training:r=!1,count:a=1}=e,s=()=>l3(t(),n),i=()=>oc(s,t,r);return!a||a<=1?Wt(i().clone()):Array(a).fill(void 0).map(i).map(o=>Wt(o.clone()))}var ate=function(e,t){var n={};for(var r in e)Object.prototype.hasOwnProperty.call(e,r)&&t.indexOf(r)<0&&(n[r]=e[r]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var a=0,r=Object.getOwnPropertySymbols(e);a<r.length;a++)t.indexOf(r[a])<0&&Object.prototype.propertyIsEnumerable.call(e,r[a])&&(n[r[a]]=e[r[a]]);return n},m7=class extends zr{constructor(e){if(e.unroll)throw new Me("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Me("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new jt({ndim:5})]}call(e,t){return B(()=>{if(this.cell.dropoutMask!=null&&(Se(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Se(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new V("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return B(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)],s=Nt(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){B(()=>{if(!this.stateful)throw new ea("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)];if(n[0]==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Nt(a)):this.states_=[Nt(a)];else if(e==null)Se(this.states_),this.keptStates!=null&&(Se(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Nt(a)):this.states_[0]=Nt(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Se(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=a;if(!v.arraysEqual(i.shape,o))throw new V(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Wt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],c=gr(l,r[0],a,s[0],i[0]),h=gr(u,r[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[n,c,h]:[c,h,n]]}};m7.className="ConvRNN2D";var Mp=class extends Ac{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:a,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Ut(this.filters,"filters"),this.kernelSize=Tl(n,2,"kernelSize"),this.kernelSize.forEach(o=>Ut(o,"kernelSize")),this.strides=Tl(r||1,2,"strides"),this.strides.forEach(o=>Ut(o,"strides")),this.padding=a||"valid",Gn(this.padding),this.dataFormat=s||"channelsLast",kt(this.dataFormat),this.dilationRate=Tl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Ut(o,"dilationRate"))}build(e){var t;e=ot(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],a=4,s=this.kernelSize.concat([r,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends ar{apply(c,h){let d=l.apply([u]),p=Er([u]),m=l.apply([u*2]);return Hm([d,p,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return B(()=>{if(e.length!==3)throw new V(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],a=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Pa({ones:()=>Tn(r),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Y,ae,te)=>!ae||!ae[te]?Y:P(ae[te],Y),u=l(r,o,0),c=l(r,o,1),h=l(r,o,2),d=l(r,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Pa({ones:()=>Tn(a),rate:this.recurrentDropout,training:n,count:i}));let p=this.recurrentDropoutMask,m=l(a,p,0),f=l(a,p,1),A=l(a,p,2),y=l(a,p,3),g=3,[_,b,w,x]=Zt(this.kernel.read(),i,g),[N,T,E,M]=this.useBias?Zt(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,_,N,this.padding),c=this.inputConv(c,b,T,this.padding),h=this.inputConv(h,w,E,this.padding),d=this.inputConv(d,x,M,this.padding);let[D,L,W,U]=Zt(this.recurrentKernel.read(),i,g);m=this.recurrentConv(m,D),f=this.recurrentConv(f,L),A=this.recurrentConv(A,W),y=this.recurrentConv(y,U);let j=this.recurrentActivation.apply(se(u,m)),X=this.recurrentActivation.apply(se(c,f)),G=se(P(X,s),P(j,this.activation.apply(se(h,A)))),ee=P(this.recurrentActivation.apply(se(d,y)),this.activation.apply(G));return[ee,ee,G]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=ate(e,["units"]),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,r)}inputConv(e,t,n,r){let a=Xr(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Dr(a,n,this.dataFormat):a}recurrentConv(e,t){return Xr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Mp.className="ConvLSTM2DCell";re.registerClass(Mp);var PA=class extends m7{constructor(e){let t=new Mp(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};PA.className="ConvLSTM2D";re.registerClass(PA);var $p=class extends je{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r<this.noiseShape.length;++r)n.push(this.noiseShape[r]==null?t[r]:this.noiseShape[r]);return n}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=De(e);if(0<this.rate&&this.rate<1){let r=t.training==null?!1:t.training,a=this.getNoiseShape(n);return oc(()=>l3(n,this.rate,a,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};$p.className="Dropout";re.registerClass($p);var LA=class extends $p{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};LA.className="SpatialDropout1D";re.registerClass(LA);var WA=class extends je{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Ut(this.units,"units"),this.activation=za(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=mt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=mt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=zt(e.kernelConstraint),this.biasConstraint=zt(e.biasConstraint),this.kernelRegularizer=At(e.kernelRegularizer),this.biasRegularizer=At(e.biasRegularizer),this.activityRegularizer=At(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=ot(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=ot(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=De(e),r=Zb(this.activation.getClassName()),a;return r!=null?a=Or(n,this.kernel.read(),r,this.bias?this.bias.read():null):(a=Or(n,this.kernel.read()),this.bias!=null&&(a=Dr(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:Da(this.activation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),biasInitializer:_t(this.biasInitializer),kernelRegularizer:lt(this.kernelRegularizer),biasRegularizer:lt(this.biasRegularizer),activityRegularizer:lt(this.activityRegularizer),kernelConstraint:Dt(this.kernelConstraint),biasConstraint:Dt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};WA.className="Dense";re.registerClass(WA);var BA=class extends je{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=ot(e);for(let t of e.slice(1))if(t==null)throw new V(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Ma(e,1)]}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=De(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let a=2;a<n.rank;++a)r.push(a);r.push(1),n=n.transpose(r)}return EJ(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};BA.className="Flatten";re.registerClass(BA);var VA=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.activation=za(e.activation)}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=De(e);return this.activation.apply(n)})}getConfig(){let e={activation:Da(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};VA.className="Activation";re.registerClass(VA);var UA=class extends je{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return B(()=>(e=De(e),SJ(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};UA.className="RepeatVector";re.registerClass(UA);var jA=class extends je{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",r=t.slice(),a=1,s=null;for(let o=0;o<r.length;++o){let l=r[o];if(this.isUnknown(l))if(s===null)s=o;else throw new V("Can only specifiy one unknown dimension.");else a*=l}let i=Ma(e);if(s!==null){if(a===0||i%a!=0)throw new V(n);r[s]=i/a}else if(i!==a)throw new V(n);return r}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=De(e),r=n.shape,a=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return n.reshape(a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};jA.className="Reshape";re.registerClass(jA);var HA=class extends je{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=mr(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new jt({ndim:this.dims.length+1})]}computeOutputShape(e){e=ot(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return tt(De(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};HA.className="Permute";re.registerClass(HA);var GA=class extends je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=De(e),r=-1;return wu(Qs(n,this.maskValue),r)}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=De(e),r=-1,a=!0,s=wu(Qs(n,this.maskValue),r,a);return n.mul(s.asType(n.dtype))})}};GA.className="Masking";re.registerClass(GA);var qA=class extends je{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(ht(e.inputLength))}this.inputDim=e.inputDim,Ut(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Ut(this.outputDim,"outputDim"),this.embeddingsInitializer=mt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=At(e.embeddingsRegularizer),this.activityRegularizer=At(e.activityRegularizer),this.embeddingsConstraint=zt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return B(()=>this.maskZero?(e=De(e),Qs(e,Be(e))):null)}computeOutputShape(e){if(e=ot(e),this.inputLength==null)return[...e,this.outputDim];let t=ht(this.inputLength);if(t.length!==e.length-1)throw new V(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r<t.length;++r){let a=t[r],s=e[r+1];if(a!=null&&s!=null&&a!==s)throw new V(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);a==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=De(e);return n.dtype!=="int32"&&(n=ac(n,"int32")),o3(this.embeddings.read(),n.as1D()).reshape(ot(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:_t(this.embeddingsInitializer),embeddingsRegularizer:lt(this.embeddingsRegularizer),activityRegularizer:lt(this.activityRegularizer),embeddingsConstraint:Dt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};qA.className="Embedding";re.registerClass(qA);var gi=class extends je{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Me}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let r=0;r<t.length;++r){let a=e[e.length-t.length+r],s=t[r];if(a==null||s==null||a<0||s<0)n.push(null);else if(a===1)n.push(s);else if(s===1)n.push(a);else{if(a!==s)throw new V("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(a)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[ot(e)]),e=e,e.length<2)throw new V(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let a of e)a!=null&&a[0]!==null&&t.push(a[0]);if(t=Fa(t),t.length>1)throw new V(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let a=1;a<e.length;++a){let s=e[a]==null?null:e[a].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let r=e.map(a=>a.length);e.indexOf(null)===-1&&Fa(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return B(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(a=>a.rank);if(r.indexOf(null)===-1){let a=$a(r);for(let s of e){let i=s.rank;for(let o=0;o<a-i;++o)s=sc(s,1);n.push(s)}return this.mergeFunction(n)}else{let a=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,c=u[0],h=u.slice(1).concat([c]),d=o.reshape([c].concat(Ma(u.slice(1))));d=tt(d,[1,0]),d=d.reshape(h),n.push(d),a=!0}else if(l>1){let u=mr(1,l).concat([0]);n.push(tt(o,u)),a=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,u=o[l-1],c=[u].concat(o.slice(0,o.length-1));s=tt(s.reshape([-1,u]),[1,0]).reshape(c)}else if(i>1){let o=[i-1].concat(mr(0,i-1));s=tt(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);t=this.computeElementwiseOpOutputShape(t,a)}let n=[];for(let r of e)r!=null&&r[0]!==null&&n.push(r[0]);return n=Fa(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return B(()=>{if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an Array");if(!Array.isArray(e))throw new V("`inputs` should be an Array");if(t.length!==e.length)throw new V(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:Nn(r,0));let n=t[0];for(let r=1;r<t.length-1;++r)n=er(n,t[r]);return n})}},XA=class extends gi{constructor(e){super(e)}mergeFunction(e){return B(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=se(t,e[n]);return t})}};XA.className="Add";re.registerClass(XA);var KA=class extends gi{constructor(e){super(e)}mergeFunction(e){return B(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=P(t,e[n]);return t})}};KA.className="Multiply";re.registerClass(KA);var ZA=class extends gi{constructor(e){super(e)}mergeFunction(e){return B(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=se(t,e[n]);return P(1/e.length,t)})}};ZA.className="Average";re.registerClass(ZA);var YA=class extends gi{constructor(e){super(e)}mergeFunction(e){return B(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Tr(t,e[n]);return t})}};YA.className="Maximum";re.registerClass(YA);var JA=class extends gi{constructor(e){super(e)}mergeFunction(e){return B(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=tl(t,e[n]);return t})}};JA.className="Minimum";re.registerClass(JA);var QA=class extends gi{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new V("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let r of e)if(r!=null){t=!1;break}if(t)return;let n=[];for(let r=0;r<e.length;++r){let a=e[r].slice();a.splice(this.axis,1);let s=!1;for(let i of n)if(v.arraysEqual(i,a)){s=!0;break}s||n.push(a)}if(n.length>1)throw new V("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return B(()=>Hm(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new V("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let a of t.slice(1)){if(n[r]==null||a[r]==null){n[r]=null;break}n[r]+=a[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new V("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new V(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return B(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let r=[];for(let s=0;s<e.length;++s)t[s]==null?r.push(Tn(e[s]).asType("bool")):t[s].rank<e[s].rank?r.push(Nn(t[s],-1)):r.push(t[s]);let a=nt(r,this.axis);return Gh(a,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};QA.className="Concatenate";re.registerClass(QA);function yc(e,t){for(;e<0;)e+=t;return e}function ste(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Me("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Me("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,a=t.shape.length;n==null&&(n=[r-1,a-2]);let s=n;return B(()=>{let i;if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);t=t.reshape(t.shape.concat(l))}else if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);e=e.reshape(e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=e.mul(t).sum(s[0]):o=e.transpose([1,0]).mul(t).sum(s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=e.matMul(t,l,u)}if(i>0){let l;r>a?l=r+a-3:l=r-1;let u=[];for(let c=l;c<l+i;++c)u.push(c);o=o.squeeze(u)}return o.shape.length===1&&(o=o.expandDims(1)),o})}var ey=class extends gi{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Me("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new V(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new V(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((a,s)=>yc(a,e[s].shape.length)):r=[yc(this.axes,t.shape.length),yc(this.axes,n.shape.length)],this.normalize&&(t=xp(t,r[0]),n=xp(n,r[1])),ste(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[yc(this.axes,e.length),yc(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Me("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let a=t.concat(n);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};ey.className="Dot";re.registerClass(ey);var ty=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=De(e);return oc(()=>ip(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};ty.className="GaussianNoise";re.registerClass(ty);var ny=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=De(e);return this.rate>0&&this.rate<1?oc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return n.mul(ip(n.shape,1,r))},()=>n,t.training||!1):n})}};ny.className="GaussianDropout";re.registerClass(ny);var ry=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||De(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return B(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return oc(()=>{let r=De(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=Na(nl(n),this.rate);o=ac(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate;return r.mul(o).add(o.add(-1).mul(i)).mul(l).add(u)},()=>De(e),t.training||!1)}return e})}};ry.className="AlphaDropout";re.registerClass(ry);function gc(e,t,n,r,a,s=.001){let i;if(e.rank===2)i=o5(e,t,n,r,a,s);else if(e.rank===3)i=l5(e,t,n,r,a,s);else if(e.rank===4)i=u5(e,t,n,r,a,s);else throw new Me(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function ite(e,t,n,r,a=.001){return B(()=>{let s=ad(e,r),i=s.mean,o=s.variance;return[gc(e,i,o,n,t,a),i,o]})}function ote(e,t,n,r,a=.001){return B(()=>{let s=ad(e,r),i=s.mean,o=s.variance,l=[];for(let p of mr(0,e.rank))r.indexOf(p)!==-1?l.push(1):l.push(e.shape[p]);let u=i.reshape(l),c=o.reshape(l),h=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[gc(e,u,c,d,h,a),i,o]})}function lte(e,t,n,r,a=.001){return v.arraysEqual(r.slice().sort(),mr(0,e.rank-1))?ite(e,t,n,r,a):ote(e,t,n,r,a)}var ay=class extends je{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=mt(e.betaInitializer||"zeros"),this.gammaInitializer=mt(e.gammaInitializer||"ones"),this.movingMeanInitializer=mt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=mt(e.movingVarianceInitializer||"ones"),this.betaConstraint=zt(e.betaConstraint),this.gammaConstraint=zt(e.gammaConstraint),this.betaRegularizer=At(e.betaRegularizer),this.gammaRegularizer=At(e.gammaRegularizer)}build(e){e=ot(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new V(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new jt({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return B(()=>{let n=t.training==null?!1:t.training,r=De(e),a=r.shape,s=a.length,i=mr(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=ci(1,s);l[o]=a[o];let u=i.slice();u.sort();let c=!v.arraysEqual(u,mr(0,s).slice(0,s-1)),h=()=>{if(c){let A=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),g=this.center?this.beta.read().reshape(l):null,_=this.scale?this.gamma.read().reshape(l):null;return gc(r,A,y,g,_,this.epsilon)}else return gc(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return h();let[d,p,m]=lte(r,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(A,y,g)=>{B(()=>{let _=1-g,b=A.read(),w=b.sub(y).mul(_);A.write(b.sub(w))})};return(()=>{f(this.movingMean,p,this.momentum),f(this.movingVariance,m,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:_t(this.betaInitializer),gammaInitializer:_t(this.gammaInitializer),movingMeanInitializer:_t(this.movingMeanInitializer),movingVarianceInitializer:_t(this.movingVarianceInitializer),betaRegularizer:lt(this.betaRegularizer),gammaRegularizer:lt(this.gammaRegularizer),betaConstraint:Dt(this.betaConstraint),gammaConstraint:Dt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};ay.className="BatchNormalization";re.registerClass(ay);var sy=class extends je{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=mt(e.betaInitializer||"zeros"),this.gammaInitializer=mt(e.gammaInitializer||"ones"),this.betaRegularizer=At(e.betaRegularizer),this.gammaRegularizer=At(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=ot(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a<this.axis.length;++a)this.axis[a]<0&&(this.axis[a]+=t);for(let a of this.axis)if(a<0||a>=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==Fa(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(a=>e[a]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=De(e),r=n.shape,a=r.length;return B(()=>{let s=!0,{mean:i,variance:o}=ad(n,this.axis,s),l=ci(1,a);for(let m of this.axis)l[m]=r[m];let u=m=>m!=null&&m.shape.length!==a&&this.axis!==[a-1]?m.reshape(l):m,c=u(this.gamma.read()),h=u(this.beta.read()),d=[],p=[];for(let m=0;m<a;++m)this.axis.indexOf(m)!==-1?(d.push(r[m]),p.push(1)):(d.push(1),p.push(r[m]));return i=i.tile(d),o=o.tile(d),c=c.tile(p),h=h.tile(p),gc(n,i,o,h,c,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:_t(this.betaInitializer),gammaInitializer:_t(this.gammaInitializer),betaRegularizer:lt(this.betaRegularizer),gammaRegularizer:lt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};sy.className="LayerNormalization";re.registerClass(sy);function ute(e,t,n){return B(()=>{if(e.rank!==4)throw new V(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new V("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=pr()),n!=="channelsLast"&&n!=="channelsFirst")throw new V(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],Kr(e,r)})}var iy=class extends je{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?pr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new V(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new V(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new V(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new jt({ndim:4})]}computeOutputShape(e){e=ot(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return B(()=>ute(De(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};iy.className="ZeroPadding2D";re.registerClass(iy);function Op(e,t,n,r,a,s){return B(()=>{kt(a),e3(s),Gn(r),n==null&&(n=[1,1]),r==null&&(r="valid"),a==null&&(a=pr()),s==null&&(s="max"),e=TA(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Cu(e,t,n,o):i=vu(e,t,n,o),a==="channelsFirst"&&(i=tt(i,[0,3,1,2])),i})}function A7(e,t,n,r,a,s){return B(()=>{kt(a),e3(s),Gn(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),a==null&&(a=pr()),s==null&&(s="max"),e=c7(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Tf(e,t,n,o):i=ff(e,t,n,o),a==="channelsFirst"&&(i=tt(i,[0,4,1,2,3])),i})}var y7=class extends je{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new V(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Ut(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new V(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Ut(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Gn(this.padding),this.inputSpec=[new jt({ndim:3})]}computeOutputShape(e){e=ot(e);let t=gr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return B(()=>{this.invokeCallHook(e,t),e=sc(De(e),2);let n=this.poolingFunction(De(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Sa(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},oy=class extends y7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return kt(a),Gn(r),Op(e,t,n,r,a,"max")}};oy.className="MaxPooling1D";re.registerClass(oy);var ly=class extends y7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return kt(a),Gn(r),Op(e,t,n,r,a,"avg")}};ly.className="AveragePooling1D";re.registerClass(ly);var g7=class extends je{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new V(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Ut(this.poolSize,"poolSize"),Ut(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,kt(this.dataFormat),Gn(this.padding),this.inputSpec=[new jt({ndim:4})]}computeOutputShape(e){e=ot(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=gr(t,this.poolSize[0],this.padding,this.strides[0]),n=gr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return B(()=>(this.invokeCallHook(e,t),this.poolingFunction(De(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},uy=class extends g7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return kt(a),Gn(r),Op(e,t,n,r,a,"max")}};uy.className="MaxPooling2D";re.registerClass(uy);var cy=class extends g7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return kt(a),Gn(r),Op(e,t,n,r,a,"avg")}};cy.className="AveragePooling2D";re.registerClass(cy);var x7=class extends je{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new V(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Ut(this.poolSize,"poolSize"),Ut(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,kt(this.dataFormat),Gn(this.padding),this.inputSpec=[new jt({ndim:5})]}computeOutputShape(e){e=ot(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=gr(t,this.poolSize[0],this.padding,this.strides[0]),n=gr(n,this.poolSize[1],this.padding,this.strides[1]),r=gr(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return B(()=>(this.invokeCallHook(e,t),this.poolingFunction(De(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},hy=class extends x7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return kt(a),Gn(r),A7(e,t,n,r,a,"max")}};hy.className="MaxPooling3D";re.registerClass(hy);var dy=class extends x7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return kt(a),Gn(r),A7(e,t,n,r,a,"avg")}};dy.className="AveragePooling3D";re.registerClass(dy);var w7=class extends je{constructor(e){super(e);this.inputSpec=[new jt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Me}},py=class extends w7{constructor(e){super(e||{})}call(e,t){return B(()=>{let n=De(e);return wt(n,1)})}};py.className="GlobalAveragePooling1D";re.registerClass(py);var fy=class extends w7{constructor(e){super(e||{})}call(e,t){return B(()=>{let n=De(e);return Un(n,1)})}};fy.className="GlobalMaxPooling1D";re.registerClass(fy);var _7=class extends je{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,kt(this.dataFormat),this.inputSpec=[new jt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Me}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},my=class extends _7{call(e,t){return B(()=>{let n=De(e);return this.dataFormat==="channelsLast"?wt(n,[1,2]):wt(n,[2,3])})}};my.className="GlobalAveragePooling2D";re.registerClass(my);var Ay=class extends _7{call(e,t){return B(()=>{let n=De(e);return this.dataFormat==="channelsLast"?Un(n,[1,2]):Un(n,[2,3])})}};Ay.className="GlobalMaxPooling2D";re.registerClass(Ay);var b7=class extends je{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,a=yr(r,n);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},yy=class extends b7{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=ot(e),e.length<3)throw new V(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=ot(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return B(()=>(e=De(e),f7((n,r)=>[De(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};yy.className="TimeDistributed";re.registerClass(yy);function cte(e){di(bJ,"BidirectionalMergeMode",e)}var hte="concat",gy=class extends b7{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=yr(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=yr(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?hte:e.mergeMode,cte(this.mergeMode),e.weights)throw new Me("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,a;return this.returnState&&(a=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(a).concat(a.slice()):[n].concat(a).concat(a.slice()):_n(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=p7(e,n,r,this.numConstants);if(e=a.inputs,n=a.initialState,r=a.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new V("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(c=>new jt({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(r!=null)throw new Me("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Ar;for(let l of s)if(l instanceof Ar!==o)throw new V("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=u;let h=super.apply(l,t);return this.inputSpec=c,h}else return super.apply(e,t)}call(e,t){return B(()=>{let n=t.initialState,r,a;if(n==null)r=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(r)&&(s=r.slice(1).concat(a.slice(1))),r=r[0],a=a[0]),this.returnSequences&&(a=En(a,1));let i;return this.mergeMode==="concat"?i=Hm([r,a]):this.mergeMode==="sum"?i=se(r,a):this.mergeMode==="ave"?i=P(.5,se(r,a)):this.mergeMode==="mul"?i=P(r,a):this.mergeMode==null&&(i=[r,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){pi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),pi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=yr(t.layer);if(delete t.layer,t.numConstants!=null)throw new Me("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};gy.className="Bidirectional";re.registerClass(gy);function PJ(e){return new kl(e)}function LJ(e){return new IA(e)}function WJ(e){return new bA(e)}function BJ(e){return new vA(e)}function VJ(e){return new kA(e)}function UJ(e){return new SA(e)}function jJ(e){return new NA(e)}function HJ(e){return new Ep(e)}function GJ(e){return new mc(e)}function qJ(e){return new CA(e)}function XJ(e){return new Tp(e)}function KJ(e){return new RA(e)}function ZJ(e){return new FA(e)}function YJ(e){return new MA(e)}function JJ(e){return new $A(e)}function QJ(e){return new VA(e)}function eQ(e){return new WA(e)}function tQ(e){return new $p(e)}function nQ(e){return new LA(e)}function rQ(e){return new BA(e)}function aQ(e){return new UA(e)}function sQ(e){return new jA(e)}function iQ(e){return new HA(e)}function oQ(e){return new qA(e)}function lQ(e){return new XA(e)}function uQ(e){return new ZA(e)}function cQ(e){return new QA(e)}function hQ(e){return new YA(e)}function dQ(e){return new JA(e)}function pQ(e){return new KA(e)}function fQ(e){return new ey(e)}function mQ(e){return new ay(e)}function AQ(e){return new sy(e)}function yQ(e){return new iy(e)}function eA(e){return new ly(e)}function gQ(e){return eA(e)}function xQ(e){return eA(e)}function tA(e){return new cy(e)}function wQ(e){return tA(e)}function _Q(e){return tA(e)}function nA(e){return new dy(e)}function bQ(e){return nA(e)}function vQ(e){return nA(e)}function kQ(e){return new py(e)}function IQ(e){return new my(e)}function p3(e){return new fy(e)}function f3(e){return new Ay(e)}function m3(e){return new oy(e)}function A3(e){return new uy(e)}function NQ(e){return new hy(e)}function SQ(e){return new DA(e)}function TQ(e){return new Fp(e)}function EQ(e){return new zA(e)}function CQ(e){return new Ac(e)}function RQ(e){return new OA(e)}function FQ(e){return new Rp(e)}function MQ(e){return new PA(e)}function $Q(e){return new Mp(e)}function OQ(e){return new zr(e)}function DQ(e){return new Cp(e)}function zQ(e){return new gy(e)}function PQ(e){return new yy(e)}var LQ=p3,WQ=f3,BQ=m3,VQ=A3;function UQ(e){return new ty(e)}function jQ(e){return new ny(e)}function HQ(e){return new ry(e)}function GQ(e){return new GA(e)}var v7={};Oe(v7,{MAPE:()=>bte,MSE:()=>Ite,binaryAccuracy:()=>dte,binaryCrossentropy:()=>pte,categoricalAccuracy:()=>mte,categoricalCrossentropy:()=>Ate,cosineProximity:()=>xte,mape:()=>vte,meanAbsoluteError:()=>wte,meanAbsolutePercentageError:()=>_te,meanSquaredError:()=>kte,mse:()=>Nte,precision:()=>yte,recall:()=>gte,sparseCategoricalAccuracy:()=>fte});function dte(e,t){return lA(e,t)}function pte(e,t){return R3(e,t)}function fte(e,t){return F3(e,t)}function mte(e,t){return uA(e,t)}function Ate(e,t){return cA(e,t)}function yte(e,t){return C3(e,t)}function gte(e,t){return hee(e,t)}function xte(e,t){return iA(e,t)}function wte(e,t){return wp(e,t)}function _te(e,t){return Nl(e,t)}function bte(e,t){return Nl(e,t)}function vte(e,t){return Nl(e,t)}function kte(e,t){return mi(e,t)}function Ite(e,t){return mi(e,t)}function Nte(e,t){return mi(e,t)}var k7={};Oe(k7,{modelFromJSON:()=>Hee});var I7={};Oe(I7,{l1:()=>Tte,l1l2:()=>Ste,l2:()=>Ete});function Ste(e){return new pc(e)}function Tte(e){return Qee(e)}function Ete(e){return ete(e)}var N7=class extends Il{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof na))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Dp(e,t){return e<t}function S7(e,t){return e>t}var T7=class extends N7{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Me("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Dp:this.mode==="max"?this.monitorFunc=S7:this.monitor.indexOf("acc")!==-1?this.monitorFunc=S7:this.monitorFunc=Dp,this.monitorFunc===Dp&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Dp?Infinity:-Infinity}async onEpochEnd(e,t){await Oa(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Cte(e){return new T7(e)}var Rte={earlyStopping:Cte},xr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(xr||(xr={}));var E7;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(E7||(E7={}));var xy={};function Fte(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};xy[e]=n}function C7(e){return xy[e]}function Mte(e){delete xy[e]}function k(e,t,n,r,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return vn(t.inputNames[s.inputIndexStart],n,r,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>vn(h,n,r,a));let u=vn(t.inputNames.slice(o)[0],n,r,a),c=u.dataSync();return s.type==="number"?c[0]:v.toNestedArray(u.shape,c)}let i=t.attrParams[e];return i&&i.value}function vn(e,t,n,r){let[a,s]=On(e);if(r!=null){let o=r.getHashTableHandleByName(a);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[zp(a,o)]);return i!==void 0?t[zp(a,i)][s]:void 0}function $te(e,t,n){return t[zp(e,n.currentContextId)]}function ra(e,t){let[n,r]=On(e);return[zp(n,t&&t.currentContextId),r]}function zp(e,t){return t?`${e}-${t}`:e}function On(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function Pp(e,t,n){let r=k("pad",e,t,n);if(r==="explicit"){r=k("explicitPaddings",e,t,n);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=r[s*2],a[s][1]=r[s*2+1];return a}return r}function aa(e){return e.kept?e:Jn(e)}var R7={};Oe(R7,{json:()=>Ote});var Ote=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],F7={};Oe(F7,{json:()=>Dte});var Dte=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],M7={};Oe(M7,{json:()=>zte});var zte=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],$7={};Oe($7,{json:()=>Pte});var Pte=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],O7={};Oe(O7,{json:()=>Lte});var Lte=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],D7={};Oe(D7,{json:()=>Wte});var Wte=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],z7={};Oe(z7,{json:()=>Bte});var Bte=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],P7={};Oe(P7,{json:()=>Vte});var Vte=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],L7={};Oe(L7,{json:()=>Ute});var Ute=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]}],W7={};Oe(W7,{json:()=>jte});var jte=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],B7={};Oe(B7,{json:()=>Hte});var Hte=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],V7={};Oe(V7,{json:()=>Gte});var Gte=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],U7={};Oe(U7,{json:()=>qte});var qte=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],j7={};Oe(j7,{json:()=>Xte});var Xte=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],H7={};Oe(H7,{json:()=>Kte});var Kte=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],G7={};Oe(G7,{json:()=>Zte});var Zte=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],q7={};Oe(q7,{json:()=>Yte});var Yte=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],K7=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[R7,F7,M7,$7,O7,D7,z7,B7,W7,P7,V7,U7,j7,H7,G7,q7,L7],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],a=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?r.push(m[f.name]):f.op==="Const"?a.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(m=>{let f=i[m];f.inputNames.forEach(A=>{let[y]=ra(A);f.inputs.push(i[y]),i[y].children.push(f)})}),Object.keys(c).length===0?h.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(c).forEach(m=>{let[f]=ra(m),A=i[f];A!=null&&(A.signatureKey=c[m],l.push(A))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=ra(m),A=i[f];A&&(A.signatureKey=u[m],o.push(A))}):o=r;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let p={nodes:i,inputs:o,outputs:l,weights:a,placeholders:r,signature:t,functions:d};return s.length>0&&(p.initNodes=s),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=C7(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,a)=>(r[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,a)=>{let s=a.type,i;switch(a.type){case"string":i=wy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=wy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=Ty(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Ty(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=by(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=by(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=Sy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Sy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=_y(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=_y(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=Cy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Cy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=Ny(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Ny(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=Ey(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Ey(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=ky(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=ky(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=Iy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Iy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=X7(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=X7(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return r[a.name]={value:i,type:s},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],a={};t!=null&&(a=t.reduce((u,c)=>(u[c.name]=this.mapNode(c),c.op==="Const"&&r.push(u[c.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[c]=ra(u.name),h={name:c,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:vy(u.type),type:"dtype"}},children:[]};h.signatureKey=u.name,s.push(h),a[c]=h}),Object.keys(a).forEach(u=>{let c=a[u];c.inputNames.forEach(h=>{let[d]=ra(h);c.inputs.push(a[d]),a[d].children.push(c)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[c,h]=ra(o[u.name]),d=a[c];d!=null&&(d.defaultOutput=h,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:r,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function Jte(e){let t=J().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function Z7(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):Jte(e);return t?n:n.toLowerCase()}function wy(e,t,n,r=!1){let a=e[t];return a!=null?Z7(a.s,r):n}function _y(e,t,n){let r=e[t];return r?r.b:n}function by(e,t,n){let r=e[t]||{},a=r.i!=null?r.i:r.f!=null?r.f:n;return typeof a=="number"?a:parseInt(a,10)}function vy(e){switch(typeof e=="string"&&(e=xr[e]),e){case xr.DT_FLOAT:return"float32";case xr.DT_INT32:case xr.DT_INT64:case xr.DT_INT8:case xr.DT_UINT8:return"int32";case xr.DT_BOOL:return"bool";case xr.DT_DOUBLE:return"float32";case xr.DT_STRING:return"string";default:return null}}function X7(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function ky(e,t,n){let r=e[t];return r&&r.type?vy(r.type):n}function Iy(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(a=>vy(a)):n}function Y7(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Ny(e,t,n){let r=e[t];return r&&r.shape?Y7(r.shape):n}function Sy(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):n}function Ty(e,t,n,r=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>Z7(s,r)):n}function Ey(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(a=>Y7(a)):n}function Cy(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var Qte=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,a)=>(r[a]=this.getAttr(a),r),{}))}getInput(e){return vn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return vn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return by(this.node.rawAttrs,e,t);if(n.s!=null)return wy(this.node.rawAttrs,e,t);if(n.b!=null)return _y(this.node.rawAttrs,e,t);if(n.shape!=null)return Ny(this.node.rawAttrs,e,t);if(n.type!=null)return ky(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Sy(this.node.rawAttrs,e,t);if(n.list.s!=null)return Ty(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Ey(this.node.rawAttrs,e,t);if(n.list.b!=null)return Cy(this.node.rawAttrs,e,t);if(n.list.type!=null)return Iy(this.node.rawAttrs,e,t)}return t}},ene=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[se(k("a",e,t,n),k("b",e,t,n))];case"AddN":return[Go(k("tensors",e,t,n))];case"FloorMod":case"Mod":return[Cf(k("a",e,t,n),k("b",e,t,n))];case"Mul":return[P(k("a",e,t,n),k("b",e,t,n))];case"RealDiv":case"Div":return[we(k("a",e,t,n),k("b",e,t,n))];case"DivNoNan":return[wf(k("a",e,t,n),k("b",e,t,n))];case"FloorDiv":return[Hh(k("a",e,t,n),k("b",e,t,n))];case"Sub":return[me(k("a",e,t,n),k("b",e,t,n))];case"Minimum":return[tl(k("a",e,t,n),k("b",e,t,n))];case"Maximum":return[Tr(k("a",e,t,n),k("b",e,t,n))];case"Pow":return[Zr(k("a",e,t,n),k("b",e,t,n))];case"SquaredDifference":return[md(k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},tne=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Mt(k("x",e,t,n))];case"Acos":return[rf(k("x",e,t,n))];case"Acosh":return[af(k("x",e,t,n))];case"Asin":return[of(k("x",e,t,n))];case"Asinh":return[lf(k("x",e,t,n))];case"Atan":return[uf(k("x",e,t,n))];case"Atan2":return[cf(k("x",e,t,n),k("y",e,t,n))];case"Atanh":return[hf(k("x",e,t,n))];case"Ceil":return[mf(k("x",e,t,n))];case"Complex":return[xa(k("real",e,t,n),k("imag",e,t,n))];case"Cos":return[Nu(k("x",e,t,n))];case"Cosh":return[Zh(k("x",e,t,n))];case"Elu":return[Yo(k("x",e,t,n))];case"Erf":return[_f(k("x",e,t,n))];case"Exp":return[Vn(k("x",e,t,n))];case"Expm1":return[bf(k("x",e,t,n))];case"Floor":return[Jo(k("x",e,t,n))];case"Log":return[Sn(k("x",e,t,n))];case"Log1p":return[ed(k("x",e,t,n))];case"Imag":return[Jh(k("x",e,t,n))];case"Neg":return[xt(k("x",e,t,n))];case"Reciprocal":return[Mf(k("x",e,t,n))];case"Real":return[Mu(k("x",e,t,n))];case"Relu":return[Cr(k("x",e,t,n))];case"Round":return[$f(k("x",e,t,n))];case"Selu":return[ud(k("x",e,t,n))];case"Sigmoid":return[In(k("x",e,t,n))];case"Sin":return[cd(k("x",e,t,n))];case"Sign":return[Df(k("x",e,t,n))];case"Sinh":return[hd(k("x",e,t,n))];case"Softplus":return[Qo(k("x",e,t,n))];case"Sqrt":return[Yt(k("x",e,t,n))];case"Square":return[st(k("x",e,t,n))];case"Tanh":return[Xo(k("x",e,t,n))];case"Tan":return[Lf(k("x",e,t,n))];case"ClipByValue":return[An(k("x",e,t,n),k("clipValueMin",e,t,n),k("clipValueMax",e,t,n))];case"Relu6":return[od(k("x",e,t,n))];case"Rsqrt":return[ld(vn(e.inputNames[0],t,n))];case"Prod":return[sd(k("x",e,t,n),k("axes",e,t,n))];case"LeakyRelu":return[Tu(k("x",e,t,n),k("alpha",e,t,n))];case"Prelu":return[Fu(k("x",e,t,n),k("alpha",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ir(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let r=0;r<e.length;r++){let a=e[r],s=t[r];v.assert(a<0||s<0||a===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function J7(e){return!(typeof e=="number"||e.some(t=>t<0))}function xc(e,t,n){let r=Ry(e,n),a=!J7(r);if(a&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${r}`);if(a&&t.forEach(s=>{r=Ry(s.shape,r)}),!J7(r))throw new Error(`Non-fully-defined elementShape: ${r}`);return r}function Ry(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let r=0;r<e.length;++r){let a=e[r],s=t[r];if(a>=0&&s>=0&&a!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[r]=a>=0?a:s}return n}var nne=class{constructor(e,t,n,r,a,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=a,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=_e(0),Wt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),ir(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Wt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r<this.size();r++)e.push(r)}if(e.length===0)return ur([],[0].concat(this.elementShape));let n=this.readMany(e);return ir(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Cn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return ur([],[0].concat(this.elementShape));let t=[];for(let r=0;r<this.size();r++)t.push(r);let n=this.readMany(t);return ir(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),nt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,tr(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=n===0?0:t.size/n,s=[];B(()=>{t=H(t,[1,n,a]);for(let o=0;o<e.length;++o){let l=o===0?0:r[o-1],u=[0,l,0],c=[1,e[o],a];s[o]=H(Ee(t,u,c),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},wc=class{constructor(e,t,n,r=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(a=>{if(n!==a.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${a.dtype}`);ir(t,a.shape,"TensorList shape mismatch: "),Wt(a)}),this.idTensor=_e(0),this.maxNumElements=r,Wt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new wc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);ir(e,this.elementShape,"TensorList shape mismatch: ");let r=xc(this.elementShape,this.tensors,e);return B(()=>{let a=this.tensors.map(s=>H(s,r));return Cn(a,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=xc(this.elementShape,this.tensors,e),r=this.tensors.pop();return ir(r.shape,e,"TensorList shape mismatch: "),H(r,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(ir(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Wt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);ir(this.tensors[e].shape,t,"TensorList shape mismatch: ");let r=xc(this.elementShape,this.tensors,t);return H(this.tensors[e],r)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);ir(this.elementShape,t.shape,"TensorList shape mismatch: "),Wt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);ir(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let r=xc(this.elementShape,this.tensors,n);return e.length===0?ur([],[0].concat(r)):B(()=>{let a=e.map(s=>H(this.tensors[s],r));return Cn(a,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);ir(this.elementShape,t,"TensorList shape mismatch: ");let n=xc(this.elementShape,this.tensors,t);return this.size()===0?ur([],[0].concat(n)):B(()=>{let r=this.tensors.map(a=>H(a,n));return nt(r,0)})}};function rne(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let a=e.shape.slice(1);ir(a,t,"TensorList shape mismatch: ");let s=tr(e);return new wc(s,t,r)}function ane(e,t,n){return new wc([],e,t,n)}function sne(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(r!=null&&r!==-1&&a>=r)throw new Error(`Max index must be < array size (${a} vs. ${r})`);let s=new wc([],n,e.dtype,r),i=tr(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function ine(e,t,n){let r=0,a=t.map(c=>(r+=c,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${r}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=Ry(s,n),o=r===0?0:e.size/r,l=B(()=>{let c=[];e=H(e,[1,r,o]);for(let h=0;h<t.length;++h){let d=h===0?0:a[h-1],p=[0,d,0],m=[1,t[h],o];c[h]=H(Ee(e,p,m),i)}return e.dispose(),c}),u=new wc([],n,e.dtype,t.length);for(let c=0;c<l.length;c++)u.setItem(c,l[c]);return u}var one=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let r=k("thenBranch",e,t,n),a=k("elseBranch",e,t,n),s=k("cond",e,t,n),i=k("args",e,t,n);return(await s.data())[0]?n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=k("body",e,t,n),a=k("cond",e,t,n),s=k("args",e,t,n),i=await n.functionMap[a].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(c=>c.id),l=await i[0].data();i.forEach(c=>{!c.kept&&o.indexOf(c.id)===-1&&c.dispose()});let u=s;for(;l[0];){let c=u;u=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let h=u.map(p=>p.id);c.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()});let d=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()})}return u}case"LoopCond":{let r=k("pred",e,t,n);return[aa(r)]}case"Switch":{let r=k("pred",e,t,n),a=k("data",e,t,n);return a.kept||(a=aa(a)),(await r.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let r=e.inputNames.find(a=>vn(a,t,n)!==void 0);if(r){let a=vn(r,t,n);return[aa(a)]}return}case"Enter":{let r=k("frameName",e,t,n),a=k("tensor",e,t,n);return n.enterFrame(r),[aa(a)]}case"Exit":{let r=k("tensor",e,t,n);return n.exitFrame(),[aa(r)]}case"NextIteration":{let r=k("tensor",e,t,n);return n.nextIteration(),[aa(r)]}case"TensorArrayV3":{let r=k("size",e,t,n),a=k("dtype",e,t,n),s=k("elementShape",e,t,n),i=k("dynamicSize",e,t,n),o=k("clearAfterRead",e,t,n),l=k("identicalElementShapes",e,t,n),u=k("name",e,t,n),c=new nne(u,a,r,s,l,i,o);return n.addTensorArray(c),[c.idTensor,_e(1)]}case"TensorArrayWriteV3":{let r=k("tensorArrayId",e,t,n),a=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(r.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let r=k("tensorArrayId",e,t,n),a=k("index",e,t,n);return[n.getTensorArray(r.id).read(a)]}case"TensorArrayGatherV3":{let r=k("tensorArrayId",e,t,n),a=k("indices",e,t,n),s=k("dtype",e,t,n);return[n.getTensorArray(r.id).gather(a,s)]}case"TensorArrayScatterV3":{let r=k("tensorArrayId",e,t,n),a=k("indices",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(r.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let r=k("tensorArrayId",e,t,n),a=n.getTensorArray(r.id),s=k("dtype",e,t,n);return[a.concat(s)]}case"TensorArraySplitV3":{let r=k("tensorArrayId",e,t,n),a=k("tensor",e,t,n),s=k("lengths",e,t,n),i=n.getTensorArray(r.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let r=k("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return[_e(a.size(),"int32")]}case"TensorArrayCloseV3":{let r=k("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let r=k("tensorListId",e,t,n),a=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorList(r.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let r=k("tensorListId",e,t,n),a=k("index",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let r=k("indices",e,t,n),a=k("tensor",e,t,n),s=k("elementShape",e,t,n),i=k("numElements",e,t,n),o=sne(a,r,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=k("elementShape",e,t,n),a=k("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=k(s,e,t,n),o=ane(r,a,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let r=k("tensorListId",e,t,n),a=k("indices",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(r.id).gather(a,i,s)]}case"TensorListStack":{let r=k("tensorListId",e,t,n),a=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=k("numElements",e,t,n);return[n.getTensorList(r.id).stack(a,s,i)]}case"TensorListFromTensor":{let r=k("tensor",e,t,n),a=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=rne(r,a,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let r=k("tensorListId",e,t,n),a=n.getTensorList(r.id),s=k("dtype",e,t,n),i=k("elementShape",e,t,n);return[a.concat(s,i)]}case"TensorListPushBack":{let r=k("tensorListId",e,t,n),a=k("tensor",e,t,n),s=n.getTensorList(r.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let r=k("tensorListId",e,t,n),a=k("elementShape",e,t,n),s=k("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(a,s)]}case"TensorListSplit":{let r=k("tensor",e,t,n),a=k("elementShape",e,t,n),s=k("lengths",e,t,n),i=ine(r,s,a);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Q7(e,t,n){let[r,a]=k("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=r==="fusedbatchnorm",l=k("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let u=k("strides",e,t,n),c=Pp(e,t,n),h=k("dataFormat",e,t,n).toUpperCase(),d=k("dilations",e,t,n),[p,m]=k("args",e,t,n),f=k("leakyreluAlpha",e,t,n);return{stride:u,pad:c,dataFormat:h,dilations:d,biasArg:p,preluArg:m,activationFunc:a,leakyreluAlpha:f}}var lne=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=k("stride",e,t,n),a=k("pad",e,t,n),s=k("dataFormat",e,t,n).toUpperCase(),i=k("dilation",e,t,n);return[Xh(k("x",e,t,n),k("filter",e,t,n),r,a,s,i)]}case"Conv2D":{let r=k("strides",e,t,n),a=Pp(e,t,n),s=k("dataFormat",e,t,n).toUpperCase(),i=k("dilations",e,t,n);return[Xr(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:c}=Q7(e,t,n);return[Ta.conv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:c}=Q7(e,t,n);return[Ta.depthwiseConv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=k("outputShape",e,t,n),a=k("strides",e,t,n),s=Pp(e,t,n);return[Kh(k("x",e,t,n),k("filter",e,t,n),r,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=k("strides",e,t,n),a=Pp(e,t,n),s=k("dilations",e,t,n),i=k("dataFormat",e,t,n).toUpperCase();return[Zo(k("input",e,t,n),k("filter",e,t,n),[r[1],r[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("dataFormat",e,t,n).toUpperCase(),i=k("dilations",e,t,n);return[yf(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2],r[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[vu(k("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[Cu(k("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n),i=k("includeBatchInIndex",e,t,n),{result:o,indexes:l}=S5(k("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a,i);return[o,l]}case"AvgPool3D":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[ff(k("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[Tf(k("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("dilations",e,t,n),i=r[1],o=r[2],l=s[1],u=s[2];return[xf(k("x",e,t,n),k("filter",e,t,n),[i,o],a,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},une=(e,t,n)=>{switch(e.op){case"Fill":{let r=k("shape",e,t,n),a=k("dtype",e,t,n),s=k("value",e,t,n);return[Su(r,s,a)]}case"LinSpace":{let r=k("start",e,t,n),a=k("stop",e,t,n),s=k("num",e,t,n);return[w5(r,a,s)]}case"Multinomial":{let r=k("logits",e,t,n),a=k("numSamples",e,t,n),s=k("seed",e,t,n);return[T5(r,a,s)]}case"OneHot":{let r=k("indices",e,t,n),a=k("depth",e,t,n),s=k("onValue",e,t,n),i=k("offValue",e,t,n);return[Vo(r,a,s,i)]}case"Ones":return[Er(k("shape",e,t,n),k("dtype",e,t,n))];case"OnesLike":return[Tn(k("x",e,t,n))];case"RandomUniform":return[nl(k("shape",e,t,n),k("minval",e,t,n),k("maxval",e,t,n),k("dtype",e,t,n))];case"Range":{let r=k("start",e,t,n),a=k("stop",e,t,n),s=k("step",e,t,n);return[id(r,a,s,k("dtype",e,t,n))]}case"TruncatedNormal":{let r=k("shape",e,t,n),a=k("mean",e,t,n),s=k("stdDev",e,t,n),i=k("seed",e,t,n);return[Ad(r,a,s,k("dtype",e,t,n),i)]}case"Zeros":return[Nt(k("shape",e,t,n),k("dtype",e,t,n))];case"ZerosLike":return[Be(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Fy(e,t,n){let r=k("boxes",e,t,n),a=k("scores",e,t,n),s=k("maxOutputSize",e,t,n),i=k("iouThreshold",e,t,n),o=k("scoreThreshold",e,t,n),l=k("softNmsSigma",e,t,n);return{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var cne=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=Fy(e,t,n),u=await Ke.nonMaxSuppressionWithScoreAsync(r,a,s,i,o,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Fy(e,t,n),l=k("padToMaxOutputSize",e,t,n),u=await Ke.nonMaxSuppressionPaddedAsync(r,a,s,i,o,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Fy(e,t,n);return[await Ke.nonMaxSuppressionAsync(r,a,s,i,o)]}case"Where":{let r=fe(k("condition",e,t,n),"bool"),a=[await Vf(r)];return r.dispose(),a}case"ListDiff":return R5(k("x",e,t,n),k("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},hne=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=k("x",e,t,n),a=k("k",e,t,n),s=k("sorted",e,t,n),i=Wf(r,a,s);return[i.values,i.indices]}case"Unique":{let r=k("x",e,t,n),a=yd(r);return[a.values,a.indices]}case"UniqueV2":{let r=k("x",e,t,n),a=k("axis",e,t,n),s=yd(r,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},dne=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=k("default",e,t,n);return[vn(e.name,t,n)||r];case"Placeholder":return[vn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=k("x",e,t,n);return[aa(u)]}case"IdentityN":return k("x",e,t,n).map(u=>aa(u));case"Snapshot":let a=k("x",e,t,n);return[aa(a)];case"Shape":return[Bt(k("x",e,t,n).shape,"int32")];case"ShapeN":return k("x",e,t,n).map(u=>Bt(u.shape));case"Size":return[_e(k("x",e,t,n).size,"int32")];case"Rank":return[_e(k("x",e,t,n).rank,"int32")];case"NoOp":return[_e(1)];case"Print":let s=k("x",e,t,n),i=k("data",e,t,n),o=k("message",e,t,n),l=k("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let u=0;u<i.length;u++)console.log(Array.prototype.slice.call(i[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},pne=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=_e(0),this.tensorMap=new Map,Wt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),B(()=>{let r=tr(t),a=n.length,s=r.length;v.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i<a;i++){let o=n[i],l=r[i];Wt(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return B(()=>{let r=[];for(let a=0;a<n.length;a++){let s=n[a],i=this.findWithDefault(s,t);r.push(i)}return Cn(r)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},fne=async(e,t,n,r)=>{switch(e.op){case"HashTable":case"HashTableV2":{let a=k("keyDType",e,t,n),s=k("valueDType",e,t,n),i=new pne(a,s);return r.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=k("tableHandle",e,t,n,r),s=k("keys",e,t,n),i=k("values",e,t,n);return[await r.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=k("tableHandle",e,t,n,r),s=k("keys",e,t,n),i=k("defaultValue",e,t,n);return[await r.getHashTableById(a.id).find(s,i)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},mne=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=k("images",e,t,n),a=k("size",e,t,n),s=k("alignCorners",e,t,n),i=k("halfPixelCenters",e,t,n);return[Ke.resizeBilinear(r,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let r=k("images",e,t,n),a=k("size",e,t,n),s=k("alignCorners",e,t,n),i=k("halfPixelCenters",e,t,n);return[Ke.resizeNearestNeighbor(r,[a[0],a[1]],s,i)]}case"CropAndResize":{let r=k("image",e,t,n),a=k("boxes",e,t,n),s=k("boxInd",e,t,n),i=k("cropSize",e,t,n),o=k("method",e,t,n),l=k("extrapolationValue",e,t,n);return[Ke.cropAndResize(r,a,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ane=(e,t,n)=>{switch(e.op){case"Equal":return[ka(k("a",e,t,n),k("b",e,t,n))];case"NotEqual":return[Qs(k("a",e,t,n),k("b",e,t,n))];case"Greater":return[Qn(k("a",e,t,n),k("b",e,t,n))];case"GreaterEqual":return[Na(k("a",e,t,n),k("b",e,t,n))];case"Less":return[Qh(k("a",e,t,n),k("b",e,t,n))];case"LessEqual":return[Ys(k("a",e,t,n),k("b",e,t,n))];case"LogicalAnd":return[er(k("a",e,t,n),k("b",e,t,n))];case"LogicalNot":return[Eu(k("a",e,t,n))];case"LogicalOr":return[rd(k("a",e,t,n),k("b",e,t,n))];case"Select":case"SelectV2":return[yn(k("condition",e,t,n),k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},yne=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ue(k("a",e,t,n),k("b",e,t,n),k("transposeA",e,t,n),k("transposeB",e,t,n))];case"Transpose":return[tt(k("x",e,t,n),k("perm",e,t,n))];case"_FusedMatMul":let[r,a]=k("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=k("numArgs",e,t,n),l=k("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=k("args",e,t,n);return[Ta.matMul({a:k("a",e,t,n),b:k("b",e,t,n),transposeA:k("transposeA",e,t,n),transposeB:k("transposeB",e,t,n),bias:u,activation:a,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},gne=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Ks(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"FusedBatchNormV3":return[Ks(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"LRN":return[kf(k("x",e,t,n),k("radius",e,t,n),k("bias",e,t,n),k("alpha",e,t,n),k("beta",e,t,n))];case"Softmax":return[Ou(k("x",e,t,n))];case"LogSoftmax":return[nd(k("x",e,t,n))];case"SparseToDense":return[Uf(k("sparseIndices",e,t,n),k("outputShape",e,t,n),k("sparseValues",e,t,n),k("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},xne=(e,t,n)=>{switch(e.op){case"Max":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Un(k("x",e,t,n),i,o)]}case"Mean":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[wt(k("x",e,t,n),i,o)]}case"Min":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[el(k("x",e,t,n),i,o)]}case"Sum":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Ne(k("x",e,t,n),i,o)]}case"All":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Gh(k("x",e,t,n),i,o)]}case"Any":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[wu(k("x",e,t,n),i,o)]}case"ArgMax":{let i=k("axis",e,t,n);return[_u(k("x",e,t,n),i)]}case"ArgMin":{let i=k("axis",e,t,n);return[sf(k("x",e,t,n),i)]}case"Prod":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[sd(k("x",e,t,n),i,o)]}case"Cumsum":{let i=k("axis",e,t,n),o=k("exclusive",e,t,n),l=k("reverse",e,t,n);return[Yh(k("x",e,t,n),i,o,l)]}case"Bincount":let r=k("x",e,t,n),a=k("weights",e,t,n),s=k("size",e,t,n);return[c5(r,a,s)];case"DenseBincount":{let i=k("x",e,t,n),o=k("weights",e,t,n),l=k("size",e,t,n),u=k("binaryOutput",e,t,n);return[m5(i,o,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},wne=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=k("n",e,t,n),a=k("axis",e,t,n),s=k("tensors",e,t,n);return s=s.slice(0,r),[nt(s,a)]}case"Gather":{let r=k("x",e,t,n),a=k("indices",e,t,n);return[Zs(r,fe(a,"int32"),0)]}case"GatherV2":{let r=k("axis",e,t,n),a=k("batchDims",e,t,n),s=k("x",e,t,n),i=k("indices",e,t,n);return[Zs(s,fe(i,"int32"),r,a)]}case"Reverse":{let r=k("dims",e,t,n),a=[];for(let i=0;i<r.length;i++)r[i]&&a.push(i);let s=k("x",e,t,n);return[En(s,a)]}case"ReverseV2":{let r=k("axis",e,t,n),a=k("x",e,t,n);return[En(a,r)]}case"Slice":{let r=k("begin",e,t,n),a=k("size",e,t,n);return[Ee(k("x",e,t,n),r,a)]}case"StridedSlice":{let r=k("begin",e,t,n),a=k("end",e,t,n),s=k("strides",e,t,n),i=k("beginMask",e,t,n),o=k("endMask",e,t,n),l=k("ellipsisMask",e,t,n),u=k("newAxisMask",e,t,n),c=k("shrinkAxisMask",e,t,n),h=k("x",e,t,n);return[Pf(h,r,a,s,i,o,l,u,c)]}case"Pack":return B(()=>{let r=k("axis",e,t,n),a=k("tensors",e,t,n),s=a[0].shape,i=Sa(a[0]).shape,o=a.map(l=>{let u=v.arraysEqual(l.shape,s);if(!u&&!v.arraysEqual(Sa(l).shape,i))throw new Error("the input tensors shape does not match");return u?l:H(l,s)});return[Cn(o,r)]});case"Unpack":{let r=k("axis",e,t,n),a=k("tensor",e,t,n);return tr(a,r)}case"Tile":{let r=k("reps",e,t,n);return[Ia(k("x",e,t,n),r)]}case"Split":case"SplitV":{let r=k("axis",e,t,n),a=k("numOrSizeSplits",e,t,n),s=k("x",e,t,n);return Zt(s,a,r)}case"ScatterNd":{let r=k("indices",e,t,n),a=k("values",e,t,n),s=k("shape",e,t,n);return[O5(r,a,s)]}case"GatherNd":{let r=k("x",e,t,n),a=k("indices",e,t,n);return[D5(r,a)]}case"SparseToDense":{let r=k("sparseIndices",e,t,n),a=k("outputShape",e,t,n),s=k("sparseValues",e,t,n),i=k("defaultValue",e,t,n);return[Uf(r,s,a,s.dtype===i.dtype?i:fe(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},_ne=(e,t,n)=>{switch(e.op){case"FFT":return[Du(k("x",e,t,n))];case"IFFT":return[rl(k("x",e,t,n))];case"RFFT":return[zu(k("x",e,t,n))];case"IRFFT":return[fd(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},bne=(e,t,n)=>{switch(e.op){case"Cast":return[fe(k("x",e,t,n),k("dtype",e,t,n))];case"ExpandDims":{let r=k("axis",e,t,n);return[Nn(k("x",e,t,n),r)]}case"Squeeze":{let r=k("axis",e,t,n);return[Sa(k("x",e,t,n),r)]}case"Reshape":return[H(k("x",e,t,n),k("shape",e,t,n))];case"MirrorPad":return[Ef(k("x",e,t,n),k("padding",e,t,n),k("mode",e,t,n))];case"PadV2":case"Pad":return[Kr(k("x",e,t,n),k("padding",e,t,n),k("constantValue",e,t,n))];case"SpaceToBatchND":{let r=k("blockShape",e,t,n),a=k("paddings",e,t,n);return[Ru(k("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=k("blockShape",e,t,n),a=k("crops",e,t,n);return[ku(k("x",e,t,n),r,a)]}case"DepthToSpace":{let r=k("blockSize",e,t,n),a=k("dataFormat",e,t,n).toUpperCase();return[gf(k("x",e,t,n),r,a)]}case"BroadcastTo":return[Iu(k("x",e,t,n),k("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ev(e,t,n,r){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return B(()=>ene(s,i,o));case"basic_math":return B(()=>tne(s,i,o));case"control":return one(s,i,o);case"convolution":return B(()=>lne(s,i,o));case"creation":return B(()=>une(s,i,o));case"dynamic":return cne(s,i,o);case"evaluation":return B(()=>hne(s,i,o));case"image":return B(()=>mne(s,i,o));case"graph":return B(()=>dne(s,i,o));case"logical":return B(()=>Ane(s,i,o));case"matrices":return B(()=>yne(s,i,o));case"normalization":return B(()=>gne(s,i,o));case"reduction":return B(()=>xne(s,i,o));case"slice_join":return B(()=>wne(s,i,o));case"spectral":return B(()=>_ne(s,i,o));case"transformation":return B(()=>bne(s,i,o));case"hash_table":return fne(s,i,o,r);case"custom":let l=C7(s.op);if(l&&l.customExecutor)return l.customExecutor(new Qte(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var tv=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function rv(e,t,n,r){let a=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(d=>On(d)[0]),c=[];r!=null&&(c=r.map(d=>On(d.name)[0]));let h=[...t];for(;h.length>0;){let d=h.pop();if((nv(d)||vne(d)||kne(d))&&i==null&&(i=d,o=i.children.map(p=>p.name).filter(p=>a.has(p))),a.add(d.name),n[d.name]==null&&u.indexOf(d.name)===-1&&c.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),h.push(p))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function Ine(e,t,n){let{usedNodes:r,inputs:a}=n,s=[],i=Object.keys(a).map(c=>On(c)[0]).map(c=>e.nodes[c]),o=e.initNodes;i.forEach(c=>{r.has(c.name)&&s.push(c)}),e.weights.forEach(c=>{r.has(c.name)&&s.push(c)}),o!=null&&o.forEach(c=>{r.has(c.name)&&s.push(c)});let l=new Set,u=[];for(;s.length>0;){let c=s.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(h=>{!l.has(h.name)&&r.has(h.name)&&h.inputs.every(d=>l.has(d.name))&&s.push(h)})}return u}var Nne=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Sne=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Tne=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2"];function nv(e){return Nne.indexOf(e.op)>=0}function vne(e){return Sne.indexOf(e.op)>=0}function kne(e){return Tne.indexOf(e.op)>=0}var My=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new My(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(a=>a.name).sort(),r=t.map(a=>a.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=rv(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:a,syncInputs:s}=n;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(r.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${r}]`)}return Ine(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(c=>this.graph.nodes[On(c)[0]]),a=t.map(c=>On(c)[0]),s=a.map(c=>this.graph.nodes[c]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(r,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return B(()=>{let c=new tv(this.weightMap,l,u,this.functionExecutorMap),h=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,A]=On(m),y=[];y[A]=e[m],h[f]=y});let d=this.getFrozenTensorIds(h),p={};for(let m=0;m<o.length;m++){let f=o[m];if(!h[f.name]){let A=ev(f,h,c,this._resourceManager);if(v.isPromise(A))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);h[f.name]=A,this.checkTensorForDisposal(f.name,f,h,c,d,a,p)}}return this.parent==null&&c.dispose(d),t.map(m=>vn(m,h,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=$te(o.name,n,r);l!=null&&l.forEach(u=>{if(u&&!a.has(u.id)){let c=i[u.id];c===1?(u.dispose(),delete i[u.id]):c!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},a={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new tv(this.weightMap,r,a,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(h=>vn(h,i,s)),l=o.map(h=>h.id),u=Object.keys(e).map(h=>e[h].id),c=new Set([...l,...u,...this.weightIds]);return Object.keys(i).forEach(h=>{i[h].forEach(d=>{d&&!d.isDisposed&&!c.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(c),o}async executeFunctionAsync(e,t,n){let r=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let a=Object.keys(e),s=a.map(g=>this.graph.nodes[On(g)[0]]),i=n.map(g=>On(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:h}=rv(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[_,b]=On(g),w=[];w[b]=e[g],p[_]=w});let m={},f=this.getFrozenTensorIds(p),A={};for(;d.length>0;){let g=this.processStack(s,d,t,p,A,f,i,m,l);await Promise.all(g)}c==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(g=>!nv(g)&&!vn(g.name,p,t)).map(g=>g.name);if(y.length>0){let g="";throw c!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${a}]. Consider providing the following inputs: [${u}]. ${g}`)}return p}processStack(e,t,n,r,a,s,i,o,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let h="";if(c.node.op==="Enter"&&k("isConstant",c.node,r,n)&&([h]=ra(c.node.name,n)),r[c.node.name]==null){let d=ev(c.node,r,n,this._resourceManager);h||([h]=ra(c.node.name,n));let p=n.currentContext;v.isPromise(d)?u.push(d.then(m=>(r[h]=m,n.currentContext=p,this.checkTensorForDisposal(h,c.node,r,n,s,i,o),this.processChildNodes(c.node,t,n,r,a,l),m))):(r[h]=d,this.checkTensorForDisposal(h,c.node,r,n,s,i,o),this.processChildNodes(c.node,t,n,r,a,l))}else this.processChildNodes(c.node,t,n,r,a,l)}return u}processChildNodes(e,t,n,r,a,s){e.children.forEach(i=>{let[o]=ra(i.name,n);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!vn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!vn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=On(t),a=this.graph.nodes[r];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);v.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&v.assert(n.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=On(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=On(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Ene=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},Cne="?tfjs-format=file",Rne="model.json",av=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Ene}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=mn.browserHTTPRequest(e,this.loadOptions);else{let t=mn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(mn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=mn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new My(K7.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=K7.Instance.transformGraph(e.modelInitializer);this.initializer=new My(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=mn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Xe)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Tt(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${Rne}${Cne}`);let n=new av(e,t);return await n.load(),n}var Fne="3.2.0",sv={};Oe(sv,{CSVDataset:()=>ov,Dataset:()=>El,FileDataSource:()=>lv,TextLineDataset:()=>iv,URLDataSource:()=>uv,array:()=>Mne,csv:()=>One,func:()=>Dne,generator:()=>zne,microphone:()=>Lne,version_data:()=>Wne,webcam:()=>Pne,zip:()=>$ne});var Bne=Mi(Y2()),Vne=Mi(Y2());function Une(e,t){return Lp(e,t)}function Lp(e,t,n=new Map,r=new Set){if(e==null)return null;if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(Cl(e)){let s=Array.isArray(e)?[]:{};r.add(e);for(let i in e){let o=e[i],l=Lp(o,t,n,r);s[i]=l}return r.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,a.value),a.value}function jne(e,t=hv){return cv(e,t)}function cv(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(Cl(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let o=e.map(u=>u[i]),l=cv(o,t,n);s[i]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return a.value}function hv(e){return e===null?null:Cl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function dv(e,t){let n=new Map;Lp(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(v.isPromise(a)){let s=await a;n.set(r,s)}}return Lp(e,t,n)}function Cl(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Xe))}function Gne(e){return e==null||Hne(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Xe||v.isTypedArray(e)}function Hne(e){return e===null||typeof e!="object"&&typeof e!="function"}function Xne(e){return Une(e,qne)}function qne(e){return e instanceof Xe?{value:e.clone(),recurse:!1}:Cl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var pv=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},$y=class extends pv{constructor(){super($y.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;r<n;r++)t[r]=this.get(this.wrap(this.begin+r));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};$y.INITIAL_CAPACITY=32;function fv(e){return new Kne(e)}function Oy(e){return new Zne(e)}function Yne(e,t){return new mv(e,t)}function Qne(e,t=La.FAIL){return new Jne(e,t)}var Ht=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new ire(this,e)}filter(e){return new are(this,e)}map(e){return new sre(this,e)}mapAsync(e){return new Av(this,e)}serialMapAsync(e){return new Av(this,e).serial()}flatmap(e){return new ore(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new rre(this,e,t)}columnMajorBatch(e,t=!0,n=hv){return this.rowMajorBatch(e,t).map(r=>jne(r,n))}concatenate(e,t){return new mv(fv([this,e]),t)}take(e){return e<0||e==null?this:new nre(this,e)}skip(e){return e<0||e==null?this:new tre(this,e)}prefetch(e){return new yv(this,e)}shuffle(e,t){return new lre(this,e,t)}serial(){return new ere(this)}},Kne=class extends Ht{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:Xne(e),done:!1}}},Zne=class extends Ht{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},ere=class extends Ht{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},tre=class extends Ht{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Se(e.value)}return this.upstream.next()}},nre=class extends Ht{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},rre=class extends Ht{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},are=class extends Ht{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Se(e.value)}}},sre=class extends Ht{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=lr.getTensorsInContainer(e.value),n=this.transform(e.value),r=lr.getTensorsInContainer(n);for(let a of t)lr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},ire=class extends Ht{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},Av=class extends Ht{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=lr.getTensorsInContainer(e.value),n=await this.transform(e.value),r=lr.getTensorsInContainer(n);for(let a of t)lr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},Dy=class extends Ht{constructor(){super();this.outputQueue=new $y,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},ore=class extends Dy{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=lr.getTensorsInContainer(e.value),n=this.transform(e.value),r=lr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let a of t)lr.isTensorInList(a,r)||a.dispose();return!0}},mv=class extends Ht{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},La;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(La||(La={}));var Jne=class extends Ht{constructor(e,t=La.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(s){return s instanceof Ht?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await dv(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case La.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case La.SHORTEST:return{value:null,done:!0};case La.LONGEST:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},yv=class extends Ht{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new pv(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},lre=class extends yv{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=Vne.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},El=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let r;return this.size===Infinity||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),Dn(async()=>(await n.iterator()).columnMajorBatch(e,t,ure),r)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Dn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Dn(async()=>(await t.iterator()).filter(r=>B(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Dn(async()=>(await t.iterator()).map(n=>B(()=>e(n))),this.size)}mapAsync(e){let t=this;return Dn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Dn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Dn(async()=>{let r=Oy(async()=>({value:await t.iterator(),done:!1}));return Yne(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Dn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,a=Bne.alea(t||v.now().toString());return Dn(async()=>{let s=a.int32();return n&&(s+=a.int32()),(await r.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Dn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};El.MAX_BUFFER_SIZE=1e4;function Dn(e,t=null){return new class extends El{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function Mne(e){return Dn(async()=>fv(e),e.length)}function $ne(e){if(!Cl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Dn(async()=>{let n=await dv(e,r=>{if(r instanceof El)return{value:r.iterator(),recurse:!1};if(Cl(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return Qne(n,La.SHORTEST)},t)}function ure(e){if(e===null)return null;let t=e[0];return Gne(t)?{value:cre(e),recurse:!1}:{value:null,recurse:!0}}function cre(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Xe?Cn(e):ur(e)}var iv=class extends El{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},Wp='"',_c=Symbol("out"),gv=Symbol("field"),Bp=Symbol("quote"),zy=Symbol("quoteafterquote"),xv=Symbol("quoteinquote"),ov=class extends El{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new iv(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,a)=>(r[a]=r[a]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let a=0;a<this.fullColumnNames.length;a++){let s=this.fullColumnNames[a],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[a],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?r[s]=l:n[s]=l}}return Object.keys(r).length===0?n:{xs:n,ys:r}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],r=0,a=e.length,s=_c;for(let i=0;i<a;i++)switch(s){case _c:switch(e.charAt(i)){case Wp:r=i+1,s=Bp;break;case this.delimiter:if(r=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=_c;break;default:s=gv,r=i;break}break;case gv:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(r,i)),s=_c,r=i+1;break;default:}break;case Bp:switch(e.charAt(i)){case Wp:s=zy;break;default:}break;case zy:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(r,i-1)),s=_c,r=i+1;break;case Wp:s=Bp;break;default:s=xv;break}break;case xv:switch(e.charAt(i)){case Wp:s=Bp;break;default:}break;default:}if(s===zy?n.push(e.substring(r,a-1)):n.push(e.substring(r)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},wv=class extends Ht{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(J().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new wv(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(a),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,a)=>n.set(r,a*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),ur(n,t)}},_v=class extends Ht{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Bt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-n)/2,s=(1-r)/2,i=a+n,o=r+s;this.cropBox=gn([s,a,o,i],[1,4])}else this.cropBox=gn([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(J().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new _v(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Uo.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return B(()=>{let t=Nn(fe(e,"float32"),0),n;n=Ke.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return H(n,r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},bv=class{},vv=class extends Ht{split(e){return new hre(this,e)}},hre=class extends vv{constructor(e,t){super();this.upstream=e,this.impl=new dre(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},dre=class extends Dy{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},fre=class extends Ht{decodeUTF8(){return new pre(this)}},pre=class extends vv{constructor(e){super();this.upstream=e,this.impl=new mre(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},mre=class extends Dy{constructor(e){super();if(this.upstream=e,J().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=y8();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return J().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},kv=class extends fre{constructor(e,t={}){super();this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(J().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let r=new FileReader;r.onload=s=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},r.onabort=s=>t(new Error("Aborted")),r.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,n);r.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function yre(e,t={}){let n,r;typeof e=="string"?n=e:(n=e.url,r=Are(e));let a=await v.fetch(n,r);if(a.ok){let s=new Uint8Array(await a.arrayBuffer());return new kv(s,t)}else throw new Error(a.statusText)}var Are=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function Iv(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var lv=class extends bv{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(Iv(this.input)&&J().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new kv(this.input,this.options)}},uv=class extends bv{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return Iv(this.url)?new lv(this.url,this.fileOptions).iterator():yre(this.url,this.fileOptions)}};function One(e,t={}){return new ov(new uv(e),t)}function Dne(e){let t=Oy(e);return Dn(async()=>t)}function zne(e){return Dn(async()=>{let t=await e();return Oy(()=>t.next())})}async function Pne(e,t){return _v.create(e,t)}async function Lne(e){return wv.create(e)}var Wne="3.2.0",gre={tfjs:g8,"tfjs-core":x8,"tfjs-data":w8,"tfjs-layers":_8,"tfjs-converter":b8,"tfjs-backend-cpu":Nx,"tfjs-backend-webgl":qw,"tfjs-backend-wasm":zb};var zn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Nv(){if(!nf(zn.name)){Te("backend registration:",zn.name);try{zn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(zn.width,zn.height):document.createElement("canvas")}catch(e){Te("error: cannot create canvas:",e);return}try{zn.gl=zn.canvas.getContext("webgl2",zn.webGLattr)}catch(e){Te("error: cannot get WebGL2 context:",e);return}try{Ld(2,zn.gl)}catch(e){Te("error: cannot set WebGL2 context:",e);return}try{let e=new Ud(zn.gl);Ho(zn.name,()=>new yl(e),zn.priority)}catch(e){Te("error: cannot register WebGL backend:",e);return}try{zo("webgl").forEach(t=>{let n={...t,backendName:zn.name};Us(n)})}catch(e){Te("error: cannot update WebGL backend registration:",e);return}try{qa.set("WEBGL_VERSION",2)}catch(e){Te("error: cannot set WebGL backend flags:",e);return}Te("backend registered:",zn.name)}}var Sv=6;function xre(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let r=0;r<t.strides.length;r++){let a=t.strides[r],s=Math.floor((e+a-1)/a),i=Math.floor((e+a-1)/a),o=t.anchors[r];for(let l=0;l<s;l++){let u=a*(l+.5);for(let c=0;c<i;c++){let h=a*(c+.5);for(let d=0;d<o;d++)n.push([h,u])}}}return n}var wre=e=>({startEndTensor:e,startPoint:Ee(e,[0,0],[-1,2]),endPoint:Ee(e,[0,2],[-1,2])});function _re(e,t,n){let r=Ee(e,[0,1],[-1,2]),a=se(r,t),s=Ee(e,[0,3],[-1,2]),i=we(s,n),o=we(a,n),l=we(i,2),u=me(o,l),c=se(o,l),h=P(u,n),d=P(c,n);return Ko([h,d],1)}var Tv=class{constructor(t,n){this.blazeFaceModel=t,this.width=n.face.detector.inputSize,this.height=n.face.detector.inputSize,this.anchorsData=xre(n.face.detector.inputSize),this.anchors=gn(this.anchorsData),this.inputSize=Bt([this.width,this.height]),this.config=n,this.scaleFaces=.8}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[n,r,a]=B(()=>{let h=t.resizeBilinear([this.width,this.height]),d=me(h.div(127.5),1),p=this.blazeFaceModel.predict(d),m;if(Array.isArray(p)){let g=p.sort((x,N)=>x.size-N.size),_=nt([g[0],g[2]],2),b=nt([g[1],g[3]],2);m=nt([b,_],1).squeeze(0)}else m=p.squeeze();let f=_re(m,this.anchors,this.inputSize),A=Ee(m,[0,0],[-1,1]),y=In(A).squeeze();return[m,f,y]}),s=await Ke.nonMaxSuppressionAsync(r,a,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),i=s.arraySync();s.dispose();let l=i.map(h=>Ee(r,[h,0],[1,-1])).map(h=>{let d=h.arraySync();return h.dispose(),d}),u=a.dataSync(),c=[];for(let h=0;h<l.length;h++){let d=i[h],p=u[d];if(p>this.config.face.detector.minConfidence){let m=wre(l[h]),f=this.anchorsData[d],A=B(()=>Ee(n,[d,Sv-1],[1,-1]).squeeze().reshape([Sv,-1]));c.push({box:m,landmarks:A,anchor:f,confidence:p})}}return n.dispose(),r.dispose(),a.dispose(),n.dispose(),{boxes:c,scaleFactor:[t.shape[2]/this.width,t.shape[1]/this.height]}}};async function Ev(e){let t=await Tt(e.face.detector.modelPath,{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new Tv(t,e);return e.debug&&Te(`load model: ${e.face.detector.modelPath.match(/\/(.*)\./)[1]}`),n}function Cv(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:r}}function bc(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function vc(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function Py(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Ke.cropAndResize(t,s,[0],n)}function Vp(e,t=1.6){let n=vc(e),r=bc(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function Up(e){let t=vc(e),n=bc(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}var jp=[[1,0,0],[0,1,0],[0,0,1]];function bre(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function Rv(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return bre(n)}function Fv(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function Wa(e,t){let n=0;for(let r=0;r<e.length;r++)n+=e[r]*t[r];return n}function vre(e,t){let n=[];for(let r=0;r<e.length;r++)n.push(e[r][t]);return n}function Mv(e,t){let n=[],r=e.length;for(let a=0;a<r;a++){n.push([]);for(let s=0;s<r;s++)n[a].push(Wa(e[a],vre(t,s)))}return n}function Ly(e,t){let n=Math.cos(e),r=Math.sin(e),a=[[n,-r,0],[r,n,0],[0,0,1]],s=Fv(t[0],t[1]),i=Mv(s,a),o=Fv(-t[0],-t[1]);return Mv(i,o)}function $v(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],r=[-Wa(t[0],n),-Wa(t[1],n)];return[t[0].concat(r[0]),t[1].concat(r[1]),[0,0,1]]}function Ov(e,t){return[Wa(e,t[0]),Wa(e,t[1])]}var Lr={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},Wy=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],By=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],Dv=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var kre=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Ire=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Nre=[33,133,362,263,1,78,308],nce=kre.map(e=>By[e]),rce=Ire.map(e=>By[e]),ace=Nre.map(e=>By[e]);var Sre=468,Tre=13,Ere=[Tre,Lr.midwayBetweenEyes[0]],Cre=3,Rre=2,Fre=[Cre,Rre],Vy=Lr.leftEyeLower0,Uy=[Vy[0],Vy[Vy.length-1]],jy=Lr.rightEyeLower0,Hy=[jy[0],jy[jy.length-1]],Mre=3,$re=4,Ore=71,Gy=76;function Hp(e,t,n,r=null){for(let a=0;a<Wy.length;a++){let{key:s,indices:i}=Wy[a],o=Lr[`${n}${s}`];if(!r||r.includes(s))for(let l=0;l<i.length;l++){let u=i[l];e[o[l]]=[t[u][0],t[u][1],(t[u][2]+e[o[l]][2])/2]}}}var qy=class{constructor(t,n,r,a){this.storedBoxes=[],this.boundingBoxDetector=t,this.meshDetector=n,this.irisModel=r,this.meshWidth=a.face.mesh.inputSize,this.meshHeight=a.face.mesh.inputSize,this.irisSize=a.face.iris.inputSize,this.irisEnlarge=2.3,this.skipped=0,this.detectedFaces=0}transformRawCoords(t,n,r,a){let s=bc({startPoint:n.startPoint,endPoint:n.endPoint}),i=[s[0]/this.meshWidth,s[1]/this.meshHeight],o=t.map(d=>[i[0]*(d[0]-this.meshWidth/2),i[1]*(d[1]-this.meshHeight/2),d[2]]),l=r!==0?Ly(r,[0,0]):jp,u=r!==0?o.map(d=>[...Ov(d,l),d[2]]):o,c=r!==0?$v(a):jp,h=[...vc({startPoint:n.startPoint,endPoint:n.endPoint}),1];return u.map(d=>[d[0]+Wa(h,c[0]),d[1]+Wa(h,c[1]),d[2]])}getLeftToRightEyeDepthDifference(t){let n=t[Uy[0]][2],r=t[Hy[0]][2];return n-r}getEyeBox(t,n,r,a,s=!1){let i=Up(Vp(this.calculateLandmarksBoundingBox([t[r],t[a]]),this.irisEnlarge)),o=bc(i),l=Ke.cropAndResize(n,[[i.startPoint[1]/this.meshHeight,i.startPoint[0]/this.meshWidth,i.endPoint[1]/this.meshHeight,i.endPoint[0]/this.meshWidth]],[0],[this.irisSize,this.irisSize]);return s&&(l=Ke.flipLeftRight(l)),{box:i,boxSize:o,crop:l}}getEyeCoords(t,n,r,a=!1){let s=[];for(let i=0;i<Gy;i++){let o=t[i*3],l=t[i*3+1],u=t[i*3+2];s.push([(a?1-o/this.irisSize:o/this.irisSize)*r[0]+n.startPoint[0],l/this.irisSize*r[1]+n.startPoint[1],u])}return{rawCoords:s,iris:s.slice(Ore)}}getAdjustedIrisCoords(t,n,r){let a=t[Lr[`${r}EyeUpper0`][Mre]][2],s=t[Lr[`${r}EyeLower0`][$re]][2],i=(a+s)/2;return n.map((o,l)=>{let u=i;return l===2?u=a:l===4&&(u=s),[o[0],o[1],u]})}async predict(t,n){let r=!1,a;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.videoOptimized)&&(a=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.videoOptimized&&this.skipped++,a&&a.boxes&&(!n.face.mesh.enabled||a.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let i of a.boxes)this.storedBoxes.push({startPoint:i.box.startPoint.dataSync(),endPoint:i.box.endPoint.dataSync(),landmarks:i.landmarks,confidence:i.confidence});this.storedBoxes.length>0&&(r=!0)}if(n.face.detector.skipInitial&&this.detectedFaces===0&&(this.skipped=0),r){if(!a||!a.boxes||a.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i<this.storedBoxes.length;i++){let o=Cv({startPoint:this.storedBoxes[i].startPoint,endPoint:this.storedBoxes[i].endPoint},a.scaleFactor),l=Vp(o),u=Up(l),c=this.storedBoxes[i].landmarks.arraySync(),h=this.storedBoxes[i].confidence;this.storedBoxes[i]={...u,confidence:h,landmarks:c}}}a&&a.boxes&&a.boxes.forEach(i=>{i.box.startPoint.dispose(),i.box.endPoint.dispose(),i.landmarks.dispose()});let s=B(()=>this.storedBoxes.map((i,o)=>{let l,u=0,c;if(n.face.detector.rotation){let[w,x]=i.landmarks.length>=Sre?Ere:Fre;u=Rv(i.landmarks[w],i.landmarks[x]);let N=vc({startPoint:i.startPoint,endPoint:i.endPoint}),T=[N[0]/t.shape[2],N[1]/t.shape[1]],E=Ke.rotateWithOffset(t,u,0,T);c=Ly(-u,N),l=Py({startPoint:i.startPoint,endPoint:i.endPoint},E,[this.meshHeight,this.meshWidth]).div(255)}else{c=jp;let w=t.clone();l=Py({startPoint:i.startPoint,endPoint:i.endPoint},w,[this.meshHeight,this.meshWidth]).div(255)}if(!n.face.mesh.enabled)return{coords:null,box:i,faceConfidence:null,confidence:i.confidence,image:l};let[,h,d]=this.meshDetector.predict(l),p=h.dataSync()[0];if(p<n.face.detector.minConfidence)return null;let f=H(d,[-1,3]).arraySync();if(n.face.iris.enabled){let{box:w,boxSize:x,crop:N}=this.getEyeBox(f,l,Uy[0],Uy[1],!0),{box:T,boxSize:E,crop:M}=this.getEyeBox(f,l,Hy[0],Hy[1]),L=this.irisModel.predict(nt([N,M])).dataSync(),W=L.slice(0,Gy*3),{rawCoords:U,iris:j}=this.getEyeCoords(W,w,x,!0),X=L.slice(Gy*3),{rawCoords:G,iris:ee}=this.getEyeCoords(X,T,E),Y=this.getLeftToRightEyeDepthDifference(f);Math.abs(Y)<30?(Hp(f,U,"left"),Hp(f,G,"right")):Y<1?Hp(f,U,"left",["EyeUpper0","EyeLower0"]):Hp(f,G,"right",["EyeUpper0","EyeLower0"]);let ae=this.getAdjustedIrisCoords(f,j,"left"),te=this.getAdjustedIrisCoords(f,ee,"right");f=f.concat(ae).concat(te)}let A=this.transformRawCoords(f,i,u,c),y=Vp(this.calculateLandmarksBoundingBox(A)),g=Up(y),_=gn(A),b={coords:_,box:y,faceConfidence:p,confidence:i.confidence,image:l,rawCoords:f};return n.face.mesh.returnRawData||delete b.rawCoords,this.storedBoxes[o]={...g,landmarks:_.arraySync(),confidence:i.confidence,faceConfidence:p},b}));return s=s.filter(i=>i!==null),this.detectedFaces=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s,landmarks:t}}};var D6=Zc(Pv());var Zy={};_r(Zy,{FaceBoxes:()=>Yy,load:()=>zre});var Ky={};function Wr(e,t){if(!t||!t.kernels)return;let n=5,r=t.kernels.filter(o=>o.kernelTimeMs>0).reduce((o,l)=>o+=l.kernelTimeMs,0),a=t.kernels.map((o,l)=>(o.id=l,o)).filter(o=>o.kernelTimeMs>0).sort((o,l)=>l.kernelTimeMs-o.kernelTimeMs),s=t.kernels.map((o,l)=>(o.id=l,o)).filter(o=>o.totalBytesSnapshot>0).sort((o,l)=>l.totalBytesSnapshot-o.totalBytesSnapshot);a.length>n&&(a.length=n),s.length>n&&(s.length=n);let i={newBytes:t.newBytes,newTensors:t.newTensors,peakBytes:t.peakBytes,numKernelOps:t.kernels.length,timeKernelOps:r,slowestKernelOps:a,largestKernelOps:s};Ky[e]=i,Te("Human profiler",e,i)}var Yy=class{constructor(t,n){this.enlarge=1.1,this.model=t,this.config=n}async estimateFaces(t,n){n&&(this.config=n);let r=[],a=Ke.resizeBilinear(t,[this.config.face.detector.inputSize,this.config.face.detector.inputSize]),s=a.toInt(),i,o;if(n.profile){let l=await cr(()=>this.model.executeAsync(s));i=l.result[0].dataSync(),o=l.result[1].squeeze().arraySync(),l.result.forEach(c=>c.dispose()),Wr("faceboxes",l)}else{let[l,u,c]=await this.model.executeAsync(s);i=l.dataSync();let h=u.squeeze();o=h.arraySync(),l.dispose(),u.dispose(),h.dispose(),c.dispose()}s.dispose(),a.dispose();for(let l in o)if(i[l]&&i[l]>this.config.face.detector.minConfidence){let u=[o[l][0]/this.enlarge,o[l][1]/this.enlarge,o[l][2]*this.enlarge,o[l][3]*this.enlarge],c=[u[1],u[0],u[3]-u[1],u[2]-u[0]],h=[parseInt((c[0]*t.shape[2]).toString()),parseInt((c[1]*t.shape[1]).toString()),parseInt((c[2]*t.shape[2]).toString()),parseInt((c[3]*t.shape[1]).toString())],d=Ke.cropAndResize(t,[u],[0],[this.config.face.detector.inputSize,this.config.face.detector.inputSize]),p=d.div([255]);d.dispose(),r.push({confidence:i[l],box:h,boxRaw:this.config.face.mesh.returnRawData?c:null,image:p})}return r}};async function zre(e){let t=await Tt(e.face.detector.modelPath);e.debug&&Te(`load model: ${e.face.detector.modelPath.match(/\/(.*)\./)[1]}`);let n=new Yy(t,e);return e.face.mesh.enabled&&e.debug&&Te(`load model: ${e.face.mesh.modelPath.match(/\/(.*)\./)[1]}`),e.face.iris.enabled&&e.debug&&Te(`load model: ${e.face.iris.modelPath.match(/\/(.*)\./)[1]}`),n}var Jy={};_r(Jy,{load:()=>Qy,predict:()=>e2});var Rl,Gp={age:0},qp=Number.MAX_SAFE_INTEGER;async function Qy(e){return Rl||(Rl=await Tt(e.face.age.modelPath),e.debug&&Te(`load model: ${e.face.age.modelPath.match(/\/(.*)\./)[1]}`)),Rl}async function e2(e,t){return Rl?qp<t.face.age.skipFrames&&t.videoOptimized&&Gp.age&&Gp.age>0?(qp++,Gp):(t.videoOptimized?qp=0:qp=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Ke.resizeBilinear(e,[t.face.age.inputSize,t.face.age.inputSize],!1),a=P(r,[255]);Se(r);let s,i={age:0};if(!t.profile)t.face.age.enabled&&(s=await Rl.predict(a));else{let o=t.face.age.enabled?await cr(()=>Rl.predict(a)):{};s=o.result.clone(),o.result.dispose(),Wr("age",o)}if(a.dispose(),s){let o=s.dataSync();i.age=Math.trunc(10*o[0])/10}s.dispose(),Gp=i,n(i)})):null}var t2={};_r(t2,{load:()=>s2,predict:()=>i2});var wi,n2={gender:""},Xp=Number.MAX_SAFE_INTEGER,r2=!1,a2=[.2989,.587,.114];async function s2(e){return wi||(wi=await Tt(e.face.gender.modelPath),r2=wi.inputs[0].shape[3]===1,e.debug&&Te(`load model: ${e.face.gender.modelPath.match(/\/(.*)\./)[1]}`)),wi}async function i2(e,t){return wi?Xp<t.face.gender.skipFrames&&t.videoOptimized&&n2.gender!==""?(Xp++,n2):(t.videoOptimized?Xp=0:Xp=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Ke.resizeBilinear(e,[t.face.gender.inputSize,t.face.gender.inputSize],!1),a;r2?a=B(()=>{let[o,l,u]=Zt(r,3,3),c=P(o,a2[0]),h=P(l,a2[1]),d=P(u,a2[2]);return Go([c,h,d]).sub(.5).mul(2)}):a=P(r,[255]),Se(r);let s,i={gender:"",confidence:0};if(!t.profile)t.face.gender.enabled&&(s=await wi.predict(a));else{let o=t.face.gender.enabled?await cr(()=>wi.predict(a)):{};s=o.result.clone(),o.result.dispose(),Wr("gender",o)}if(a.dispose(),s){let o=s.dataSync();if(r2){let l=Math.trunc(100*Math.abs(o[0]-o[1]))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]>o[1]?"female":"male",i.confidence=l)}else{let l=Math.trunc(200*Math.abs(o[0]-.5))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]<=.5?"female":"male",i.confidence=Math.min(.99,l))}}s.dispose(),n2=i,n(i)})):null}var o2={};_r(o2,{load:()=>c2,predict:()=>h2});var Pre=["angry","disgust","fear","happy","sad","surprise","neutral"],Fl,l2=[],Kp=Number.MAX_SAFE_INTEGER,u2=[.2989,.587,.114],Lv=1;async function c2(e){return Fl||(Fl=await Tt(e.face.emotion.modelPath),e.debug&&Te(`load model: ${e.face.emotion.modelPath.match(/\/(.*)\./)[1]}`)),Fl}async function h2(e,t){return Fl?Kp<t.face.emotion.skipFrames&&t.videoOptimized&&l2.length>0?(Kp++,l2):(t.videoOptimized?Kp=0:Kp=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Ke.resizeBilinear(e,[t.face.emotion.inputSize,t.face.emotion.inputSize],!1),[a,s,i]=Zt(r,3,3);r.dispose();let o=P(a,u2[0]),l=P(s,u2[1]),u=P(i,u2[2]);a.dispose(),s.dispose(),i.dispose();let c=Go([o,l,u]);o.dispose(),l.dispose(),u.dispose();let h=B(()=>c.sub(.5).mul(2));c.dispose();let d=[];if(t.face.emotion.enabled){let p;if(t.profile){let m=await cr(()=>Fl.predict(h));p=m.result.dataSync(),m.result.dispose(),Wr("emotion",m)}else{let m=await Fl.predict(h);p=m.dataSync(),Se(m)}for(let m=0;m<p.length;m++)Lv*p[m]>t.face.emotion.minConfidence&&d.push({score:Math.min(.99,Math.trunc(100*Lv*p[m])/100),emotion:Pre[m]});d.sort((m,f)=>f.score-m.score)}h.dispose(),l2=d,n(d)})):null}var Ml;async function d2(e){return Ml||(Ml=await Tt(e.face.embedding.modelPath),e.debug&&Te(`load model: ${e.face.embedding.modelPath.match(/\/(.*)\./)[1]}`)),Ml}function Wv(e,t){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let n=2,r=10*e.map((a,s)=>a-t[s]).reduce((a,s)=>a+s**n,0)**(1/n);return Math.trunc(1e3*(1-r))/1e3}async function p2(e,t){return Ml?new Promise(async n=>{let r=Ke.resizeBilinear(e,[t.face.embedding.inputSize,t.face.embedding.inputSize],!1),a=[];if(t.face.embedding.enabled)if(t.profile){let s=await cr(()=>Ml.predict({img_inputs:r}));a=[...s.result.dataSync()],s.result.dispose(),Wr("emotion",s)}else{let s=await Ml.predict({img_inputs:r});a=[...s.dataSync()],Se(s)}r.dispose(),n(a)}):null}var I2={};_r(I2,{PoseNet:()=>N2,load:()=>S2});var Lre=[-123.15,-115.9,-103.06];function Wre(e){let[t,n,r,a]=e;return{offsets:t,heatmap:n,displacementFwd:r,displacementBwd:a}}function Bre(e){let[t,n,r,a]=e;return{offsets:r,heatmap:a,displacementFwd:t,displacementBwd:n}}var f2=class{constructor(t){this.model=t}predict(t,n){return B(()=>{let a=(n.body.modelType==="ResNet"?t.toFloat().add(Lre):t.toFloat().div(127.5).sub(1)).expandDims(0),i=this.model.predict(a).map(l=>l.squeeze([0])),o=n.body.modelType==="ResNet"?Bre(i):Wre(i);return{heatmapScores:o.heatmap.sigmoid(),offsets:o.offsets,displacementFwd:o.displacementFwd,displacementBwd:o.displacementBwd}})}dispose(){this.model.dispose()}};function m2(e){return Math.floor(e/2)}var A2=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(m2(t),t);)this.exchange(t,m2(t)),t=m2(t)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let r=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=r}};function Vre(e,t,n,r,a,s){let[i,o]=s.shape,l=!0,u=Math.max(n-a,0),c=Math.min(n+a+1,i);for(let h=u;h<c;++h){let d=Math.max(r-a,0),p=Math.min(r+a+1,o);for(let m=d;m<p;++m)if(s.get(h,m,e)>t){l=!1;break}if(!l)break}return l}function Bv(e,t,n){let[r,a,s]=n.shape,i=new A2(r*a*s,({score:o})=>o);for(let o=0;o<r;++o)for(let l=0;l<a;++l)for(let u=0;u<s;++u){let c=n.get(o,l,u);c<e||Vre(u,c,o,l,t,n)&&i.enqueue({score:c,part:{heatmapY:o,heatmapX:l,id:u}})}return i}var sa=Zc(Zp());var Vv=Zc(Zp());function x2(e,t,n,r){return{y:r.get(e,t,n),x:r.get(e,t,n+Vv.NUM_KEYPOINTS)}}function Yp(e,t,n){let{heatmapY:r,heatmapX:a,id:s}=e,{y:i,x:o}=x2(r,a,s,n);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}function w2(e,t,n){return e<t?t:e>n?n:e}function Uv(e,t,n,r){let a=n-e,s=r-t;return a*a+s*s}function _2(e,t){return{x:e.x+t.x,y:e.y+t.y}}var Jp=Zc(Zp());function jv(e,t){let n=t.shape[0],r=new Float32Array(n);for(let a=0;a<n;a++){let s=t.get(a,0),i=t.get(a,1);r[a]=e.get(s,i,a)}return r}function Kre(e,t,n,r){return{y:r.get(e,t,n),x:r.get(e,t,n+Jp.NUM_KEYPOINTS)}}function Zre(e,t){let n=[];for(let r=0;r<Jp.NUM_KEYPOINTS;r++){let a=e.get(r,0).valueOf(),s=e.get(r,1).valueOf(),{x:i,y:o}=Kre(a,s,r,t);n.push(o),n.push(i)}return gn(n,[Jp.NUM_KEYPOINTS,2])}function Hv(e,t,n){return B(()=>e.toTensor().mul(_e(t,"int32")).toFloat().add(Zre(e,n)))}function Yre(e,t){return B(()=>{let n=e.div(_e(t,"int32"));return e.sub(n.mul(_e(t,"int32")))})}function Gv(e){let[t,n,r]=e.shape;return B(()=>{let s=e.reshape([t*n,r]).argMax(0),i=s.div(_e(n,"int32")).expandDims(1),o=Yre(s,n).expandDims(1);return nt([i,o],1)})}var qv=sa.poseChain.map(([e,t])=>[sa.partIds[e],sa.partIds[t]]),b2=qv.map(([,e])=>e),Xv=qv.map(([e])=>e);function Jre(e,t,n){let r=n.shape[2]/2;return{y:n.get(t.y,t.x,e),x:n.get(t.y,t.x,r+e)}}function v2(e,t,n,r){return{y:w2(Math.round(e.y/t),0,n-1),x:w2(Math.round(e.x/t),0,r-1)}}function Kv(e,t,n,r,a,s,i,o=2){let[l,u]=r.shape,c=v2(t.position,s,l,u),h=Jre(e,c,i),p=_2(t.position,h);for(let A=0;A<o;A++){let y=v2(p,s,l,u),g=x2(y.y,y.x,n,a);p=_2({x:y.x*s,y:y.y*s},{x:g.x,y:g.y})}let m=v2(p,s,l,u),f=r.get(m.y,m.x,n);return{position:p,part:sa.partNames[n],score:f}}function Zv(e,t,n,r,a,s){let i=t.shape[2],o=b2.length,l=new Array(i),{part:u,score:c}=e,h=Yp(u,r,n);l[u.id]={score:c,part:sa.partNames[u.id],position:h};for(let d=o-1;d>=0;--d){let p=b2[d],m=Xv[d];l[p]&&!l[m]&&(l[m]=Kv(d,l[p],m,t,n,r,s))}for(let d=0;d<o;++d){let p=Xv[d],m=b2[d];l[p]&&!l[m]&&(l[m]=Kv(d,l[p],m,t,n,r,a))}return l}async function Yv(e,t,n){let r=0,a=Gv(e),s=await Promise.all([e.buffer(),t.buffer(),a.buffer()]),i=s[0],o=s[1],l=s[2],u=Hv(l,n.body.outputStride,o),c=await u.buffer(),d=Array.from(jv(i,l)).map((m,f)=>(r+=m,{position:{y:c.get(f,0),x:c.get(f,1)},part:sa.partNames[f],score:m})),p=d.filter(m=>m.score>n.body.scoreThreshold);return a.dispose(),u.dispose(),{keypoints:p,score:r/d.length}}var Qre=1;function Jv(e,t,{x:n,y:r},a){return e.some(({keypoints:s})=>{let i=s[a].position;return Uv(r,n,i.y,i.x)<=t})}function eae(e,t,n){return n.reduce((a,{position:s,score:i},o)=>(Jv(e,t,s,o)||(a+=i),a),0)/n.length}function Qv(e,t,n,r,a){let s=[],i=Bv(a.body.scoreThreshold,Qre,e),o=a.body.nmsRadius^2;for(;s.length<a.body.maxDetections&&!i.empty();){let l=i.dequeue(),u=Yp(l.part,a.body.outputStride,t);if(Jv(s,o,u,l.part.id))continue;let c=Zv(l,e,t,a.body.outputStride,n,r),h=eae(s,o,c);h>a.body.scoreThreshold&&s.push({keypoints:c,score:h})}return s}async function e6(e){return Promise.all(e.map(t=>t.buffer()))}function tae(e,t,n){return{score:e.score,keypoints:e.keypoints.map(({score:r,part:a,position:s})=>({score:r,part:a,position:{x:s.x*n,y:s.y*t}}))}}function t6(e,[t,n]){let r=e.squeeze(0),a=r.resizeBilinear([t,n]);return r.dispose(),a}function k2(e,[t,n],[r,a]){return e.map(i=>tae(i,t/r,n/a))}async function nae(e,t,n){return new Promise(async r=>{let a=e.shape[1],s=e.shape[2],i=await e6([t.heatmapScores,t.offsets,t.displacementFwd,t.displacementBwd]),o=i[0],l=i[1],u=i[2],c=i[3],h=await Qv(o,l,u,c,n),d=k2(h,[a,s],[n.body.inputSize,n.body.inputSize]);r(d)})}async function rae(e,t,n){return new Promise(async r=>{let a=e.shape[1],s=e.shape[2],o=[await Yv(t.heatmapScores,t.offsets,n)],l=k2(o,[a,s],[n.body.inputSize,n.body.inputSize]);r(l)})}var N2=class{constructor(t){this.baseModel=t}async estimatePoses(t,n){let r=t6(t,[n.body.inputSize,n.body.inputSize]),a=this.baseModel.predict(r,n),s=n.body.maxDetections<2?await rae(t,a,n):await nae(t,a,n);return a.heatmapScores.dispose(),a.offsets.dispose(),a.displacementFwd.dispose(),a.displacementBwd.dispose(),r.dispose(),s}dispose(){this.baseModel.dispose()}};async function S2(e){let t=await Tt(e.body.modelPath),n=new f2(t);return e.debug&&Te(`load model: ${e.body.modelPath.match(/\/(.*)\./)[1]}`),new N2(n)}var F2={};_r(F2,{HandPose:()=>$2,load:()=>O2});function Qp(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function kc(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function n6(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Ke.cropAndResize(t,s,[0],n)}function r6(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:r,palmLandmarks:a,confidence:e.confidence}}function e0(e,t=1.5){let n=kc(e),r=Qp(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function t0(e){let t=kc(e),n=Qp(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}var T2=class{constructor(t,n,r){this.model=t,this.anchors=r.map(a=>[a.x_center,a.y_center]),this.anchorsTensor=gn(this.anchors),this.inputSizeTensor=Bt([n,n]),this.doubleInputSizeTensor=Bt([n*2,n*2])}normalizeBoxes(t){return B(()=>{let n=Ee(t,[0,0],[-1,2]),r=Ee(t,[0,2],[-1,2]),a=se(we(n,this.inputSizeTensor),this.anchorsTensor),s=we(r,this.doubleInputSizeTensor),i=P(me(a,s),this.inputSizeTensor),o=P(se(a,s),this.inputSizeTensor);return Ko([i,o],1)})}normalizeLandmarks(t,n){return B(()=>{let r=se(we(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return P(r,this.inputSizeTensor)})}async getBoxes(t,n){let r=this.model.predict(t),a=r.squeeze();r.dispose();let s=B(()=>In(Ee(a,[0,0],[-1,1])).squeeze()),i=s.dataSync(),o=Ee(a,[0,1],[-1,4]),l=this.normalizeBoxes(o);o.dispose();let u=await Ke.nonMaxSuppressionAsync(l,i,n.hand.maxHands,n.hand.iouThreshold,n.hand.scoreThreshold),c=u.arraySync();s.dispose(),u.dispose();let h=[];for(let d of c)if(i[d]>=n.hand.minConfidence){let p=Ee(l,[d,0],[1,-1]),m=Ee(a,[d,5],[1,14]),f=B(()=>this.normalizeLandmarks(m,d).reshape([-1,2]));m.dispose(),h.push({box:p,palmLandmarks:f,confidence:i[d]})}return a.dispose(),l.dispose(),h}async estimateHandBounds(t,n){let r=t.shape[1],a=t.shape[2],s=B(()=>t.resizeBilinear([n.hand.inputSize,n.hand.inputSize]).div(127.5).sub(1)),i=await this.getBoxes(s,n);s.dispose();let o=[];if(!i||i.length===0)return o;for(let l of i){let u=l.box.dataSync(),c=u.slice(0,2),h=u.slice(2,4),d=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),o.push(r6({startPoint:c,endPoint:h,palmLandmarks:d,confidence:l.confidence},[a/n.hand.inputSize,r/n.hand.inputSize]))}return o}};function aae(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function a6(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return aae(n)}var s6=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Ba(e,t){let n=0;for(let r=0;r<e.length;r++)n+=e[r]*t[r];return n}function sae(e,t){let n=[];for(let r=0;r<e.length;r++)n.push(e[r][t]);return n}function i6(e,t){let n=[],r=e.length;for(let a=0;a<r;a++){n.push([]);for(let s=0;s<r;s++)n[a].push(Ba(e[a],sae(t,s)))}return n}function E2(e,t){let n=Math.cos(e),r=Math.sin(e),a=[[n,-r,0],[r,n,0],[0,0,1]],s=s6(t[0],t[1]),i=i6(s,a),o=s6(-t[0],-t[1]);return i6(i,o)}function o6(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],r=[-Ba(t[0],n),-Ba(t[1],n)];return[t[0].concat(r[0]),t[1].concat(r[1]),[0,0,1]]}function C2(e,t){return[Ba(e,t[0]),Ba(e,t[1])]}var iae=5,l6=1.65,u6=[0,5,9,13,17,1,2],oae=0,lae=2,R2=class{constructor(t,n,r){this.handDetector=t,this.landmarkDetector=n,this.inputSize=r,this.storedBoxes=[],this.skipped=0,this.detectedHands=0}getBoxForPalmLandmarks(t,n){let r=t.map(s=>C2([...s,1],n)),a=this.calculateLandmarksBoundingBox(r);return e0(t0(a),iae)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),r=e0(t0(n),l6);r.palmLandmarks=[];for(let a=0;a<u6.length;a++)r.palmLandmarks.push(t[u6[a]].slice(0,2));return r}transformRawCoords(t,n,r,a){let s=Qp(n),i=[s[0]/this.inputSize,s[1]/this.inputSize,(s[0]+s[1])/this.inputSize/2],o=t.map(p=>[i[0]*(p[0]-this.inputSize/2),i[1]*(p[1]-this.inputSize/2),i[2]*p[2]]),l=E2(r,[0,0]),u=o.map(p=>[...C2(p,l),p[2]]),c=o6(a),h=[...kc(n),1],d=[Ba(h,c[0]),Ba(h,c[1])];return u.map(p=>[p[0]+d[0],p[1]+d[1],p[2]])}async estimateHands(t,n){let r=!1,a;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.videoOptimized)&&(a=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.videoOptimized&&this.skipped++,a&&a.length>0&&(a.length!==this.detectedHands&&this.detectedHands!==n.hand.maxHands||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...a],this.storedBoxes.length>0&&(r=!0));let s=[];n.hand.skipInitial&&this.detectedHands===0&&(this.skipped=0);for(let i=0;i<this.storedBoxes.length;i++){let o=this.storedBoxes[i];if(!!o)if(n.hand.landmarks){let l=n.hand.rotation?a6(o.palmLandmarks[oae],o.palmLandmarks[lae]):0,u=kc(o),c=[u[0]/t.shape[2],u[1]/t.shape[1]],h=n.hand.rotation?Ke.rotateWithOffset(t,l,0,c):t.clone(),d=E2(-l,u),p=r?this.getBoxForPalmLandmarks(o.palmLandmarks,d):o,m=n6(p,h,[this.inputSize,this.inputSize]),f=m.div(255);m.dispose(),h.dispose();let[A,y]=await this.landmarkDetector.predict(f);f.dispose();let g=A.dataSync()[0];if(A.dispose(),g>=n.hand.minConfidence){let _=H(y,[-1,3]),b=_.arraySync();y.dispose(),_.dispose();let w=this.transformRawCoords(b,p,l,d),x=this.getBoxForHandLandmarks(w);this.storedBoxes[i]=x;let N={landmarks:w,confidence:g,box:{topLeft:x.startPoint,bottomRight:x.endPoint}};s.push(N)}else this.storedBoxes[i]=null;y.dispose()}else{let l=e0(t0(o),l6),u={confidence:o.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};s.push(u)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s}}};var c6=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}];var M2={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},$2=class{constructor(t){this.handPipeline=t}static getAnnotations(){return M2}async estimateHands(t,n){let r=await this.handPipeline.estimateHands(t,n);if(!r)return[];let a=[];for(let s of r){let i={};if(s.landmarks)for(let l of Object.keys(M2))i[l]=M2[l].map(u=>s.landmarks[u]);let o=s.box?[Math.max(0,s.box.topLeft[0]),Math.max(0,s.box.topLeft[1]),Math.min(t.shape[2],s.box.bottomRight[0])-s.box.topLeft[0],Math.min(t.shape[1],s.box.bottomRight[1])-s.box.topLeft[1]]:0;a.push({confidence:s.confidence,box:o,landmarks:s.landmarks,annotations:i})}return a}};async function O2(e){let[t,n]=await Promise.all([e.hand.enabled?Tt(e.hand.detector.modelPath,{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?Tt(e.hand.skeleton.modelPath,{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),r=new T2(t,e.hand.inputSize,c6),a=new R2(r,n,e.hand.inputSize),s=new $2(a);return e.hand.enabled&&e.debug&&Te(`load model: ${e.hand.detector.modelPath.match(/\/(.*)\./)[1]}`),e.hand.landmarks&&e.debug&&Te(`load model: ${e.hand.skeleton.modelPath.match(/\/(.*)\./)[1]}`),s}var h6=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let r=e[n].keypoints.find(l=>l.part==="leftWrist"),a=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&r&&a&&r.position.y<s.position.y&&a.position.y<s.position.y?t.push({body:n,gesture:"i give up"}):s&&r&&r.position.y<s.position.y?t.push({body:n,gesture:"raise left hand"}):s&&a&&a.position.y<s.position.y&&t.push({body:n,gesture:"raise right hand"});let i=e[n].keypoints.find(l=>l.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},d6=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>0){let r=e[n].mesh[35][2]-e[n].mesh[263][2];Math.abs(r)<10?t.push({face:n,gesture:"facing camera"}):t.push({face:n,gesture:`facing ${r<0?"right":"left"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t},p6=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.rightEyeIris)continue;let r=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],a=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],s=Math.abs(r*a),i=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],o=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(i*o);Math.abs(s-l)/Math.max(s,l)<.25&&t.push({iris:n,gesture:"looking at camera"})}return t},f6=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let r=[];for(let[a,s]of Object.entries(e[n].annotations))a!=="palmBase"&&r.push({name:a.toLowerCase(),position:s[0]});if(r&&r.length>0){let a=r.reduce((i,o)=>i.position[2]<o.position[2]?i:o),s=r.reduce((i,o)=>i.position[1]<o.position[1]?i:o);t.push({hand:n,gesture:`${a.name} forward ${s.name} up`})}}return t};function uae(e,t,n){let r=function(o,l,u){let c=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(c,(h,d)=>(u[d]=0,h))},a=function(o,l){let u=e.createShader(l);if(e.shaderSource(u,o),e.compileShader(u),!e.getShaderParameter(u,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(u));return u};this.uniform={},this.attribute={};let s=a(t,e.VERTEX_SHADER),i=a(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),r(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);r(t,"uniform",this.uniform),r(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)}function m6(e){e||(e={});let t=0,n=null,r=!1,a=-1,s=[null,null],i=[],o=-1,l=-1,u=null,c=null,h={},d=e.canvas||document.createElement("canvas"),p={},m={INTERMEDIATE:1},f=d.getContext("webgl");if(!f)throw new Error("Filter: getContext() failed");this.addFilter=function(w){let x=Array.prototype.slice.call(arguments,1),N=h[w];i.push({func:N,args:x})},this.reset=function(){i=[]};let A=function(w,x){if(!(w===o&&x===l)){if(d.width=w,o=w,d.height=x,l=x,!u){let N=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);u=f.createBuffer(),f.bindBuffer(f.ARRAY_BUFFER,u),f.bufferData(f.ARRAY_BUFFER,N,f.STATIC_DRAW),f.pixelStorei(f.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}f.viewport(0,0,o,l),s=[null,null]}},y=function(w,x){let N=f.createFramebuffer();f.bindFramebuffer(f.FRAMEBUFFER,N);let T=f.createRenderbuffer();f.bindRenderbuffer(f.RENDERBUFFER,T);let E=f.createTexture();return f.bindTexture(f.TEXTURE_2D,E),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,w,x,0,f.RGBA,f.UNSIGNED_BYTE,null),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.framebufferTexture2D(f.FRAMEBUFFER,f.COLOR_ATTACHMENT0,f.TEXTURE_2D,E,0),f.bindTexture(f.TEXTURE_2D,null),f.bindFramebuffer(f.FRAMEBUFFER,null),{fbo:N,texture:E}},g=function(w){return s[w]=s[w]||y(o,l),s[w]},_=function(w=null){var E,M;let x=null,N=null,T=!1;t===0?x=n:x=(E=g(a))==null?void 0:E.texture,t++,r&&!(w&m.INTERMEDIATE)?(N=null,T=t%2==0):(a=(a+1)%2,N=(M=g(a))==null?void 0:M.fbo),f.bindTexture(f.TEXTURE_2D,x),f.bindFramebuffer(f.FRAMEBUFFER,N),f.uniform1f(c.uniform.flipY,T?-1:1),f.drawArrays(f.TRIANGLES,0,6)};this.apply=function(w){if(A(w.width,w.height),t=0,n||(n=f.createTexture()),f.bindTexture(f.TEXTURE_2D,n),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.NEAREST),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.NEAREST),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,f.RGBA,f.UNSIGNED_BYTE,w),i.length===0)return _(),d;for(let x=0;x<i.length;x++){r=x===i.length-1;let N=i[x];N.func.apply(this,N.args||[])}return d};let b=function(w){if(p[w])return c=p[w],f.useProgram(c.id),c;let x={};x.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
`),x.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
`),c=new uae(f,x.VERTEX_IDENTITY,w);let N=Float32Array.BYTES_PER_ELEMENT,T=4*N;return f.enableVertexAttribArray(c.attribute.pos),f.vertexAttribPointer(c.attribute.pos,2,f.FLOAT,!1,T,0*N),f.enableVertexAttribArray(c.attribute.uv),f.vertexAttribPointer(c.attribute.uv,2,f.FLOAT,!1,T,2*N),p[w]=c,c};h.colorMatrix=function(w){let x=new Float32Array(w);x[4]/=255,x[9]/=255,x[14]/=255,x[19]/=255;let N=x[18]===1&&x[3]===0&&x[8]===0&&x[13]===0&&x[15]===0&&x[16]===0&&x[17]===0&&x[19]===0?h.colorMatrix.SHADER.WITHOUT_ALPHA:h.colorMatrix.SHADER.WITH_ALPHA,T=b(N);f.uniform1fv(T.uniform.m,x),_()},h.colorMatrix.SHADER={},h.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
`),h.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
`),h.brightness=function(w){let x=(w||0)+1;h.colorMatrix([x,0,0,0,0,0,x,0,0,0,0,0,x,0,0,0,0,0,1,0])},h.saturation=function(w){let x=(w||0)*2/3+1,N=(x-1)*-.5;h.colorMatrix([x,N,N,0,0,N,x,N,0,0,N,N,x,0,0,0,0,0,1,0])},h.desaturate=function(){h.saturation(-1)},h.contrast=function(w){let x=(w||0)+1,N=-128*(x-1);h.colorMatrix([x,0,0,0,N,0,x,0,0,N,0,0,x,0,N,0,0,0,1,0])},h.negative=function(){h.contrast(-2)},h.hue=function(w){w=(w||0)/180*Math.PI;let x=Math.cos(w),N=Math.sin(w),T=.213,E=.715,M=.072;h.colorMatrix([T+x*(1-T)+N*-T,E+x*-E+N*-E,M+x*-M+N*(1-M),0,0,T+x*-T+N*.143,E+x*(1-E)+N*.14,M+x*-M+N*-.283,0,0,T+x*-T+N*-(1-T),E+x*-E+N*E,M+x*(1-M)+N*M,0,0,0,0,0,1,0])},h.desaturateLuminance=function(){h.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},h.sepia=function(){h.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},h.brownie=function(){h.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},h.vintagePinhole=function(){h.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},h.kodachrome=function(){h.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},h.technicolor=function(){h.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},h.polaroid=function(){h.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},h.shiftToBGR=function(){h.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},h.convolution=function(w){let x=new Float32Array(w),N=1/o,T=1/l,E=b(h.convolution.SHADER);f.uniform1fv(E.uniform.m,x),f.uniform2f(E.uniform.px,N,T),_()},h.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
`),h.detectEdges=function(){h.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},h.sobelX=function(){h.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},h.sobelY=function(){h.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},h.sharpen=function(w){let x=w||1;h.convolution.call(this,[0,-1*x,0,-1*x,1+4*x,-1*x,0,-1*x,0])},h.emboss=function(w){let x=w||1;h.convolution.call(this,[-2*x,-1*x,0,-1*x,1,1*x,0,1*x,2*x])},h.blur=function(w){let x=w/7/o,N=w/7/l,T=b(h.blur.SHADER);f.uniform2f(T.uniform.px,0,N),_(m.INTERMEDIATE),f.uniform2f(T.uniform.px,x,0),_()},h.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
`),h.pixelate=function(w){let x=w/o,N=w/l,T=b(h.pixelate.SHADER);f.uniform2f(T.uniform.size,x,N),_()},h.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
`)}var It=null,en=null,Et=null;function A6(e,t){let n;if(e instanceof Xe)n=Jn(e);else{let r=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,a=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,s=r,i=a;if(t.filter.width>0?s=t.filter.width:t.filter.height>0&&(s=r*(t.filter.height/a)),t.filter.height>0?i=t.filter.height:t.filter.width>0&&(i=a*(t.filter.width/r)),!s||!i)return Te("Human: invalid input",e),null;(!It||It.width!==s||It.height!==i)&&(It=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(s,i):document.createElement("canvas"),It.width!==s&&(It.width=s),It.height!==i&&(It.height=i));let o=It.getContext("2d");if(e instanceof ImageData?o.putImageData(e,0,0):o.drawImage(e,0,0,r,a,0,0,It.width,It.height),t.filter.enabled){if((!Et||!en||It.width!==en.width||It.height!==en.height)&&(en=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(It.width,It.height):document.createElement("canvas"),en.width!==It.width&&(en.width=It.width),en.height!==It.height&&(en.height=It.height),Et=qa.flags.IS_BROWSER?new m6({canvas:en}):null),!Et)return It;Et.reset(),Et.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&Et.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&Et.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&Et.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&Et.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&Et.addFilter("hue",t.filter.hue),t.filter.negative&&Et.addFilter("negative"),t.filter.sepia&&Et.addFilter("sepia"),t.filter.vintage&&Et.addFilter("brownie"),t.filter.sepia&&Et.addFilter("sepia"),t.filter.kodachrome&&Et.addFilter("kodachrome"),t.filter.technicolor&&Et.addFilter("technicolor"),t.filter.polaroid&&Et.addFilter("polaroid"),t.filter.pixelate!==0&&Et.addFilter("pixelate",t.filter.pixelate),Et.apply(It)}else en=It,Et&&(Et=null);let l;if(en.data){let c=[en.height,en.width,3];l=Vh(en.data,c,"int32")}else if(t.backend==="webgl"||en instanceof ImageData)l=Uo.fromPixels(en);else{let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(s,i):document.createElement("canvas");c.width=s,c.height=i;let h=c.getContext("2d");h==null||h.drawImage(en,0,0);let d=h==null?void 0:h.getImageData(0,0,s,i);l=Uo.fromPixels(d)}let u=l.toFloat();n=u.expandDims(0),l.dispose(),u.dispose()}return{tensor:n,canvas:t.filter.return?en:null}}var y6={backend:"webgl",wasmPath:"../assets/",debug:!0,async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"face",filter:{enabled:!0,width:0,height:0,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"../models/blazeface-back.json",inputSize:256,rotation:!1,maxFaces:10,skipFrames:11,skipInitial:!1,minConfidence:.2,iouThreshold:.2,scoreThreshold:.2},mesh:{enabled:!0,modelPath:"../models/facemesh.json",inputSize:192,returnRawData:!1},iris:{enabled:!0,modelPath:"../models/iris.json",inputSize:64},age:{enabled:!0,modelPath:"../models/age-ssrnet-imdb.json",inputSize:64,skipFrames:31},gender:{enabled:!0,minConfidence:.4,modelPath:"../models/gender.json",inputSize:64,skipFrames:41},emotion:{enabled:!0,inputSize:64,minConfidence:.2,skipFrames:21,modelPath:"../models/emotion-large.json"},embedding:{enabled:!1,inputSize:112,modelPath:"../models/mobilefacenet.json"}},body:{enabled:!0,modelPath:"../models/posenet.json",inputSize:257,maxDetections:10,scoreThreshold:.5,nmsRadius:20,outputStride:16,modelType:"MobileNet"},hand:{enabled:!0,rotation:!1,inputSize:256,skipFrames:12,skipInitial:!1,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"../models/handdetect.json"},skeleton:{modelPath:"../models/handskeleton.json"}}};var n0=`
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,r0=`
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
2Q==`;var D2={};_r(D2,{author:()=>I6,browser:()=>v6,bugs:()=>N6,default:()=>cae,dependencies:()=>R6,description:()=>x6,devDependencies:()=>M6,engines:()=>E6,homepage:()=>S6,keywords:()=>O6,license:()=>T6,main:()=>_6,module:()=>b6,name:()=>g6,peerDependencies:()=>F6,repository:()=>C6,scripts:()=>$6,sideEffects:()=>w6,types:()=>k6,version:()=>z2});var g6="@vladmandic/human",z2="0.30.4",x6="Human: AI-powered 3D Face Detection, Face Embedding & Recognition, Body Pose Tracking, Hand & Finger Tracking, Iris Analysis, Age & Gender & Emotion Prediction & Gesture Recognition",w6=!1,_6="dist/human.node.js",b6="dist/human.esm.js",v6="dist/human.esm.js",k6="types/human.d.ts",I6="Vladimir Mandic <mandic00@live.com>",N6={url:"https://github.com/vladmandic/human/issues"},S6="https://github.com/vladmandic/human#readme",T6="MIT",E6={node:">=12.0.0"},C6={type:"git",url:"git+https://github.com/vladmandic/human.git"},R6={},F6={},M6={"@tensorflow/tfjs":"^3.2.0","@tensorflow/tfjs-backend-cpu":"^3.2.0","@tensorflow/tfjs-backend-wasm":"^3.2.0","@tensorflow/tfjs-backend-webgl":"^3.2.0","@tensorflow/tfjs-converter":"^3.2.0","@tensorflow/tfjs-core":"^3.2.0","@tensorflow/tfjs-data":"^3.2.0","@tensorflow/tfjs-layers":"^3.2.0","@tensorflow/tfjs-node":"^3.2.0","@tensorflow/tfjs-node-gpu":"^3.2.0","@types/node":"^14.14.31","@typescript-eslint/eslint-plugin":"^4.16.1","@typescript-eslint/parser":"^4.16.1","@vladmandic/pilogger":"^0.2.14",chokidar:"^3.5.1",dayjs:"^1.10.4",esbuild:"^0.8.54",eslint:"^7.21.0","eslint-config-airbnb-base":"^14.2.1","eslint-plugin-import":"^2.22.1","eslint-plugin-json":"^2.1.2","eslint-plugin-node":"^11.1.0","eslint-plugin-promise":"^4.3.1",rimraf:"^3.0.2",seedrandom:"^3.0.5","simple-git":"^2.35.2",tslib:"^2.1.0",typescript:"^4.3.0-dev.20210302"},$6={start:"node --trace-warnings --unhandled-rejections=strict --trace-uncaught --no-deprecation src/node.js",lint:"eslint src demo server",dev:"npm install && node server/serve.js",build:"rimraf dist/* && rimraf types/* && node server/build.js && node server/changelog.js",update:"npm update --depth 20 --force && npm dedupe && npm prune && npm audit"},O6=["tensorflowjs","face-detection","face-geometry","face-embedding","face-recognition","body-tracking","hand-tracking","iris-tracking","age-estimation","emotion-detection","gender-prediction","gesture-recognition"],cae={name:g6,version:z2,description:x6,sideEffects:w6,main:_6,module:b6,browser:v6,types:k6,author:I6,bugs:N6,homepage:S6,license:T6,engines:E6,repository:C6,dependencies:R6,peerDependencies:F6,devDependencies:M6,scripts:$6,keywords:O6};var ut=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Ic(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,r)=>(Object.keys(r||{}).forEach(a=>{let s=n[a],i=r[a];Array.isArray(s)&&Array.isArray(i)?n[a]=s.concat(...i):t(s)&&t(i)?n[a]=Ic(s,i):n[a]=i}),n),{})}var z6=class{constructor(t={}){this.tf=Yc,this.package=D2,this.version=z2,this.config=Ic(y6,t),this.fx=null,this.state="idle",this.numTensors=0,this.analyzeMemoryLeaks=!1,this.checkSanity=!1,this.firstRun=!0,this.perf={},this.models={facemesh:null,posenet:null,handpose:null,iris:null,age:null,gender:null,emotion:null},this.facemesh=D6,this.age=Jy,this.gender=t2,this.emotion=o2,this.body=I2,this.hand=F2}profile(){return this.config.profile?Ky:{}}analyze(...t){if(!this.analyzeMemoryLeaks)return;let n=this.tf.engine().state.numTensors,r=this.numTensors;this.numTensors=n;let a=n-r;a!==0&&Te(...t,a)}sanity(t){if(!this.checkSanity)return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof this.tf.Tensor))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null}simmilarity(t,n){return this.config.face.embedding.enabled?Wv(t,n):0}async load(t=null){this.state="load";let n=ut();t&&(this.config=Ic(this.config,t)),this.firstRun&&(this.config.debug&&Te(`version: ${this.version} TensorFlow/JS version: ${this.tf.version_core}`),await this.checkBackend(!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&Te("configuration:",this.config),this.config.debug&&Te("tf flags:",this.tf.ENV.flags)));let r=this.config.face.detector.modelPath.includes("faceboxes")?Zy:D6;this.config.async?[this.models.face,this.models.age,this.models.gender,this.models.emotion,this.models.embedding,this.models.posenet,this.models.handpose]=await Promise.all([this.models.face||(this.config.face.enabled?r.load(this.config):null),this.models.age||(this.config.face.enabled&&this.config.face.age.enabled?Qy(this.config):null),this.models.gender||(this.config.face.enabled&&this.config.face.gender.enabled?s2(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?c2(this.config):null),this.models.embedding||(this.config.face.enabled&&this.config.face.embedding.enabled?d2(this.config):null),this.models.posenet||(this.config.body.enabled?S2(this.config):null),this.models.handpose||(this.config.hand.enabled?O2(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await r.load(this.config)),this.config.face.enabled&&this.config.face.age.enabled&&!this.models.age&&(this.models.age=await Qy(this.config)),this.config.face.enabled&&this.config.face.gender.enabled&&!this.models.gender&&(this.models.gender=await s2(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await c2(this.config)),this.config.face.enabled&&this.config.face.embedding.enabled&&!this.models.embedding&&(this.models.embedding=await d2(this.config)),this.config.body.enabled&&!this.models.posenet&&(this.models.posenet=await S2(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await O2(this.config))),this.firstRun&&(this.config.debug&&Te("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.firstRun=!1);let a=Math.trunc(ut()-n);a>(this.perf.load||0)&&(this.perf.load=a)}async checkBackend(t=!1){if(this.config.backend&&this.config.backend!==""&&t||this.tf.getBackend()!==this.config.backend){let n=ut();if(this.state="backend",this.config.backend&&this.config.backend!==""){this.config.debug&&Te("setting backend:",this.config.backend),this.config.backend==="wasm"&&(this.config.debug&&Te("settings wasm path:",this.config.wasmPath),this.tf.setWasmPaths(this.config.wasmPath),await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT")||Te("warning: wasm simd support is not enabled")),this.config.backend==="humangl"&&Nv();try{await this.tf.setBackend(this.config.backend)}catch(r){Te("error: cannot set backend:",this.config.backend,r)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"){this.config.deallocate&&(Te("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1));let r=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&Te(`gl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`)}await this.tf.ready(),this.perf.backend=Math.trunc(ut()-n)}}async detectFace(t){var u,c,h,d,p,m;let n,r,a,s,i,o=[];this.state="run:face",n=ut();let l=await((u=this.models.face)==null?void 0:u.estimateFaces(t,this.config));this.perf.face=Math.trunc(ut()-n);for(let f of l){if(this.analyze("Get Face"),!f.image||f.image.isDisposedInternal){Te("Face object is disposed:",f.image);continue}this.analyze("Start Age:"),this.config.async?r=this.config.face.age.enabled?e2(f.image,this.config):{}:(this.state="run:age",n=ut(),r=this.config.face.age.enabled?await e2(f.image,this.config):{},this.perf.age=Math.trunc(ut()-n)),this.analyze("Start Gender:"),this.config.async?a=this.config.face.gender.enabled?i2(f.image,this.config):{}:(this.state="run:gender",n=ut(),a=this.config.face.gender.enabled?await i2(f.image,this.config):{},this.perf.gender=Math.trunc(ut()-n)),this.analyze("Start Emotion:"),this.config.async?s=this.config.face.emotion.enabled?h2(f.image,this.config):{}:(this.state="run:emotion",n=ut(),s=this.config.face.emotion.enabled?await h2(f.image,this.config):{},this.perf.emotion=Math.trunc(ut()-n)),this.analyze("End Emotion:"),this.analyze("Start Embedding:"),this.config.async?i=this.config.face.embedding.enabled?p2(f.image,this.config):[]:(this.state="run:embedding",n=ut(),i=this.config.face.embedding.enabled?await p2(f.image,this.config):[],this.perf.embedding=Math.trunc(ut()-n)),this.analyze("End Emotion:"),this.config.async&&([r,a,s,i]=await Promise.all([r,a,s,i])),this.analyze("Finish Face:"),!this.config.face.iris.enabled&&((c=f==null?void 0:f.annotations)==null?void 0:c.leftEyeIris)&&((h=f==null?void 0:f.annotations)==null?void 0:h.rightEyeIris)&&(delete f.annotations.leftEyeIris,delete f.annotations.rightEyeIris);let A=((d=f.annotations)==null?void 0:d.leftEyeIris)&&((p=f.annotations)==null?void 0:p.rightEyeIris)?11.7*Math.max(Math.abs(f.annotations.leftEyeIris[3][0]-f.annotations.leftEyeIris[1][0]),Math.abs(f.annotations.rightEyeIris[4][1]-f.annotations.rightEyeIris[2][1])):0;o.push({confidence:f.confidence,box:f.box,mesh:f.mesh,boxRaw:f.boxRaw,meshRaw:f.meshRaw,annotations:f.annotations,age:r.age,gender:a.gender,genderConfidence:a.confidence,emotion:s,embedding:i,iris:A!==0?Math.trunc(A)/100:0}),(m=f.image)==null||m.dispose(),this.analyze("End Face")}return this.analyze("End FaceMesh:"),this.config.async&&(this.perf.face&&delete this.perf.face,this.perf.age&&delete this.perf.age,this.perf.gender&&delete this.perf.gender,this.perf.emotion&&delete this.perf.emotion),o}async detect(t,n={}){return new Promise(async r=>{var d,p,m,f;this.state="config";let a;this.config=Ic(this.config,n),this.state="check";let s=this.sanity(t);s&&(Te(s,t),r({error:s}));let i,o,l,u=ut();await this.checkBackend(),await this.load(),this.config.scoped&&this.tf.engine().startScope(),this.analyze("Start Scope:"),a=ut();let c=A6(t,this.config);if(!c||!c.tensor){Te("could not convert input to tensor"),r({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(ut()-a),this.analyze("Get Image:"),this.config.async?(l=this.config.face.enabled?this.detectFace(c.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",a=ut(),l=this.config.face.enabled?await this.detectFace(c.tensor):[],this.perf.face=Math.trunc(ut()-a)),this.analyze("Start Body:"),this.config.async?(i=this.config.body.enabled?(d=this.models.posenet)==null?void 0:d.estimatePoses(c.tensor,this.config):[],this.perf.body&&delete this.perf.body):(this.state="run:body",a=ut(),i=this.config.body.enabled?await((p=this.models.posenet)==null?void 0:p.estimatePoses(c.tensor,this.config)):[],this.perf.body=Math.trunc(ut()-a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(o=this.config.hand.enabled?(m=this.models.handpose)==null?void 0:m.estimateHands(c.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",a=ut(),o=this.config.hand.enabled?await((f=this.models.handpose)==null?void 0:f.estimateHands(c.tensor,this.config)):[],this.perf.hand=Math.trunc(ut()-a)),this.analyze("End Hand:"),this.config.async&&([l,i,o]=await Promise.all([l,i,o])),c.tensor.dispose(),this.config.scoped&&this.tf.engine().endScope(),this.analyze("End Scope:");let h=[];this.config.gesture.enabled&&(a=ut(),h=[...d6(l),...h6(i),...f6(o),...p6(l)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(ut()-a)),this.perf.total=Math.trunc(ut()-u),this.state="idle",r({face:l,body:i,hand:o,gesture:h,performance:this.perf,canvas:c.canvas})})}async warmupBitmap(){let t=(a,s="application/octet-stream")=>fetch(`data:${s};base64,${a}`).then(i=>i.blob()),n,r;switch(this.config.warmup){case"face":n=await t(n0);break;case"full":n=await t(r0);break;default:n=null}if(n){let a=await createImageBitmap(n);r=await this.detect(a,this.config),a.close()}return r}async warmupCanvas(){return new Promise(t=>{let n,r=0;switch(this.config.warmup){case"face":r=256,n="data:image/jpeg;base64,"+n0;break;case"full":r=1200,n="data:image/jpeg;base64,"+r0;break;default:n=null}let a=new Image(r,r);a.onload=()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(r,r):document.createElement("canvas");s.width=r,s.height=r;let i=s.getContext("2d");i==null||i.drawImage(a,0,0);let o=i==null?void 0:i.getImageData(0,0,r,r);this.detect(o,this.config).then(l=>t(l))},n?a.src=n:t(null)})}async warmupNode(){let t=i=>Buffer.from(i,"base64"),n=this.config.warmup==="face"?t(n0):t(r0),r=(void 0).decodeJpeg(n),a=r.expandDims(0);this.tf.dispose(r);let s=await this.detect(a,this.config);return this.tf.dispose(a),s}async warmup(t){let n=ut();t&&(this.config=Ic(this.config,t));let r=this.config.videoOptimized;this.config.videoOptimized=!1;let a;typeof createImageBitmap=="function"?a=await this.warmupBitmap():typeof Image!="undefined"?a=await this.warmupCanvas():a=await this.warmupNode(),this.config.videoOptimized=r;let s=ut();return this.config.debug&&Te("Warmup",this.config.warmup,Math.round(s-n),"ms",a),a}};export{z6 as default};
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */
//# sourceMappingURL=human.esm.js.map