mirror of https://github.com/vladmandic/human
232 lines
11 KiB
TypeScript
232 lines
11 KiB
TypeScript
/**
|
|
* HandTrack model implementation
|
|
*
|
|
* Based on:
|
|
* - Hand Detection & Skeleton: [**MediaPipe HandPose**](https://drive.google.com/file/d/1sv4sSb9BSNVZhLzxXJ0jBv9DqD-4jnAz/view)
|
|
* - Hand Tracking: [**HandTracking**](https://github.com/victordibia/handtracking)
|
|
*/
|
|
|
|
import { log, join, now } from '../util/util';
|
|
import * as box from '../util/box';
|
|
import * as tf from '../../dist/tfjs.esm.js';
|
|
import type { HandResult, Box, Point } from '../result';
|
|
import type { GraphModel, Tensor } from '../tfjs/types';
|
|
import type { Config } from '../config';
|
|
import { env } from '../util/env';
|
|
import * as fingerPose from './fingerpose';
|
|
import { fakeOps } from '../tfjs/backend';
|
|
|
|
const models: [GraphModel | null, GraphModel | null] = [null, null];
|
|
const modelOutputNodes = ['StatefulPartitionedCall/Postprocessor/Slice', 'StatefulPartitionedCall/Postprocessor/ExpandDims_1'];
|
|
|
|
const inputSize = [[0, 0], [0, 0]];
|
|
|
|
const classes = ['hand', 'fist', 'pinch', 'point', 'face', 'tip', 'pinchtip'];
|
|
const faceIndex = 4;
|
|
|
|
const boxExpandFact = 1.6;
|
|
const maxDetectorResolution = 512;
|
|
const detectorExpandFact = 1.4;
|
|
|
|
let skipped = 0;
|
|
let lastTime = 0;
|
|
let outputSize: [number, number] = [0, 0];
|
|
|
|
type HandDetectResult = {
|
|
id: number,
|
|
score: number,
|
|
box: Box,
|
|
boxRaw: Box,
|
|
boxCrop: Box,
|
|
label: string,
|
|
}
|
|
|
|
const cache: {
|
|
boxes: Array<HandDetectResult>,
|
|
hands: Array<HandResult>;
|
|
} = {
|
|
boxes: [],
|
|
hands: [],
|
|
};
|
|
|
|
const fingerMap = {
|
|
thumb: [1, 2, 3, 4],
|
|
index: [5, 6, 7, 8],
|
|
middle: [9, 10, 11, 12],
|
|
ring: [13, 14, 15, 16],
|
|
pinky: [17, 18, 19, 20],
|
|
palm: [0],
|
|
};
|
|
|
|
export async function loadDetect(config: Config): Promise<GraphModel> {
|
|
// HandTrack Model: Original: <https://github.com/victordibia/handtracking> TFJS Port: <https://github.com/victordibia/handtrack.js/>
|
|
if (env.initial) models[0] = null;
|
|
if (!models[0]) {
|
|
// handtrack model has some kernel ops defined in model but those are never referenced and non-existent in tfjs
|
|
// ideally need to prune the model itself
|
|
fakeOps(['tensorlistreserve', 'enter', 'tensorlistfromtensor', 'merge', 'loopcond', 'switch', 'exit', 'tensorliststack', 'nextiteration', 'tensorlistsetitem', 'tensorlistgetitem', 'reciprocal', 'shape', 'split', 'where'], config);
|
|
models[0] = await tf.loadGraphModel(join(config.modelBasePath, config.hand.detector?.modelPath || '')) as unknown as GraphModel;
|
|
const inputs = Object.values(models[0].modelSignature['inputs']);
|
|
inputSize[0][0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;
|
|
inputSize[0][1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;
|
|
if (!models[0] || !models[0]['modelUrl']) log('load model failed:', config.hand.detector?.modelPath);
|
|
else if (config.debug) log('load model:', models[0]['modelUrl']);
|
|
} else if (config.debug) log('cached model:', models[0]['modelUrl']);
|
|
return models[0];
|
|
}
|
|
|
|
export async function loadSkeleton(config: Config): Promise<GraphModel> {
|
|
if (env.initial) models[1] = null;
|
|
if (!models[1]) {
|
|
models[1] = await tf.loadGraphModel(join(config.modelBasePath, config.hand.skeleton?.modelPath || '')) as unknown as GraphModel;
|
|
const inputs = Object.values(models[1].modelSignature['inputs']);
|
|
inputSize[1][0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;
|
|
inputSize[1][1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;
|
|
if (!models[1] || !models[1]['modelUrl']) log('load model failed:', config.hand.skeleton?.modelPath);
|
|
else if (config.debug) log('load model:', models[1]['modelUrl']);
|
|
} else if (config.debug) log('cached model:', models[1]['modelUrl']);
|
|
return models[1];
|
|
}
|
|
|
|
export async function load(config: Config): Promise<[GraphModel | null, GraphModel | null]> {
|
|
if (!models[0]) await loadDetect(config);
|
|
if (!models[1]) await loadSkeleton(config);
|
|
return models;
|
|
}
|
|
|
|
async function detectHands(input: Tensor, config: Config): Promise<HandDetectResult[]> {
|
|
const hands: HandDetectResult[] = [];
|
|
if (!input || !models[0]) return hands;
|
|
const t: Record<string, Tensor> = {};
|
|
const ratio = (input.shape[2] || 1) / (input.shape[1] || 1);
|
|
const height = Math.min(Math.round((input.shape[1] || 0) / 8) * 8, maxDetectorResolution); // use dynamic input size but cap at 512
|
|
const width = Math.round(height * ratio / 8) * 8;
|
|
t.resize = tf.image.resizeBilinear(input, [height, width]); // todo: resize with padding
|
|
t.cast = tf.cast(t.resize, 'int32');
|
|
[t.rawScores, t.rawBoxes] = await models[0].executeAsync(t.cast, modelOutputNodes) as Tensor[];
|
|
t.boxes = tf.squeeze(t.rawBoxes, [0, 2]);
|
|
t.scores = tf.squeeze(t.rawScores, [0]);
|
|
const classScores: Array<Tensor> = tf.unstack(t.scores, 1); // unstack scores based on classes
|
|
tf.dispose(classScores[faceIndex]);
|
|
classScores.splice(faceIndex, 1); // remove faces
|
|
t.filtered = tf.stack(classScores, 1); // restack
|
|
tf.dispose(classScores);
|
|
t.max = tf.max(t.filtered, 1); // max overall score
|
|
t.argmax = tf.argMax(t.filtered, 1); // class index of max overall score
|
|
let id = 0;
|
|
t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.max, config.hand.maxDetected, config.hand.iouThreshold, config.hand.minConfidence);
|
|
const nms = await t.nms.data();
|
|
const scores = await t.max.data();
|
|
const classNum = await t.argmax.data();
|
|
for (const nmsIndex of Array.from(nms)) { // generates results for each class
|
|
const boxSlice = tf.slice(t.boxes, nmsIndex, 1);
|
|
const boxYX = await boxSlice.data();
|
|
tf.dispose(boxSlice);
|
|
// const boxSquareSize = Math.max(boxData[3] - boxData[1], boxData[2] - boxData[0]);
|
|
const boxData: Box = [boxYX[1], boxYX[0], boxYX[3] - boxYX[1], boxYX[2] - boxYX[0]]; // yx box reshaped to standard box
|
|
const boxRaw: Box = box.scale(boxData, detectorExpandFact);
|
|
const boxCrop: Box = box.crop(boxRaw); // crop box is based on raw box
|
|
const boxFull: Box = [Math.trunc(boxData[0] * outputSize[0]), Math.trunc(boxData[1] * outputSize[1]), Math.trunc(boxData[2] * outputSize[0]), Math.trunc(boxData[3] * outputSize[1])];
|
|
const score = scores[nmsIndex];
|
|
const label = classes[classNum[nmsIndex]];
|
|
const hand: HandDetectResult = { id: id++, score, box: boxFull, boxRaw, boxCrop, label };
|
|
hands.push(hand);
|
|
}
|
|
Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));
|
|
hands.sort((a, b) => b.score - a.score);
|
|
if (hands.length > (config.hand.maxDetected || 1)) hands.length = (config.hand.maxDetected || 1);
|
|
return hands;
|
|
}
|
|
|
|
async function detectFingers(input: Tensor, h: HandDetectResult, config: Config): Promise<HandResult> {
|
|
const hand: HandResult = { // initial values inherited from hand detect
|
|
id: h.id,
|
|
score: Math.round(100 * h.score) / 100,
|
|
boxScore: Math.round(100 * h.score) / 100,
|
|
fingerScore: 0,
|
|
box: h.box,
|
|
boxRaw: h.boxRaw,
|
|
label: h.label,
|
|
keypoints: [],
|
|
landmarks: {} as HandResult['landmarks'],
|
|
annotations: {} as HandResult['annotations'],
|
|
};
|
|
if (input && models[1] && config.hand.landmarks && h.score > (config.hand.minConfidence || 0)) {
|
|
const t: Record<string, Tensor> = {};
|
|
t.crop = tf.image.cropAndResize(input, [h.boxCrop], [0], [inputSize[1][0], inputSize[1][1]], 'bilinear');
|
|
t.cast = tf.cast(t.crop, 'float32');
|
|
t.div = tf.div(t.cast, 255);
|
|
[t.score, t.keypoints] = models[1].execute(t.div) as Tensor[];
|
|
const rawScore = (await t.score.data())[0];
|
|
const score = (100 - Math.trunc(100 / (1 + Math.exp(rawScore)))) / 100; // reverse sigmoid value
|
|
if (score >= (config.hand.minConfidence || 0)) {
|
|
hand.fingerScore = score;
|
|
t.reshaped = tf.reshape(t.keypoints, [-1, 3]);
|
|
const coordsData: Point[] = await t.reshaped.array() as Point[];
|
|
const coordsRaw: Point[] = coordsData.map((kpt) => [kpt[0] / inputSize[1][1], kpt[1] / inputSize[1][0], (kpt[2] || 0)]);
|
|
const coordsNorm: Point[] = coordsRaw.map((kpt) => [kpt[0] * h.boxRaw[2], kpt[1] * h.boxRaw[3], (kpt[2] || 0)]);
|
|
hand.keypoints = (coordsNorm).map((kpt) => [
|
|
outputSize[0] * (kpt[0] + h.boxRaw[0]),
|
|
outputSize[1] * (kpt[1] + h.boxRaw[1]),
|
|
(kpt[2] || 0),
|
|
]);
|
|
// hand.box = box.scale(h.box, 1 / detectorExpandFact); // scale box down for visual appeal
|
|
// hand.boxRaw = box.scale(h.boxRaw, 1 / detectorExpandFact); // scale box down for visual appeal
|
|
hand.landmarks = fingerPose.analyze(hand.keypoints) as HandResult['landmarks']; // calculate finger landmarks
|
|
for (const key of Object.keys(fingerMap)) { // map keypoints to per-finger annotations
|
|
hand.annotations[key] = fingerMap[key].map((index) => (hand.landmarks && hand.keypoints[index] ? hand.keypoints[index] : null));
|
|
}
|
|
}
|
|
Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));
|
|
}
|
|
return hand;
|
|
}
|
|
|
|
export async function predict(input: Tensor, config: Config): Promise<HandResult[]> {
|
|
/** handtrack caching
|
|
* 1. if skipFrame returned cached
|
|
* 2. if any cached results but although not sure if its enough we continute anyhow for 3x skipframes
|
|
* 3. if not skipframe or eventually rerun detector to generated new cached boxes and reset skipped
|
|
* 4. generate cached boxes based on detected keypoints
|
|
*/
|
|
if (!models[0] || !models[1] || !models[0]?.inputs[0].shape || !models[1]?.inputs[0].shape) return []; // something is wrong with the model
|
|
outputSize = [input.shape[2] || 0, input.shape[1] || 0];
|
|
|
|
skipped++; // increment skip frames
|
|
if (config.skipFrame && (skipped <= (config.hand.skipFrames || 0)) && ((config.hand.skipTime || 0) <= (now() - lastTime))) {
|
|
return cache.hands; // return cached results without running anything
|
|
}
|
|
return new Promise(async (resolve) => {
|
|
if (config.skipFrame && cache.hands.length === config.hand.maxDetected) { // we have all detected hands
|
|
cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config)));
|
|
} else if (config.skipFrame && skipped < 3 * (config.hand.skipFrames || 0) && ((config.hand.skipTime || 0) <= 3 * (now() - lastTime)) && cache.hands.length > 0) { // we have some cached results: maybe not enough but anyhow continue for bit longer
|
|
cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config)));
|
|
} else { // finally rerun detector
|
|
cache.boxes = await detectHands(input, config);
|
|
lastTime = now();
|
|
cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config)));
|
|
skipped = 0;
|
|
}
|
|
|
|
const oldCache = [...cache.boxes];
|
|
cache.boxes.length = 0; // reset cache
|
|
if (config.cacheSensitivity > 0) {
|
|
for (let i = 0; i < cache.hands.length; i++) {
|
|
const boxKpt = box.square(cache.hands[i].keypoints, outputSize);
|
|
if (boxKpt.box[2] / (input.shape[2] || 1) > 0.05 && boxKpt.box[3] / (input.shape[1] || 1) > 0.05 && cache.hands[i].fingerScore && cache.hands[i].fingerScore > (config.hand.minConfidence || 0)) {
|
|
const boxScale = box.scale(boxKpt.box, boxExpandFact);
|
|
const boxScaleRaw = box.scale(boxKpt.boxRaw, boxExpandFact);
|
|
const boxCrop = box.crop(boxScaleRaw);
|
|
cache.boxes.push({ ...oldCache[i], box: boxScale, boxRaw: boxScaleRaw, boxCrop });
|
|
}
|
|
}
|
|
}
|
|
for (let i = 0; i < cache.hands.length; i++) { // replace deteced boxes with calculated boxes in final output
|
|
const bbox = box.calc(cache.hands[i].keypoints, outputSize);
|
|
cache.hands[i].box = bbox.box;
|
|
cache.hands[i].boxRaw = bbox.boxRaw;
|
|
}
|
|
resolve(cache.hands);
|
|
});
|
|
}
|