human/src/object/nanodet.ts

130 lines
6.0 KiB
TypeScript

/**
* NanoDet object detection module
*/
import { log, join } from '../helpers';
import * as tf from '../../dist/tfjs.esm.js';
import { labels } from './labels';
import type { ObjectResult } from '../result';
import type { GraphModel, Tensor } from '../tfjs/types';
import type { Config } from '../config';
import { env } from '../env';
let model;
let last: Array<ObjectResult> = [];
let skipped = Number.MAX_SAFE_INTEGER;
const scaleBox = 2.5; // increase box size
export async function load(config: Config): Promise<GraphModel> {
if (!model || env.initial) {
model = await tf.loadGraphModel(join(config.modelBasePath, config.object.modelPath || ''));
const inputs = Object.values(model.modelSignature['inputs']);
model.inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : null;
if (!model.inputSize) throw new Error(`Human: Cannot determine model inputSize: ${config.object.modelPath}`);
if (!model || !model.modelUrl) log('load model failed:', config.object.modelPath);
else if (config.debug) log('load model:', model.modelUrl);
} else if (config.debug) log('cached model:', model.modelUrl);
return model;
}
async function process(res, inputSize, outputShape, config) {
let id = 0;
let results: Array<ObjectResult> = [];
for (const strideSize of [1, 2, 4]) { // try each stride size as it detects large/medium/small objects
// find scores, boxes, classes
tf.tidy(async () => { // wrap in tidy to automatically deallocate temp tensors
const baseSize = strideSize * 13; // 13x13=169, 26x26=676, 52x52=2704
// find boxes and scores output depending on stride
const scoresT = res.find((a) => (a.shape[1] === (baseSize ** 2) && a.shape[2] === labels.length))?.squeeze();
const featuresT = res.find((a) => (a.shape[1] === (baseSize ** 2) && a.shape[2] < labels.length))?.squeeze();
const boxesMax = featuresT.reshape([-1, 4, featuresT.shape[1] / 4]); // reshape [output] to [4, output / 4] where number is number of different features inside each stride
const boxIdx = await boxesMax.argMax(2).array(); // what we need is indexes of features with highest scores, not values itself
const scores = await scoresT.array(); // optionally use exponential scores or just as-is
for (let i = 0; i < scoresT.shape[0]; i++) { // total strides (x * y matrix)
for (let j = 0; j < scoresT.shape[1]; j++) { // one score for each class
const score = scores[i][j]; // get score for current position
if (score > config.object.minConfidence && j !== 61) {
const cx = (0.5 + Math.trunc(i % baseSize)) / baseSize; // center.x normalized to range 0..1
const cy = (0.5 + Math.trunc(i / baseSize)) / baseSize; // center.y normalized to range 0..1
const boxOffset = boxIdx[i].map((a) => a * (baseSize / strideSize / inputSize)); // just grab indexes of features with highest scores
const [x, y] = [
cx - (scaleBox / strideSize * boxOffset[0]),
cy - (scaleBox / strideSize * boxOffset[1]),
];
const [w, h] = [
cx + (scaleBox / strideSize * boxOffset[2]) - x,
cy + (scaleBox / strideSize * boxOffset[3]) - y,
];
let boxRaw = [x, y, w, h]; // results normalized to range 0..1
boxRaw = boxRaw.map((a) => Math.max(0, Math.min(a, 1))); // fix out-of-bounds coords
const box = [ // results normalized to input image pixels
boxRaw[0] * outputShape[0],
boxRaw[1] * outputShape[1],
boxRaw[2] * outputShape[0],
boxRaw[3] * outputShape[1],
];
const result = {
id: id++,
// strideSize,
score: Math.round(100 * score) / 100,
class: j + 1,
label: labels[j].label,
// center: [Math.trunc(outputShape[0] * cx), Math.trunc(outputShape[1] * cy)],
// centerRaw: [cx, cy],
box: (box.map((a) => Math.trunc(a))) as [number, number, number, number],
boxRaw: boxRaw as [number, number, number, number],
};
results.push(result);
}
}
}
});
}
// deallocate tensors
res.forEach((t) => tf.dispose(t));
// normally nms is run on raw results, but since boxes need to be calculated this way we skip calulcation of
// unnecessary boxes and run nms only on good candidates (basically it just does IOU analysis as scores are already filtered)
const nmsBoxes = results.map((a) => [a.boxRaw[1], a.boxRaw[0], a.boxRaw[3], a.boxRaw[2]]); // switches coordinates from x,y to y,x as expected by tf.nms
const nmsScores = results.map((a) => a.score);
let nmsIdx: Array<number> = [];
if (nmsBoxes && nmsBoxes.length > 0) {
const nms = await tf.image.nonMaxSuppressionAsync(nmsBoxes, nmsScores, config.object.maxDetected, config.object.iouThreshold, config.object.minConfidence);
nmsIdx = await nms.data();
tf.dispose(nms);
}
// filter & sort results
results = results
.filter((_val, idx) => nmsIdx.includes(idx))
.sort((a, b) => (b.score - a.score));
return results;
}
export async function predict(image: Tensor, config: Config): Promise<ObjectResult[]> {
if ((skipped < (config.object.skipFrames || 0)) && config.skipFrame && (last.length > 0)) {
skipped++;
return last;
}
skipped = 0;
if (!env.kernels.includes('mod') || !env.kernels.includes('sparsetodense')) return last;
return new Promise(async (resolve) => {
const outputSize = [image.shape[2], image.shape[1]];
const resize = tf.image.resizeBilinear(image, [model.inputSize, model.inputSize], false);
const norm = tf.div(resize, 255);
const transpose = norm.transpose([0, 3, 1, 2]);
tf.dispose(norm);
tf.dispose(resize);
let objectT;
if (config.object.enabled) objectT = await model.predict(transpose);
tf.dispose(transpose);
const obj = await process(objectT, model.inputSize, outputSize, config);
last = obj;
resolve(obj);
});
}