mirror of https://github.com/vladmandic/human
5169 lines
1.3 MiB
5169 lines
1.3 MiB
|
|
/*
|
|
Human library
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var fI=Object.defineProperty;var bm=e=>{if(typeof require!="undefined")return require(e);throw new Error('Dynamic require of "'+e+'" is not supported')};var _a=(e,t)=>{for(var n in t)fI(e,n,{get:t[n],enumerable:!0})};var u5=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var on=(e,t,n)=>(u5(e,t,"read from private field"),n?n.call(e):t.get(e)),Jn=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},ga=(e,t,n,a)=>(u5(e,t,"write to private field"),a?a.call(e,n):t.set(e,n),n);function vt(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${r} Expecting JSON file`);return r}function de(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var at=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function zn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,a)=>(Object.keys(a||{}).forEach(r=>{let s=n[r],i=a[r];Array.isArray(s)&&Array.isArray(i)?n[r]=s.concat(...i):t(s)&&t(i)?n[r]=zn(s,i):n[r]=i}),n),{})}var d5={backend:"webgl",modelBasePath:"../models/",wasmPath:"../node_modules/@tensorflow/tfjs-backend-wasm/dist//",debug:!0,async:!0,warmup:"full",cacheSensitivity:.75,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!1,maxDetected:10,skipFrames:21,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:31,minConfidence:.1},emotion:{enabled:!0,minConfidence:.1,skipFrames:32,modelPath:"emotion.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:1,minConfidence:.2},hand:{enabled:!0,rotation:!1,skipFrames:32,minConfidence:.1,iouThreshold:.1,maxDetected:2,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:41}};function p5(){let e,t;if(typeof navigator!="undefined"){let n=navigator.userAgent.match(/\(([^()]+)\)/g);if(n&&n[0]){let a=n[0].match(/\(([^()]+)\)/g);e=a?a[0].replace(/\(|\)/g,""):"",t=navigator.userAgent.replace(n[0],""),e[1]&&(t=t.replace(n[1],"")),t=t.replace(/ /g," ")}}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var tp={};_a(tp,{Abs:()=>oo,Acos:()=>lo,Acosh:()=>uo,AdadeltaOptimizer:()=>ih,AdagradOptimizer:()=>oh,AdamOptimizer:()=>lh,AdamaxOptimizer:()=>uh,Add:()=>Mr,AddN:()=>hs,All:()=>po,Any:()=>co,ArgMax:()=>fs,ArgMin:()=>Nu,Asin:()=>ho,Asinh:()=>fo,Atan:()=>mo,Atan2:()=>Ao,Atanh:()=>yo,AvgPool:()=>ms,AvgPool3D:()=>Tu,AvgPool3DGrad:()=>Wp,AvgPoolGrad:()=>Lp,BackendWasm:()=>_6,BatchMatMul:()=>ys,BatchToSpaceND:()=>Eu,Bincount:()=>Bp,BroadcastTo:()=>ab,Callback:()=>C8,CallbackList:()=>v4,Cast:()=>As,Ceil:()=>gs,ClipByValue:()=>Fr,Complex:()=>Vp,ComplexAbs:()=>Cu,Concat:()=>go,Conv2D:()=>xs,Conv2DBackpropFilter:()=>jp,Conv2DBackpropInput:()=>bs,Conv3D:()=>Ru,Conv3DBackpropFilterV2:()=>Up,Conv3DBackpropInputV2:()=>Hp,Cos:()=>vs,Cosh:()=>xo,CropAndResize:()=>bo,Cumsum:()=>ws,CustomCallback:()=>k4,DataStorage:()=>zp,DenseBincount:()=>Gp,DepthToSpace:()=>vo,DepthwiseConv2dNative:()=>ks,DepthwiseConv2dNativeBackpropFilter:()=>qp,DepthwiseConv2dNativeBackpropInput:()=>Xp,Diag:()=>Kp,Dilation2D:()=>Mu,Dilation2DBackpropFilter:()=>Yp,Dilation2DBackpropInput:()=>Zp,ENV:()=>ua,EarlyStopping:()=>M8,Einsum:()=>Jp,Elu:()=>wo,EluGrad:()=>Qp,Environment:()=>tb,Equal:()=>Io,Erf:()=>ko,Exp:()=>Ss,ExpandDims:()=>So,Expm1:()=>No,FFT:()=>ec,Fill:()=>Fu,FlipLeftRight:()=>To,Floor:()=>Ns,FloorDiv:()=>Ts,FromPixels:()=>yc,FusedBatchNorm:()=>Es,FusedConv2D:()=>li,FusedDepthwiseConv2D:()=>ui,GPGPUContext:()=>Nh,GatherNd:()=>Co,GatherV2:()=>Eo,GraphModel:()=>ok,Greater:()=>Ro,GreaterEqual:()=>Cs,History:()=>w4,IFFT:()=>tc,Identity:()=>Rs,Imag:()=>nc,InputSpec:()=>zt,IsFinite:()=>Mo,IsInf:()=>Fo,IsNan:()=>$o,KernelBackend:()=>ku,LRN:()=>zu,LRNGrad:()=>rc,LayerVariable:()=>y4,LayersModel:()=>xr,LeakyRelu:()=>Ms,Less:()=>Do,LessEqual:()=>zo,LinSpace:()=>ac,Log:()=>Fs,Log1p:()=>Oo,LogSoftmax:()=>rb,LogicalAnd:()=>_o,LogicalNot:()=>$u,LogicalOr:()=>Du,MathBackendCPU:()=>hh,MathBackendWebGL:()=>jl,Max:()=>$s,MaxPool:()=>zs,MaxPool3D:()=>Ou,MaxPool3DGrad:()=>ic,MaxPoolGrad:()=>sc,MaxPoolWithArgmax:()=>oc,Maximum:()=>Ds,Mean:()=>Os,Min:()=>_s,Minimum:()=>Ps,MirrorPad:()=>Ls,Mod:()=>Po,MomentumOptimizer:()=>dh,Multinomial:()=>lc,Multiply:()=>Ws,Neg:()=>Lo,NonMaxSuppressionV3:()=>Bo,NonMaxSuppressionV4:()=>Vo,NonMaxSuppressionV5:()=>jo,NotEqual:()=>Wo,OP_SCOPE_SUFFIX:()=>mb,OneHot:()=>Bs,OnesLike:()=>Uo,Optimizer:()=>mr,Pack:()=>Ho,PadV2:()=>Vs,Pool:()=>mS,Pow:()=>js,Prelu:()=>Us,Prod:()=>Go,RMSPropOptimizer:()=>ph,RNN:()=>Qa,Range:()=>_u,Rank:()=>zm,Real:()=>uc,RealDiv:()=>Is,Reciprocal:()=>qo,Reduction:()=>cn,Relu:()=>Hs,Relu6:()=>qs,Reshape:()=>Xo,ResizeBilinear:()=>Gs,ResizeBilinearGrad:()=>pc,ResizeNearestNeighbor:()=>Pu,ResizeNearestNeighborGrad:()=>dc,Reverse:()=>Xs,RotateWithOffset:()=>ll,Round:()=>Ks,Rsqrt:()=>Zs,SGDOptimizer:()=>fd,ScatterNd:()=>Ko,Select:()=>Zo,Selu:()=>Yo,Sequential:()=>Jl,Sigmoid:()=>Js,Sign:()=>el,Sin:()=>Ys,Sinh:()=>Qo,Slice:()=>Jo,Softmax:()=>ti,Softplus:()=>tl,SpaceToBatchND:()=>Lu,SparseFillEmptyRows:()=>cc,SparseReshape:()=>hc,SparseToDense:()=>fc,SplitV:()=>nl,Sqrt:()=>Qs,Square:()=>Wu,SquaredDifference:()=>ni,Step:()=>Dr,StridedSlice:()=>al,Sub:()=>ai,Sum:()=>ei,SymbolicTensor:()=>Ea,Tan:()=>ri,Tanh:()=>si,Tensor:()=>Le,TensorBuffer:()=>Pt,Tile:()=>$r,TopK:()=>rl,Transform:()=>sl,Transpose:()=>ii,Unique:()=>mc,Unpack:()=>il,UnsortedSegmentSum:()=>Bu,Variable:()=>Xu,ZerosLike:()=>ol,_FusedMatMul:()=>oi,abs:()=>Lt,acos:()=>ly,acosh:()=>uy,add:()=>se,addN:()=>Ec,all:()=>Cc,any:()=>Qu,argMax:()=>yi,argMin:()=>dy,asin:()=>py,asinh:()=>cy,atan:()=>hy,atan2:()=>fy,atanh:()=>my,avgPool:()=>td,avgPool3d:()=>gy,backend:()=>Zb,backend_util:()=>R,basicLSTMCell:()=>XT,batchNorm:()=>xi,batchNorm2d:()=>e3,batchNorm3d:()=>t3,batchNorm4d:()=>n3,batchToSpaceND:()=>nd,bincount:()=>xy,booleanMaskAsync:()=>eM,broadcastTo:()=>xl,browser:()=>fi,buffer:()=>We,callbacks:()=>pse,cast:()=>me,ceil:()=>by,clipByValue:()=>Nn,clone:()=>Wa,complex:()=>zr,concat:()=>lt,concat1d:()=>a3,concat2d:()=>bl,concat3d:()=>r3,concat4d:()=>s3,constraints:()=>X6,conv1d:()=>Mc,conv2d:()=>pr,conv2dTranspose:()=>Fc,conv3d:()=>wy,conv3dTranspose:()=>o3,copyRegisteredKernels:()=>gS,cos:()=>ad,cosh:()=>$c,cosineWindow:()=>Ky,cumsum:()=>Dc,customGrad:()=>Va,data:()=>lk,denseBincount:()=>l3,deprecationWarn:()=>iy,depthToSpace:()=>ky,depthwiseConv2d:()=>vl,deregisterOp:()=>hse,device_util:()=>Zu,diag:()=>kE,dilation2d:()=>Iy,disableDeprecationWarnings:()=>oT,dispose:()=>Ne,disposeVariables:()=>lT,div:()=>fe,divNoNan:()=>Sy,dot:()=>u3,dropout:()=>R3,einsum:()=>d3,elu:()=>wl,enableDebugMode:()=>iT,enableProdMode:()=>sT,enclosingPowerOfTwo:()=>M3,engine:()=>dr,env:()=>J,equal:()=>Wr,erf:()=>Ny,exp:()=>ea,expandDims:()=>dn,expm1:()=>Ty,eye:()=>Ey,fft:()=>cd,fill:()=>kl,findBackend:()=>oy,findBackendFactory:()=>mT,floor:()=>Il,floorDiv:()=>Tc,forceHalfFloat:()=>Xv,fused:()=>Ur,gather:()=>bi,gatherND:()=>C3,gather_util:()=>Qm,getBackend:()=>hT,getGradient:()=>Fm,getKernel:()=>Ac,getKernelsForBackend:()=>dl,gpgpu_util:()=>gv,grad:()=>QE,grads:()=>eC,greater:()=>On,greaterEqual:()=>Vr,ifft:()=>Cl,imag:()=>zc,image:()=>Ve,inTopKAsync:()=>pM,initializers:()=>t4,input:()=>G4,io:()=>In,irfft:()=>Yc,isFinite:()=>p3,isInf:()=>c3,isNaN:()=>Cy,keep:()=>Gt,kernel_impls:()=>Ga,layers:()=>h4,leakyRelu:()=>rd,less:()=>Oc,lessEqual:()=>jr,linalg:()=>j3,linspace:()=>h3,loadGraphModel:()=>gt,loadLayersModel:()=>vae,localResponseNormalization:()=>Ry,log:()=>_n,log1p:()=>_c,logSigmoid:()=>m3,logSoftmax:()=>Lc,logSumExp:()=>$y,logicalAnd:()=>ca,logicalNot:()=>sd,logicalOr:()=>Wc,logicalXor:()=>x3,losses:()=>zF,matMul:()=>Be,math:()=>Mb,max:()=>Tn,maxPool:()=>id,maxPool3d:()=>Dy,maxPoolWithArgmax:()=>b3,maximum:()=>ja,mean:()=>St,memory:()=>Nc,meshgrid:()=>wC,metrics:()=>N8,min:()=>Sl,minimum:()=>Nl,mirrorPad:()=>zy,mod:()=>Oy,model:()=>xae,models:()=>T8,moments:()=>Bc,movingAverage:()=>aM,mul:()=>L,multiRNNCell:()=>RC,multinomial:()=>v3,neg:()=>It,nextFrame:()=>ch,norm:()=>th,notEqual:()=>ki,oneHot:()=>ml,ones:()=>Pn,onesLike:()=>Ln,op:()=>_,outerProduct:()=>zC,pad:()=>cr,pad1d:()=>PC,pad2d:()=>WC,pad3d:()=>VC,pad4d:()=>UC,pool:()=>w3,pow:()=>hr,prelu:()=>ld,print:()=>Sb,prod:()=>Vc,profile:()=>uT,rand:()=>QC,randomGamma:()=>aR,randomNormal:()=>k3,randomUniform:()=>Tl,range:()=>El,ready:()=>cT,real:()=>ud,reciprocal:()=>Ly,registerBackend:()=>Al,registerCallbackConstructor:()=>wae,registerGradient:()=>sb,registerKernel:()=>di,registerOp:()=>cse,regularizers:()=>E8,relu:()=>Ua,relu6:()=>jc,removeBackend:()=>fT,reshape:()=>H,reverse:()=>Wn,reverse1d:()=>cR,reverse2d:()=>fR,reverse3d:()=>yR,reverse4d:()=>gR,rfft:()=>hd,round:()=>Uc,rsqrt:()=>Hc,scalar:()=>we,scatterND:()=>E3,scatter_util:()=>ey,selu:()=>Gc,separableConv2d:()=>Wy,sequential:()=>bae,serialization:()=>ae,setBackend:()=>pT,setPlatform:()=>yT,setWasmPath:()=>SQ,setWasmPaths:()=>NQ,setWebGLContext:()=>xh,setdiff1dAsync:()=>I3,shared:()=>e1,sigmoid:()=>Sn,sign:()=>By,signal:()=>DF,sin:()=>qc,sinh:()=>Xc,slice:()=>Re,slice1d:()=>Kc,slice2d:()=>Vy,slice3d:()=>Zc,slice4d:()=>dd,slice_util:()=>un,softmax:()=>pd,softplus:()=>vi,spaceToBatchND:()=>od,sparse:()=>U3,sparseToDense:()=>Xy,spectral:()=>$F,split:()=>qt,sqrt:()=>en,square:()=>ot,squaredDifference:()=>Jc,squeeze:()=>Ha,stack:()=>pn,step:()=>Rl,stridedSlice:()=>jy,sub:()=>ye,sum:()=>Ie,sumOutType:()=>vc,tan:()=>Uy,tanh:()=>gi,tensor:()=>pa,tensor1d:()=>Mt,tensor2d:()=>va,tensor3d:()=>Ic,tensor4d:()=>UR,tensor5d:()=>HR,tensor6d:()=>GR,tensor_util:()=>xa,test_util:()=>qb,tidy:()=>B,tile:()=>Br,time:()=>dT,topk:()=>Hy,train:()=>Si,transpose:()=>Ye,truncatedNormal:()=>Qc,unique:()=>eh,unregisterGradient:()=>AS,unregisterKernel:()=>yS,unsortedSegmentSum:()=>Gy,unstack:()=>ha,upcastType:()=>da,util:()=>k,valueAndGrad:()=>tC,valueAndGrads:()=>nC,variable:()=>S3,variableGrads:()=>f3,version:()=>Qie,version_converter:()=>hie,version_core:()=>rT,version_cpu:()=>I7,version_layers:()=>yA,version_wasm:()=>L6,version_webgl:()=>qv,webgl:()=>wB,webgl_util:()=>G7,where:()=>rn,whereAsync:()=>qy,zeros:()=>$t,zerosLike:()=>He});var mI=Object.create,Dp=Object.defineProperty,yI=Object.getOwnPropertyDescriptor,AI=Object.getOwnPropertyNames,gI=Object.getPrototypeOf,xI=Object.prototype.hasOwnProperty,bI=e=>Dp(e,"__esModule",{value:!0}),ao=e=>{if(typeof bm!="undefined")return bm(e);throw new Error('Dynamic require of "'+e+'" is not supported')},wt=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Fe=(e,t)=>{for(var n in t)Dp(e,n,{get:t[n],enumerable:!0})},vI=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of AI(t))!xI.call(e,a)&&a!=="default"&&Dp(e,a,{get:()=>t[a],enumerable:!(n=yI(t,a))||n.enumerable});return e},ro=e=>vI(bI(Dp(e!=null?mI(gI(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),wI=wt(()=>{}),kI=wt((e,t)=>{(function(n,a,r){function s(u){var d=this,p=l();d.next=function(){var c=2091639*d.s0+d.c*23283064365386963e-26;return d.s0=d.s1,d.s1=d.s2,d.s2=c-(d.c=c|0)},d.c=1,d.s0=p(" "),d.s1=p(" "),d.s2=p(" "),d.s0-=p(u),d.s0<0&&(d.s0+=1),d.s1-=p(u),d.s1<0&&(d.s1+=1),d.s2-=p(u),d.s2<0&&(d.s2+=1),p=null}function i(u,d){return d.c=u.c,d.s0=u.s0,d.s1=u.s1,d.s2=u.s2,d}function o(u,d){var p=new s(u),c=d&&d.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,p),h.state=function(){return i(p,{})}),h}function l(){var u=4022871197,d=function(p){p=p.toString();for(var c=0;c<p.length;c++){u+=p.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),II=wt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:d+=l;for(var p=0;p<d.length+64;p++)u.x^=d.charCodeAt(p)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),SI=wt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:d+=l;for(var p=0;p<d.length+64;p++)u.x^=d.charCodeAt(p)|0,p==d.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),NI=wt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.x,c=u.i,h,m,f;return h=p[c],h^=h>>>7,m=h^h<<24,h=p[c+1&7],m^=h^h>>>10,h=p[c+3&7],m^=h^h>>>3,h=p[c+4&7],m^=h^h<<7,h=p[c+7&7],h=h^h<<13,m^=h^h<<9,p[c]=m,u.i=c+1&7,m};function d(p,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}d(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(p.x&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),TI=wt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.w,c=u.X,h=u.i,m,f;return u.w=p=p+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(p^p>>>16)|0};function d(p,c){var h,m,f,y,A,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,y=-32;y<x;++y)c&&(m^=c.charCodeAt((y+32)%c.length)),y===0&&(A=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,y>=0&&(A=A+1640531527|0,h=g[y&127]^=m+A,f=h==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,y=4*128;y>0;--y)m=g[f+34&127],h=g[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,g[f]=m^h;p.w=A,p.X=g,p.i=f}d(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(p.X&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),EI=wt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):d+=l;for(var p=0;p<d.length+20;p++)u.b^=d.charCodeAt(p)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),c5=wt(()=>{}),CI=wt((e,t)=>{(function(n,a){var r=this,s=256,i=6,o=52,l="random",u=a.pow(s,i),d=a.pow(2,o),p=d*2,c=s-1,h;function m(b,v,S){var T=[];v=v==!0?{entropy:!0}:v||{};var C=g(A(v.entropy?[b,w(n)]:b==null?x():b,3),T),$=new f(T),O=function(){for(var P=$.g(i),j=u,D=0;P<d;)P=(P+D)*s,j*=s,D=$.g(1);for(;P>=p;)P/=2,j/=2,D>>>=1;return(P+D)/j};return O.int32=function(){return $.g(4)|0},O.quick=function(){return $.g(4)/4294967296},O.double=O,g(w($.S),n),(v.pass||S||function(P,j,D,U){return U&&(U.S&&y(U,$),P.state=function(){return y($,{})}),D?(a[l]=P,j):P})(O,C,"global"in v?v.global:this==a,v.state)}a["seed"+l]=m;function f(b){var v,S=b.length,T=this,C=0,$=T.i=T.j=0,O=T.S=[];for(S||(b=[S++]);C<s;)O[C]=C++;for(C=0;C<s;C++)O[C]=O[$=c&$+b[C%S]+(v=O[C])],O[$]=v;(T.g=function(P){for(var j,D=0,U=T.i,X=T.j,G=T.S;P--;)j=G[U=c&U+1],D=D*s+G[c&(G[U]=G[X=c&X+j])+(G[X]=j)];return T.i=U,T.j=X,D})(s)}function y(b,v){return v.i=b.i,v.j=b.j,v.S=b.S.slice(),v}function A(b,v){var S=[],T=typeof b,C;if(v&&T=="object")for(C in b)try{S.push(A(b[C],v-1))}catch($){}return S.length?S:T=="string"?b:b+"\0"}function g(b,v){for(var S=b+"",T,C=0;C<S.length;)v[c&C]=c&(T^=v[c&C]*19)+S.charCodeAt(C++);return w(v)}function x(){try{var b;return h&&(b=h.randomBytes)?b=b(s):(b=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(b)),w(b)}catch(T){var v=r.navigator,S=v&&v.plugins;return[+new Date,r,S,r.screen,w(n)]}}function w(b){return String.fromCharCode.apply(0,b)}if(g(a.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{h=c5()}catch(b){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),h5=wt((e,t)=>{var n=kI(),a=II(),r=SI(),s=NI(),i=TI(),o=EI(),l=CI();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),wu=wt(()=>{}),RI=wt(()=>{}),MI=wt(()=>{}),FI=wt((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return Q.buffer!=je&&Jt(Q.buffer),xn}function i(){return Q.buffer!=je&&Jt(Q.buffer),bt}function o(){return Q.buffer!=je&&Jt(Q.buffer),bn}function l(){return Q.buffer!=je&&Jt(Q.buffer),Zn}function u(){return Q.buffer!=je&&Jt(Q.buffer),sn}var d=typeof r!="undefined"?r:{},p,c;d.ready=new Promise(function(N,E){p=N,c=E});var h={},m;for(m in d)d.hasOwnProperty(m)&&(h[m]=d[m]);var f=[],y="./this.program",A=function(N,E){throw E},g=!1,x=!1,w=!1,b=!1;g=typeof window=="object",x=typeof importScripts=="function",w=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",b=!g&&!w&&!x;var v=d.ENVIRONMENT_IS_PTHREAD||!1;v&&(je=d.buffer);var S="";function T(N){return d.locateFile?d.locateFile(N,S):S+N}var C,$,O,P,j,D;if(w){x?S=wu().dirname(S)+"/":S=__dirname+"/",C=function(N,E){return j||(j=ao("fs")),D||(D=wu()),N=D.normalize(N),j.readFileSync(N,E?null:"utf8")},O=function(N){var E=C(N,!0);return E.buffer||(E=new Uint8Array(E)),he(E.buffer),E},process.argv.length>1&&(y=process.argv[1].replace(/\\/g,"/")),f=process.argv.slice(2),process.on("uncaughtException",function(N){if(!(N instanceof vu))throw N}),process.on("unhandledRejection",sr),A=function(N){process.exit(N)},d.inspect=function(){return"[Emscripten Module object]"};var U;try{U=RI()}catch(N){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),N}global.Worker=U.Worker}else b?(typeof read!="undefined"&&(C=function(N){return read(N)}),O=function(N){var E;return typeof readbuffer=="function"?new Uint8Array(readbuffer(N)):(E=read(N,"binary"),he(typeof E=="object"),E)},typeof scriptArgs!="undefined"?f=scriptArgs:typeof arguments!="undefined"&&(f=arguments),typeof quit=="function"&&(A=function(N){quit(N)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(g||x)&&(x?S=self.location.href:typeof document!="undefined"&&document.currentScript&&(S=document.currentScript.src),typeof a!="undefined"&&a&&(S=a),S.indexOf("blob:")!==0?S=S.substr(0,S.lastIndexOf("/")+1):S="",w?(C=function(N,E){return j||(j=ao("fs")),D||(D=wu()),N=D.normalize(N),j.readFileSync(N,E?null:"utf8")},O=function(N){var E=C(N,!0);return E.buffer||(E=new Uint8Array(E)),he(E.buffer),E}):(C=function(N){var E=new XMLHttpRequest;return E.open("GET",N,!1),E.send(null),E.responseText},x&&(O=function(N){var E=new XMLHttpRequest;return E.open("GET",N,!1),E.responseType="arraybuffer",E.send(null),new Uint8Array(E.response)}),$=function(N,E,W){var q=new XMLHttpRequest;q.open("GET",N,!0),q.responseType="arraybuffer",q.onload=function(){if(q.status==200||q.status==0&&q.response){E(q.response);return}W()},q.onerror=W,q.send(null)}),P=function(N){document.title=N});w&&typeof performance=="undefined"&&(global.performance=MI().performance);var X=d.print||console.log.bind(console),G=d.printErr||console.warn.bind(console);for(m in h)h.hasOwnProperty(m)&&(d[m]=h[m]);h=null,d.arguments&&(f=d.arguments),d.thisProgram&&(y=d.thisProgram),d.quit&&(A=d.quit);var ee=Atomics.load,Y=Atomics.store,re=Atomics.compareExchange,ne;d.wasmBinary&&(ne=d.wasmBinary);var ie=d.noExitRuntime||!0;typeof WebAssembly!="object"&&sr("no native wasm support detected");var Q,pe,oe=!1,ge;function he(N,E){N||sr("Assertion failed: "+E)}function Se(N){var E=d["_"+N];return he(E,"Cannot call unknown function "+N+", make sure it is exported"),E}function Te(N,E,W,q,ce){var le={string:function(kn){var no=0;if(kn!=null&&kn!==0){var l5=(kn.length<<2)+1;no=Qi(l5),tt(kn,no,l5)}return no},array:function(kn){var no=Qi(kn.length);return Ke(kn,no),no}};function ue(kn){return E==="string"?De(kn):E==="boolean"?Boolean(kn):kn}var be=Se(N),nt=[],Ut=0;if(q)for(var _t=0;_t<q.length;_t++){var Er=le[W[_t]];Er?(Ut===0&&(Ut=bu()),nt[_t]=Er(q[_t])):nt[_t]=q[_t]}var to=be.apply(null,nt);return to=ue(to),Ut!==0&&Ji(Ut),to}function $e(N,E,W,q){W=W||[];var ce=W.every(function(ue){return ue==="number"}),le=E!=="string";return le&&ce&&!q?Se(N):function(){return Te(N,E,W,arguments,q)}}function Oe(N,E,W){for(var q=E+W,ce="";!(E>=q);){var le=N[E++];if(!le)return ce;if(!(le&128)){ce+=String.fromCharCode(le);continue}var ue=N[E++]&63;if((le&224)==192){ce+=String.fromCharCode((le&31)<<6|ue);continue}var be=N[E++]&63;if((le&240)==224?le=(le&15)<<12|ue<<6|be:le=(le&7)<<18|ue<<12|be<<6|N[E++]&63,le<65536)ce+=String.fromCharCode(le);else{var nt=le-65536;ce+=String.fromCharCode(55296|nt>>10,56320|nt&1023)}}return ce}function De(N,E){return N?Oe(i(),N,E):""}function et(N,E,W,q){if(!(q>0))return 0;for(var ce=W,le=W+q-1,ue=0;ue<N.length;++ue){var be=N.charCodeAt(ue);if(be>=55296&&be<=57343){var nt=N.charCodeAt(++ue);be=65536+((be&1023)<<10)|nt&1023}if(be<=127){if(W>=le)break;E[W++]=be}else if(be<=2047){if(W+1>=le)break;E[W++]=192|be>>6,E[W++]=128|be&63}else if(be<=65535){if(W+2>=le)break;E[W++]=224|be>>12,E[W++]=128|be>>6&63,E[W++]=128|be&63}else{if(W+3>=le)break;E[W++]=240|be>>18,E[W++]=128|be>>12&63,E[W++]=128|be>>6&63,E[W++]=128|be&63}}return E[W]=0,W-ce}function tt(N,E,W){return et(N,i(),E,W)}function it(N){for(var E=0,W=0;W<N.length;++W){var q=N.charCodeAt(W);q>=55296&&q<=57343&&(q=65536+((q&1023)<<10)|N.charCodeAt(++W)&1023),q<=127?++E:q<=2047?E+=2:q<=65535?E+=3:E+=4}return E}function Ke(N,E){s().set(N,E)}function pt(N,E){return N%E>0&&(N+=E-N%E),N}var je,xn,bt,Kn,Yt,bn,Zn,Dn,sn;function Jt(N){je=N,d.HEAP8=xn=new Int8Array(N),d.HEAP16=Kn=new Int16Array(N),d.HEAP32=bn=new Int32Array(N),d.HEAPU8=bt=new Uint8Array(N),d.HEAPU16=Yt=new Uint16Array(N),d.HEAPU32=Zn=new Uint32Array(N),d.HEAPF32=Dn=new Float32Array(N),d.HEAPF64=sn=new Float64Array(N)}var za=d.INITIAL_MEMORY||16777216;if(v)Q=d.wasmMemory,je=d.buffer;else if(d.wasmMemory)Q=d.wasmMemory;else if(Q=new WebAssembly.Memory({initial:za/65536,maximum:2147483648/65536,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw G("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),w&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(je=Q.buffer),za=je.byteLength,Jt(je);var sa,ia=[],wr=[],ar=[],kr=[],Gi=[],Oa=!1,cp=!1;v||wr.push({func:function(){Tp()}});function K0(){if(!v){if(d.preRun)for(typeof d.preRun=="function"&&(d.preRun=[d.preRun]);d.preRun.length;)fp(d.preRun.shift());Xi(ia)}}function pu(){Oa=!0,!v&&Xi(wr)}function Z0(){v||Xi(ar)}function hp(){v||(cp=!0)}function vn(){if(!v){if(d.postRun)for(typeof d.postRun=="function"&&(d.postRun=[d.postRun]);d.postRun.length;)Y0(d.postRun.shift());Xi(Gi)}}function fp(N){ia.unshift(N)}function Y0(N){Gi.unshift(N)}var rr=0,Ir=null,ls=null;function J0(N){he(!v,"addRunDependency cannot be used in a pthread worker"),rr++,d.monitorRunDependencies&&d.monitorRunDependencies(rr)}function Q0(N){if(rr--,d.monitorRunDependencies&&d.monitorRunDependencies(rr),rr==0&&(Ir!==null&&(clearInterval(Ir),Ir=null),ls)){var E=ls;ls=null,E()}}d.preloadedImages={},d.preloadedAudios={};function sr(N){d.onAbort&&d.onAbort(N),v&&console.error("Pthread aborting at "+new Error().stack),N+="",G(N),oe=!0,ge=1,N="abort("+N+"). Build with -s ASSERTIONS=1 for more info.";var E=new WebAssembly.RuntimeError(N);throw c(E),E}function mp(N,E){return String.prototype.startsWith?N.startsWith(E):N.indexOf(E)===0}var qi="data:application/octet-stream;base64,";function yp(N){return mp(N,qi)}var ef="file://";function Ap(N){return mp(N,ef)}var wn="tfjs-backend-wasm-threaded-simd.wasm";yp(wn)||(wn=T(wn));function gp(N){try{if(N==wn&&ne)return new Uint8Array(ne);if(O)return O(N);throw"both async and sync fetching of the wasm failed"}catch(E){sr(E)}}function tf(){if(!ne&&(g||x)){if(typeof fetch=="function"&&!Ap(wn))return fetch(wn,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+wn+"'";return N.arrayBuffer()}).catch(function(){return gp(wn)});if($)return new Promise(function(N,E){$(wn,function(W){N(new Uint8Array(W))},E)})}return Promise.resolve().then(function(){return gp(wn)})}function nf(){var N={a:qf};function E(ue,be){var nt=ue.exports;if(d.asm=nt,sa=d.asm.F,pe=be,!v){var Ut=ke.unusedWorkers.length;ke.unusedWorkers.forEach(function(_t){ke.loadWasmModuleToWorker(_t,function(){--Ut||Q0("wasm-instantiate")})})}}v||J0("wasm-instantiate");function W(ue){E(ue.instance,ue.module)}function q(ue){return tf().then(function(be){return WebAssembly.instantiate(be,N)}).then(ue,function(be){G("failed to asynchronously prepare wasm: "+be),sr(be)})}function ce(){return!ne&&typeof WebAssembly.instantiateStreaming=="function"&&!yp(wn)&&!Ap(wn)&&typeof fetch=="function"?fetch(wn,{credentials:"same-origin"}).then(function(ue){var be=WebAssembly.instantiateStreaming(ue,N);return be.then(W,function(nt){return G("wasm streaming compile failed: "+nt),G("falling back to ArrayBuffer instantiation"),q(W)})}):q(W)}if(d.instantiateWasm)try{var le=d.instantiateWasm(N,E);return le}catch(ue){return G("Module.instantiateWasm callback failed with error: "+ue),!1}return ce().catch(c),{}}var af={9816:function(){throw"Canceled!"},9834:function(N,E){setTimeout(function(){n5(N,E)},0)}};function xp(){ke.initRuntime()}function Xi(N){for(;N.length>0;){var E=N.shift();if(typeof E=="function"){E(d);continue}var W=E.func;typeof W=="number"?E.arg===void 0?sa.get(W)():sa.get(W)(E.arg):W(E.arg===void 0?null:E.arg)}}function cu(N,E){if(N<=0||N>s().length||N&!0||E<0)return-28;if(E==0)return 0;E>=2147483647&&(E=Infinity);var W=Atomics.load(o(),eo>>2),q=0;if(W==N){var ce=Atomics.compareExchange(o(),eo>>2,W,0);if(ce==W&&(--E,q=1,E<=0))return 1}var le=Atomics.notify(o(),N>>2,E);if(le>=0)return le+q;throw"Atomics.notify returned an unexpected value "+le}d._emscripten_futex_wake=cu;function rf(N){if(v)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in killThread!";o()[N+12>>2]=0;var E=ke.pthreads[N];E.worker.terminate(),ke.freeThreadData(E),ke.runningWorkers.splice(ke.runningWorkers.indexOf(E.worker),1),E.worker.pthread=void 0}function sf(N){if(v)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cancelThread!";var E=ke.pthreads[N];E.worker.postMessage({cmd:"cancel"})}function of(N){if(v)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cleanupThread!";var E=ke.pthreads[N];if(E){o()[N+12>>2]=0;var W=E.worker;ke.returnWorkerToPool(W)}}var ke={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var N=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),E=0;E<N;++E)ke.allocateUnusedWorker()},initRuntime:function(){for(var N=ds(228),E=0;E<228/4;++E)l()[N/4+E]=0;o()[N+12>>2]=N;var W=N+152;o()[W>>2]=W;for(var q=ds(512),E=0;E<128;++E)l()[q/4+E]=0;Atomics.store(l(),N+100>>2,q),Atomics.store(l(),N+40>>2,N),gm(N,!x,1),t5(N)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;ke.threadExitHandlers.length>0;)ke.threadExitHandlers.pop()();v&&Yi()&&e5()},runExitHandlersAndDeinitThread:function(N,E){Atomics.store(l(),N+56>>2,1),Atomics.store(l(),N+60>>2,0),ke.runExitHandlers(),Atomics.store(l(),N+4>>2,E),Atomics.store(l(),N+0>>2,1),cu(N+0,2147483647),gm(0,0,0)},threadExit:function(N){var E=Yi();E&&(ke.runExitHandlersAndDeinitThread(E,N),v&&postMessage({cmd:"exit"}))},threadCancel:function(){ke.runExitHandlersAndDeinitThread(Yi(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var N in ke.pthreads){var E=ke.pthreads[N];E&&E.worker&&ke.returnWorkerToPool(E.worker)}ke.pthreads={};for(var W=0;W<ke.unusedWorkers.length;++W){var q=ke.unusedWorkers[W];q.terminate()}ke.unusedWorkers=[];for(var W=0;W<ke.runningWorkers.length;++W){var q=ke.runningWorkers[W],E=q.pthread;ke.freeThreadData(E),q.terminate()}ke.runningWorkers=[]},freeThreadData:function(N){if(N){if(N.threadInfoStruct){var E=o()[N.threadInfoStruct+100>>2];o()[N.threadInfoStruct+100>>2]=0,xu(E),xu(N.threadInfoStruct)}N.threadInfoStruct=0,N.allocatedOwnStack&&N.stackBase&&xu(N.stackBase),N.stackBase=0,N.worker&&(N.worker.pthread=null)}},returnWorkerToPool:function(N){ke.runWithoutMainThreadQueuedCalls(function(){delete ke.pthreads[N.pthread.threadInfoStruct],ke.unusedWorkers.push(N),ke.runningWorkers.splice(ke.runningWorkers.indexOf(N),1),ke.freeThreadData(N.pthread),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){o()[o5>>2]=0;try{N()}finally{o()[o5>>2]=1}},receiveObjectTransfer:function(N){},loadWasmModuleToWorker:function(N,E){N.onmessage=function(W){var q=W.data,ce=q.cmd;if(N.pthread&&(ke.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),q.targetThread&&q.targetThread!=Yi()){var le=ke.pthreads[q.targetThread];le?le.worker.postMessage(W.data,q.transferList):console.error('Internal error! Worker sent a message "'+ce+'" to target pthread '+q.targetThread+", but that thread no longer exists!"),ke.currentProxiedOperationCallerThread=void 0;return}if(ce==="processQueuedMainThreadWork")ym();else if(ce==="spawnThread")Sp(W.data);else if(ce==="cleanupThread")of(q.thread);else if(ce==="killThread")rf(q.thread);else if(ce==="cancelThread")sf(q.thread);else if(ce==="loaded")N.loaded=!0,E&&E(N),N.runPthread&&(N.runPthread(),delete N.runPthread);else if(ce==="print")X("Thread "+q.threadId+": "+q.text);else if(ce==="printErr")G("Thread "+q.threadId+": "+q.text);else if(ce==="alert")alert("Thread "+q.threadId+": "+q.text);else if(ce==="exit"){var ue=N.pthread&&Atomics.load(l(),N.pthread.threadInfoStruct+64>>2);ue&&ke.returnWorkerToPool(N)}else if(ce==="exitProcess")try{hI(q.returnCode)}catch(be){if(be instanceof vu)return;throw be}else ce==="cancelDone"?ke.returnWorkerToPool(N):ce==="objectTransfer"?ke.receiveObjectTransfer(W.data):W.data.target==="setimmediate"?N.postMessage(W.data):G("worker sent an unknown command "+ce);ke.currentProxiedOperationCallerThread=void 0},N.onerror=function(W){G("pthread sent an error! "+W.filename+":"+W.lineno+": "+W.message)},w&&(N.on("message",function(W){N.onmessage({data:W})}),N.on("error",function(W){N.onerror(W)}),N.on("exit",function(W){})),N.postMessage({cmd:"load",urlOrBlob:d.mainScriptUrlOrBlob||a,wasmMemory:Q,wasmModule:pe})},allocateUnusedWorker:function(){var N=T("tfjs-backend-wasm-threaded-simd.worker.js");ke.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return ke.unusedWorkers.length==0&&(ke.allocateUnusedWorker(),ke.loadWasmModuleToWorker(ke.unusedWorkers[0])),ke.unusedWorkers.length>0?ke.unusedWorkers.pop():null},busySpinWait:function(N){for(var E=performance.now()+N;performance.now()<E;);}};function lf(N,E){s5(N,E),Ji(N)}d.establishStackSpace=lf;function uf(){return ie}d.getNoExitRuntime=uf;function df(N,E){return sa.get(N)(E)}d.invokeEntryPoint=df;function pf(N,E,W,q){sr("Assertion failed: "+De(N)+", at: "+[E?De(E):"unknown filename",W,q?De(q):"unknown function"])}function cf(N,E){var W=_main(N,E)}var us;w?us=function(){var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:v?us=function(){return performance.now()-d.__performance_now_clock_drift}:typeof dateNow!="undefined"?us=dateNow:us=function(){return performance.now()};function hf(N){return o()[Jg()>>2]=N,N}function ff(N,E){if(v)return Sr(1,1,N,E)}function mf(N,E){if(N==E)postMessage({cmd:"processQueuedMainThreadWork"});else if(v)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var W=ke.pthreads[N],q=W&&W.worker;if(!q)return;q.postMessage({cmd:"processThreadQueue"})}return 1}function yf(){sr()}function Af(N,E,W){var q=wf(E,W);return af[N].apply(null,q)}function gf(N,E){}function xf(N,E,W){if(N<=0||N>s().length||N&!0)return-28;if(g){if(Atomics.load(o(),N>>2)!=E)return-6;for(var q=performance.now(),ce=q+W,le=Atomics.exchange(o(),eo>>2,N);;){if(q=performance.now(),q>ce)return le=Atomics.exchange(o(),eo>>2,0),-73;if(le=Atomics.exchange(o(),eo>>2,0),le==0)break;if(ym(),Atomics.load(o(),N>>2)!=E)return-6;le=Atomics.exchange(o(),eo>>2,N)}return 0}else{var ue=Atomics.wait(o(),N>>2,E,W);if(ue==="timed-out")return-73;if(ue==="not-equal")return-6;if(ue==="ok")return 0;throw"Atomics.wait returned an unexpected value "+ue}}function bf(N,E,W){i().copyWithin(N,E,E+W)}function vf(){return w?ao("os").cpus().length:navigator.hardwareConcurrency}function Sr(N,E){for(var W=arguments.length-2,q=bu(),ce=W,le=Qi(ce*8),ue=le>>3,be=0;be<W;be++){var nt=arguments[2+be];u()[ue+be]=nt}var Ut=r5(N,ce,le,E);return Ji(q),Ut}var hu=[],fu=[];function wf(N,E){fu.length=0;var W;for(E>>=2;W=i()[N++];){var q=W<105;q&&E&1&&E++,fu.push(q?u()[E++>>1]:o()[E]),++E}return fu}function kf(N,E,W){hu.length=E;for(var q=W>>3,ce=0;ce<E;ce++)hu[ce]=u()[q+ce];var le=N<0,ue=le?af[-N-1]:Gf[N];return ue.apply(null,hu)}function If(){return i().length}function Sf(N){try{return Q.grow(N-je.byteLength+65535>>>16),Jt(Q.buffer),1}catch(E){}}function Nf(N){var E=If();if(N<=E)return!1;var W=2147483648;if(N>W)return!1;for(var q=1;q<=4;q*=2){var ce=E*(1+.2/q);ce=Math.min(ce,N+100663296);var le=Math.min(W,pt(Math.max(N,ce),65536)),ue=Sf(le);if(ue)return!0}return!1}var Pe={inEventHandler:0,removeAllEventListeners:function(){for(var N=Pe.eventHandlers.length-1;N>=0;--N)Pe._removeHandler(N);Pe.eventHandlers=[],Pe.deferredCalls=[]},registerRemoveEventListeners:function(){Pe.removeEventListenersRegistered||(kr.push(Pe.removeAllEventListeners),Pe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,E,W){function q(ue,be){if(ue.length!=be.length)return!1;for(var nt in ue)if(ue[nt]!=be[nt])return!1;return!0}for(var ce in Pe.deferredCalls){var le=Pe.deferredCalls[ce];if(le.targetFunction==N&&q(le.argsList,W))return}Pe.deferredCalls.push({targetFunction:N,precedence:E,argsList:W}),Pe.deferredCalls.sort(function(ue,be){return ue.precedence<be.precedence})},removeDeferredCalls:function(N){for(var E=0;E<Pe.deferredCalls.length;++E)Pe.deferredCalls[E].targetFunction==N&&(Pe.deferredCalls.splice(E,1),--E)},canPerformEventHandlerRequests:function(){return Pe.inEventHandler&&Pe.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Pe.canPerformEventHandlerRequests())for(var N=0;N<Pe.deferredCalls.length;++N){var E=Pe.deferredCalls[N];Pe.deferredCalls.splice(N,1),--N,E.targetFunction.apply(null,E.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,E){for(var W=0;W<Pe.eventHandlers.length;++W)Pe.eventHandlers[W].target==N&&(!E||E==Pe.eventHandlers[W].eventTypeString)&&Pe._removeHandler(W--)},_removeHandler:function(N){var E=Pe.eventHandlers[N];E.target.removeEventListener(E.eventTypeString,E.eventListenerFunc,E.useCapture),Pe.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var E=function(q){++Pe.inEventHandler,Pe.currentEventHandler=N,Pe.runDeferredCalls(),N.handlerFunc(q),Pe.runDeferredCalls(),--Pe.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=E,N.target.addEventListener(N.eventTypeString,E,N.useCapture),Pe.eventHandlers.push(N),Pe.registerRemoveEventListeners();else for(var W=0;W<Pe.eventHandlers.length;++W)Pe.eventHandlers[W].target==N.target&&Pe.eventHandlers[W].eventTypeString==N.eventTypeString&&Pe._removeHandler(W--)},queueEventHandlerOnThread_iiii:function(N,E,W,q,ce){var le=bu(),ue=Qi(12);o()[ue>>2]=W,o()[ue+4>>2]=q,o()[ue+8>>2]=ce,Am(0,N,637534208,E,q,ue),Ji(le)},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return ke.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function Tf(N){var E=it(N)+1,W=ds(E);return tt(N,W,E),W}function Ef(N,E,W,q){var ce=bu(),le=Qi(12),ue=0;E&&(ue=Tf(E)),o()[le>>2]=ue,o()[le+4>>2]=W,o()[le+8>>2]=q,Am(0,N,657457152,0,ue,le),Ji(ce)}function Cf(N,E,W,q){E=E?De(E):"",Ef(N,E,W,q)}function Rf(N){return N>2?De(N):N}var Mf=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function Ff(N){N=Rf(N);var E=Mf[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return E}function mu(N){return Ff(N)}function bp(N,E,W){var q=mu(N);if(!q)return-4;if(q.canvasSharedPtr&&(o()[q.canvasSharedPtr>>2]=E,o()[q.canvasSharedPtr+4>>2]=W),q.offscreenCanvas||!q.controlTransferredOffscreen){q.offscreenCanvas&&(q=q.offscreenCanvas);var ce=!1;if(q.GLctxObject&&q.GLctxObject.GLctx){var le=q.GLctxObject.GLctx.getParameter(2978);ce=le[0]===0&&le[1]===0&&le[2]===q.width&&le[3]===q.height}q.width=E,q.height=W,ce&&q.GLctxObject.GLctx.viewport(0,0,E,W)}else if(q.canvasSharedPtr){var ue=o()[q.canvasSharedPtr+8>>2];return Cf(ue,N,E,W),1}else return-4;return 0}function vp(N,E,W){return v?Sr(2,1,N,E,W):bp(N,E,W)}function $f(N,E,W){var q=mu(N);return q?bp(N,E,W):vp(N,E,W)}function Df(N){}function zf(N,E){}function Of(N){var E=N.getExtension("ANGLE_instanced_arrays");if(E)return N.vertexAttribDivisor=function(W,q){E.vertexAttribDivisorANGLE(W,q)},N.drawArraysInstanced=function(W,q,ce,le){E.drawArraysInstancedANGLE(W,q,ce,le)},N.drawElementsInstanced=function(W,q,ce,le,ue){E.drawElementsInstancedANGLE(W,q,ce,le,ue)},1}function _f(N){var E=N.getExtension("OES_vertex_array_object");if(E)return N.createVertexArray=function(){return E.createVertexArrayOES()},N.deleteVertexArray=function(W){E.deleteVertexArrayOES(W)},N.bindVertexArray=function(W){E.bindVertexArrayOES(W)},N.isVertexArray=function(W){return E.isVertexArrayOES(W)},1}function Pf(N){var E=N.getExtension("WEBGL_draw_buffers");if(E)return N.drawBuffers=function(W,q){E.drawBuffersWEBGL(W,q)},1}function Lf(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var Qe={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(N){Qe.lastError||(Qe.lastError=N)},getNewId:function(N){for(var E=Qe.counter++,W=N.length;W<E;W++)N[W]=null;return E},getSource:function(N,E,W,q){for(var ce="",le=0;le<E;++le){var ue=q?o()[q+le*4>>2]:-1;ce+=De(o()[W+le*4>>2],ue<0?void 0:ue)}return ce},createContext:function(N,E){var W=N.getContext("webgl",E);if(!W)return 0;var q=Qe.registerContext(W,E);return q},registerContext:function(N,E){var W=ds(8);o()[W+4>>2]=Yi();var q={handle:W,attributes:E,version:E.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=q),Qe.contexts[W]=q,(typeof E.enableExtensionsByDefault=="undefined"||E.enableExtensionsByDefault)&&Qe.initExtensions(q),W},makeContextCurrent:function(N){return Qe.currentContext=Qe.contexts[N],d.ctx=Nr=Qe.currentContext&&Qe.currentContext.GLctx,!(N&&!Nr)},getContext:function(N){return Qe.contexts[N]},deleteContext:function(N){Qe.currentContext===Qe.contexts[N]&&(Qe.currentContext=null),typeof Pe=="object"&&Pe.removeAllHandlersOnTarget(Qe.contexts[N].GLctx.canvas),Qe.contexts[N]&&Qe.contexts[N].GLctx.canvas&&(Qe.contexts[N].GLctx.canvas.GLctxObject=void 0),xu(Qe.contexts[N].handle),Qe.contexts[N]=null},initExtensions:function(N){if(N||(N=Qe.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var E=N.GLctx;Of(E),_f(E),Pf(E),E.disjointTimerQueryExt=E.getExtension("EXT_disjoint_timer_query"),Lf(E);var W=E.getSupportedExtensions()||[];W.forEach(function(q){q.indexOf("lose_context")<0&&q.indexOf("debug")<0&&E.getExtension(q)})}},populateUniformTable:function(N){for(var E=Qe.programs[N],W=Qe.programInfos[N]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},q=W.uniforms,ce=Nr.getProgramParameter(E,35718),le=0;le<ce;++le){var ue=Nr.getActiveUniform(E,le),be=ue.name;W.maxUniformLength=Math.max(W.maxUniformLength,be.length+1),be.slice(-1)=="]"&&(be=be.slice(0,be.lastIndexOf("[")));var nt=Nr.getUniformLocation(E,be);if(nt){var Ut=Qe.getNewId(Qe.uniforms);q[be]=[ue.size,Ut],Qe.uniforms[Ut]=nt;for(var _t=1;_t<ue.size;++_t){var Er=be+"["+_t+"]";nt=Nr.getUniformLocation(E,Er),Ut=Qe.getNewId(Qe.uniforms),Qe.uniforms[Ut]=nt}}}}},Wf=["default","low-power","high-performance"];function Bf(N,E){var W=E>>2,q=o()[W+(24>>2)],ce={alpha:!!o()[W+(0>>2)],depth:!!o()[W+(4>>2)],stencil:!!o()[W+(8>>2)],antialias:!!o()[W+(12>>2)],premultipliedAlpha:!!o()[W+(16>>2)],preserveDrawingBuffer:!!o()[W+(20>>2)],powerPreference:Wf[q],failIfMajorPerformanceCaveat:!!o()[W+(28>>2)],majorVersion:o()[W+(32>>2)],minorVersion:o()[W+(36>>2)],enableExtensionsByDefault:o()[W+(40>>2)],explicitSwapControl:o()[W+(44>>2)],proxyContextToMainThread:o()[W+(48>>2)],renderViaOffscreenBackBuffer:o()[W+(52>>2)]},le=mu(N);if(!le||ce.explicitSwapControl)return 0;var ue=Qe.createContext(le,ce);return ue}function Vf(N,E){return Bf(N,E)}var Ki={mappings:{},buffers:[null,[],[]],printChar:function(N,E){var W=Ki.buffers[N];E===0||E===10?((N===1?X:G)(Oe(W,0)),W.length=0):W.push(E)},varargs:void 0,get:function(){Ki.varargs+=4;var N=o()[Ki.varargs-4>>2];return N},getStr:function(N){var E=De(N);return E},get64:function(N,E){return N}};function wp(N){return v?Sr(3,1,N):0}function kp(N,E,W,q,ce){if(v)return Sr(4,1,N,E,W,q,ce)}function Ip(N,E,W,q){if(v)return Sr(5,1,N,E,W,q);for(var ce=0,le=0;le<W;le++){for(var ue=o()[E+le*8>>2],be=o()[E+(le*8+4)>>2],nt=0;nt<be;nt++)Ki.printChar(N,i()[ue+nt]);ce+=be}return o()[q>>2]=ce,0}function jf(N){var E=ke.threadExitHandlers.pop();N&&E()}function Uf(N,E){ke.threadExitHandlers.push(function(){sa.get(N)(E)})}function Sp(N){if(v)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var E=ke.getNewWorker();if(E.pthread!==void 0)throw"Internal error!";if(!N.pthread_ptr)throw"Internal error, no pthread ptr!";ke.runningWorkers.push(E);for(var W=ds(128*4),q=0;q<128;++q)o()[W+q*4>>2]=0;var ce=N.stackBase+N.stackSize,le=ke.pthreads[N.pthread_ptr]={worker:E,stackBase:N.stackBase,stackSize:N.stackSize,allocatedOwnStack:N.allocatedOwnStack,threadInfoStruct:N.pthread_ptr},ue=le.threadInfoStruct>>2;Atomics.store(l(),ue+(64>>2),N.detached),Atomics.store(l(),ue+(100>>2),W),Atomics.store(l(),ue+(40>>2),le.threadInfoStruct),Atomics.store(l(),ue+(80>>2),N.stackSize),Atomics.store(l(),ue+(76>>2),ce),Atomics.store(l(),ue+(104>>2),N.stackSize),Atomics.store(l(),ue+(104+8>>2),ce),Atomics.store(l(),ue+(104+12>>2),N.detached);var be=Qg(),nt=be+40;Atomics.store(l(),ue+(172>>2),nt),E.pthread=le;var Ut={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr,stackBase:N.stackBase,stackSize:N.stackSize};E.runPthread=function(){Ut.time=performance.now(),E.postMessage(Ut,N.transferList)},E.loaded&&(E.runPthread(),delete E.runPthread)}function Hf(N,E,W,q){if(typeof SharedArrayBuffer=="undefined")return G("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!N)return G("pthread_create called with a null thread pointer!"),28;var ce=[],le=0;if(v&&(ce.length===0||le))return a5(687865856,N,E,W,q);if(le)return le;var ue=0,be=0,nt=0;E&&E!=-1?(ue=o()[E>>2],ue+=81920,be=o()[E+8>>2],nt=o()[E+12>>2]!==0):ue=2097152;var Ut=be==0;Ut?be=i5(16,ue):(be-=ue,he(be>0));for(var _t=ds(228),Er=0;Er<228>>2;++Er)l()[(_t>>2)+Er]=0;o()[N>>2]=_t,o()[_t+12>>2]=_t;var to=_t+152;o()[to>>2]=to;var kn={stackBase:be,stackSize:ue,allocatedOwnStack:Ut,detached:nt,startRoutine:W,pthread_ptr:_t,arg:q,transferList:ce};return v?(kn.cmd="spawnThread",postMessage(kn,ce)):Sp(kn),0}function Np(N){if(v)return Sr(6,1,N);switch(N){case 30:return 16384;case 85:var E=2147483648;return E/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return hf(28),-1}v||ke.initMainThreadBlock();var Nr,Gf=[null,ff,vp,wp,kp,Ip,Np],qf={e:pf,r:cf,x:mf,b:yf,y:Af,j:gf,c:xf,d:cu,f:us,p:bf,z:vf,u:kf,q:Nf,v:$f,i:Df,t:zf,w:Vf,m:wp,n:kp,g:Ip,o:xp,a:Q||d.wasmMemory,k:jf,l:Uf,h:Hf,s:Np},Yg=nf(),Tp=d.___wasm_call_ctors=function(){return(Tp=d.___wasm_call_ctors=d.asm.A).apply(null,arguments)},Xf=d._init=function(){return(Xf=d._init=d.asm.B).apply(null,arguments)},Kf=d._register_tensor=function(){return(Kf=d._register_tensor=d.asm.C).apply(null,arguments)},Zf=d._dispose_data=function(){return(Zf=d._dispose_data=d.asm.D).apply(null,arguments)},Yf=d._dispose=function(){return(Yf=d._dispose=d.asm.E).apply(null,arguments)},Jf=d._Abs=function(){return(Jf=d._Abs=d.asm.G).apply(null,arguments)},Qf=d._Add=function(){return(Qf=d._Add=d.asm.H).apply(null,arguments)},em=d._AddN=function(){return(em=d._AddN=d.asm.I).apply(null,arguments)},tm=d._All=function(){return(tm=d._All=d.asm.J).apply(null,arguments)},nm=d._Any=function(){return(nm=d._Any=d.asm.K).apply(null,arguments)},am=d._ArgMax=function(){return(am=d._ArgMax=d.asm.L).apply(null,arguments)},rm=d._AvgPool=function(){return(rm=d._AvgPool=d.asm.M).apply(null,arguments)},sm=d._BatchMatMul=function(){return(sm=d._BatchMatMul=d.asm.N).apply(null,arguments)},im=d._Ceil=function(){return(im=d._Ceil=d.asm.O).apply(null,arguments)},om=d._ClipByValue=function(){return(om=d._ClipByValue=d.asm.P).apply(null,arguments)},lm=d._Conv2D=function(){return(lm=d._Conv2D=d.asm.Q).apply(null,arguments)},um=d._Conv2DBackpropInput=function(){return(um=d._Conv2DBackpropInput=d.asm.R).apply(null,arguments)},dm=d._Cos=function(){return(dm=d._Cos=d.asm.S).apply(null,arguments)},pm=d._CropAndResize=function(){return(pm=d._CropAndResize=d.asm.T).apply(null,arguments)},cm=d._Cumsum=function(){return(cm=d._Cumsum=d.asm.U).apply(null,arguments)},hm=d._DepthToSpace=function(){return(hm=d._DepthToSpace=d.asm.V).apply(null,arguments)},fm=d._DepthwiseConv2dNative=function(){return(fm=d._DepthwiseConv2dNative=d.asm.W).apply(null,arguments)},Ep=d._Equal=function(){return(Ep=d._Equal=d.asm.X).apply(null,arguments)},Cp=d._Exp=function(){return(Cp=d._Exp=d.asm.Y).apply(null,arguments)},Rp=d._FlipLeftRight=function(){return(Rp=d._FlipLeftRight=d.asm.Z).apply(null,arguments)},yu=d._Floor=function(){return(yu=d._Floor=d.asm._).apply(null,arguments)},Zi=d._FloorDiv=function(){return(Zi=d._FloorDiv=d.asm.$).apply(null,arguments)},mm=d._FusedBatchNorm=function(){return(mm=d._FusedBatchNorm=d.asm.aa).apply(null,arguments)},Au=d._FusedConv2D=function(){return(Au=d._FusedConv2D=d.asm.ba).apply(null,arguments)},K=d._FusedDepthwiseConv2D=function(){return(K=d._FusedDepthwiseConv2D=d.asm.ca).apply(null,arguments)},te=d._Gather=function(){return(te=d._Gather=d.asm.da).apply(null,arguments)},Ee=d._GatherNd=function(){return(Ee=d._GatherNd=d.asm.ea).apply(null,arguments)},Ze=d._Greater=function(){return(Ze=d._Greater=d.asm.fa).apply(null,arguments)},Tt=d._GreaterEqual=function(){return(Tt=d._GreaterEqual=d.asm.ga).apply(null,arguments)},mt=d._LeakyRelu=function(){return(mt=d._LeakyRelu=d.asm.ha).apply(null,arguments)},Ue=d._Less=function(){return(Ue=d._Less=d.asm.ia).apply(null,arguments)},Ge=d._LessEqual=function(){return(Ge=d._LessEqual=d.asm.ja).apply(null,arguments)},Qt=d._Log=function(){return(Qt=d._Log=d.asm.ka).apply(null,arguments)},ir=d._LogicalAnd=function(){return(ir=d._LogicalAnd=d.asm.la).apply(null,arguments)},or=d._Max=function(){return(or=d._Max=d.asm.ma).apply(null,arguments)},Mp=d._MaxPool=function(){return(Mp=d._MaxPool=d.asm.na).apply(null,arguments)},gu=d._Maximum=function(){return(gu=d._Maximum=d.asm.oa).apply(null,arguments)},Yn=d._Mean=function(){return(Yn=d._Mean=d.asm.pa).apply(null,arguments)},Tr=d._Min=function(){return(Tr=d._Min=d.asm.qa).apply(null,arguments)},Fp=d._Minimum=function(){return(Fp=d._Minimum=d.asm.ra).apply(null,arguments)},N9=d._MirrorPad=function(){return(N9=d._MirrorPad=d.asm.sa).apply(null,arguments)},T9=d._Multiply=function(){return(T9=d._Multiply=d.asm.ta).apply(null,arguments)},E9=d._Neg=function(){return(E9=d._Neg=d.asm.ua).apply(null,arguments)},C9=d._NonMaxSuppressionV3=function(){return(C9=d._NonMaxSuppressionV3=d.asm.va).apply(null,arguments)},R9=d._NonMaxSuppressionV4=function(){return(R9=d._NonMaxSuppressionV4=d.asm.wa).apply(null,arguments)},M9=d._NonMaxSuppressionV5=function(){return(M9=d._NonMaxSuppressionV5=d.asm.xa).apply(null,arguments)},F9=d._NotEqual=function(){return(F9=d._NotEqual=d.asm.ya).apply(null,arguments)},$9=d._OneHot=function(){return($9=d._OneHot=d.asm.za).apply(null,arguments)},D9=d._PadV2=function(){return(D9=d._PadV2=d.asm.Aa).apply(null,arguments)},z9=d._Pow=function(){return(z9=d._Pow=d.asm.Ba).apply(null,arguments)},O9=d._Prelu=function(){return(O9=d._Prelu=d.asm.Ca).apply(null,arguments)},_9=d._Prod=function(){return(_9=d._Prod=d.asm.Da).apply(null,arguments)},P9=d._RealDiv=function(){return(P9=d._RealDiv=d.asm.Ea).apply(null,arguments)},L9=d._Relu=function(){return(L9=d._Relu=d.asm.Fa).apply(null,arguments)},W9=d._Relu6=function(){return(W9=d._Relu6=d.asm.Ga).apply(null,arguments)},B9=d._ResizeBilinear=function(){return(B9=d._ResizeBilinear=d.asm.Ha).apply(null,arguments)},V9=d._Reverse=function(){return(V9=d._Reverse=d.asm.Ia).apply(null,arguments)},j9=d._RotateWithOffset=function(){return(j9=d._RotateWithOffset=d.asm.Ja).apply(null,arguments)},U9=d._Round=function(){return(U9=d._Round=d.asm.Ka).apply(null,arguments)},H9=d._Rsqrt=function(){return(H9=d._Rsqrt=d.asm.La).apply(null,arguments)},G9=d._ScatterNd=function(){return(G9=d._ScatterNd=d.asm.Ma).apply(null,arguments)},q9=d._SelectV2=function(){return(q9=d._SelectV2=d.asm.Na).apply(null,arguments)},X9=d._Sigmoid=function(){return(X9=d._Sigmoid=d.asm.Oa).apply(null,arguments)},K9=d._Sin=function(){return(K9=d._Sin=d.asm.Pa).apply(null,arguments)},Z9=d._Softmax=function(){return(Z9=d._Softmax=d.asm.Qa).apply(null,arguments)},Y9=d._Sqrt=function(){return(Y9=d._Sqrt=d.asm.Ra).apply(null,arguments)},J9=d._Square=function(){return(J9=d._Square=d.asm.Sa).apply(null,arguments)},Q9=d._SquaredDifference=function(){return(Q9=d._SquaredDifference=d.asm.Ta).apply(null,arguments)},eI=d._Step=function(){return(eI=d._Step=d.asm.Ua).apply(null,arguments)},tI=d._StridedSlice=function(){return(tI=d._StridedSlice=d.asm.Va).apply(null,arguments)},nI=d._Sub=function(){return(nI=d._Sub=d.asm.Wa).apply(null,arguments)},aI=d._Sum=function(){return(aI=d._Sum=d.asm.Xa).apply(null,arguments)},rI=d._Tan=function(){return(rI=d._Tan=d.asm.Ya).apply(null,arguments)},sI=d._Tanh=function(){return(sI=d._Tanh=d.asm.Za).apply(null,arguments)},iI=d._Tile=function(){return(iI=d._Tile=d.asm._a).apply(null,arguments)},oI=d._TopK=function(){return(oI=d._TopK=d.asm.$a).apply(null,arguments)},lI=d._Transform=function(){return(lI=d._Transform=d.asm.ab).apply(null,arguments)},uI=d._Transpose=function(){return(uI=d._Transpose=d.asm.bb).apply(null,arguments)},dI=d.__FusedMatMul=function(){return(dI=d.__FusedMatMul=d.asm.cb).apply(null,arguments)},ds=d._malloc=function(){return(ds=d._malloc=d.asm.db).apply(null,arguments)},xu=d._free=function(){return(xu=d._free=d.asm.eb).apply(null,arguments)},Jg=d.___errno_location=function(){return(Jg=d.___errno_location=d.asm.fb).apply(null,arguments)},Qg=d._emscripten_get_global_libc=function(){return(Qg=d._emscripten_get_global_libc=d.asm.gb).apply(null,arguments)},Yi=d._pthread_self=function(){return(Yi=d._pthread_self=d.asm.hb).apply(null,arguments)},e5=d.___pthread_tsd_run_dtors=function(){return(e5=d.___pthread_tsd_run_dtors=d.asm.ib).apply(null,arguments)},ym=d._emscripten_main_thread_process_queued_calls=function(){return(ym=d._emscripten_main_thread_process_queued_calls=d.asm.jb).apply(null,arguments)},pI=d._emscripten_current_thread_process_queued_calls=function(){return(pI=d._emscripten_current_thread_process_queued_calls=d.asm.kb).apply(null,arguments)},t5=d._emscripten_register_main_browser_thread_id=function(){return(t5=d._emscripten_register_main_browser_thread_id=d.asm.lb).apply(null,arguments)},n5=d.__emscripten_do_dispatch_to_thread=function(){return(n5=d.__emscripten_do_dispatch_to_thread=d.asm.mb).apply(null,arguments)},a5=d._emscripten_sync_run_in_main_thread_4=function(){return(a5=d._emscripten_sync_run_in_main_thread_4=d.asm.nb).apply(null,arguments)},r5=d._emscripten_run_in_main_runtime_thread_js=function(){return(r5=d._emscripten_run_in_main_runtime_thread_js=d.asm.ob).apply(null,arguments)},Am=d.__emscripten_call_on_thread=function(){return(Am=d.__emscripten_call_on_thread=d.asm.pb).apply(null,arguments)},cI=d._emscripten_tls_init=function(){return(cI=d._emscripten_tls_init=d.asm.qb).apply(null,arguments)},gm=d.__emscripten_thread_init=function(){return(gm=d.__emscripten_thread_init=d.asm.rb).apply(null,arguments)},bu=d.stackSave=function(){return(bu=d.stackSave=d.asm.sb).apply(null,arguments)},Ji=d.stackRestore=function(){return(Ji=d.stackRestore=d.asm.tb).apply(null,arguments)},Qi=d.stackAlloc=function(){return(Qi=d.stackAlloc=d.asm.ub).apply(null,arguments)},s5=d._emscripten_stack_set_limits=function(){return(s5=d._emscripten_stack_set_limits=d.asm.vb).apply(null,arguments)},i5=d._memalign=function(){return(i5=d._memalign=d.asm.wb).apply(null,arguments)},o5=d.__emscripten_allow_main_runtime_queued_calls=9808,eo=d.__emscripten_main_thread_futex=11432;d.cwrap=$e,d.PThread=ke,d.PThread=ke,d.wasmMemory=Q,d.ExitStatus=vu;var $p;function vu(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}ls=function N(){$p||xm(),$p||(ls=N)};function xm(N){if(N=N||f,rr>0)return;if(v){p(d),pu(),postMessage({cmd:"loaded"});return}if(K0(),rr>0)return;function E(){$p||($p=!0,d.calledRun=!0,!oe&&(pu(),Z0(),p(d),d.onRuntimeInitialized&&d.onRuntimeInitialized(),vn()))}d.setStatus?(d.setStatus("Running..."),setTimeout(function(){setTimeout(function(){d.setStatus("")},1),E()},1)):E()}d.run=xm;function hI(N,E){if(!(E&&ie&&N===0)){if(!E&&v)throw postMessage({cmd:"exitProcess",returnCode:N}),new vu(N);ie||(ke.terminateAllThreads(),ge=N,hp(),d.onExit&&d.onExit(N),oe=!0),A(N,new vu(N))}}if(d.preInit)for(typeof d.preInit=="function"&&(d.preInit=[d.preInit]);d.preInit.length>0;)d.preInit.pop()();return v&&(ie=!1,ke.initWorker()),xm(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),$I=wt((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(K,te){i=K,o=te});var l={},u;for(u in s)s.hasOwnProperty(u)&&(l[u]=s[u]);var d=[],p="./this.program",c=function(K,te){throw te},h=!1,m=!1,f=!1,y=!1;h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",y=!h&&!f&&!m;var A="";function g(K){return s.locateFile?s.locateFile(K,A):A+K}var x,w,b,v,S,T;f?(m?A=wu().dirname(A)+"/":A=__dirname+"/",x=function(K,te){return S||(S=ao("fs")),T||(T=wu()),K=T.normalize(K),S.readFileSync(K,te?null:"utf8")},b=function(K){var te=x(K,!0);return te.buffer||(te=new Uint8Array(te)),X(te.buffer),te},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),d=process.argv.slice(2),process.on("uncaughtException",function(K){if(!(K instanceof mm))throw K}),process.on("unhandledRejection",Oa),c=function(K){process.exit(K)},s.inspect=function(){return"[Emscripten Module object]"}):y?(typeof read!="undefined"&&(x=function(K){return read(K)}),b=function(K){var te;return typeof readbuffer=="function"?new Uint8Array(readbuffer(K)):(te=read(K,"binary"),X(typeof te=="object"),te)},typeof scriptArgs!="undefined"?d=scriptArgs:typeof arguments!="undefined"&&(d=arguments),typeof quit=="function"&&(c=function(K){quit(K)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||m)&&(m?A=self.location.href:typeof document!="undefined"&&document.currentScript&&(A=document.currentScript.src),a&&(A=a),A.indexOf("blob:")!==0?A=A.substr(0,A.lastIndexOf("/")+1):A="",x=function(K){var te=new XMLHttpRequest;return te.open("GET",K,!1),te.send(null),te.responseText},m&&(b=function(K){var te=new XMLHttpRequest;return te.open("GET",K,!1),te.responseType="arraybuffer",te.send(null),new Uint8Array(te.response)}),w=function(K,te,Ee){var Ze=new XMLHttpRequest;Ze.open("GET",K,!0),Ze.responseType="arraybuffer",Ze.onload=function(){if(Ze.status==200||Ze.status==0&&Ze.response){te(Ze.response);return}Ee()},Ze.onerror=Ee,Ze.send(null)},v=function(K){document.title=K});var C=s.print||console.log.bind(console),$=s.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(s[u]=l[u]);l=null,s.arguments&&(d=s.arguments),s.thisProgram&&(p=s.thisProgram),s.quit&&(c=s.quit);var O;s.wasmBinary&&(O=s.wasmBinary);var P=s.noExitRuntime||!0;typeof WebAssembly!="object"&&Oa("no native wasm support detected");var j,D=!1,U;function X(K,te){K||Oa("Assertion failed: "+te)}function G(K){var te=s["_"+K];return X(te,"Cannot call unknown function "+K+", make sure it is exported"),te}function ee(K,te,Ee,Ze,Tt){var mt={string:function(Yn){var Tr=0;if(Yn!=null&&Yn!==0){var Fp=(Yn.length<<2)+1;Tr=yu(Fp),pe(Yn,Tr,Fp)}return Tr},array:function(Yn){var Tr=yu(Yn.length);return oe(Yn,Tr),Tr}};function Ue(Yn){return te==="string"?ie(Yn):te==="boolean"?Boolean(Yn):Yn}var Ge=G(K),Qt=[],ir=0;if(Ze)for(var or=0;or<Ze.length;or++){var Mp=mt[Ee[or]];Mp?(ir===0&&(ir=Cp()),Qt[or]=Mp(Ze[or])):Qt[or]=Ze[or]}var gu=Ge.apply(null,Qt);return gu=Ue(gu),ir!==0&&Rp(ir),gu}function Y(K,te,Ee,Ze){Ee=Ee||[];var Tt=Ee.every(function(Ue){return Ue==="number"}),mt=te!=="string";return mt&&Tt&&!Ze?G(K):function(){return ee(K,te,Ee,arguments,Ze)}}var re=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ne(K,te,Ee){for(var Ze=te+Ee,Tt=te;K[Tt]&&!(Tt>=Ze);)++Tt;if(Tt-te>16&&K.subarray&&re)return re.decode(K.subarray(te,Tt));for(var mt="";te<Tt;){var Ue=K[te++];if(!(Ue&128)){mt+=String.fromCharCode(Ue);continue}var Ge=K[te++]&63;if((Ue&224)==192){mt+=String.fromCharCode((Ue&31)<<6|Ge);continue}var Qt=K[te++]&63;if((Ue&240)==224?Ue=(Ue&15)<<12|Ge<<6|Qt:Ue=(Ue&7)<<18|Ge<<12|Qt<<6|K[te++]&63,Ue<65536)mt+=String.fromCharCode(Ue);else{var ir=Ue-65536;mt+=String.fromCharCode(55296|ir>>10,56320|ir&1023)}}return mt}function ie(K,te){return K?ne(Te,K,te):""}function Q(K,te,Ee,Ze){if(!(Ze>0))return 0;for(var Tt=Ee,mt=Ee+Ze-1,Ue=0;Ue<K.length;++Ue){var Ge=K.charCodeAt(Ue);if(Ge>=55296&&Ge<=57343){var Qt=K.charCodeAt(++Ue);Ge=65536+((Ge&1023)<<10)|Qt&1023}if(Ge<=127){if(Ee>=mt)break;te[Ee++]=Ge}else if(Ge<=2047){if(Ee+1>=mt)break;te[Ee++]=192|Ge>>6,te[Ee++]=128|Ge&63}else if(Ge<=65535){if(Ee+2>=mt)break;te[Ee++]=224|Ge>>12,te[Ee++]=128|Ge>>6&63,te[Ee++]=128|Ge&63}else{if(Ee+3>=mt)break;te[Ee++]=240|Ge>>18,te[Ee++]=128|Ge>>12&63,te[Ee++]=128|Ge>>6&63,te[Ee++]=128|Ge&63}}return te[Ee]=0,Ee-Tt}function pe(K,te,Ee){return Q(K,Te,te,Ee)}function oe(K,te){Se.set(K,te)}function ge(K,te){return K%te>0&&(K+=te-K%te),K}var he,Se,Te,$e,Oe,De,et,tt,it;function Ke(K){he=K,s.HEAP8=Se=new Int8Array(K),s.HEAP16=$e=new Int16Array(K),s.HEAP32=De=new Int32Array(K),s.HEAPU8=Te=new Uint8Array(K),s.HEAPU16=Oe=new Uint16Array(K),s.HEAPU32=et=new Uint32Array(K),s.HEAPF32=tt=new Float32Array(K),s.HEAPF64=it=new Float64Array(K)}var pt=s.INITIAL_MEMORY||16777216,je,xn=[],bt=[],Kn=[],Yt=[],bn=!1;bt.push({func:function(){xp()}});function Zn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)za(s.preRun.shift());Ir(xn)}function Dn(){bn=!0,Ir(bt)}function sn(){Ir(Kn)}function Jt(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)sa(s.postRun.shift());Ir(Yt)}function za(K){xn.unshift(K)}function sa(K){Yt.unshift(K)}var ia=0,wr=null,ar=null;function kr(K){ia++,s.monitorRunDependencies&&s.monitorRunDependencies(ia)}function Gi(K){if(ia--,s.monitorRunDependencies&&s.monitorRunDependencies(ia),ia==0&&(wr!==null&&(clearInterval(wr),wr=null),ar)){var te=ar;ar=null,te()}}s.preloadedImages={},s.preloadedAudios={};function Oa(K){s.onAbort&&s.onAbort(K),K+="",$(K),D=!0,U=1,K="abort("+K+"). Build with -s ASSERTIONS=1 for more info.";var te=new WebAssembly.RuntimeError(K);throw o(te),te}function cp(K,te){return String.prototype.startsWith?K.startsWith(te):K.indexOf(te)===0}var K0="data:application/octet-stream;base64,";function pu(K){return cp(K,K0)}var Z0="file://";function hp(K){return cp(K,Z0)}var vn="tfjs-backend-wasm.wasm";pu(vn)||(vn=g(vn));function fp(K){try{if(K==vn&&O)return new Uint8Array(O);if(b)return b(K);throw"both async and sync fetching of the wasm failed"}catch(te){Oa(te)}}function Y0(){if(!O&&(h||m)){if(typeof fetch=="function"&&!hp(vn))return fetch(vn,{credentials:"same-origin"}).then(function(K){if(!K.ok)throw"failed to load wasm binary file at '"+vn+"'";return K.arrayBuffer()}).catch(function(){return fp(vn)});if(w)return new Promise(function(K,te){w(vn,function(Ee){K(new Uint8Array(Ee))},te)})}return Promise.resolve().then(function(){return fp(vn)})}function rr(){var K={a:nf};function te(Ue,Ge){var Qt=Ue.exports;s.asm=Qt,j=s.asm.i,Ke(j.buffer),je=s.asm.o,Gi("wasm-instantiate")}kr("wasm-instantiate");function Ee(Ue){te(Ue.instance)}function Ze(Ue){return Y0().then(function(Ge){return WebAssembly.instantiate(Ge,K)}).then(Ue,function(Ge){$("failed to asynchronously prepare wasm: "+Ge),Oa(Ge)})}function Tt(){return!O&&typeof WebAssembly.instantiateStreaming=="function"&&!pu(vn)&&!hp(vn)&&typeof fetch=="function"?fetch(vn,{credentials:"same-origin"}).then(function(Ue){var Ge=WebAssembly.instantiateStreaming(Ue,K);return Ge.then(Ee,function(Qt){return $("wasm streaming compile failed: "+Qt),$("falling back to ArrayBuffer instantiation"),Ze(Ee)})}):Ze(Ee)}if(s.instantiateWasm)try{var mt=s.instantiateWasm(K,te);return mt}catch(Ue){return $("Module.instantiateWasm callback failed with error: "+Ue),!1}return Tt().catch(o),{}}function Ir(K){for(;K.length>0;){var te=K.shift();if(typeof te=="function"){te(s);continue}var Ee=te.func;typeof Ee=="number"?te.arg===void 0?je.get(Ee)():je.get(Ee)(te.arg):Ee(te.arg===void 0?null:te.arg)}}function ls(){Oa()}function J0(K,te,Ee){Te.copyWithin(K,te,te+Ee)}function Q0(){return Te.length}function sr(K){try{return j.grow(K-he.byteLength+65535>>>16),Ke(j.buffer),1}catch(te){}}function mp(K){var te=Q0(),Ee=2147483648;if(K>Ee)return!1;for(var Ze=1;Ze<=4;Ze*=2){var Tt=te*(1+.2/Ze);Tt=Math.min(Tt,K+100663296);var mt=Math.min(Ee,ge(Math.max(K,Tt),65536)),Ue=sr(mt);if(Ue)return!0}return!1}var qi={mappings:{},buffers:[null,[],[]],printChar:function(K,te){var Ee=qi.buffers[K];te===0||te===10?((K===1?C:$)(ne(Ee,0)),Ee.length=0):Ee.push(te)},varargs:void 0,get:function(){qi.varargs+=4;var K=De[qi.varargs-4>>2];return K},getStr:function(K){var te=ie(K);return te},get64:function(K,te){return K}};function yp(K){return 0}function ef(K,te,Ee,Ze,Tt){}function Ap(K,te,Ee,Ze){for(var Tt=0,mt=0;mt<Ee;mt++){for(var Ue=De[te+mt*8>>2],Ge=De[te+(mt*8+4)>>2],Qt=0;Qt<Ge;Qt++)qi.printChar(K,Te[Ue+Qt]);Tt+=Ge}return De[Ze>>2]=Tt,0}function wn(){return 6}function gp(K){return De[Ep()>>2]=K,K}function tf(K){switch(K){case 30:return 16384;case 85:var te=2147483648;return te/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return gp(28),-1}var nf={a:ls,d:J0,e:mp,f:yp,c:ef,b:Ap,g:wn,h:tf},af=rr(),xp=s.___wasm_call_ctors=function(){return(xp=s.___wasm_call_ctors=s.asm.j).apply(null,arguments)},Xi=s._init=function(){return(Xi=s._init=s.asm.k).apply(null,arguments)},cu=s._register_tensor=function(){return(cu=s._register_tensor=s.asm.l).apply(null,arguments)},rf=s._dispose_data=function(){return(rf=s._dispose_data=s.asm.m).apply(null,arguments)},sf=s._dispose=function(){return(sf=s._dispose=s.asm.n).apply(null,arguments)},of=s._Abs=function(){return(of=s._Abs=s.asm.p).apply(null,arguments)},ke=s._Add=function(){return(ke=s._Add=s.asm.q).apply(null,arguments)},lf=s._AddN=function(){return(lf=s._AddN=s.asm.r).apply(null,arguments)},uf=s._All=function(){return(uf=s._All=s.asm.s).apply(null,arguments)},df=s._Any=function(){return(df=s._Any=s.asm.t).apply(null,arguments)},pf=s._ArgMax=function(){return(pf=s._ArgMax=s.asm.u).apply(null,arguments)},cf=s._AvgPool=function(){return(cf=s._AvgPool=s.asm.v).apply(null,arguments)},us=s._BatchMatMul=function(){return(us=s._BatchMatMul=s.asm.w).apply(null,arguments)},hf=s._Ceil=function(){return(hf=s._Ceil=s.asm.x).apply(null,arguments)},ff=s._ClipByValue=function(){return(ff=s._ClipByValue=s.asm.y).apply(null,arguments)},mf=s._Conv2D=function(){return(mf=s._Conv2D=s.asm.z).apply(null,arguments)},yf=s._Conv2DBackpropInput=function(){return(yf=s._Conv2DBackpropInput=s.asm.A).apply(null,arguments)},Af=s._Cos=function(){return(Af=s._Cos=s.asm.B).apply(null,arguments)},gf=s._CropAndResize=function(){return(gf=s._CropAndResize=s.asm.C).apply(null,arguments)},xf=s._Cumsum=function(){return(xf=s._Cumsum=s.asm.D).apply(null,arguments)},bf=s._DepthToSpace=function(){return(bf=s._DepthToSpace=s.asm.E).apply(null,arguments)},vf=s._DepthwiseConv2dNative=function(){return(vf=s._DepthwiseConv2dNative=s.asm.F).apply(null,arguments)},Sr=s._Equal=function(){return(Sr=s._Equal=s.asm.G).apply(null,arguments)},hu=s._Exp=function(){return(hu=s._Exp=s.asm.H).apply(null,arguments)},fu=s._FlipLeftRight=function(){return(fu=s._FlipLeftRight=s.asm.I).apply(null,arguments)},wf=s._Floor=function(){return(wf=s._Floor=s.asm.J).apply(null,arguments)},kf=s._FloorDiv=function(){return(kf=s._FloorDiv=s.asm.K).apply(null,arguments)},If=s._FusedBatchNorm=function(){return(If=s._FusedBatchNorm=s.asm.L).apply(null,arguments)},Sf=s._FusedConv2D=function(){return(Sf=s._FusedConv2D=s.asm.M).apply(null,arguments)},Nf=s._FusedDepthwiseConv2D=function(){return(Nf=s._FusedDepthwiseConv2D=s.asm.N).apply(null,arguments)},Pe=s._Gather=function(){return(Pe=s._Gather=s.asm.O).apply(null,arguments)},Tf=s._GatherNd=function(){return(Tf=s._GatherNd=s.asm.P).apply(null,arguments)},Ef=s._Greater=function(){return(Ef=s._Greater=s.asm.Q).apply(null,arguments)},Cf=s._GreaterEqual=function(){return(Cf=s._GreaterEqual=s.asm.R).apply(null,arguments)},Rf=s._LeakyRelu=function(){return(Rf=s._LeakyRelu=s.asm.S).apply(null,arguments)},Mf=s._Less=function(){return(Mf=s._Less=s.asm.T).apply(null,arguments)},Ff=s._LessEqual=function(){return(Ff=s._LessEqual=s.asm.U).apply(null,arguments)},mu=s._Log=function(){return(mu=s._Log=s.asm.V).apply(null,arguments)},bp=s._LogicalAnd=function(){return(bp=s._LogicalAnd=s.asm.W).apply(null,arguments)},vp=s._Max=function(){return(vp=s._Max=s.asm.X).apply(null,arguments)},$f=s._MaxPool=function(){return($f=s._MaxPool=s.asm.Y).apply(null,arguments)},Df=s._Maximum=function(){return(Df=s._Maximum=s.asm.Z).apply(null,arguments)},zf=s._Mean=function(){return(zf=s._Mean=s.asm._).apply(null,arguments)},Of=s._Min=function(){return(Of=s._Min=s.asm.$).apply(null,arguments)},_f=s._Minimum=function(){return(_f=s._Minimum=s.asm.aa).apply(null,arguments)},Pf=s._MirrorPad=function(){return(Pf=s._MirrorPad=s.asm.ba).apply(null,arguments)},Lf=s._Multiply=function(){return(Lf=s._Multiply=s.asm.ca).apply(null,arguments)},Qe=s._Neg=function(){return(Qe=s._Neg=s.asm.da).apply(null,arguments)},Wf=s._NonMaxSuppressionV3=function(){return(Wf=s._NonMaxSuppressionV3=s.asm.ea).apply(null,arguments)},Bf=s._NonMaxSuppressionV4=function(){return(Bf=s._NonMaxSuppressionV4=s.asm.fa).apply(null,arguments)},Vf=s._NonMaxSuppressionV5=function(){return(Vf=s._NonMaxSuppressionV5=s.asm.ga).apply(null,arguments)},Ki=s._NotEqual=function(){return(Ki=s._NotEqual=s.asm.ha).apply(null,arguments)},wp=s._OneHot=function(){return(wp=s._OneHot=s.asm.ia).apply(null,arguments)},kp=s._PadV2=function(){return(kp=s._PadV2=s.asm.ja).apply(null,arguments)},Ip=s._Pow=function(){return(Ip=s._Pow=s.asm.ka).apply(null,arguments)},jf=s._Prelu=function(){return(jf=s._Prelu=s.asm.la).apply(null,arguments)},Uf=s._Prod=function(){return(Uf=s._Prod=s.asm.ma).apply(null,arguments)},Sp=s._RealDiv=function(){return(Sp=s._RealDiv=s.asm.na).apply(null,arguments)},Hf=s._Relu=function(){return(Hf=s._Relu=s.asm.oa).apply(null,arguments)},Np=s._Relu6=function(){return(Np=s._Relu6=s.asm.pa).apply(null,arguments)},Nr=s._ResizeBilinear=function(){return(Nr=s._ResizeBilinear=s.asm.qa).apply(null,arguments)},Gf=s._Reverse=function(){return(Gf=s._Reverse=s.asm.ra).apply(null,arguments)},qf=s._RotateWithOffset=function(){return(qf=s._RotateWithOffset=s.asm.sa).apply(null,arguments)},Yg=s._Round=function(){return(Yg=s._Round=s.asm.ta).apply(null,arguments)},Tp=s._Rsqrt=function(){return(Tp=s._Rsqrt=s.asm.ua).apply(null,arguments)},Xf=s._ScatterNd=function(){return(Xf=s._ScatterNd=s.asm.va).apply(null,arguments)},Kf=s._SelectV2=function(){return(Kf=s._SelectV2=s.asm.wa).apply(null,arguments)},Zf=s._Sigmoid=function(){return(Zf=s._Sigmoid=s.asm.xa).apply(null,arguments)},Yf=s._Sin=function(){return(Yf=s._Sin=s.asm.ya).apply(null,arguments)},Jf=s._Softmax=function(){return(Jf=s._Softmax=s.asm.za).apply(null,arguments)},Qf=s._Sqrt=function(){return(Qf=s._Sqrt=s.asm.Aa).apply(null,arguments)},em=s._Square=function(){return(em=s._Square=s.asm.Ba).apply(null,arguments)},tm=s._SquaredDifference=function(){return(tm=s._SquaredDifference=s.asm.Ca).apply(null,arguments)},nm=s._Step=function(){return(nm=s._Step=s.asm.Da).apply(null,arguments)},am=s._StridedSlice=function(){return(am=s._StridedSlice=s.asm.Ea).apply(null,arguments)},rm=s._Sub=function(){return(rm=s._Sub=s.asm.Fa).apply(null,arguments)},sm=s._Sum=function(){return(sm=s._Sum=s.asm.Ga).apply(null,arguments)},im=s._Tan=function(){return(im=s._Tan=s.asm.Ha).apply(null,arguments)},om=s._Tanh=function(){return(om=s._Tanh=s.asm.Ia).apply(null,arguments)},lm=s._Tile=function(){return(lm=s._Tile=s.asm.Ja).apply(null,arguments)},um=s._TopK=function(){return(um=s._TopK=s.asm.Ka).apply(null,arguments)},dm=s._Transform=function(){return(dm=s._Transform=s.asm.La).apply(null,arguments)},pm=s._Transpose=function(){return(pm=s._Transpose=s.asm.Ma).apply(null,arguments)},cm=s.__FusedMatMul=function(){return(cm=s.__FusedMatMul=s.asm.Na).apply(null,arguments)},hm=s._malloc=function(){return(hm=s._malloc=s.asm.Oa).apply(null,arguments)},fm=s._free=function(){return(fm=s._free=s.asm.Pa).apply(null,arguments)},Ep=s.___errno_location=function(){return(Ep=s.___errno_location=s.asm.Qa).apply(null,arguments)},Cp=s.stackSave=function(){return(Cp=s.stackSave=s.asm.Ra).apply(null,arguments)},Rp=s.stackRestore=function(){return(Rp=s.stackRestore=s.asm.Sa).apply(null,arguments)},yu=s.stackAlloc=function(){return(yu=s.stackAlloc=s.asm.Ta).apply(null,arguments)};s.cwrap=Y;var Zi;function mm(K){this.name="ExitStatus",this.message="Program terminated with exit("+K+")",this.status=K}ar=function K(){Zi||Au(),Zi||(ar=K)};function Au(K){if(K=K||d,ia>0||(Zn(),ia>0))return;function te(){Zi||(Zi=!0,s.calledRun=!0,!D&&(Dn(),sn(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),Jt()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),te()},1)):te()}if(s.run=Au,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return Au(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),DI=wt((e,t)=>{(function(n,a,r){function s(u){var d=this,p=l();d.next=function(){var c=2091639*d.s0+d.c*23283064365386963e-26;return d.s0=d.s1,d.s1=d.s2,d.s2=c-(d.c=c|0)},d.c=1,d.s0=p(" "),d.s1=p(" "),d.s2=p(" "),d.s0-=p(u),d.s0<0&&(d.s0+=1),d.s1-=p(u),d.s1<0&&(d.s1+=1),d.s2-=p(u),d.s2<0&&(d.s2+=1),p=null}function i(u,d){return d.c=u.c,d.s0=u.s0,d.s1=u.s1,d.s2=u.s2,d}function o(u,d){var p=new s(u),c=d&&d.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,p),h.state=function(){return i(p,{})}),h}function l(){var u=4022871197,d=function(p){p=String(p);for(var c=0;c<p.length;c++){u+=p.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),zI=wt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:d+=l;for(var p=0;p<d.length+64;p++)u.x^=d.charCodeAt(p)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),OI=wt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:d+=l;for(var p=0;p<d.length+64;p++)u.x^=d.charCodeAt(p)|0,p==d.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),_I=wt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.x,c=u.i,h,m,f;return h=p[c],h^=h>>>7,m=h^h<<24,h=p[c+1&7],m^=h^h>>>10,h=p[c+3&7],m^=h^h>>>3,h=p[c+4&7],m^=h^h<<7,h=p[c+7&7],h=h^h<<13,m^=h^h<<9,p[c]=m,u.i=c+1&7,m};function d(p,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}d(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(p.x&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),PI=wt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.w,c=u.X,h=u.i,m,f;return u.w=p=p+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(p^p>>>16)|0};function d(p,c){var h,m,f,y,A,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,y=-32;y<x;++y)c&&(m^=c.charCodeAt((y+32)%c.length)),y===0&&(A=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,y>=0&&(A=A+1640531527|0,h=g[y&127]^=m+A,f=h==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,y=4*128;y>0;--y)m=g[f+34&127],h=g[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,g[f]=m^h;p.w=A,p.X=g,p.i=f}d(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(p.X&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),LI=wt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):d+=l;for(var p=0;p<d.length+20;p++)u.b^=d.charCodeAt(p)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),WI=wt((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",u=r.pow(s,i),d=r.pow(2,o),p=d*2,c=s-1,h;function m(b,v,S){var T=[];v=v==!0?{entropy:!0}:v||{};var C=g(A(v.entropy?[b,w(a)]:b==null?x():b,3),T),$=new f(T),O=function(){for(var P=$.g(i),j=u,D=0;P<d;)P=(P+D)*s,j*=s,D=$.g(1);for(;P>=p;)P/=2,j/=2,D>>>=1;return(P+D)/j};return O.int32=function(){return $.g(4)|0},O.quick=function(){return $.g(4)/4294967296},O.double=O,g(w($.S),a),(v.pass||S||function(P,j,D,U){return U&&(U.S&&y(U,$),P.state=function(){return y($,{})}),D?(r[l]=P,j):P})(O,C,"global"in v?v.global:this==r,v.state)}function f(b){var v,S=b.length,T=this,C=0,$=T.i=T.j=0,O=T.S=[];for(S||(b=[S++]);C<s;)O[C]=C++;for(C=0;C<s;C++)O[C]=O[$=c&$+b[C%S]+(v=O[C])],O[$]=v;(T.g=function(P){for(var j,D=0,U=T.i,X=T.j,G=T.S;P--;)j=G[U=c&U+1],D=D*s+G[c&(G[U]=G[X=c&X+j])+(G[X]=j)];return T.i=U,T.j=X,D})(s)}function y(b,v){return v.i=b.i,v.j=b.j,v.S=b.S.slice(),v}function A(b,v){var S=[],T=typeof b,C;if(v&&T=="object")for(C in b)try{S.push(A(b[C],v-1))}catch($){}return S.length?S:T=="string"?b:b+"\0"}function g(b,v){for(var S=b+"",T,C=0;C<S.length;)v[c&C]=c&(T^=v[c&C]*19)+S.charCodeAt(C++);return w(v)}function x(){try{var b;return h&&(b=h.randomBytes)?b=b(s):(b=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(b)),w(b)}catch(T){var v=n.navigator,S=v&&v.plugins;return[+new Date,n,S,n.screen,w(a)]}}function w(b){return String.fromCharCode.apply(0,b)}if(g(r.random(),a),typeof t=="object"&&t.exports){t.exports=m;try{h=c5()}catch(b){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),f5=wt((e,t)=>{var n=DI(),a=zI(),r=OI(),s=_I(),i=PI(),o=LI(),l=WI();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),BI=wt(()=>{}),vm={};Fe(vm,{bin:()=>S5,browser:()=>M5,default:()=>VI,dependencies:()=>R5,description:()=>A5,devDependencies:()=>E5,jsdelivr:()=>v5,license:()=>T5,main:()=>x5,miniprogram:()=>I5,module:()=>b5,name:()=>m5,private:()=>g5,repository:()=>N5,scripts:()=>C5,types:()=>k5,unpkg:()=>w5,version:()=>y5});var m5="@tensorflow/tfjs",y5="3.6.0",A5="An open-source machine learning framework.",g5=!1,x5="dist/tf.node.js",b5="dist/index.js",v5="dist/tf.min.js",w5="dist/tf.min.js",k5="dist/index.d.ts",I5="dist/miniprogram",S5={"tfjs-custom-module":"dist/tools/custom_module/cli.js"},N5={type:"git",url:"https://github.com/tensorflow/tfjs.git"},T5="Apache-2.0",E5={"@babel/core":"^7.9.0","@babel/polyfill":"^7.10.4","@babel/preset-env":"^7.9.5","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@types/argparse":"^1.0.38","@types/jasmine":"2.8.7","@types/node":"~10.17.50","@types/shelljs":"^0.8.4","@types/yargs":"^15.0.7","clang-format":"~1.2.2",commander:"~2.14.1",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.2","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.5.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-babel":"^4.4.0","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~4.2.2",shelljs:"~0.8.1","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"1.0.0-pre.50"},C5={build:"tsc && yarn build-cli && yarn bundle","build-ci":"tsc && yarn build-cli && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-converter":"cd ../tfjs-converter && yarn && yarn build","build-converter-ci":"cd ../tfjs-converter && yarn && yarn build-ci","build-data":"cd ../tfjs-data && yarn && yarn build","build-data-ci":"cd ../tfjs-data && yarn && yarn build-ci","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-converter && yarn build-data && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-converter-ci && yarn build-data-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-cli":"tsc --project ./tools/custom_module/tsconfig.json && chmod +x ./dist/tools/custom_module/cli.js","run-custom-build":"ts-node -s ./tools/custom_module/cli.ts","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && yarn build && karma start","test-dev":"karma start","test-tools":"ts-node --project ./tools/custom_module/tsconfig.json run_tools_tests.ts","test-ci":"./scripts/test-ci.sh"},R5={"@tensorflow/tfjs-backend-cpu":"3.6.0","@tensorflow/tfjs-backend-webgl":"3.6.0","@tensorflow/tfjs-converter":"3.6.0","@tensorflow/tfjs-core":"3.6.0","@tensorflow/tfjs-data":"3.6.0","@tensorflow/tfjs-layers":"3.6.0",argparse:"^1.0.10",chalk:"^4.1.0","core-js":"3","regenerator-runtime":"^0.13.5",yargs:"^16.0.3"},M5={"node-fetch":!1,util:!1,crypto:!1},VI={name:m5,version:y5,description:A5,private:g5,main:x5,module:b5,jsdelivr:v5,unpkg:w5,types:k5,miniprogram:I5,bin:S5,repository:N5,license:T5,devDependencies:E5,scripts:C5,dependencies:R5,browser:M5},wm={};Fe(wm,{browser:()=>K5,default:()=>jI,dependencies:()=>X5,description:()=>D5,devDependencies:()=>G5,engines:()=>j5,jsdelivr:()=>_5,"jsnext:main":()=>W5,license:()=>H5,main:()=>O5,miniprogram:()=>V5,module:()=>B5,name:()=>F5,private:()=>z5,repository:()=>U5,scripts:()=>q5,sideEffects:()=>Z5,types:()=>L5,unpkg:()=>P5,version:()=>$5});var F5="@tensorflow/tfjs-core",$5="3.6.0",D5="Hardware-accelerated JavaScript library for machine intelligence",z5=!1,O5="dist/tf-core.node.js",_5="dist/tf-core.min.js",P5="dist/tf-core.min.js",L5="dist/index.d.ts",W5="dist/index.js",B5="dist/index.js",V5="dist/miniprogram",j5={yarn:">= 1.3.2"},U5={type:"git",url:"https://github.com/tensorflow/tfjs-core.git"},H5="Apache-2.0",G5={"@bazel/bazelisk":"^1.3.0","@bazel/typescript":"^0.27.8","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"link:../tfjs-backend-cpu","@types/jasmine":"~3.0.0","@types/node":"~9.6.0","@types/node-fetch":"~2.1.2","clang-format":"~1.2.4",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"6.3.2","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~3.1.0","karma-jasmine":"~4.0.1","karma-typescript":"~5.5.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~5.3.0","rollup-plugin-visualizer":"~3.3.2",shelljs:"~0.8.3","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"~1.0.0-pre.21",yargs:"~13.2.2"},q5={"build-ci":"./scripts/enumerate-tests.js --ci && tsc && yarn bundle-ci && yarn build-test-snippets",build:"node ./scripts/enumerate-tests.js && tsc && yarn bundle",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-npm":"./scripts/build-npm.sh","build-deps":"yarn build && yarn build-cpu-backend","build-cpu-backend":"cd ../tfjs-backend-cpu && yarn && yarn build","build-cpu-backend-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build:bazel":"bazelisk build //...","build-test-snippets":"yarn tsc --project ./scripts/test_snippets/tsconfig.json","format-all":"clang-format -i -style=Google --glob=src/**/*.ts","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build && rollup -c && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-webworker":"karma start --worker","run-browserstack":"karma start --browserstack","test-bundle-size":"./scripts/test-bundle-size.js","test-node":"rimraf dist/ && yarn build-deps && yarn build && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-dev":"tsc && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_node.js","test-async-backends":"rimraf dist/ && yarn build && ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-async-backends-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-snippets":"yarn build && yarn build-cpu-backend && ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts","test-snippets-ci":"ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts"},X5={"@types/offscreencanvas":"~2019.3.0","@types/seedrandom":"2.4.27","@types/webgl-ext":"0.0.30","node-fetch":"~2.6.1",seedrandom:"2.4.3"},K5={"node-fetch":!1,util:!1,crypto:!1,worker_threads:!1},Z5=["./dist/index.js","./dist/engine.js","./dist/tensor.js","./dist/base_side_effects.js","./dist/flags.js","./dist/platforms/*.js","./dist/register_all_gradients.js","./dist/public/chained_ops/*.js","./dist/io/*.js"],jI={name:F5,version:$5,description:D5,private:z5,main:O5,jsdelivr:_5,unpkg:P5,types:L5,"jsnext:main":W5,module:B5,miniprogram:V5,engines:j5,repository:U5,license:H5,devDependencies:G5,scripts:q5,dependencies:X5,browser:K5,sideEffects:Z5},km={};Fe(km,{browser:()=>hx,default:()=>UI,dependencies:()=>cx,description:()=>Q5,devDependencies:()=>ux,jsdelivr:()=>nx,"jsnext:main":()=>sx,license:()=>lx,main:()=>tx,miniprogram:()=>ox,module:()=>ix,name:()=>Y5,peerDependencies:()=>px,private:()=>ex,scripts:()=>dx,types:()=>rx,unpkg:()=>ax,version:()=>J5});var Y5="@tensorflow/tfjs-data",J5="3.6.0",Q5="TensorFlow Data API in JavaScript",ex=!1,tx="dist/tf-data.node.js",nx="dist/tf-data.min.js",ax="dist/tf-data.min.js",rx="dist/index.d.ts",sx="dist/index.js",ix="dist/index.js",ox="dist/miniprogram",lx="Apache-2.0",ux={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.6.0","@tensorflow/tfjs-core":"3.6.0","@tensorflow/tfjs-layers":"3.6.0","@types/jasmine":"~2.5.53","@types/seedrandom":"^2.4.27","@types/utf8":"~2.1.6","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",nyc:"^15.1.0",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~7.0.0",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"^1.0.0-pre.50"},dx={build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-backend-cpu-ci","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-dev":"tsc && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-browsers":"karma start --browsers='Chrome,Firefox'","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/test_node.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts",coverage:"yarn nyc yarn ts-node --transpile-only -P tsconfig.test.json src/test_node.ts",lint:"tslint -p . -t verbose"},px={"@tensorflow/tfjs-core":"3.6.0",seedrandom:"~2.4.3"},cx={"@types/node-fetch":"^2.1.2","node-fetch":"~2.6.1"},hx={fs:!1,"node-fetch":!1,string_decoder:!1,crypto:!1},UI={name:Y5,version:J5,description:Q5,private:ex,main:tx,jsdelivr:nx,unpkg:ax,types:rx,"jsnext:main":sx,module:ix,miniprogram:ox,license:lx,devDependencies:ux,scripts:dx,peerDependencies:px,dependencies:cx,browser:hx},Im={};Fe(Im,{default:()=>HI,description:()=>yx,devDependencies:()=>Nx,jsdelivr:()=>kx,"jsnext:main":()=>vx,license:()=>Ax,main:()=>xx,miniprogram:()=>Sx,module:()=>wx,name:()=>fx,peerDependencies:()=>Ex,private:()=>gx,scripts:()=>Tx,types:()=>bx,unpkg:()=>Ix,version:()=>mx});var fx="@tensorflow/tfjs-layers",mx="3.6.0",yx="TensorFlow layers API in JavaScript",Ax="Apache-2.0 AND MIT",gx=!1,xx="dist/tf-layers.node.js",bx="dist/index.d.ts",vx="dist/index.js",wx="dist/index.js",kx="dist/tf-layers.min.js",Ix="dist/tf-layers.min.js",Sx="dist/miniprogram",Nx={"@babel/polyfill":"^7.8.7","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.6.0","@tensorflow/tfjs-backend-webgl":"3.6.0","@tensorflow/tfjs-core":"3.6.0","@types/jasmine":"~2.5.53","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},Tx={prep:"yarn install && yarn build-ci",build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-npm":"./scripts/build-npm.sh",format:"./tools/clang_format_ts.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts","run-browserstack":"karma start --browsers='bs_chrome_mac' --singleRun --reporters='dots,karma-typescript'",lint:"tslint -p . -t verbose"},Ex={"@tensorflow/tfjs-core":"3.6.0"},HI={name:fx,version:mx,description:yx,license:Ax,private:gx,main:xx,types:bx,"jsnext:main":vx,module:wx,jsdelivr:kx,unpkg:Ix,miniprogram:Sx,devDependencies:Nx,scripts:Tx,peerDependencies:Ex},Sm={};Fe(Sm,{default:()=>GI,description:()=>Mx,devDependencies:()=>Vx,jsdelivr:()=>_x,"jsnext:main":()=>$x,license:()=>Wx,main:()=>Fx,miniprogram:()=>Px,module:()=>Dx,name:()=>Cx,peerDependencies:()=>Bx,repository:()=>Lx,scripts:()=>jx,types:()=>zx,unpkg:()=>Ox,version:()=>Rx});var Cx="@tensorflow/tfjs-converter",Rx="3.6.0",Mx="Tensorflow model converter for javascript",Fx="dist/tf-converter.node.js",$x="dist/index.js",Dx="dist/index.js",zx="dist/index.d.ts",Ox="dist/tf-converter.min.js",_x="dist/tf-converter.min.js",Px="dist/miniprogram",Lx={type:"git",url:"https://github.com/tensorflow/tfjs-converter.git"},Wx="Apache-2.0",Bx={"@tensorflow/tfjs-core":"3.6.0"},Vx={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-replace":"^2.3.3","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.6.0","@tensorflow/tfjs-core":"3.6.0","@types/argparse":"^1.0.38","@types/deep-equal":"^1.0.1","@types/jasmine":"~2.8.6","@types/long":"~3.0.32","@types/node-fetch":"1.6.9",ajv:"~6.3.0",argparse:"^1.0.10","babel-core":"~6.26.3","babel-plugin-external-helpers":"~6.22.0","babel-preset-env":"~1.7.0","clang-format":"~1.2.2",copyfiles:"~1.2.0","deep-equal":"^1.0.1","jasmine-core":"~3.5.0","node-fetch":"~2.6.1",opn:"~5.1.0",protobufjs:"~6.8.6",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-morph":"^7.1.3","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"~0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},jx={build:"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle","build-ci":"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && yarn gen-json --test && yarn gen-kernel2ops && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/run_tests.ts","test-dev":"tsc && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts",lint:"tslint -p . -t verbose","make-version":"sh -c ./scripts/make-version","gen-doc":"ts-node -s ./scripts/gen_doc.ts","gen-json":"ts-node -s ./scripts/gen_json.ts","model-summary":"ts-node -s ./tools/model_summary.ts",pb2json:"ts-node -s ./tools/pb2json_converter.ts","build-pip-package":"yarn gen-json --test && cd python && ./build-pip-package.sh --test /tmp/tfjs-pips","run-python-tests":"yarn gen-json --test && cd python && ./run-python-tests.sh","gen-kernel2ops":"ts-node -s scripts/kernels_to_ops.ts --out metadata/kernel2op.json"},GI={name:Cx,version:Rx,description:Mx,main:Fx,"jsnext:main":$x,module:Dx,types:zx,unpkg:Ox,jsdelivr:_x,miniprogram:Px,repository:Lx,license:Wx,peerDependencies:Bx,devDependencies:Vx,scripts:jx},qI=1e-7,XI=1e-4,zp=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},ku=class{refCount(e){return oa("refCount")}incRef(e){return oa("incRef")}timerAvailable(){return!0}time(e){return oa("time")}read(e){return oa("read")}readSync(e){return oa("readSync")}numDataIds(){return oa("numDataIds")}disposeData(e,t){return oa("disposeData")}write(e,t,n){return oa("write")}move(e,t,n,a,r){return oa("move")}memory(){return oa("memory")}floatPrecision(){return oa("floatPrecision")}epsilon(){return this.floatPrecision()===32?qI:XI}dispose(){return oa("dispose")}};function oa(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function Ux(e){let t=e.length,n=0,a=0;for(;t>0;)a=Math.random()*t|0,t--,n=e[t],e[t]=e[a],e[a]=n}function KI(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a,r,s=0;for(;n>0;)s=Math.random()*n|0,n--,a=e[n],r=t[n],e[n]=e[s],t[n]=t[s],e[s]=a,t[s]=r}function Iu(e,t,n){return Math.max(e,Math.min(t,n))}function ZI(e){return e%2==0?e:e+1}function YI(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function JI(e,t){let n=Math.random();return t*n+(1-n)*e}function QI(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function F(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function ln(e,t,n=""){F(lr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ps(e){F(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function cs(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||an(e)&&!n)for(let a=0;a<e.length;++a)cs(e[a],t,n);else t.push(e);return t}function Rt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function eS(e){return e.length===0}function lr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Ht(e){return e%1==0}function tS(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function nS(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function aS(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return Ux(t),t}function Su(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function rS(e,t=a=>0,n){return new Promise((a,r)=>{let s=0,i=()=>{if(e()){a();return}s++;let o=t(s);if(n!=null&&s>=n){r();return}setTimeout(i,o)};i()})}function sS(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function la(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),F(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),F(e.every(a=>Ht(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function Hx(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:la(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function Gx(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function qx(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Xx(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function Kx(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function iS(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function an(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function Nm(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function Zx(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Cr(e){return typeof e=="string"||e instanceof String}function Yx(e){return typeof e=="boolean"}function Jx(e){return typeof e=="number"}function Op(e){return Array.isArray(e)?Op(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":Jx(e)?"float32":Cr(e)?"string":Yx(e)?"bool":"float32"}function Rr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function _p(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function so(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function Qx(e,t,n,a=!1){let r=new Array;if(t.length===1){let s=t[0]*(a?2:1);for(let i=0;i<s;i++)r[i]=n[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(a?2:1);for(let l=0;l<s;l++)r[l]=Qx(e+l*o,i,n,a)}return r}function io(e,t,n=!1){if(e.length===0)return t[0];let a=e.reduce((r,s)=>r*s)*(n?2:1);if(a===0)return[];if(a!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return Qx(0,e,t,n)}function Tm(e,t){let n=Pp(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function Pp(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function oS(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return io(e,new Float32Array(n));if(t==="int32")return io(e,new Int32Array(n));if(t==="bool")return io(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Em(e){e.forEach(t=>{F(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function lS(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function uS(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function Cm(e){return e&&e.then&&typeof e.then=="function"}var eb="tfjsflags",tb=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=dS,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Cm(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);eb in e&&e[eb].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=cS(n,a)})}};function dS(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(pS(t,a[0],a[1]),a.join("="))),t}function pS(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function cS(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function J(){return ua}var ua=null;function hS(e){ua=e}var Rm;function nb(){if(Rm==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Rm=e}return Rm}function fS(){let e=nb();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Mm(e,t){let n=fS();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var oo="Abs",lo="Acos",uo="Acosh",Mr="Add",hs="AddN",po="All",co="Any",fs="ArgMax",Nu="ArgMin",ho="Asin",fo="Asinh",mo="Atan",yo="Atanh",Ao="Atan2",ms="AvgPool",Lp="AvgPoolGrad",Tu="AvgPool3D",Wp="AvgPool3DGrad",ys="BatchMatMul",Eu="BatchToSpaceND",Bp="Bincount",ab="BroadcastTo",As="Cast",gs="Ceil",Fr="ClipByValue",Vp="Complex",Cu="ComplexAbs",go="Concat",xs="Conv2D",jp="Conv2DBackpropFilter",bs="Conv2DBackpropInput",Ru="Conv3D",Up="Conv3DBackpropFilterV2",Hp="Conv3DBackpropInputV2",vs="Cos",xo="Cosh",ws="Cumsum",bo="CropAndResize",Gp="DenseBincount",vo="DepthToSpace",ks="DepthwiseConv2dNative",qp="DepthwiseConv2dNativeBackpropFilter",Xp="DepthwiseConv2dNativeBackpropInput",Kp="Diag",Mu="Dilation2D",Zp="Dilation2DBackpropInput",Yp="Dilation2DBackpropFilter",Is="RealDiv",Jp="Einsum",wo="Elu",Qp="EluGrad",ko="Erf",Io="Equal",Ss="Exp",So="ExpandDims",No="Expm1",ec="FFT",Fu="Fill",To="FlipLeftRight",Ns="Floor",Ts="FloorDiv",Es="FusedBatchNorm",Eo="GatherV2",Co="GatherNd",Ro="Greater",Cs="GreaterEqual",Rs="Identity",tc="IFFT",nc="Imag",Mo="IsFinite",Fo="IsInf",$o="IsNan",Ms="LeakyRelu",Do="Less",zo="LessEqual",ac="LinSpace",Fs="Log",Oo="Log1p",_o="LogicalAnd",$u="LogicalNot",Du="LogicalOr",rb="LogSoftmax",zu="LRN",rc="LRNGrad",$s="Max",Ds="Maximum",zs="MaxPool",sc="MaxPoolGrad",Ou="MaxPool3D",ic="MaxPool3DGrad",oc="MaxPoolWithArgmax",Os="Mean",_s="Min",Ps="Minimum",Ls="MirrorPad",Po="Mod",lc="Multinomial",Ws="Multiply",Lo="Neg",Wo="NotEqual",Bo="NonMaxSuppressionV3",Vo="NonMaxSuppressionV4",jo="NonMaxSuppressionV5",Uo="OnesLike",Bs="OneHot",Ho="Pack",Vs="PadV2",mS="Pool",js="Pow",Us="Prelu",Go="Prod",_u="Range",uc="Real",qo="Reciprocal",Hs="Relu",Xo="Reshape",Pu="ResizeNearestNeighbor",dc="ResizeNearestNeighborGrad",Gs="ResizeBilinear",pc="ResizeBilinearGrad",qs="Relu6",Xs="Reverse",Ks="Round",Zs="Rsqrt",Ko="ScatterNd",Zo="Select",Yo="Selu",Jo="Slice",Ys="Sin",Qo="Sinh",el="Sign",Js="Sigmoid",tl="Softplus",Qs="Sqrt",ei="Sum",Lu="SpaceToBatchND",nl="SplitV",ti="Softmax",cc="SparseFillEmptyRows",hc="SparseReshape",fc="SparseToDense",ni="SquaredDifference",Wu="Square",al="StridedSlice",ai="Sub",ri="Tan",si="Tanh",$r="Tile",rl="TopK",sl="Transform",ii="Transpose",mc="Unique",il="Unpack",Bu="UnsortedSegmentSum",ol="ZerosLike",Dr="Step",yc="FromPixels",ll="RotateWithOffset",oi="_FusedMatMul",li="FusedConv2D",ui="FusedDepthwiseConv2D",ul=Mm("kernelRegistry",()=>new Map),Vu=Mm("gradRegistry",()=>new Map);function Ac(e,t){let n=$m(e,t);return ul.get(n)}function Fm(e){return Vu.get(e)}function dl(e){let t=ul.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function di(e){let{kernelName:t,backendName:n}=e,a=$m(t,n);ul.has(a)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),ul.set(a,e)}function sb(e){let{kernelName:t}=e;Vu.has(t)&&J().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),Vu.set(t,e)}function yS(e,t){let n=$m(e,t);if(!ul.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);ul.delete(n)}function AS(e){if(!Vu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Vu.delete(e)}function gS(e,t){dl(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});di(a)})}function $m(e,t){return`${t}_${e}`}var k={};Fe(k,{arraysEqual:()=>lr,assert:()=>F,assertNonNegativeIntegerDimensions:()=>Em,assertNonNull:()=>ps,assertShapesMatch:()=>ln,bytesFromStringArray:()=>Zx,bytesPerElement:()=>Nm,checkConversionForErrors:()=>Xx,clamp:()=>Iu,computeStrides:()=>so,createScalarValue:()=>xS,createShuffledIndices:()=>aS,decodeString:()=>xc,distSquared:()=>QI,encodeString:()=>Uu,fetch:()=>vS,flatten:()=>cs,getArrayFromDType:()=>qx,getTypedArrayFromDType:()=>Gx,hasEncodingLoss:()=>iS,indexToLoc:()=>uS,inferDtype:()=>Op,inferFromImplicitShape:()=>sS,isBoolean:()=>Yx,isFunction:()=>Rr,isInt:()=>Ht,isNumber:()=>Jx,isPromise:()=>Cm,isScalarShape:()=>eS,isString:()=>Cr,isTypedArray:()=>an,isValidDtype:()=>Kx,locToIndex:()=>lS,makeOnesTypedArray:()=>Tm,makeZerosNestedTypedArray:()=>oS,makeZerosTypedArray:()=>Pp,nearestDivisor:()=>_p,nearestLargerEven:()=>ZI,now:()=>ju,parseAxisParam:()=>la,randUniform:()=>JI,repeatedTry:()=>rS,rightPad:()=>Su,shuffle:()=>Ux,shuffleCombo:()=>KI,sizeFromShape:()=>Rt,sizeToSquarishShape:()=>nS,squeezeShape:()=>Hx,sum:()=>YI,tanh:()=>tS,toNestedArray:()=>io,toTypedArray:()=>gc});function xS(e,t){return t==="string"?Uu(e):gc([e],t)}function bS(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function gc(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=cs(e)),J().getBool("DEBUG")&&Xx(e,t),bS(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function ju(){return J().platform.now()}function vS(e,t){return J().platform.fetch(e,t)}function Uu(e,t="utf-8"){return t=t||"utf-8",J().platform.encode(e,t)}function xc(e,t="utf-8"){return t=t||"utf-8",J().platform.decode(e,t)}var wS=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new IS)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=ju();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:ju()-i})}if(J().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(u=>{kS(u,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function kS(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var IS=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?Su(`${a}ms`,9):a.error,o=Su(e,25),l=t.rank,u=t.size,d=Su(t.shape.toString(),14),p="";for(let c in r){let h=r[c];if(h!=null){let m=h.shape||t.shape,f=m.length;p+=`${c}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${d} %c${u} %c${p} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function SS(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],d=u.inputs;for(let p in d){let c=d[p],h=!1;for(let m=0;m<t.length;m++)if(a[c.id]){u.outputs.forEach(f=>a[f.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],d=u.inputs;for(let p=0;p<u.outputs.length;p++)if(s[u.outputs[p].id]){for(let c in d)s[d[c].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&i[u.id]){let d={};for(let c in u.inputs){let h=u.inputs[c];a[h.id]&&(d[c]=h)}let p=Object.assign({},u);p.inputs=d,p.outputs=u.outputs,o.push(p)}}return o}function NS(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let d=s.inputs[l];if(!lr(u.shape,d.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${d.shape}'`);if(e[d.id]==null)e[d.id]=u;else{let p=e[d.id];e[d.id]=a(p,u),p.dispose()}}}}var ib=20,Hu=3,Dm=7;function TS(e,t,n,a){let r=so(t),s=ES(e,t,n,r),i=t.length,o=bc(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function ES(e,t,n,a){let r=Rt(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?qu(e):e;if(o>1)for(let u=0;u<r/s;u++){let d=u*s;for(let p=0;p<s;p++)i[p]=Math.max(i[p],Gu(l[d+p],0,n).length)}return i}function Gu(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(Dm))} + ${parseFloat(e[1].toFixed(Dm))}j`:Cr(e)?a=`'${e}'`:n==="bool"?a=ob(e):a=parseFloat(e.toFixed(Dm)).toString(),Su(a,t)}function ob(e){return e===0?"false":"true"}function bc(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=qu(e);return[Gu(f[0],0,n)]}return n==="bool"?[ob(e[0])]:[e[0].toString()]}if(l===1){if(o>ib){let y=Hu*i,A=Array.from(e.slice(0,y)),g=Array.from(e.slice((o-Hu)*i,o*i));return n==="complex64"&&(A=qu(A),g=qu(g)),["["+A.map((x,w)=>Gu(x,r[w],n)).join(", ")+", ..., "+g.map((x,w)=>Gu(x,r[o-Hu+w],n)).join(", ")+"]"]}let f=n==="complex64"?qu(e):Array.from(e);return["["+f.map((y,A)=>Gu(y,r[A],n)).join(", ")+"]"]}let u=t.slice(1),d=a.slice(1),p=a[0]*i,c=[];if(o>ib){for(let f=0;f<Hu;f++){let y=f*p,A=y+p;c.push(...bc(e.slice(y,A),u,n,d,r,!1))}c.push("...");for(let f=o-Hu;f<o;f++){let y=f*p,A=y+p;c.push(...bc(e.slice(y,A),u,n,d,r,f===o-1))}}else for(let f=0;f<o;f++){let y=f*p,A=y+p;c.push(...bc(e.slice(y,A),u,n,d,r,f===o-1))}let h=l===2?",":"";c[0]="["+c[0]+h;for(let f=1;f<c.length-1;f++)c[f]=" "+c[f]+h;let m=`,
|
|
`;for(let f=2;f<l;f++)m+=`
|
|
`;return c[c.length-1]=" "+c[c.length-1]+"]"+(s?"":m),c}function qu(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Pt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Rt(e),n!=null){let a=n.length;F(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||qx(t,this.size),this.strides=so(e)}set(e,...t){t.length===0&&(t=[0]),F(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Pa().makeTensor(this.values,this.shape,this.dtype)}},Pa=null,pl=null,CS=null;function RS(e){Pa=e}function MS(e){pl=e}function FS(e){CS=e}var Le=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Rt(e),this.strides=so(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return pl.buffer(this.shape,this.dtype,e)}bufferSync(){return pl.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return io(this.shape,e,this.dtype==="complex64")}arraySync(){return io(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Pa().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>xc(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Pa().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>xc(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Pa().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Pa().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return pl.print(this,e)}clone(){return this.throwIfDisposed(),pl.clone(this)}toString(e=!1){let t=this.dataSync();return TS(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),pl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Pa().makeVariable(this,e,t,n)}};Object.defineProperty(Le,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Z(){return Mm("Tensor",()=>Le)}Z();var Xu=class extends Le{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!lr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Pa().disposeTensor(this),this.dataId=e.dataId,Pa().incRef(this,null)}dispose(){Pa().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Xu,Symbol.hasInstance,{value:e=>e instanceof Le&&e.assign!=null&&e.assign instanceof Function});var xa={};Fe(xa,{assertTypesMatch:()=>lb,getTensorsInContainer:()=>Wm,isTensorInList:()=>DS,makeTypesMatch:()=>kt});var zm;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(zm||(zm={}));var Om;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Om||(Om={}));var _m;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(_m||(_m={}));var Pm;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Pm||(Pm={}));var Lm;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Lm||(Lm={}));var $S={float32:Pm,int32:Om,bool:_m,complex64:Lm};function da(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return $S[e][t]}function vc(e){return da(e,"int32")}function kt(e,t){if(e.dtype===t.dtype)return[e,t];let n=da(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function lb(e,t){F(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function DS(e,t){return t.some(n=>n.id===e.id)}function Wm(e){let t=[],n=new Set;return ub(e,t,n),t}function ub(e,t,n){if(e==null)return;if(e instanceof Le){t.push(e);return}if(!zS(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),ub(s,t,n))}}function zS(e){return Array.isArray(e)||typeof e=="object"}function Bm(e){return e.kernelName!=null}var db=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Ku=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new db}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new wS(this.backendInstance),!0}setupRegisteredKernels(){dl(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){dl(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof ku)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return Ku.nextTensorId++}nextVariableId(){return Ku.nextVariableId++}clone(e){let t=z.runKernel(Rs,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return z.runKernel(As,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(Ac(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Bm(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Bm(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let y=Ac(h,this.backendName);F(y!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let A=this.backend.numDataIds();o=y.kernelFunc({inputs:m,attrs:f,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,A,g);let x=g.map(w=>{if(w.rank!=null)return w;let{dataId:b,shape:v,dtype:S}=w;return this.makeTensorFromDataId(b,v,S)});if(a){let w=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(w)}return x}}else{let{forwardFunc:h}=e,m=f=>{!a||(n=f.map(y=>this.keep(this.clone(y))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let y=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,y),y}}let{inputs:u,attrs:d}=e,p=Bm(e)?null:e.backwardsFunc,c;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(c=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(c),t=c.outputs)}),a&&this.addTapeNode(l,u,t,p,n,d),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:c.timeMs,extraInfo:c.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=Fm(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?(F(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&Cr(e[0])&&(r=e.map(o=>Uu(o)));let s=a.write(r,t,n),i=new Le(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=Zx(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r=new Le(t,n,e,this.nextTensorId());return this.trackTensor(r,a),r}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new Xu(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Nm(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Xu||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Nm(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=Fm(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((u,d)=>{if(u==null){let p=n[d],c=Pp(p.size,p.dtype);return this.makeTensor(c,p.shape,p.dtype)}return u}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Wm(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if(F(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));F(r instanceof Le,()=>"The result y returned by f() must be a tensor.");let s=SS(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?OS(r.shape):n,NS(i,s,l=>this.tidy(l),_S);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return F(Rr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{F(t.every(i=>i instanceof Le),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),F(n.value instanceof Le,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),F(Rr(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];F(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),F(u.every(p=>p instanceof Le),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let d={};return u.forEach((p,c)=>{d[c]=()=>p}),d};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=ju(),n=await this.backend.time(e);return n.wallMs=ju()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new db;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Ku.nextTensorId=0;Ku.nextVariableId=0;function OS(e){let t=Tm(Rt(e),"float32");return z.makeTensor(t,e,"float32")}function pb(){let e=nb();if(e._tfengine==null){let t=new tb(e);e._tfengine=new Ku(t)}return hS(e._tfengine.ENV),RS(()=>e._tfengine),e._tfengine}var z=pb();function _S(e,t){let n={a:e,b:t};return z.runKernel(Mr,n)}var Zu={};Fe(Zu,{isBrowser:()=>cb,isMobile:()=>LS});function PS(){return typeof navigator!="undefined"&&navigator!=null}function LS(e){if(e||PS()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function cb(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var ba=J();ba.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});ba.registerFlag("IS_BROWSER",()=>cb());ba.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");ba.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));ba.registerFlag("PROD",()=>!1);ba.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>ba.getBool("DEBUG"));ba.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);ba.registerFlag("IS_TEST",()=>!1);ba.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);ba.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function La(e,t){let n=e;if(an(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||an(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&J().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&hb(e,a,[]),a}function hb(e,t,n){if(n=n||[],!Array.isArray(e)&&!an(e)){F(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}F(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),F(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)hb(e[r],a,n.concat(r))}function fb(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function M(e,t,n,a="numeric"){if(e instanceof Le)return fb(a,e.dtype,t,n),e;let r=Op(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),fb(a,r,t,n),e==null||!an(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=La(e,r);!an(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?gc(e,r):cs(e,[],!0);return z.makeTensor(i,s,r)}function Yu(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>M(r,`${t}[${s}]`,n,a))}var mb="__op";function _(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+mb;let r=(...s)=>{z.startScope(n);try{let i=a(...s);return Cm(i)&&console.error("Cannot return a Promise inside of tidy."),z.endScope(i),i}catch(i){throw z.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function WS(e,t){let n=M(e,"real","complex"),a=M(t,"imag","complex");ln(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return z.runKernel(Vp,r)}var zr=_({complex_:WS});function Or(e,t,n,a){if(a==null&&(a=Op(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!an(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Em(t);let r=Rt(t),s=Rt(n);F(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==Rt(t.slice(i)):!0;F(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!an(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?gc(e,a):cs(e,[],!0),z.makeTensor(e,t,a)}function pa(e,t,n){let a=La(e,n);return Or(e,t,a,n)}var Vm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},wc=4;async function BS(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let d=new Promise(async p=>{let c=await l.bytes(),h=c.reduce((y,A)=>y+A.length,0)+wc*c.length,m=new Uint8Array(h),f=0;for(let y=0;y<c.length;y++){let A=c[y],g=new Uint8Array(new Uint32Array([A.length]).buffer);m.set(g,f),f+=wc,m.set(A,f),f+=A.length}p(m)});a.push(d)}else a.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(a);return{data:VS(s),specs:n}}function yb(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=Rt(l),d;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let c=Vm[p.dtype],h=e.slice(r,r+u*c),m=p.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){d=new Float32Array(m.length);for(let f=0;f<m.length;f++){let y=m[f];d[f]=y*p.scale+p.min}}else if(p.dtype==="float16")a===void 0&&(a=XS()),d=a(m);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(o==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);d=new Int32Array(m.length);for(let f=0;f<m.length;f++){let y=m[f];d[f]=Math.round(y*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*c}else if(o==="string"){let p=Rt(s.shape);d=[];for(let c=0;c<p;c++){let h=new Uint32Array(e.slice(r,r+wc))[0];r+=wc;let m=new Uint8Array(e.slice(r,r+h));d.push(m),r+=h}}else{let p=Vm[o],c=e.slice(r,r+u*p);if(o==="float32")d=new Float32Array(c);else if(o==="int32")d=new Int32Array(c);else if(o==="bool")d=new Uint8Array(c);else if(o==="complex64"){d=new Float32Array(c);let h=new Float32Array(d.length/2),m=new Float32Array(d.length/2);for(let A=0;A<h.length;A++)h[A]=d[A*2],m[A]=d[A*2+1];let f=pa(h,l,"float32"),y=pa(m,l,"float32");n[i]=zr(f,y),f.dispose(),y.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*p}o!=="complex64"&&(n[i]=pa(d,l,o))}return n}function VS(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var jm=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Ab(e){return jm?Buffer.byteLength(e):new Blob([e]).size}function jS(e){if(jm)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function US(e){if(jm){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function Um(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function gb(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function Ju(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Ab(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Ab(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function HS(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)==0;)r-=8388608,a<<=1;return a&=~8388608,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function GS(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function qS(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function XS(){let e=HS(),t=GS(),n=qS();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var Et=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Et.instance==null&&(Et.instance=new Et),Et.instance}static registerSaveRouter(e){Et.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Et.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Et.getHandlers(e,"save")}static getLoadHandlers(e,t){return Et.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?Et.getInstance().loadRouters:Et.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},KS=e=>Et.registerSaveRouter(e),ZS=e=>Et.registerLoadRouter(e),YS=e=>Et.getSaveHandlers(e),JS=(e,t)=>Et.getLoadHandlers(e,t),Hm="tensorflowjs",Gm=1,pi="models_store",_r="model_info_store";function xb(){if(!J().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function qm(e){let t=e.result;t.createObjectStore(pi,{keyPath:"modelPath"}),t.createObjectStore(_r,{keyPath:"modelPath"})}var ci=class{constructor(e){if(this.indexedDB=xb(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(Hm,Gm);r.onupgradeneeded=()=>qm(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(pi,"readonly"),o=i.objectStore(pi).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=Ju(t),o=s.transaction(_r,"readwrite"),l=o.objectStore(_r),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),d;u.onsuccess=()=>{d=s.transaction(pi,"readwrite");let p=d.objectStore(pi).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});p.onsuccess=()=>n({modelArtifactsInfo:i}),p.onerror=c=>{l=o.objectStore(_r);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),a(p.error)),h.onerror=m=>(s.close(),a(p.error))}},u.onerror=p=>(s.close(),a(u.error)),o.oncomplete=()=>{d==null?s.close():d.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};ci.URL_SCHEME="indexeddb://";var bb=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ci.URL_SCHEME)?QS(e.slice(ci.URL_SCHEME.length)):null;Et.registerSaveRouter(bb);Et.registerLoadRouter(bb);function QS(e){return new ci(e)}function eN(e){return e.startsWith(ci.URL_SCHEME)?e.slice(ci.URL_SCHEME.length):e}var tN=class{constructor(){this.indexedDB=xb()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Hm,Gm);n.onupgradeneeded=()=>qm(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(_r,"readonly"),s=r.objectStore(_r).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=eN(e),new Promise((t,n)=>{let a=this.indexedDB.open(Hm,Gm);a.onupgradeneeded=()=>qm(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(_r,"readwrite"),i=s.objectStore(_r),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),d=()=>{l=r.transaction(pi,"readwrite");let p=l.objectStore(pi).delete(e);p.onsuccess=()=>t(o.result.modelArtifactsInfo),p.onerror=c=>n(o.error)};u.onsuccess=d,u.onerror=p=>(d(),r.close(),n(o.error))}},o.onerror=u=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},ur="/",cl="tensorflowjs_models",vb="info",nN="model_topology",aN="weight_specs",rN="weight_data",sN="model_metadata";function wb(e){return{info:[cl,e,vb].join(ur),topology:[cl,e,nN].join(ur),weightSpecs:[cl,e,aN].join(ur),weightData:[cl,e,rN].join(ur),modelMetadata:[cl,e,sN].join(ur)}}function iN(e){let t=e.split(ur);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(ur)}function oN(e){return e.startsWith(hi.URL_SCHEME)?e.slice(hi.URL_SCHEME.length):e}var hi=class{constructor(e){if(!J().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=wb(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=Ju(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,jS(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=US(s),t}};hi.URL_SCHEME="localstorage://";var kb=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(hi.URL_SCHEME)?lN(e.slice(hi.URL_SCHEME.length)):null;Et.registerSaveRouter(kb);Et.registerLoadRouter(kb);function lN(e){return new hi(e)}var uN=class{constructor(){F(J().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),F(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=cl+ur,n=ur+vb;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=iN(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=oN(e);let t=wb(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},hl="://",Qn=class{constructor(){this.managers={}}static getInstance(){return Qn.instance==null&&(Qn.instance=new Qn),Qn.instance}static registerManager(e,t){F(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(hl)&&(e=e.slice(0,e.indexOf(hl))),F(e.length>0,()=>"scheme must not be an empty string.");let n=Qn.getInstance();F(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function kc(e){if(e.indexOf(hl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Qn.getSchemes().join(",")}`);return{scheme:e.split(hl)[0],path:e.split(hl)[1]}}async function Ib(e,t,n=!1){F(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=Et.getLoadHandlers(e);F(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),F(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=Et.getSaveHandlers(t);F(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),F(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=kc(e).scheme,l=kc(e).path,u=o===kc(e).scheme,d=await r.load();n&&u&&await Qn.getManager(o).removeModel(l);let p=await i.save(d);return n&&!u&&await Qn.getManager(o).removeModel(l),p.modelArtifactsInfo}async function dN(){let e=Qn.getSchemes(),t={};for(let n of e){let a=await Qn.getManager(n).listModels();for(let r in a){let s=n+hl+r;t[s]=a[r]}}return t}async function pN(e){let t=kc(e);return Qn.getManager(t.scheme).removeModel(t.path)}async function cN(e,t){return Ib(e,t,!1)}async function hN(e,t){return Ib(e,t,!0)}var fN=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(J().get("IS_BROWSER")){J().setPlatform("browser",new fN);try{Qn.registerManager(hi.URL_SCHEME,new uN)}catch(e){}try{Qn.registerManager(ci.URL_SCHEME,new tN)}catch(e){}}var mN={importFetch:()=>wI()},Xm,yN=class{constructor(){this.util=ao("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return J().global.fetch!=null?J().global.fetch(e,t):(Xm==null&&(Xm=mN.importFetch()),Xm(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};J().get("IS_NODE")&&J().setPlatform("node",new yN);function We(e,t="float32",n){return t=t||"float32",Em(e),new Pt(e,t,n)}function AN(e,t){let n=M(e,"x","cast");if(!Kx(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return z.runKernel(As,a,r)}var me=_({cast_:AN});function gN(e){let t={x:M(e,"x","clone","string_or_numeric")};return z.runKernel(Rs,t)}var Wa=_({clone_:gN});function Sb(e,t=!1){console.log(e.toString(t))}pb();var xN={buffer:We,cast:me,clone:Wa,print:Sb};MS(xN);var In={};Fe(In,{browserFiles:()=>NN,browserHTTPRequest:()=>MN,concatenateArrayBuffers:()=>Um,copyModel:()=>cN,decodeWeights:()=>yb,encodeWeights:()=>BS,fromMemory:()=>$N,getLoadHandlers:()=>JS,getModelArtifactsInfoForJSON:()=>Ju,getSaveHandlers:()=>YS,http:()=>Ym,isHTTPScheme:()=>Zm,listModels:()=>dN,loadWeights:()=>TN,moveModel:()=>hN,registerLoadRouter:()=>ZS,registerSaveRouter:()=>KS,removeModel:()=>pN,weightsLoaderFactory:()=>Cb,withSaveHandler:()=>DN});var bN="model",vN=".json",wN=".weights.bin";function Nb(e){return new Promise(t=>setTimeout(t)).then(e)}var fl=class{constructor(e){if(!J().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(fl.URL_SCHEME)&&(e=e.slice(fl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=bN),this.modelTopologyFileName=e+vN,this.weightDataFileName=e+wN}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer);let r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=r,await Nb(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await Nb(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Ju(e)}}}};fl.URL_SCHEME="downloads://";var kN=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){a(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){a(new Error(`weightManifest field is missing from file ${e.name}`));return}let u;try{u=this.checkManifestAndWeightFiles(l,t)}catch(h){a(h);return}let d=[],p=[],c=[];l.forEach(h=>{h.paths.forEach(m=>{p.push(m),c.push(null)}),d.push(...h.weights)}),l.forEach(h=>{h.paths.forEach(m=>{let f=new FileReader;f.onload=y=>{let A=y.target.result,g=p.indexOf(m);if(c[g]=A,c.indexOf(null)===-1){let x={modelTopology:o,weightSpecs:d,weightData:Um(c),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(x.signature=i.signature),i.userDefinedMetadata!=null&&(x.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(x.modelInitializer=i.modelInitializer),n(x)}},f.onerror=y=>a(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(u[m])})})},r.onerror=s=>a(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),r.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],a=t.map(s=>gb(s.name)),r={};for(let s of e)s.paths.forEach(i=>{let o=gb(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),a.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);r[i]=t[a.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return r}},IN=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(fl.URL_SCHEME)?SN(e.slice(fl.URL_SCHEME.length)):null;Et.registerSaveRouter(IN);function SN(e="model"){return new fl(e)}function NN(e){return new kN(e)}function Tb(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(u=>{let d=n+ ++r/e.length*(a-n);return t(d),u}),l);function i(l){F(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){F(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),F(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),F(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function Eb(e,t){t==null&&(t={});let n=t.fetchFunc==null?J().platform.fetch:t.fetchFunc,a=e.map(u=>n(u,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await Tb(a,t.onProgress,r,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await Tb(i,t.onProgress,o,l)}async function TN(e,t="",n,a){return Cb(r=>Eb(r,{requestInit:a}))(e,t,n)}function Cb(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(y=>{let A="quantization"in y?y.quantization.dtype:y.dtype,g=Vm[A]*Rt(y.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:y,groupOffset:f,sizeBytes:g})};a!=null?a.forEach((w,b)=>{w===y.name&&(x(),i[b]=!0)}):x(),o.push(y.name),f+=g})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let d=await e(u),p={},c=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let x=0;x<m;x++)f+=d[c+x].byteLength;let y=new ArrayBuffer(f),A=new Uint8Array(y),g=0;for(let x=0;x<m;x++){let w=new Uint8Array(d[c+x]);A.set(w,g),g+=w.byteLength}s[h].forEach(x=>{let w=y.slice(x.groupOffset,x.groupOffset+x.sizeBytes),b=yb(w,[x.manifestEntry]);for(let v in b)p[v]=b[v]}),c+=m}),p}}var EN="application/octet-stream",CN="application/json",Km=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(F(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=J().platform.fetch,F(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&F(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(a)],{type:CN}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:EN}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Ju(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(h){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,a=t.weightsManifest,r=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let u,d;a!=null&&([u,d]=await this.loadWeights(a));let p={modelTopology:n,weightSpecs:u,weightData:d,generatedBy:r,convertedBy:s,format:i};o!=null&&(p.signature=o),l!=null&&(p.userDefinedMetadata=l);let c=t.modelInitializer;return c&&(p.modelInitializer=c),p}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=RN(t),r=this.weightPathPrefix||n,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let d of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(d)):i.push(r+d+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await Eb(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Um(l)]}};Km.URL_SCHEME_REGEX=/^https?:\/\//;function RN(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function Zm(e){return e.match(Km.URL_SCHEME_REGEX)!=null}var Rb=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>Zm(a)):n=Zm(e),n)return Ym(e,t)}return null};Et.registerSaveRouter(Rb);Et.registerLoadRouter(Rb);function Ym(e,t){return new Km(e,t)}function MN(e,t){return Ym(e,t)}var Jm=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},FN=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function $N(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Jm(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Jm({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Jm({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function DN(e){return new FN(e)}var Mb={};Fe(Mb,{confusionMatrix:()=>LN});function zN(e,t,n=!1,a=!1){let r=M(e,"a","matMul"),s=M(t,"b","matMul");[r,s]=kt(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return z.runKernel(ys,i,o)}var Be=_({matMul_:zN});function ON(e,t,n=1,a=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let r={indices:M(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:a};return z.runKernel(Bs,r,s)}var ml=_({oneHot_:ON});function _N(e,t){let n=M(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{F(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let a={x:n},r={perm:t};return z.runKernel(ii,a,r)}var Ye=_({transpose_:_N});function PN(e,t,n){let a=M(e,"labels","confusionMatrix"),r=M(t,"predictions","confusionMatrix");F(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),F(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),F(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),F(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),F(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=ml(me(a,"int32"),n),i=ml(me(r,"int32"),n),o=Ye(s),l=Be(o,i);return me(l,"int32")}var LN=_({confusionMatrix_:PN}),fi={};Fe(fi,{fromPixels:()=>GN,fromPixelsAsync:()=>UN,toPixels:()=>HN});function Ic(e,t,n){if(ps(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=La(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Or(e,t,a,n)}var yl;function Fb(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let c=2;if(r&&e.readyState<c)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Ac(yc,z.backendName)!=null){let c={pixels:e},h={numChannels:t};return z.runKernel(yc,c,h)}let[l,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;i?d=e.getContext("2d").getImageData(0,0,l,u).data:a||n?d=e.data:(s||r||o)&&(yl==null&&(yl=document.createElement("canvas").getContext("2d")),yl.canvas.width=l,yl.canvas.height=u,yl.drawImage(e,0,0,l,u),d=yl.getImageData(0,0,l,u).data);let p;if(t===4)p=new Int32Array(d);else{let c=l*u;p=new Int32Array(c*t);for(let h=0;h<c;h++)for(let m=0;m<t;++m)p[h*t+m]=d[h*4+m]}return Ic(p,[u,l,t],"int32")}function WN(e){return e!=null&&e.data instanceof Uint8Array}function BN(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function VN(e){return e!=null&&e.width!==0&&e.height!==0}function jN(e){return BN()&&!(e instanceof ImageBitmap)&&VN(e)&&!WN(e)}async function UN(e,t=3){let n=null;if(J().getBool("WRAP_TO_IMAGEBITMAP")&&jN(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return Fb(n,t)}async function HN(e,t){let n=M(e,"img","toPixels");if(!(e instanceof Le)){let u=n;n=me(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let u=0;u<a*r;++u){let d=[0,0,0,255];for(let c=0;c<s;c++){let h=i[u*s+c];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(d[0]=h*o,d[1]=h*o,d[2]=h*o):d[c]=h*o}let p=u*4;l[p+0]=Math.round(d[0]),l[p+1]=Math.round(d[1]),l[p+2]=Math.round(d[2]),l[p+3]=Math.round(d[3])}if(t!=null){t.width=r,t.height=a;let u=t.getContext("2d"),d=new ImageData(l,r,a);u.putImageData(d,0,0)}return n!==e&&n.dispose(),l}var GN=_({fromPixels_:Fb}),Qm={};Fe(Qm,{prepareAndValidate:()=>$b});function $b(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(Rt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let p=0;p<r.length-1;++p)i*=r[p];let o=e.shape,l=r.slice();l.pop();let u=1;for(let p=s;p<n;++p)u*=o[p],l.push(o[p]);let d=[...so(e.shape).map(p=>p/u),1].slice(0,s);return[l,i,u,d]}var ey={};Fe(ey,{calculateShapes:()=>Db,validateInput:()=>ny,validateUpdateShape:()=>ty});function ty(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function ny(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}ty(n,t,e)}function Db(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let p=r;p<s;++p)i*=n[p];let o=r<1?1:r,l=Rt(t.shape)/o,u=[...so(n.slice(0,r)),1],d=Rt(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:u,outputSize:d}}var un={};Fe(un,{assertParamsValid:()=>qN,computeFlatOffset:()=>KN,computeOutShape:()=>zb,getNormalizedAxes:()=>Lb,isSliceContinous:()=>XN,maskToAxes:()=>Sc,parseSliceParams:()=>Hb,sliceInfo:()=>ZN,startForAxis:()=>jb,startIndicesWithElidedDims:()=>Wb,stopForAxis:()=>Ub,stopIndicesWithElidedDims:()=>Bb,stridesForAxis:()=>Vb,stridesWithElidedDims:()=>Ob});function qN(e,t,n){let a=e.shape.length;F(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),F(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)F(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function Sc(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function zb(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function Ob(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function _b(e,t,n){return n<=e?n:n-(t-1)}function Pb(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function Lb(e,t,n,a,r,s,i,o,l){let u=e.length,d=new Array(u),p=new Array(u),c=new Array(u);if(t.length&&n>0){let h=t[0],m=n+1;d=Wb(i,h,m,a,e),p=Bb(o,h,m,r,e),c=Ob(s,h,m,e)}else for(let h=0;h<u;h++)d[h]=jb(i,a,s,e,h,l),p[h]=Ub(o,r,s,e,h,l),c[h]=Vb(s,h,l);return{begin:d,end:p,strides:c}}function Wb(e,t,n,a,r){let s=[...r],i=Pb(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=_b(t,n,o),u=a[l];e&1<<l&&(u=0),s[o]=u}return s}function Bb(e,t,n,a,r){let s=[...r],i=Pb(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=_b(t,n,o),u=a[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=Iu(0,s[o],r[o])}return s}function Vb(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function jb(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=Iu(0,i,l-1),i}function Ub(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=Iu(0,i,l):i=Iu(-1,i,l-1),i}function XN(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function KN(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function Hb(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{F(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(F(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function ZN(e,t,n,a,r,s,i,o,l){let u=t.slice(),d=n.slice(),p=a;a==null&&(p=new Array(u.length));let c=Sc(i);if(c.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let h=e.length-u.length,m=Sc(o),f=e.slice();m.forEach(v=>{u[v]=0,d[v]=1,f.splice(v,0,1)});let{begin:y,end:A,strides:g}=Lb(f,c,h,u,d,p,r,s,i);u=y,d=A,p=g;let x=Sc(l);x.forEach(v=>{d[v]=u[v]+1,p[v]=1});let w=zb(u,d,p),b=w.filter((v,S)=>x.indexOf(S)===-1);return{nonStrided:p.every(v=>v===1),$begin:u,$end:d,$strides:p,size:w,newShape:f,outShape:b}}var ae={};Fe(ae,{Serializable:()=>Gb,SerializationMap:()=>mi,registerClass:()=>Pr});var Gb=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},mi=class{constructor(){this.classNameMap={}}static getMap(){return mi.instance==null&&(mi.instance=new mi),mi.instance}static register(e){mi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Pr(e){F(e.className!=null,()=>"Class being registered does not have the static className property defined."),F(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),F(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),mi.register(e)}var qb={};Fe(qb,{TEST_EPSILON_FLOAT16:()=>Xb,encodeStrings:()=>Kb,expectArrayBuffersEqual:()=>aT,expectArraysClose:()=>JN,expectArraysEqual:()=>eT,expectNumbersClose:()=>tT,expectPromiseToFail:()=>QN,expectValuesInRange:()=>nT,testEpsilon:()=>ay});var YN=.001,Xb=.1;function JN(e,t,n){return n==null&&(n=ay()),ry(e,t,(a,r)=>sy(a,r,n))}function ay(){return z.backend.floatPrecision()===32?YN:Xb}function ry(e,t,n){let a=!0;if((an(e)||an(t))&&(a=!1),an(e)&&an(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=La(e),o=La(t);if(!lr(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=an(e)?e:cs(e),s=an(t)?t:cs(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`)}}function QN(e,t){e().then(()=>t.fail(),()=>t())}function eT(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Cr(e)||Cr(e[0])||Cr(t)||Cr(t[0])?ry(e,n,(a,r)=>a==r):ry(e,t,(a,r)=>sy(a,r,0))}function tT(e,t,n){if(n==null&&(n=ay()),!sy(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function sy(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function nT(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function aT(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function Kb(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?Kb(n):e[t]=Uu(n)}return e}var rT="3.6.0";function sT(){J().set("PROD",!0)}function iT(){J().set("DEBUG",!0)}function oT(){J().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function iy(e){J().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}FS(iy);function lT(){z.disposeVariables()}function dr(){return z}function Nc(){return z.memory()}function uT(e){return z.profile(e)}function B(e,t){return z.tidy(e,t)}function Ne(e){Wm(e).forEach(t=>t.dispose())}function Gt(e){return z.keep(e)}function dT(e){return z.time(e)}function pT(e){return z.setBackend(e)}function cT(){return z.ready()}function hT(){return z.backendName}function fT(e){z.removeBackend(e)}function oy(e){return z.findBackend(e)}function mT(e){return z.findBackendFactory(e)}function Al(e,t,n=1){return z.registerBackend(e,t,n)}function Zb(){return z.backend}function yT(e,t){J().setPlatform(e,t)}function AT(e,t){let n=M(e,"a","add"),a=M(t,"b","add");[n,a]=kt(n,a);let r={a:n,b:a};return z.runKernel(Mr,r)}var se=_({add_:AT});function gT(e,t){let n=M(e,"a","floorDiv"),a=M(t,"b","floorDiv");[n,a]=kt(n,a);let r={a:n,b:a};return z.runKernel(Ts,r)}var Tc=_({floorDiv_:gT});function xT(e,t){let n=M(e,"a","div"),a=M(t,"b","div");if([n,a]=kt(n,a),n.dtype==="int32"&&a.dtype==="int32")return Tc(n,a);let r={a:n,b:a},s={};return z.runKernel(Is,r,s)}var fe=_({div_:xT});function bT(e,t){let n=M(e,"a","mul"),a=M(t,"b","mul");[n,a]=kt(n,a);let r={a:n,b:a};return z.runKernel(Ws,r)}var L=_({mul_:bT});function vT(e){let t=M(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return z.runKernel(Cu,n)}else{let n={x:t};return z.runKernel(oo,n)}}var Lt=_({abs_:vT});function wT(e){let t={x:M(e,"x","acos")};return z.runKernel(lo,t)}var ly=_({acos_:wT});function kT(e){let t={x:M(e,"x","acosh")};return z.runKernel(uo,t)}var uy=_({acosh_:kT});function IT(e){F(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),F(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>M(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!lr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return z.runKernel(hs,a)}var Ec=_({addN_:IT});function ST(e,t=null,n=!1){let a={x:M(e,"x","all","bool")},r={axis:t,keepDims:n};return z.runKernel(po,a,r)}var Cc=_({all_:ST});function NT(e,t=null,n=!1){let a={x:M(e,"x","any","bool")},r={axis:t,keepDims:n};return z.runKernel(co,a,r)}var Qu=_({any_:NT});function TT(e,t=0){let n={x:M(e,"x","argMax")},a={axis:t};return z.runKernel(fs,n,a)}var yi=_({argMax_:TT});function ET(e,t=0){let n={x:M(e,"x","argMin")},a={axis:t};return z.runKernel(Nu,n,a)}var dy=_({argMin_:ET});function CT(e){let t={x:M(e,"x","asin")};return z.runKernel(ho,t)}var py=_({asin_:CT});function RT(e){let t={x:M(e,"x","asinh")};return z.runKernel(fo,t)}var cy=_({asinh_:RT});function MT(e){let t={x:M(e,"x","atan")};return z.runKernel(mo,t)}var hy=_({atan_:MT});function FT(e,t){let n=M(e,"a","atan2"),a=M(t,"b","atan2");[n,a]=kt(n,a);let r={a:n,b:a};return z.runKernel(Ao,r)}var fy=_({atan2_:FT});function $T(e){let t={x:M(e,"x","atanh")};return z.runKernel(yo,t)}var my=_({atanh_:$T});function DT(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=Qb(r);return ed(e,o,n,s,a,null,null,l)}function Yb(e,t,n,a,r,s,i="channelsLast"){let[o,l]=Rc(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return ed(e,u,n,a,r,s,!1,i)}function zT(e,t,n,a,r,s,i="NDHWC"){let[o,l,u]=Ay(t),d,p;if(i==="NDHWC")p="channelsLast",d=[o,l,u,e[4],e[4]];else if(i==="NCDHW")p="channelsFirst",d=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Jb(e,d,n,a,r,!1,p,s)}function ed(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,u,d,p]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,d,p]=e;else if(o==="channelsFirst")[l,p,u,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[c,h,,m]=t,[f,y]=Rc(n),[A,g]=Rc(a),x=gl(c,A),w=gl(h,g),{padInfo:b,outHeight:v,outWidth:S}=PT(r,u,d,f,y,x,w,s,o),T=i?m*p:m,C;return o==="channelsFirst"?C=[l,T,v,S]:o==="channelsLast"&&(C=[l,v,S,T]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:d,inChannels:p,outHeight:v,outWidth:S,outChannels:T,padInfo:b,strideHeight:f,strideWidth:y,filterHeight:c,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:w,dilationHeight:A,dilationWidth:g,inShape:e,outShape:C,filterShape:t}}function Jb(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,u,d,p,c]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,d,p,c]=e;else if(i==="channelsFirst")[l,c,u,d,p]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,y]=t,[A,g,x]=Ay(n),[w,b,v]=Ay(a),S=gl(h,w),T=gl(m,b),C=gl(f,v),{padInfo:$,outDepth:O,outHeight:P,outWidth:j}=LT(r,u,d,p,A,g,x,S,T,C,o),D=s?y*c:y,U;return i==="channelsFirst"?U=[l,D,O,P,j]:i==="channelsLast"&&(U=[l,O,P,j,D]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:d,inWidth:p,inChannels:c,outDepth:O,outHeight:P,outWidth:j,outChannels:D,padInfo:$,strideDepth:A,strideHeight:g,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:S,effectiveFilterHeight:T,effectiveFilterWidth:C,dilationDepth:w,dilationHeight:b,dilationWidth:v,inShape:e,outShape:U,filterShape:t}}function OT(e,t,n,a,r){a==null&&(a=yy(e,t,n));let s=e[0],i=e[1],o=Ai((s-t+2*a)/n+1,r),l=Ai((i-t+2*a)/n+1,r);return[o,l]}function _T(e,t,n,a,r,s){r==null&&(r=yy(e,t,a));let i=e[0],o=e[1],l=e[2],u=Ai((i-t+2*r)/a+1,s),d=Ai((o-t+2*r)/a+1,s),p=Ai((l-t+2*r)/a+1,s);return[u,d,p,n]}function yy(e,t,n,a=1){let r=gl(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function Rc(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Ay(e){return typeof e=="number"?[e,e,e]:e}function gl(e,t){return t<=1?e:e+(e-1)*(t-1)}function PT(e,t,n,a,r,s,i,o,l){let u,d,p;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let c=OT([t,n],s,a,e,o);d=c[0],p=c[1]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/r);let c=Math.max(0,(d-1)*a+s-t),h=Math.max(0,(p-1)*r+i-n),m=Math.floor(c/2),f=c-m,y=Math.floor(h/2),A=h-y;u={top:m,bottom:f,left:y,right:A,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},d=Math.ceil((t-s+1)/a),p=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let c=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:c,bottom:h,left:m,right:f,type:c===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},d=Ai((t-s+c+h)/a+1,o),p=Ai((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:d,outWidth:p}}function LT(e,t,n,a,r,s,i,o,l,u,d){let p,c,h,m;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=_T([t,n,a,1],o,1,r,e,d);c=f[0],h=f[1],m=f[2]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(c-1)*r+o-t,y=(h-1)*s+l-n,A=(m-1)*i+u-a,g=Math.floor(f/2),x=f-g,w=Math.floor(y/2),b=y-w,v=Math.floor(A/2),S=A-v;p={top:w,bottom:b,left:v,right:S,front:g,back:x,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},c=Math.ceil((t-o+1)/r),h=Math.ceil((n-l+1)/s),m=Math.ceil((a-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:c,outHeight:h,outWidth:m}}function Ai(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Lr(e){let[t,n,a]=Rc(e);return t===1&&n===1&&a===1}function Ba(e,t){return Lr(e)||Lr(t)}function Qb(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function WT(e,t){let n={x:M(e,"x","reshape","string_or_numeric")},a={shape:t};return z.runKernel(Xo,n,a)}var H=_({reshape_:WT});function BT(e,t,n,a,r){let s=M(e,"x","avgPool","float32"),i=1;F(Ba(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),r!=null&&F(Ht(a),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=z.runKernel(ms,u,d);return p=me(p,s.dtype),l?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var td=_({avgPool_:BT});function VT(e,t,n,a,r,s="NDHWC"){let i=M(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&F(Ht(a),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=z.runKernel(Tu,u,d);return p=me(p,o.dtype),l?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var gy=_({avgPool3d_:VT});function jT(e,t=0){F(e.length>=1,()=>"Pass at least one tensor to concat");let n=Yu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),n.length===1)return Wa(n[0]);let a=n,r={axis:t};return z.runKernel(go,a,r)}var lt=_({concat_:jT});function UT(e){let t={x:M(e,"x","sigmoid")};return z.runKernel(Js,t)}var Sn=_({sigmoid_:UT});function HT(e,t,n){let a=M(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return z.runKernel(Jo,r,s)}var Re=_({slice_:HT});function GT(e){let t={x:M(e,"x","tanh")};return z.runKernel(si,t)}var gi=_({tanh_:GT});function qT(e,t,n,a,r,s){let i=M(e,"forgetBias","basicLSTMCell"),o=M(t,"lstmKernel","basicLSTMCell"),l=M(n,"lstmBias","basicLSTMCell"),u=M(a,"data","basicLSTMCell"),d=M(r,"c","basicLSTMCell"),p=M(s,"h","basicLSTMCell"),c=lt([u,p],1),h=Be(c,o),m=se(h,l),f=m.shape[0],y=m.shape[1]/4,A=[f,y],g=Re(m,[0,0],A),x=Re(m,[0,y],A),w=Re(m,[0,y*2],A),b=Re(m,[0,y*3],A),v=se(L(Sn(g),gi(x)),L(d,Sn(se(i,w)))),S=L(gi(v),Sn(b));return[v,S]}var XT=_({basicLSTMCell_:qT});function KT(e,t,n){let a=M(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);F(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),F(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),F(a.shape[0]%r==0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return z.runKernel(Eu,s,i)}var nd=_({batchToSpaceND_:KT});function ZT(e){let t;return e.rank===0||e.rank===1?t=H(e,[1,1,1,e.size]):e.rank===2?t=H(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function YT(e,t,n,a,r,s){s==null&&(s=.001);let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),u;r!=null&&(u=M(r,"scale","batchNorm"));let d;a!=null&&(d=M(a,"offset","batchNorm")),F(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),F(d==null||o.rank===d.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),F(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:ZT(i),scale:u,offset:d,mean:o,variance:l},c={varianceEpsilon:s},h=z.runKernel(Es,p,c);return H(h,i.shape)}var xi=_({batchNorm_:YT});function JT(e,t,n,a,r,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),u;r!=null&&(u=M(r,"scale","batchNorm"));let d;return a!=null&&(d=M(a,"offset","batchNorm")),F(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),F(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),F(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),d!=null&&F(d.rank===2||d.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${d.rank}.`),xi(i,o,l,d,u,s)}var e3=_({batchNorm2d_:JT});function QT(e,t,n,a,r,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),u;r!=null&&(u=M(r,"scale","batchNorm"));let d;return a!=null&&(d=M(a,"offset","batchNorm")),F(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),F(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),F(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),d!=null&&F(d.rank===3||d.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${d.rank}.`),xi(i,o,l,d,u,s)}var t3=_({batchNorm3d_:QT});function eE(e,t,n,a,r,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),u;r!=null&&(u=M(r,"scale","batchNorm"));let d;return a!=null&&(d=M(a,"offset","batchNorm")),F(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),F(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),F(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),d!=null&&F(d.rank===4||d.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${d.rank}.`),xi(i,o,l,d,u,s)}var n3=_({batchNorm4d_:eE});function tE(e,t,n){let a=M(e,"x","bincount"),r=M(t,"weights","bincount");F(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return z.runKernel(Bp,s,i)}var xy=_({bincount_:tE});function nE(e,t){let n=M(e,"broadcastTo","x"),a=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=H(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return Wa(n);let i={x:n},o={reps:s};return z.runKernel($r,i,o)}var xl=_({broadcastTo_:nE});function aE(e){let t={x:M(e,"x","ceil")};return z.runKernel(gs,t)}var by=_({ceil_:aE});function rE(e,t,n){let a=M(e,"x","clipByValue");F(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:a},s={clipValueMin:t,clipValueMax:n};return z.runKernel(Fr,r,s)}var Nn=_({clipByValue_:rE});function sE(e){return lt(e,0)}var a3=_({concat1d_:sE});function iE(e,t){return lt(e,t)}var bl=_({concat2d_:iE});function oE(e,t){return lt(e,t)}var r3=_({concat3d_:oE});function lE(e,t){return lt(e,t)}var s3=_({concat4d_:lE});function uE(e,t,n,a,r="NHWC",s=[1,1],i){let o=M(e,"x","conv2d"),l=M(t,"filter","conv2d"),u=o,d=!1;o.rank===3&&(d=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&F(Ht(a),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p=r==="NHWC"?u.shape[3]:u.shape[1];F(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),F(Ba(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=z.runKernel(xs,c,h);return d?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var pr=_({conv2d_:uE});function dE(e,t,n,a,r="NWC",s=1,i){let o=M(e,"x","conv1d"),l=M(t,"filter","conv1d"),u=o,d=!1;o.rank===2&&(d=!0,u=H(o,[1,o.shape[0],o.shape[1]])),F(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),F(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&F(Ht(a),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),F(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),F(Ba(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),F(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=H(l,[1,l.shape[0],l.shape[1],l.shape[2]]),c=H(u,[u.shape[0],1,u.shape[1],u.shape[2]]),h=pr(c,p,[1,n],a,"NHWC",[1,s],i);return d?H(h,[h.shape[2],h.shape[3]]):H(h,[h.shape[0],h.shape[2],h.shape[3]])}var Mc=_({conv1d_:dE});function pE(e,t,n,a,r,s="NHWC",i){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),F(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),F(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),F(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let d=s==="NHWC"?o[3]:o[1],p=s==="NHWC"?l.shape[3]:l.shape[1];F(d===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${d}) must match input depth for filter ${n.shape[2]}.`),F(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),i!=null&&F(Ht(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let c={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=z.runKernel(bs,c,h);return u?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var vy=_({conv2DBackpropInput_:pE});function cE(e,t,n,a,r,s){let i=M(e,"x","conv2dTranspose"),o=M(t,"filter","conv2dTranspose");return vy(n,i,o,a,r,"NHWC",s)}var Fc=_({conv2dTranspose_:cE});function hE(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=M(e,"x","conv3d"),o=M(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),F(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),F(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),F(Ba(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let d={x:l,filter:o},p={strides:n,pad:a,dataFormat:r,dilations:s},c=z.runKernel(Ru,d,p);return u?H(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var wy=_({conv3d_:hE});function fE(e,t,n,a,r){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];F(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),F(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),F(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),F(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),F(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let d={dy:i,filter:n},p={pad:r,strides:a,inputShape:s},c=z.runKernel(Hp,d,p);return o?H(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var i3=_({conv3DBackpropInput_:fE});function mE(e,t,n,a,r){let s=M(e,"x","conv3dTranspose"),i=M(t,"filter","conv3dTranspose");return i3(n,s,i,a,r)}var o3=_({conv3dTranspose_:mE});function yE(e){let t={x:M(e,"x","cos")};return z.runKernel(vs,t)}var ad=_({cos_:yE});function AE(e){let t={x:M(e,"x","cosh")};return z.runKernel(xo,t)}var $c=_({cosh_:AE});function gE(e,t=0,n=!1,a=!1){let r={x:M(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return z.runKernel(ws,r,s)}var Dc=_({cumsum_:gE});function xE(e,t,n,a=!1){let r=M(e,"x","denseBincount"),s=M(t,"weights","denseBincount");F(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),F(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return z.runKernel(Gp,i,o)}var l3=_({denseBincount_:xE});function bE(e,t,n="NHWC"){let a=M(e,"x","depthToSpace"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];F(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),F(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),F(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return z.runKernel(vo,o,l)}var ky=_({depthToSpace_:bE});function vE(e,t,n,a,r="NHWC",s=[1,1],i){let o=M(e,"x","depthwiseConv2d"),l=M(t,"filter","depthwiseConv2d"),u=o,d=!1;o.rank===3&&(d=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&F(Ht(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p={x:u,filter:l},c={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},h=z.runKernel(ks,p,c);return d?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var vl=_({depthwiseConv2d_:vE});function wE(e){let t={x:M(e,"x","diag")};return z.runKernel(Kp,t)}var kE=_({diag_:wE});function IE(e,t,n,a,r=[1,1],s="NHWC"){let i=M(e,"x","dilation2d"),o=M(t,"filter","dilation2d");F(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),F(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),F(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let d={x:l,filter:o},p={strides:n,pad:a,dilations:r},c=z.runKernel(Mu,d,p);return u?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Iy=_({dilation2d_:IE});function SE(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function Wt(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function ct(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r<a;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function NE(e,t){let n=M(e,"a","equal"),a=M(t,"b","equal");[n,a]=kt(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return z.runKernel(Io,r)}var Wr=_({equal_:NE});function TE(e,t,n){let a=M(t,"a","where"),r=M(n,"b","where"),s=M(e,"condition","where","bool"),i=ct(ct(s.shape,a.shape),r.shape),o=xl(s,i),l=xl(a,i),u=xl(r,i),d={condition:o,t:l,e:u};return z.runKernel(Zo,d)}var rn=_({where_:TE});function EE(e){let t={x:M(e,"x","zerosLike")};return z.runKernel(ol,t)}var He=_({zerosLike_:EE});function CE(e,t){let n=M(e,"a","div"),a=M(t,"b","div");[n,a]=kt(n,a);let r=fe(n,a),s=He(r),i=Wr(a,s);return rn(i,s,r)}var Sy=_({divNoNan_:CE});function RE(e,t){let n=M(e,"t1","dot"),a=M(t,"t2","dot");F((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if(F(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=H(n,[1,-1]),o=H(a,[-1,1]),l=Be(i,o);return H(l,[])}else if(n.rank===1&&a.rank===2){let i=H(n,[1,-1]),o=H(a,[a.shape[0],a.shape[1]]),l=Be(i,o);return H(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=H(a,[-1,1]),o=Be(n,i);return H(o,[o.size])}else{let i=H(a,[a.shape[0],a.shape[1]]);return Be(n,i)}}var u3=_({dot_:RE});function ME(e,...t){let n=t.map((r,s)=>M(r,`tensors${s}`,"einsum")),a={equation:e};return z.runKernel(Jp,n,a)}var d3=_({einsum_:ME});function FE(e){let t={x:M(e,"x","elu")};return z.runKernel(wo,t)}var wl=_({elu_:FE});function $E(e){let t=M(e,"x","erf");F(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=me(t,"float32"));let n={x:t};return z.runKernel(ko,n)}var Ny=_({erf_:$E});function DE(e){let t={x:M(e,"x","exp")};return z.runKernel(Ss,t)}var ea=_({exp_:DE});function zE(e,t=0){let n=M(e,"x","expandDims","string_or_numeric");F(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return z.runKernel(So,a,r)}var dn=_({expandDims_:zE});function OE(e){let t={x:M(e,"x","expm1")};return z.runKernel(No,t)}var Ty=_({expm1_:OE});function _E(e,t){let n=M(e,"x","tile","string_or_numeric");F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return z.runKernel($r,a,r)}var Br=_({tile_:_E});function PE(e,t,n,a="float32"){t==null&&(t=e);let r=We([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=H(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Br(dn(i,0),[n[0],1,1]);if(n.length===2)return Br(dn(dn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Br(dn(dn(dn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var Ey=_({eye_:PE});function kl(e,t,n){let a={shape:e,value:t,dtype:n};return z.runKernel(Fu,{},a)}function LE(e){let t={x:M(e,"x","floor")};return z.runKernel(Ns,t)}var Il=_({floor_:LE});function WE(e,t,n=0,a=0){let r=M(e,"x","gather"),s=M(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return z.runKernel(Eo,i,o)}var bi=_({gather_:WE});function BE(e,t){let n=M(e,"a","greater"),a=M(t,"b","greater");[n,a]=kt(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return z.runKernel(Ro,r)}var On=_({greater_:BE});function VE(e,t){let n=M(e,"a","greaterEqual"),a=M(t,"b","greaterEqual");[n,a]=kt(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return z.runKernel(Cs,r)}var Vr=_({greaterEqual_:VE});function jE(e){let t={input:M(e,"input","imag")};return z.runKernel(nc,t)}var zc=_({imag_:jE});function UE(e){let t={x:M(e,"x","isFinite")};return z.runKernel(Mo,t)}var p3=_({isFinite_:UE});function HE(e){let t={x:M(e,"x","isInf")};return z.runKernel(Fo,t)}var c3=_({isInf_:HE});function GE(e){let t={x:M(e,"x","isNaN")};return z.runKernel($o,t)}var Cy=_({isNaN_:GE});function qE(e,t=.2){let n={x:M(e,"x","leakyRelu")},a={alpha:t};return z.runKernel(Ms,n,a)}var rd=_({leakyRelu_:qE});function XE(e,t){let n=M(e,"a","less"),a=M(t,"b","less");[n,a]=kt(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return z.runKernel(Do,r)}var Oc=_({less_:XE});function KE(e,t){let n=M(e,"a","lessEqual"),a=M(t,"b","lessEqual");[n,a]=kt(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return z.runKernel(zo,r)}var jr=_({lessEqual_:KE});function h3(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return z.runKernel(ac,{},a)}function ZE(e,t=5,n=1,a=1,r=.5){let s=M(e,"x","localResponseNormalization");F(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),F(Ht(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=H(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:a,beta:r},d=z.runKernel(zu,l,u);return o?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Ry=_({localResponseNormalization_:ZE});function YE(e){let t={x:M(e,"x","log")};return z.runKernel(Fs,t)}var _n=_({log_:YE});function JE(e){let t={x:M(e,"x","log1p")};return z.runKernel(Oo,t)}var _c=_({log1p_:JE});function QE(e){return F(Rr(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=M(t,"x","tf.grad","string_or_numeric"),r=n!=null?M(n,"dy","tf.grad"):null;return z.tidy(()=>{let{value:s,grads:i}=z.gradients(()=>e(a),[a],r);return r!=null&&ln(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Pc(i),i[0]})}}function eC(e){return F(Rr(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{F(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=Yu(t,"args","tf.grads","string_or_numeric"),r=n!=null?M(n,"dy","tf.grads"):null;return z.tidy(()=>{let{value:s,grads:i}=z.gradients(()=>e(...a),a,r);return r!=null&&ln(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Pc(i),i})}}function tC(e){return F(Rr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{F(t instanceof Le,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),F(n==null||n instanceof Le,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=z.gradients(()=>e(t),[t],n);return Pc(a),{grad:a[0],value:r}}}function nC(e){return F(Rr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{F(Array.isArray(t)&&t.every(r=>r instanceof Le),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),F(n==null||n instanceof Le,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=z.gradients(()=>e(...t),t,n);return n!=null&&ln(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Pc(a.grads),a}}function f3(e,t){F(Rr(e),()=>"The f passed in variableGrads(f) must be a function"),F(t==null||Array.isArray(t)&&t.every(u=>u instanceof Xu),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in z.registeredVariables)t.push(z.registeredVariables[u])}let a=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),F(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=z.gradients(e,t,null,s);F(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),F(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,d)=>{o[d]!=null&&(l[u.name]=o[d])}),a!=null&&a.forEach(u=>l[u.name]=null),{value:i,grads:l}}function Va(e){return z.customGrad(e)}function Pc(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function aC(e){let t={x:M(e,"x","neg")};return z.runKernel(Lo,t)}var It=_({neg_:aC});function rC(e){let t={x:M(e,"x","softplus")};return z.runKernel(tl,t)}var vi=_({softplus_:rC});function sC(e){let t=M(e,"x","logSigmoid");return Va(n=>({value:It(vi(It(n))),gradFunc:a=>L(a,Sn(It(n)))}))(t)}var m3=_({logSigmoid_:sC});function iC(e,t=null,n=!1){let a={x:M(e,"x","max")},r={reductionIndices:t,keepDims:n};return z.runKernel($s,a,r)}var Tn=_({max_:iC});function oC(e,t){let n=M(e,"a","sub"),a=M(t,"b","sub");[n,a]=kt(n,a);let r={a:n,b:a};return z.runKernel(ai,r)}var ye=_({sub_:oC});function lC(e,t=null,n=!1){let a=M(e,"x","sum");a.dtype==="bool"&&(a=me(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return z.runKernel(ei,r,s)}var Ie=_({sum_:lC});function uC(e,t=-1){let n=M(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Va((a,r)=>{let s=!0,i=Tn(a,t,!0),o=ye(a,i),l=ye(me(o,"float32"),_n(Ie(ea(o),t,s)));return r([l]),{value:l,gradFunc:(u,d)=>{let[p]=d,c=!0,h=ea(p);return ye(u,L(Ie(u,t,c),h))}}})(n)}var Lc=_({logSoftmax_:uC});function My(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function y3(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function A3(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function wi(e,t){let n=t.map(a=>1);return y3(e,n,t)}function dC(e,t,n){F(My(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function g3(e,t){if(My(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function Fy(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function pC(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function cC(e,t=null,n=!1){let a=M(e,"x","logSumExp"),r=la(t,a.shape),s=Tn(a,r,!0),i=ye(a,s),o=ea(i),l=Ie(o,r),u=_n(l),d=se(H(s,u.shape),u);if(n){let p=wi(d.shape,r);return H(d,p)}return d}var $y=_({logSumExp_:cC});function hC(e,t){let n=M(e,"a","logicalAnd","bool"),a=M(t,"b","logicalAnd","bool");ct(n.shape,a.shape);let r={a:n,b:a};return z.runKernel(_o,r)}var ca=_({logicalAnd_:hC});function fC(e){let t={x:M(e,"x","logicalNot","bool")};return z.runKernel($u,t)}var sd=_({logicalNot_:fC});function mC(e,t){let n=M(e,"a","logicalOr","bool"),a=M(t,"b","logicalOr","bool");ct(n.shape,a.shape);let r={a:n,b:a};return z.runKernel(Du,r)}var Wc=_({logicalOr_:mC});function yC(e,t){let n=M(e,"a","logicalXor","bool"),a=M(t,"b","logicalXor","bool");return ct(n.shape,a.shape),ca(Wc(e,t),sd(ca(e,t)))}var x3=_({logicalXor_:yC});function AC(e,t,n,a,r){let s=M(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),F(Ba(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),r!=null&&F(Ht(a),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=z.runKernel(zs,u,d);return l?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var id=_({maxPool_:AC});function gC(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=M(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&F(Ht(a),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=z.runKernel(Ou,u,d);return l?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Dy=_({maxPool3d_:gC});function xC(e,t,n,a,r=!1){let s={x:M(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=z.runKernel(oc,s,i);return{result:o[0],indexes:o[1]}}var b3=_({maxPoolWithArgmax_:xC});function bC(e,t){let n=M(e,"a","maximum"),a=M(t,"b","maximum");[n,a]=kt(n,a),n.dtype==="bool"&&(n=me(n,"int32"),a=me(a,"int32")),ct(n.shape,a.shape);let r={a:n,b:a};return z.runKernel(Ds,r)}var ja=_({maximum_:bC});function vC(e,t=null,n=!1){let a={x:M(e,"x","mean")},r={axis:t,keepDims:n};return z.runKernel(Os,a,r)}var St=_({mean_:vC});function $t(e,t="float32"){if(t==="complex64"){let a=$t(e,"float32"),r=$t(e,"float32");return zr(a,r)}let n=Pp(Rt(e),t);return z.makeTensor(n,e,t)}function Pn(e,t="float32"){if(t==="complex64"){let a=Pn(e,"float32"),r=$t(e,"float32");return zr(a,r)}let n=Tm(Rt(e),t);return z.makeTensor(n,e,t)}function wC(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let a=M(e,"x","meshgrid",e instanceof Le?e.dtype:"float32");if(t===void 0)return[a];let r=M(t,"y","meshgrid",t instanceof Le?t.dtype:"float32"),s=Rt(a.shape),i=Rt(r.shape);return n==="xy"?(a=H(a,[1,-1]),r=H(r,[-1,1]),[Be(Pn([i,1],a.dtype),a),Be(r,Pn([1,s],r.dtype))]):(a=H(a,[-1,1]),r=H(r,[1,-1]),[Be(a,Pn([1,i],a.dtype)),Be(Pn([s,1],r.dtype),r)])}function kC(e,t=null,n=!1){let a={x:M(e,"x","min")},r={axis:t,keepDims:n};return z.runKernel(_s,a,r)}var Sl=_({min_:kC});function IC(e,t){let n=M(e,"a","minimum"),a=M(t,"b","minimum");[n,a]=kt(n,a),n.dtype==="bool"&&(n=me(n,"int32"),a=me(a,"int32")),ct(n.shape,a.shape);let r={a:n,b:a};return z.runKernel(Ps,r)}var Nl=_({minimum_:IC});function SC(e,t,n){F(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=M(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");F(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)F(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),F(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return z.runKernel(Ls,i,s)}var zy=_({mirrorPad_:SC});function NC(e,t){let n=M(e,"a","mod"),a=M(t,"b","mod");[n,a]=kt(n,a);let r={a:n,b:a};return z.runKernel(Po,r)}var Oy=_({mod_:NC});function TC(e){let t=M(e,"x","square"),n={};return z.runKernel("Square",{x:t},n)}var ot=_({square_:TC});function EC(e,t=null,n=!1){e=M(e,"x","moments");let a=la(t,e.shape),r=St(e,a,n),s=r.shape;n||(s=wi(r.shape,a));let i=ot(ye(me(e,"float32"),H(r,s))),o=St(i,a,n);return{mean:r,variance:o}}var Bc=_({moments_:EC});function CC(e,t,n,a){let r=M(t,"data","multiRNNCell"),s=Yu(n,"c","multiRNNCell"),i=Yu(a,"h","multiRNNCell"),o=r,l=[];for(let p=0;p<e.length;p++){let c=e[p](o,s[p],i[p]);l.push(c[0]),l.push(c[1]),o=c[1]}let u=[],d=[];for(let p=0;p<l.length;p+=2)u.push(l[p]),d.push(l[p+1]);return[u,d]}var RC=_({multiRNNCell_:CC});function MC(e,t,n,a=!1){let r=M(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?H(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},u=z.runKernel(lc,o,l);return i===1?H(u,[u.size]):u}var v3=_({multinomial_:MC});function FC(e,t){let n=M(e,"a","notEqual"),a=M(t,"b","notEqual");[n,a]=kt(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return z.runKernel(Wo,r)}var ki=_({notEqual_:FC});function $C(e){let t={x:M(e,"x","onesLike")};return z.runKernel(Uo,t)}var Ln=_({onesLike_:$C});function DC(e,t){let n=M(e,"v1","outerProduct"),a=M(t,"v2","outerProduct");F(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=H(n,[-1,1]),s=H(a,[1,-1]);return Be(r,s)}var zC=_({outerProduct_:DC});function OC(e,t,n=0){let a=M(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return z.runKernel(Vs,s,r)}var cr=_({pad_:OC});function _C(e,t,n=0){return F(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),cr(e,[t],n)}var PC=_({pad1d_:_C});function LC(e,t,n=0){return F(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),cr(e,t,n)}var WC=_({pad2d_:LC});function BC(e,t,n=0){return F(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),cr(e,t,n)}var VC=_({pad3d_:BC});function jC(e,t,n=0){return F(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),cr(e,t,n)}var UC=_({pad4d_:jC});function HC(e,t,n){let a=M(e,"x","spaceToBatchND");F(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),F(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),F(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return z.runKernel(Lu,r,s)}var od=_({spaceToBatchND_:HC});function GC(e,t,n,a,r,s){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let i=M(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),F(Ba(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let u=Yb(o.shape,t,s,r,a),d=[u.dilationHeight,u.dilationWidth],p;a==="same"?p=XC([u.filterHeight,u.filterWidth],d):p=[[0,0],[0,0]];let c=d[0]===1&&d[1]===1,[h,m]=qC([u.inHeight,u.inWidth],d,p),f=c?a:"valid",y=c?o:od(o,d,h),A=(n==="avg"?()=>td(y,t,s,f):()=>id(y,t,s,f))(),g=c?A:nd(A,d,m);return l?H(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function qC(e,t,n){let a=n.map(d=>d[0]),r=n.map(d=>d[1]),s=e.concat(a,r),i=t.map((d,p)=>(d-s[p]%d)%d),o=r.map((d,p)=>d+i[p]),l=t.map((d,p)=>[a[p],o[p]]),u=t.map((d,p)=>[0,i[p]]);return[l,u]}function XC(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var w3=_({pool_:GC});function KC(e,t){let n=M(e,"base","pow"),a=M(t,"exp","pow");[n,a]=kt(n,a);let r={a:n,b:a};return z.runKernel(js,r)}var hr=_({pow_:KC});function ZC(e,t){let n=M(e,"x","prelu"),a=M(t,"alpha","prelu"),r={x:n,alpha:a};return z.runKernel(Us,r)}var ld=_({prelu_:ZC});function YC(e,t=null,n=!1){let a=M(e,"x","prod");a.dtype==="bool"&&(a=me(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return z.runKernel(Go,r,s)}var Vc=_({prod_:YC});function JC(e,t,n){let a=Rt(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return z.makeTensor(r,e,n)}var QC=_({rand_:JC}),_y=ro(h5()),Py=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=_y.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},eR=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=_y.alea(r.toString()),this.randn=new Py(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},tR=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=_y.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function nR(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new eR(t,n,a,r),i=We(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var aR=_({randomGamma_:nR});function rR(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new Py(t,n,a,!1,r),i=We(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var k3=_({randomNormal_:rR});function sR(e,t=0,n=1,a="float32",r){let s=We(e,a),i=new tR(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var Tl=_({randomUniform_:sR});function El(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return z.runKernel(_u,{},r)}function iR(e){let t={input:M(e,"input","real")};return z.runKernel(uc,t)}var ud=_({real_:iR});function oR(e){let t={x:M(e,"x","reciprocal")};return z.runKernel(qo,t)}var Ly=_({reciprocal_:oR});function lR(e){let t={x:M(e,"x","relu")};return z.runKernel(Hs,t)}var Ua=_({relu_:lR});function uR(e){let t={x:M(e,"x","relu6")};return z.runKernel(qs,t)}var jc=_({relu6_:uR});function dR(e,t){let n={x:M(e,"x","reverse")},a={dims:t};return z.runKernel(Xs,n,a)}var Wn=_({reverse_:dR});function pR(e){let t=M(e,"x","reverse");return F(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Wn(t,0)}var cR=_({reverse1d_:pR});function hR(e,t){let n=M(e,"x","reverse");return F(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Wn(n,t)}var fR=_({reverse2d_:hR});function mR(e,t){let n=M(e,"x","reverse");return F(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Wn(n,t)}var yR=_({reverse3d_:mR});function AR(e,t){let n=M(e,"x","reverse");return F(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Wn(n,t)}var gR=_({reverse4d_:AR});function xR(e){let t={x:M(e,"x","round")};return z.runKernel(Ks,t)}var Uc=_({round_:xR});function bR(e){let t={x:M(e,"x","rsqrt")};return z.runKernel(Zs,t)}var Hc=_({rsqrt_:bR});function we(e,t){if((an(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&an(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Or(e,[],[],t)}function vR(e){let t={x:M(e,"x","selu")};return z.runKernel(Yo,t)}var Gc=_({selu_:vR});function wR(e,t,n,a,r,s=[1,1],i="NHWC"){let o=M(e,"x","separableConv2d"),l=M(t,"depthwiseFilter","separableConv2d"),u=M(n,"pointwiseFilter","separableConv2d"),d=o,p=!1;if(o.rank===3&&(p=!0,d=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");F(d.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${d.rank}.`),F(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),F(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let c=l.shape[2],h=l.shape[3];F(u.shape[2]===c*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${c*h}, but got ${u.shape[2]}.`);let m=vl(d,l,a,r,i,s),f=pr(m,u,1,"valid",i);return p?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Wy=_({separableConv2d_:wR});async function kR(e,t){let n=M(e,"x","setdiff1d"),a=M(t,"y","setdiff1d");F(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),F(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),F(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let d=0;d<r.length;d++)i.has(r[d])||o++;let l=new Pt([o],n.dtype),u=new Pt([o],"int32");for(let d=0,p=0;d<r.length;d++)i.has(r[d])||(l.values[p]=r[d],u.values[p]=d,p++);return[l.toTensor(),u.toTensor()]}var I3=kR;function IR(e){let t={x:M(e,"x","sign")};return z.runKernel(el,t)}var By=_({sign_:IR});function SR(e){let t={x:M(e,"x","sin")};return z.runKernel(Ys,t)}var qc=_({sin_:SR});function NR(e){let t={x:M(e,"x","sinh")};return z.runKernel(Qo,t)}var Xc=_({sinh_:NR});function TR(e,t,n){let a=M(e,"x","slice1d");return F(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),Re(a,[t],[n])}var Kc=_({slice1d_:TR});function ER(e,t,n){let a=M(e,"x","slice2d");return F(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),Re(a,t,n)}var Vy=_({slice2d_:ER});function CR(e,t,n){let a=M(e,"x","slice3d");return F(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),Re(a,t,n)}var Zc=_({slice3d_:CR});function RR(e,t,n){let a=M(e,"x","slice4d");return F(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),Re(a,t,n)}var dd=_({slice4d_:RR});function MR(e,t=-1){let n=M(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return z.runKernel(ti,a,r)}var pd=_({softmax_:MR});function FR(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return z.runKernel(ec,t)}var cd=_({fft_:FR});function $R(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return z.runKernel(tc,t)}var Cl=_({ifft_:$R});function DR(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=H(e,[n,t]);a=Cl(r)}else{let r=[n,2*(t-1)],s=H(ud(e),[n,t]),i=H(zc(e),[n,t]),o=Wn(Re(s,[0,1],[n,t-2]),1),l=L(Wn(Re(i,[0,1],[n,t-2]),1),we(-1)),u=lt([s,o],1),d=lt([i,l],1),p=H(zr(u,d),[r[0],r[1]]);a=Cl(p)}if(a=ud(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=H(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var Yc=_({irfft_:DR});function zR(e,t,n=0){let a={x:M(e,"x","split")},r={numOrSizeSplits:t,axis:n};return z.runKernel(nl,a,r)}var qt=_({split_:zR});function OR(e,t){F(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(y=>0),f=e.shape.map(y=>y);f[e.shape.length-1]=t,r=Re(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=lt([e,$t(m)],e.shape.length-1),n=t}else r=e;let s=He(r),i=H(zr(r,s),[a,n]),o=cd(i),l=Math.floor(n/2)+1,u=ud(o),d=zc(o),p=qt(u,[l,n-l],u.shape.length-1),c=qt(d,[l,n-l],d.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,H(zr(p[0],c[0]),h)}var hd=_({rfft_:OR});function _R(e){let t={x:M(e,"x","sqrt")};return z.runKernel(Qs,t)}var en=_({sqrt_:_R});function PR(e,t){let n=M(e,"a","squaredDifference"),a=M(t,"b","squaredDifference");[n,a]=kt(n,a),ct(n.shape,a.shape);let r={a:n,b:a},s={};return z.runKernel(ni,r,s)}var Jc=_({squaredDifference_:PR});function LR(e,t){let n=M(e,"x","squeeze");return H(n,Hx(n.shape,t).newShape)}var Ha=_({squeeze_:LR});function WR(e,t=0){let n=Yu(e,"tensors","stack","string_or_numeric");F(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&F(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return z.runKernel(Ho,a,r)}var pn=_({stack_:WR});function BR(e,t=0){let n={x:M(e,"x","step")},a={alpha:t};return z.runKernel(Dr,n,a)}var Rl=_({step_:BR});function VR(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let u={x:M(e,"x","stridedSlice")},d={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return z.runKernel(al,u,d)}var jy=_({stridedSlice_:VR});function jR(e){let t={x:M(e,"x","tan")};return z.runKernel(ri,t)}var Uy=_({tan_:jR});function Mt(e,t){ps(e);let n=La(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Or(e,null,n,t)}function va(e,t,n){if(ps(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=La(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Or(e,t,a,n)}function UR(e,t,n){if(ps(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=La(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Or(e,t,a,n)}function HR(e,t,n){if(ps(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=La(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Or(e,t,a,n)}function GR(e,t,n){if(ps(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=La(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,Or(e,t,a,n)}function qR(e,t=1,n=!0){let a=M(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=z.runKernel(rl,s,i);return{values:o,indices:l}}var Hy=_({topk_:qR});function XR(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Py(t,n,a,!0,r),i=We(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Qc=_({truncatedNormal_:XR});function KR(e,t=0){let n=M(e,"x","unique","string_or_numeric");F(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=z.runKernel(mc,a,r);return{values:s,indices:i}}var eh=_({unique_:KR});function ZR(e,t,n){let a=M(e,"x","unsortedSegmentSum"),r=M(t,"segmentIds","unsortedSegmentSum","int32");F(Ht(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return z.runKernel(Bu,s,i)}var Gy=_({unsortedSegmentSum_:ZR});function YR(e,t=0){let n=M(e,"x","unstack","string_or_numeric");F(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return z.runKernel(il,a,r)}var ha=_({unstack_:YR});function S3(e,t=!0,n,a){return z.makeVariable(e,t,n,a)}function N3(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=We(e,"int32"),r=We([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function JR(e){let t=M(e,"condition","whereAsync","bool"),n=await t.data(),a=N3(t.shape,n);return e!==t&&t.dispose(),a}var qy=JR;async function QR(e,t,n){let a=M(e,"tensor","boolMask"),r=M(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;F(i>0,()=>"mask cannot be scalar"),ln(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let u=o.slice(0,s).concat([l],o.slice(s+i)),d=H(a,u),p=H(r,[-1]),c=await qy(p),h=Ha(c,[1]),m=bi(d,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),d.dispose(),p.dispose(),c.dispose(),m}var eM=QR;function tM(e,t="euclidean",n=null,a=!1){e=M(e,"x","norm");let r=T3(e,t,n),s=r.shape;if(a){let i=la(n,e.shape);s=wi(r.shape,i)}return H(r,s)}function T3(e,t,n=null){if(e.rank===0)return Lt(e);if(e.rank!==1&&n===null)return T3(H(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Ie(Lt(e),n);if(t===Infinity)return Tn(Lt(e),n);if(t===-Infinity)return Sl(Lt(e),n);if(t==="euclidean"||t===2)return en(Ie(hr(Lt(e),we(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Tn(Ie(Lt(e),n[0]),n[1]-1);if(t===Infinity)return Tn(Ie(Lt(e),n[1]),n[0]);if(t===-Infinity)return Sl(Ie(Lt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return en(Ie(ot(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var th=_({norm_:tM});function nM(e,t,n,a,r=!0){let s=M(e,"v","movingAverage"),i=M(t,"x","movingAverage"),o=M(n,"decay","movingAverage");lb(s,i),F(lr(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=we(1),u=ye(l,o),d=L(ye(i,s),u);if(r){F(a!=null,()=>"When using zeroDebias: true, step is required.");let p=M(a,"step","movingAverage");d=fe(d,ye(l,hr(o,p)))}return se(s,d)}var aM=_({movingAverage_:nM});function rM(e,t,n){let a=M(e,"indices","scatterND","int32"),r=M(t,"updates","scatterND");ny(r,a,n);let s={indices:a,updates:r},i={shape:n};return z.runKernel(Ko,s,i)}var E3=_({scatterND_:rM});function sM(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function iM(e,t,n,a=0){let r=M(e,"sparseIndices","sparseToDense","int32"),s=M(t,"sparseValues","sparseToDense"),i=M(a,"defaultValue","sparseToDense",s.dtype);sM(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return z.runKernel(fc,o,l)}var Xy=_({sparseToDense_:iM});function oM(e,t){let n=M(t,"indices","gatherND","int32"),a={params:M(e,"x","gatherND"),indices:n};return z.runKernel(Co,a)}var C3=_({gatherND_:oM});function lM(e,t){if(t==null)return e.shape.slice();if(lr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function uM(e,t,n,a){let r=M(e,"x","dropout");if(F(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),F(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Le?r.clone():r;let s=lM(r,n),i=1-t,o=fe(Il(se(Tl(s,0,1,"float32",a),i)),i);return L(r,o)}var R3=_({dropout_:uM});function M3(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Ky(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return Mt(r,"float32")}async function dM(e,t,n=1){let a=M(e,"predictions","inTopK"),r=M(t,"targets","inTopK");F(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),F(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),ln(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];F(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,u]=[i.length/s,s],d=Gx("bool",l);for(let p=0;p<l;p++){let c=p*u,h=i.subarray(c,c+u),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,y)=>y.value-f.value),d[p]=0;for(let f=0;f<n;f++)if(m[f].index===o[p]){d[p]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),pa(d,r.shape,"bool")}var pM=dM,Ur={};Fe(Ur,{conv2d:()=>fM,depthwiseConv2d:()=>gM,matMul:()=>bM});function cM(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]])),F(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),F(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),F(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],d=s==="NHWC"?l.shape[3]:l.shape[1];F(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),F(d===n[3],()=>`Error in conv2dDerFilter: depth of dy (${d}) must match output depth for filter (${n[3]}).`),i!=null&&F(Ht(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let p={x:o,dy:l},c={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return z.runKernel(jp,p,c)}var Zy=_({conv2DBackpropFilter_:cM});function nh(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return L(e,Rl(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function ah(e,t){let n=t,a=Wt(e.shape,t.shape);return a.length>0&&(n=Ie(n,a)),H(n,e.shape)}function rh(e,t,n,a){if(t==="linear")return e;if(t==="relu")return Ua(e);if(t==="elu")return wl(e);if(t==="relu6")return jc(e);if(t==="prelu")return ld(e,n);if(t==="leakyrelu")return rd(e,a);if(t==="sigmoid")return Sn(e);throw new Error(`Unknown fused activation ${t}.`)}var sh=(e,t)=>!(e>0)||t==="linear";function hM({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:d}){if(l=l||"linear",sh(z.state.gradientDepth,l)===!1){let b=pr(e,t,n,a,r,s,i);return o!=null&&(b=se(b,o)),rh(b,l,u,d)}let p=M(e,"x","conv2d"),c=M(t,"filter","conv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=H(p,[1,p.shape[0],p.shape[1],p.shape[2]])),F(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),F(c.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${c.rank}.`),i!=null&&F(Ht(a),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),F(h.shape[3]===c.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${c.shape[2]}.`),F(Ba(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let f=ed(h.shape,c.shape,n,s,a,i),y;o!=null&&(y=M(o,"bias","fused conv2d"),[y]=kt(y,p),ct(f.outShape,y.shape));let A;u!=null&&(A=M(u,"prelu weights","fused conv2d"));let g=(b,v)=>{let[S,T,C,$]=v,O=nh(b,C,l);F(Lr(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let P=vy(T.shape,O,S,n,a),j=Zy(T,O,S.shape,n,a),D=[P,j];if($!=null){let U=ah($,O);D.push(U)}return D},x={x:h,filter:c,bias:y,preluActivationWeights:A},w={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:d};return o==null?Va((b,v,S)=>{let T=z.runKernel(li,x,w);return S([v,b,T]),m&&(T=H(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(h,c):Va((b,v,S,T)=>{let C=z.runKernel(li,x,w);return T([v,b,C,S]),m&&(C=H(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:g}})(h,c,y)}var fM=_({fusedConv2d_:hM});function mM(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},d={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return z.runKernel(qp,u,d)}var F3=_({depthwiseConv2dNativeBackpropFilter_:mM});function yM(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},d={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},p=z.runKernel(Xp,u,d);return l?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var $3=_({depthwiseConv2dNativeBackpropInput_:yM});function AM({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:d}){if(sh(z.state.gradientDepth,l)===!1){let b=vl(e,t,n,a,r,s,i);return o!=null&&(b=se(b,o)),rh(b,l,u,d)}let p=M(e,"x","depthwiseConv2d"),c=M(t,"filter","depthwiseConv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=H(p,[1,p.shape[0],p.shape[1],p.shape[2]])),F(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),F(c.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${c.rank}.`),F(h.shape[3]===c.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),s==null&&(s=[1,1]),F(Ba(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&F(Ht(a),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${a}.`);let f=ed(h.shape,c.shape,n,s,a,i,!0),y;o!=null&&(y=M(o,"bias","fused conv2d"),[y]=kt(y,p),ct(f.outShape,y.shape));let A;u!=null&&(A=M(u,"prelu weights","fused depthwiseConv2d"));let g=(b,v)=>{F(Lr(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[S,T,C,$]=v,O=nh(b,C,l),P=$3(T.shape,O,S,n,a,s,i),j=F3(T,O,S.shape,n,a,s,i);if($!=null){let D=ah(y,O);return[P,j,D]}return[P,j]},x={x:h,filter:c,bias:y,preluActivationWeights:A},w={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:d};return o==null?Va((b,v,S)=>{let T=z.runKernel(ui,x,w);return S([v,b,T]),m&&(T=H(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(h,c):Va((b,v,S,T)=>{let C=z.runKernel(ui,x,w);return T([v,b,C,S]),m&&(C=H(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:g}})(h,c,y)}var gM=_({fusedDepthwiseConv2d_:AM});function xM({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(sh(z.state.gradientDepth,s)===!1){let $=Be(e,t,n,a);return r!=null&&($=se($,r)),rh($,s,i,o)}let l=M(e,"a","fused matMul"),u=M(t,"b","fused matMul");[l,u]=kt(l,u);let d=n?l.shape[l.rank-2]:l.shape[l.rank-1],p=a?u.shape[u.rank-1]:u.shape[u.rank-2],c=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),y=Rt(m),A=Rt(f);F(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),F(lr(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),F(d===p,()=>`Error in fused matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${a} must match.`);let g=l.shape.slice(0,-2).concat([c,h]),x=n?H(l,[y,d,c]):H(l,[y,c,d]),w=a?H(u,[A,h,p]):H(u,[A,p,h]),b;r!=null&&(b=M(r,"bias","fused matMul"),[b]=kt(b,l),ct(g,b.shape));let v;i!=null&&(v=M(i,"prelu weights","fused matMul"));let S=($,O)=>{let[P,j,D,U]=O,X=nh(H($,D.shape),D,s),G,ee;if(!n&&!a?(G=Be(X,j,!1,!0),ee=Be(P,X,!0,!1)):!n&&a?(G=Be(X,j,!1,!1),ee=Be(X,P,!0,!1)):n&&!a?(G=Be(j,X,!1,!0),ee=Be(P,X,!1,!1)):(G=Be(j,X,!0,!0),ee=Be(X,P,!0,!0)),r!=null){let Y=ah(U,X);return[G,ee,Y]}else return[G,ee]},T={a:x,b:w,bias:b,preluActivationWeights:v},C={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?Va(($,O,P)=>{let j=z.runKernel(oi,T,C);return P([$,O,j]),{value:H(j,g),gradFunc:S}})(x,w):Va(($,O,P,j)=>{let D=z.runKernel(oi,T,C);return j([$,O,D,P]),{value:H(D,g),gradFunc:S}})(x,w,b)}var bM=_({fusedMatMul_:xM});function vM(e){return Ky(e,.54,.46)}var wM=_({hammingWindow_:vM});function kM(e){return Ky(e,.5,.5)}var D3=_({hannWindow_:kM});function IM(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Re(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=lt([Re(e,s,t-o),kl([o],r)]);i.push(l),s+=n}return i.length===0?va([],[0,t]):H(lt(i),[i.length,t])}var z3=_({frame_:IM});function SM(e,t,n,a,r=D3){a==null&&(a=M3(t));let s=z3(e,t,n),i=L(s,r(t));return hd(i,a)}var NM=_({stft_:SM});function TM(e,t,n,a,r="bilinear",s=0){let i=M(e,"image","cropAndResize"),o=M(t,"boxes","cropAndResize","float32"),l=M(n,"boxInd","cropAndResize","int32"),u=o.shape[0];F(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),F(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),F(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),F(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),F(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let d={image:i,boxes:o,boxInd:l},p={method:r,extrapolationValue:s,cropSize:a};return z.runKernel(bo,d,p)}var EM=_({cropAndResize_:TM});function CM(e){let t=M(e,"image","flipLeftRight","float32");F(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return z.runKernel(To,n,{})}var RM=_({flipLeftRight_:CM});function MM(e,t,n=0,a=.5){let r=M(e,"image","rotateWithOffset","float32");F(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return z.runKernel(ll,s,i)}var FM=_({rotateWithOffset_:MM});function Ml(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),F(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),F(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),F(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),F(t.rank===1,()=>"scores must be a 1D tensor"),F(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),F(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function $M(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=M(e,"boxes","nonMaxSuppression"),i=M(t,"scores","nonMaxSuppression"),o=Ml(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return z.runKernel(Bo,{boxes:s,scores:i},l)}var DM=_({nonMaxSuppression_:$M});function zM(e,t,n){let a=OM(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function OM(e,t,n){return PM(e,t,n||_M)}function _M(e,t){return e>t?1:e<t?-1:0}function PM(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function O3(e,t,n,a,r){return Yy(e,t,n,a,r,0)}function _3(e,t,n,a,r,s){return Yy(e,t,n,a,r,0,!1,s,!0)}function P3(e,t,n,a,r,s){return Yy(e,t,n,a,r,s,!0)}function Yy(e,t,n,a,r,s,i=!1,o=!1,l=!1){let u=[];for(let y=0;y<t.length;y++)t[y]>r&&u.push({score:t[y],boxIndex:y,suppressBeginIndex:0});u.sort(L3);let d=s>0?-.5/s:0,p=[],c=[];for(;p.length<n&&u.length>0;){let y=u.pop(),{score:A,boxIndex:g,suppressBeginIndex:x}=y;if(A<r)break;let w=!1;for(let b=p.length-1;b>=x;--b){let v=LM(e,g,p[b]);if(v>=a){w=!0;break}if(y.score=y.score*WM(a,d,v),y.score<=r)break}y.suppressBeginIndex=p.length,w||(y.score===A?(p.push(g),c.push(y.score)):y.score>r&&zM(u,y,L3))}let h=p.length,m=n-h;o&&m>0&&(p.push(...new Array(m).fill(0)),c.push(...new Array(m).fill(0)));let f={selectedIndices:p};return i&&(f.selectedScores=c),l&&(f.validOutputs=h),f}function LM(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),u=Math.min(r[0],r[2]),d=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),c=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(p-u)*(c-d);if(h<=0||m<=0)return 0;let f=Math.max(s,u),y=Math.max(i,d),A=Math.min(o,p),g=Math.min(l,c),x=Math.max(A-f,0)*Math.max(g-y,0);return x/(h+m-x)}function WM(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function L3(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function BM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=M(e,"boxes","nonMaxSuppressionAsync"),i=M(t,"scores","nonMaxSuppressionAsync"),o=Ml(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],d=l[1],{selectedIndices:p}=O3(u,d,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),Mt(p,"int32")}var VM=BM;function jM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=M(e,"boxes","nonMaxSuppression"),o=M(t,"scores","nonMaxSuppression"),l=Ml(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},d={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},p=z.runKernel(jo,u,d);return{selectedIndices:p[0],selectedScores:p[1]}}var UM=_({nonMaxSuppressionWithScore_:jM});async function HM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=M(e,"boxes","nonMaxSuppressionAsync"),o=M(t,"scores","nonMaxSuppressionAsync"),l=Ml(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),d=u[0],p=u[1],{selectedIndices:c,selectedScores:h}=P3(d,p,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Mt(c,"int32"),selectedScores:Mt(h)}}var GM=HM;function qM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=M(e,"boxes","nonMaxSuppression"),o=M(t,"scores","nonMaxSuppression"),l=Ml(i,o,n,a,r,null),u=l.maxOutputSize,d=l.iouThreshold,p=l.scoreThreshold,c={boxes:i,scores:o},h={maxOutputSize:u,iouThreshold:d,scoreThreshold:p,padToMaxOutputSize:s},m=z.runKernel(Vo,c,h);return{selectedIndices:m[0],validOutputs:m[1]}}var XM=_({nonMaxSuppressionPadded_:qM});async function KM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=M(e,"boxes","nonMaxSuppressionAsync"),o=M(t,"scores","nonMaxSuppressionAsync"),l=Ml(i,o,n,a,r,null),u=l.maxOutputSize,d=l.iouThreshold,p=l.scoreThreshold,[c,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=_3(c,h,u,d,p,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Mt(m,"int32"),validOutputs:we(f,"int32")}}var ZM=KM;function YM(e,t,n=!1,a=!1){let r=M(e,"images","resizeBilinear");F(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),F(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),F(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=H(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=z.runKernel(Gs,o,l);return i?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var W3=_({resizeBilinear_:YM});function JM(e,t,n=!1,a=!1){let r=M(e,"images","resizeNearestNeighbor");F(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),F(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),F(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),F(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=H(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=z.runKernel(Pu,o,l);return i?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var B3=_({resizeNearestNeighbor_:JM});function QM(e,t="binary",n=!1,a=.5){let r=M(e,"image","threshold"),s=.2989,i=.587,o=.114,l=r.shape[0]*r.shape[1],u=L(Mt([a]),255),d,p,c,h;if(F(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),F(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),F(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),F(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[d,p,c]=qt(r,[1,1,1],-1);let f=L(d,s),y=L(p,i),A=L(c,o);h=se(se(f,y),A)}else h=e;if(t==="otsu"){let f=xy(me(Uc(h),"int32"),pa([]),256);u=eF(f,l)}let m=n?jr(h,u):On(h,u);return me(L(m,255),"int32")}function eF(e,t){let n=Mt([-1]),a=Mt([0]),r=Mt([0]),s,i,o,l,u,d;for(let p=0;p<e.size-1;p++){s=Re(e,0,p+1),i=Re(e,p+1),u=fe(Ie(s),t),d=fe(Ie(i),t);let c=Ie(L(s,El(0,s.size)));o=fe(c,Ie(s));let h=kl(i.shape,s.size),m=se(El(0,i.size),h),f=L(i,m);l=fe(Ie(f),Ie(i));let y=ye(o,l),A=ye(o,l),g=L(u,d);r=L(L(g,y),A);let x=On(r,a);a=rn(x,r,a),n=rn(x,Mt([p]),n)}return n}var tF=_({threshold_:QM});function nF(e,t,n="nearest",a="constant",r=0,s){let i=M(e,"image","transform","float32"),o=M(t,"transforms","transform","float32");F(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),F(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return z.runKernel(sl,l,u)}var aF=_({transform_:nF});function rF(e,t,n){F(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),F(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=M(e,"a","bandPart");F(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=H(El(0,s,1,"int32"),[-1,1]),l=El(0,i,1,"int32"),u=ye(o,l),d=ca(jr(u,we(+t,"int32")),Vr(u,we(-n,"int32"))),p=$t([s,i],a.dtype);return H(pn(ha(H(a,[-1,s,i])).map(c=>rn(d,c,p))),r)}var sF=_({bandPart_:rF});function iF(e){let t;if(Array.isArray(e)){t=!1,F(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)F(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=qt(e,e.shape[0],0).map(r=>Ha(r,[0]));F(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(z.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=L(Ie(L(n[i],s)),n[i]);s=ye(s,o)}return fe(s,th(s,"euclidean"))}));return t?pn(n,0):n}var oF=_({gramSchmidt_:iF});function lF(e,t=!1){if(F(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return V3(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),a=ha(H(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[u,d]=V3(l,t);r.push(u),s.push(d)});let i=H(pn(r,0),e.shape),o=H(pn(s,0),e.shape);return[i,o]}}function V3(e,t=!1){return z.tidy(()=>{F(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=Ey(n),s=Wa(e),i=va([[1]],[1,1]),o=Wa(i),l=n>=a?a:n;for(let u=0;u<l;++u){let d=s,p=o,c=r;[o,s,r]=z.tidy(()=>{let h=Re(s,[u,u],[n-u,1]),m=th(h),f=Re(s,[u,u],[1,1]),y=rn(On(f,0),va([[-1]]),va([[1]])),A=ye(f,L(y,m)),g=fe(h,A);g.shape[0]===1?o=Wa(i):o=lt([i,Re(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let x=It(fe(Be(y,A),m)),w=Re(s,[u,0],[n-u,a]),b=L(x,o),v=Ye(o);if(u===0)s=ye(w,Be(b,Be(v,w)));else{let C=ye(w,Be(b,Be(v,w)));s=lt([Re(s,[0,0],[u,a]),C],0)}let S=Ye(b),T=Re(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=ye(T,Be(Be(T,o),S));else{let C=ye(T,Be(Be(T,o),S));r=lt([Re(r,[0,0],[n,u]),C],1)}return[o,s,r]}),Ne([d,p,c])}return!t&&n>a&&(r=Re(r,[0,0],[n,a]),s=Re(s,[0,0],[a,a])),[r,s]})}var uF=_({qr_:lF}),cn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(cn||(cn={}));function dF(e,t,n=cn.SUM_BY_NONZERO_WEIGHTS){let a=M(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=M(t,"weights","computeWeightedLoss"));let s=r==null?a:L(a,r);if(n===cn.NONE)return s;if(n===cn.SUM)return Ie(s);if(n===cn.MEAN){if(r==null)return St(s);{let i=a.size/r.size,o=fe(Ie(s),Ie(r));return i>1?fe(o,we(i)):o}}if(n===cn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return fe(Ie(s),we(a.size));{let i=L(r,Pn(a.shape)),o=me(Ie(ki(i,we(0))),"float32");return fe(Ie(s),o)}}throw Error(`Unknown reduction: ${n}`)}var fr=_({computeWeightedLoss_:dF});function pF(e,t,n,a=cn.SUM_BY_NONZERO_WEIGHTS){let r=M(e,"labels","absoluteDifference"),s=M(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=M(n,"weights","absoluteDifference")),ln(r.shape,s.shape,"Error in absoluteDifference: ");let o=Lt(ye(r,s));return fr(o,i,a)}var cF=_({absoluteDifference_:pF});function hF(e,t,n,a,r=cn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","cosineDistance"),i=M(t,"predictions","cosineDistance"),o=null;a!=null&&(o=M(a,"weights","cosineDistance")),ln(s.shape,i.shape,"Error in cosineDistance: ");let l=we(1),u=ye(l,Ie(L(s,i),n,!0));return fr(u,o,r)}var fF=_({cosineDistance_:hF});function mF(e,t,n,a=cn.SUM_BY_NONZERO_WEIGHTS){let r=M(e,"labels","hingeLoss"),s=M(t,"predictions","hingeLoss"),i=null;n!=null&&(i=M(n,"weights","hingeLoss")),ln(r.shape,s.shape,"Error in hingeLoss: ");let o=we(1);r=ye(L(we(2),r),o);let l=Ua(ye(o,L(r,s)));return fr(l,i,a)}var yF=_({hingeLoss_:mF});function AF(e,t,n,a=1,r=cn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","huberLoss"),i=M(t,"predictions","huberLoss"),o=null;n!=null&&(o=M(n,"weights","huberLoss")),ln(s.shape,i.shape,"Error in huberLoss: ");let l=we(a),u=Lt(ye(i,s)),d=Nl(u,l),p=ye(u,d),c=se(L(we(.5),ot(d)),L(l,p));return fr(c,o,r)}var gF=_({huberLoss_:AF});function xF(e,t,n,a=1e-7,r=cn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","logLoss"),i=M(t,"predictions","logLoss"),o=null;n!=null&&(o=M(n,"weights","logLoss")),ln(s.shape,i.shape,"Error in logLoss: ");let l=we(1),u=we(a),d=It(L(s,_n(se(i,u)))),p=L(ye(l,s),_n(se(ye(l,i),u))),c=ye(d,p);return fr(c,o,r)}var bF=_({logLoss_:xF});function vF(e,t,n,a=cn.SUM_BY_NONZERO_WEIGHTS){let r=M(e,"labels","meanSquaredError"),s=M(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=M(n,"weights","meanSquaredError")),ln(r.shape,s.shape,"Error in meanSquaredError: ");let o=Jc(r,s);return fr(o,i,a)}var wF=_({meanSquaredError_:vF});function kF(e,t){let n=M(e,"labels","sigmoidCrossEntropyWithLogits"),a=M(t,"logits","sigmoidCrossEntropyWithLogits");ln(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Ua(a),s=L(a,n),i=_c(ea(It(Lt(a))));return se(ye(r,s),i)}function IF(e,t,n,a=0,r=cn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"multiClassLabels","sigmoidCrossEntropy"),i=M(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=M(n,"weights","sigmoidCrossEntropy")),ln(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let u=we(a),d=we(1),p=we(.5);s=se(L(s,ye(d,u)),L(p,u))}let l=kF(s,i);return fr(l,o,r)}var SF=_({sigmoidCrossEntropy_:IF});function NF(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Va((a,r,s)=>{let i=$y(r,[n],!0),o=ye(me(r,"float32"),i);s([a,o]);let l=It(L(o,a));return{value:Ie(l,[n]),gradFunc:(u,d)=>{let[p,c]=d,h=wi(u.shape,[n]);return[L(H(u,h),ye(me(p,"float32"),ea(c))),L(H(u,h),ye(ea(c),me(p,"float32")))]}}})(e,t)}function TF(e,t,n,a=0,r=cn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"onehotLabels","softmaxCrossEntropy"),i=M(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=M(n,"weights","softmaxCrossEntropy")),ln(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let u=we(a),d=we(1),p=we(s.shape[1]);s=se(L(s,ye(d,u)),fe(u,p))}let l=NF(s,i);return fr(l,o,r)}var EF=_({softmaxCrossEntropy_:TF});function CF(e,t,n,a){let r=M(e,"indices","sparseFillEmptyRows"),s=M(t,"values","sparseFillEmptyRows"),i=M(n,"denseShape","sparseFillEmptyRows"),o=M(a,"defaultValue","sparseFillEmptyRows",s.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:r,values:s,denseShape:i,defaultValue:o},u=z.runKernel(cc,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var RF=_({sparseFillEmptyRows_:CF});function MF(e,t,n){let a=M(e,"inputIndices","sparseReshape"),r=M(t,"inputShape","sparseReshape"),s=M(n,"newShape","sparseReshape");if(a.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${a.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:a,inputShape:r,newShape:s},o=z.runKernel(hc,i);return{outputIndices:o[0],outputShape:o[1]}}var FF=_({sparseReshape_:MF}),$F={fft:cd,ifft:Cl,rfft:hd,irfft:Yc},DF={hammingWindow:wM,hannWindow:D3,frame:z3,stft:NM},Ve={flipLeftRight:RM,resizeNearestNeighbor:B3,resizeBilinear:W3,rotateWithOffset:FM,cropAndResize:EM,nonMaxSuppression:DM,nonMaxSuppressionAsync:VM,nonMaxSuppressionWithScore:UM,nonMaxSuppressionWithScoreAsync:GM,nonMaxSuppressionPadded:XM,nonMaxSuppressionPaddedAsync:ZM,threshold:tF,transform:aF},j3={bandPart:sF,gramSchmidt:oF,qr:uF},zF={absoluteDifference:cF,computeWeightedLoss:fr,cosineDistance:fF,hingeLoss:yF,huberLoss:gF,logLoss:bF,meanSquaredError:wF,sigmoidCrossEntropy:SF,softmaxCrossEntropy:EF},U3={sparseFillEmptyRows:RF,sparseReshape:FF},mr=class extends Gb{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return Ne(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return f3(e,t)}dispose(){this.iterations_!=null&&Ne(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:we(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(mr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var ih=class extends mr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=z.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:B(()=>He(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:B(()=>He(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;B(()=>{let l=se(L(i,this.rho),L(ot(s),1-this.rho)),u=L(fe(en(se(o,this.epsilon)),en(se(i,this.epsilon))),s),d=se(L(o,this.rho),L(ot(u),1-this.rho));i.assign(l),o.assign(d);let p=se(L(u,-this.learningRate),a);a.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ne(this.accumulatedGrads.map(e=>e.variable)),Ne(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};ih.className="Adadelta";Pr(ih);var oh=class extends mr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=z.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:B(()=>kl(a.shape,this.initialAccumulatorValue).variable(i))}}let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;B(()=>{let i=se(s,ot(r));s.assign(i);let o=se(L(fe(r,en(se(i,z.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ne(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};oh.className="Adagrad";Pr(oh);var lh=class extends mr{constructor(e,t,n,a=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],B(()=>{this.accBeta1=we(t).variable(),this.accBeta2=we(n).variable()}),a==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);B(()=>{let n=ye(1,this.accBeta1),a=ye(1,this.accBeta2);t.forEach((r,s)=>{let i=z.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:B(()=>He(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:B(()=>He(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,d=this.accumulatedSecondMoment[s].variable,p=se(L(u,this.beta1),L(l,1-this.beta1)),c=se(L(d,this.beta2),L(ot(l),1-this.beta2)),h=fe(p,n),m=fe(c,a);u.assign(p),d.assign(c);let f=se(L(fe(h,se(en(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(L(this.accBeta1,this.beta1)),this.accBeta2.assign(L(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ne(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ne(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),B(()=>{this.accBeta1.assign(hr(this.beta1,this.iterations_+1)),this.accBeta2.assign(hr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};lh.className="Adam";Pr(lh);var uh=class extends mr{constructor(e,t,n,a=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],B(()=>{this.iteration=we(0).variable(),this.accBeta1=we(t).variable()}),a==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);B(()=>{let n=ye(1,this.accBeta1),a=fe(-this.learningRate,se(L(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=z.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:He(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:He(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,d=this.accumulatedWeightedInfNorm[s].variable,p=se(L(u,this.beta1),L(l,1-this.beta1)),c=L(d,this.beta2),h=Lt(l),m=ja(c,h);u.assign(p),d.assign(m);let f=se(L(fe(a,n),fe(p,se(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(se(this.iteration,1)),this.accBeta1.assign(L(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ne(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ne(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};uh.className="Adamax";Pr(uh);var fd=class extends mr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=z.registeredVariables[t];B(()=>{let s=se(L(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Gt(we(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};fd.className="SGD";Pr(fd);var dh=class extends fd{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=we(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=z.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:B(()=>He(a).variable(i))}}let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&B(()=>{let i,o=se(L(this.m,r),s);this.useNesterov?i=se(L(this.c,se(s,L(o,this.m))),a):i=se(L(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ne(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};dh.className="Momentum";Pr(dh);var ph=class extends mr{constructor(e,t=.9,n=0,a=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=z.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=z.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:B(()=>He(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:B(()=>He(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:B(()=>He(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;B(()=>{let l=se(L(i,this.decay),L(ot(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,d=se(L(u,this.decay),L(s,1-this.decay)),p=fe(L(s,this.learningRate),en(ye(l,se(ot(d),this.epsilon)))),c=se(L(o,this.momentum),p);i.assign(l),u.assign(d),o.assign(c);let h=ye(a,c);a.assign(h)}else{let u=se(L(i,this.decay),L(ot(s),1-this.decay)),d=se(L(o,this.momentum),fe(L(s,this.learningRate),en(se(u,this.epsilon))));i.assign(u),o.assign(d);let p=ye(a,d);a.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ne(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ne(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ne(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};ph.className="RMSProp";Pr(ph);var Ii=class{static sgd(e){return new fd(e)}static momentum(e,t,n=!1){return new dh(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new ph(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new lh(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new ih(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new uh(e,t,n,a,r)}static adagrad(e,t=.1){return new oh(e,t)}},Si={sgd:Ii.sgd,momentum:Ii.momentum,adadelta:Ii.adadelta,adagrad:Ii.adagrad,rmsprop:Ii.rmsprop,adamax:Ii.adamax,adam:Ii.adam},OF=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function ch(){return new Promise(e=>OF(()=>e()))}var R={};Fe(R,{ERF_A1:()=>qF,ERF_A2:()=>XF,ERF_A3:()=>KF,ERF_A4:()=>ZF,ERF_A5:()=>YF,ERF_P:()=>GF,PARALLELIZE_THRESHOLD:()=>Jy,SELU_SCALE:()=>G3,SELU_SCALEALPHA:()=>H3,applyActivation:()=>rh,assertAndGetBroadcastShape:()=>ct,assertAxesAreInnerMostDims:()=>dC,assertParamsConsistent:()=>_F,assignToTypedArray:()=>s$,axesAreInnerMostDims:()=>My,calculateShapes:()=>Db,checkEinsumDimSizes:()=>p$,combineLocations:()=>y3,complexWithEvenIndex:()=>n$,complexWithOddIndex:()=>a$,computeConv2DInfo:()=>ed,computeConv3DInfo:()=>Jb,computeDefaultPad:()=>yy,computeDilation2DInfo:()=>DT,computeOptimalWindowSize:()=>LF,computeOutAndReduceShapes:()=>A3,computeOutShape:()=>PF,computePool2DInfo:()=>Yb,computePool3DInfo:()=>zT,convertConv2DDataFormat:()=>Qb,decodeEinsumEquation:()=>u$,eitherStridesOrDilationsAreOne:()=>Ba,expandShapeToKeepDim:()=>wi,exponent:()=>o$,exponents:()=>i$,fromStringArrayToUint8:()=>b$,fromUint8ToStringArray:()=>x$,getAxesPermutation:()=>g3,getBroadcastDims:()=>SE,getComplexWithIndex:()=>r$,getEinsumComputePath:()=>c$,getEinsumPermutation:()=>d$,getFusedBiasGradient:()=>ah,getFusedDyActivation:()=>nh,getImageCenter:()=>WF,getInnerMostAxes:()=>pC,getPermuted:()=>VF,getReductionAxes:()=>Wt,getReshaped:()=>BF,getReshapedPermuted:()=>jF,getSliceBeginCoords:()=>UF,getSliceSize:()=>HF,getUndoAxesPermutation:()=>Fy,isIdentityPermutation:()=>h$,log:()=>QF,mergeRealAndImagArrays:()=>e$,prepareAndValidate:()=>$b,prepareSplitSize:()=>m$,segment_util:()=>K3,shouldFuse:()=>sh,slice_util:()=>un,splitRealAndImagArrays:()=>t$,tupleValuesAreOne:()=>Lr,upcastType:()=>da,validateInput:()=>ny,validateUpdateShape:()=>ty,warn:()=>JF});function _F(e,t){let n=e[0].length;e.forEach((r,s)=>{F(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),F(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)F(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function PF(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var Jy=30;function LF(e){return e<=Jy?e:_p(e,Math.floor(Math.sqrt(e)))}function WF(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function BF(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function VF(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function jF(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function UF(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function HF(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var H3=1.7580993408473768,G3=1.0507009873554805,GF=.3275911,qF=.254829592,XF=-.284496736,KF=1.421413741,ZF=-1.453152027,YF=1.061405429;function JF(...e){J().getBool("IS_TEST")||console.warn(...e)}function QF(...e){J().getBool("IS_TEST")||console.log(...e)}function e$(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function t$(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function n$(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function a$(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function r$(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function s$(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function i$(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function o$(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}var Qy="->",l$=/->/g,q3=",",X3="...";function u$(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(l$,"").length)/Qy.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${Qy}").`);let[a,r]=e.split(Qy);F(a.indexOf(X3)===-1,()=>`The ellipsis notation ("${X3}") is not supported yet.`);let s=a.split(q3),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let c=0;c<r.length;++c){let h=r[c];if(!s.some(m=>m.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let c=0;c<a.length;++c){let h=a[c];o.indexOf(h)===-1&&h!==q3&&o.push(h)}let l=new Array(s.length);for(let c=0;c<i;++c){if(new Set(s[c].split("")).size!==s[c].length)throw new Error(`Found duplicate axes in input component ${s[c]}. Support for duplicate axes in input is not implemented yet.`);l[c]=[];for(let h=0;h<s[c].length;++h)l[c].push(o.indexOf(s[c][h]))}let u=o.length,d=r.length,p=[];for(let c=d;c<u;++c)p.push(c);return{allDims:o,summedDims:p,idDims:l}}function d$(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let a=[];for(let r=0;r<e;++r)n[r]===-1&&a.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:a}}function p$(e,t,n){let a=new Array(e);for(let r=0;r<n.length;++r){let s=n[r].shape;for(let i=0;i<t[r].length;++i)a[t[r][i]]===void 0?a[t[r][i]]=s[i]:F(a[t[r][i]]===s[i],()=>`Expected dimension ${a[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function c$(e,t){let n=e,a=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;i<r;++i)a.push([]);let s=[];for(let i=0;i<n.length;++i){let o=n[i],l=f$(t,o);for(let u of l)s.indexOf(u)===-1&&(a[i].push(u),s.push(u))}return{path:n,steps:a}}function h$(e){return e.every((t,n)=>t===n)}function f$(e,t){let n=[];for(let a=0;a<e.length;++a)(e[a].length===0||e[a].indexOf(t)!==-1||t===-1)&&n.push(a);return n}function m$(e,t,n=0){let a=[];if(typeof t=="number")F(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);F(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}F(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}var K3={};Fe(K3,{collectGatherOpShapeInfo:()=>g$,computeOutShape:()=>A$,segOpComputeOptimalWindowSize:()=>y$});function y$(e,t){let n=!1,a;for(e<=Jy?(a=e,n=!0):a=_p(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=_p(e,a+1);return a}function A$(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function g$(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
|
|
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let p=0;p<a;++p)if(e.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${e.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let i=e.shape[n],o=[],l=1,u=1,d=1;for(let p=0;p<a;++p)o.push(e.shape[p]),l*=e.shape[p];for(let p=a;p<n;p++)o.push(e.shape[p]),u*=e.shape[p];for(let p=a;p<r;p++)o.push(t.shape[p]);for(let p=n+1;p<s;p++)o.push(e.shape[p]),d*=e.shape[p];return{batchSize:l,sliceSize:d,outerSize:u,dimSize:i,outputShape:o}}function x$(e){try{return e.map(t=>xc(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function b$(e){return e.map(t=>Uu(t))}var Ga={};Fe(Ga,{nonMaxSuppressionV3Impl:()=>O3,nonMaxSuppressionV4Impl:()=>_3,nonMaxSuppressionV5Impl:()=>P3,whereImpl:()=>N3});function ve(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var v$=Ga.whereImpl,hh=class extends ku{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new zp(this,dr())}nextDataId(){return hh.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,J().get("IS_NODE")&&R.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let r=n.map(s=>k.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return R.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>k.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}makeOutput(e,t,n){let a=this.write(e,t,n);return dr().makeTensorFromDataId(a,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ve([e],"where");let t=this.readSync(e.dataId);return v$(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};hh.nextDataId=0;var e1={};Fe(e1,{addImpl:()=>Y3,bincountImpl:()=>n1,bincountReduceImpl:()=>J3,ceilImpl:()=>Q3,concatImpl:()=>a1,expImpl:()=>e7,expm1Impl:()=>n7,floorImpl:()=>a7,gatherV2Impl:()=>r7,greaterImpl:()=>s7,lessImpl:()=>i7,linSpaceImpl:()=>o7,logImpl:()=>l7,maxImpl:()=>u7,maximumImpl:()=>d7,minimumImpl:()=>p7,multiplyImpl:()=>r1,negImpl:()=>c7,notEqualImpl:()=>h7,prodImpl:()=>f7,rangeImpl:()=>i1,rsqrtImpl:()=>m7,simpleAbsImpl:()=>Z3,sliceImpl:()=>yh,sparseFillEmptyRowsImpl:()=>y7,sparseReshapeImpl:()=>A7,squaredDifferenceImpl:()=>g7,stridedSliceImpl:()=>x7,subImpl:()=>b7,tileImpl:()=>v7,topKImpl:()=>w7,transposeImpl:()=>s1,uniqueImpl:()=>k7});function Z3(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var w$=e=>{let{x:t}=e.inputs,n=e.backend;ve(t,"abs");let a=new Float32Array(k.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=Z3(r),n.makeOutput(a,t.shape,"float32")},k$={kernelName:oo,backendName:"cpu",kernelFunc:w$};function Dt(e){return(t,n,a,r,s)=>{let i=R.assertAndGetBroadcastShape(t,n),o=i.length,l=k.computeStrides(i),u=k.sizeFromShape(i),d=k.getTypedArrayFromDType(s,u),p=t.length,c=n.length,h=k.computeStrides(t),m=k.computeStrides(n),f=R.getBroadcastDims(t,i),y=R.getBroadcastDims(n,i);if(f.length+y.length===0)for(let A=0;A<d.length;++A)d[A]=e(a[A%a.length],r[A%r.length]);else for(let A=0;A<d.length;++A){let g=k.indexToLoc(A,o,l),x=g.slice(-p);f.forEach(S=>x[S]=0);let w=k.locToIndex(x,p,h),b=g.slice(-c);y.forEach(S=>b[S]=0);let v=k.locToIndex(b,c,m);d[A]=e(a[w],r[v])}return[d,i]}}function Bn(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var I$={kernelName:Vp,backendName:"cpu",kernelFunc:Bn};function fh(e,t,n="float32"){if(n==="complex64"){let r=fh(e,t,"float32"),s=fh(e,t,"float32");return Bn({inputs:{real:r,imag:s},backend:e})}let a=k.makeZerosTypedArray(k.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function qa(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var S$={kernelName:Rs,backendName:"cpu",kernelFunc:qa};function Ni(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var N$={kernelName:uc,backendName:"cpu",kernelFunc:Ni};function Hr(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return qa({inputs:{x:r},backend:n});let i=fh(n,r.shape,r.dtype),o=Hr({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Bn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=Ni({inputs:{input:r},backend:n}),o=Hr({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(r.dtype,s)){let i=qa({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(r.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(r.shape,"int32",o)}if(s==="bool"){let i=n.data.get(r.dataId).values,o=k.toTypedArray([0],r.dtype),[l,u]=Dt((d,p)=>d!==p?1:0)(r.shape,[],i,o,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var T$={kernelName:As,backendName:"cpu",kernelFunc:Hr};function Xt(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;ve([i,o],e);let u=l.data.get(i.dataId).values,d=l.data.get(o.dataId).values,p=a||i.dtype,[c,h]=t(i.shape,o.shape,u,d,p);return l.makeTensorInfo(h,p,c)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=Hr({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),d=l.data.get(u.dataId),p=d.complexTensorInfos.real,c=d.complexTensorInfos.imag,h=l.data.get(p.dataId).values,m=l.data.get(c.dataId).values,f=Hr({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),y=l.data.get(f.dataId),A=y.complexTensorInfos.real,g=y.complexTensorInfos.imag,x=l.data.get(A.dataId).values,w=l.data.get(g.dataId).values,[b,v,S]=n(i.shape,o.shape,h,m,x,w),T=l.makeTensorInfo(S,"float32",b),C=l.makeTensorInfo(S,"float32",v),$=Bn({inputs:{real:T,imag:C},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(T),l.disposeIntermediateTensorInfo(C),$}else{let u=l.data.get(i.dataId).values,d=l.data.get(o.dataId).values,p=a||i.dtype,[c,h]=t(i.shape,o.shape,u,d,p);return l.makeTensorInfo(h,p,c)}}}function t1(e){return(t,n,a,r,s,i)=>{let o=R.assertAndGetBroadcastShape(t,n),l=k.sizeFromShape(o),u=o.length,d=k.computeStrides(o),p=k.getTypedArrayFromDType("float32",l),c=k.getTypedArrayFromDType("float32",l),h=R.getBroadcastDims(t,o),m=R.getBroadcastDims(n,o),f=R.mergeRealAndImagArrays(a,r),y=R.mergeRealAndImagArrays(s,i),A=t.length,g=k.computeStrides(t),x=n.length,w=k.computeStrides(n);if(h.length+m.length===0)for(let b=0;b<p.length;b++){let v=b%f.length,S=b%y.length,T=e(f[v*2],f[v*2+1],y[S*2],y[S*2+1]);p[b]=T.real,c[b]=T.imag}else for(let b=0;b<p.length;b++){let v=k.indexToLoc(b,u,d),S=v.slice(-A);h.forEach(P=>S[P]=0);let T=k.locToIndex(S,A,g),C=v.slice(-x);m.forEach(P=>C[P]=0);let $=k.locToIndex(C,x,w),O=e(f[T*2],f[T*2+1],y[$*2],y[$*2+1]);p[b]=O.real,c[b]=O.imag}return[p,c,o]}}var Y3=Dt((e,t)=>e+t),E$=t1((e,t,n,a)=>({real:e+n,imag:t+a})),md=Xt(Mr,Y3,E$),C$={kernelName:Mr,backendName:"cpu",kernelFunc:md};function n1(e,t,n,a,r){let s=k.sizeFromShape(a),i=k.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function J3(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=We([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(a?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function Fl(e){return(t,n,a)=>{let r=k.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function rt(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=k.sizeFromShape(i.shape),d=n||i.dtype,p=k.getArrayFromDType(d,u);for(let c=0;c<u;++c)p[c]=t(l[c],r);return o.makeTensorInfo(i.shape,d,p)}}function $l(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,d=t(l,u,r);return o.makeTensorInfo(i.shape,u,d)}}var Q3=Fl(e=>Math.ceil(e)),R$=$l(gs,Q3),M$={kernelName:gs,backendName:"cpu",kernelFunc:R$};function a1(e,t,n,a){let r=k.getArrayFromDType(n,k.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=k.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?R.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let d=u*t[1]+s;for(let p=0;p<i.shape[1];++p)r[d+p]=o[l++]}s+=i.shape[1]})}return r}var e7=Fl(e=>Math.exp(e)),t7=$l(Ss,e7),F$={kernelName:Ss,backendName:"cpu",kernelFunc:t7},n7=Fl(e=>Math.expm1(e)),$$=$l(No,n7),D$={kernelName:No,backendName:"cpu",kernelFunc:$$},a7=Fl(e=>Math.floor(e)),z$=$l(Ns,a7),O$={kernelName:Ns,backendName:"cpu",kernelFunc:z$};function r7(e,t,n){let a=We(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);a.values[r]=e.values[u]}return a}var s7=Dt((e,t)=>e>t?1:0),_$=Xt(Ro,s7,null,"bool"),P$={kernelName:Ro,backendName:"cpu",kernelFunc:_$},i7=Dt((e,t)=>e<t?1:0),L$=Xt(Do,i7,null,"bool"),W$={kernelName:Do,backendName:"cpu",kernelFunc:L$};function o7(e,t,n){let a=(t-e)/(n-1),r=k.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var l7=Fl(e=>Math.log(e)),B$=$l(Fs,l7),V$={kernelName:Fs,backendName:"cpu",kernelFunc:B$};function u7(e,t,n,a){let r=k.getTypedArrayFromDType(a,k.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];u>o&&(o=u)}r[s]=o}return r}var d7=Dt((e,t)=>Math.max(e,t)),j$=Xt(Ds,d7),U$={kernelName:Ds,backendName:"cpu",kernelFunc:j$},p7=Dt((e,t)=>Math.min(e,t)),H$=Xt(Ps,p7),G$={kernelName:Ps,backendName:"cpu",kernelFunc:H$},r1=Dt((e,t)=>e*t),q$=t1((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),mh=Xt(Ws,r1,q$),X$={kernelName:Ws,backendName:"cpu",kernelFunc:mh};function c7(e,t,n){let a=k.createScalarValue(-1,n);return r1([],t,a,e,n)}function K$(e){let{inputs:t,backend:n}=e,{x:a}=t;ve(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=c7(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var Z$={kernelName:Lo,backendName:"cpu",kernelFunc:K$},h7=Dt((e,t)=>e!==t?1:0),Y$=Xt(Wo,h7,null,"bool"),J$={kernelName:Wo,backendName:"cpu",kernelFunc:Y$};function s1(e,t,n,a,r){let s=t.length,i=k.sizeFromShape(t),o=k.computeStrides(t),l=k.computeStrides(r),u=k.getTypedArrayFromDType(n,k.sizeFromShape(r));for(let d=0;d<i;++d){let p=k.indexToLoc(d,s,o),c=new Array(p.length);for(let m=0;m<c.length;m++)c[m]=p[a[m]];let h=k.locToIndex(c,s,l);u[h]=e[d]}return u}function ta(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;ve(r,"transpose");let i=r.shape.length,o=new Array(i);for(let d=0;d<o.length;d++)o[d]=r.shape[s[d]];let l=a.data.get(r.dataId).values,u=s1(l,r.shape,r.dtype,s,o);return{dataId:a.write(u,o,r.dtype),shape:o,dtype:r.dtype}}var Q$={kernelName:ii,backendName:"cpu",kernelFunc:ta};function f7(e,t,n,a){let[r,s]=R.computeOutAndReduceShapes(e,a),i=da(t,"int32"),o=k.makeZerosTypedArray(k.sizeFromShape(r),i),l=k.sizeFromShape(s);for(let u=0;u<o.length;++u){let d=u*l,p=1;for(let c=0;c<l;++c)p*=n[d+c];o[u]=p}return{outVals:o,outShape:r,outDtype:i}}function eD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"prod");let o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=R.getAxesPermutation(l,o),d=l,p=r,c=[];u!=null&&(p=ta({inputs:{x:r},backend:n,attrs:{perm:u}}),c.push(p),d=R.getInnerMostAxes(d.length,o));let h=n.data.get(p.dataId).values,{outVals:m,outShape:f,outDtype:y}=f7(p.shape,p.dtype,h,d),A=f;return i&&(A=R.expandShapeToKeepDim(f,l)),c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(A,y,m)}var tD={kernelName:Go,backendName:"cpu",kernelFunc:eD};function i1(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return k.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=k.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var m7=Fl(e=>1/Math.sqrt(e)),nD=$l(Zs,m7),aD={kernelName:Zs,backendName:"cpu",kernelFunc:nD};function yh(e,t,n,a,r){let s=un.isSliceContinous(a,t,n),i=k.sizeFromShape(n),o=k.computeStrides(a);if(s){let p=un.computeFlatOffset(t,o);return r==="string"?e.slice(p,p+i):e.subarray(p,p+i)}let l=r==="string"?R.fromUint8ToStringArray(e):e,u=We(a,r,l),d=We(n,r);for(let p=0;p<d.size;++p){let c=d.indexToLoc(p),h=c.map((m,f)=>m+t[f]);d.set(u.get(...h),...c)}return r==="string"?R.fromStringArrayToUint8(d.values):d.values}function Ti(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;ve(r,"slice");let[o,l]=un.parseSliceParams(r,s,i);un.assertParamsValid(r,o,l);let u=n.data.get(r.dataId).values,d=yh(u,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}var rD={kernelName:Jo,backendName:"cpu",kernelFunc:Ti};function y7(e,t,n,a,r,s,i){let o=t[0],l=s[0],u=new Array(l),d=new Array(o),p=t[1];if(l===0){if(o!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${o}`);let y=k.getArrayFromDType(n,0),A=k.getArrayFromDType(r,0);return[y,[0,p],A,u,d]}let c=!0,h=0,m=new Array(l).fill(0);for(let y=0;y<o;++y){let A=e[y*p];if(A<0)throw new Error(`indices(${y}, 0) is invalid: ${A} < 0`);if(A>=l)throw new Error(`indices(${y}, 0) is invalid: ${A} >= ${l}`);++m[A],c=c&&A>=h,h=A}let f=!0;for(let y=0;y<l;++y){let A=m[y]===0;u[y]=A,f=f&&!A,m[y]=Math.max(m[y],1),y>0&&(m[y]+=m[y-1])}if(f&&c){let y=e,A=a;for(let g=0;g<o;++g)d[g]=g;return[y,[o,p],A,u,d]}else{let y=m[l-1],A=k.getArrayFromDType(n,y*p),g=k.getArrayFromDType(r,y),x=new Array(l).fill(0);for(let w=0;w<o;++w){let b=e[w*p],v=x[b],S=(b===0?0:m[b-1])+v;x[b]++;for(let T=0;T<p;++T)A[S*p+T]=e[w*p+T];g[S]=a[w],d[w]=S}for(let w=0;w<l;++w)if(x[w]===0){let b=w===0?0:m[w-1];A[b*p+0]=w;for(let v=1;v<p;++v)A[b*p+v]=0;g[b]=i}return[A,[o,p],g,u,d]}}function A7(e,t,n,a,r){let s=k.sizeFromShape(a),i=t[0],o=r.length,l=[],u=1,d=-1;for(let y=0;y<o;++y){let A=r[y];if(A===-1){if(d!==-1)throw new Error(`only one output dimension may be -1, not both ${d} and ${y}`);d=y,l.push(1)}else{if(A<0)throw new Error(`size ${y} must be non-negative, not ${A}`);u*=A,l.push(A)}}if(d!==-1){if(u<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let y=Math.trunc(s/u);if(u*y!==s)throw new Error(`Input to reshape is a SparseTensor with ${s}
|
|
dense values, but the requested shape requires a multiple of ${u}. inputShape=${a} outputShape= ${l}`);l[d]=y}let p=k.sizeFromShape(l);if(p!==s)throw new Error(`Input to reshape is a tensor with ${s} dense values, but the requested shape has ${p}. inputShape=${a} outputShape=${l}`);let c=a.length,h=[];if(c>0){h[c-1]=1;for(let y=c-2;y>=0;--y)h[y]=h[y+1]*a[y+1]}let m=[];if(o>0){m[o-1]=1;for(let y=o-2;y>=0;--y)m[y]=m[y+1]*l[y+1]}let f=k.getArrayFromDType(n,i*o);for(let y=0;y<i;++y){let A=0;for(let g=0;g<c;++g)A+=e[y*c+g]*h[g];for(let g=0;g<o;++g)f[y*o+g]=Math.trunc(A/m[g]),A%=m[g]}return[f,[i,o],l]}var g7=Dt((e,t)=>{let n=e-t;return n*n}),sD=Xt(ni,g7),iD={kernelName:ni,backendName:"cpu",kernelFunc:sD};function x7(e,t,n,a){let r=We(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var b7=Dt((e,t)=>e-t),oD=t1((e,t,n,a)=>({real:e-n,imag:t-a})),o1=Xt(ai,b7,oD),lD={kernelName:ai,backendName:"cpu",kernelFunc:o1};function v7(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=We(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}function w7(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=k.getTypedArrayFromDType(n,i*a),u=k.getTypedArrayFromDType("int32",i*a);for(let p=0;p<i;p++){let c=p*o,h=e.subarray(c,c+o),m=[];for(let g=0;g<h.length;g++)m.push({value:h[g],index:g});m.sort((g,x)=>x.value-g.value);let f=p*a,y=l.subarray(f,f+a),A=u.subarray(f,f+a);for(let g=0;g<a;g++)y[g]=m[g].value,A[g]=m[g].index}let d=t.slice();return d[d.length-1]=a,[We(d,n,l),We(d,"int32",u)]}function k7(e,t,n,a){let r=k.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[r]),l=new Pt(s,a,e),u=[],d=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(d)f=e[m].toString();else{let y=[];for(let A=0;A<s[0];A++)for(let g=0;g<s[2];g++)y.push(l.get(A,m,g));f=y.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let y=Object.keys(i).length;i[f]=y,o[m]=y,u.push(m)}}let p=s.slice();p[1]=Object.keys(i).length;let c=new Pt(p,a);u.forEach((m,f)=>{for(let y=0;y<s[0];y++)for(let A=0;A<s[2];A++)c.set(l.get(y,m,A),y,f,A)});let h=n.slice();return h[r]=p[1],{outputValues:c.values,outputShape:h,indices:o}}var I7="3.6.0";Al("cpu",()=>new hh,1);var S7=rt(wo,e=>e>=0?e:Math.exp(e)-1),uD={kernelName:wo,backendName:"cpu",kernelFunc:S7};function N7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;ve([r],"leakyRelu");let i=k.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=k.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(r.shape,"float32",l)}var dD={kernelName:Ms,backendName:"cpu",kernelFunc:N7},pD=Dt((e,t)=>e<0?t*e:e);function T7(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;ve([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=pD(a.shape,r.shape,s,i,a.dtype);return n.makeTensorInfo(l,a.dtype,o)}var cD={kernelName:Us,backendName:"cpu",kernelFunc:T7},E7=rt(Hs,e=>Math.max(0,e)),hD={kernelName:Hs,backendName:"cpu",kernelFunc:E7},C7=rt(qs,e=>Math.min(Math.max(0,e),6)),fD={kernelName:qs,backendName:"cpu",kernelFunc:C7},R7=rt(Js,e=>1/(1+Math.exp(-e))),mD={kernelName:Js,backendName:"cpu",kernelFunc:R7};function l1(e,t,n,a,r){if(n==="linear")return qa({inputs:{x:t},backend:e});if(n==="relu")return E7({inputs:{x:t},backend:e});if(n==="elu")return S7({inputs:{x:t},backend:e});if(n==="relu6")return C7({inputs:{x:t},backend:e});if(n==="prelu")return T7({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return N7({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return R7({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function ht(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=k.sizeFromShape(r.shape),o=k.inferFromImplicitShape(s,i),l=k.sizeFromShape(o);k.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let d=u.complexTensorInfos.real,p=u.complexTensorInfos.imag;d.shape=o,p.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var yD={kernelName:Xo,backendName:"cpu",kernelFunc:ht};function M7(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;ve([r,s],"matMul");let l=r.shape.length,u=s.shape.length,d=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),y=k.sizeFromShape(m),A=k.sizeFromShape(f),g=y===A||y===1||A===1;k.assert(l>=2&&u>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(y>A?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([c,h]);k.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let w=i?[y,d,c]:[y,c,d],b=o?[A,h,p]:[A,p,h],v=ht({inputs:{x:r},backend:n,attrs:{shape:w}}),S=ht({inputs:{x:s},backend:n,attrs:{shape:b}}),T=i?v.shape[1]:v.shape[2],C=i?v.shape[2]:v.shape[1],$=o?S.shape[1]:S.shape[2],O=Math.max(y,A),P=n.data.get(v.dataId).values,j=n.data.get(S.dataId).values,D=k.computeStrides(v.shape),U=k.computeStrides(S.shape),[X,G,ee]=i?[D[0],1,D[1]]:[D[0],D[1],1],[Y,re,ne]=o?[1,U[1],U[0]]:[U[1],1,U[0]],ie=C*$,Q=We([O,C,$],v.dtype),pe=Q.values,oe=n.blockSize;for(let ge=0;ge<O;ge++)for(let he=0;he<C;he+=oe)for(let Se=0;Se<$;Se+=oe)for(let Te=0;Te<T;Te+=oe){let $e=Math.min(he+oe,C),Oe=Math.min(Se+oe,$),De=Math.min(Te+oe,T);for(let et=he;et<$e;et++)for(let tt=Se;tt<Oe;tt++){let it=0;for(let Ke=Te;Ke<De;Ke++){let pt=Math.min(ge,y-1)*X,je=Math.min(ge,A-1)*ne,xn=P[pt+et*G+Ke*ee],bt=j[Ke*Y+tt*re+je];it+=xn*bt}pe[ge*ie+(et*$+tt)]+=it}}return n.disposeIntermediateTensorInfo(v),n.disposeIntermediateTensorInfo(S),n.makeTensorInfo(x,Q.dtype,Q.values)}var AD={kernelName:ys,backendName:"cpu",kernelFunc:M7};function gD(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:p}=a,c,h,m,f=[];c=M7({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(h=md({inputs:{a:c,b:i},backend:n}),f.push(c),c=h),d&&(m=l1(n,c,d,o,p),f.push(c),c=m);for(let y of f)n.disposeIntermediateTensorInfo(y);return c}var xD={kernelName:oi,backendName:"cpu",kernelFunc:gD},bD=rt(lo,e=>Math.acos(e)),vD={kernelName:lo,backendName:"cpu",kernelFunc:bD},wD=rt(uo,e=>Math.acosh(e)),kD={kernelName:uo,backendName:"cpu",kernelFunc:wD};function ID(e){let{inputs:t,backend:n}=e,a=t;ve(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=We(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var SD={kernelName:hs,backendName:"cpu",kernelFunc:ID};function ND(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"all");let o=k.parseAxisParam(s,r.shape),l=o,u=R.getAxesPermutation(l,r.shape.length),d=r;u!=null&&(d=ta({inputs:{x:r},backend:n,attrs:{perm:u}}),l=R.getInnerMostAxes(l.length,r.shape.length)),R.assertAxesAreInnerMostDims("all",l,d.shape.length);let[p,c]=R.computeOutAndReduceShapes(d.shape,l),h=k.sizeFromShape(c),m=k.makeZerosTypedArray(k.sizeFromShape(p),d.dtype),f=n.data.get(d.dataId).values;for(let A=0;A<m.length;++A){let g=A*h,x=f[g];for(let w=0;w<h;++w){let b=f[g+w];x=x&&b}m[A]=x}u!=null&&n.disposeIntermediateTensorInfo(d);let y=n.makeTensorInfo(p,d.dtype,m);if(i){let A=R.expandShapeToKeepDim(p,o),g=ht({inputs:{x:y},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(y),g}return y}var TD={kernelName:po,backendName:"cpu",kernelFunc:ND};function ED(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"any");let o=k.parseAxisParam(s,r.shape),l=o,u=R.getAxesPermutation(l,r.shape.length),d=r;u!=null&&(d=ta({inputs:{x:r},backend:n,attrs:{perm:u}}),l=R.getInnerMostAxes(l.length,r.shape.length)),R.assertAxesAreInnerMostDims("any",l,d.shape.length);let[p,c]=R.computeOutAndReduceShapes(d.shape,l),h=k.sizeFromShape(c),m=k.makeZerosTypedArray(k.sizeFromShape(p),d.dtype),f=n.data.get(d.dataId).values;for(let A=0;A<m.length;++A){let g=A*h,x=f[g];for(let w=0;w<h;++w){let b=f[g+w];x=x||b}m[A]=x}u!=null&&n.disposeIntermediateTensorInfo(d);let y=n.makeTensorInfo(p,d.dtype,m);if(i){let A=R.expandShapeToKeepDim(p,o),g=ht({inputs:{x:y},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(y),g}return y}var CD={kernelName:co,backendName:"cpu",kernelFunc:ED};function RD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ve(r,"argMax");let i=k.parseAxisParam(s,r.shape),o=R.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=ta({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],R.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[d,p]=R.computeOutAndReduceShapes(l.shape,i),c=k.sizeFromShape(d),h=k.makeZerosTypedArray(c,"int32"),m=k.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let y=0;y<h.length;++y){let A=y*m,g=f[A],x=0;for(let w=0;w<m;++w){let b=f[A+w];b>g&&(g=b,x=w)}h[y]=x}return u.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(d,"int32",h)}var MD={kernelName:fs,backendName:"cpu",kernelFunc:RD};function FD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ve(r,"argMin");let i=k.parseAxisParam(s,r.shape),o=R.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=ta({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],R.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[d,p]=R.computeOutAndReduceShapes(l.shape,i),c=k.sizeFromShape(d),h=k.makeZerosTypedArray(c,"int32"),m=k.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let y=0;y<h.length;++y){let A=y*m,g=f[A],x=0;for(let w=0;w<m;++w){let b=f[A+w];b<g&&(g=b,x=w)}h[y]=x}return u.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(d,"int32",h)}var $D={kernelName:Nu,backendName:"cpu",kernelFunc:FD},DD=rt(ho,e=>Math.asin(e)),zD={kernelName:ho,backendName:"cpu",kernelFunc:DD},OD=rt(fo,e=>Math.asinh(e)),_D={kernelName:fo,backendName:"cpu",kernelFunc:OD},PD=rt(mo,e=>Math.atan(e)),LD={kernelName:mo,backendName:"cpu",kernelFunc:PD},WD=Dt((e,t)=>Math.atan2(e,t)),BD=Xt(Ao,WD),VD={kernelName:Ao,backendName:"cpu",kernelFunc:BD},jD=rt(yo,e=>Math.atanh(e)),UD={kernelName:yo,backendName:"cpu",kernelFunc:jD};function u1(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,d=r.effectiveFilterHeight,p=r.effectiveFilterWidth,c=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=We(r.outShape,n),y=f.values,A=r.outShape[1]*r.outShape[2]*r.outShape[3],g=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let w=0;w<r.batchSize;++w){let b=w*A,v=w*a[0];for(let S=0;S<r.inChannels;++S)for(let T=0;T<r.outHeight;++T){let C=T*i-c,$=Math.max(0,C),O=Math.min(r.inHeight,d+C),P=b+T*g;for(let j=0;j<r.outWidth;++j){let D=j*o-h,U=Math.max(0,D),X=Math.min(r.inWidth,p+D),G=m,ee=0,Y=0;for(let ne=$;ne<O;ne+=l){let ie=v+ne*a[1];for(let Q=U;Q<X;Q+=u){let pe=ie+Q*a[2],oe=e[pe+S];s==="max"&&oe>G?G=oe:s==="avg"&&(ee+=oe,Y++)}if(isNaN(G))break}let re=P+j*x+S;y[re]=s==="avg"?ee/Y:G}}}return f}function F7(e,t,n,a,r=!1,s=!1){let i=We(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,u=a.dilationHeight,d=a.dilationWidth,p=a.effectiveFilterHeight,c=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=We(t,n,e);for(let y=0;y<a.batchSize;++y)for(let A=0;A<a.inChannels;++A)for(let g=0;g<a.outHeight;++g){let x=g*o-h,w=x;for(;w<0;)w+=u;let b=Math.min(a.inHeight,p+x);for(let v=0;v<a.outWidth;++v){let S=v*l-m,T=S;for(;T<0;)T+=d;let C=Math.min(a.inWidth,c+S),$=Number.NEGATIVE_INFINITY,O=-1;for(let P=w;P<b;P+=u){let j=P-x;for(let D=T;D<C;D+=d){let U=D-S,X=f.get(y,P,D,A);X>$&&($=X,r?O=s?((y*a.inHeight+P)*a.inWidth+D)*a.inChannels+A:(P*a.inWidth+D)*a.inChannels+A:O=j*c+U)}}i.set(O,y,g,v,A)}}return i}function $7(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,d=r.dilationHeight,p=r.dilationWidth,c=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,y=r.padInfo.top,A=r.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=We(r.outShape,n),w=x.values,b=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],v=r.outShape[2]*r.outShape[3]*r.outShape[4],S=r.outShape[3]*r.outShape[4],T=r.outShape[4];for(let C=0;C<r.batchSize;++C){let $=C*b,O=C*a[0];for(let P=0;P<r.inChannels;++P)for(let j=0;j<r.outDepth;++j){let D=j*i-f,U=D;for(;U<0;)U+=u;let X=Math.min(r.inDepth,c+D),G=$+j*v;for(let ee=0;ee<r.outHeight;++ee){let Y=ee*o-y,re=Y;for(;re<0;)re+=d;let ne=Math.min(r.inHeight,h+Y),ie=G+ee*S;for(let Q=0;Q<r.outWidth;++Q){let pe=Q*l-A,oe=pe;for(;oe<0;)oe+=p;let ge=Math.min(r.inWidth,m+pe),he=ie+Q*T,Se=g,Te=0,$e=0;for(let De=U;De<X;De+=u){let et=O+De*a[1];for(let tt=re;tt<ne;tt+=d){let it=et+tt*a[2];for(let Ke=oe;Ke<ge;Ke+=p){let pt=it+Ke*a[3],je=e[pt+P];if(s==="max"&&je>Se?Se=je:s==="avg"&&(Te+=je,$e++),isNaN(Se))break}if(isNaN(Se))break}if(isNaN(Se))break}let Oe=he+P;w[Oe]=s==="avg"?Te/$e:Se}}}}return x}function HD(e,t){let n=We(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,d=t.effectiveFilterHeight,p=t.effectiveFilterWidth,c=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let y=0;y<t.inChannels;++y)for(let A=0;A<t.outDepth;++A){let g=A*a-c,x=g;for(;x<0;)x+=i;let w=Math.min(t.inDepth,u+g);for(let b=0;b<t.outHeight;++b){let v=b*r-h,S=v;for(;S<0;)S+=o;let T=Math.min(t.inHeight,d+v);for(let C=0;C<t.outWidth;++C){let $=C*s-m,O=$;for(;O<0;)O+=l;let P=Math.min(t.inWidth,p+$),j=Number.NEGATIVE_INFINITY,D=-1;for(let U=x;U<w;U+=i){let X=U-g;for(let G=S;G<T;G+=o){let ee=G-v;for(let Y=O;Y<P;Y+=l){let re=Y-$,ne=e.get(f,U,G,Y,y);ne>=j&&(j=ne,D=X*d*p+ee*d+re)}}}n.set(D,f,A,b,C,y)}}}return n}function GD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ve(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(R.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=R.computePool2DInfo(r.shape,s,i,u,o,l),p;if(d.filterWidth===1&&d.filterHeight===1&&k.arraysEqual(d.inShape,d.outShape))p=qa({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=k.computeStrides(r.shape),m=u1(c,r.shape,r.dtype,h,d,"avg");p=n.makeTensorInfo(d.outShape,r.dtype,m.values)}return p}var qD={kernelName:ms,backendName:"cpu",kernelFunc:GD};function XD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;ve(r,"avgPool3d");let d=R.computePool3DInfo(r.shape,s,i,1,o,l,u),p=n.data.get(r.dataId).values,c=$7(p,r.shape,r.dtype,k.computeStrides(r.shape),d,"avg");return n.makeTensorInfo(c.shape,"float32",c.values)}var KD={kernelName:Tu,backendName:"cpu",kernelFunc:XD};function ZD(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;ve([r,s],"avgPool3DGrad");let d=R.computePool3DInfo(s.shape,i,o,1,l,u),p=d.strideDepth,c=d.strideHeight,h=d.strideWidth,m=d.filterDepth,f=d.filterHeight,y=d.filterWidth,A=d.dilationDepth,g=d.dilationHeight,x=d.dilationWidth,w=d.effectiveFilterDepth,b=d.effectiveFilterHeight,v=d.effectiveFilterWidth,S=w-1-d.padInfo.front,T=v-1-d.padInfo.left,C=b-1-d.padInfo.top,$=We(s.shape,"float32"),O=1/(m*f*y),P=n.bufferSync(r);for(let j=0;j<d.batchSize;++j)for(let D=0;D<d.inChannels;++D)for(let U=0;U<d.inDepth;++U)for(let X=0;X<d.inHeight;++X)for(let G=0;G<d.inWidth;++G){let ee=U-S,Y=X-C,re=G-T,ne=0;for(let ie=0;ie<w;ie+=A){let Q=(ee+ie)/p;if(!(Q<0||Q>=d.outDepth||Math.floor(Q)!==Q))for(let pe=0;pe<b;pe+=g){let oe=(Y+pe)/c;if(!(oe<0||oe>=d.outHeight||Math.floor(oe)!==oe))for(let ge=0;ge<v;ge+=x){let he=(re+ge)/h;he<0||he>=d.outWidth||Math.floor(he)!==he||(ne+=P.get(j,Q,oe,he,D))}}}$.set(ne*O,j,U,X,G,D)}return n.makeTensorInfo($.shape,$.dtype,$.values)}var YD={kernelName:Wp,backendName:"cpu",kernelFunc:ZD};function JD(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;ve([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,d=R.computePool2DInfo(i.shape,o,l,1,u),p=d.strideHeight,c=d.strideWidth,h=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,y=d.dilationWidth,A=d.effectiveFilterHeight,g=d.effectiveFilterWidth,x=g-1-d.padInfo.left,w=A-1-d.padInfo.top,b=We(i.shape,"float32"),v=1/(h*m),S=n.data.get(r.dataId).values,T=We(r.shape,"float32",S);for(let C=0;C<d.batchSize;++C)for(let $=0;$<d.inChannels;++$)for(let O=0;O<d.inHeight;++O)for(let P=0;P<d.inWidth;++P){let j=O-w,D=P-x,U=0;for(let X=0;X<A;X+=f){let G=(j+X)/p;if(!(G<0||G>=d.outHeight||Math.floor(G)!==G))for(let ee=0;ee<g;ee+=y){let Y=(D+ee)/c;Y<0||Y>=d.outWidth||Math.floor(Y)!==Y||(U+=T.get(C,G,Y,$))}}b.set(U*v,C,O,P,$)}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var QD={kernelName:Lp,backendName:"cpu",kernelFunc:JD};function ez(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;k.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ve([r,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=a;u==null&&(u=.001);let d=n.data.get(r.dataId).values,p=n.data.get(o.dataId).values,c=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(d.length),y=m.length,A=h.length,g=c.length,x=p.length,w=0,b=0,v=0,S=0;for(let T=0;T<d.length;++T)f[T]=m[w++]+(d[T]-p[b++])*h[v++]/Math.sqrt(c[S++]+u),w>=y&&(w=0),b>=x&&(b=0),v>=A&&(v=0),S>=g&&(S=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var tz={kernelName:Es,backendName:"cpu",kernelFunc:ez};function nz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;ve([r],"batchToSpaceND");let o=s.reduce((A,g)=>A*g),l=R.getReshaped(r.shape,s,o),u=R.getPermuted(l.length,s.length),d=R.getReshapedPermuted(r.shape,s,o),p=R.getSliceBeginCoords(i,s.length),c=R.getSliceSize(d,i,s.length),h=ht({inputs:{x:r},backend:n,attrs:{shape:l}}),m=ta({inputs:{x:h},backend:n,attrs:{perm:u}}),f=ht({inputs:{x:m},backend:n,attrs:{shape:d}}),y=Ti({inputs:{x:f},backend:n,attrs:{begin:p,size:c}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),y}var az={kernelName:Eu,backendName:"cpu",kernelFunc:nz};function rz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=n1(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var sz={kernelName:Bp,backendName:"cpu",kernelFunc:rz},iz=rt(Fr,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),oz={kernelName:Fr,backendName:"cpu",kernelFunc:iz},lz=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(k.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let d=o[u],p=l[u];a[u]=Math.hypot(d,p)}return n.makeOutput(a,t.shape,"float32")},uz={kernelName:Cu,backendName:"cpu",kernelFunc:lz};function Dl(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var dz={kernelName:nc,backendName:"cpu",kernelFunc:Dl};function zl(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=k.parseAxisParam(r,t[0].shape)[0],i=R.computeOutShape(t.map(f=>f.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>k.sizeFromShape(f.shape)>0);if(o.length===1)return qa({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(R.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(w=>Ni({inputs:{input:w},backend:n})),y=o.map(w=>Dl({inputs:{input:w},backend:n})),A=zl({inputs:f,backend:n,attrs:{axis:s}}),g=zl({inputs:y,backend:n,attrs:{axis:s}}),x=Bn({inputs:{real:A,imag:g},backend:n});return f.forEach(w=>n.disposeIntermediateTensorInfo(w)),y.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(g),x}let u=o.map(f=>{let y=k.sizeFromShape(f.shape.slice(s));return ht({inputs:{x:f},backend:n,attrs:{shape:[-1,y]}})}),d=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=R.computeOutShape(u.map(f=>f.shape),1);let p=u[0].shape[0]===1,c=a1(d,i,t[0].dtype,p),h=R.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,c);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var pz={kernelName:go,backendName:"cpu",kernelFunc:zl};function D7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=a;ve([r,s],"conv2d");let p=R.convertConv2DDataFormat(l),c=R.computeConv2DInfo(r.shape,s.shape,i,u,o,d,!1,p),h=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,y=c.dilationWidth,A=c.padInfo.left,g=c.padInfo.top,x=c.dataFormat==="channelsLast",w=new Pt(c.outShape,r.dtype),b=k.computeStrides(r.shape),v=k.computeStrides(s.shape),S=b[0],T=x?b[1]:b[2],C=x?b[2]:1,$=x?1:b[1],O=w.strides[0],P=x?w.strides[1]:w.strides[2],j=x?w.strides[2]:1,D=x?1:w.strides[1],U=n.data.get(r.dataId).values,X=n.data.get(s.dataId).values,G=w.values;for(let ee=0;ee<c.batchSize;++ee){let Y=ee*S,re=ee*O;for(let ne=0;ne<c.outHeight;++ne){let ie=re+ne*P,Q=ne*c.strideHeight-g;for(let pe=0;pe<h;++pe){let oe=Q+pe*f;if(oe<0||oe>=c.inHeight)continue;let ge=pe*v[0],he=Y+oe*T;for(let Se=0;Se<c.outWidth;++Se){let Te=ie+Se*j,$e=Se*c.strideWidth-A;for(let Oe=0;Oe<m;++Oe){let De=$e+Oe*y;if(De<0||De>=c.inWidth)continue;let et=ge+Oe*v[1],tt=he+De*C,it=et;for(let Ke=0;Ke<c.inChannels;++Ke){let pt=U[tt+Ke*$];for(let je=0;je<c.outChannels;++je)G[Te+je*D]+=pt*X[it+je];it+=c.outChannels}}}}}}return n.makeTensorInfo(w.shape,w.dtype,G)}var cz={kernelName:xs,backendName:"cpu",kernelFunc:D7};function hz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:d}=a;ve([r,s],"conv2dBackpropFilter");let p=R.convertConv2DDataFormat(l),c=R.computeConv2DInfo(r.shape,d,i,1,o,u,!1,p),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:y}=c,A=c.dataFormat==="channelsLast",g=new Pt(c.filterShape,"float32"),x=c.padInfo.left,w=c.padInfo.top,b=n.data.get(r.dataId).values,v=n.data.get(s.dataId).values,S=new Pt(r.shape,r.dtype,b),T=new Pt(s.shape,s.dtype,v);for(let C=0;C<f;++C){let $=Math.max(0,Math.ceil((w-C)/h)),O=Math.min(c.outHeight,(c.inHeight+w-C)/h);for(let P=0;P<y;++P){let j=Math.max(0,Math.ceil((x-P)/m)),D=Math.min(c.outWidth,(c.inWidth+x-P)/m);for(let U=0;U<c.inChannels;++U)for(let X=0;X<c.outChannels;++X){let G=0;for(let ee=0;ee<c.batchSize;++ee)for(let Y=$;Y<O;++Y){let re=C+Y*h-w;for(let ne=j;ne<D;++ne){let ie=P+ne*m-x;A?G+=S.get(ee,re,ie,U)*T.get(ee,Y,ne,X):G+=S.get(ee,U,re,ie)*T.get(ee,X,Y,ne)}}g.set(G,C,P,U,X)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var fz={kernelName:jp,backendName:"cpu",kernelFunc:hz};function mz(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=a;ve([r,s],"conv2dBackpropInput");let p=k.computeStrides(s.shape),c=k.computeStrides(r.shape),h=R.convertConv2DDataFormat(u),m=R.computeConv2DInfo(i,s.shape,o,1,l,d,!1,h),f=new Pt(m.inShape,"float32"),y=f.values,A=n.data.get(r.dataId).values,g=n.data.get(s.dataId).values,[x,w,b]=p,{batchSize:v,filterHeight:S,filterWidth:T,inChannels:C,inHeight:$,inWidth:O,outChannels:P,outHeight:j,outWidth:D,strideHeight:U,strideWidth:X}=m;h=m.dataFormat;let G=S-1-m.padInfo.top,ee=T-1-m.padInfo.left,Y=h==="channelsLast",re=f.strides[0],ne=Y?f.strides[1]:f.strides[2],ie=Y?f.strides[2]:1,Q=Y?1:f.strides[1],pe=c[0],oe=Y?c[1]:c[2],ge=Y?c[2]:1,he=Y?1:c[1];for(let Se=0;Se<v;++Se)for(let Te=0;Te<C;++Te)for(let $e=0;$e<$;++$e){let Oe=$e-G,De=Math.max(0,Math.ceil(Oe/U)),et=Math.min(j,(S+Oe)/U);for(let tt=0;tt<O;++tt){let it=tt-ee,Ke=Math.max(0,Math.ceil(it/X)),pt=Math.min(D,(T+it)/X),je=0;for(let bt=De;bt<et;++bt){let Kn=bt*U-Oe;for(let Yt=Ke;Yt<pt;++Yt){let bn=Yt*X-it,Zn=pe*Se+oe*bt+ge*Yt,Dn=x*(S-1-Kn)+w*(T-1-bn)+b*Te;for(let sn=0;sn<P;++sn){let Jt=A[Zn+he*sn],za=g[Dn+sn];je+=Jt*za}}}let xn=re*Se+ne*$e+ie*tt+Q*Te;y[xn]=je}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var yz={kernelName:bs,backendName:"cpu",kernelFunc:mz};function Az(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;ve([r,s],"conv3d");let u=R.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:d,filterHeight:p,filterWidth:c,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:y}=u,A=y.front,g=y.left,x=y.top,w=new Pt(u.outShape,r.dtype),b=n.data.get(r.dataId).values,v=n.data.get(s.dataId).values,S=w.values,T=k.computeStrides(r.shape),C=k.computeStrides(s.shape);for(let $=0;$<u.batchSize;++$){let O=$*T[0],P=$*w.strides[0];for(let j=0;j<u.outDepth;++j){let D=P+j*w.strides[1],U=j*u.strideDepth-A;for(let X=0;X<d;++X){let G=U+X*h;if(G<0||G>=u.inDepth)continue;let ee=X*C[0],Y=O+G*T[1];for(let re=0;re<u.outHeight;++re){let ne=D+re*w.strides[2],ie=re*u.strideHeight-x;for(let Q=0;Q<p;++Q){let pe=ie+Q*m;if(pe<0||pe>=u.inHeight)continue;let oe=ee+Q*C[1],ge=Y+pe*T[2];for(let he=0;he<u.outWidth;++he){let Se=ne+he*u.outChannels,Te=he*u.strideWidth-g;for(let $e=0;$e<c;++$e){let Oe=Te+$e*f;if(Oe<0||Oe>=u.inWidth)continue;let De=oe+$e*C[2],et=ge+Oe*u.inChannels,tt=De;for(let it=0;it<u.inChannels;++it){let Ke=b[et+it];for(let pt=0;pt<u.outChannels;++pt)S[Se+pt]+=Ke*v[tt+pt];tt+=u.outChannels}}}}}}}}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var gz={kernelName:Ru,backendName:"cpu",kernelFunc:Az};function xz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;ve([r,s],"conv3dBackpropFilterV2");let u=k.computeStrides(r.shape),d=k.computeStrides(s.shape),p=R.computeConv3DInfo(r.shape,l,i,1,o),c=p.strideDepth,h=p.strideHeight,m=p.strideWidth,f=p.filterDepth,y=p.filterHeight,A=p.filterWidth,g=new Pt(p.filterShape,"float32"),x=g.values,[w,b,v,S]=g.strides,T=n.data.get(s.dataId).values,[C,$,O,P]=d,j=n.data.get(r.dataId).values,[D,U,X,G]=u,ee=p.padInfo.front,Y=p.padInfo.left,re=p.padInfo.top;for(let ne=0;ne<f;++ne){let ie=Math.max(0,Math.ceil((ee-ne)/c)),Q=Math.min(p.outDepth,(p.inDepth+ee-ne)/c),pe=ne*w;for(let oe=0;oe<y;++oe){let ge=Math.max(0,Math.ceil((re-oe)/h)),he=Math.min(p.outHeight,(p.inHeight+re-oe)/h),Se=oe*b+pe;for(let Te=0;Te<A;++Te){let $e=Math.max(0,Math.ceil((Y-Te)/m)),Oe=Math.min(p.outWidth,(p.inWidth+Y-Te)/m),De=Te*v+Se;for(let et=0;et<p.inChannels;++et){let tt=et*S+De;for(let it=0;it<p.outChannels;++it){let Ke=0;for(let pt=0;pt<p.batchSize;++pt){let je=pt*D,xn=pt*C;for(let bt=ie;bt<Q;++bt){let Kn=(ne+bt*c-ee)*U+je,Yt=bt*$+xn;for(let bn=ge;bn<he;++bn){let Zn=(oe+bn*h-re)*X+Kn,Dn=bn*O+Yt;for(let sn=$e;sn<Oe;++sn){let Jt=(Te+sn*m-Y)*G+Zn,za=sn*P+Dn;Ke+=j[Jt+et]*T[za+it]}}}}x[tt+it]=Ke}}}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var bz={kernelName:Up,backendName:"cpu",kernelFunc:xz};function vz(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;ve([r],"conv3dBackpropInputV2");let u=k.computeStrides(r.shape),d=k.computeStrides(s.shape),p=R.computeConv3DInfo(l,s.shape,o,1,i),c=new Pt(p.inShape,"float32"),h=c.values,[m,f,y,A]=c.strides,g=n.data.get(r.dataId).values,[x,w,b,v]=u,S=n.data.get(s.dataId).values,[T,C,$,O]=d,{batchSize:P,filterDepth:j,filterHeight:D,filterWidth:U,inChannels:X,inDepth:G,inHeight:ee,inWidth:Y,outChannels:re,outDepth:ne,outHeight:ie,outWidth:Q,strideDepth:pe,strideHeight:oe,strideWidth:ge}=p,he=j-1-p.padInfo.front,Se=D-1-p.padInfo.top,Te=U-1-p.padInfo.left;for(let $e=0;$e<P;++$e)for(let Oe=0;Oe<X;++Oe)for(let De=0;De<G;++De){let et=De-he,tt=Math.max(0,Math.ceil(et/pe)),it=Math.min(ne,(j+et)/pe);for(let Ke=0;Ke<ee;++Ke){let pt=Ke-Se,je=Math.max(0,Math.ceil(pt/oe)),xn=Math.min(ie,(D+pt)/oe);for(let bt=0;bt<Y;++bt){let Kn=bt-Te,Yt=Math.max(0,Math.ceil(Kn/ge)),bn=Math.min(Q,(U+Kn)/ge),Zn=0;for(let Dn=tt;Dn<it;++Dn){let sn=Dn*pe-et;for(let Jt=je;Jt<xn;++Jt){let za=Jt*oe-pt;for(let sa=Yt;sa<bn;++sa){let ia=sa*ge-Kn,wr=x*$e+w*Dn+b*Jt+v*sa,ar=T*(j-1-sn)+C*(D-1-za)+$*(U-1-ia)+O*Oe;for(let kr=0;kr<re;++kr){let Gi=g[wr+kr],Oa=S[ar+kr];Zn+=Gi*Oa}}}}h[m*$e+f*De+y*Ke+A*bt+Oe]=Zn}}}return n.makeTensorInfo(c.shape,c.dtype,c.values)}var wz={kernelName:Hp,backendName:"cpu",kernelFunc:vz},kz=rt(vs,e=>Math.cos(e)),Iz={kernelName:vs,backendName:"cpu",kernelFunc:kz},Sz=rt(xo,e=>Math.cosh(e)),Nz={kernelName:xo,backendName:"cpu",kernelFunc:Sz};function Tz(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,[d,p,c,h]=r.shape,m=s.shape[0],[f,y]=o,A=We([m,f,y,h],"float32"),g=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,w=n.data.get(r.dataId).values,b=k.computeStrides(r.shape),v=k.computeStrides(A.shape);for(let S=0;S<m;S++){let T=S*4,C=g[T],$=g[T+1],O=g[T+2],P=g[T+3],j=x[S];if(j>=d)continue;let D=f>1?(O-C)*(p-1)/(f-1):0,U=y>1?(P-$)*(c-1)/(y-1):0;for(let X=0;X<f;X++){let G=f>1?C*(p-1)+X*D:.5*(C+O)*(p-1);if(G<0||G>p-1){for(let ee=0;ee<y;ee++)for(let Y=0;Y<h;Y++){let re=Y+ee*v[2]+X*v[1]+S*v[0];A.values[re]=u}continue}if(l==="bilinear"){let ee=Math.floor(G),Y=Math.ceil(G),re=G-ee;for(let ne=0;ne<y;ne++){let ie=y>1?$*(c-1)+ne*U:.5*($+P)*(c-1);if(ie<0||ie>c-1){for(let ge=0;ge<h;ge++){let he=ge+ne*v[2]+X*v[1]+S*v[0];A.values[he]=u}continue}let Q=Math.floor(ie),pe=Math.ceil(ie),oe=ie-Q;for(let ge=0;ge<h;ge++){let he=ge+Q*b[2]+ee*b[1]+j*b[0],Se=w[he];he=ge+pe*b[2]+ee*b[1]+j*b[0];let Te=w[he];he=ge+Q*b[2]+Y*b[1]+j*b[0];let $e=w[he];he=ge+pe*b[2]+Y*b[1]+j*b[0];let Oe=w[he],De=Se+(Te-Se)*oe,et=$e+(Oe-$e)*oe;he=ge+ne*v[2]+X*v[1]+S*v[0],A.values[he]=De+(et-De)*re}}}else for(let ee=0;ee<y;++ee){let Y=y>1?$*(c-1)+ee*U:.5*($+P)*(c-1);if(Y<0||Y>c-1){for(let ie=0;ie<h;ie++){let Q=ie+ee*v[2]+X*v[1]+S*v[0];A.values[Q]=u}continue}let re=Math.round(Y),ne=Math.round(G);for(let ie=0;ie<h;ie++){let Q=ie+re*b[2]+ne*b[1]+j*b[0],pe=ie+ee*v[2]+X*v[1]+S*v[0];A.values[pe]=w[Q]}}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var Ez={kernelName:bo,backendName:"cpu",kernelFunc:Tz};function Cz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;ve(r,"cumsum");let l=R.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=ta({inputs:{x:r},backend:n,attrs:{perm:l}}));let d=R.getInnerMostAxes(1,r.shape.length)[0];if(d!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${d}`);let p=da(u.dtype,"int32"),c=k.makeZerosTypedArray(k.sizeFromShape(u.shape),p),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(A,g)=>A+m-g-1:(A,g)=>A+g;for(let A=0;A<h.length;A+=m)for(let g=0;g<m;g++){let x=f(A,g);if(g===0)c[x]=i?0:h[x];else{let w=f(A,g-1);c[x]=i?h[w]+c[w]:h[x]+c[w]}}let y=n.makeTensorInfo(u.shape,p,c);if(l!=null){let A=R.getUndoAxesPermutation(l),g=ta({inputs:{x:y},backend:n,attrs:{perm:A}});return n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(u),g}return y}var Rz={kernelName:ws,backendName:"cpu",kernelFunc:Cz};function Mz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,d=n1(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,d)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),d=J3(l,u,i,o);return n.makeTensorInfo(d.shape,s.dtype,d.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Fz={kernelName:Gp,backendName:"cpu",kernelFunc:Mz};function $z(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;k.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=r.shape[1],u=r.shape[2],d=r.shape[3],p=l*s,c=u*s,h=d/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*p*c*h),y=0;for(let A=0;A<o;++A)for(let g=0;g<p;++g){let x=Math.floor(g/s),w=g%s;for(let b=0;b<c;++b){let v=Math.floor(b/s),S=b%s,T=(w*s+S)*h;for(let C=0;C<h;++C){let $=C+T+d*(v+u*(x+l*A));f[y++]=m[$]}}}return n.makeTensorInfo([o,p,c,h],r.dtype,f)}var Dz={kernelName:vo,backendName:"cpu",kernelFunc:$z};function z7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a;ve([r,s],"depthwiseConv2DNative");let d=k.computeStrides(r.shape),p=k.computeStrides(s.shape),c=l;c==null&&(c=[1,1]),k.assert(R.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=R.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:y,dilationWidth:A,padInfo:g}=h,x=g.left,w=g.top,b=h.outChannels/h.inChannels,v=new Pt(h.outShape,r.dtype),S=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,C=v.values;for(let $=0;$<h.batchSize;++$){let O=$*d[0],P=$*v.strides[0];for(let j=0;j<h.outHeight;++j){let D=P+j*v.strides[1],U=j*h.strideHeight-w;for(let X=0;X<m;++X){let G=U+X*y;if(G<0||G>=h.inHeight)continue;let ee=X*p[0],Y=O+G*d[1];for(let re=0;re<h.outWidth;++re){let ne=D+re*v.strides[2],ie=re*h.strideWidth-x;for(let Q=0;Q<f;++Q){let pe=ie+Q*A;if(pe<0||pe>=h.inWidth)continue;let oe=ee+Q*p[1],ge=Y+pe*h.inChannels,he=ne,Se=oe;for(let Te=0;Te<h.inChannels;++Te){let $e=S[ge+Te];for(let Oe=0;Oe<b;++Oe)C[he+Oe]+=$e*T[Se+Oe];he+=b,Se+=b}}}}}}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var zz={kernelName:ks,backendName:"cpu",kernelFunc:z7};function Oz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:d}=a;ve([r,s],"depthwiseConv2dNativeBackpropFilter");let p=R.computeConv2DInfo(r.shape,d,i,o,l,u,!0),{strideHeight:c,strideWidth:h,filterHeight:m,filterWidth:f}=p,y=new Pt(p.filterShape,"float32"),A=p.padInfo.left,g=p.padInfo.top,x=p.outChannels/p.inChannels,w=n.data.get(r.dataId).values,b=new Pt(r.shape,r.dtype,w),v=n.data.get(s.dataId).values,S=new Pt(s.shape,s.dtype,v);for(let T=0;T<m;++T){let C=Math.max(0,Math.ceil((g-T)/c)),$=Math.min(p.outHeight,(p.inHeight+g-T)/c);for(let O=0;O<f;++O){let P=Math.max(0,Math.ceil((A-O)/h)),j=Math.min(p.outWidth,(p.inWidth+A-O)/h);for(let D=0;D<p.outChannels;++D){let U=Math.trunc(D/x),X=D%x,G=0;for(let ee=0;ee<p.batchSize;++ee)for(let Y=C;Y<$;++Y){let re=T+Y*c-g;for(let ne=P;ne<j;++ne){let ie=O+ne*h-A;G+=b.get(ee,re,ie,U)*S.get(ee,Y,ne,D)}}y.set(G,T,O,U,X)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var _z={kernelName:qp,backendName:"cpu",kernelFunc:Oz};function Pz(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:d}=a;ve([r,s],"depthwiseConv2DNativeBackpropInput");let p=k.computeStrides(r.shape),c=k.computeStrides(s.shape),h=R.computeConv2DInfo(d,s.shape,i,o,l,u,!0),m=new Pt(h.inShape,"float32"),f=m.values,[y,A,g]=m.strides,x=n.data.get(r.dataId).values,[w,b,v]=p,S=n.data.get(s.dataId).values,[T,C,$]=c,{batchSize:O,filterHeight:P,filterWidth:j,inChannels:D,inHeight:U,inWidth:X,outChannels:G,outHeight:ee,outWidth:Y,strideHeight:re,strideWidth:ne}=h,ie=P-1-h.padInfo.top,Q=j-1-h.padInfo.left,pe=G/D;for(let oe=0;oe<O;++oe)for(let ge=0;ge<D;++ge)for(let he=0;he<U;++he){let Se=he-ie,Te=Math.max(0,Math.ceil(Se/re)),$e=Math.min(ee,(P+Se)/re);for(let Oe=0;Oe<X;++Oe){let De=Oe-Q,et=Math.max(0,Math.ceil(De/ne)),tt=Math.min(Y,(j+De)/ne),it=0;for(let Ke=Te;Ke<$e;++Ke){let pt=Ke*re-Se;for(let je=et;je<tt;++je){let xn=je*ne-De,bt=w*oe+b*Ke+v*je,Kn=T*(P-1-pt)+C*(j-1-xn)+$*ge;for(let Yt=0;Yt<pe;++Yt){let bn=ge*pe+Yt,Zn=x[bt+bn],Dn=S[Kn+Yt];it+=Zn*Dn}}}f[y*oe+A*he+g*Oe+ge]=it}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var Lz={kernelName:Xp,backendName:"cpu",kernelFunc:Pz};function Wz(e){let{inputs:t,backend:n}=e,{x:a}=t,r=k.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=We([r,r],a.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*r+u]=s[u];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var Bz={kernelName:Kp,backendName:"cpu",kernelFunc:Wz},Vz={kernelName:Mu,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(a.dataId).values,d=a.shape.length,p=l.data.get(r.dataId).values,c=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:y,outHeight:A,outWidth:g,padInfo:x,strideHeight:w,strideWidth:b,filterHeight:v,filterWidth:S,dilationHeight:T,dilationWidth:C,outShape:$}=R.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),O=k.sizeFromShape($),P=$.length,j=k.getArrayFromDType(a.dtype,O);for(let D=0;D<h;++D)for(let U=0;U<A;++U){let X=U*w-x.top;for(let G=0;G<g;++G){let ee=G*b-x.left;for(let Y=0;Y<y;++Y){let re=Number.MIN_SAFE_INTEGER;for(let ie=0;ie<v;++ie){let Q=X+ie*T;if(Q>=0&&Q<m)for(let pe=0;pe<S;++pe){let oe=ee+pe*C;if(oe>=0&&oe<f){let ge=k.locToIndex([D,Q,oe,Y],d,k.computeStrides(a.shape)),he=k.locToIndex([ie,pe,Y],c,k.computeStrides(r.shape)),Se=u[ge]+p[he];Se>re&&(re=Se)}}}let ne=k.locToIndex([D,U,G,Y],P,k.computeStrides($));j[ne]=re}}}return{dataId:l.write(k.toTypedArray(j,a.dtype),$,a.dtype),shape:$,dtype:a.dtype}}},jz={kernelName:Yp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,d=k.toNestedArray(a.shape,u.data.get(a.dataId).values),p=k.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:y,outWidth:A,padInfo:g,strideHeight:x,strideWidth:w,filterHeight:b,filterWidth:v,dilationHeight:S,dilationWidth:T,outShape:C}=R.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);k.assert(s.rank===C.length,()=>`Error in ${Yp}, dy must have the same rank as output ${C.length}, but got ${s.rank}`);let $=k.toNestedArray(C,u.data.get(s.dataId).values),O=k.makeZerosNestedTypedArray(r.shape,r.dtype);for(let P=0;P<c;++P)for(let j=0;j<y;++j){let D=j*x-g.top;for(let U=0;U<A;++U){let X=U*w-g.left;for(let G=0;G<f;++G){let ee=Number.MIN_SAFE_INTEGER,Y=0,re=0;for(let ne=0;ne<b;++ne){let ie=D+ne*S;if(ie>=0&&ie<h)for(let Q=0;Q<v;++Q){let pe=X+Q*T;if(pe>=0&&pe<m){let oe=d[P][ie][pe][G]+p[ne][Q][G];oe>ee&&(ee=oe,Y=ne,re=Q)}}}O[Y][re][G]+=$[P][j][U][G]}}}return{dataId:u.write(k.toTypedArray(O,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},Uz={kernelName:Zp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,d=k.toNestedArray(a.shape,u.data.get(a.dataId).values),p=k.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:y,outWidth:A,padInfo:g,strideHeight:x,strideWidth:w,filterHeight:b,filterWidth:v,dilationHeight:S,dilationWidth:T,outShape:C}=R.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);k.assert(s.rank===C.length,()=>`Error in ${Zp}, dy must have the same rank as output ${C.length}, but got ${s.rank}`);let $=k.toNestedArray(C,u.data.get(s.dataId).values),O=k.makeZerosNestedTypedArray(a.shape,a.dtype);for(let P=0;P<c;++P)for(let j=0;j<y;++j){let D=j*x-g.top;for(let U=0;U<A;++U){let X=U*w-g.left;for(let G=0;G<f;++G){let ee=Number.MIN_SAFE_INTEGER,Y=D<0?0:D,re=X<0?0:X;for(let ne=0;ne<b;++ne){let ie=D+ne*S;if(ie>=0&&ie<h)for(let Q=0;Q<v;++Q){let pe=X+Q*T;if(pe>=0&&pe<m){let oe=d[P][ie][pe][G]+p[ne][Q][G];oe>ee&&(ee=oe,Y=ie,re=pe)}}}O[P][Y][re][G]+=$[P][j][U][G]}}}return{dataId:u.write(k.toTypedArray(O,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function yd(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"sum");let o;r.dtype==="bool"?o=Hr({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=qa({inputs:{x:r},backend:n});let l=o.shape.length,u=k.parseAxisParam(s,o.shape),d=R.getAxesPermutation(u,l),p=u,c=o;d!=null&&(c=ta({inputs:{x:o},backend:n,attrs:{perm:d}}),p=R.getInnerMostAxes(p.length,l)),R.assertAxesAreInnerMostDims("sum",p,c.shape.length);let[h,m]=R.computeOutAndReduceShapes(c.shape,p),f=R.upcastType(c.dtype,"int32"),y=fh(n,h,f),A=k.sizeFromShape(m),g=n.data.get(y.dataId).values,x=n.data.get(c.dataId).values;for(let w=0;w<g.length;++w){let b=w*A,v=0;for(let S=0;S<A;++S)v+=x[b+S];g[w]=v}if(i){let w=R.expandShapeToKeepDim(y.shape,u),b=y;y=ht({inputs:{x:y},backend:n,attrs:{shape:w}}),n.disposeIntermediateTensorInfo(b)}return n.disposeIntermediateTensorInfo(o),d!=null&&n.disposeIntermediateTensorInfo(c),y}var Hz={kernelName:ei,backendName:"cpu",kernelFunc:yd};function Gz(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=R.decodeEinsumEquation(r,s.length);R.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=R.getEinsumComputePath(o,l),p=d.length,c=null,h=i.length,m=[];for(let f=0;f<p;++f){for(let y of d[f]){let{permutationIndices:A,expandDims:g}=R.getEinsumPermutation(h,l[y]),x;R.isIdentityPermutation(A)?x=s[y]:(x=ta({inputs:{x:s[y]},backend:n,attrs:{perm:A}}),m.push(x));let w=x.shape.slice();for(let b=0;b<g.length;++b)w.splice(g[b],0,1);k.arraysEqual(x.shape,w)||(x=ht({inputs:{x},backend:n,attrs:{shape:w}}),m.push(x)),c===null?c=x:(c=mh({inputs:{a:x,b:c},backend:n}),m.push(c))}f<p-1&&(u[f]>=0&&(c=yd({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var qz={kernelName:Jp,backendName:"cpu",kernelFunc:Gz};function Xz(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;ve([a,r],"eluGrad");let s=new Float32Array(k.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",s)}var Kz={kernelName:Qp,backendName:"cpu",kernelFunc:Xz},Zz=Dt((e,t)=>e===t?1:0),O7=Xt(Io,Zz,null,"bool"),Yz={kernelName:Io,backendName:"cpu",kernelFunc:O7},Jz=R.ERF_P,Qz=R.ERF_A1,eO=R.ERF_A2,tO=R.ERF_A3,nO=R.ERF_A4,aO=R.ERF_A5,rO=rt(ko,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+Jz*n);return t*(1-((((aO*a+nO)*a+tO)*a+eO)*a+Qz)*a*Math.exp(-n*n))}),sO={kernelName:ko,backendName:"cpu",kernelFunc:rO};function Ah(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),ht({inputs:{x:r},backend:n,attrs:{shape:o}})}var iO={kernelName:So,backendName:"cpu",kernelFunc:Ah},oO=Dt((e,t)=>e/t),d1=Xt(Is,oO),p1={kernelName:Is,backendName:"cpu",kernelFunc:d1};function _7(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[r,s],d=k.sizeFromShape(u),p=k.getTypedArrayFromDType("float32",d),c=k.getTypedArrayFromDType("float32",d);for(let y=0;y<r;y++){let A=Ti({inputs:{x:o},backend:n,attrs:{begin:[y,0],size:[1,s]}}),g=Ti({inputs:{x:l},backend:n,attrs:{begin:[y,0],size:[1,s]}}),x=Bn({inputs:{real:A,imag:g},backend:n}),{real:w,imag:b}=lO(x,t,n),v=R.mergeRealAndImagArrays(w,b);for(let S=0;S<s;S++){let T=R.getComplexWithIndex(v,S);p[y*s+S]=T.real,c[y*s+S]=T.imag}n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(u,"float32",p),m=n.makeTensorInfo(u,"float32",c),f=Bn({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function lO(e,t,n){let a=k.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(uO(a)){let o=c1(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),d=n.makeTensorInfo(l,"float32",o.imag),p=n.makeTensorInfo([],"float32",k.createScalarValue(a,"float32")),c=qa({inputs:{x:p},backend:n}),h=p1.kernelFunc({inputs:{a:u,b:p},backend:n}),m=p1.kernelFunc({inputs:{a:d,b:c},backend:n}),f=n.data.get(h.dataId).values,y=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:y}}return o}else{let o=R.mergeRealAndImagArrays(s,i),l=dO(o,a,t);return R.splitRealAndImagArrays(l)}}function uO(e){return(e&e-1)==0}function c1(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=R.mergeRealAndImagArrays(e,t),i=n/2,o=R.complexWithEvenIndex(s),l=o.real,u=o.imag,d=[l.length],p=r.makeTensorInfo(d,"float32",l),c=r.makeTensorInfo(d,"float32",u),h=Bn({inputs:{real:p,imag:c},backend:r}),m=R.complexWithOddIndex(s),f=m.real,y=m.imag,A=[f.length],g=r.makeTensorInfo(A,"float32",f),x=r.makeTensorInfo(A,"float32",y),w=Bn({inputs:{real:g,imag:x},backend:r}),b=c1(l,u,i,a,r),v=b.real,S=b.imag,T=[v.length],C=r.makeTensorInfo(T,"float32",v),$=r.makeTensorInfo(T,"float32",S),O=Bn({inputs:{real:C,imag:$},backend:r}),P=c1(f,y,i,a,r),j=P.real,D=P.imag,U=[j.length],X=r.makeTensorInfo(U,"float32",j),G=r.makeTensorInfo(U,"float32",D),ee=Bn({inputs:{real:X,imag:G},backend:r}),Y=R.exponents(n,a),re=[Y.real.length],ne=r.makeTensorInfo(re,"float32",Y.real),ie=r.makeTensorInfo(re,"float32",Y.imag),Q=Bn({inputs:{real:ne,imag:ie},backend:r}),pe=mh({inputs:{a:Q,b:ee},backend:r}),oe=md({inputs:{a:O,b:pe},backend:r}),ge=o1({inputs:{a:O,b:pe},backend:r}),he=Ni({inputs:{input:oe},backend:r}),Se=Ni({inputs:{input:ge},backend:r}),Te=Dl({inputs:{input:oe},backend:r}),$e=Dl({inputs:{input:ge},backend:r}),Oe=zl({inputs:[he,Se],backend:r,attrs:{axis:0}}),De=zl({inputs:[Te,$e],backend:r,attrs:{axis:0}}),et=r.data.get(Oe.dataId).values,tt=r.data.get(De.dataId).values;return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(g),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(w),r.disposeIntermediateTensorInfo(C),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(O),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(G),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(ne),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(Q),r.disposeIntermediateTensorInfo(pe),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(ge),r.disposeIntermediateTensorInfo(he),r.disposeIntermediateTensorInfo(Te),r.disposeIntermediateTensorInfo(Se),r.disposeIntermediateTensorInfo($e),r.disposeIntermediateTensorInfo(Oe),r.disposeIntermediateTensorInfo(De),{real:et,imag:tt}}function dO(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=R.exponent(r*o,t,n),u=R.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),R.assignToTypedArray(a,s,i,r)}return a}function pO(e){let{inputs:t,backend:n}=e,{input:a}=t,r=k.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=ht({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=_7(o,!1,n),u=ht({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var cO={kernelName:ec,backendName:"cpu",kernelFunc:pO};function h1(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||k.inferDtype(r),o=k.getArrayFromDType(i,k.sizeFromShape(a));return fO(o,r,i),t.makeTensorInfo(a,i,o)}var hO={kernelName:Fu,backendName:"cpu",kernelFunc:h1};function fO(e,t,n){e.fill(t)}var mO={kernelName:To,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=k.getTypedArrayFromDType(a.dtype,k.sizeFromShape(a.shape)),[i,o,l,u]=a.shape,d=r.data.get(a.dataId).values;for(let p=0;p<i;p++){let c=p*l*o*u;for(let h=0;h<o;h++){let m=h*(l*u);for(let f=0;f<l;f++){let y=f*u;for(let A=0;A<u;A++){let g=[i,h,f,A][2],x=Math.round(l-g),w=c+m+y+A,b=d[w];if(x>=0&&x<l){let v=x*u,S=c+m+v+A;b=d[S]}s[w]=b}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},yO=Dt((e,t)=>Math.floor(e/t)),AO=Xt(Ts,yO,null,"int32"),gO={kernelName:Ts,backendName:"cpu",kernelFunc:AO};function xO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=D7({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:d,dilations:p,dimRoundingMode:c}});if(i){let y=f;f=md({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(y)}if(h){let y=f;f=l1(n,f,h,o,m),n.disposeIntermediateTensorInfo(y)}return f}var bO={kernelName:li,backendName:"cpu",kernelFunc:xO};function vO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=z7({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:d,dilations:p,dimRoundingMode:c}});if(i){let y=f;f=md({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(y)}if(h){let y=f;f=l1(n,f,h,o,m),n.disposeIntermediateTensorInfo(y)}return f}var wO={kernelName:ui,backendName:"cpu",kernelFunc:vO};function kO(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=k.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,u,d,p]=R.prepareAndValidate(a,r);if(u===0)return n.makeTensorInfo(l,a.dtype,[]);let c=We([u,d],a.dtype),h=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values;for(let f=0;f<u;f++){let y=[],A=0;for(let g=0;g<o;g++){let x=h[f*o+g];A+=x*p[g],y.push(x)}if(A<0||A>=s/d)throw new Error(`Invalid indices: ${y} does not index into ${a.shape}`);for(let g=0;g<d;g++)c.values[f*d+g]=m[A*d+g]}return n.makeTensorInfo(l,c.dtype,c.values)}var IO={kernelName:Co,backendName:"cpu",kernelFunc:kO};function SO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;ve([r,s],"gatherV2");let l=o;o==null&&(l=0);let u=k.sizeFromShape(s.shape),d=k.parseAxisParam(i,r.shape)[0],p=R.segment_util.collectGatherOpShapeInfo(r,s,d,l),c=ht({inputs:{x:r},backend:n,attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]}}),h=ht({inputs:{x:s},backend:n,attrs:{shape:[p.batchSize,u/p.batchSize]}}),m=[p.batchSize,p.outerSize,u/p.batchSize,p.sliceSize],f=n.bufferSync(h),y=n.bufferSync(c),A=r7(y,f,m);return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.makeTensorInfo(p.outputShape,A.dtype,A.values)}var NO={kernelName:Eo,backendName:"cpu",kernelFunc:SO},TO=Dt((e,t)=>e>=t?1:0),EO=Xt(Cs,TO,null,"bool"),CO={kernelName:Cs,backendName:"cpu",kernelFunc:EO};function RO(e){let{inputs:t,backend:n}=e,{input:a}=t,r=k.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=ht({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=_7(o,!0,n),u=ht({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var MO={kernelName:tc,backendName:"cpu",kernelFunc:RO},FO=rt(Mo,e=>Number.isFinite(e)?1:0,"bool"),$O={kernelName:Mo,backendName:"cpu",kernelFunc:FO},DO=rt(Fo,e=>Math.abs(e)===Infinity?1:0,"bool"),zO={kernelName:Fo,backendName:"cpu",kernelFunc:DO},OO=rt($o,e=>Number.isNaN(e)?1:0,"bool"),_O={kernelName:$o,backendName:"cpu",kernelFunc:OO},PO=Dt((e,t)=>e<=t?1:0),LO=Xt(zo,PO,null,"bool"),WO={kernelName:zo,backendName:"cpu",kernelFunc:LO};function BO(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=o7(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var VO={kernelName:ac,backendName:"cpu",kernelFunc:BO},jO=rt(Oo,e=>Math.log1p(e)),UO={kernelName:Oo,backendName:"cpu",kernelFunc:jO},HO=Dt((e,t)=>e&&t),GO=Xt(_o,HO,null,"bool"),qO={kernelName:_o,backendName:"cpu",kernelFunc:GO},XO=rt($u,e=>e?0:1,"bool"),KO={kernelName:$u,backendName:"cpu",kernelFunc:XO},ZO=Dt((e,t)=>e||t),YO=Xt(Du,ZO,null,"bool"),JO={kernelName:Du,backendName:"cpu",kernelFunc:YO};function QO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;ve(r,"LRN");let u=r.shape[3],d=u-1,p=n.data.get(r.dataId).values,c=k.sizeFromShape(r.shape),h=new Float32Array(c);function m(f){let y=f%u,A=f-y+Math.max(0,y-s),g=f-y+Math.min(y+s,d),x=0;for(;A<=g;A++){let w=p[A];x+=w*w}return x}for(let f=0;f<c;f++){let y=m(f),A=p[f]*Math.pow(i+o*y,-l);h[f]=A}return n.makeTensorInfo(r.shape,r.dtype,h)}var e_={kernelName:zu,backendName:"cpu",kernelFunc:QO};function t_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:d}=a;ve(i,"LRNGrad");let p=k.sizeFromShape(i.shape),c=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,y=new Float32Array(p),A=p;for(let g=0;g<A;g++){let x=g%c,w=g-x+Math.max(0,x-o),b=g-x+Math.min(c,x+o+1),v=0;for(let S=w;S<b;S++)v+=Math.pow(m[S],2);v=u*v+l;for(let S=w;S<b;S++){let T=-2*u*d*m[S]*f[g]/v;g===S&&(T+=Math.pow(v,-d)),T*=h[g],y[S]+=T}}return n.makeTensorInfo(i.shape,r.dtype,y)}var n_={kernelName:rc,backendName:"cpu",kernelFunc:t_};function P7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,u=l.length,d=k.parseAxisParam(s,l),p=d,c=R.getAxesPermutation(p,u),h=o.data.get(r.dataId).values;if(c!=null){let w=new Array(u);for(let b=0;b<w.length;b++)w[b]=l[c[b]];h=s1(h,l,r.dtype,c,w),p=R.getInnerMostAxes(p.length,u),l=w}ve(r,"max"),R.assertAxesAreInnerMostDims("max",p,u);let[m,f]=R.computeOutAndReduceShapes(l,p),y=k.sizeFromShape(f),A=u7(h,y,m,r.dtype),g=o.write(A,m,r.dtype),x=m;return i&&(x=R.expandShapeToKeepDim(m,d)),{dataId:g,shape:x,dtype:r.dtype}}var a_={kernelName:$s,backendName:"cpu",kernelFunc:P7};function r_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ve(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(R.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=R.computePool2DInfo(r.shape,s,i,u,o,l),p;if(d.filterWidth===1&&d.filterHeight===1&&k.arraysEqual(d.inShape,d.outShape))p=qa({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=k.computeStrides(r.shape),m=u1(c,r.shape,r.dtype,h,d,"max");p=n.makeTensorInfo(d.outShape,r.dtype,m.values)}return p}var s_={kernelName:zs,backendName:"cpu",kernelFunc:r_};function i_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;ve(r,"maxPool3d");let d=R.computePool3DInfo(r.shape,s,i,1,o,l,u),p=n.data.get(r.dataId).values,c=$7(p,r.shape,r.dtype,k.computeStrides(r.shape),d,"max");return n.makeTensorInfo(c.shape,"float32",c.values)}var o_={kernelName:Ou,backendName:"cpu",kernelFunc:i_};function l_(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;ve([r,s],"maxPool3DGrad");let d=R.computePool3DInfo(s.shape,i,o,1,l,u),p=n.bufferSync(s),c=HD(p,d),h=d.strideDepth,m=d.strideHeight,f=d.strideWidth,y=d.dilationDepth,A=d.dilationHeight,g=d.dilationWidth,x=d.effectiveFilterDepth,w=d.effectiveFilterHeight,b=d.effectiveFilterWidth,v=x-1-d.padInfo.front,S=b-1-d.padInfo.left,T=w-1-d.padInfo.top,C=We(s.shape,"float32"),$=n.bufferSync(r);for(let O=0;O<d.batchSize;++O)for(let P=0;P<d.inChannels;++P)for(let j=0;j<d.inDepth;++j)for(let D=0;D<d.inHeight;++D)for(let U=0;U<d.inWidth;++U){let X=j-v,G=D-T,ee=U-S,Y=0;for(let re=0;re<x;re+=y){let ne=(X+re)/h;if(!(ne<0||ne>=d.outDepth||Math.floor(ne)!==ne))for(let ie=0;ie<w;ie+=A){let Q=(G+ie)/m;if(!(Q<0||Q>=d.outHeight||Math.floor(Q)!==Q))for(let pe=0;pe<b;pe+=g){let oe=(ee+pe)/f;if(oe<0||oe>=d.outWidth||Math.floor(oe)!==oe)continue;let ge=x*w*b-1-c.get(O,ne,Q,oe,P),he=re*w*b+ie*b+pe,Se=ge===he?1:0;Se!==0&&(Y+=$.get(O,ne,Q,oe,P)*Se)}}}C.set(Y,O,j,D,U,P)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var u_={kernelName:ic,backendName:"cpu",kernelFunc:l_};function d_(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;ve([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:d,dimRoundingMode:p}=a,c=R.computePool2DInfo(o.shape,l,u,1,d,p),h=n.data.get(o.dataId).values,m=We(c.outShape,o.dtype,F7(h,o.shape,o.dtype,c).values),f=c.strideHeight,y=c.strideWidth,A=c.dilationHeight,g=c.dilationWidth,x=c.effectiveFilterHeight,w=c.effectiveFilterWidth,b=w-1-c.padInfo.left,v=x-1-c.padInfo.top,S=We(o.shape,"float32"),T=n.data.get(r.dataId).values,C=We(r.shape,"float32",T);for(let $=0;$<c.batchSize;++$)for(let O=0;O<c.inChannels;++O)for(let P=0;P<c.inHeight;++P)for(let j=0;j<c.inWidth;++j){let D=P-v,U=j-b,X=0;for(let G=0;G<x;G+=A){let ee=(D+G)/f;if(!(ee<0||ee>=c.outHeight||Math.floor(ee)!==ee))for(let Y=0;Y<w;Y+=g){let re=(U+Y)/y;if(re<0||re>=c.outWidth||Math.floor(re)!==re)continue;let ne=x*w-1-m.get($,ee,re,O),ie=G*w+Y,Q=ne===ie?1:0;Q!==0&&(X+=C.get($,ee,re,O)*Q)}}S.set(X,$,P,j,O)}return n.makeTensorInfo(S.shape,S.dtype,S.values)}var p_={kernelName:sc,backendName:"cpu",kernelFunc:d_};function c_(e,t,n,a,r){let s=k.computeStrides(t),i=u1(e,t,n,s,r,"max"),o=F7(e,t,n,r,!0,a);return[i.values,o.values]}var h_={kernelName:oc,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;ve(a,"MaxPoolWithArgmax");let u=l.data.get(a.dataId).values,d=R.computePool2DInfo(a.shape,r,s,[1,1],i),[p,c]=c_(u,a.shape,a.dtype,o,d),h=l.write(p,d.outShape,a.dtype),m=l.write(c,d.outShape,a.dtype);return[{dataId:h,shape:d.outShape,dtype:a.dtype},{dataId:m,shape:d.outShape,dtype:"int32"}]}};function f_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=k.parseAxisParam(s,r.shape),l=R.computeOutAndReduceShapes(r.shape,o)[1],u=k.sizeFromShape(l),d=[],p=n.makeTensorInfo([],"float32",new Float32Array([u]));d.push(p);let c=Hr({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(c);let h=d1({inputs:{a:c,b:p},backend:n});d.push(h);let m=yd({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var m_={kernelName:Os,backendName:"cpu",kernelFunc:f_};function y_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"min");let o=k.parseAxisParam(s,r.shape),l=o,u=R.getAxesPermutation(l,r.shape.length),d=r;u!=null&&(d=ta({inputs:{x:r},backend:n,attrs:{perm:u}}),l=R.getInnerMostAxes(l.length,r.shape.length)),R.assertAxesAreInnerMostDims("min",l,d.shape.length);let[p,c]=R.computeOutAndReduceShapes(d.shape,l),h=k.sizeFromShape(c),m=k.makeZerosTypedArray(k.sizeFromShape(p),d.dtype),f=n.data.get(d.dataId).values;for(let A=0;A<m.length;++A){let g=A*h,x=f[g];for(let w=0;w<h;++w){let b=f[g+w];b<x&&(x=b)}m[A]=x}u!=null&&n.disposeIntermediateTensorInfo(d);let y=n.makeTensorInfo(p,d.dtype,m);if(i){let A=R.expandShapeToKeepDim(p,o),g=ht({inputs:{x:y},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(y),g}return y}var A_={kernelName:_s,backendName:"cpu",kernelFunc:y_};function g_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;ve(r,"mirrorPad");let o=s.map((g,x)=>g[0]+r.shape[x]+g[1]),l=s.map(g=>g[0]),u=s.map((g,x)=>g[0]+r.shape[x]),d=i==="reflect"?0:1,p=n.data.get(r.dataId).values,c=r.shape.length,h=k.computeStrides(r.shape),m=k.sizeFromShape(o),f=o.length,y=k.computeStrides(o),A=k.getTypedArrayFromDType(r.dtype,m);for(let g=0;g<m;g++){let x=k.indexToLoc(g,f,y);for(let b=0;b<f;b++)x[b]<l[b]?x[b]=l[b]*2-x[b]-d:x[b]>=u[b]&&(x[b]=(u[b]-1)*2-x[b]+d);x=x.map((b,v)=>b-l[v]);let w=k.locToIndex(x,c,h);A[g]=p[w]}return{dataId:n.write(A,o,r.dtype),shape:o,dtype:r.dtype}}var x_={kernelName:Ls,backendName:"cpu",kernelFunc:g_},b_=Dt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),v_=Xt(Po,b_),w_={kernelName:Po,backendName:"cpu",kernelFunc:v_},k_=ro(h5());function L7(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=k.parseAxisParam([o],r.shape),u=P7({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),d=R.expandShapeToKeepDim(u.shape,l),p=ht({inputs:{x:u},backend:n,attrs:{shape:d}}),c=o1({inputs:{a:r,b:p},backend:n}),h=t7({inputs:{x:c},backend:n}),m=yd({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=ht({inputs:{x:m},backend:n,attrs:{shape:d}}),y=d1({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),y}var I_={kernelName:ti,backendName:"cpu",kernelFunc:L7};function S_(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;ve(r,"multinomial");let l=o?r:L7({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],d=l.shape[1],p=n.data.get(l.dataId).values,c=[u,s],h=k.makeZerosTypedArray(k.sizeFromShape(c),"int32");for(let m=0;m<u;++m){let f=m*d,y=new Float32Array(d-1);y[0]=p[f];for(let x=1;x<y.length;++x)y[x]=y[x-1]+p[f+x];let A=k_.alea(i.toString()),g=m*s;for(let x=0;x<s;++x){let w=A();h[g+x]=y.length;for(let b=0;b<y.length;b++)if(w<y[b]){h[g+x]=b;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(c,"int32",h)}var N_={kernelName:lc,backendName:"cpu",kernelFunc:S_},T_=Ga.nonMaxSuppressionV3Impl;function E_(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;ve(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,{selectedIndices:p}=T_(u,d,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var C_={kernelName:Bo,backendName:"cpu",kernelFunc:E_},R_=Ga.nonMaxSuppressionV4Impl;function M_(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a;ve(r,"NonMaxSuppressionPadded");let d=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:c,validOutputs:h}=R_(d,p,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var F_={kernelName:Vo,backendName:"cpu",kernelFunc:M_},$_=Ga.nonMaxSuppressionV5Impl;function D_(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a;ve(r,"NonMaxSuppressionWithScore");let d=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,c=i,h=o,m=l,f=u,{selectedIndices:y,selectedScores:A}=$_(d,p,c,h,m,f);return[n.makeTensorInfo([y.length],"int32",new Int32Array(y)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var z_={kernelName:jo,backendName:"cpu",kernelFunc:D_};function O_(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a;ve(r,"oneHot");let l=k.sizeFromShape(r.shape),u=new Float32Array(l*s);u.fill(o);let d=n.data.get(r.dataId).values;for(let p=0;p<l;++p)d[p]>=0&&d[p]<s&&(u[p*s+d[p]]=i);return n.makeTensorInfo([...r.shape,s],"int32",u)}var __={kernelName:Bs,backendName:"cpu",kernelFunc:O_};function gh(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=Ni({inputs:{input:a},backend:n}),s=gh({inputs:{x:r},backend:n}),i=Dl({inputs:{input:a},backend:n}),o=gh({inputs:{x:i},backend:n}),l=Bn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return h1({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var P_={kernelName:ol,backendName:"cpu",kernelFunc:gh};function W7(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=Ni({inputs:{input:a},backend:n}),s=W7({inputs:{x:r},backend:n}),i=Dl({inputs:{input:a},backend:n}),o=gh({inputs:{x:i},backend:n}),l=Bn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return h1({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var L_={kernelName:Uo,backendName:"cpu",kernelFunc:W7};function B7(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Ah({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{k.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let p=Ah({inputs:{input:d},backend:n,attrs:{dim:r}});return o.push(p),p}),u=zl({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var W_={kernelName:Ho,backendName:"cpu",kernelFunc:B7};function B_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;ve(r,"pad");let o=s.map((A,g)=>A[0]+r.shape[g]+A[1]),l=s.map(A=>A[0]),u=n.data.get(r.dataId).values,d=k.sizeFromShape(r.shape),p=r.shape.length,c=k.computeStrides(r.shape),h=k.sizeFromShape(o),m=o.length,f=k.computeStrides(o),y=k.getTypedArrayFromDType(r.dtype,h);i!==0&&y.fill(i);for(let A=0;A<d;A++){let g=k.indexToLoc(A,p,c).map((w,b)=>w+l[b]),x=k.locToIndex(g,m,f);y[x]=u[A]}return{dataId:n.write(y,o,r.dtype),shape:o,dtype:r.dtype}}var V7={kernelName:Vs,backendName:"cpu",kernelFunc:B_},V_=Dt((e,t)=>Math.pow(e,t)),j_=Xt(js,V_),U_={kernelName:js,backendName:"cpu",kernelFunc:j_};function H_(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=i1(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var G_={kernelName:_u,backendName:"cpu",kernelFunc:H_},q_=rt(qo,e=>1/e),X_={kernelName:qo,backendName:"cpu",kernelFunc:q_};function K_(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ve(r,"resizeBilinear");let l=k.computeStrides(r.shape),[u,d]=o,[p,c,h,m]=r.shape,f=n.data.get(r.dataId).values,y=new Float32Array(k.sizeFromShape([p,u,d,m])),A=[s&&u>1?c-1:c,s&&d>1?h-1:h],g=[s&&u>1?u-1:u,s&&d>1?d-1:d],x=0,w=A[0]/g[0],b=A[1]/g[1];for(let v=0;v<p;v++)for(let S=0;S<u;S++){let T;i?T=w*(S+.5)-.5:T=w*S;let C=Math.max(0,Math.floor(T)),$=T-C,O=Math.min(c-1,Math.ceil(T)),P=v*l[0]+C*l[1],j=v*l[0]+O*l[1];for(let D=0;D<d;D++){let U;i?U=b*(D+.5)-.5:U=b*D;let X=Math.max(0,Math.floor(U)),G=U-X,ee=Math.min(h-1,Math.ceil(U)),Y=P+X*l[2],re=j+X*l[2],ne=P+ee*l[2],ie=j+ee*l[2];for(let Q=0;Q<m;Q++){let pe=f[Y+Q],oe=f[re+Q],ge=f[ne+Q],he=f[ie+Q],Se=pe+(ge-pe)*G,Te=oe+(he-oe)*G,$e=Se+(Te-Se)*$;y[x++]=$e}}}return n.makeTensorInfo([p,u,d,m],"float32",y)}var Z_={kernelName:Gs,backendName:"cpu",kernelFunc:K_};function Y_(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ve([s,r],"resizeBilinearGrad");let o=k.computeStrides(r.shape),[l,u,d,p]=r.shape,[,c,h]=s.shape,m=new Float32Array(l*u*d*p),f=[i&&c>1?u-1:u,i&&h>1?d-1:d],y=[i&&c>1?c-1:c,i&&h>1?h-1:h],A=f[0]/y[0],g=f[1]/y[1],x=n.data.get(s.dataId).values,w=0;for(let b=0;b<l;b++){let v=b*o[0];for(let S=0;S<c;S++){let T=S*A,C=Math.floor(T),$=Math.min(Math.ceil(T),u-1),O=v+C*o[1],P=v+$*o[1],j=T-C,D=1-j;for(let U=0;U<h;U++){let X=U*g,G=Math.floor(X),ee=Math.min(Math.ceil(X),d-1),Y=X-G,re=1-Y,ne=O+G*o[2],ie=O+ee*o[2],Q=P+G*o[2],pe=P+ee*o[2],oe=D*re,ge=D*Y,he=j*re,Se=j*Y;for(let Te=0;Te<p;Te++){let $e=x[w++];m[ne+Te]+=$e*oe,m[ie+Te]+=$e*ge,m[Q+Te]+=$e*he,m[pe+Te]+=$e*Se}}}}return n.makeTensorInfo([l,d,u,p],"float32",m)}var J_={kernelName:pc,backendName:"cpu",kernelFunc:Y_};function Q_(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ve(r,"resizeNearestNeighbor");let l=k.computeStrides(r.shape),[u,d]=o,[p,c,h,m]=r.shape,f=n.data.get(r.dataId).values,y=new Float32Array(p*u*d*m),A=[s&&u>1?c-1:c,s&&d>1?h-1:h],g=[s&&u>1?u-1:u,s&&d>1?d-1:d],x=A[0]/g[0],w=A[1]/g[1],b=0;for(let v=0;v<p;v++){let S=v*l[0];for(let T=0;T<u;T++){let C=i?x*(T+.5):x*T,$=Math.min(c-1,s?Math.round(C):Math.floor(C));i&&($=Math.max(0,$));let O=S+$*l[1];for(let P=0;P<d;P++){let j=i?w*(P+.5):w*P,D=Math.min(h-1,s?Math.round(j):Math.floor(j));i&&(D=Math.max(0,D));let U=O+D*l[2];for(let X=0;X<m;X++){let G=f[U+X];y[b++]=G}}}}return n.makeTensorInfo([p,u,d,m],r.dtype,y)}var eP={kernelName:Pu,backendName:"cpu",kernelFunc:Q_};function tP(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ve([s,r],"resizeNearestNeighborGrad");let o=k.computeStrides(r.shape),l=k.computeStrides(s.shape),[u,d,p,c]=r.shape,[,h,m]=s.shape,f=new Float32Array(u*d*p*c),y=n.data.get(s.dataId).values,A=[i&&h>1?d-1:d,i&&m>1?p-1:p],g=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=A[0]/g[0],w=A[1]/g[1],b=1/x,v=1/w,S=Math.ceil(b)*2+2,T=Math.ceil(v)*2+2;for(let C=0;C<u;C++){let $=C*o[0];for(let O=0;O<d;O++){let P=$+O*o[1],j=Math.floor(O*b),D=Math.floor(j-S/2);for(let U=0;U<p;U++){let X=P+U*o[2],G=Math.floor(U*v),ee=Math.floor(G-T/2);for(let Y=0;Y<c;Y++){let re=0;for(let ne=0;ne<S;ne++){let ie=ne+D;if(ie<0||ie>=h)continue;let Q=$+ie*l[1],pe=ie*x,oe=Math.min(d-1,i?Math.round(pe):Math.floor(pe));if(O===oe)for(let ge=0;ge<T;ge++){let he=ge+ee;if(he<0||he>=m)continue;let Se=Q+he*l[2],Te=he*w,$e=Math.min(p-1,i?Math.round(Te):Math.floor(Te));U===$e&&(re+=y[Se+Y])}}f[X+Y]=re}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var nP={kernelName:dc,backendName:"cpu",kernelFunc:tP};function aP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;ve(r,"reverse");let i=r.shape.length,o=k.parseAxisParam(s,r.shape);if(i===0)return qa({inputs:{x:r},backend:n});let l=new Pt(r.shape,r.dtype),u=n.bufferSync(r);for(let d=0;d<l.size;d++){let p=l.indexToLoc(d),c=p.slice();o.forEach(h=>c[h]=r.shape[h]-1-c[h]),l.set(u.get(...c),...p)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var rP={kernelName:Xs,backendName:"cpu",kernelFunc:aP},sP={kernelName:ll,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=k.getTypedArrayFromDType(a.dtype,k.sizeFromShape(a.shape)),[u,d,p,c]=a.shape,[h,m]=R.getImageCenter(i,d,p),f=255,y=Math.sin(r),A=Math.cos(r),g=o.data.get(a.dataId).values;for(let x=0;x<u;x++){let w=x*p*d*c;for(let b=0;b<d;b++){let v=b*(p*c);for(let S=0;S<p;S++){let T=S*c;for(let C=0;C<c;C++){let $=[u,b,S,C],O=$[2],P=$[1],j=(O-h)*A-(P-m)*y,D=(O-h)*y+(P-m)*A;j=Math.round(j+h),D=Math.round(D+m);let U=s;if(typeof s!="number"&&(C===3?U=f:U=s[C]),j>=0&&j<p&&D>=0&&D<d){let G=D*(p*c),ee=j*c,Y=w+G+ee+C;U=g[Y]}let X=w+v+T+C;l[X]=U}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},iP=rt(Ks,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),oP={kernelName:Ks,backendName:"cpu",kernelFunc:iP};function j7(e,t,n,a,r,s,i,o,l,u){let d=[a/r,r],p=e.values,c=t.values;if(a===0)return We(n,t.dtype);let h=We(d,t.dtype);h.values.fill(l);for(let m=0;m<s;m++){let f=[],y=0;for(let A=0;A<i;A++){let g=p[m*i+A];f.push(g),y+=g*o[A]}if(y<0||y>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let A=0;A<r;A++)u?h.values[y*r+A]+=c[m*r+A]:h.values[y*r+A]=t.rank===0?c[0]:c[m*r+A]}return h}function lP(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:p}=R.calculateShapes(s,r,i),c=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=j7(h,m,i,p,u,l,o,d,0,c);return n.makeTensorInfo(i,f.dtype,f.values)}var uP={kernelName:Ko,backendName:"cpu",kernelFunc:lP};function dP(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;ve([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,d=da(r.dtype,s.dtype),p=k.makeZerosTypedArray(k.sizeFromShape(r.shape),d),c=0,h=i===0||i>1||r.shape.length===1?1:k.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?p[c++]=l[m]:p[c++]=u[m];return n.makeTensorInfo(r.shape,d,p)}var pP={kernelName:Zo,backendName:"cpu",kernelFunc:dP},cP=R.SELU_SCALEALPHA,hP=R.SELU_SCALE,fP=rt(Yo,e=>e>=0?hP*e:cP*(Math.exp(e)-1)),mP={kernelName:Yo,backendName:"cpu",kernelFunc:fP},yP=rt(el,e=>e<0?-1:e>0?1:0),AP={kernelName:el,backendName:"cpu",kernelFunc:yP},gP=rt(Ys,e=>Math.sin(e)),xP={kernelName:Ys,backendName:"cpu",kernelFunc:gP},bP=rt(Qo,e=>Math.sinh(e)),vP={kernelName:Qo,backendName:"cpu",kernelFunc:bP},wP=11920928955078125e-23,U7=Math.log(wP)+2,kP=rt(tl,e=>{let t=e>-U7,n=e<U7,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),IP={kernelName:tl,backendName:"cpu",kernelFunc:kP};function SP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;ve([r],"spaceToBatchND");let o=k.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<r.shape.length;++y)l.push([0,0]);let u=V7.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=R.getReshaped(u.shape,s,o,!1),p=R.getPermuted(d.length,s.length,!1),c=R.getReshapedPermuted(u.shape,s,o,!1),h=ht({inputs:{x:u},backend:n,attrs:{shape:d}}),m=ta({inputs:{x:h},backend:n,attrs:{perm:p}}),f=ht({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var NP={kernelName:Lu,backendName:"cpu",kernelFunc:SP};function TP(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values[0],[p,c,h,m,f]=y7(o,a.shape,a.dtype,l,r.dtype,u,d);return[n.makeTensorInfo(c,a.dtype,p),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(y=>Number(y)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var EP={kernelName:cc,backendName:"cpu",kernelFunc:TP};function CP(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(r.dataId).values),o=n.data.get(a.dataId).values,l=Array.from(n.data.get(s.dataId).values),[u,d,p]=A7(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(d,a.dtype,u),n.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var RP={kernelName:hc,backendName:"cpu",kernelFunc:CP};function MP(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:d,strides:p,outputSize:c}=R.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f=n.bufferSync(s),y=n.data.get(i.dataId).values[0],A=j7(m,f,o,c,d,u,l,p,y,h);return n.makeTensorInfo(o,A.dtype,A.values)}var FP={kernelName:fc,backendName:"cpu",kernelFunc:MP};function $P(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=k.parseAxisParam(i,r.shape)[0],l=R.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),d=r.shape.slice();return l.map(p=>{let c=[...d];c[o]=p;let h=Ti({inputs:{x:r},backend:n,attrs:{begin:u,size:c}});return u[o]+=p,h})}var DP={kernelName:nl,backendName:"cpu",kernelFunc:$P},zP=rt(Qs,e=>Math.sqrt(e)),OP={kernelName:Qs,backendName:"cpu",kernelFunc:zP},_P={kernelName:Wu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;ve(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},PP=rt(Dr,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),LP={kernelName:Dr,backendName:"cpu",kernelFunc:PP};function WP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:p,shrinkAxisMask:c}=a;ve(r,"stridedSlice");let{nonStrided:h,$begin:m,$strides:f,size:y,newShape:A,outShape:g}=un.sliceInfo(r.shape,s,i,o,l,u,d,p,c),x=ht({inputs:{x:r},backend:n,attrs:{shape:A}}),w;if(h){let v=Ti({inputs:{x},backend:n,attrs:{begin:m,size:y}});w=ht({inputs:{x:v},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(v)}else if(g.some(v=>v===0))w=n.makeTensorInfo(g,r.dtype,[]);else{let v=n.bufferSync(x),S=x7(g,v,f,m);w=n.makeTensorInfo(S.shape,S.dtype,S.values)}let b=ht({inputs:{x:w},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(w),b}var BP={kernelName:al,backendName:"cpu",kernelFunc:WP},VP=rt(ri,e=>Math.tan(e)),jP={kernelName:ri,backendName:"cpu",kernelFunc:VP},UP=rt(si,e=>Math.tanh(e)),HP={kernelName:si,backendName:"cpu",kernelFunc:UP};function GP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;ve(r,"tile");let i=v7(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var qP={kernelName:$r,backendName:"cpu",kernelFunc:GP};function XP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;ve(r,"topk");let o=n.data.get(r.dataId).values,[l,u]=w7(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var KP={kernelName:rl,backendName:"cpu",kernelFunc:XP};function ZP(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[d,p,c,h]=r.shape,[m,f]=u!=null?u:[p,c],y=[d,m,f,h],A=k.computeStrides(r.shape),g=A[0],x=A[1],w=A[2],b=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(y));b.fill(l);let v=a.data.get(r.dataId).values,S=a.data.get(s.dataId).values;for(let T=0;T<d;++T){let C=s.shape[0]===1?S:S.subarray(T*8,T*8+8);for(let $=0;$<m;++$)for(let O=0;O<f;++O)for(let P=0;P<h;++P){let j,D=C[6]*O+C[7]*$+1;if(D===0)continue;let U=(C[0]*O+C[1]*$+C[2])/D,X=(C[3]*O+C[4]*$+C[5])/D,G=H7(U,c,o),ee=H7(X,p,o);switch(i){case"nearest":j=nL(v,p,c,g,x,w,T,ee,G,P,l);break;case"bilinear":j=aL(v,p,c,g,x,w,T,ee,G,P,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let Y=T*g+$*x+O*w+P;b[Y]=j}return a.makeTensorInfo(y,r.dtype,b)}return{dataId:a.write(b,y,r.dtype),shape:r.shape,dtype:r.dtype}}var YP={kernelName:sl,backendName:"cpu",kernelFunc:ZP};function H7(e,t,n){switch(n){case"reflect":return JP(e,t);case"wrap":return QP(e,t);case"nearest":return tL(e,t);case"constant":default:return eL(e,t)}}function JP(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=2*t;n<a&&(n=a*Math.trunc(-n/a)+n),n=n<-t?n+a:-n-1}else if(n>t-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return k.clamp(0,n,t-1)}function QP(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return k.clamp(0,n,t-1)}function eL(e,t){return e}function tL(e,t){return k.clamp(0,e,t-1)}function Ad(e,t,n,a,r,s,i,o,l,u,d){let p=i*a+o*r+l*s+u;return 0<=o&&o<t&&0<=l&&l<n?e[p]:d}function nL(e,t,n,a,r,s,i,o,l,u,d){let p=Math.round(o),c=Math.round(l);return Ad(e,t,n,a,r,s,i,p,c,u,d)}function aL(e,t,n,a,r,s,i,o,l,u,d){let p=Math.floor(o),c=Math.floor(l),h=p+1,m=c+1,f=(m-l)*Ad(e,t,n,a,r,s,i,p,c,u,d)+(l-c)*Ad(e,t,n,a,r,s,i,p,m,u,d),y=(m-l)*Ad(e,t,n,a,r,s,i,h,c,u,d)+(l-c)*Ad(e,t,n,a,r,s,i,h,m,u,d);return(h-o)*f+(o-p)*y}function rL(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;ve(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=k7(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var sL={kernelName:mc,backendName:"cpu",kernelFunc:rL};function iL(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==s&&(l[u++]=r.shape[h]);let d=new Array(i).fill(0),p=r.shape.slice();p[s]=1;let c=new Array(o);for(let h=0;h<c.length;h++){d[s]=h;let m=Ti({inputs:{x:r},backend:n,attrs:{begin:d,size:p}});c[h]=ht({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return c}var oL={kernelName:il,backendName:"cpu",kernelFunc:iL};function lL(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;ve(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,u=[],d=[],p=o-l,c=s;for(let m=0;m<p;++m){let f=Ah({inputs:{input:c},backend:n,attrs:{dim:m+1}});c=f,d.push(f)}for(let m=0;m<i;++m){let f=k.createScalarValue(m,"int32"),y=n.makeTensorInfo([],"int32",f),A=O7({inputs:{a:y,b:c},backend:n}),g=Hr({inputs:{x:A},backend:n,attrs:{dtype:"float32"}}),x=mh({inputs:{a:g,b:r},backend:n}),w=yd({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});u.push(w),d.push(y),d.push(A),d.push(g),d.push(x),d.push(w)}let h=B7({inputs:u,backend:n,attrs:{axis:0}});return d.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var uL={kernelName:Bu,backendName:"cpu",kernelFunc:lL},dL=[xD,k$,vD,kD,C$,SD,TD,CD,MD,$D,zD,_D,LD,VD,UD,qD,KD,YD,QD,AD,tz,az,sz,T$,M$,oz,I$,uz,pz,fz,yz,cz,bz,wz,gz,Iz,Nz,Ez,Rz,Fz,Dz,zz,_z,Lz,Bz,Vz,Uz,jz,p1,qz,uD,Kz,Yz,sO,F$,iO,D$,cO,hO,mO,O$,gO,bO,wO,IO,NO,P$,CO,S$,MO,dz,$O,zO,_O,dD,W$,WO,VO,V$,UO,qO,KO,JO,e_,n_,U$,s_,o_,u_,p_,h_,a_,m_,A_,G$,x_,w_,N_,X$,Z$,C_,F_,z_,J$,__,L_,W_,V7,U_,cD,tD,G_,N$,X_,hD,fD,yD,Z_,J_,eP,nP,rP,sP,oP,aD,uP,pP,mP,mD,AP,xP,vP,rD,I_,IP,NP,EP,RP,FP,DP,OP,_P,iD,LP,BP,lD,Hz,jP,HP,qP,KP,Q$,YP,sL,oL,uL,P_];for(let e of dL)di(e);var G7={};Fe(G7,{assertNotComplex:()=>_l,bindCanvasToFramebuffer:()=>wL,bindColorTextureToFramebuffer:()=>vh,bindTextureToProgramUniformSampler:()=>ov,bindTextureUnit:()=>rv,bindVertexBufferToProgramAttribute:()=>y1,callAndCheck:()=>xe,canBeRepresented:()=>q7,createFragmentShader:()=>Z7,createFramebuffer:()=>av,createProgram:()=>Y7,createStaticIndexBuffer:()=>ev,createStaticVertexBuffer:()=>Q7,createTexture:()=>tv,createVertexShader:()=>K7,getBatchDim:()=>Ci,getExtensionOrThrow:()=>vd,getFramebufferErrorMessage:()=>lv,getMaxTexturesInShader:()=>cv,getNumChannels:()=>bL,getProgramUniformLocation:()=>iv,getProgramUniformLocationOrThrow:()=>sv,getRowsCols:()=>Ri,getShapeAs3D:()=>wh,getTextureShapeFromLogicalShape:()=>dv,getWebGLDisjointQueryTimerVersion:()=>hv,getWebGLErrorMessage:()=>X7,getWebGLMaxTextureSize:()=>pv,hasExtension:()=>aa,isCapableOfRenderingToFloatTexture:()=>fv,isDownloadFloatTextureEnabled:()=>mv,isReshapeFree:()=>kd,isWebGLFenceEnabled:()=>yv,isWebGLVersionEnabled:()=>g1,linkProgram:()=>J7,resetMaxTextureSize:()=>kL,resetMaxTexturesInShader:()=>IL,unbindColorTextureFromFramebuffer:()=>A1,unbindTextureUnit:()=>vL,validateFramebuffer:()=>wd,validateProgram:()=>bh,validateTextureSize:()=>nv});var Ei={},f1={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function xh(e,t){Ei[e]=t}function Xa(e){if(!(e in Ei)){let n=cL(e);if(n!==null)Ei[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Ei[e];return t.isContextLost()?(delete Ei[e],Xa(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Ei[e])}function pL(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function cL(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=pL(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Ei[e]},!1),e===1?t.getContext("webgl",f1)||t.getContext("experimental-webgl",f1):t.getContext("webgl2",f1)}var gd;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(gd||(gd={}));var na;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(na||(na={}));var tn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(tn||(tn={}));function xd(e,t){return[t,e]}function hL(e,t){return e*t}function bd(e){let t=k.sizeFromShape(e),n=Math.ceil(t/4);return k.sizeToSquarishShape(n)}function Ol(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function fL(e,t){let[n,a]=Ol(e,t);return n*a*4}function m1(e,t){let n=e,a,r,s,i,o,l,u,d,p,c;return J().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,d=1,p=n.HALF_FLOAT,c=n.FLOAT):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,d=4,p=t!=null?t.HALF_FLOAT_OES:null,c=e.FLOAT),l=e.RGBA,{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:d,textureTypeHalfFloat:p,textureTypeFloat:c}}function xe(e,t){let n=t();return J().getBool("DEBUG")&&mL(e),n}function mL(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+X7(e,t))}var yL=596e-10,AL=65504;function q7(e){return!!(J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||yL<Math.abs(e)&&Math.abs(e)<AL)}function X7(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function vd(e,t){return yr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function K7(e,t){let n=yr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function Z7(e,t){let n=yr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw xL(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var gL=/ERROR: [0-9]+:([0-9]+):/g;function xL(e,t){let n=gL.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
|
|
`),s=r.length.toString().length+2,i=r.map((p,c)=>k.rightPad((c+1).toString(),s)+p),o=0;for(let p=0;p<i.length;p++)o=Math.max(i[p].length,o);let l=i.slice(0,a-1),u=i.slice(a-1,a),d=i.slice(a);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${k.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(d.join(`
|
|
`))}function Y7(e){return yr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function J7(e,t){if(xe(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function bh(e,t){if(xe(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function Q7(e,t){let n=yr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function ev(e,t){let n=yr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function bL(){return J().getNumber("WEBGL_VERSION")===2?1:4}function tv(e){return yr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function nv(e,t){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function av(e){return yr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function y1(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),xe(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),xe(e,()=>e.enableVertexAttribArray(o)),!0)}function rv(e,t,n){uv(e,n),xe(e,()=>e.activeTexture(e.TEXTURE0+n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function vL(e,t){uv(e,t),xe(e,()=>e.activeTexture(e.TEXTURE0+t)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function sv(e,t,n){return yr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function iv(e,t,n){return e.getUniformLocation(t,n)}function ov(e,t,n,a){xe(e,()=>rv(e,t,a)),xe(e,()=>e.uniform1i(n,a))}function wL(e){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),xe(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function vh(e,t,n){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function A1(e,t){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function wd(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+lv(e,t))}function lv(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function yr(e,t,n){let a=xe(e,()=>t());if(a==null)throw new Error(n);return a}function uv(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function Ci(e,t=2){return k.sizeFromShape(e.slice(0,e.length-t))}function Ri(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function wh(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Ci(e),...Ri(e)]),t}function dv(e,t=!1){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,s)=>s>=e.length-2?k.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=k.squeezeShape(e).newShape);let a=k.sizeFromShape(e);if(e.length<=1&&a<=n)return[1,a];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=Ci(e),s=2,i=2;return e.length&&([s,i]=Ri(e)),a=r*(s/2)*(i/2),k.sizeToSquarishShape(a).map(o=>o*2)}return k.sizeToSquarishShape(a)}function kh(e){return e%2==0}function kd(e,t){if(e=e.slice(-2),t=t.slice(-2),k.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||kh(n)&&kh(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&kh(e[0])&&kh(t[0])}var Ih,Sh;function pv(e){if(Ih==null){let t=Xa(e);Ih=t.getParameter(t.MAX_TEXTURE_SIZE)}return Ih}function kL(){Ih=null}function IL(){Sh=null}function cv(e){if(Sh==null){let t=Xa(e);Sh=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Sh)}function hv(e){if(e===0)return 0;let t,n=Xa(e);return aa(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:aa(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function aa(e,t){return e.getExtension(t)!=null}function g1(e){try{if(Xa(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function fv(e){if(e===0)return!1;let t=Xa(e);if(e===1){if(!aa(t,"OES_texture_float"))return!1}else if(!aa(t,"EXT_color_buffer_float"))return!1;return x1(t)}function mv(e){if(e===0)return!1;let t=Xa(e);if(e===1){if(!aa(t,"OES_texture_float")||!aa(t,"WEBGL_color_buffer_float"))return!1}else{if(aa(t,"EXT_color_buffer_float"))return x1(t);let n="EXT_color_buffer_half_float";if(aa(t,n)){let a=t.getExtension(n);return SL(t,a)}return!1}return x1(t)}function x1(e){let t=m1(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function SL(e,t){let n=m1(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function yv(e){return e!==2?!1:Xa(e).fenceSync!=null}function _l(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Me=J();Me.registerFlag("HAS_WEBGL",()=>Me.getNumber("WEBGL_VERSION")>0);Me.registerFlag("WEBGL_VERSION",()=>g1(2)?2:g1(1)?1:0);Me.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Me.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Me.get("WEBGL_VERSION")===2);Me.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Me.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Me.registerFlag("WEBGL_PACK",()=>Me.getBool("HAS_WEBGL"));Me.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_CLIP",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_REDUCE",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_LAZILY_UNPACK",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_CONV_IM2COL",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>pv(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>cv(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Me.getNumber("WEBGL_VERSION");return e===0?0:hv(e)});Me.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Me.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Zu.isMobile());Me.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>fv(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Me.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Me.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Me.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>mv(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_FENCE_API_ENABLED",()=>yv(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Me.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Me.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Me.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Zu.isMobile()&&Me.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function hn(){let e,t,n,a,r,s,i,o,l,u;return J().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function Mi(e,t,n="index"){let a=k.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function b1(e){let t=k.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}var Av=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,NL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=gd.DENSE;let t=bd(e),n=hn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Mi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},TL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=gd.DENSE;let t=bd(e),n=hn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Mi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},EL=class{constructor(e){this.variableNames=["A"],this.outTexUsage=na.DOWNLOAD;let t=hn();this.outputShape=e,this.userCode=`
|
|
${Av}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},CL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=na.DOWNLOAD;let t=hn();this.outputShape=e,this.userCode=`
|
|
${Av}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},RL=class{constructor(e,t,n=!1){this.variableNames=["A"];let a=hn(),[r,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${b1(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / ${s};
|
|
int c = imod(flatIndex, ${s});
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
|
|
vec4 values = ${a.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${a.output} = vec4(${i}, 0., 0., 0.);
|
|
}
|
|
`}},ML=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let a=hn(),[r,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let u=0;u<=1;u++){let d=l*2+u;i+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${u} < ${e[2]}) {
|
|
localCoords[2] += ${u};
|
|
if(localCoords[1] + ${l} < ${e[1]}) {
|
|
localCoords[1] += ${l};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
r = flatIndex / ${s};
|
|
c = imod(flatIndex, ${s});
|
|
uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
|
|
values = ${a.texture2D}(A, uv);
|
|
|
|
if(offset == 0) {
|
|
result[${d}] = values[0];
|
|
} else if(offset == 1) {
|
|
result[${d}] = values[1];
|
|
} else if(offset == 2) {
|
|
result[${d}] = values[2];
|
|
} else {
|
|
result[${d}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${b1(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${i}
|
|
|
|
${a.output} = ${o};
|
|
}
|
|
`}},gv={};Fe(gv,{bindVertexProgramAttributeStreams:()=>Tv,createBufferFromOutputTexture:()=>Rv,createFloat16MatrixTexture:()=>kv,createFloat16PackedMatrixTexture:()=>Nv,createFloat32MatrixTexture:()=>wv,createIndexBuffer:()=>vv,createPackedMatrixTexture:()=>Sv,createUnsignedBytesMatrixTexture:()=>Iv,createVertexBuffer:()=>bv,createVertexShader:()=>xv,downloadByteEncodedFloatMatrixFromOutputTexture:()=>Fv,downloadFloat32MatrixFromBuffer:()=>Mv,downloadMatrixFromPackedOutputTexture:()=>Dv,downloadPackedMatrixFromBuffer:()=>$v,getInternalFormatForFloat16MatrixTexture:()=>w1,getInternalFormatForFloat16PackedMatrixTexture:()=>S1,getInternalFormatForFloat32MatrixTexture:()=>v1,getInternalFormatForPackedMatrixTexture:()=>I1,getInternalFormatForUnsignedBytesMatrixTexture:()=>k1,uploadDenseMatrixToTexture:()=>Ev,uploadPixelDataToTexture:()=>Cv});function xv(e){let t=hn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return K7(e,n)}function bv(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return Q7(e,t)}function vv(e){let t=new Uint16Array([0,1,2,2,1,3]);return ev(e,t)}function Id(e,t,n,a,r,s){nv(t,n);let i=tv(e),o=e.TEXTURE_2D;return xe(e,()=>e.bindTexture(o,i)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),xe(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function v1(e){return e.internalFormatFloat}function wv(e,t,n,a){let[r,s]=xd(t,n);return Id(e,r,s,v1(a),a.textureFormatFloat,e.FLOAT)}function w1(e){return e.internalFormatHalfFloat}function kv(e,t,n,a){let[r,s]=xd(t,n);return Id(e,r,s,w1(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function k1(e){return e.downloadTextureFormat}function Iv(e,t,n,a){let[r,s]=xd(t,n);return Id(e,r,s,k1(a),e.RGBA,e.UNSIGNED_BYTE)}function I1(e){return e.internalFormatPackedFloat}function Sv(e,t,n,a){let[r,s]=Ol(t,n);return Id(e,r,s,I1(a),e.RGBA,e.FLOAT)}function S1(e){return e.internalFormatPackedHalfFloat}function Nv(e,t,n,a){let[r,s]=Ol(t,n);return Id(e,r,s,S1(a),e.RGBA,a.textureTypeHalfFloat)}function Tv(e,t,n){let a=0,r=3*4,s=3*4+2*4;return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),y1(e,t,"clipSpacePos",n,3,s,a)&&y1(e,t,"uv",n,2,s,r)}function Ev(e,t,n,a,r,s){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Cv(e,t,n){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Rv(e,t,n,a){let r=e.createBuffer();xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return xe(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function Mv(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function Fv(e,t,n,a){let[r,s]=xd(t,n),i=4,o=new Uint8Array(hL(t*n,i));return xe(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function $v(e,t,n,a,r,s,i,o){let l=e,u=new Float32Array(fL(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function Dv(e,t,n){let a=new Float32Array(t*n*4);return xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var Nh=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=J().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,xh(t,e)):this.gl=Xa(t);let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(J().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=vd(this.gl,r),aa(this.gl,s))this.textureHalfFloatExtension=vd(this.gl,s);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),aa(this.gl,a))this.colorBufferHalfFloatExtension=vd(this.gl,a);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",aa(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(aa(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=bv(this.gl),this.indexBuffer=vv(this.gl),this.framebuffer=av(this.gl),this.textureConfig=m1(this.gl,this.textureHalfFloatExtension)}get debug(){return J().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;xe(e,()=>e.finish()),xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.deleteFramebuffer(this.framebuffer)),xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),xe(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),wv(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),kv(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),Iv(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),Cv(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),Ev(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),Nv(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),Sv(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(A1(this.gl,this.framebuffer),this.outputTexture=null),xe(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>Fv(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return $v(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return Mv(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=Rv(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(J().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>Dv(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=Z7(t,e);this.vertexShader==null&&(this.vertexShader=xv(t));let a=Y7(t);return xe(t,()=>t.attachShader(a,this.vertexShader)),xe(t,()=>t.attachShader(a,n)),J7(t,a),this.debug&&bh(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=Tv(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&xe(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&bh(this.gl,this.program),xe(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?sv(this.gl,e,t):iv(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),xe(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),ov(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=Ol(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&bh(this.gl,this.program),wd(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),xe(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),xe(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=vd(this.gl,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await k.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=FL(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&k.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),vh(this.gl,e,this.framebuffer),this.debug&&wd(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(vh(this.gl,this.outputTexture,this.framebuffer),this.debug&&wd(this.gl)):A1(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;vh(a,e,this.framebuffer),this.debug&&wd(a),this.outputTexture=e,xe(a,()=>a.viewport(0,0,t,n)),xe(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),xe(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function FL(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:zv}=R;function $L(e,t,n,a){let r=[];e.forEach(h=>{let m=k.sizeFromShape(h.shapeInfo.logicalShape);h.shapeInfo.isUniform?r.push(`uniform float ${h.name}${m>1?`[${m}]`:""};`):(r.push(`uniform sampler2D ${h.name};`),r.push(`uniform int offset${h.name};`))});let s=r.join(`
|
|
`),i=e.map(h=>DL(h,t,a)).join(`
|
|
`),o=t.texShape,l=hn(),u=_L(l),d,p,c=WL(l);return t.isPacked?(d=zL(t.logicalShape,o),p=LL(l)):(d=OL(t.logicalShape,o),p=PL(l)),a&&(c+=UL),[c,u,p,s,d,i,n].join(`
|
|
`)}function Pl(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return nW(e);case 1:return rW(e);case 2:return iW(e);case 3:return lW(e);case 4:return dW(e);case 5:return pW(e);case 6:return cW(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function Ov(e){switch(e.shapeInfo.logicalShape.length){case 0:return tW(e);case 1:return aW(e);case 2:return sW(e);case 3:return oW(e);default:return uW(e)}}function DL(e,t,n=!1){let a="";n?a+=Ov(e):a+=Pl(e);let r=e.shapeInfo.logicalShape,s=t.logicalShape;return r.length<=s.length&&(n?a+=hW(e,t):a+=fW(e,t)),a}function zL(e,t){switch(e.length){case 0:return _v();case 1:return HL(e,t);case 2:return QL(e,t);case 3:return qL(e,t);default:return KL(e,t)}}function OL(e,t){switch(e.length){case 0:return _v();case 1:return GL(e,t);case 2:return eW(e,t);case 3:return XL(e,t);case 4:return ZL(e,t);case 5:return YL(e,t);case 6:return JL(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function _L(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function PL(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function LL(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function WL(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${BL}
|
|
${VL}
|
|
${jL}
|
|
`}var BL=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,VL=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,jL=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,UL=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function _v(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function HL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${n[1]}.0);
|
|
}
|
|
`:n[1]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${n[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
|
|
}
|
|
`}function GL(e,t){return t[0]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function qL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[2]/2),r=a*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
int b = index / ${r};
|
|
index -= b * ${r};
|
|
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function XL(e,t){let n=Mi(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function KL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[e.length-1]/2),r=a*Math.ceil(e[e.length-2]/2),s=r,i="",o="b, r, c";for(let l=2;l<e.length-1;l++)s*=e[e.length-l-1],i=`
|
|
int b${l} = index / ${s};
|
|
index -= b${l} * ${s};
|
|
`+i,o=`b${l}, `+o;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${r};
|
|
index -= b * ${r};
|
|
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec${e.length}(${o});
|
|
}
|
|
`}function ZL(e,t){let n=Mi(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function YL(e,t){let n=Mi(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function JL(e,t){let n=Mi(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function QL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(k.arraysEqual(e,t))return`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
|
|
}
|
|
`;let a=Math.ceil(e[1]/2);return`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function eW(e,t){return k.arraysEqual(e,t)?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Fi(e){return`offset${e}`}function tW(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=hn();return`
|
|
vec4 ${n}() {
|
|
return ${a.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function nW(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;let[a,r]=e.shapeInfo.texShape;if(a===1&&r===1)return`
|
|
float ${n}() {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let[s,i]=e.shapeInfo.texShape,o=Fi(t);return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, ${o});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function aW(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=e.shapeInfo.texShape,r=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],s=hn();return`
|
|
vec4 ${n}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${r[0]}, ${r[1]}, index);
|
|
return ${s.texture2D}(${t}, uv);
|
|
}
|
|
`}function rW(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int index) {
|
|
${Ll(e)}
|
|
}
|
|
`;let a=e.shapeInfo.texShape,r=a[0],s=a[1];if(s===1&&r===1)return`
|
|
float ${n}(int index) {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let i=Fi(t);return s===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${r}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:r===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${s}.0, 0.5);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${r}, ${s}, index + ${i});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function sW(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=r[0],i=r[1],o=hn();if(r!=null&&k.arraysEqual(t,r))return`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${s}.0);
|
|
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`;let l=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],u=Math.ceil(t[1]/2);return`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${u}, ${l[0]}, ${l[1]}, row, col);
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`}function iW(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape;if(r!=null&&k.arraysEqual(t,r)){let p=r[0],c=r[1];return`
|
|
float ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}let{newShape:s,keptDims:i}=k.squeezeShape(t),o=s;if(o.length<t.length){let p=Wl(e,o),c=["row","col"];return`
|
|
${Pl(p)}
|
|
float ${a}(int row, int col) {
|
|
return ${a}(${Bl(c,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
|
|
${Ll(e)}
|
|
}
|
|
`;let l=r[0],u=r[1],d=Fi(n);return u===1?`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:l===1?`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${t[1]} + col + ${d};
|
|
vec2 uv = uvFromFlat(${l}, ${u}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function oW(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];if(t[0]===1){let p=t.slice(1),c=[1,2],h=Wl(e,p),m=["b","row","col"];return`
|
|
${Ov(h)}
|
|
vec4 ${a}(int b, int row, int col) {
|
|
return ${a}(${Bl(m,c)});
|
|
}
|
|
`}let i=s[0],o=s[1],l=Math.ceil(t[2]/2),u=l*Math.ceil(t[1]/2),d=hn();return`
|
|
vec4 ${a}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${i}, ${o}, ${u}, ${l}, b, row, col);
|
|
return ${d.texture2D}(${n}, uv);
|
|
}
|
|
`}function lW(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[1]*t[2],s=t[2],{newShape:i,keptDims:o}=k.squeezeShape(t),l=i;if(l.length<t.length){let m=Wl(e,l),f=["row","col","depth"];return`
|
|
${Pl(m)}
|
|
float ${a}(int row, int col, int depth) {
|
|
return ${a}(${Bl(f,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${r}, ${s}, 1)));
|
|
${Ll(e)}
|
|
}
|
|
`;let u=e.shapeInfo.texShape,d=u[0],p=u[1],c=e.shapeInfo.flatOffset;if(p===r&&c==null)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(p===s&&c==null)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let h=Fi(n);return`
|
|
float ${a}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${r} + col * ${s} + depth + ${h};
|
|
vec2 uv = uvFromFlat(${d}, ${p}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function uW(e){let t=e.shapeInfo.logicalShape,n=t.length,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=i[0],l=i[1],u=Math.ceil(t[n-1]/2),d=u*Math.ceil(t[n-2]/2),p="int b, int row, int col",c=`b * ${d} + (row / 2) * ${u} + (col / 2)`;for(let m=2;m<n-1;m++)p=`int b${m}, `+p,d*=t[n-m-1],c=`b${m} * ${d} + `+c;let h=hn();return`
|
|
vec4 ${r}(${p}) {
|
|
int index = ${c};
|
|
int texR = index / ${l};
|
|
int texC = index - texR * ${l};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${o});
|
|
return ${h.texture2D}(${a}, uv);
|
|
}
|
|
`}function dW(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[3],s=t[2]*r,i=t[1]*s,{newShape:o,keptDims:l}=k.squeezeShape(t);if(o.length<t.length){let m=Wl(e,o),f=["row","col","depth","depth2"];return`
|
|
${Pl(m)}
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
return ${a}(${Bl(f,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${s}, ${r}, 1)));
|
|
${Ll(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],c=d[1];if(c===i&&u==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${s}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(c===r&&u==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${t[1]*t[2]}, ${t[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let h=Fi(n);return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${s} +
|
|
depth * ${r} + depth2;
|
|
vec2 uv = uvFromFlat(${p}, ${c}, index + ${h});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function pW(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=k.squeezeShape(t);if(l.length<t.length){let f=Wl(e,l),y=["row","col","depth","depth2","depth3"];return`
|
|
${Pl(f)}
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${a}(${Bl(y,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, ${r})) +
|
|
depth3;
|
|
${Ll(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,c=p[0],h=p[1];if(h===o&&d==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&d==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=Fi(n);return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${s} +
|
|
depth2 * ${r} + depth3 + ${m};
|
|
vec2 uv = uvFromFlat(${c}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function cW(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=k.squeezeShape(t);if(r.length<t.length){let y=Wl(e,r),A=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${Pl(y)}
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${a}(${Bl(A,s)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,d=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${d}, ${u}, ${l}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${Ll(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],m=c[1];if(m===d&&p==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(m===i&&p==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=Fi(n);return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${d} + col * ${u} + depth * ${l} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
|
|
vec2 uv = uvFromFlat(${h}, ${m}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Ll(e){let t=e.name,n=k.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function hW(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=zv(e.shapeInfo.logicalShape,t.logicalShape),l=ut(i),u=i-s,d,p=["x","y","z","w","u","v"];s===0?d="":i<2&&o.length>=1?d="coords = 0;":d=o.map(y=>`coords.${p[y+u]} = 0;`).join(`
|
|
`);let c="";i<2&&s>0?c="coords":c=e.shapeInfo.logicalShape.map((y,A)=>`coords.${p[A+u]}`).join(", ");let h="return outputValue;",m=k.sizeFromShape(e.shapeInfo.logicalShape)===1,f=k.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!f)i===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let y=s-2,A=s-1;o.indexOf(y)>-1&&o.indexOf(A)>-1?h="return vec4(outputValue.x);":o.indexOf(y)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(A)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${d}
|
|
vec4 outputValue = get${a}(${c});
|
|
${h}
|
|
}
|
|
`}function fW(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&k.arraysEqual(i,s))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let u=ut(l),d=zv(e.shapeInfo.logicalShape,t.logicalShape),p=l-o,c,h=["x","y","z","w","u","v"];o===0?c="":l<2&&d.length>=1?c="coords = 0;":c=d.map(f=>`coords.${h[f+p]} = 0;`).join(`
|
|
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,y)=>`coords.${h[y+p]}`).join(", "),`
|
|
float ${r}() {
|
|
${u} coords = getOutputCoords();
|
|
${c}
|
|
return get${a}(${m});
|
|
}
|
|
`}function ut(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Wl(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Bl(e,t){return t.map(n=>e[n]).join(", ")}function mW(e,t,n,a){let r=t.userCode,s=n.map((h,m)=>{let f={logicalShape:h.shape,texShape:h.isUniform?null:h.texData.texShape,isUniform:h.isUniform,isPacked:h.isUniform?!1:h.texData.isPacked,flatOffset:null};return h.texData!=null&&h.texData.slice!=null&&h.texData.slice.flatOffset>0&&(f.flatOffset=h.texData.slice.flatOffset),{name:t.variableNames[m],shapeInfo:f}}),i=s.map(h=>h.shapeInfo),o={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},l=$L(s,o,r,t.packedInputs),u=e.createProgram(l),d=null,p=e.getUniformLocation(u,"NAN",!1);J().getNumber("WEBGL_VERSION")===1&&(d=e.getUniformLocation(u,"INFINITY",!1));let c={};for(let h=0;h<t.variableNames.length;h++){let m=t.variableNames[h],f=!1;c[m]=e.getUniformLocation(u,m,f),c[`offset${m}`]=e.getUniformLocation(u,`offset${m}`,f)}return{program:t,source:l,webGLProgram:u,uniformLocations:c,inShapeInfos:i,outShapeInfo:o,infLoc:d,nanLoc:p}}function Pv(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!k.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!k.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function yW(e,t,n,a,r){Pv(t.inShapeInfos,n),Pv([t.outShapeInfo],[a]);let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),J().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let u=t.program.variableNames[l],d=t.uniformLocations[u],p=t.uniformLocations[`offset${u}`];if(d!=null){if(o.isUniform){if(k.sizeFromShape(o.shape)<2)e.gl.uniform1f(d,o.uniformValues[0]);else{let c=o.uniformValues;c instanceof Float32Array||(c=new Float32Array(c)),e.gl.uniform1fv(d,c)}return}o.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,d,l)}}),r!=null&&r(e,t.webGLProgram),e.executeProgram()}function AW(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r,s}var{addImpl:gW,bincountImpl:Lv,bincountReduceImpl:xW,ceilImpl:bW,concatImpl:vW,expImpl:wW,expm1Impl:kW,floorImpl:IW,gatherV2Impl:SW,greaterImpl:NW,lessImpl:TW,linSpaceImpl:EW,logImpl:CW,maxImpl:RW,maximumImpl:MW,minimumImpl:FW,multiplyImpl:$W,negImpl:DW,prodImpl:zW,rangeImpl:OW,rsqrtImpl:_W,simpleAbsImpl:Wv,sliceImpl:PW,sparseFillEmptyRowsImpl:LW,sparseReshapeImpl:WW,stridedSliceImpl:BW,subImpl:VW,tileImpl:jW,topKImpl:UW,transposeImpl:N1,uniqueImpl:HW}=e1;function Bv(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function fn(e,t){return t===1?[e]:Bv(e,t)}function GW(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var qW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=fn("rc",t),a=ut(t),r=KW(t,e,n),s=ZW(t,e[e.length-1],e[e.length-2],n),i=YW(e,n);this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
|
|
if(${r}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${s}
|
|
|
|
setOutput(vec4(${i}));
|
|
}
|
|
}
|
|
`}}};function XW(e,t){let n=[];for(let a=0;a<=1;a++)for(let r=0;r<=1;r++){let s=`${a===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function KW(e,t,n){if(e===1)return`rc > ${t[0]}`;let a="";for(let r=e-2;r<e;r++)a+=`${n[r]} >= ${t[r]}`,r<e-1&&(a+="||");return a}function ZW(e,t,n,a){if(e===1)return"";let r=a.slice(-2);return`
|
|
int r = ${r[0]};
|
|
int c = ${r[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function YW(e,t){let n=e.length,a=XW(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${a[0]}),
|
|
cEdge ? 0. : getA(${a[1]}),
|
|
rEdge ? 0. : getA(${a[2]}),
|
|
rEdge || cEdge ? 0. : getA(${a[3]})`}var Vv=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2==1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${a}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${a>0?"}":""}
|
|
`}this.userCode=`
|
|
${JW(t)}
|
|
${b1(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${e[1]};
|
|
int cols = ${e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function JW(e){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${Mi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var QW=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=Uv(t,n),r=Hv(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=jv(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===tn.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===tn.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===tn.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===tn.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===tn.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=Uv(n,a),s=Hv(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=jv(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=J().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function eB(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function jv(e,t,n,a,r){let s=tB(t,a),i;if(r){let[l,u]=Ol(e[0],e[1]);i=l*u}else{let[l,u]=xd(e[0],e[1]);i=l*u}let o=eB(n,s);return i*o}function tB(e,t){switch(e){case tn.PACKED_2X2_FLOAT32:return I1(t);case tn.PACKED_2X2_FLOAT16:return S1(t);case tn.UNPACKED_FLOAT32:return v1(t);case tn.UNPACKED_FLOAT16:return w1(t);case tn.PACKED_4X1_UNSIGNED_BYTE:return k1(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function nB(e){return J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?tn.PACKED_2X2_FLOAT32:tn.UNPACKED_FLOAT32:e?tn.PACKED_2X2_FLOAT16:tn.UNPACKED_FLOAT16}function Uv(e,t){if(e===na.UPLOAD)return tn.PACKED_2X2_FLOAT32;if(e===na.RENDER||e==null)return nB(t);if(e===na.DOWNLOAD||e===na.PIXELS)return tn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function Hv(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Gr=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},wa="if (isnan(x)) return x;",aB="return x;",Gv="return abs(x);",rB="return (x >= 0.0) ? x : (exp(x) - 1.0);",sB=wa+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,iB=wa+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Th="return x;",oB="return 1.0 / (1.0 + exp(-1.0 * x));",lB="return x;",uB=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,dB=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,pB=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,cB="return 1.0 / (1.0 + exp(-1.0 * x));",Vl=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},hB=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=fn("rc",t),a=ut(t),r=GW(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},fB=Ga.whereImpl,mB=1e-7,yB=1e-4,T1={};function AB(e){return e in T1||(T1[e]={}),T1[e]}var gB=128,xB=600;function bB(){return J().global.screen==null?1024:J().global.screen.height*J().global.screen.width*window.devicePixelRatio*xB/1024/1024}var jl=class extends ku{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!J().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Xa(J().getNumber("WEBGL_VERSION"));this.binaryCache=AB(J().getNumber("WEBGL_VERSION")),this.gpgpu=new Nh(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new QW(this.gpgpu),this.numMBBeforeWarning=bB(),this.texData=new zp(this,dr())}nextDataId(){return jl.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((J().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||J().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:na.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(J().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:na.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let p;o?p=new Vl(i,Th):p=new Gr(i,Th);let c=this.runWebGLProgram(p,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(c.dataId);return this.disposeIntermediateTensorInfo(c),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,u;l&&(u=k.now());let d;if(a==="complex64"){let p=this.readSync(r.real.dataId),c=this.readSync(r.imag.dataId);d=R.mergeRealAndImagArrays(p,c)}else d=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=k.now()-u),this.convertAndCacheOnCPU(e,d)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new Vl(a,Th):h=new Gr(a,Th);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&J().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&J().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...bd(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let d;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];d=R.mergeRealAndImagArrays(m,f)}else if(l==null)d=this.getValuesFromTexture(e);else{let h=k.sizeFromShape(a);d=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}u!=null&&this.disposeIntermediateTensorInfo(u);let p=this.convertAndCacheOnCPU(e,d),c=this.pendingRead.get(e);return this.pendingRead.delete(e),c.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&dr().removeDataId(e,this),this.pendingDeletes--),p}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>k.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!q7(n))throw J().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=k.sizeFromShape(t);if(J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let p=this.decode(e),c=this.texData.get(p.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(c.texture,...bd(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(p),h}let s=J().getBool("WEBGL_PACK")&&a===!0,i=s?wh(t):t,o=s?new CL(i):new EL(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),d=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),d}timerAvailable(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=k.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=k.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=k.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:k.now(),endMs:null}}endTimer(e){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=k.now(),e)}async getQueryTime(e){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=gB){return J().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&k.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){R.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return fB(e.shape,t)}packedUnaryOp(e,t,n){let a=new Vl(e.shape,t),r=this.compileAndRun(a,[e],n);return dr().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=Wv(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(J().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Gv,e.dtype);let t=new Gr(e.shape,Gv),n=this.compileAndRun(t,[e]);return dr().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let r=n.map(s=>k.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:a}=this.makeTensorInfo(e,t,n);return dr().makeTensorFromDataId(a,e,t,this)}unpackTensor(e){let t=new hB(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new qW(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Ci(e.shape),...Ri(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[Ci(t),...Ri(t)],s=new Vv(r,n),i=!0,o=this.runWebGLProgram(s,[a],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:a,dtype:r}=t,s=wh(a),i;n?i=new TL(s):i=new NL(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:r,dataId:e}],r,null,o);return{dtype:r,shape:a,dataId:l.dataId}}runWebGLProgram(e,t,n,a,r=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===gd.DENSE){let f=bd(e.outputShape);i.texShape=f.map(y=>y*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),k.sizeFromShape(s.shape)===0)return i.values=k.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let y=this.texData.get(f.dataId);if(y.texture==null){if(!e.packedInputs&&k.sizeFromShape(f.shape)<=J().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:y.values};e.packedInputs&&(y.isPacked=!0,y.shape=f.shape)}else if(!!y.isPacked!=!!e.packedInputs)f=y.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),y=this.texData.get(f.dataId);else if(y.isPacked&&!kd(y.shape,f.shape)){let A=f,g=f.shape;f.shape=y.shape,f=this.packedReshape(f,g),o.push(f),y=this.texData.get(f.dataId),A.shape=g}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:y,isUniform:!1}});this.uploadToGPU(s.dataId);let u={shape:s.shape,texData:i,isUniform:!1},d=AW(e,l,u),p=this.getAndSaveBinary(d,()=>mW(this.gpgpu,e,l,u)),c=this.activeTimers!=null,h;c&&(h=this.startTimer()),yW(this.gpgpu,p,l,u,a),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),c&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let m=J().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let f=k.now();f-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=f)}if(!J().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&r===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(J().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=B(()=>{if(!J().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=J().getBool("DEBUG");J().set("DEBUG",!1);let t=this.abs(we(1e-8)).dataSync()[0];if(J().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?mB:yB}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=k.now());let d=t.texShape;if(d==null&&(d=dv(n,o),t.texShape=d),r!=null){let p=wh(n),c,h=d[1],m=d[0],f=r instanceof Uint8Array;o?([h,m]=Ol(d[0],d[1]),c=new ML(p,[m,h],f)):c=new RL(p,[m,h],f);let y=this.makeTensorInfo([m,h],a);f?this.texData.get(y.dataId).usage=na.PIXELS:this.texData.get(y.dataId).usage=na.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(y.dataId),h,m,r);let A=!0,g=this.runWebGLProgram(c,[y],a,null,A),x=this.texData.get(g.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(y),this.texData.delete(g.dataId),t.values=null,l&&(this.uploadWaitMs+=k.now()-u)}else{let p=this.acquireTexture(d,i,a,o);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return this.releaseGPUData(e),t!=null&&(n.values=vB(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*k.bytesPerElement(t)}};jl.nextDataId=0;function vB(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var qv="3.6.0";function Xv(){J().set("WEBGL_FORCE_F16_TEXTURES",!0)}Zu.isBrowser()&&Al("webgl",()=>new jl,2);var wB={forceHalfFloat:Xv},Kv=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Ul=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=R.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},Eh=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,Sd=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=R.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length,s="";if(a)if(r===0||k.sizeFromShape(this.outputShape)===1)s=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(s=`
|
|
${ut(r)} coords = getOutputCoords();
|
|
`,r===1)s+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=fn("coords",r);s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${s}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Vn(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var kB={kernelName:Rs,backendName:"webgl",kernelFunc:Vn};function qr(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=Vn({inputs:{x:a},backend:n}),l=Vn({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var IB={kernelName:Vp,backendName:"webgl",kernelFunc:qr},Zv="return (a < 0.) ? b * a : a;",Yv=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function SB(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",k.createScalarValue(s,"float32")),o=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Sd(Yv,r.shape,i.shape):new Ul(Zv,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],r.dtype);return n.disposeIntermediateTensorInfo(i),l}var NB={kernelName:Ms,backendName:"webgl",kernelFunc:SB},Jv="return (a < 0.) ? b * a : a;",Qv=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function TB(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Sd(Qv,a.shape,r.shape):new Ul(Jv,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)}var EB={kernelName:Us,backendName:"webgl",kernelFunc:TB},ew="if (isnan(x)) return x;",CB=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,RB=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function Xe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let p=o.texData.get(i.dataId),c=n(p.values,l);return o.makeTensorInfo(i.shape,l,c)}let u=J().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,d;return u?d=new Vl(i.shape,t):d=new Gr(i.shape,e),o.runWebGLProgram(d,[i],l)}}function nn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,d=o;if(a&&l.dtype==="complex64"){let m=d.texData.get(l.dataId),f=d.texData.get(u.dataId),[y,A]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[w,b]=x,v={dataId:w.dataId,dtype:w.dtype,shape:l.shape},S={dataId:b.dataId,dtype:b.dtype,shape:u.shape},T=new Ul(e,l.shape,u.shape);return d.runWebGLProgram(T,[v,S],da(w.dtype,b.dtype))}),g=qr({inputs:{real:y,imag:A},backend:d});return d.disposeIntermediateTensorInfo(y),d.disposeIntermediateTensorInfo(A),g}let p=s||da(l.dtype,u.dtype);if(d.shouldExecuteOnCPU([l,u])&&r!=null){let m=d.texData.get(l.dataId),f=d.texData.get(u.dataId),[y,A]=r(l.shape,u.shape,m.values,f.values,p),g=d.makeTensorInfo(A,p),x=d.texData.get(g.dataId);return x.values=y,g}let c=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return c?h=new Sd(t,l.shape,u.shape,n):h=new Ul(e,l.shape,u.shape),d.runWebGLProgram(h,[l,u],p)}}function Ch(e,t=!1){if(e==="linear")return t?lB:aB;if(e==="relu")return t?dB:sB;if(e==="elu")return t?uB:rB;if(e==="relu6")return t?pB:iB;if(e==="prelu")return t?Qv:Jv;if(e==="leakyrelu")return t?Yv:Zv;if(e==="sigmoid")return t?cB:oB;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var tw=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let u=a?e[1]:e[2],d=Math.ceil(u/2),p=a?"i * 2, rc.y":"rc.y, i * 2",c=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",y="";i&&(o?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:l?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:f=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,y="result = activation(result);");let A=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let g="rc.x",x="rc.x";e[0]<t[0]?g=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${f}
|
|
|
|
const float sharedDimension = ${d}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${d}; i++) {
|
|
int batchA = ${g};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${p});
|
|
vec4 b = getMatrixB(batchB, ${c});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${m[0]});
|
|
result += (${h[1]} * ${m[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${A}
|
|
|
|
${y}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},nw={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},aw=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=R.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},rw="return a * b;";function E1(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=R.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),u=new aw(nw.REAL,a.shape,r.shape),d=new aw(nw.IMAG,a.shape,r.shape),p=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],c=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(d,p,"float32"),m=qr({inputs:{real:c,imag:h},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[u,d]=$W(a.shape,r.shape,o.values,l.values,s),p=n.makeTensorInfo(d,s),c=n.texData.get(p.dataId);return c.values=u,p}let i;return J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new Sd(rw,a.shape,r.shape):i=new Ul(rw,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var MB={kernelName:Ws,backendName:"webgl",kernelFunc:E1};function FB(e,t,n){let a=[Ci(e.shape),...Ri(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[Ci(t),...Ri(t)],i=new Vv(s,a),o=!0,l=n.runWebGLProgram(i,[r],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function Ae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=k.sizeFromShape(r.shape),l=k.inferFromImplicitShape(s,o),u=k.sizeFromShape(l);k.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let d=i.texData.get(r.dataId);return d.isPacked&&!kd(r.shape,l)&&!(d.texture!==null&&kd(d.shape,l))?FB(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var $B={kernelName:Xo,backendName:"webgl",kernelFunc:Ae},sw=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let d=1/t;l=`sumValue += dot(values * ${k.isInt(d)?d.toPrecision(2):d}, ones);`}let u="";r%n>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},DB=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,d=n%4,p=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
}
|
|
`,c="vec4";t==="all"?(i="1.0",p=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,c="bvec4"):t==="any"&&(i="0.0",p=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,c="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${d===1}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${d===2}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${d===3}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function zB(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=R.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function $i(e,t,n,a){let r=zB(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:u}=r[i],d,p;n==="mean"?d=i===0?new sw({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new sw({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):d=new DB({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),p=s,s=a.runWebGLProgram(d,[s],t),p.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(p)}return s}var OB=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=ut(this.rank),r=_B(t);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function _B(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var PB=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=ut(this.rank),r=Bv("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=r[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${o}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${o}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Rh(e,t,n){let a=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new PB(e.shape,t):new OB(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function LB(e,t,n,a){let r=t,s=e.shape.length,i=k.parseAxisParam(r,e.shape),o=i,l=R.getAxesPermutation(o,s),u=l!=null,d=e;u&&(d=Rh(e,l,a),o=R.getInnerMostAxes(o.length,s)),R.assertAxesAreInnerMostDims("sum",o,s);let[p,c]=R.computeOutAndReduceShapes(d.shape,o),h=p;n&&(h=R.expandShapeToKeepDim(p,i));let m=k.sizeFromShape(c),f=k.sizeFromShape(e.shape)/m,y=Ae({inputs:{x:d},attrs:{shape:[f,m]},backend:a}),A=vc(e.dtype),g=$i(y,A,"sum",a),x=Ae({inputs:{x:g},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(y),a.disposeIntermediateTensorInfo(g),u&&a.disposeIntermediateTensorInfo(d),x}function Mh(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return LB(r,s,i,n)}var WB={kernelName:ei,backendName:"webgl",kernelFunc:Mh};function mn(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let d=0;d<l.length;d++)l[d]=r.shape[s[d]];let u;if(i.shouldExecuteOnCPU([r])){let d=i.texData.get(r.dataId).values,p=N1(d,r.shape,r.dtype,s,l);u=i.makeTensorInfo(l,r.dtype);let c=i.texData.get(u.dataId);c.values=p}else u=Rh(r,s,i);return u}var BB={kernelName:ii,backendName:"webgl",kernelFunc:mn},iw=1e3;function Fh({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,d=t.shape.length,p=n?e.shape[u-2]:e.shape[u-1],c=a?t.shape[d-1]:t.shape[d-2],h=n?e.shape[u-1]:e.shape[u-2],m=a?t.shape[d-2]:t.shape[d-1],f=e.shape.slice(0,-2),y=t.shape.slice(0,-2),A=k.sizeFromShape(f),g=k.sizeFromShape(y),x=A===g||A===1||g===1;k.assert(u>=2&&d>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${y}).`);let w=(A>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,m]);k.assert(p===c,()=>`Error in matMul: inner shapes (${p}) and (${c}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let b=n?[A,p,h]:[A,h,p],v=a?[g,m,c]:[g,c,m],S=Ae({inputs:{x:e},backend:r,attrs:{shape:b}}),T=Ae({inputs:{x:t},backend:r,attrs:{shape:v}}),C=[S,T],$=Math.max(A,g),O=n?S.shape[1]:S.shape[2],P=s!=null,j=i!=null,D=l==="leakyrelu",U=l!=null?Ch(l,!0):null,X=P||j||D||U!=null,G;if((h===1||m===1)&&O>iw&&X===!1){let Y=S,re=T;n&&(Y=mn({inputs:{x:S},backend:r,attrs:{perm:[0,2,1]}}),C.push(Y)),a&&(re=mn({inputs:{x:T},backend:r,attrs:{perm:[0,2,1]}}),C.push(re));let ne=m!==1,ie=m===1,Q=Y;ne&&(Q=Ae({inputs:{x:Y},backend:r,attrs:{shape:[$,O,1]}}),C.push(Q));let pe=m===1?2:1,oe=re;ie&&(oe=Ae({inputs:{x:re},backend:r,attrs:{shape:[$,1,O]}}),C.push(oe));let ge=E1({inputs:{a:Q,b:oe},backend:r});G=Mh({inputs:{x:ge},backend:r,attrs:{axis:pe,keepDims:!0}}),C.push(ge)}else{let Y=da(e.dtype,t.dtype),re=new tw(b,v,[$,h,m],n,a,P,U,j,D),ne=[S,T];if(s!=null&&ne.push(s),j&&ne.push(i),D){let ie=r.makeTensorInfo([],"float32",k.createScalarValue(o,"float32"));ne.push(ie),C.push(ie)}G=r.runWebGLProgram(re,ne,Y)}let ee=Ae({inputs:{x:G},backend:r,attrs:{shape:w}});C.push(G);for(let Y of C)r.disposeIntermediateTensorInfo(Y);return ee}function VB(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:p}=a;return Fh({a:r,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:p,activation:d})}var jB={kernelName:oi,backendName:"webgl",kernelFunc:VB},ow="return abs(x);";function UB(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=Wv(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Vl(a.shape,ow):r=new Gr(a.shape,ow),n.runWebGLProgram(r,[a],a.dtype)}var HB={kernelName:oo,backendName:"webgl",kernelFunc:UB},GB=wa+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,qB=Xe({opSnippet:GB}),XB={kernelName:lo,backendName:"webgl",kernelFunc:qB},KB=wa+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,ZB=Xe({opSnippet:KB}),YB={kernelName:uo,backendName:"webgl",kernelFunc:ZB},lw="return a + b;",JB=nn({opSnippet:lw,packedOpSnippet:lw,supportsComplex:!0,cpuKernelImpl:gW}),QB={kernelName:Mr,backendName:"webgl",kernelFunc:JB},eV=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}},tV=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}};function $h(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return Vn({inputs:{x:a[0]},backend:n});if(a.length>J().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=$h({inputs:a.slice(0,o),backend:n}),u=$h({inputs:a.slice(o),backend:n});return $h({inputs:[l,u],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>da(o,l)),s=a.map(o=>o.shape),i=J().getBool("WEBGL_PACK")?new tV(a[0].shape,s):new eV(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var nV={kernelName:hs,backendName:"webgl",kernelFunc:$h};function aV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,d=R.getAxesPermutation(u,o),p=r;d!=null&&(p=mn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=R.getInnerMostAxes(u.length,o)),R.assertAxesAreInnerMostDims("all",u,o);let[c,h]=R.computeOutAndReduceShapes(p.shape,u),m=k.sizeFromShape(h),f=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),y=$i(f,f.dtype,"all",n),A;if(i){let g=R.expandShapeToKeepDim(c,l);A=Ae({inputs:{x:y},backend:n,attrs:{shape:g}})}else A=Ae({inputs:{x:y},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),d!=null&&n.disposeIntermediateTensorInfo(p),A}var rV={kernelName:po,backendName:"webgl",kernelFunc:aV};function sV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,d=R.getAxesPermutation(u,o),p=r;d!=null&&(p=mn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=R.getInnerMostAxes(u.length,o)),R.assertAxesAreInnerMostDims("any",u,o);let[c,h]=R.computeOutAndReduceShapes(p.shape,u),m=k.sizeFromShape(h),f=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),y=$i(f,f.dtype,"any",n),A;if(i){let g=R.expandShapeToKeepDim(c,l);A=Ae({inputs:{x:y},backend:n,attrs:{shape:g}})}else A=Ae({inputs:{x:y},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),d!=null&&n.disposeIntermediateTensorInfo(p),A}var iV={kernelName:co,backendName:"webgl",kernelFunc:sV},oV=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${a};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},lV=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,k.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=ut(o),u=fn("coords",o),d,p;if(s===1){p=o+1;let S=ut(p);d=`
|
|
${S} sourceLocR = ${S}(${u.join()}, 0);
|
|
++${u[o-1]};
|
|
${S} sourceLocG = ${S}(${u.join()}, 0);
|
|
++${u[o-2]};
|
|
${S} sourceLocA = ${S}(${u.join()}, 0);
|
|
--${u[o-1]};
|
|
${S} sourceLocB = ${S}(${u.join()}, 0);
|
|
--${u[o-2]};`}else p=o,d=`
|
|
${l} sourceLocR = coords;
|
|
++${u[o-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[o-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[o-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[o-2]};`;let c=["x","y","z","w","u","v"].slice(0,p),h="."+c[p-1],m=c.map(S=>"int "+S),f=fn("sourceLocR",p-1).concat("inIdx.r"),y=fn("sourceLocG",p-1).concat("inIdx.g"),A=fn("sourceLocB",p-1).concat("inIdx.b"),g=fn("sourceLocA",p-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",w=a?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${A.join()}),
|
|
getBestIndicesAChannel(${g.join()})));`,b=`vec4(
|
|
getAChannel(${f.join()}),
|
|
hasNextCol ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${A.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,v=a?"":`
|
|
float getBestIndicesAChannel(${m.join()}) {
|
|
return getChannel(getBestIndicesA(${c.join()}),
|
|
vec2(${c.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${m.join()}) {
|
|
return getChannel(getA(${c.join()}),
|
|
vec2(${c.slice(-2).join()}));
|
|
}
|
|
${v}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
|
|
${d}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${b};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${w}
|
|
vec4 candidate = ${b};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function uw(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=R.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new oV(o,n,a==null),u=[t];a!=null&&u.push(a);let d=e.runWebGLProgram(l,u,"int32");if(d.shape[1]===1)return d;let p=uw(e,t,n,d);return e.disposeIntermediateTensorInfo(d),p}function dw(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=R.computeOptimalWindowSize(s),o=new lV(r,i,n,a==null),l=a==null?[t]:[t,a],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let d=dw(e,t,n,u);return e.disposeIntermediateTensorInfo(u),d}return u}function pw(e,t,n,a){let r=[n];if(R.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!J().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=R.computeOutAndReduceShapes(t.shape,r),l=k.sizeFromShape(o),u=Ae({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(u);let d=uw(e,u,a);s.push(d);let p=Ae({inputs:{x:d},backend:e,attrs:{shape:i}});return s.forEach(c=>e.disposeIntermediateTensorInfo(c)),p}return dw(e,t,a)}function uV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=k.parseAxisParam(s,r.shape),o=R.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=mn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),R.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let d=pw(n,l,i[0],"max");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),d}var dV={kernelName:fs,backendName:"webgl",kernelFunc:uV};function pV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=k.parseAxisParam(s,r.shape),o=R.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=mn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),R.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let d=pw(n,l,i[0],"min");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),d}var cV={kernelName:Nu,backendName:"webgl",kernelFunc:pV},hV=wa+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,fV=Xe({opSnippet:hV}),mV={kernelName:ho,backendName:"webgl",kernelFunc:fV},yV=wa+"return log(x + sqrt(x * x + 1.0));",AV=Xe({opSnippet:yV}),gV={kernelName:fo,backendName:"webgl",kernelFunc:AV},xV=wa+`
|
|
return atan(x);
|
|
`,bV=Xe({opSnippet:xV}),vV={kernelName:mo,backendName:"webgl",kernelFunc:bV},wV=CB+`
|
|
return atan(a, b);
|
|
`,kV=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+RB+`
|
|
return result;
|
|
`,IV=nn({opSnippet:wV,packedOpSnippet:kV}),SV={kernelName:Ao,backendName:"webgl",kernelFunc:IV},NV=wa+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,TV=Xe({opSnippet:NV}),EV={kernelName:yo,backendName:"webgl",kernelFunc:TV},Nd=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,d=e.effectiveFilterHeight,p=e.effectiveFilterWidth,c=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,y=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,A="0.0";if(m||(A="-1.0 / 1e-20"),n){let S=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${S} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?f:y:`wR * ${p} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let g="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let w=Math.floor(s/4)*4,b=s%4,v=`
|
|
if (${m}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${g}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
const float initializationValue = ${A};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${A});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${w}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${v}
|
|
}
|
|
|
|
int xC = xCCorner + ${w};
|
|
if (${b===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${v}
|
|
} else if (${b===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${v}
|
|
} else if (${b===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${v}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},C1=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,d=e.dilationHeight,p=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,y=e.padInfo.top,A=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",x="0.0";if(g||(x="-1.0 / 1e-20"),n){let C=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${y}, ${A});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${d}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m};
|
|
wC += ${p}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${C} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
|
|
wR * ${m} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let w="max",b=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(b="avgValue / count");let v=Math.floor(s/4)*4,S=s%4,T=`
|
|
if (${g}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${w}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${y}, ${A});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${d}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${v}; wC += 4) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${p}, ch)
|
|
);
|
|
|
|
${T}
|
|
}
|
|
|
|
int xC = xCCorner + ${v};
|
|
if (${S===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${S===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${S===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
}
|
|
}
|
|
setOutput(${b});
|
|
}
|
|
}
|
|
`}};function CV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;_l(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(R.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=R.computePool2DInfo(r.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&k.arraysEqual(d.inShape,d.outShape))return Vn({inputs:{x:r},backend:n});let p=new Nd(d,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var RV={kernelName:ms,backendName:"webgl",kernelFunc:CV};function MV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,d=[1,1,1],p=R.computePool3DInfo(r.shape,s,i,d,o,l,u),c=new C1(p,"avg",!1);return n.runWebGLProgram(c,[r],"float32")}var FV={kernelName:Tu,backendName:"webgl",kernelFunc:MV},$V=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,d=l-1-e.padInfo.left,p=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${d});
|
|
const float avgMultiplier = float(${p});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},DV=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,c=e.effectiveFilterWidth,h=d-1-e.padInfo.front,m=p-1-e.padInfo.top,f=c-1-e.padInfo.left,y=1/(t*n*a);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${m}, ${f});
|
|
const float avgMultiplier = float(${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function zV(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:d}=a,p=[1,1,1],c=R.computePool3DInfo(i.shape,o,l,p,u,d),h=new DV(c);return n.runWebGLProgram(h,[r],i.dtype)}var OV={kernelName:Wp,backendName:"webgl",kernelFunc:zV};function _V(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;_l([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,d=R.computePool2DInfo(i.shape,o,l,1,u),p=new $V(d);return n.runWebGLProgram(p,[r],i.dtype)}var PV={kernelName:Lp,backendName:"webgl",kernelFunc:_V};function LV(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return Fh({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var WV={kernelName:ys,backendName:"webgl",kernelFunc:LV},BV=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(R.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${s}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},VV=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(R.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},jV=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;k.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[a,r,s],d=null;i!=null&&(d=i.shape,u.push(i));let p=null;o!=null&&(p=o.shape,u.push(o));let c=J().getBool("WEBGL_PACK_NORMALIZATION")?new VV(a.shape,r.shape,s.shape,d,p,l):new BV(a.shape,r.shape,s.shape,d,p,l);return t.runWebGLProgram(c,u,u[0].dtype)},UV={kernelName:Es,backendName:"webgl",kernelFunc:jV},HV=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ut(this.rank),n=`uniform int start[${this.rank}];`,a=GV(this.rank),r,s=e.map((i,o)=>`sourceLoc.${R1[o]} = start[${o}] + coords.${R1[o]};`);r=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${s.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
${n}
|
|
void main() {
|
|
${r}
|
|
setOutput(getSource(${a}));
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},R1=["x","y","z","w","u","v"];function GV(e){if(e===1)return"sourceLoc";if(e<=6)return R1.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var qV=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=ut(this.rank),n=fn("coords",this.rank),a=fn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
|
|
result.x = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.y = ${s};
|
|
--${a[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${a[this.rank-2]};
|
|
result.z = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.w = ${s};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,d)=>`start[${d}]`).join()});`:e.map((u,d)=>`${a[d]} = ${n[d]} + start[${d}];`).join(`
|
|
`);this.userCode=`
|
|
uniform int start[${this.rank}];
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function XV(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=un.computeFlatOffset(t,k.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function Td(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=un.parseSliceParams(r,s,i);if(un.assertParamsValid(r,o,l),k.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),c=PW(p.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}let{isPacked:u}=n.texData.get(r.dataId),d=un.isSliceContinous(r.shape,o,l);if(u||!d){let p=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new qV(l):new HV(l),c=p.getCustomSetupFunc(o);return n.runWebGLProgram(p,[r],r.dtype,c)}return n.uploadToGPU(r.dataId),XV(r,o,l,n)}var KV={kernelName:Jo,backendName:"webgl",kernelFunc:Td},ZV=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;k.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,x)=>g*x),l=R.getReshaped(r.shape,s,o),u=R.getPermuted(l.length,s.length),d=R.getReshapedPermuted(r.shape,s,o),p=R.getSliceBeginCoords(i,s.length),c=R.getSliceSize(d,i,s.length),h=[],m=Ae({inputs:{x:r},backend:n,attrs:{shape:l}}),f=mn({inputs:{x:m},backend:n,attrs:{perm:u}}),y=Ae({inputs:{x:f},backend:n,attrs:{shape:d}}),A=Td({inputs:{x:y},backend:n,attrs:{begin:p,size:c}});return h.push(m),h.push(f),h.push(y),h.forEach(g=>n.disposeIntermediateTensorInfo(g)),A},YV={kernelName:Eu,backendName:"webgl",kernelFunc:ZV};function JV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),u=Lv(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var QV={kernelName:Bp,backendName:"webgl",kernelFunc:JV},ej="return float(a != b);",cw=nn({opSnippet:ej,dtype:"bool"}),tj={kernelName:Wo,backendName:"webgl",kernelFunc:cw};function Ed(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Vn({inputs:{x:r.complexTensorInfos.real},backend:n})}var nj={kernelName:uc,backendName:"webgl",kernelFunc:Ed},aj="return float(int(x));";function rj(e,t){let n=new Gr(e.shape,aj),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function M1(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return Vn({inputs:{x:r},backend:n});let i=$t(r.shape),o=M1({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=qr({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=Ed({inputs:{input:r},backend:n}),o=M1({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(r.dtype,s)){let i=Vn({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return rj(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",k.getTypedArrayFromDType("bool",1)),o=cw({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var sj={kernelName:As,backendName:"webgl",kernelFunc:M1},hw="return ceil(x);",ij=Xe({opSnippet:hw,packedOpSnippet:hw,cpuKernelImpl:bW}),oj={kernelName:gs,backendName:"webgl",kernelFunc:ij},lj=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},uj=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function dj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;J().getBool("WEBGL_PACK_CLIP")?o=new uj(r.shape):o=new lj(r.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[r],r.dtype,l)}var pj={kernelName:Fr,backendName:"webgl",kernelFunc:dj},cj=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function fw(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function hj(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new cj(a.shape),i=[fw(a,r.complexTensorInfos.real),fw(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var fj={kernelName:Cu,backendName:"webgl",kernelFunc:hj},mj=class{constructor(e){this.outputShape=[],this.outputShape=R.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},yj=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=R.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=ut(a),s=fn("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],u=i.slice(-2),d=i.join(),p=`if (${l} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${d}), vec2(${u.join()}));
|
|
}`;for(let m=1;m<o.length;m++){let f=o[m-1];p+=`
|
|
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
|
|
return getChannel(
|
|
getT${m}(${Dh(i,l,f)}),
|
|
vec2(${Dh(u,l,f)}));
|
|
}`}let c=o.length,h=o[o.length-1];p+=`
|
|
return getChannel(
|
|
getT${c}(${Dh(i,l,h)}),
|
|
vec2(${Dh(u,l,h)}));`,this.userCode=`
|
|
float getValue(${i.map(m=>"int "+m)}) {
|
|
${p}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
|
|
|
|
${s[a-1]} = ${s[a-1]} + 1;
|
|
if (${s[a-1]} < ${n[a-1]}) {
|
|
result.g = getValue(${s});
|
|
}
|
|
|
|
${s[a-2]} = ${s[a-2]} + 1;
|
|
if (${s[a-2]} < ${n[a-2]}) {
|
|
result.a = getValue(${s});
|
|
}
|
|
|
|
${s[a-1]} = ${s[a-1]} - 1;
|
|
if (${s[a-2]} < ${n[a-2]} &&
|
|
${s[a-1]} < ${n[a-1]}) {
|
|
result.b = getValue(${s});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Dh(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function zh(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Vn({inputs:{x:r.complexTensorInfos.imag},backend:n})}var Aj={kernelName:nc,backendName:"webgl",kernelFunc:zh};function Hl(e,t,n){let a=e[0].dtype;if(a==="complex64"){let d=e.map(f=>Ed({inputs:{input:f},backend:n})),p=e.map(f=>zh({inputs:{input:f},backend:n})),c=Hl(d,t,n),h=Hl(p,t,n),m=qr({inputs:{real:c,imag:h},backend:n});return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),p.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}let r=n.shouldExecuteOnCPU(e);if(a==="string"&&(r=!0),r){let d=e.map(A=>{let g=k.sizeFromShape(A.shape.slice(t));return Ae({inputs:{x:A},backend:n,attrs:{shape:[-1,g]}})}),p=d.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),c=R.computeOutShape(d.map(A=>A.shape),1),h=d[0].shape[0]===1,m=vW(p,c,a,h),f=R.computeOutShape(e.map(A=>A.shape),t),y=n.makeTensorInfo(f,a,m);return d.forEach(A=>n.disposeIntermediateTensorInfo(A)),y}if(e.length>J().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let d=Math.floor(e.length/2),p=Hl(e.slice(0,d),t,n),c=Hl(e.slice(d),t,n),h=Hl([p,c],t,n);return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),h}if(J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let d=new yj(e.map(p=>p.shape),t);return n.runWebGLProgram(d,e,a)}let{tensors2D:s,outShape:i}=gj(e,t,n),o=new mj(s.map(d=>d.shape)),l=n.runWebGLProgram(o,s,a);s.forEach(d=>n.disposeIntermediateTensorInfo(d));let u=Ae({inputs:{x:l},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(l),u}function gj(e,t,n){let a=R.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>Ae({inputs:{x:r},attrs:{shape:[-1,k.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function mw(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=k.parseAxisParam(r,t[0].shape)[0],i=R.computeOutShape(t.map(u=>u.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>k.sizeFromShape(u.shape)>0);if(o.length===1)return Vn({inputs:{x:o[0]},backend:n});let l=o.map(u=>u.shape);return R.assertParamsConsistent(l,s),Hl(o,s,n)}var xj={kernelName:go,backendName:"webgl",kernelFunc:mw},yw=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",y=f?1:2,A=f?2:3,g=f?3:1,x="",w="";n&&(a?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,w="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${l});
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${g}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${y}], coords[${A}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${c}; wC++) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${m===1}) {
|
|
|
|
if (${f}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${m===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${m===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${b}
|
|
${w}
|
|
setOutput(result);
|
|
}
|
|
`}},bj=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,d=e.filterDepth,p=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${s}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${a});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${d}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${c}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${m===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${m===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${m===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},vj=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:a,inChannels:r,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:u,dilationHeight:d,dataFormat:p}=n,{left:c,top:h}=o,m=r*a,f=hn(),y=p==="channelsLast",A=y?0:1,g=y?1:2,x="";for(let w=0;w<=1;w++)for(let b=0;b<=1;b++)x+=`
|
|
blockIndex = rc.y + ${b};
|
|
pos = rc.x + ${w};
|
|
|
|
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
|
|
offsetY = int(blockIndex / (${l})) * ${i} - ${h};
|
|
d0 = offsetY + ${d} * (pos / ${m});
|
|
|
|
if(d0 < ${t[A]} && d0 >= 0) {
|
|
|
|
offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${c}.);
|
|
d1 = offsetX + ${u} * (int(mod(float(pos), ${m}.) / ${r}.));
|
|
|
|
if(d1 < ${t[g]} && d1 >= 0) {
|
|
|
|
ch = int(mod(float(pos), ${r}.));
|
|
|
|
if (${y}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${w*2+b}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${w*2+b}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${x}
|
|
|
|
${f.output} = result;
|
|
}
|
|
`}};function Aw({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=a.texData.get(e.dataId),d=n.inChannels,p=l[0]*l[1]*l[2],c=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,y,A=[],g=(p===1||c===1)&&d>iw,x=l[2]%2!=0&&!!u.isPacked;if(g||!J().getBool("WEBGL_LAZILY_UNPACK")||!J().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let w=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],b=Ae({inputs:{x:e},backend:a,attrs:{shape:[1,w,n.inChannels]}}),v=Ae({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),S=Fh({a:b,b:v,transposeA:m,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});y=Ae({inputs:{x:S},backend:a,attrs:{shape:n.outShape}}),A.push(b),A.push(v),A.push(S)}else{let w=h?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),b={dataId:e.dataId,shape:[1,w,n.inChannels],dtype:e.dtype},v=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,k.assert(kd(u.shape,b.shape),()=>`packed reshape ${u.shape} to ${b.shape} isn't free`);let S=Ae({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});A.push(S);let T=Fh({a:b,b:S,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),C=a.texData.get(T.dataId);k.assert(C.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=v,C.shape=n.outShape,y=Vn({inputs:{x:T},backend:a}),y.shape=n.outShape,A.push(T)}for(let w of A)a.disposeIntermediateTensorInfo(w);return y}function gw({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:d,outWidth:p,outHeight:c,dataFormat:h}=n,m=h==="channelsLast",f=l*u*d,y=c*p,A=[f,y],g=!0,x=!1,w=[],b=Ae({inputs:{x:e},backend:a,attrs:{shape:e.shape.slice(1)}}),v=Ae({inputs:{x:t},backend:a,attrs:{shape:[1,f,k.sizeFromShape(t.shape)/f]}});w.push(b),w.push(v);let S=new vj(A,b.shape,n),T=a.runWebGLProgram(S,[b],"float32"),C=Ae({inputs:{x:T},backend:a,attrs:{shape:[1,A[0],A[1]]}});w.push(T),w.push(C);let $=r!=null,O=s!=null,P=o==="leakyrelu",j=o?Ch(o,!0):null,D=new tw(C.shape,v.shape,[1,y,n.outChannels],g,x,$,j,O,P),U=[C,v];if(r&&U.push(r),O&&U.push(s),P){let Y=a.makeTensorInfo([],"float32",k.createScalarValue(i,"float32"));U.push(Y),w.push(Y)}let X=a.runWebGLProgram(D,U,"float32"),G=m?[1,c,p,n.outChannels]:[1,n.outChannels,c,p],ee=Ae({inputs:{x:X},backend:a,attrs:{shape:G}});w.push(X);for(let Y of w)a.disposeIntermediateTensorInfo(Y);return ee}function wj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=a,p=R.convertConv2DDataFormat(l),c=R.computeConv2DInfo(r.shape,s.shape,i,u,o,d,!1,p),h;if(c.filterHeight===1&&c.filterWidth===1&&c.dilationHeight===1&&c.dilationWidth===1&&c.strideHeight===1&&c.strideWidth===1&&(c.padInfo.type==="SAME"||c.padInfo.type==="VALID"))h=Aw({x:r,filter:s,convInfo:c,backend:n});else if(J().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=gw({x:r,filter:s,convInfo:c,backend:n});else{let f=new yw(c);h=n.runWebGLProgram(f,[r,s],"float32")}let m=Ae({inputs:{x:h},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(h),m}var kj={kernelName:xs,backendName:"webgl",kernelFunc:wj},Ij=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${s}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Sj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,d=s?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${d}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${s}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Nj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${a} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Tj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=a-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${a} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Ej(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:d}=a,p=R.convertConv2DDataFormat(l),c=R.computeConv2DInfo(r.shape,d,i,1,o,u,!1,p),h=new Ij(c);return n.runWebGLProgram(h,[r,s],"float32")}var Cj={kernelName:jp,backendName:"webgl",kernelFunc:Ej};function Rj(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=a,p=R.convertConv2DDataFormat(u),c=R.computeConv2DInfo(i,s.shape,o,1,l,d,!1,p),h=new Sj(c);return n.runWebGLProgram(h,[r,s],"float32")}var Mj={kernelName:bs,backendName:"webgl",kernelFunc:Rj};function Fj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=R.computeConv3DInfo(r.shape,s.shape,i,l,o),d=new bj(u);return n.runWebGLProgram(d,[r,s],"float32")}var $j={kernelName:Ru,backendName:"webgl",kernelFunc:Fj};function Dj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,u=R.computeConv3DInfo(r.shape,l,i,1,o),d=new Nj(u);return n.runWebGLProgram(d,[r,s],"float32")}var zj={kernelName:Up,backendName:"webgl",kernelFunc:Dj};function Oj(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,u=R.computeConv3DInfo(l,s.shape,o,1,i),d=new Tj(u);return n.runWebGLProgram(d,[r,s],"float32")}var _j={kernelName:Hp,backendName:"webgl",kernelFunc:Oj},Pj=ew+`
|
|
return cos(x);
|
|
`,Lj=Xe({opSnippet:Pj}),Wj={kernelName:vs,backendName:"webgl",kernelFunc:Lj},Bj=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,Vj=Xe({opSnippet:Bj}),jj={kernelName:xo,backendName:"webgl",kernelFunc:Vj},Uj=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[d,p]=n;this.outputShape=[u,d,p,l];let c=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,y,A]=d>1?[`${(i-1)/(d-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[g,x,w]=p>1?[`${(o-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
|
|
const float height_ratio = float(${f});
|
|
const float width_ratio = float(${g});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${s}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${y};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${A};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${w};
|
|
if( in_x < 0.0 || in_x > ${m} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${c} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},Hj=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,d=new Uj(r.shape,s.shape,o,l,u);return n.runWebGLProgram(d,[r,s,i],"float32")},Gj={kernelName:bo,backendName:"webgl",kernelFunc:Hj},xw=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let a=e.length,r=t?"0.0":`getX(${bw(a,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
uniform float index;
|
|
void main() {
|
|
${ut(a)} coords = getOutputCoords();
|
|
int end = ${vw(a,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${vw(a,"coords")} = idx;
|
|
val += getX(${bw(a,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function bw(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function vw(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function qj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length,u=R.getAxesPermutation([s],l),d=r;u!=null&&(d=mn({inputs:{x:r},backend:n,attrs:{perm:u}}));let p=R.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${s}`);let c=d.shape[p],h=Vn({inputs:{x:d},backend:n});for(let m=0;m<=Math.ceil(Math.log2(c))-1;m++){let f=new xw(d.shape,!1,o),y=f.getCustomSetupFunc(m),A=h;h=n.runWebGLProgram(f,[h],h.dtype,y),n.disposeIntermediateTensorInfo(A)}if(i){let m=new xw(d.shape,i,o),f=h;h=n.runWebGLProgram(m,[h],h.dtype),n.disposeIntermediateTensorInfo(f)}if(u!=null){let m=R.getUndoAxesPermutation(u),f=mn({inputs:{x:h},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),f}return h}var Xj={kernelName:ws,backendName:"webgl",kernelFunc:qj};function Kj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(s.dataId),d=Lv(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,d)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),d=xW(l,u,i,o);return n.makeTensorInfo(d.shape,s.dtype,d.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Zj={kernelName:Gp,backendName:"webgl",kernelFunc:Kj},Yj=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Jj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],d=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,c=u*s,h=d/(s*s),m=i==="NHWC"?[o,p,c,h]:[o,h,p,c],f=new Yj(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var Qj={kernelName:vo,backendName:"webgl",kernelFunc:Jj},ww=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,d=e.strideWidth,p=e.dilationHeight,c=e.dilationWidth,h=e.filterHeight,m=e.filterWidth,f=e.outChannels/e.inChannels,y="",A="";n&&(a?y=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?y=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:y=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,A="result = activation(result);");let g=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${y}
|
|
|
|
const ivec2 strides = ivec2(${u}, ${d});
|
|
const ivec2 pads = ivec2(${o}, ${l});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${f};
|
|
int q = d2 - d1 * ${f};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${p};
|
|
|
|
if (xR < 0 || xR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${g}
|
|
${A}
|
|
setOutput(result);
|
|
}
|
|
`}},kw=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.outChannels/e.inChannels,i=e.inHeight,o=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,d=e.strideHeight,p=e.strideWidth,c=e.dilationHeight,h=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,y=f,A=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let b=0;b<f;b++)A+=`
|
|
vec4 xTexelC${b*2};
|
|
int xTexelC${b*2}Ready;
|
|
vec4 xC${b};`;for(let b=0;b<m;b++){for(let v=0;v<f;v++)A+=`
|
|
xTexelC${v*2} = vec4(0.0);
|
|
xTexelC${v*2}Ready = 0;
|
|
xC${v} = vec4(0.0);`;A+=`
|
|
xR = xRCorner + ${b*c};
|
|
if (xR >=0 && xR < ${i}) {
|
|
`;for(let v=0;v<(y+1)/2;v++){let S=v*2,T=S*h;if(A+=`
|
|
xC = xCCorner + ${T};
|
|
`,p===1){if(S<f&&(u%2==1?(A+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${T}Ready == 0) {
|
|
xTexelC${T} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${T}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T}Ready = 1;
|
|
}
|
|
`,h===1&&T>0?A+=`
|
|
xC${S} = vec4(xTexelC${T-2}.zw, xTexelC${T}.xy);
|
|
`:A+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${o}) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${S} = vec4(previous.zw, xTexelC${T}.xy);
|
|
} else {
|
|
xC${S} = vec4(0.0, 0.0, xTexelC${T}.xy);
|
|
}
|
|
`):A+=`
|
|
if (xC >= 0 && xC < ${o} && xTexelC${T}Ready == 0) {
|
|
xTexelC${T} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= ${o}) {
|
|
xTexelC${T}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T}Ready = 1;
|
|
}
|
|
|
|
xC${S} = xTexelC${T};
|
|
`,T+1<f)){let C=u%2==0?k.nearestLargerEven(h):h;h%2==0&&u%2==1||h%2!=0&&u%2!=1?(A+=`
|
|
xCOffset = xC + ${u%2} + ${C};
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${T+2}Ready == 0) {
|
|
xTexelC${T+2} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${T+2}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T+2}Ready = 1;
|
|
}
|
|
`,h>1&&(A+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${T}Ready == 0) {
|
|
xTexelC${T} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${T}Ready = 1;
|
|
}
|
|
`),A+=`
|
|
xC${S+1} = vec4(xTexelC${T}.zw, xTexelC${T+2}.xy);
|
|
`):C===1?A+=`
|
|
xC${S+1} = xTexelC${T};
|
|
`:A+=`
|
|
xCOffset = xC + ${C};
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${T+2}Ready == 0) {
|
|
xTexelC${T+2} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${T+2}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T+2}Ready = 1;
|
|
}
|
|
|
|
xC${S+1} = xTexelC${T+2};
|
|
`}}else T<f&&(u%2==1?(A+=`
|
|
xCOffset = xC + 1 - ${p};
|
|
if(xCOffset >= 0 && xCOffset < ${o} && xTexelC${T}Ready == 0) {
|
|
xTexelC${T} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${T}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < ${o} && xTexelC${T+2}Ready == 0) {
|
|
xTexelC${T+2} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= ${o}) {
|
|
xTexelC${T+2}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T+2}Ready = 1;
|
|
}
|
|
|
|
xC${S} = vec4(xTexelC${T}.zw, xTexelC${T+2}.zw);
|
|
`,T+1<f&&(A+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + ${p};
|
|
if(xCOffset >= 0 && xCOffset < ${o}) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${S+1} = vec4(xTexelC${T+2}.xy, final.xy);
|
|
`)):(A+=`
|
|
if(xC >= 0 && xC < ${o} && xTexelC${T}Ready == 0) {
|
|
xTexelC${T} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= ${o}) {
|
|
xTexelC${T}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + ${p};
|
|
if(xCOffset >= 0 && xCOffset < ${o} && xTexelC${T+2}Ready == 0) {
|
|
xTexelC${T+2} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${T+2}.zw = vec2(0.);
|
|
}
|
|
xTexelC${T+2}Ready = 1;
|
|
}
|
|
|
|
xC${S} = vec4(
|
|
xTexelC${T}.xy, xTexelC${T+2}.xy);
|
|
`,T+1<f&&(A+=`
|
|
xC${S+1} = vec4(xTexelC${T}.zw, xTexelC${T+2}.zw);
|
|
`)));S<f&&(A+=`
|
|
wTexel = getW(${b}, ${T}, d1, q);
|
|
dotProd += xC${S} * vec4(wTexel.xz, wTexel.xz);
|
|
`,T+1<f&&(A+=`
|
|
wTexel = getW(${b}, ${T+1}, d1, q);
|
|
dotProd += xC${S+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}A+=`
|
|
}
|
|
`}let g="",x="";n&&(a?g=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?g=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:g=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,x="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${g}
|
|
|
|
const ivec2 strides = ivec2(${d}, ${p});
|
|
const ivec2 pads = ivec2(${l}, ${u});
|
|
|
|
void main() {
|
|
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${s};
|
|
int q = d2 - d1 * ${s};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${A}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${w}
|
|
${x}
|
|
setOutput(result);
|
|
}
|
|
`}};function eU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a,d=l;d==null&&(d=[1,1]),k.assert(R.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=R.computeConv2DInfo(r.shape,s.shape,i,d,o,u,!0),c;return J().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels==1?c=new kw(p):c=new ww(p),n.runWebGLProgram(c,[r,s],"float32")}var tU={kernelName:ks,backendName:"webgl",kernelFunc:eU},nU=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${s} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},aU=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function rU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:d}=a,p=R.computeConv2DInfo(r.shape,d,i,o,l,u,!0),c=new nU(p);return n.runWebGLProgram(c,[r,s],"float32")}var sU={kernelName:qp,backendName:"webgl",kernelFunc:rU};function iU(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:d}=a,p=R.computeConv2DInfo(d,s.shape,i,o,l,u,!0),c=new aU(p);return n.runWebGLProgram(c,[r,s],"float32")}var oU={kernelName:Xp,backendName:"webgl",kernelFunc:iU},lU=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function uU(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=k.sizeFromShape(a.shape),i=Ae({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new lU(s),l=n.runWebGLProgram(o,[i],i.dtype),u=Ae({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var dU={kernelName:Kp,backendName:"webgl",kernelFunc:uU},pU=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:d,left:p}=a;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${s});
|
|
const ivec2 pads = ivec2(${d}, ${p});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function cU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=R.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),d,p=new pU(u);d=n.runWebGLProgram(p,[r,s],"float32");let c=Ae({inputs:{x:d},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(d),c}var hU={kernelName:Mu,backendName:"webgl",kernelFunc:cU};function fU(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=R.decodeEinsumEquation(r,s.length);R.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=R.getEinsumComputePath(o,l),p=d.length,c=null,h=i.length,m=[];for(let f=0;f<p;++f){for(let y of d[f]){let{permutationIndices:A,expandDims:g}=R.getEinsumPermutation(h,l[y]),x;R.isIdentityPermutation(A)?x=s[y]:(x=mn({inputs:{x:s[y]},backend:n,attrs:{perm:A}}),m.push(x));let w=x.shape.slice();for(let b=0;b<g.length;++b)w.splice(g[b],0,1);k.arraysEqual(x.shape,w)||(x=Ae({inputs:{x},backend:n,attrs:{shape:w}}),m.push(x)),c===null?c=x:(c=E1({inputs:{a:x,b:c},backend:n}),m.push(c))}f<p-1&&(u[f]>=0&&(c=Mh({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var mU={kernelName:Jp,backendName:"webgl",kernelFunc:fU},yU="return (x >= 0.0) ? x : (exp(x) - 1.0);",AU=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,gU=Xe({opSnippet:yU,packedOpSnippet:AU}),xU={kernelName:wo,backendName:"webgl",kernelFunc:gU},bU="return (b >= 1.0) ? a : a * (b + 1.0);",vU=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,wU=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Sd(vU,a.shape,r.shape):new Ul(bU,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},kU={kernelName:Qp,backendName:"webgl",kernelFunc:wU},IU=`
|
|
return vec4(equal(a, b));
|
|
`,SU="return float(a == b);",NU=nn({opSnippet:SU,packedOpSnippet:IU,dtype:"bool"}),TU={kernelName:Io,backendName:"webgl",kernelFunc:NU},EU=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${R.ERF_P};
|
|
float a1 = ${R.ERF_A1};
|
|
float a2 = ${R.ERF_A2};
|
|
float a3 = ${R.ERF_A3};
|
|
float a4 = ${R.ERF_A4};
|
|
float a5 = ${R.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,CU=Xe({opSnippet:EU}),RU={kernelName:ko,backendName:"webgl",kernelFunc:CU},Iw="return exp(x);",Sw=Xe({opSnippet:Iw,packedOpSnippet:Iw,cpuKernelImpl:wW}),MU={kernelName:Ss,backendName:"webgl",kernelFunc:Sw};function F1(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(k.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),Ae({inputs:{x:s},backend:a,attrs:{shape:o}})}var FU={kernelName:So,backendName:"webgl",kernelFunc:F1},Nw="return exp(x) - 1.0;",$U=Xe({opSnippet:Nw,packedOpSnippet:Nw,cpuKernelImpl:kW}),DU={kernelName:No,backendName:"webgl",kernelFunc:$U},Tw=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${a});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${s};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function Ew(e,t,n){let a=n.texData.get(e.dataId),r=k.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=Ae({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new Tw("real",l,t),d=new Tw("imag",l,t),p=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],c=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(d,p,"float32"),m=qr({inputs:{real:c,imag:h},backend:n});n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h);let f=Ae({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function zU(e){let{inputs:t,backend:n}=e,{input:a}=t;return Ew(a,!1,n)}var OU={kernelName:ec,backendName:"webgl",kernelFunc:zU},_U=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
uniform float value;
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function $1(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||k.inferDtype(r),s==="string"){let i=k.getArrayFromDType(s,k.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new _U(a,r),o=i.getCustomSetupFunc(r);return t.runWebGLProgram(i,[],s,o)}}var PU={kernelName:Fu,backendName:"webgl",kernelFunc:$1},LU=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},WU={kernelName:To,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new LU(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},Cw="return floor(x);",BU=Xe({opSnippet:Cw,packedOpSnippet:Cw,cpuKernelImpl:IW}),VU={kernelName:Ns,backendName:"webgl",kernelFunc:BU},jU=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,UU=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,HU=nn({opSnippet:jU,packedOpSnippet:UU,dtype:"int32"}),GU={kernelName:Ts,backendName:"webgl",kernelFunc:HU},qU=class{constructor(e){this.variableNames=["A"];let t=hn(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},XU=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=hn(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},KU={kernelName:yc,backendName:"webgl",kernelFunc:ZU},Gl;function ZU(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],d=[u,l],p=[u,l,s];(o||i)&&(Gl==null&&(Gl=document.createElement("canvas").getContext("2d")),Gl.canvas.width=l,Gl.canvas.height=u,Gl.drawImage(r,0,0,l,u),r=Gl.canvas);let c=n.makeTensorInfo(d,"int32");n.texData.get(c.dataId).usage=na.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(c.dataId),r);let h=J().getBool("WEBGL_PACK")?new XU(p):new qU(p),m=n.runWebGLProgram(h,[c],"int32");return n.disposeData(c.dataId),m}function YU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=R.convertConv2DDataFormat(d),y=R.computeConv2DInfo(r.shape,s.shape,l,p,u,c,!1,f),A,g=[];if(y.filterHeight===1&&y.filterWidth===1&&y.dilationHeight===1&&y.dilationWidth===1&&y.strideHeight===1&&y.strideWidth===1&&(y.padInfo.type==="SAME"||y.padInfo.type==="VALID"))A=Aw({x:r,filter:s,convInfo:y,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(J().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)A=gw({x:r,filter:s,convInfo:y,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let w=i!=null,b=o!=null,v=h==="leakyrelu",S=h?Ch(h,!1):null,T=new yw(y,w,S,b,v),C=[r,s];if(i&&C.push(i),o&&C.push(o),v){let $=n.makeTensorInfo([],"float32",k.createScalarValue(m,"float32"));C.push($),g.push($)}A=n.runWebGLProgram(T,C,"float32")}let x=Ae({inputs:{x:A},backend:n,attrs:{shape:y.outShape}});return g.push(A),g.forEach(w=>n.disposeIntermediateTensorInfo(w)),x}var JU={kernelName:li,backendName:"webgl",kernelFunc:YU};function QU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dimRoundingMode:p,activation:c,leakyreluAlpha:h}=a,m=[],f=d;f==null&&(f=[1,1]),k.assert(R.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let y=R.computeConv2DInfo(r.shape,s.shape,l,f,u,p,!0),A=J().getBool("WEBGL_PACK_DEPTHWISECONV")&&y.strideWidth<=2&&y.outChannels/y.inChannels==1,g=c?Ch(c,A):null,x=[r,s],w=i!=null,b=o!=null,v=c==="leakyrelu";if(w&&x.push(i),b&&x.push(o),v){let C=n.makeTensorInfo([],"float32",k.createScalarValue(h,"float32"));x.push(C),m.push(C)}let S;A?S=new kw(y,w,g,b,v):S=new ww(y,w,g,b,v);let T=n.runWebGLProgram(S,x,"float32");return m.forEach(C=>n.disposeIntermediateTensorInfo(C)),T}var eH={kernelName:ui,backendName:"webgl",kernelFunc:QU},tH=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let a=ut(t.length),r=ut(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${a} strides = ${a}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${s};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function nH(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],[o,l,u,d]=R.prepareAndValidate(a,r),p=Ae({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),c=Ae({inputs:{x:a},backend:n,attrs:{shape:[k.sizeFromShape(a.shape)/u,u]}}),h=new tH(i,d,[l,u]),m=n.runWebGLProgram(h,[c,p],c.dtype),f=Ae({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(m),f}var aH={kernelName:Co,backendName:"webgl",kernelFunc:nH},rH=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=ut(this.rank),a=sH(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function sH(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("int(getIndices(resRC.x, resRC.z))"):a.push(`${n[r]}`);return a.join()}function iH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=k.parseAxisParam(i,r.shape)[0],u=R.segment_util.collectGatherOpShapeInfo(r,s,l,o),d=k.sizeFromShape(s.shape),p=[],c=Ae({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=Ae({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,d/u.batchSize]}});p.push(c),p.push(h);let m=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let g=n.bufferSync(h),x=n.bufferSync(c),w=SW(x,g,m);return p.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(u.outputShape,w.dtype,w.values)}let f=new rH(c.shape,m),y=n.runWebGLProgram(f,[c,h],c.dtype);p.push(y);let A=Ae({inputs:{x:y},backend:n,attrs:{shape:u.outputShape}});return p.forEach(g=>n.disposeIntermediateTensorInfo(g)),A}var oH={kernelName:Eo,backendName:"webgl",kernelFunc:iH},lH="return float(a > b);",uH=`
|
|
return vec4(greaterThan(a, b));
|
|
`,dH=nn({opSnippet:lH,packedOpSnippet:uH,cpuKernelImpl:NW,dtype:"bool"}),pH={kernelName:Ro,backendName:"webgl",kernelFunc:dH},cH="return float(a >= b);",hH=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,fH=nn({opSnippet:cH,packedOpSnippet:hH,dtype:"bool"}),mH={kernelName:Cs,backendName:"webgl",kernelFunc:fH};function yH(e){let{inputs:t,backend:n}=e,{input:a}=t;return Ew(a,!0,n)}var AH={kernelName:tc,backendName:"webgl",kernelFunc:yH},gH="return float(!isnan(x) && !isinf(x));",xH=Xe({opSnippet:gH,dtype:"bool"}),bH={kernelName:Mo,backendName:"webgl",kernelFunc:xH},vH="return float(isinf(x));",wH=Xe({opSnippet:vH,dtype:"bool"}),kH={kernelName:Fo,backendName:"webgl",kernelFunc:wH},IH="return float(isnan(x));",SH=Xe({opSnippet:IH,dtype:"bool"}),NH={kernelName:$o,backendName:"webgl",kernelFunc:SH},TH="return float(a < b);",EH=`
|
|
return vec4(lessThan(a, b));
|
|
`,CH=nn({opSnippet:TH,packedOpSnippet:EH,cpuKernelImpl:TW,dtype:"bool"}),RH={kernelName:Do,backendName:"webgl",kernelFunc:CH},MH="return float(a <= b);",FH=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,$H=nn({opSnippet:MH,packedOpSnippet:FH,dtype:"bool"}),DH={kernelName:zo,backendName:"webgl",kernelFunc:$H};function zH(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=EW(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var OH={kernelName:ac,backendName:"webgl",kernelFunc:zH},_H=`if (x < 0.0) return NAN;
|
|
return log(x);`,PH=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,LH=Xe({opSnippet:_H,packedOpSnippet:PH,cpuKernelImpl:CW}),WH={kernelName:Fs,backendName:"webgl",kernelFunc:LH},BH="return log(1.0 + x);",VH=Xe({opSnippet:BH}),jH={kernelName:Oo,backendName:"webgl",kernelFunc:VH},UH="return float(a >= 1.0 && b >= 1.0);",HH=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,GH=nn({opSnippet:UH,packedOpSnippet:HH,dtype:"bool"}),qH={kernelName:_o,backendName:"webgl",kernelFunc:GH},XH="return float(!(x >= 1.0));",KH=Xe({opSnippet:XH}),ZH={kernelName:$u,backendName:"webgl",kernelFunc:KH},YH="return float(a >= 1.0 || b >= 1.0);",JH=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,QH=nn({opSnippet:YH,packedOpSnippet:JH,dtype:"bool"}),eG={kernelName:Du,backendName:"webgl",kernelFunc:QH},tG=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${s}; j <= ${s}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},nG=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${s};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${s}; j <= ${s}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},aG=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,u=J().getBool("WEBGL_PACK_NORMALIZATION")?new nG(r.shape,s,i,o,l):new tG(r.shape,s,i,o,l);return n.runWebGLProgram(u,[r],r.dtype)},rG={kernelName:zu,backendName:"webgl",kernelFunc:aG},sG=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${a}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${a})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},iG=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:d}=a,p=new sG(r.shape,o,l,u,d);return n.runWebGLProgram(p,[r,s,i],r.dtype)},oG={kernelName:rc,backendName:"webgl",kernelFunc:iG};function lG(e,t,n,a){let r=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/r,i=Ae({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=$i(i,e.dtype,"max",a),l=Ae({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function Rw(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,d=R.getAxesPermutation(u,o),p=d!=null,c=n.shouldExecuteOnCPU([r]),h=r;if(p){if(c){let g=n.texData.get(h.dataId).values,x=new Array(o);for(let v=0;v<x.length;v++)x[v]=r.shape[d[v]];let w=N1(g,r.shape,r.dtype,d,x);h=n.makeTensorInfo(x,r.dtype);let b=n.texData.get(h.dataId);b.values=w}else h=Rh(r,d,n);u=R.getInnerMostAxes(u.length,o)}R.assertAxesAreInnerMostDims("max",u,o);let[m,f]=R.computeOutAndReduceShapes(h.shape,u),y=m;i&&(y=R.expandShapeToKeepDim(m,l));let A;if(c){let g=n.texData.get(h.dataId).values,x=RW(g,k.sizeFromShape(f),y,r.dtype);A=n.makeTensorInfo(y,r.dtype);let w=n.texData.get(A.dataId);w.values=x}else A=lG(h,f,y,n);return p&&n.disposeIntermediateTensorInfo(h),A}var uG={kernelName:$s,backendName:"webgl",kernelFunc:Rw},dG=Kv+`
|
|
return max(a, b);
|
|
`,pG=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Eh+`
|
|
return result;
|
|
`,cG=nn({opSnippet:dG,packedOpSnippet:pG,cpuKernelImpl:MW}),hG={kernelName:Ds,backendName:"webgl",kernelFunc:cG};function fG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;_l(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(R.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=R.computePool2DInfo(r.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&k.arraysEqual(d.inShape,d.outShape))return Vn({inputs:{x:r},backend:n});let p=new Nd(d,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var mG={kernelName:zs,backendName:"webgl",kernelFunc:fG};function yG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=a,d=[1,1,1],p=R.computePool3DInfo(r.shape,s,i,d,o,u,l),c=new C1(p,"max",!1);return n.runWebGLProgram(c,[r],r.dtype)}var AG={kernelName:Ou,backendName:"webgl",kernelFunc:yG},gG=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${s} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},xG=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,d=o-1-e.padInfo.front,p=l-1-e.padInfo.top,c=u-1-e.padInfo.left,h=o*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${d}, ${p}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function bG(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:d}=a,p=[1,1,1],c=R.computePool3DInfo(i.shape,o,l,p,u,d),h=new C1(c,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new xG(c),y=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),y}var vG={kernelName:ic,backendName:"webgl",kernelFunc:bG};function wG(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;_l([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:d,dimRoundingMode:p}=a,c=R.computePool2DInfo(o.shape,l,u,1,d,p),h=!0,m=new Nd(c,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),y=new gG(c),A=n.runWebGLProgram(y,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),A}var kG={kernelName:sc,backendName:"webgl",kernelFunc:wG};function IG(e,t,n,a){let r=new Nd(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new Nd(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var SG={kernelName:oc,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;k.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let u=[1,1];k.assert(R.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let d=R.computePool2DInfo(a.shape,r,s,u,i),[p,c]=IG(a,o,d,l);return[p,c]}};function NG(e,t,n,a){let r=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/r,i=Ae({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=$i(i,"float32","mean",a),l=Ae({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var TG={kernelName:Os,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=k.parseAxisParam(s,a.shape),u=l,d=R.getAxesPermutation(u,o),p=d!=null,c=i.shouldExecuteOnCPU([a]),h=[],m=a;if(p){if(c){let x=i.texData.get(m.dataId).values,w=new Array(o);for(let S=0;S<w.length;S++)w[S]=a.shape[d[S]];let b=N1(x,a.shape,a.dtype,d,w);m=i.makeTensorInfo(w,a.dtype);let v=i.texData.get(m.dataId);v.values=b}else m=Rh(a,d,i);h.push(m),u=R.getInnerMostAxes(u.length,o)}R.assertAxesAreInnerMostDims("sum",u,o);let[f,y]=R.computeOutAndReduceShapes(m.shape,u),A=f;r&&(A=R.expandShapeToKeepDim(f,l));let g=NG(m,y,A,i);for(let x of h)i.disposeIntermediateTensorInfo(x);return g}};function EG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,d=R.getAxesPermutation(u,o),p=r;d!=null&&(p=mn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=R.getInnerMostAxes(u.length,r.shape.length)),R.assertAxesAreInnerMostDims("min",u,o);let[c,h]=R.computeOutAndReduceShapes(p.shape,u),m=k.sizeFromShape(h),f=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),y=$i(f,f.dtype,"min",n),A;if(i){let g=R.expandShapeToKeepDim(c,l);A=Ae({inputs:{x:y},backend:n,attrs:{shape:g}})}else A=Ae({inputs:{x:y},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),d!=null&&n.disposeIntermediateTensorInfo(p),A}var CG={kernelName:_s,backendName:"webgl",kernelFunc:EG},RG=Kv+`
|
|
return min(a, b);
|
|
`,MG=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Eh+`
|
|
return result;
|
|
`,FG=nn({opSnippet:RG,packedOpSnippet:MG,cpuKernelImpl:FW}),$G={kernelName:Ps,backendName:"webgl",kernelFunc:FG},DG=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,d)=>u[0]+e[d]+u[1]);let a=e.length,r=ut(a),s=t.map(u=>u[0]).join(","),i=t.map((u,d)=>u[0]+e[d]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${a}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},zG=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=ut(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=fn("rc",a),l=fn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,d=a===1?"source":`vec2(${l.slice(-2).join()})`,p=n==="reflect"?0:1,c="";if(a===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${p};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${p};
|
|
}
|
|
source -= start;
|
|
`;c=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${d});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${p}) +
|
|
gte * ((end - 1) * 2 - source + ${p});
|
|
source -= start;
|
|
`;c=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${d});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${d});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}},OG=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new zG(a.shape,r,s):new DG(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},_G={kernelName:Ls,backendName:"webgl",kernelFunc:OG},PG=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,LG=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+Eh+`
|
|
return result;
|
|
`,WG=nn({opSnippet:PG,packedOpSnippet:LG}),BG={kernelName:Po,backendName:"webgl",kernelFunc:WG},VG=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
|
|
uniform float seed;
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},jG=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,UG=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,Mw=nn({opSnippet:jG,packedOpSnippet:UG,checkOutOfBounds:!0}),HG={kernelName:Is,backendName:"webgl",kernelFunc:Mw},Fw="return a - b;",$w=nn({opSnippet:Fw,packedOpSnippet:Fw,supportsComplex:!0,cpuKernelImpl:VW}),GG={kernelName:ai,backendName:"webgl",kernelFunc:$w};function Dw(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=k.parseAxisParam([s],r.shape),o=Rw({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=R.expandShapeToKeepDim(o.shape,i),u=Ae({inputs:{x:o},backend:n,attrs:{shape:l}}),d=$w({inputs:{a:r,b:u},backend:n}),p=Sw({inputs:{x:d},backend:n}),c=Mh({inputs:{x:p},backend:n,attrs:{axis:i,keepDims:!1}}),h=Ae({inputs:{x:c},backend:n,attrs:{shape:l}}),m=Mw({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}var qG={kernelName:ti,backendName:"webgl",kernelFunc:Dw};function XG(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:Dw({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],d=l.shape[1],p=new VG(u,d,s),c=p.getCustomSetupFunc(i),h=n.runWebGLProgram(p,[l],"int32",c);return o||n.disposeIntermediateTensorInfo(l),h}var KG={kernelName:lc,backendName:"webgl",kernelFunc:XG},zw="return -x;";function ZG(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=DW(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Vl(a.shape,zw):r=new Gr(a.shape,zw),n.runWebGLProgram(r,[a],a.dtype)}var YG={kernelName:Lo,backendName:"webgl",kernelFunc:ZG},JG=Ga.nonMaxSuppressionV3Impl;function QG(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,u=n.readSync(r.dataId),d=n.readSync(s.dataId),{selectedIndices:p}=JG(u,d,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var eq={kernelName:Bo,backendName:"webgl",kernelFunc:QG},tq=Ga.nonMaxSuppressionV4Impl;function nq(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a,d=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:c,validOutputs:h}=tq(d,p,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var aq={kernelName:Vo,backendName:"webgl",kernelFunc:nq},rq=Ga.nonMaxSuppressionV5Impl;function sq(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a,d=n.readSync(r.dataId),p=n.readSync(s.dataId),c=i,h=o,m=l,f=u,{selectedIndices:y,selectedScores:A}=rq(d,p,c,h,m,f);return[n.makeTensorInfo([y.length],"int32",new Int32Array(y)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var iq={kernelName:jo,backendName:"webgl",kernelFunc:sq},oq=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${a}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},lq=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=k.sizeFromShape(r.shape),u=new oq(l,s,i,o),d=Ae({inputs:{x:r},backend:n,attrs:{shape:[l]}}),p=n.runWebGLProgram(u,[d],r.dtype);n.disposeIntermediateTensorInfo(d);let c=[...r.shape,s],h=Ae({inputs:{x:p},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(p),h},uq={kernelName:Bs,backendName:"webgl",kernelFunc:lq};function Oh(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=Ed({inputs:{input:a},backend:n}),s=Oh({inputs:{x:r},backend:n}),i=zh({inputs:{input:a},backend:n}),o=Oh({inputs:{x:i},backend:n}),l=qr({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return $1({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var dq={kernelName:ol,backendName:"webgl",kernelFunc:Oh};function Ow(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=Ed({inputs:{input:a},backend:n}),s=Ow({inputs:{x:r},backend:n}),i=zh({inputs:{input:a},backend:n}),o=Oh({inputs:{x:i},backend:n}),l=qr({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return $1({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var pq={kernelName:Uo,backendName:"webgl",kernelFunc:Ow};function cq(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return F1({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{k.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let p=F1({inputs:{input:d},backend:n,attrs:{dim:r}});return o.push(p),p}),u=mw({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var hq={kernelName:Ho,backendName:"webgl",kernelFunc:cq},fq=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let a=e.length,r=ut(a),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
uniform float value;
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
uniform float value;
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},mq=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=ut(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=fn("rc",a),l=fn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,d=a===1?"source":`vec2(${l.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
|
|
if(${u}) {
|
|
`,a===1?"":`}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
|
|
if(${u}) {`],c=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
|
|
${p[m]}
|
|
if (${c}) {
|
|
result[${m}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${m}] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
`;h+=a===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
uniform float value;
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},_w=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a,o=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new mq(r.shape,s,i):new fq(r.shape,s,i),l=o.getCustomSetupFunc(i);return n.runWebGLProgram(o,[r],r.dtype,l)},yq={kernelName:Vs,backendName:"webgl",kernelFunc:_w},Aq=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,gq=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+Eh+`
|
|
return result;
|
|
`,xq=nn({opSnippet:Aq,packedOpSnippet:gq}),bq={kernelName:js,backendName:"webgl",kernelFunc:xq};function vq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],u=k.parseAxisParam(s,r.shape),d=u,p=R.getAxesPermutation(d,o),c=r;p!=null&&(c=mn({inputs:{x:r},backend:n,attrs:{perm:p}}),d=R.getInnerMostAxes(d.length,o),l.push(c)),R.assertAxesAreInnerMostDims("prod",d,o);let h;if(n.shouldExecuteOnCPU([c])){let m=n.texData.get(c.dataId).values,{outVals:f,outShape:y,outDtype:A}=zW(c.shape,c.dtype,m,d);h=n.makeTensorInfo(y,A,f)}else{let[m,f]=R.computeOutAndReduceShapes(c.shape,d),y=k.sizeFromShape(f),A=Ae({inputs:{x:c},backend:n,attrs:{shape:[-1,y]}}),g=vc(r.dtype),x=$i(A,g,"prod",n);h=Ae({inputs:{x},backend:n,attrs:{shape:m}}),l.push(A),l.push(x)}if(i){l.push(h);let m=R.expandShapeToKeepDim(h.shape,u);h=Ae({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var wq={kernelName:Go,backendName:"webgl",kernelFunc:vq},Pw=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=OW(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},kq={kernelName:_u,backendName:"webgl",kernelFunc:Pw},Iq="return 1.0 / x;",Sq=Xe({opSnippet:Iq}),Nq={kernelName:qo,backendName:"webgl",kernelFunc:Sq},Tq=wa+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,Eq=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Cq=Xe({opSnippet:Tq,packedOpSnippet:Eq}),Rq={kernelName:Hs,backendName:"webgl",kernelFunc:Cq},Mq=wa+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Fq=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,$q=Xe({opSnippet:Mq,packedOpSnippet:Fq}),Dq={kernelName:qs,backendName:"webgl",kernelFunc:$q},zq=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Oq=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]},
|
|
${u[1]/d[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function _q(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,d=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Oq(r.shape,l,u,s,i):new zq(r.shape,l,u,s,i);return n.runWebGLProgram(d,[r],"float32")}var Pq={kernelName:Gs,backendName:"webgl",kernelFunc:_q},Lq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],d=o[1]/l[1],p=1/u,c=1/d,h=Math.ceil(p)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${d});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${c});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Wq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new Lq(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Bq={kernelName:pc,backendName:"webgl",kernelFunc:Wq},Vq=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],p=a?"0.5":"0.0",c;r?c="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":c="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${c};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},jq=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],p=a?"0.5":"0.0",c;r?c="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":c="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]},
|
|
${u[1]/d[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${c};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Uq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,d=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new jq(r.shape,l,u,s,i):new Vq(r.shape,l,u,s,i);return n.runWebGLProgram(d,[r],r.dtype)}var Hq={kernelName:Pu,backendName:"webgl",kernelFunc:Uq},Gq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],d=o[1]/l[1],p=1/u,c=1/d,h=Math.ceil(p)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${d});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${c});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${a}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function qq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new Gq(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Xq={kernelName:dc,backendName:"webgl",kernelFunc:qq},Kq=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=ut(n);this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},Zq=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=fn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=ut(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(a.slice())};
|
|
if(${r}){
|
|
result.g = ${l(a.slice())};
|
|
}
|
|
if(${s}) {
|
|
result.b = ${u(a.slice())};
|
|
if(${r}) {
|
|
result.a = ${d(a.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(h){return p(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function d(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let m=e.map((A,g)=>c(g,h)),f=m.join(","),y=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${y}))`}function c(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function Yq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=k.parseAxisParam(s,r.shape);if(i===0)return Vn({inputs:{x:r},backend:n});let l=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Zq(r.shape,o):new Kq(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var Jq={kernelName:Xs,backendName:"webgl",kernelFunc:Yq},Qq=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
uniform vec4 params;
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}getCustomSetupFunc(e,t,n,a){return(r,s)=>{this.paramsLoc==null&&(this.paramsLoc=r.getUniformLocationNoThrow(s,"params")),r.gl.uniform4f(this.paramsLoc,e,t,n,a)}}},eX={kernelName:ll,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new Qq(a.shape,s),[u,d]=R.getImageCenter(i,a.shape[1],a.shape[2]),p=l.getCustomSetupFunc(u,d,Math.sin(r),Math.cos(r));return o.runWebGLProgram(l,[a],a.dtype,p)}},tX=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,nX=Xe({opSnippet:tX}),aX={kernelName:Ks,backendName:"webgl",kernelFunc:nX},rX="return inversesqrt(x);",sX=Xe({opSnippet:rX,cpuKernelImpl:_W}),iX={kernelName:Zs,backendName:"webgl",kernelFunc:sX},Lw=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=ut(r.length),l=ut(s.length),u="";n===1?u="i":n===2&&(u="i, j");let d=`getIndices(${u})`,p="";a===1?p="i":a===2&&(p="i, coords[1]");let c=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${d});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${c};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function oX(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:p}=R.calculateShapes(s,r,i),c=[p/u,u];if(p===0)return n.makeTensorInfo(i,r.dtype);let h=Ae({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=Ae({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),y=new Lw(l,o,h.shape.length,m.shape.length,d,c),A=n.runWebGLProgram(y,[m,h,f],m.dtype),g=Ae({inputs:{x:A},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(f),g}var lX={kernelName:Ko,backendName:"webgl",kernelFunc:oX},uX=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);a=o.join(),r=l.join()}let s=ut(n);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
float cVal = getC(${a});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function dX(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new uX(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],da(r.dtype,s.dtype))}var pX={kernelName:Zo,backendName:"webgl",kernelFunc:dX},cX=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${R.SELU_SCALEALPHA};
|
|
float scale = ${R.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,hX=Xe({opSnippet:cX}),fX={kernelName:Yo,backendName:"webgl",kernelFunc:hX},mX="return 1.0 / (1.0 + exp(-1.0 * x));",yX=Xe({opSnippet:mX}),AX={kernelName:Js,backendName:"webgl",kernelFunc:yX},gX=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,xX=Xe({opSnippet:gX}),bX={kernelName:el,backendName:"webgl",kernelFunc:xX},vX=ew+`
|
|
return sin(x);
|
|
`,wX=Xe({opSnippet:vX}),kX={kernelName:Ys,backendName:"webgl",kernelFunc:wX},IX=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,SX=Xe({opSnippet:IX}),NX={kernelName:Qo,backendName:"webgl",kernelFunc:SX},TX=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,EX=Xe({opSnippet:TX}),CX={kernelName:tl,backendName:"webgl",kernelFunc:EX},RX=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;k.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((A,g)=>A*g),l=[[0,0]];l.push(...i);for(let A=1+s.length;A<r.shape.length;++A)l.push([0,0]);let u=[],d=_w({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=R.getReshaped(d.shape,s,o,!1),c=R.getPermuted(p.length,s.length,!1),h=R.getReshapedPermuted(d.shape,s,o,!1),m=Ae({inputs:{x:d},backend:n,attrs:{shape:p}}),f=mn({inputs:{x:m},backend:n,attrs:{perm:c}}),y=Ae({inputs:{x:f},backend:n,attrs:{shape:h}});return u.push(d),u.push(m),u.push(f),u.forEach(A=>n.disposeIntermediateTensorInfo(A)),y},MX={kernelName:Lu,backendName:"webgl",kernelFunc:RX};function FX(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.readSync(a.dataId),l=n.readSync(r.dataId),u=n.readSync(s.dataId),d=n.readSync(i.dataId)[0],[p,c,h,m,f]=LW(o,a.shape,a.dtype,l,r.dtype,u,d);return[n.makeTensorInfo(c,a.dtype,p),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(y=>Number(y)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var $X={kernelName:cc,backendName:"webgl",kernelFunc:FX};function DX(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(r.dataId)),o=n.readSync(a.dataId),l=Array.from(n.readSync(s.dataId)),[u,d,p]=WW(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(d,a.dtype,u),n.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var zX={kernelName:hc,backendName:"webgl",kernelFunc:DX};function OX(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,strides:d,outputSize:p}=R.calculateShapes(s,r,o),c=!1,h=new Lw(u,l,r.shape.length,s.shape.length,d,[p,1],c),m=n.runWebGLProgram(h,[s,r,i],s.dtype),f=Ae({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var _X={kernelName:fc,backendName:"webgl",kernelFunc:OX};function PX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=k.parseAxisParam(i,r.shape)[0],l=R.prepareSplitSize(r,s,o),u=r.shape.length,d=new Array(u).fill(0),p=r.shape.slice();return l.map(c=>{let h=[...p];h[o]=c;let m=Td({inputs:{x:r},backend:n,attrs:{begin:d,size:h}});return d[o]+=c,m})}var LX={kernelName:nl,backendName:"webgl",kernelFunc:PX},WX="return sqrt(x);",BX=Xe({opSnippet:WX}),VX={kernelName:Qs,backendName:"webgl",kernelFunc:BX},jX="return x * x;",UX=Xe({opSnippet:jX}),HX={kernelName:Wu,backendName:"webgl",kernelFunc:UX},Ww="return (a - b) * (a - b);",GX=nn({opSnippet:Ww,packedOpSnippet:Ww}),qX={kernelName:ni,backendName:"webgl",kernelFunc:GX};function XX({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=wa+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new Gr(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var KX={kernelName:Dr,backendName:"webgl",kernelFunc:XX},ZX=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=ut(n.length),s=ut(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function YX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:p,shrinkAxisMask:c}=a,{nonStrided:h,$begin:m,$strides:f,size:y,newShape:A,outShape:g}=un.sliceInfo(r.shape,s,i,o,l,u,d,p,c),x=Ae({inputs:{x:r},backend:n,attrs:{shape:A}}),w;if(h){let v=Td({inputs:{x},backend:n,attrs:{begin:m,size:y}});w=Ae({inputs:{x:v},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(v)}else if(g.some(v=>v===0))w=n.makeTensorInfo(g,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let v=n.texData.get(x.dataId).values,S=We(x.shape,x.dtype,v),T=BW(g,S,f,m);w=n.makeTensorInfo(g,x.dtype,T.values)}else{let v=new ZX(m,f,g);w=n.runWebGLProgram(v,[x],x.dtype)}let b=Ae({inputs:{x:w},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(w),b}var JX={kernelName:al,backendName:"webgl",kernelFunc:YX},QX="return tan(x);",eK=Xe({opSnippet:QX}),tK={kernelName:ri,backendName:"webgl",kernelFunc:eK},nK=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,aK=Xe({opSnippet:nK}),rK={kernelName:si,backendName:"webgl",kernelFunc:aK},sK=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=ut(this.rank),r=iK(e);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function iK(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function Bw(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"||r.shape.length>5){let o=n.readSync(r.dataId),l=r.dtype==="string"?o.map(p=>k.decodeString(p)):o,u=We(r.shape,r.dtype,l),d=jW(u,s);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let i=new sK(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var oK={kernelName:$r,backendName:"webgl",kernelFunc:Bw};function lK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=n.readSync(r.dataId),[l,u]=UW(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var uK={kernelName:rl,backendName:"webgl",kernelFunc:lK},dK=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${o} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${i} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function pK(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[d,p,c,h]=r.shape,[m,f]=u!=null?u:[p,c],y=[d,m,f,h],A=new dK(p,c,i,o,l,y);return n.runWebGLProgram(A,[r,s],"float32")}var cK={kernelName:sl,backendName:"webgl",kernelFunc:pK};function hK(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;_l(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=HW(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var fK={kernelName:mc,backendName:"webgl",kernelFunc:hK};function mK(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],u=new Array(o-1),d=0;for(let f=0;f<o;f++)f!==s&&(u[d++]=i.shape[f]);let p=[],c=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){c[s]=f;let y=Td({inputs:{x:i},backend:n,attrs:{begin:c,size:h}}),A=Ae({inputs:{x:y},backend:n,attrs:{shape:u}});m[f]=A,p.push(y)}return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var yK={kernelName:il,backendName:"webgl",kernelFunc:mK},AK=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,d=n%4,p=`
|
|
sumValue += dot(values, segFilter);
|
|
`,c="";r%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${s})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${s})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${d===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${d===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${d===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function gK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],u=0,d=R.getAxesPermutation([u],o),p=r;d!=null&&(p=mn({inputs:{x:r},backend:n,attrs:{perm:d}}),l.push(p),u=R.getInnerMostAxes(1,o)[0]);let c=R.segment_util.computeOutShape(p.shape,u,i),h=k.sizeFromShape([p.shape[u]]),m=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=vc(r.dtype),y=(w,b,v,S,T)=>{let C=w.shape[0],$=w.shape[1],O=R.segment_util.segOpComputeOptimalWindowSize($,T),P={windowSize:O,inSize:$,batchSize:C,numSegments:T},j=new AK(P,b),D=n.compileAndRun(j,[w,v],S);if(l.push(D),D.shape[1]===T)return D;let U=Pw({backend:n,attrs:{start:0,stop:T,step:1,dtype:"float32"}}),X=Bw({inputs:{x:U},backend:n,attrs:{reps:[$/O]}});return l.push(U),l.push(X),y(D,b,X,S,T)},A=y(m,"unsortedSegmentSum",s,f,i),g=Ae({inputs:{x:A},backend:n,attrs:{shape:c}}),x=g;if(d!=null){l.push(g);let w=R.getUndoAxesPermutation(d);x=mn({inputs:{x},backend:n,attrs:{perm:w}})}return l.forEach(w=>n.disposeIntermediateTensorInfo(w)),x}var xK={kernelName:Bu,backendName:"webgl",kernelFunc:gK},bK=[rG,oG,jB,HB,XB,YB,QB,nV,rV,iV,dV,cV,mV,gV,SV,vV,EV,FV,RV,OV,PV,WV,UV,YV,QV,sj,oj,pj,fj,IB,xj,Cj,Mj,kj,zj,_j,$j,Wj,jj,Gj,Xj,Zj,Qj,sU,oU,tU,dU,hU,mU,xU,kU,TU,RU,MU,FU,DU,OU,PU,WU,VU,GU,KU,JU,eH,aH,oH,pH,mH,kB,AH,Aj,bH,kH,NH,NB,RH,DH,OH,jH,WH,qH,ZH,eG,uG,AG,mG,vG,kG,SG,hG,TG,CG,$G,_G,BG,KG,MB,YG,eq,aq,iq,tj,uq,pq,hq,yq,bq,EB,wq,kq,nj,HG,Nq,Dq,Rq,$B,Pq,Bq,Hq,Xq,Jq,eX,aX,iX,lX,pX,fX,AX,bX,kX,NX,KV,qG,CX,MX,$X,zX,_X,LX,VX,HX,qX,KX,JX,GG,WB,tK,rK,oK,uK,cK,BB,fK,yK,xK,dq];for(let e of bK)di(e);var En;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(En||(En={}));var Cd;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid"})(Cd||(Cd={}));var Vw;function vK(e){Vw=e.wasm.cwrap(oi,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function wK(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:p}=a,c=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let T=n.dataIdMap.get(i.dataId);if(T.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${T.shape.length}.`);m=T.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,y=Cd[d];if(y==null)throw new Error(`${d} activation not yet supported for FusedConv2D in the wasm backend.`);let A=l?r.shape[2]:r.shape[1],g=u?s.shape[1]:s.shape[2],x=r.shape[0],w=n.makeOutput([x,A,g],r.dtype),b=n.dataIdMap.get(w.dataId).id,v=new Uint8Array(new Int32Array(r.shape).buffer),S=new Uint8Array(new Int32Array(s.shape).buffer);return Vw(c,v,r.shape.length,h,S,s.shape.length,l,u,y,m,f,p||0,b),w}var kK={kernelName:oi,backendName:"wasm",setupFunc:vK,kernelFunc:wK};function yn(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function a(r){let{backend:s,inputs:{x:i}}=r,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),u=s.dataIdMap.get(l.dataId).id;return k.sizeFromShape(l.shape)===0||t(o,u),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var IK=yn(oo);function An(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:d}=l,p=o.dataIdMap.get(u.dataId).id,c=o.dataIdMap.get(d.dataId).id,h=n!=null?n:u.dtype,m=R.assertAndGetBroadcastShape(u.shape,d.shape),f=o.makeOutput(m,h);if(k.sizeFromShape(m)===0)return f;let y=new Uint8Array(new Int32Array(u.shape).buffer),A=new Uint8Array(new Int32Array(d.shape).buffer),g=o.dataIdMap.get(f.dataId).id,x=()=>a(p,y,u.shape.length,c,A,d.shape.length,En[u.dtype],g);if(t&&u.dtype==="float32")return x(),f;let w=R.getBroadcastDims(u.shape,m),b=R.getBroadcastDims(d.shape,m),v=w.every((T,C)=>T===C),S=b.every((T,C)=>T===C);if(v&&S)return x(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var SK=!0,NK=An(Mr,SK),jw;function TK(e){jw=e.wasm.cwrap(hs,null,["array","number","number","number"])}function EK(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(k.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return jw(s,r.length,En[a.dtype],i),a}var CK={kernelName:hs,backendName:"wasm",setupFunc:TK,kernelFunc:EK};function _h(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var RK={kernelName:Rs,backendName:"wasm",kernelFunc:_h},Uw;function MK(e){Uw=e.wasm.cwrap(ii,null,["number","array","number","number","number","array","number"])}function Ph(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=$K(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=FK(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=_h({inputs:t,backend:n});return m.shape=o,m}let u=n.makeOutput(o,l.dtype),d=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(u.dataId).id,c=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return Uw(d,h,l.shape.length,En[l.dtype],p,c,s.length),u}function FK(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function $K(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var DK={kernelName:ii,backendName:"wasm",kernelFunc:Ph,setupFunc:MK};function Xr(e,t,n){let a=e.shape,r=e.shape.length,s=k.parseAxisParam(t,a),i=s,o=R.getAxesPermutation(i,r),l=null,u=!1;if(o!=null){let d=new Array(r);for(let c=0;c<d.length;c++)d[c]=a[o[c]];i=R.getInnerMostAxes(i.length,r),l=Ph({inputs:{x:e},attrs:{perm:o},backend:n});let p=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==p&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var Hw;function zK(e){Hw=e.wasm.cwrap(po,null,["number, number, number"])}function OK(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:c}=Xr(i,r,t);if(c){let g=t.dataIdMap.get(u.dataId).id;l=u,o=g}let h=l.shape.length;R.assertAxesAreInnerMostDims("all",d,h);let[m,f]=R.computeOutAndReduceShapes(l.shape,d),y=k.sizeFromShape(f),A=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(A.dataId).id;Hw(o,y,g)}if(c&&t.disposeData(u.dataId),s){let g=R.expandShapeToKeepDim(A.shape,p);A.shape=g}return A}var _K={kernelName:po,backendName:"wasm",setupFunc:zK,kernelFunc:OK},Gw;function PK(e){Gw=e.wasm.cwrap(co,null,["number, number, number"])}function LK(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:c}=Xr(i,r,t);if(c){let g=t.dataIdMap.get(u.dataId).id;l=u,o=g}let h=l.shape.length;R.assertAxesAreInnerMostDims("any",d,h);let[m,f]=R.computeOutAndReduceShapes(l.shape,d),y=k.sizeFromShape(f),A=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(A.dataId).id;Gw(o,y,g)}if(c&&t.disposeData(u.dataId),s){let g=R.expandShapeToKeepDim(A.shape,p);A.shape=g}return A}var WK={kernelName:co,backendName:"wasm",setupFunc:PK,kernelFunc:LK},qw;function BK(e){qw=e.wasm.cwrap(fs,null,["number","number","number","number","number"])}function VK(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:d,inputWasTransposed:p}=Xr(s,r,t);if(p){let A=t.dataIdMap.get(u.dataId).id;A!==i&&(l=u,o=A)}let c=l.shape.slice(0,-1),h=t.makeOutput(c,"int32"),m=t.dataIdMap.get(h.dataId).id,f=k.sizeFromShape(h.shape),y=l.shape[d[0]];return qw(o,En[l.dtype],f,y,m),p&&t.disposeData(u.dataId),h}var jK={kernelName:fs,backendName:"wasm",kernelFunc:VK,setupFunc:BK},Xw;function UK(e){Xw=e.wasm.cwrap(ms,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function HK(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,d=R.computePool2DInfo(r.shape,i,o,1,l,u),p=d.filterHeight,c=d.filterWidth,h=d.padInfo.top,m=d.padInfo.right,f=d.padInfo.bottom,y=d.padInfo.left,A=d.strideHeight,g=d.strideWidth,x=d.inChannels;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);if(d.dilationWidth!==1||d.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${d.dilationHeight}, ${d.dilationWidth}].`);let w=a.makeOutput(d.outShape,"float32"),b=a.dataIdMap.get(w.dataId).id;return Xw(s,r.shape[0],r.shape[1],r.shape[2],p,c,h,m,f,y,A,g,x,b),w}var GK={kernelName:ms,backendName:"wasm",setupFunc:UK,kernelFunc:HK};function ka(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=k.sizeFromShape(a.shape),i=k.inferFromImplicitShape(r,s);return k.assert(s===k.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var qK={kernelName:Xo,backendName:"wasm",kernelFunc:ka},Kw;function XK(e){Kw=e.wasm.cwrap(ys,null,["number","array","number","number","array","number","number","number","number"])}function KK(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=s.shape.length,d=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),y=k.sizeFromShape(m),A=k.sizeFromShape(f),g=y===A||y===1||A===1;k.assert(l>=2&&u>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(y>A?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([c,h]);k.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let w=i?[y,d,c]:[y,c,d],b=o?[A,h,p]:[A,p,h],v=ka({inputs:{x:r},backend:n,attrs:{shape:w}}),S=ka({inputs:{x:s},backend:n,attrs:{shape:b}}),T=n.dataIdMap.get(v.dataId).id,C=n.dataIdMap.get(S.dataId).id,$=i?v.shape[2]:v.shape[1],O=o?S.shape[1]:S.shape[2],P=Math.max(y,A),j=n.makeOutput([P,$,O],v.dtype),D=n.dataIdMap.get(j.dataId).id,U=new Uint8Array(new Int32Array(v.shape).buffer),X=new Uint8Array(new Int32Array(S.shape).buffer);return Kw(T,U,v.shape.length,C,X,S.shape.length,i,o,D),n.disposeData(v.dataId),n.disposeData(S.dataId),j.shape=x,j}var ZK={kernelName:ys,backendName:"wasm",setupFunc:XK,kernelFunc:KK};function Lh(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var YK={kernelName:As,backendName:"wasm",kernelFunc:Lh},JK=yn(gs),Zw;function QK(e){Zw=e.wasm.cwrap(Fr,null,["number","number","number","number"])}function eZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return Zw(o,s,i,u),l}var tZ={kernelName:Fr,backendName:"wasm",setupFunc:QK,kernelFunc:eZ};function Yw(e){let{inputs:t,backend:n}=e,a=k.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=R.computeOutShape(t.map(h=>h.shape),a),s=t.filter(h=>k.sizeFromShape(h.shape)>0);if(s.length===1)return _h({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(k.sizeFromShape(r)===0)return i;let o=s.map(h=>h.shape);if(R.assertParamsConsistent(o,a),s[0].dtype==="string"){let h=s.map(x=>{let w=k.sizeFromShape(x.shape.slice(a));return ka({inputs:{x},backend:n,attrs:{shape:[-1,w]}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=R.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,y=a1(m,r,t[0].dtype,f),A=R.computeOutShape(s.map(x=>x.shape),a);i.shape=A;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=R.fromStringArrayToUint8(y),h.forEach(x=>n.disposeData(x.dataId)),i}let l=k.sizeFromShape(s[0].shape.slice(0,a)),u=0,d=s.map(h=>{let m=k.sizeFromShape(h.shape.slice(a));return u+=m,m}),p=s.map(h=>n.typedArrayFromHeap(h)),c=n.typedArrayFromHeap(i);for(let h=0;h<l;h++){let m=h*u;for(let f=0;f<p.length;f++){let y=d[f],A=h*y,g=p[f].subarray(A,A+y);c.set(g,m),m+=y}}return i}var nZ={kernelName:go,backendName:"wasm",kernelFunc:Yw},Jw;function aZ(e){Jw=e.wasm.cwrap(xs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function rZ(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:d,dimRoundingMode:p,dataFormat:c}=n,h=R.convertConv2DDataFormat(c),m=R.computeConv2DInfo(r.shape,s.shape,l,u,d,p,!1,h),f=m.filterHeight,y=m.filterWidth,A=m.padInfo.top,g=m.padInfo.right,x=m.padInfo.bottom,w=m.padInfo.left,b=m.dilationHeight,v=m.dilationWidth,S=m.strideHeight,T=m.strideWidth,C=m.inChannels,$=m.outChannels,O=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let P=a.makeOutput(m.outShape,"float32"),j=a.dataIdMap.get(P.dataId).id;return Jw(i,r.shape[0],r.shape[1],r.shape[2],o,f,y,A,g,x,w,O,b,v,S,T,C,$,j),P}var sZ={kernelName:xs,backendName:"wasm",setupFunc:aZ,kernelFunc:rZ},Qw;function iZ(e){Qw=e.wasm.cwrap(bs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function oZ(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:d}=a,p=1,c=R.convertConv2DDataFormat(l),h=R.computeConv2DInfo(d,s.shape,i,p,o,u,!1,c),{batchSize:m,filterHeight:f,filterWidth:y,inChannels:A,inHeight:g,inWidth:x,outChannels:w,outHeight:b,outWidth:v,strideHeight:S,strideWidth:T}=h,C=f-1-h.padInfo.top,$=y-1-h.padInfo.left,O=h.dataFormat==="channelsLast",P=k.computeStrides(h.inShape),j=k.computeStrides(r.shape),[D,U,X]=k.computeStrides(s.shape),G=P[0],ee=O?P[1]:P[2],Y=O?P[2]:1,re=O?1:P[1],ne=j[0],ie=O?j[1]:j[2],Q=O?j[2]:1,pe=O?1:j[1],oe=t.makeOutput(h.inShape,"float32"),ge=t.dataIdMap.get(oe.dataId).id,he=t.dataIdMap.get(r.dataId).id,Se=t.dataIdMap.get(s.dataId).id;return Qw(he,Se,m,f,y,g,x,A,b,v,w,S,T,C,$,D,U,X,G,ee,Y,re,ne,ie,Q,pe,ge),oe}var lZ={kernelName:bs,backendName:"wasm",setupFunc:iZ,kernelFunc:oZ},uZ=yn(vs),D1;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(D1||(D1={}));var e6;function dZ(e){e6=e.wasm.cwrap(bo,null,["number","number","number","number","array","number","number","number","number","number"])}function pZ(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:u}=n,d=l.shape[0],[p,c]=i,h=[d,p,c,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=Lh({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let y=m.id,A=t.dataIdMap.get(l.dataId).id,g=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(h,"float32"),w=t.dataIdMap.get(x.dataId).id,b=new Uint8Array(new Int32Array(o.shape).buffer);return e6(y,A,g,d,b,p,c,D1[r],s,w),f!=null&&t.disposeData(f.dataId),x}var cZ={kernelName:bo,backendName:"wasm",setupFunc:dZ,kernelFunc:pZ},t6;function hZ(e){t6=e.wasm.cwrap(ws,null,["number","number","number","number","number","number"])}function fZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;k.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=R.getAxesPermutation([s],l),d=r;u!==null&&(d=Ph({inputs:{x:r},attrs:{perm:u},backend:n}));let p=R.getInnerMostAxes(1,l)[0];R.assertAxesAreInnerMostDims("cumsum",[p],l);let c=n.makeOutput(d.shape,d.dtype),h=d.shape[p],m=n.dataIdMap.get(d.dataId).id,f=n.dataIdMap.get(c.dataId).id;t6(m,i?1:0,o?1:0,h,f,En[r.dtype]);let y=c;if(u!==null){let A=R.getUndoAxesPermutation(u);y=Ph({inputs:{x:c},attrs:{perm:A},backend:n}),n.disposeData(d.dataId),n.disposeData(c.dataId)}return y}var mZ={kernelName:ws,backendName:"wasm",setupFunc:hZ,kernelFunc:fZ},n6;function yZ(e){n6=e.wasm.cwrap(vo,null,["number","number","number","array","number","array","array","number","number"])}function AZ(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],d=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,c=u*s,h=d/(s*s),m=i==="NHWC"?[o,p,c,h]:[o,h,p,c],f=t.makeOutput(m,"float32"),y=t.dataIdMap.get(r.dataId).id,A=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),g=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(k.computeStrides(m)).buffer),w=t.dataIdMap.get(f.dataId).id;return n6(y,s,i==="NHWC"?1:0,A,r.shape.length-1,g,x,m.length,w),f}var gZ={kernelName:vo,backendName:"wasm",setupFunc:yZ,kernelFunc:AZ},a6;function xZ(e){a6=e.wasm.cwrap(ks,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function bZ(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:d,dimRoundingMode:p}=n,c=u==null?[1,1]:u,h=R.computeConv2DInfo(r.shape,s.shape,l,c,d,p,!0),m=h.filterHeight,f=h.filterWidth,y=h.padInfo.top,A=h.padInfo.right,g=h.padInfo.bottom,x=h.padInfo.left,w=h.dilationHeight,b=h.dilationWidth,v=h.strideHeight,S=h.strideWidth,T=h.inChannels,C=h.outChannels,$=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let O=a.makeOutput(h.outShape,"float32"),P=a.dataIdMap.get(O.dataId).id;return a6(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,y,A,g,x,$,w,b,v,S,T,C,P),O}var vZ={kernelName:ks,backendName:"wasm",setupFunc:xZ,kernelFunc:bZ},wZ=!1,kZ=An(Io,wZ,"bool"),IZ=yn(Ss);function z1(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),ka({inputs:{x:r},backend:a,attrs:{shape:o}})}var SZ={kernelName:So,backendName:"wasm",kernelFunc:z1};function NZ(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var TZ={kernelName:Fu,backendName:"wasm",kernelFunc:NZ},r6;function EZ(e){r6=e.wasm.cwrap(To,null,["number","number","number","number","number","number"])}function CZ(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,u,d]=a.shape;return r6(s,o,l,u,d,i),r}var RZ={kernelName:To,backendName:"wasm",kernelFunc:CZ,setupFunc:EZ},MZ=yn(Ns),FZ=!1,$Z=An(Ts,FZ),s6;function DZ(e){s6=e.wasm.cwrap(Es,null,["number","number","number","number","number","number","number"])}function zZ(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:u}=n,d=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(k.sizeFromShape(s.shape)===0)return f;let y=t.dataIdMap.get(f.dataId).id;return s6(d,p,c,h,m,r,y),f}var OZ={kernelName:Es,backendName:"wasm",setupFunc:DZ,kernelFunc:zZ},i6;function _Z(e){i6=e.wasm.cwrap(li,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function PZ(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dataFormat:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=R.computeConv2DInfo(r.shape,s.shape,l,d,u,c),y=Cd[h];if(y==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let A=a.dataIdMap.get(r.dataId).id,g=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let Q=a.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);w=Q.id}let b=f.filterHeight,v=f.filterWidth,S=f.padInfo.top,T=f.padInfo.right,C=f.padInfo.bottom,$=f.padInfo.left,O=f.dilationHeight,P=f.dilationWidth,j=f.strideHeight,D=f.strideWidth,U=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let re=a.makeOutput(f.outShape,"float32"),ne=a.dataIdMap.get(re.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return i6(A,G,ee,Y,g,b,v,w,S,T,C,$,X,O,P,j,D,U,x,y,ie,m||0,ne),re}var LZ={kernelName:li,backendName:"wasm",setupFunc:_Z,kernelFunc:PZ},o6;function WZ(e){o6=e.wasm.cwrap(ui,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function BZ(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dataFormat:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=R.computeConv2DInfo(r.shape,s.shape,l,d,u,c,!0),y=Cd[h];if(y==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let A=a.dataIdMap.get(r.dataId).id,g=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let Q=a.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);w=Q.id}let b=f.filterHeight,v=f.filterWidth,S=f.padInfo.top,T=f.padInfo.right,C=f.padInfo.bottom,$=f.padInfo.left,O=f.dilationHeight,P=f.dilationWidth,j=f.strideHeight,D=f.strideWidth,U=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let re=a.makeOutput(f.outShape,"float32"),ne=a.dataIdMap.get(re.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return o6(A,G,ee,Y,g,b,v,w,S,T,C,$,X,O,P,j,D,U,x,y,ie,m||0,ne),re}var VZ={kernelName:ui,backendName:"wasm",setupFunc:WZ,kernelFunc:BZ},l6;function jZ(e){l6=e.wasm.cwrap(Co,null,["number","number","number","number","number","number","array","number"])}function UZ(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=Qm.prepareAndValidate(a,r),u=t.makeOutput(s,a.dtype);if(i===0)return u;let d=r.shape,p=d[d.length-1],c=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return l6(c,En[a.dtype],h,i,p,o,m,f),u}var HZ={kernelName:Co,backendName:"wasm",setupFunc:jZ,kernelFunc:UZ},u6;function GZ(e){u6=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function qZ(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=k.parseAxisParam(i,r.shape)[0],u=R.segment_util.collectGatherOpShapeInfo(r,s,l,o),d=ka({inputs:{x:r},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),p=k.sizeFromShape(s.shape),c=ka({inputs:{x:s},attrs:{shape:[u.batchSize,p/u.batchSize]},backend:t}),h=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize],m=t.makeOutput(h,r.dtype);if(k.sizeFromShape(r.shape)===0)return m;let f=d.shape.length-1,y=t.dataIdMap.get(d.dataId).id,A=t.dataIdMap.get(c.dataId).id,g=t.dataIdMap.get(m.dataId).id,x=new Uint8Array(new Int32Array(k.computeStrides(d.shape)).buffer),w=new Uint8Array(new Int32Array(k.computeStrides(h)).buffer);return u6(y,En[r.dtype],x,f,A,u.batchSize,w,g),t.disposeData(d.dataId),t.disposeData(c.dataId),m.shape=u.outputShape,m}var XZ={kernelName:Eo,backendName:"wasm",setupFunc:GZ,kernelFunc:qZ},KZ=!1,ZZ=An(Ro,KZ,"bool"),YZ=!1,JZ=An(Cs,YZ,"bool"),d6;function QZ(e){d6=e.wasm.cwrap(Ms,null,["number","number","number"])}function eY(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,t.dtype);if(k.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;d6(r,n,i)}return s}var tY={kernelName:Ms,backendName:"wasm",setupFunc:QZ,kernelFunc:eY},nY=!1,aY=An(Do,nY,"bool"),rY=!1,sY=An(zo,rY,"bool"),iY=yn(Fs),oY=!1,lY=An(_o,oY,"bool"),p6;function uY(e){p6=e.wasm.cwrap($s,null,["number, number, number"])}function dY(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:c}=Xr(i,r,t);if(c){let g=t.dataIdMap.get(u.dataId).id;l=u,o=g}let h=l.shape.length;R.assertAxesAreInnerMostDims("max",d,h);let[m,f]=R.computeOutAndReduceShapes(l.shape,d),y=k.sizeFromShape(f),A=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(A.dataId).id;p6(o,y,g)}if(c&&t.disposeData(u.dataId),s){let g=R.expandShapeToKeepDim(A.shape,p);A.shape=g}return A}var pY={kernelName:$s,backendName:"wasm",setupFunc:uY,kernelFunc:dY},cY=!1,hY=An(Ds,cY),c6;function fY(e){c6=e.wasm.cwrap(zs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function mY(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,d=R.computePool2DInfo(r.shape,i,o,1,l,u),p=d.filterHeight,c=d.filterWidth,h=d.padInfo.top,m=d.padInfo.right,f=d.padInfo.bottom,y=d.padInfo.left,A=d.dilationHeight,g=d.dilationWidth,x=d.strideHeight,w=d.strideWidth,b=d.inChannels,v=d.outChannels;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let S=a.makeOutput(d.outShape,"float32"),T=a.dataIdMap.get(S.dataId).id;return c6(s,r.shape[0],r.shape[1],r.shape[2],p,c,h,m,f,y,A,g,x,w,b,v,T),S}var yY={kernelName:zs,backendName:"wasm",setupFunc:fY,kernelFunc:mY},h6;function AY(e){h6=e.wasm.cwrap(Os,null,["number, number, number"])}function gY(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:p,originalAxes:c,inputWasTransposed:h}=Xr(i,r,t),m=p;if(h){let w=t.dataIdMap.get(d.dataId).id;w!==o&&(u=d,l=w,m=R.getInnerMostAxes(m.length,u.shape.length))}R.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,y]=R.computeOutAndReduceShapes(u.shape,m),A=k.sizeFromShape(y),g=u;u.dtype!=="float32"&&(g=Lh({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(g.dataId).id);let x=t.makeOutput(f,"float32");if(k.sizeFromShape(u.shape)!==0){let w=t.dataIdMap.get(x.dataId).id;h6(l,A,w)}if(h&&t.disposeData(d.dataId),s){let w=R.expandShapeToKeepDim(x.shape,c);x.shape=w}return u.dtype!=="float32"&&t.disposeData(g.dataId),x}var xY={kernelName:Os,backendName:"wasm",setupFunc:AY,kernelFunc:gY},f6;function bY(e){f6=e.wasm.cwrap(_s,null,["number, number, number"])}function vY(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:p,originalAxes:c,inputWasTransposed:h}=Xr(i,r,t);if(h){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x)}let m=u.shape.length;R.assertAxesAreInnerMostDims("min",p,m);let[f,y]=R.computeOutAndReduceShapes(u.shape,p),A=k.sizeFromShape(y),g=t.makeOutput(f,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;f6(l,A,x)}if(h&&t.disposeData(d.dataId),s){let x=R.expandShapeToKeepDim(g.shape,c);g.shape=x}return g}var wY={kernelName:_s,backendName:"wasm",setupFunc:bY,kernelFunc:vY},kY=!1,IY=An(Ps,kY),O1;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(O1||(O1={}));var m6;function SY(e){m6=e.wasm.cwrap(Ls,null,["number","array","number","number","array","array","number","number"])}function NY(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,mode:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=a.map(m=>m[0]),p=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(d).buffer),h=new Uint8Array(new Int32Array(p).buffer);return m6(i,u,t.shape.length,En[t.dtype],c,h,O1[r],l),o}var TY={kernelName:Ls,backendName:"wasm",kernelFunc:NY,setupFunc:SY},EY=!0,CY=An(Ws,EY),RY=yn(Lo);function _1(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var y6;function MY(e){y6=e.wasm.cwrap(Bo,"number",["number","number","number","number","number"])}function FY(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,d=t.dataIdMap.get(l.dataId).id,p=y6(u,d,s,r,i),{pSelectedIndices:c,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=_1(t,p);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",c)}var $Y={kernelName:Bo,backendName:"wasm",setupFunc:MY,kernelFunc:FY},A6;function DY(e){A6=e.wasm.cwrap(Vo,"number",["number","number","number","number","number","bool"])}function zY(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:u}=n,d=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,c=A6(d,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:y}=_1(t,c);t.wasm._free(f);let A=t.makeOutput([m],"int32",h),g=t.makeOutput([],"int32",y);return[A,g]}var OY={kernelName:Vo,backendName:"wasm",setupFunc:DY,kernelFunc:zY},g6;function _Y(e){g6=e.wasm.cwrap(jo,"number",["number","number","number","number","number","number"])}function PY(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:u}=n,d=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,c=g6(d,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:y}=_1(t,c);t.wasm._free(y);let A=t.makeOutput([m],"int32",h),g=t.makeOutput([m],"float32",f);return[A,g]}var LY={kernelName:jo,backendName:"wasm",setupFunc:_Y,kernelFunc:PY},WY=!1,BY=An(Wo,WY,"bool"),x6;function VY(e){x6=e.wasm.cwrap(Bs,null,["number","number","number","number","number"])}function jY(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=n.makeOutput([...r.shape,s],"int32"),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(r.dataId).id;return x6(d,s,i,o,u),l}var UY={kernelName:Bs,backendName:"wasm",setupFunc:VY,kernelFunc:jY};function HY(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var GY={kernelName:Uo,backendName:"wasm",kernelFunc:HY};function qY(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return z1({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{k.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let p=z1({inputs:{input:d},backend:n,attrs:{dim:r}});return o.push(p),p}),u=Yw({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(d=>n.disposeData(d.dataId)),u}var XY={kernelName:Ho,backendName:"wasm",kernelFunc:qY},b6;function KY(e){b6=e.wasm.cwrap(Vs,null,["number","array","number","number","array","array","number","number"])}function ZY(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=a.map(m=>m[0]),p=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(d).buffer),h=new Uint8Array(new Int32Array(p).buffer);return b6(i,u,t.shape.length,En[t.dtype],c,h,r,l),o}var YY={kernelName:Vs,backendName:"wasm",kernelFunc:ZY,setupFunc:KY},JY=!1,QY=An(js,JY),v6;function eJ(e){v6=e.wasm.cwrap(Us,null,["number","number","number"])}function tJ(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=n.makeOutput(a.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return v6(s,i,l),o}var nJ={kernelName:Us,backendName:"wasm",setupFunc:eJ,kernelFunc:tJ},w6;function aJ(e){w6=e.wasm.cwrap(Go,null,["number","number","number","number"])}function rJ(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:p,originalAxes:c,inputWasTransposed:h}=Xr(i,r,t),m=p;if(h){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x,m=R.getInnerMostAxes(m.length,u.shape.length))}R.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,y]=R.computeOutAndReduceShapes(u.shape,m),A=k.sizeFromShape(y),g=t.makeOutput(f,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;w6(l,A,En[g.dtype],x)}if(h&&t.disposeData(d.dataId),s){let x=R.expandShapeToKeepDim(g.shape,c);g.shape=x}return g}var sJ={kernelName:Go,backendName:"wasm",setupFunc:aJ,kernelFunc:rJ},iJ=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=i1(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},oJ={kernelName:_u,backendName:"wasm",kernelFunc:iJ},lJ=!0,uJ=An(Is,lJ),dJ=yn(Hs),pJ=yn(qs),k6;function cJ(e){k6=e.wasm.cwrap(Gs,null,["number","number","number","number","number","number","number","number","number","number"])}function hJ(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[d,p,c,h]=r.shape,m=[d,l,u,h],f=t.dataIdMap.get(r.dataId),y;f.dtype!=="float32"&&(y=Lh({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(y.dataId));let A=f.id,g=t.makeOutput(m,"float32");if(k.sizeFromShape(r.shape)===0)return g;let x=t.dataIdMap.get(g.dataId).id;return k6(A,d,p,c,h,l,u,s?1:0,i?1:0,x),y!=null&&t.disposeData(y.dataId),g}var fJ={kernelName:Gs,backendName:"wasm",setupFunc:cJ,kernelFunc:hJ},I6;function mJ(e){I6=e.wasm.cwrap(Xs,null,["number","array","number","array","number","number"])}function yJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=k.parseAxisParam(s,r.shape);if(r.shape.length===0)return _h({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(o.dataId).id,d=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);I6(l,d,i.length,p,r.shape.length,u);let c=ka({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),c}var AJ={kernelName:Xs,backendName:"wasm",kernelFunc:yJ,setupFunc:mJ},S6;function gJ(e){S6=e.wasm.cwrap(ll,null,["number","number","number","number","number","number","number","number","array","number","number"])}function xJ(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,d=n.dataIdMap.get(l.dataId).id,[p,c,h,m]=r.shape,[f,y]=R.getImageCenter(o,c,h),A=i===0,g=255,x=typeof i=="number"?[i,i,i,A?0:g]:[...i,g],w=new Uint8Array(new Int32Array(x).buffer);return S6(u,p,c,h,m,s,f,y,w,x.length,d),l}var bJ={kernelName:ll,backendName:"wasm",kernelFunc:xJ,setupFunc:gJ},vJ=yn(Ks),wJ=yn(Zs),N6;function kJ(e){N6=e.wasm.cwrap(Ko,null,["number","number","number","number","number","number","array","number","number"])}function IJ(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(k.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:d,strides:p,outputSize:c}=ey.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(p).buffer),y=t.dataIdMap.get(o.dataId).id;return N6(h,m,En[s.dtype],l,u,d,f,c,y),o}var SJ={kernelName:Ko,backendName:"wasm",setupFunc:kJ,kernelFunc:IJ},T6;function NJ(e){T6=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function TJ(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(r.shape,r.dtype),d=n.dataIdMap.get(u.dataId).id,p=a.shape.length,c=r.shape.length,h=p===0||p>1||c===1?1:k.sizeFromShape(r.shape.slice(1));return T6(i,o,l,h,d),u}var EJ={kernelName:Zo,backendName:"wasm",kernelFunc:TJ,setupFunc:NJ},E6;function CJ(e){E6=e.wasm.cwrap(Js,null,["number","number"])}function RJ(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return k.sizeFromShape(r.shape)===0||E6(a,s),r}var MJ={kernelName:"Sigmoid",backendName:"wasm",setupFunc:CJ,kernelFunc:RJ},FJ=yn(Ys);function Wh(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=un.parseSliceParams(t,n,a),o=un.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),u=r.makeOutput(i,t.dtype),d=k.computeStrides(t.shape),p=r.dataIdMap.get(u.dataId);if(o){let m=un.computeFlatOffset(s,d);return t.dtype==="string"?p.stringBytes=l.slice(m,m+k.sizeFromShape(i)):r.typedArrayFromHeap(u).set(l.subarray(m,m+k.sizeFromShape(i))),u}if(t.dtype==="string"){let m=yh(l,s,i,t.shape,t.dtype);return p.stringBytes=m,u}let c=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)$J(l,d[0],c,s,i);else if(h===3)DJ(l,d[0],d[1],c,s,i);else if(h===4)zJ(l,d[0],d[1],d[2],c,s,i);else{let m=yh(l,s,i,t.shape,t.dtype);c.set(m)}return u}function $J(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let u=i;u<l;u++){let d=u*t+o;n.set(e.subarray(d,d+r[1]),s),s+=r[1]}}function DJ(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],u=r[2],d=o+s[0],p=l+s[1];for(let c=o;c<d;c++)for(let h=l;h<p;h++){let m=c*t+h*n+u;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function zJ(e,t,n,a,r,s,i){let o=0,l=s[0],u=s[1],d=s[2],p=l+i[0],c=u+i[1],h=d+i[2],m=s[3];for(let f=l;f<p;f++)for(let y=u;y<c;y++)for(let A=d;A<h;A++){let g=f*t+y*n+A*a+m;r.set(e.subarray(g,g+i[3]),o),o+=i[3]}}var OJ={kernelName:Jo,backendName:"wasm",kernelFunc:Wh},C6;function _J(e){C6=e.wasm.cwrap(ti,null,["number","number","number","number"])}function PJ(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=k.sizeFromShape(n.shape)/o;return k.sizeFromShape(s.shape)===0||C6(r,i,o,l),s}var LJ={kernelName:ti,backendName:"wasm",setupFunc:_J,kernelFunc:PJ};function WJ(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=k.parseAxisParam(i,r.shape)[0],l=R.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),d=r.shape.slice();return l.map(p=>{let c=[...d];c[o]=p;let h=Wh({inputs:{x:r},attrs:{begin:u,size:c},backend:a});return u[o]+=p,h})}var BJ={kernelName:nl,backendName:"wasm",kernelFunc:WJ},VJ=yn(Qs),jJ=yn(Wu),UJ=!0,HJ=An(ni,UJ),R6;function GJ(e){R6=e.wasm.cwrap(Dr,null,["number","number","number"])}function qJ(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return R6(i,r,l),o}var XJ={kernelName:Dr,backendName:"wasm",setupFunc:GJ,kernelFunc:qJ},M6;function KJ(e){M6=e.wasm.cwrap(al,null,["number","array","number","array","array","array","array","array","number","number"])}function ZJ(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o}=a;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:p,shrinkAxisMask:c}=a,h=R.slice_util.maskToAxes(d);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(d!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(d!==0&&c!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=r.shape.length-s.length,f=R.slice_util.maskToAxes(p),y=r.shape.slice();f.forEach($=>{s[$]=0,i[$]=1,y.splice($,0,1)});let A=ka({inputs:{x:r},attrs:{shape:y},backend:t}),{begin:g,end:x,strides:w}=R.slice_util.getNormalizedAxes(A.shape,h,m,s,i,o,l,u,d);s=g,i=x,o=w;let b=R.slice_util.maskToAxes(c);b.forEach($=>{i[$]=s[$]+1,o[$]=1});let v=R.slice_util.computeOutShape(s,i,o),S=v.filter(($,O)=>b.indexOf(O)===-1);if(o.every($=>$===1)){let $=Wh({inputs:{x:A},attrs:{begin:s,size:v},backend:t});t.disposeData(A.dataId);let O=ka({inputs:{x:$},attrs:{shape:S},backend:t});return t.disposeData($.dataId),O}let T=t.makeOutput(S,"float32");if(!S.some($=>$===0)){let $=t.dataIdMap.get(A.dataId).id,O=new Uint8Array(new Int32Array(k.computeStrides(A.shape)).buffer),P=new Uint8Array(new Int32Array(s).buffer),j=new Uint8Array(new Int32Array(i).buffer),D=new Uint8Array(new Int32Array(o).buffer),U=new Uint8Array(new Int32Array(S).buffer),X=new Uint8Array(new Int32Array(k.computeStrides(S)).buffer),G=t.dataIdMap.get(T.dataId).id;M6($,O,A.shape.length,P,j,D,U,X,S.length,G)}t.disposeData(A.dataId);let C=ka({inputs:{x:T},attrs:{shape:S},backend:t});return t.disposeData(T.dataId),C}var YJ={kernelName:al,backendName:"wasm",setupFunc:KJ,kernelFunc:ZJ},JJ=!0,QJ=An(ai,JJ),F6;function eQ(e){F6=e.wasm.cwrap(ei,null,["number, number, number"])}function tQ(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:p,originalAxes:c,inputWasTransposed:h}=Xr(i,r,t),m=p;if(h){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x,m=R.getInnerMostAxes(m.length,u.shape.length))}R.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,y]=R.computeOutAndReduceShapes(u.shape,m),A=k.sizeFromShape(y),g=t.makeOutput(f,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;F6(l,A,x)}if(h&&t.disposeData(d.dataId),s){let x=R.expandShapeToKeepDim(g.shape,c);g.shape=x}return g}var nQ={kernelName:ei,backendName:"wasm",setupFunc:eQ,kernelFunc:tQ},aQ=yn(ri),rQ=yn(si),$6;function sQ(e){$6=e.wasm.cwrap($r,null,["number","array","number","array","number","number"])}function iQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let c=0;c<o.length;c++)o[c]=r.shape[c]*i[c];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),d=n.makeOutput(o,r.dtype),p=n.dataIdMap.get(d.dataId).id;return $6(s,l,r.shape.length,u,o.length,En[d.dtype],p),d}var oQ={kernelName:$r,backendName:"wasm",setupFunc:sQ,kernelFunc:iQ},D6;function lQ(e){D6=e.wasm.cwrap(rl,null,["number","array","number","number","number","bool","number","number"])}var uQ=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,a.dtype),d=t.dataIdMap.get(u.dataId).id,p=t.makeOutput(l,"int32"),c=t.dataIdMap.get(p.dataId).id;return D6(i,o,a.shape.length,En[a.dtype],r,s,d,c),[u,p]},dQ={kernelName:rl,backendName:"wasm",setupFunc:lQ,kernelFunc:uQ},z6;function pQ(e){z6=e.wasm.cwrap(sl,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function cQ(e){let{backend:t,inputs:n,attrs:a}=e,{image:r,transforms:s}=n,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[d,p,c,h]=r.shape,[m,f]=u!=null?u:[p,c],y=[d,m,f,h],A=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),g=t.makeOutput(y,r.dtype),x=t.dataIdMap.get(g.dataId).id,w=t.dataIdMap.get(r.dataId).id,b=t.dataIdMap.get(s.dataId).id,v=i==="nearest"?1:2,S;switch(o){case"constant":S=1;break;case"reflect":S=2;break;case"wrap":S=3;break;case"nearest":S=4;break;default:S=1;break}return z6(w,b,s.shape[0]>1,d,m,f,h,c,p,A,r.shape.length-1,v,S,l,x),g}var hQ={kernelName:sl,backendName:"wasm",setupFunc:pQ,kernelFunc:cQ};function fQ(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==s&&(l[u++]=r.shape[h]);let d=new Array(i),p=new Array(o).fill(0),c=r.shape.slice();c[s]=1;for(let h=0;h<d.length;h++)p[s]=h,d[h]=Wh({inputs:{x:r},attrs:{begin:p,size:c},backend:n});return d.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var mQ={kernelName:il,backendName:"wasm",kernelFunc:fQ};function yQ(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var AQ={kernelName:ol,backendName:"wasm",kernelFunc:yQ},gQ=[IK,NK,CK,_K,WK,jK,GK,ZK,YK,JK,tZ,nZ,sZ,lZ,uZ,cZ,mZ,gZ,vZ,kZ,IZ,SZ,TZ,RZ,MZ,$Z,kK,OZ,LZ,VZ,HZ,XZ,ZZ,JZ,RK,tY,aY,sY,iY,lY,pY,hY,yY,xY,wY,IY,TY,CY,RY,$Y,OY,LY,BY,UY,GY,XY,YY,QY,nJ,sJ,oJ,uJ,dJ,pJ,qK,fJ,AJ,bJ,wJ,vJ,SJ,EJ,MJ,FJ,OJ,LJ,BJ,VJ,jJ,HJ,XJ,YJ,QJ,nQ,aQ,rQ,oQ,dQ,hQ,DK,mQ,AQ];for(let e of gQ)di(e);var P1=J();P1.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));P1.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(P1.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var O6=ro(FI()),xQ='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',bQ=ro($I()),_6=class extends ku{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new zp(this,dr())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=k.sizeFromShape(n),o=i*k.bytesPerElement(a),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:a,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let s=this.wasm.HEAPU8.slice(t,t+k.sizeFromShape(a)*k.bytesPerElement(n));return kQ(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{let r=this.dataIdNextNumber++;a={id:r},this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=k.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=k.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function vQ(e){return(t,n)=>(k.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function P6(e,t,n){if(Bh!=null)return Bh;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),Md!=null&&Md[a]!=null?Md[a]:n+a}async function wQ(){let[e,t]=await Promise.all([J().getAsync("WASM_HAS_SIMD_SUPPORT"),J().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=xQ,d=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(d)}return o.endsWith(".wasm")?P6(e,t,Rd!=null?Rd:l):l+o},L1&&(r.instantiateWasm=vQ(P6(e,t,Rd!=null?Rd:"")));let s=!1;r.onAbort=()=>{s||Fd||(Fd=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Bh==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+O6.default.toString()],{type:"text/javascript"}),i=(0,O6.default)(r)):i=(0,bQ.default)(r),i.then(o=>{s=!0,Fd=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function kQ(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var IQ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Bh=null,Rd=null,Md={},Fd=!1,L1=!1;function SQ(e,t=!1){if(iy("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Fd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Bh=e,L1=t}function NQ(e,t=!1){if(Fd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Rd=e;else{Md=e;let n=IQ.filter(a=>Md[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}L1=t}var L6="3.6.0",TQ=2;Al("wasm",async()=>{let{wasm:e}=await wQ();return new _6(e)},TQ);Z().prototype.abs=function(){return this.throwIfDisposed(),Lt(this)};Z().prototype.acos=function(){return this.throwIfDisposed(),ly(this)};Z().prototype.acosh=function(){return this.throwIfDisposed(),uy(this)};Z().prototype.add=function(e){return this.throwIfDisposed(),se(this,e)};Z().prototype.all=function(e,t){return this.throwIfDisposed(),Cc(this,e,t)};Z().prototype.any=function(e,t){return this.throwIfDisposed(),Qu(this,e,t)};Z().prototype.argMax=function(e){return this.throwIfDisposed(),yi(this,e)};Z().prototype.argMin=function(e){return this.throwIfDisposed(),dy(this,e)};Z().prototype.asScalar=function(){return this.throwIfDisposed(),F(this.size===1,()=>"The array must have only 1 element."),H(this,[])};Z().prototype.asType=function(e){return this.throwIfDisposed(),me(this,e)};Z().prototype.as1D=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.as2D=function(e,t){return this.throwIfDisposed(),H(this,[e,t])};Z().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),H(this,[e,t,n])};Z().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),H(this,[e,t,n,a])};Z().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),H(this,[e,t,n,a,r])};Z().prototype.asin=function(){return this.throwIfDisposed(),py(this)};Z().prototype.asinh=function(){return this.throwIfDisposed(),cy(this)};Z().prototype.atan=function(){return this.throwIfDisposed(),hy(this)};Z().prototype.atan2=function(e){return this.throwIfDisposed(),fy(this,e)};Z().prototype.atanh=function(){return this.throwIfDisposed(),my(this)};Z().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),td(this,e,t,n,a)};Z().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),nd(this,e,t)};Z().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),xi(this,e,t,n,a,r)};Z().prototype.broadcastTo=function(e){return this.throwIfDisposed(),xl(this,e)};Z().prototype.cast=function(e){return this.throwIfDisposed(),me(this,e)};Z().prototype.ceil=function(){return this.throwIfDisposed(),by(this)};Z().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),Nn(this,e,t)};Z().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Le&&(e=[e]),lt([this,...e],t)};Z().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Mc(this,e,t,n,a,r,s)};Z().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),Fc(this,e,t,n,a,r)};Z().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),pr(this,e,t,n,a,r,s)};Z().prototype.cos=function(){return this.throwIfDisposed(),ad(this)};Z().prototype.cosh=function(){return this.throwIfDisposed(),$c(this)};Z().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Dc(this,e,t,n)};Z().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),ky(this,e,t)};Z().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),vl(this,e,t,n,a,r,s)};Z().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),Iy(this,e,t,n,a,r)};Z().prototype.divNoNan=function(e){return this.throwIfDisposed(),Sy(this,e)};Z().prototype.div=function(e){return this.throwIfDisposed(),fe(this,e)};Z().prototype.dot=function(e){return this.throwIfDisposed(),u3(this,e)};Z().prototype.elu=function(){return this.throwIfDisposed(),wl(this)};Z().prototype.equal=function(e){return this.throwIfDisposed(),Wr(this,e)};Z().prototype.erf=function(){return this.throwIfDisposed(),Ny(this)};Z().prototype.exp=function(){return this.throwIfDisposed(),ea(this)};Z().prototype.expandDims=function(e){return this.throwIfDisposed(),dn(this,e)};Z().prototype.expm1=function(){return this.throwIfDisposed(),Ty(this)};Z().prototype.fft=function(){return this.throwIfDisposed(),cd(this)};Z().prototype.flatten=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.floor=function(){return this.throwIfDisposed(),Il(this)};Z().prototype.floorDiv=function(e){return this.throwIfDisposed(),Tc(this,e)};Z().prototype.gather=function(e,t){return this.throwIfDisposed(),bi(this,e,t)};Z().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Vr(this,e)};Z().prototype.greater=function(e){return this.throwIfDisposed(),On(this,e)};Z().prototype.ifft=function(){return this.throwIfDisposed(),Cl(this)};Z().prototype.irfft=function(){return this.throwIfDisposed(),Yc(this)};Z().prototype.isFinite=function(){return this.throwIfDisposed(),p3(this)};Z().prototype.isInf=function(){return this.throwIfDisposed(),c3(this)};Z().prototype.isNaN=function(){return this.throwIfDisposed(),Cy(this)};Z().prototype.leakyRelu=function(e){return this.throwIfDisposed(),rd(this,e)};Z().prototype.lessEqual=function(e){return this.throwIfDisposed(),jr(this,e)};Z().prototype.less=function(e){return this.throwIfDisposed(),Oc(this,e)};Z().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),Ry(this,e,t,n,a)};Z().prototype.logSigmoid=function(){return this.throwIfDisposed(),m3(this)};Z().prototype.logSoftmax=function(e){return this.throwIfDisposed(),Lc(this,e)};Z().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),$y(this,e,t)};Z().prototype.log=function(){return this.throwIfDisposed(),_n(this)};Z().prototype.log1p=function(){return this.throwIfDisposed(),_c(this)};Z().prototype.logicalAnd=function(e){return this.throwIfDisposed(),ca(this,e)};Z().prototype.logicalNot=function(){return this.throwIfDisposed(),sd(this)};Z().prototype.logicalOr=function(e){return this.throwIfDisposed(),Wc(this,e)};Z().prototype.logicalXor=function(e){return this.throwIfDisposed(),x3(this,e)};Z().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Be(this,e,t,n)};Z().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),id(this,e,t,n,a)};Z().prototype.max=function(e,t){return this.throwIfDisposed(),Tn(this,e,t)};Z().prototype.maximum=function(e){return this.throwIfDisposed(),ja(this,e)};Z().prototype.mean=function(e,t){return this.throwIfDisposed(),St(this,e,t)};Z().prototype.min=function(e,t){return this.throwIfDisposed(),Sl(this,e,t)};Z().prototype.minimum=function(e){return this.throwIfDisposed(),Nl(this,e)};Z().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),zy(this,e,t)};Z().prototype.mod=function(e){return this.throwIfDisposed(),Oy(this,e)};Z().prototype.mul=function(e){return this.throwIfDisposed(),L(this,e)};Z().prototype.neg=function(){return this.throwIfDisposed(),It(this)};Z().prototype.norm=function(e,t,n){return this.throwIfDisposed(),th(this,e,t,n)};Z().prototype.notEqual=function(e){return this.throwIfDisposed(),ki(this,e)};Z().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),ml(this,e,t,n)};Z().prototype.onesLike=function(){return this.throwIfDisposed(),Ln(this)};Z().prototype.pad=function(e,t){return this.throwIfDisposed(),cr(this,e,t)};Z().prototype.pool=function(e,t,n,a,r){return this.throwIfDisposed(),w3(this,e,t,n,a,r)};Z().prototype.pow=function(e){return this.throwIfDisposed(),hr(this,e)};Z().prototype.prelu=function(e){return this.throwIfDisposed(),ld(this,e)};Z().prototype.prod=function(e,t){return this.throwIfDisposed(),Vc(this,e,t)};Z().prototype.reciprocal=function(){return this.throwIfDisposed(),Ly(this)};Z().prototype.relu=function(){return this.throwIfDisposed(),Ua(this)};Z().prototype.relu6=function(){return this.throwIfDisposed(),jc(this)};Z().prototype.reshapeAs=function(e){return this.throwIfDisposed(),H(this,e.shape)};Z().prototype.reshape=function(e){return this.throwIfDisposed(),H(this,e)};Z().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),W3(this,e,t,n)};Z().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),B3(this,e,t,n)};Z().prototype.reverse=function(e){return this.throwIfDisposed(),Wn(this,e)};Z().prototype.rfft=function(){return this.throwIfDisposed(),hd(this)};Z().prototype.round=function(){return this.throwIfDisposed(),Uc(this)};Z().prototype.rsqrt=function(){return this.throwIfDisposed(),Hc(this)};Z().prototype.selu=function(){return this.throwIfDisposed(),Gc(this)};Z().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Wy(this,e,t,n,a,r,s)};Z().prototype.sigmoid=function(){return this.throwIfDisposed(),Sn(this)};Z().prototype.sign=function(){return this.throwIfDisposed(),By(this)};Z().prototype.sin=function(){return this.throwIfDisposed(),qc(this)};Z().prototype.sinh=function(){return this.throwIfDisposed(),Xc(this)};Z().prototype.slice=function(e,t){return this.throwIfDisposed(),Re(this,e,t)};Z().prototype.softmax=function(e){return this.throwIfDisposed(),pd(this,e)};Z().prototype.softplus=function(){return this.throwIfDisposed(),vi(this)};Z().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),od(this,e,t)};Z().prototype.split=function(e,t){return this.throwIfDisposed(),qt(this,e,t)};Z().prototype.sqrt=function(){return this.throwIfDisposed(),en(this)};Z().prototype.square=function(){return this.throwIfDisposed(),ot(this)};Z().prototype.squaredDifference=function(e){return this.throwIfDisposed(),Jc(this,e)};Z().prototype.squeeze=function(e){return this.throwIfDisposed(),Ha(this,e)};Z().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Le?[this,e]:[this,...e];return pn(n,t)};Z().prototype.step=function(e){return this.throwIfDisposed(),Rl(this,e)};Z().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),jy(this,e,t,n,a,r,s,i,o)};Z().prototype.sub=function(e){return this.throwIfDisposed(),ye(this,e)};Z().prototype.sum=function(e,t){return this.throwIfDisposed(),Ie(this,e,t)};Z().prototype.tan=function(){return this.throwIfDisposed(),Uy(this)};Z().prototype.tanh=function(){return this.throwIfDisposed(),gi(this)};Z().prototype.tile=function(e){return this.throwIfDisposed(),Br(this,e)};Z().prototype.toBool=function(){return this.throwIfDisposed(),me(this,"bool")};Z().prototype.toFloat=function(){return this.throwIfDisposed(),me(this,"float32")};Z().prototype.toInt=function(){return this.throwIfDisposed(),me(this,"int32")};Z().prototype.topk=function(e,t){return this.throwIfDisposed(),Hy(this,e,t)};Z().prototype.transpose=function(e){return this.throwIfDisposed(),Ye(this,e)};Z().prototype.unique=function(e){return this.throwIfDisposed(),eh(this,e)};Z().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Gy(this,e,t)};Z().prototype.unstack=function(e){return this.throwIfDisposed(),ha(this,e)};Z().prototype.where=function(e,t){return this.throwIfDisposed(),rn(e,this,t)};Z().prototype.zerosLike=function(){return this.throwIfDisposed(),He(this)};var W6={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Rl(me(n,"float32"),-1))}}},EQ={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ot(me(n,"float32")),r=en(ye(we(1),a));return It(fe(e,r))}}}},CQ={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=en(ye(ot(me(n,"float32")),1));return fe(e,a)}}}},RQ={kernelName:Mr,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=Ie(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=Ie(s,i)),H(s,a.shape)}}}},MQ={kernelName:hs,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},FQ={kernelName:fs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>He(n)}}},$Q={kernelName:Nu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>He(n)}}},DQ={kernelName:ho,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,en(ye(we(1),ot(me(n,"float32")))))}}},zQ={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=en(se(we(1),ot(me(n,"float32"))));return fe(e,a)}}}},OQ={kernelName:Ao,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=se(ot(n),ot(a)),i=L(e,fe(a,s)),o=Wt(n.shape,r);return o.length>0&&(i=Ie(i,o)),H(i,n.shape)},b:()=>{let s=se(ot(n),ot(a)),i=It(L(e,fe(n,s))),o=Wt(a.shape,r);return o.length>0&&(i=Ie(i,o)),H(i,a.shape)}}}},_Q={kernelName:mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,se(ot(me(n,"float32")),1))}}},PQ={kernelName:yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ye(we(1),ot(me(n,"float32"))))}}};function LQ(e,t,n,a,r,s){let i=M(e,"dy","avgPool3dGrad"),o=M(t,"input","avgPool3dGrad"),l=i,u=o,d=!1;o.rank===4&&(d=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),F(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),F(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),s!=null&&F(Ht(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let p={dy:l,input:u},c={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=z.runKernel(Wp,p,c);return d?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var WQ=_({avgPool3dGrad_:LQ}),BQ={kernelName:Tu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>WQ(e,a,r,s,i,o)}}};function VQ(e,t,n,a,r){let s=M(e,"dy","avgPoolGrad"),i=M(t,"input","avgPoolGrad");F(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),F(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let d={dy:l,input:o},p={filterSize:n,strides:a,pad:r},c=z.runKernel(Lp,d,p);return u?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var jQ=_({avgPoolGrad_:VQ}),UQ={kernelName:ms,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>jQ(e,a,r,s,i)}}},HQ={kernelName:ys,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Be(e,r,!1,!0),b:()=>Be(a,e,!0,!1)}:!s&&i?{a:()=>Be(e,r,!1,!1),b:()=>Be(e,a,!0,!1)}:s&&!i?{a:()=>Be(r,e,!1,!0),b:()=>Be(a,e,!1,!1)}:{a:()=>Be(r,e,!0,!0),b:()=>Be(e,a,!0,!0)}}},GQ={kernelName:Eu,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>od(e,a,r)}}},qQ={kernelName:ab,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>Ie(e,o,!0)}}},XQ={kernelName:As,gradFunc:e=>({x:()=>e.clone()})},KQ={kernelName:gs,gradFunc:e=>({x:()=>He(e)})},ZQ={kernelName:Fr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>rn(ca(Vr(a,r),jr(a,s)),e,He(e))}}},YQ={kernelName:Cu,inputsToSave:["x"],gradFunc:W6.gradFunc},JQ={kernelName:go,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=la(r,t[0].shape)[0],i=a.map(o=>o[s]);return qt(e,i,s).map(o=>()=>o)}},QQ={kernelName:xs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return F(Lr(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>vy(a.shape,e,r,i,o,l),filter:()=>Zy(a,e,r.shape,i,o,l)}}},eee={kernelName:bs,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>pr(e,r,s,i,o,1,l),filter:()=>Zy(e,a,r.shape,s,i,o,l)}}};function tee(e,t,n,a,r){let s=e;e.rank===4&&(s=H(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),F(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),F(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),F(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),F(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),F(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return z.runKernel(Up,o,l)}var nee=_({conv3DBackpropFilter_:tee}),aee={kernelName:Ru,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;F(Lr(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>i3(i.shape,e,o,r,s),filter:()=>nee(i,e,o.shape,r,s)}}},ree={kernelName:vs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(It(qc(me(n,"float32"))),e)}}},see={kernelName:xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Xc(me(n,"float32")),e)}}},iee={kernelName:ws,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=g3([r],a.rank),l=Dc(e,r,s,!i);return o!=null&&(l=Ye(l,o)),l}}}},oee={kernelName:ks,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;F(Lr(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return F(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),F(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),F(Ba(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),i!=null&&F(Ht(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>$3(l.shape,e,u,r,s,a,i),filter:()=>F3(l,e,u.shape,r,s,a,i)}}},lee={kernelName:Mu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>z.runKernel(Zp,s,n),filter:()=>z.runKernel(Yp,i,n)}}},uee={kernelName:wo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>z.runKernel(Qp,a)}}},dee={kernelName:ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=L(ea(It(ot(n))),2/Math.sqrt(Math.PI));return{x:()=>L(e,a)}}},pee={kernelName:Ss,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,n)}}},cee={kernelName:So,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>H(e,n.shape)}}},hee={kernelName:No,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,ea(n))}}},fee={kernelName:Ns,gradFunc:e=>({x:()=>He(e)})},mee={kernelName:Ts,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=fe(e,me(a,"float32")),i=Wt(n.shape,r);return i.length>0?H(Ie(s,i),n.shape):s},b:()=>{let s=L(e,me(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=H(Ie(s,i),a.shape));let o=ot(a);return It(fe(s,me(o,"float32")))}}}},yee={kernelName:Es,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?we(1):o,u=Wt(s.shape,r.shape),d=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)d.push(r.shape[f]);d.push(1)}let p=ye(r,s),c=L(e,l),h=Hc(se(i,we(a))),m=L(L(L(h,h),h),we(-.5));return{x:()=>s.rank===1?H(L(L(e,Br(H(h,[1,1,1,s.shape[0]]),d)),l),r.shape):H(L(L(e,h),l),r.shape),mean:()=>{let f=L(L(h,we(-1)),c);return s.rank===1&&(f=Ie(f,u)),H(f,s.shape)},variance:()=>{let f=L(L(m,p),c);return s.rank===1&&(f=Ie(f,u)),H(f,s.shape)},scale:()=>{let f=L(p,h),y=L(e,f);return s.rank===1&&(y=Ie(y,u)),H(y,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=Ie(f,u)),H(f,s.shape)}}}},Aee={kernelName:Eo,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=la(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,u=o.slice(0,i),d=u.length,p=o.slice(s,o.length).slice(1),c=p.length,h=B6(0,d),m=B6(d+1,d+1+c),f=V6([u,[l],p]),y=H(e,f),A=H(r,[l]),g=V6([[d],h,m]),x=Ye(y,g),w=Gy(x,A,a.shape[i]),b=Fy(g);return w=Ye(w,b),w},indices:()=>r}}};function B6(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function V6(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var gee={kernelName:Cs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>He(n),b:()=>He(a)}}},xee={kernelName:Rs,gradFunc:e=>({x:()=>me(e,"float32")})},bee={kernelName:Mo,gradFunc:e=>({x:()=>He(e)})},vee={kernelName:Fo,gradFunc:e=>({x:()=>He(e)})},wee={kernelName:$o,gradFunc:e=>({x:()=>He(e)})},kee={kernelName:Ms,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=On(a,0);return{x:()=>rn(s,e,L(e,r))}}},Iee={kernelName:Oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,se(n,1))}}},See={kernelName:Fs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,me(n,"float32"))}}},Nee={kernelName:rb,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=!0,i=ea(a);return ye(e,L(Ie(e,r,s),i))}}}};function Tee(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return z.runKernel(rc,o,l)}var Eee=_({localResponseNormalizationBackprop_:Tee}),Cee={kernelName:zu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>Eee(a,r,e,s,i,o,l)}}};function j6(e,t,n,a){return t.rank<n.rank&&(t=H(t,wi(t.shape,a))),e.rank<n.rank&&(e=H(e,wi(e.shape,a))),{x:()=>L(e,me(Wr(n,t),e.dtype))}}var U6={kernelName:$s,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=la(r,s.shape),l=j6(e,i,s,o);return{x:()=>l.x()}}},Ree={kernelName:Ds,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>L(e,me(Vr(n,a),"float32")),b:()=>L(e,me(Oc(n,a),"float32"))}}};function Mee(e,t,n,a,r,s,i){let o=M(e,"dy","maxPool3dGrad"),l=M(t,"input","maxPool3dGrad"),u=M(n,"output","maxPool3dGrad"),d=o,p=l,c=u,h=!1;l.rank===4&&(h=!0,d=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),p=H(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),c=H(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),F(d.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${d.rank}.`),F(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),F(c.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${c.rank}.`),i!=null&&F(Ht(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let m={dy:d,input:p,output:c},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},y=z.runKernel(ic,m,f);return h?H(y,[y.shape[1],y.shape[2],y.shape[3],y.shape[4]]):y}var Fee=_({maxPool3dGrad_:Mee}),$ee={kernelName:Ou,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>Fee(e,a,r,s,i,o,l)}}};function Dee(e,t,n,a,r,s,i){let o=M(e,"dy","maxPoolGrad"),l=M(t,"input","maxPoolGrad"),u=M(n,"output","maxPoolGrad");F(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),F(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),F(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&F(Ht(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let d={dy:o,input:l,output:u},p={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return z.runKernel(sc,d,p)}var zee=_({maxPoolGrad_:Dee}),Oee={kernelName:zs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>zee(e,a,r,s,i,o)}}},_ee={kernelName:Os,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=la(r,a.shape),i=A3(a.shape,s)[1],o=Rt(i);return{x:()=>{let l=a.shape.slice();s.forEach(d=>{l[d]=1});let u=H(e,l);return fe(L(u,Pn(a.shape,"float32")),o)}}}},Pee={kernelName:_s,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=la(r,s.shape),l=j6(e,i,s,o);return{x:()=>l.x()}}},Lee={kernelName:Ps,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>L(e,me(jr(n,a),"float32")),b:()=>L(e,me(On(n,a),"float32"))}}},Wee={kernelName:Ls,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Re(e,s,a.shape)}}},Bee={kernelName:Po,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=Wt(n.shape,r);return s.length>0?H(Ie(e,s),n.shape):e},b:()=>{let s=L(e,It(Il(fe(n,a)))),i=Wt(a.shape,r);return i.length>0?H(Ie(s,i),a.shape):s}}}},Vee={kernelName:Ws,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=L(e,me(a,"float32")),i=Wt(n.shape,r);return i.length>0?H(Ie(s,i),n.shape):s},b:()=>{let s=L(e,me(n,"float32")),i=Wt(a.shape,r);return i.length>0?H(Ie(s,i),a.shape):s}}}},jee={kernelName:Lo,gradFunc:e=>({x:()=>It(e)})},Uee={kernelName:Bs,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>$t(n.shape,"float32")}}},Hee={kernelName:Uo,gradFunc:e=>({x:()=>He(e)})},Gee={kernelName:Ho,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return ha(e,a).map(r=>()=>r)}},H6={kernelName:Vs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Re(e,s,a.shape)}}},qee={kernelName:js,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=ct(s.shape,i.shape);return{a:()=>{let l=me(i,"float32"),u=L(e,L(l,hr(s,ye(l,we(1))))),d=Wt(s.shape,o);return d.length>0&&(u=Ie(u,d)),H(u,s.shape)},b:()=>{let l=On(s,0),u=rn(l,_n(s),He(s)),d=L(e,L(r,u)),p=Wt(i.shape,o);return p.length>0&&(d=Ie(d,p)),H(d,i.shape)}}}},Xee={kernelName:Us,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=On(n,0);return{x:()=>rn(r,e,L(e,a)),alpha:()=>{let s=rn(r,He(e),L(e,n)),i=Wt(a.shape,e.shape);return i.length>0&&(s=Ie(s,i)),H(s,a.shape)}}}},Kee={kernelName:Is,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=fe(e,me(a,"float32")),i=Wt(n.shape,r);return i.length>0?H(Ie(s,i),n.shape):s},b:()=>{let s=L(e,me(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=H(Ie(s,i),a.shape));let o=ot(a);return It(fe(s,me(o,"float32")))}}}},Zee={kernelName:qo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,It(ot(n)))}}},Yee={kernelName:qs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=L(jr(n,6),Rl(n));return{x:()=>L(e,me(a,"float32"))}}},Jee={kernelName:Hs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,me(Rl(n),"float32"))}}},Qee={kernelName:Xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>H(e,n.shape)}}},ete={kernelName:Gs,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>z.runKernel(pc,r,n)}}},tte={kernelName:Pu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>z.runKernel(dc,r,n)}}},nte={kernelName:Xs,gradFunc:(e,t,n)=>{let{dims:a}=n,r=la(a,e.shape);return{x:()=>Wn(e,r)}}},ate={kernelName:Ks,gradFunc:e=>({x:()=>He(e)})},rte={kernelName:Zs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>It(fe(e,L(hr(n,1.5),2)))}}},ste={kernelName:Zo,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>me(He(n),"float32"),t:()=>L(e,me(n,e.dtype)),e:()=>L(e,me(sd(n),e.dtype))}}},ite={kernelName:Yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=On(n,we(0)),r=we(H3),s=we(G3),i=L(e,s),o=L(L(e,r),ea(me(n,"float32")));return rn(a,i,o)}}}},ote={kernelName:Js,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(n,ye(we(1),n)))}}},lte={kernelName:el,gradFunc:e=>({x:()=>He(e)})},ute={kernelName:Ys,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(ad(me(n,"float32")),e)}}},dte={kernelName:Qo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L($c(me(n,"float32")),e)}}},pte={kernelName:Jo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=Hb(a,r,s),u=[];for(let d=0;d<e.rank;d++)u.push([o[d],i[d]-o[d]-l[d]]);return{x:()=>cr(e,u)}}},cte={kernelName:ti,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=L(e,a);return{logits:()=>ye(i,L(Ie(i,[r],s),a))}}},hte={kernelName:tl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Sn(n))}}},G6={kernelName:Lu,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>nd(e,a,r)}}},q6={kernelName:nl,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>lt(e,a)}}},fte={kernelName:Qs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,L(en(me(n,"float32")),2))}}},mte={kernelName:Wu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(me(n,"float32"),2))}}},yte={kernelName:ni,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=we(2);return{a:()=>L(e,L(r,ye(n,a))),b:()=>L(e,L(r,ye(a,n)))}}},Ate={kernelName:Dr,gradFunc:e=>({x:()=>He(e)})},gte={kernelName:ai,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=Ie(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=Ie(s,i)),H(It(s),a.shape)}}}},xte={kernelName:ei,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;la(s,a.shape).forEach(l=>{r[l]=1});let i=H(e,r),o=L(i,Pn(a.shape,"float32"));return{x:()=>o}}},bte={kernelName:ri,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ot(ad(n)))}}},vte={kernelName:si,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(ye(we(1),ot(n)),e)}}},wte={kernelName:$r,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=He(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=se(s,Re(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=se(s,Re(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=se(s,Re(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let u=0;u<r[3];++u)s=se(s,Re(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],u*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},kte={kernelName:ii,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=Fy(r);return{x:()=>Ye(e,s)}}},Ite={kernelName:il,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>pn(e,r)}}},Ste={kernelName:Bu,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Nte(e,n)}}};function Nte(e,t){let n=ja(t,He(t)),a=bi(e,n),r=Vr(t,we(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=dn(r,o+1);r=ca(r,Pn(a.shape,"bool"));let i=He(a);return rn(r,a,i)}var Tte={kernelName:ol,gradFunc:e=>({x:()=>He(e)})},Ete=[W6,EQ,CQ,RQ,MQ,FQ,$Q,DQ,zQ,OQ,_Q,PQ,BQ,UQ,HQ,GQ,qQ,XQ,KQ,ZQ,YQ,JQ,eee,QQ,aee,ree,see,iee,oee,lee,Kee,uee,dee,pee,cee,hee,mee,fee,yee,Aee,gee,xee,bee,vee,wee,kee,Iee,See,Nee,Cee,U6,U6,Ree,$ee,Oee,_ee,Pee,Lee,Wee,Bee,Vee,jee,Uee,Hee,Gee,H6,H6,qee,Xee,Zee,Yee,Jee,Qee,ete,tte,nte,ate,rte,ste,ite,ote,lte,ute,dte,pte,cte,hte,G6,G6,q6,q6,fte,yte,mte,Ate,gte,xte,bte,vte,wte,kte,Ite,Ste,Tte];for(let e of Ete)sb(e);var X6={};Fe(X6,{maxNorm:()=>Fte,minMaxNorm:()=>zte,nonNeg:()=>Dte,unitNorm:()=>$te});var W1;function Bt(){return W1==null&&(W1=Zb().epsilon()),W1}function Ia(){return"channelsLast"}var Ar=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ar.prototype)}},Sa=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Sa.prototype)}},V=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,V.prototype)}},ze=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ze.prototype)}},K6=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,K6.prototype)}};function Di(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Ka(e,t){if(!e)throw new K6(t)}function Z6(e,t){let n=0;for(let a of e)a===t&&n++;return n}function Cn(e){return e.length===1?e[0]:e}function ft(e){return Array.isArray(e)?e:[e]}function gr(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function zi(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var fa={};function B1(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function V1(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>V1(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:V1(a))}}}function $d(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in fa)i=fa[s];else if(i=t[s],i==null)throw new V(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new V(`${a}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in fa?[o,l]=fa.className:i in t&&([o,l]=t[i]),o==null)throw new V(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(fa))u[h]=fa[h];for(let h of Object.keys(n))u[h]=n[h];let d=s.config;d.customObjects=u;let p=Object.assign({},fa);for(let h of Object.keys(n))fa[h]=n[h];V1(s.config);let c=l(o,s.config,n,r);return fa=Object.assign({},p),c}else{let u=Object.assign({},fa);for(let p of Object.keys(n))fa[p]=n[p];let d=new o(s.config);return fa=Object.assign({},u),d}}}function Cte(e,t){return e<t?-1:e>t?1:0}function Vh(e,t){return-1*Cte(e,t)}function Kr(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function Rte(e){if(e==null)throw new V(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Oi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new V(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function j1(e,t,n=0,a=Infinity){return Ka(n>=0),Ka(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function Kt(e,t){Array.isArray(e)?(k.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>Kt(n,`element ${a+1} of ${t}`))):k.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${Y6(e)}.`)}function Y6(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>Y6(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function Mte(e,t){let n=k.now(),a;return(...r)=>{let s=k.now();return s-n<t||(n=s,a=e(...r)),a}}function J6(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function U1(e,t){return B(()=>en(Ie(L(e,e),t,!0)))}var Dd=class extends ae.Serializable{getConfig(){return{}}},H1=class extends Dd{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return B(()=>{let t=U1(e,this.axis),n=Nn(t,0,this.maxValue);return L(e,fe(n,se(Bt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};H1.className="MaxNorm";ae.registerClass(H1);var G1=class extends Dd{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return B(()=>fe(e,se(Bt(),U1(e,this.axis))))}getConfig(){return{axis:this.axis}}};G1.className="UnitNorm";ae.registerClass(G1);var q1=class extends Dd{apply(e){return Ua(e)}};q1.className="NonNeg";ae.registerClass(q1);var X1=class extends Dd{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return B(()=>{let t=U1(e,this.axis),n=se(L(this.rate,Nn(t,this.minValue,this.maxValue)),L(1-this.rate,t));return L(e,fe(n,se(Bt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};X1.className="MinMaxNorm";ae.registerClass(X1);var Q6={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Vt(e){return B1(e)}function e4(e,t={}){return $d(e,ae.SerializationMap.getMap().classNameMap,t,"constraint")}function jt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in Q6?Q6[e]:e,config:{}};return e4(t)}else return e instanceof Dd?e:e4(e)}function Fte(e){return new H1(e)}function $te(e){return new G1(e)}function Dte(){return new q1}function zte(e){return new X1(e)}var t4={};Fe(t4,{constant:()=>rne,glorotNormal:()=>pne,glorotUniform:()=>dne,heNormal:()=>cne,heUniform:()=>hne,identity:()=>lne,leCunNormal:()=>fne,leCunUniform:()=>mne,ones:()=>ane,orthogonal:()=>yne,randomNormal:()=>ine,randomUniform:()=>sne,truncatedNormal:()=>one,varianceScaling:()=>une,zeros:()=>nne});var Ote=["channelsFirst","channelsLast"],_te=["nearest","bilinear"],Pte=["valid","same","causal"],Lte=["max","avg"],Wte=["sum","mul","concat","ave"],ql=new Map;function Ft(e){Oi(Ote,"DataFormat",e)}function Bte(e){Oi(_te,"InterpolationFormat",e)}function ra(e){Oi(Pte,"PaddingMode",e)}function n4(e){Oi(Lte,"PoolMode",e)}var zd=[],a4="/";function _i(e,t){zd.push(e);try{let n=t();return zd.pop(),n}catch(n){throw zd.pop(),n}}function Vte(){return zd.length===0?"":zd.join(a4)+a4}function r4(e){if(!i4(e))throw new Error("Not a valid tensor name: '"+e+"'");return Vte()+e}function s4(e){if(!i4(e))throw new Error("Not a valid tensor name: '"+e+"'");ql.has(e)||ql.set(e,0);let t=ql.get(e);if(ql.set(e,ql.get(e)+1),t>0){let n=`${e}_${t}`;return ql.set(n,1),n}else return e}var jte=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function i4(e){return!!e.match(jte)}function Ute(e){return e===parseInt(e.toString(),10)}function Zr(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function o4(e){return e=Array.isArray(e)?new Float32Array(e):e,Mt(e)}function Xl(e){return Sl(o4(e)).dataSync()[0]}function Yr(e){return Tn(o4(e)).dataSync()[0]}function Na(e,t){if(t<e)throw new V(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}function Od(e,t){return e.asType(t)}function _d(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function Hte(e,t){return B(()=>{if(e.shape.length!==2)throw new V(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=_d(e,1);return Y1(n,[1,t,1])})}function Gte(e){let t=[Zr(e.shape)];return e.reshape(t)}function qte(e){if(e.rank<=1)throw new V(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Zr(e.shape,1)];return e.reshape(t)}function Pi(e,t,n){return B(()=>{switch(e.rank){case 1:return Kc(e,t,n);case 2:return Vy(e,[t,0],[n,e.shape[1]]);case 3:return Zc(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return dd(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Re(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Re(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new V(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function K1(e,t,n){return B(()=>{switch(e.rank){case 1:return Kc(e,t,n);case 2:return Vy(e,[0,t],[e.shape[0],n]);case 3:return Zc(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return dd(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function jh(e,t,n,a){return B(()=>{switch(e.rank){case 1:return Kc(e,t,n);case 2:switch(a){case 1:return Pi(e,t,n);case 2:return K1(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return Pi(e,t,n);case 2:return Zc(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return K1(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return Pi(e,t,n);case 2:return dd(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return dd(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return K1(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Z1(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),lt(e,t)}function l4(e,t){switch(e.rank){case 1:return a3([e,t]);case 2:return bl([e,t],0);case 3:return r3([e,t],0);case 4:return s3([e,t],0);default:throw new V(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Y1(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new V(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Br(e,t)}function Uh(e,t=0,n=1,a,r){return k3(e,t,n,a,r)}function Za(e,t,n,a){if(e.rank<2||t.rank<2)throw new ze(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new ze(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,s=!1;return Ur.matMul({a:e,b:t,transposeA:r,transposeB:s,bias:a?J1(e.rank,a,Ia()):null,activation:n})}else{let r=e.shape.slice(),s=r.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],d=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=t.transpose(d).reshape([l,-1]);let p=[...r,...u],c=!1,h=!1;return Ur.matMul({a:e,b:t,transposeA:c,transposeB:h,bias:a?J1(e.rank,a,Ia()):null,activation:n}).reshape(p)}}function u4(e,t,n){return B(()=>(Array.isArray(t)?t=Mt(t,"int32"):t=t.toInt(),bi(e,t,n)))}function Pd(e){return L(e,e)}function J1(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new V(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1,1]):t.reshape([1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1]):t.reshape([1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1]):t.reshape([1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,a[0]]):t.reshape([1].concat(a))}else if(e<3)return t;throw new V(`Unsupported input rank by biasAdd: ${t.rank}`)}function Ta(e,t,n){return B(()=>(n==null&&(n=Ia()),Ft(n),e.add(J1(e.rank,t,n))))}function Xte(e,t=1){if(t!==1)throw new ze(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return wl(e)}function Kte(e){return B(()=>fe(e,Lt(e).add(1)))}function d4(e,t,n,a){return B(()=>R3(e,t,n,a))}function Zte(e){return B(()=>{let t=se(.5,L(.2,e));return Nn(t,0,1)})}function Ld(e,t,n=!1){return n?e():t()}var Yte=["fanIn","fanOut","fanAvg"],Jte=["normal","uniform","truncatedNormal"];function Qte(e){Oi(Yte,"FanMode",e)}function ene(e){Oi(Jte,"Distribution",e)}var ma=class extends ae.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Q1=class extends ma{apply(e,t){return $t(e,t)}};Q1.className="Zeros";ae.registerClass(Q1);var Hh=class extends ma{apply(e,t){return Pn(e,t)}};Hh.className="Ones";ae.registerClass(Hh);var eA=class extends ma{constructor(e){super();if(typeof e!="object")throw new V(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new V(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return B(()=>L(we(this.value),Pn(e,t)))}getConfig(){return{value:this.value}}};eA.className="Constant";ae.registerClass(eA);var tA=class extends ma{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Tl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};tA.className="RandomUniform";ae.registerClass(tA);var nA=class extends ma{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new ze(`randomNormal does not support dType ${t}.`);return Uh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};nA.className="RandomNormal";ae.registerClass(nA);var aA=class extends ma{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new ze(`truncatedNormal does not support dType ${t}.`);return Qc(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};aA.className="TruncatedNormal";ae.registerClass(aA);var rA=class extends ma{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return B(()=>{if(e.length!==2||e[0]!==e[1])throw new V("Identity matrix initializer can only be used for 2D square matrices.");return L(this.gain,Ey(e[0]))})}getConfig(){return{gain:this.gain}}};rA.className="Identity";ae.registerClass(rA);function tne(e,t="channelsLast"){let n,a;if(Ft(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=Zr(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=Zr(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=Zr(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var Rn=class extends ma{constructor(e){super();if(e.scale<0)throw new V(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,Qte(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,ene(this.distribution),this.seed=e.seed}apply(e,t){let n=tne(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new ze(`${this.getClassName()} does not support dType ${t}.`);return Qc(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Tl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Rn.className="VarianceScaling";ae.registerClass(Rn);var Gh=class extends Rn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};Gh.className="GlorotUniform";ae.registerClass(Gh);var qh=class extends Rn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};qh.className="GlorotNormal";ae.registerClass(qh);var Xh=class extends Rn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};Xh.className="HeNormal";ae.registerClass(Xh);var Kh=class extends Rn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};Kh.className="HeUniform";ae.registerClass(Kh);var Zh=class extends Rn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};Zh.className="LeCunNormal";ae.registerClass(Zh);var Yh=class extends Rn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};Yh.className="LeCunNormal";ae.registerClass(Yh);var sA=class extends ma{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new ze("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return B(()=>{if(e.length<2)throw new ze("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=Uh(n,0,1,"float32"),r=j3.gramSchmidt(a);return e[0]>e[1]&&(r=r.transpose()),L(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};sA.className="Orthogonal";ae.registerClass(sA);var p4={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function c4(e,t={}){return $d(e,ae.SerializationMap.getMap().classNameMap,t,"initializer")}function Nt(e){return B1(e)}function yt(e){if(typeof e=="string"){let t=e in p4?p4[e]:e;if(t==="GlorotNormal")return new qh;if(t==="GlorotUniform")return new Gh;if(t==="HeNormal")return new Xh;if(t==="HeUniform")return new Kh;if(t==="LeCunNormal")return new Zh;if(t==="LeCunUniform")return new Yh;{let n={};return n.className=t,n.config={},c4(n)}}else return e instanceof ma?e:c4(e)}function nne(){return new Q1}function ane(){return new Hh}function rne(e){return new eA(e)}function sne(e){return new tA(e)}function ine(e){return new nA(e)}function one(e){return new aA(e)}function lne(e){return new rA(e)}function une(e){return new Rn(e)}function dne(e){return new Gh(e)}function pne(e){return new qh(e)}function cne(e){return new Xh(e)}function hne(e){return new Kh(e)}function fne(e){return new Zh(e)}function mne(e){return new Yh(e)}function yne(e){return new sA(e)}var h4={};Fe(h4,{Layer:()=>qe,RNN:()=>Qa,RNNCell:()=>Xd,activation:()=>Jae,add:()=>ore,alphaDropout:()=>Ure,average:()=>lre,averagePooling1d:()=>k2,averagePooling2d:()=>I2,averagePooling3d:()=>S2,avgPool1d:()=>Are,avgPool2d:()=>xre,avgPool3d:()=>vre,avgPooling1d:()=>gre,avgPooling2d:()=>bre,avgPooling3d:()=>wre,batchNormalization:()=>fre,bidirectional:()=>Ore,concatenate:()=>ure,conv1d:()=>jae,conv2d:()=>Uae,conv2dTranspose:()=>Hae,conv3d:()=>Gae,conv3dTranspose:()=>qae,convLstm2d:()=>Fre,convLstm2dCell:()=>$re,cropping2D:()=>Kae,dense:()=>Qae,depthwiseConv2d:()=>Yae,dot:()=>hre,dropout:()=>ere,elu:()=>_ae,embedding:()=>ire,flatten:()=>nre,gaussianDropout:()=>jre,gaussianNoise:()=>Vre,globalAveragePooling1d:()=>kre,globalAveragePooling2d:()=>Ire,globalMaxPool1d:()=>Pre,globalMaxPool2d:()=>Lre,globalMaxPooling1d:()=>w8,globalMaxPooling2d:()=>k8,gru:()=>Nre,gruCell:()=>Tre,input:()=>G4,inputLayer:()=>Oae,layerNormalization:()=>mre,leakyReLU:()=>Lae,lstm:()=>Ere,lstmCell:()=>Cre,masking:()=>Hre,maxPool1d:()=>Wre,maxPool2d:()=>Bre,maxPooling1d:()=>I8,maxPooling2d:()=>S8,maxPooling3d:()=>Sre,maximum:()=>dre,minimum:()=>pre,multiply:()=>cre,permute:()=>sre,prelu:()=>Wae,reLU:()=>Pae,repeatVector:()=>are,reshape:()=>rre,rnn:()=>Dre,separableConv2d:()=>Xae,simpleRNN:()=>Rre,simpleRNNCell:()=>Mre,softmax:()=>Bae,spatialDropout1d:()=>tre,stackedRNNCells:()=>zre,thresholdedReLU:()=>Vae,timeDistributed:()=>_re,upSampling2d:()=>Zae,zeroPadding2d:()=>yre});var Ane=0;function f4(){return Ane++}var Jh={};function Qh(e=""){return e in Jh||(Jh[e]=0),Jh[e]+=1,e+Jh[e].toString()}function iA(e){return Array.isArray(e)&&Array.isArray(e[0])}function e0(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function _e(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new V(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function st(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new V(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function t0(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var m4="Variable",y4=class{constructor(e,t="float32",n=m4,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=f4(),n=n==null?m4:n,this.originalName=r4(n),this.name=s4(this.originalName),this.trainable_=a,this.constraint=r,this.val=S3(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),gne(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function gne(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function oA(e){return e.map(t=>t.read())}function lA(e){e.forEach(t=>{t[0].write(t[1])})}var zt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Ea=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=f4(),s!=null&&(this.originalName=r4(s),this.name=s4(this.originalName)),this.rank=t.length}},xne=0,n0=class{constructor(e,t){this.callArgs=t,this.id=xne++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},bne=0,qe=class extends ae.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=bne++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=gr(n)+"_"+Qh(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Sa(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new V(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Cn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Cn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Ar(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Ar(`Layer ${this.name} is not connected, no input to return.`);return Cn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Ar(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Ar(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Cn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=ft(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=ft(this.inputSpec);if(e.length!==t.length)throw new V(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new V(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),u=r.axes[o],d=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(d)===-1)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=ft(e),a=!0;for(let s of n)if(!(s instanceof Ea)){a=!1;break}let r=!0;for(let s of n)if(s instanceof Ea){r=!1;break}if(a===r)throw new V("Arguments to apply() must be all SymbolicTensors or all Tensors");return _i(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of ft(e))s.push(i.shape);this.build(Cn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=ft(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Cn(o),this.activityRegularizer!=null)throw new ze("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=vne(e),i=this.computeOutputShape(s),o,l=wne(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,d)=>new Ea(l,u,this,ft(e),t,this.name,d)):o=new Ea(l,i,this,ft(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new ze("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Ar(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Ar(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Sa(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return t0(this.weights)}build(e){this.built=!0}getWeights(e=!1){return oA(e?this.trainableWeights:this.weights)}setWeights(e){B(()=>{let t=this.weights;if(t.length!==e.length)throw new V(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=oA(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!k.arraysEqual(s.shape,o.shape))throw new V(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}lA(n)})}addWeight(e,t,n,a,r,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new V(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=yt("zeros"));let o=a.apply(t,n),l=new y4(o,n,e,s,i);return o.dispose(),r!=null&&this.addLoss(()=>r.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=ft(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=ft(e);t=ft(t),n=ft(n),a=ft(a),r=e0(r),s=e0(s);let l=[],u=[],d=[];for(let p of o)l.push(p.sourceLayer),u.push(p.nodeIndex),d.push(p.tensorIndex);new n0({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:d,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let p=0;p<t.length;p++)t[p].sourceLayer=this,t[p].nodeIndex=this.inboundNodes.length-1,t[p].tensorIndex=p}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function vne(e){e=ft(e);let t=[];for(let n of e)t.push(n.shape);return Cn(t)}function wne(e){return"float32"}function A4(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],u=A4(i,o,l);for(let d of u)r.indexOf(d)===-1&&r.push(d)}return r}}}var Kl=class extends qe{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Qh("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new V("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new V("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new V("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new Ea(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new n0({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new V(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Kl.className="InputLayer";ae.registerClass(Kl);function g4(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new V("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Kl({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Jr(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];Ne(a)}}function x4(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var b4;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(b4||(b4={}));var kne=125,Zl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},v4=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},Ine=class extends Zl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=B(()=>se(this.totals[a],L(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:B(()=>{let a=L(fe(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),Gt(t[n])}))}},w4=class extends Zl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},k4=class extends Zl{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=kne),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");k.isNumber(this.yieldEvery)&&(this.maybeWait=Mte(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await Jr(n),a.push(this.yield(e,t,n))),a.push(ch()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Jr(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Jr(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(ch()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Jr(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Jr(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(ch()):k.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Jr(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Jr(e),await this.trainEnd(e))}};function I4(e,t){return e==null&&(e={}),e instanceof Zl?[e]:Array.isArray(e)&&e[0]instanceof Zl?e:ft(e).map(n=>new k4(n,t))}var ya=class{constructor(){}static registerCallbackConstructor(e,t){k.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),ya.checkForDuplicate(t),ya.constructors[e]==null&&(ya.constructors[e]=[]),ya.constructors[e].push(t)}static checkForDuplicate(e){for(let t in ya.constructors)ya.constructors[+t].forEach(n=>{if(n===e)throw new V("Duplicate callback constructor.")})}static clear(){ya.constructors={}}static createCallbacks(e){let t=[];for(let n in ya.constructors){let a=+n;e>=a&&t.push(...ya.constructors[a])}return t.map(n=>new n)}};ya.constructors={};function S4(e,t,n,a,r,s,i,o,l){let u=new w4,d=[new Ine,...ya.createCallbacks(t)];e!=null&&d.push(...e),d.push(u);let p=new v4(d);return p.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:p,history:u}}function Ca(e,t={},n=!1){return $d(e,ae.SerializationMap.getMap().classNameMap,t,"layer",n)}function a0(e,t){return B(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Ie(Pd(e),t,!0),a=kl(n.shape,Bt()),r=en(ja(n,a));return fe(e,r)})}function Li(e,t){return B(()=>St(Pd(ye(t,e)),-1))}function r0(e,t){return B(()=>St(Lt(ye(t,e)),-1))}function Yl(e,t){return B(()=>{let n=ye(e,t),a=Nn(Lt(e),Bt(),Number.MAX_VALUE),r=Lt(fe(n,a));return L(100,St(r,-1))})}function Sne(e,t){return B(()=>{let n=Nn(t,Bt(),Number.MAX_VALUE),a=_n(se(1,n)),r=Nn(e,Bt(),Number.MAX_VALUE),s=_n(se(1,r));return St(Pd(ye(a,s)),-1)})}function Nne(e,t){return B(()=>{let n=ja(0,ye(1,L(e,t)));return St(Pd(n),-1)})}function Tne(e,t){return B(()=>{let n=ja(0,ye(1,L(e,t)));return St(n,-1)})}function Ene(e,t){return B(()=>{let n=Ie(L(e,t),-1),a=Tn(L(ye(1,e),t),-1);return ja(0,se(1,ye(a,n)))})}function Cne(e,t){return B(()=>{let n=Math.log(2),a=ye(t,e),r=ye(se(a,vi(L(-2,a))),n);return St(r,-1)})}function Wd(e,t,n=!1){return B(()=>{if(n)t=pd(t);else{let a=Ie(t,t.shape.length-1,!0);t=fe(t,a)}return t=Nn(t,Bt(),1-Bt()),It(Ie(L(e.toFloat(),_n(t)),t.shape.length-1))})}function s0(e,t,n=!1){return B(()=>{let a=Il(Gte(e)).toInt();t=Nn(t,Bt(),1-Bt());let r=t.shape,s=ml(a,r[r.length-1]).reshape(r);return Wd(s,t,n)})}function Rne(e,t){if(!k.arraysEqual(e.shape,t.shape))throw new V(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return B(()=>{let n=t.relu(),a=t.abs().neg();return n.sub(t.mul(e)).add(a.exp().log1p())})}function i0(e,t){return B(()=>{let n;return n=Nn(t,Bt(),1-Bt()),n=_n(fe(n,ye(1,n))),St(Rne(e,n),-1)})}function Mne(e,t){return B(()=>{let n=Nn(e,Bt(),1),a=Nn(t,Bt(),1);return Ie(L(e,_n(fe(n,a))),-1)})}function Fne(e,t){return B(()=>{let n=_n(se(Bt(),t));return St(ye(t,L(e,n)),-1)})}function uA(e,t){return B(()=>{let n=a0(e,-1),a=a0(t,-1),r=L(n,a);return It(Ie(r,-1))})}var o0={meanSquaredError:Li,meanAbsoluteError:r0,meanAbsolutePercentageError:Yl,meanSquaredLogarithmicError:Sne,squaredHinge:Nne,hinge:Tne,categoricalHinge:Ene,logcosh:Cne,categoricalCrossentropy:Wd,sparseCategoricalCrossentropy:s0,binaryCrossentropy:i0,kullbackLeiblerDivergence:Mne,poisson:Fne,cosineProximity:uA};function dA(e){if(typeof e=="string"){if(e in o0)return o0[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new V(t)}else return e}function pA(e,t){return B(()=>{let n=L(.5,Ln(t)),a=Od(On(t,n),e.dtype);return St(Wr(e,a),-1)})}function cA(e,t){return B(()=>Od(Wr(yi(e,-1),yi(t,-1)),"float32"))}function N4(e,t){return B(()=>ca(e.equal(1),t.equal(1)).sum().cast("float32"))}function $ne(e,t){return B(()=>ca(e.equal(1),t.equal(0)).sum().cast("float32"))}function Dne(e,t){return B(()=>ca(e.equal(0),t.equal(1)).sum().cast("float32"))}function T4(e,t){return B(()=>{let n=N4(e,t),a=Dne(e,t),r=n.add(a);return rn(On(r,0),n.div(r),0).cast("float32")})}function zne(e,t){return B(()=>{let n=N4(e,t),a=$ne(e,t),r=n.add(a);return rn(On(r,0),n.div(r),0).cast("float32")})}function E4(e,t){return i0(e,t)}function C4(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Wr(e,t).asType("float32")}var One=Li,_ne=Li,Pne=r0,Lne=r0,Wne=Yl,Bne=Yl,hA=Wd,Vne=uA,R4=s0,l0={binaryAccuracy:pA,categoricalAccuracy:cA,precision:T4,categoricalCrossentropy:hA,sparseCategoricalCrossentropy:R4,mse:One,MSE:_ne,mae:Pne,MAE:Lne,mape:Wne,MAPE:Bne,cosine:Vne};function jne(e){if(typeof e=="string"&&e in l0)return l0[e];if(typeof e!="string"&&e!=null)return e;throw new V(`Unknown metric ${e}`)}function u0(e){if(Ka(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(o0))if(o0[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(l0))if(l0[n]===e){t=n;break}return t!==void 0?t:e.name}}function Une(e){let t={Adagrad:()=>Si.adagrad(.01),Adadelta:()=>Si.adadelta(1,.95,Bt()),Adam:()=>Si.adam(.001,.9,.999,Bt()),Adamax:()=>Si.adamax(.002,.9,.999,Bt(),0),RMSProp:()=>Si.rmsprop(.001,.9,0,Bt()),SGD:()=>Si.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new V(`Unknown Optimizer ${e}`)}var M4=1*1024*1024;function F4(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!fA(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>M4&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${M4}.`)}}function fA(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!fA(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!fA(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function Hne(e,t,n,a=console.log){let r=qne(e),s=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(d=>Math.floor(t*d)));let i;if(!r){s.push("Receives inputs"),i=[];for(let d in e.nodesByDepth)i.push(...e.nodesByDepth[d])}a("_".repeat(t)),d0(s,n,a),a("=".repeat(t));let o=e.layers;for(let d=0;d<o.length;++d)r?Xne(o[d],n,a):Kne(o[d],n,i,a),a((d===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=Gne(e),u=t0(e.nonTrainableWeights);a(`Total params: ${l+u}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${u}`),a("_".repeat(t))}function Gne(e){let t;return e.collectedTrainableWeights!=null?t=t0(e.collectedTrainableWeights):t=t0(e.trainableWeights),t}function qne(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function d0(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function Xne(e,t,n){let a;try{a=JSON.stringify(e.outputShape)}catch(o){a="multiple"}let r=e.name,s=e.getClassName(),i=[`${r} (${s})`,a,e.countParams().toString()];d0(i,t,n)}function Kne(e,t,n,a){let r;try{r=JSON.stringify(e.outputShape)}catch(d){r="multiple"}let s=[];for(let d of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(d)===-1))for(let p=0;p<d.inboundLayers.length;++p){let c=d.inboundLayers[p].name,h=d.nodeIndices[p],m=d.tensorIndices[p];s.push(`${c}[${h}][${m}]`)}let i=e.name,o=e.getClassName(),l=s.length===0?"":s[0],u=[`${i} (${o})`,r,e.countParams().toString(),l];d0(u,t,a);for(let d=1;d<s.length;++d)d0(["","","",s[d]],t,a)}function $4(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Bd(e,t){if(e===null)return null;if(typeof e=="string")return zi(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];$4(t,r,s)?n.push(s):n.push(Bd(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=zi(a);n[s]=Bd(r,s)}}return n}}function mA(e,t){if(e==null)return null;if(typeof e=="string")return gr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];$4(t,r,s)?n.push(s):n.push(mA(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=gr(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=mA(r,a)}return n}}var yA="3.6.0";function Zne(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return me(t,e.dtype)}catch(n){throw new V(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Wi=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Wi)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=Zne(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new V(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Ea){if(this.id2Value[e.id]==null)throw new V(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new V(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Ea){if(this.id2Value[e.id]==null)throw new V(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new V(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Ne(this.id2Mask)}},AA={},D4={};function Vd(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],u=t.names();for(let m of o)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-Infinity,a.minNumTensors=Infinity);let d=o.join(",")+"|"+t.names().join(","),p,c;if(AA[d]==null){let m=Yne(i,t);p=m.sorted,c=m.recipientCounts,AA[d]=p,D4[d]=c}p=AA[d],c={},r||Object.assign(c,D4[d]);let h=new Wi(t);for(let m=0;m<p.length;++m){if(a!=null){let C=Nc().numTensors;C>a.maxNumTensors&&(a.maxNumTensors=C),C<a.minNumTensors&&(a.minNumTensors=C)}let f=p[m],y=f.sourceLayer;if(y instanceof Kl)continue;let A=[],g=[],x=[],w=!1;for(let C of f.inputs){let $=h.getValue(C),O=h.getMask(C);A.push($),g.push(O),O!=null&&(w=!0),r||(c[C.name]--,c[C.name]===0&&!t.hasKey(C)&&o.indexOf(C.name)===-1&&!$.isDisposed&&C.sourceLayer.stateful!==!0&&x.push($))}w&&(n=n||{},n.mask=g[0]);let b=ft(y.apply(A,n)),v=null;y.supportsMasking&&(v=y.computeMask(A,g));let S=Qne(f),T=Array.isArray(S)?S:[S];for(let C=0;C<T.length;++C){h.hasKey(T[C])||h.add(T[C],b[C],Array.isArray(v)?v[0]:v);let $=o.indexOf(T[C].name);$!==-1&&(l[$]=b[C])}r||Ne(x)}return h.disposeMasks(),s?l:l[0]}function Yne(e,t){k.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=z4(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=z4(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(u=>a[l].add(u))}}return{sorted:n,recipientCounts:Jne(a)}}function Jne(e){let t={};for(let n in e)t[n]=e[n].size;return t}function z4(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:a,recipientMap:r}}function Qne(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var Ya=class extends qe{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let A=this.getClassName().toLowerCase();this.name=Qh(A)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Kr(this.inputs).length!==this.inputs.length)throw new V(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(A=>A.name)}`);Kr(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(A=>A.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let A of this.outputs){let g=A.sourceLayer,x=A.nodeIndex,w=A.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(w)}for(let A of this.inputs){let g=A.sourceLayer,x=A.nodeIndex,w=A.tensorIndex;Ka(x===0,"input layer has >1 nodes"),Ka(w===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(w)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let A=0;A<this.inputLayers.length;A++){let g=this.inputLayers[A];if(!(g instanceof Kl))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${A} (0-based) originates from layer type ${g.getClassName()}.`);this.inputNames.push(g.name),this.feedInputShapes.push(g.batchInputShape),this.feedInputNames.push(g.name)}for(let A of this.outputLayers)this.outputNames.push(A.name);this.internalInputShapes=this.inputs.map(A=>A.shape),this.internalOutputShapes=this.outputs.map(A=>A.shape);let t={},n={},a={},r={},s={},i=[],o=(A,g,x,w,b,v)=>{(w==null||b==null||v==null)&&(w=A.sourceLayer,b=A.nodeIndex,v=A.tensorIndex);let S=w.inboundNodes[b];if(x.indexOf(S)!==-1)throw new Sa(`The tensor ${A.name} at layer "${w.name}" is part of a cycle.`);if(g.indexOf(S)!==-1)return;this.containerNodes.add(Ya.nodeKey(w,b)),w.id in s||(s[w.id]=Object.keys(s).length),x.indexOf(S)===-1&&x.push(S);let T=S.inboundLayers.length;for(let C=0;C<T;C++){let $=S.inputTensors[C],O=S.inboundLayers[C],P=S.nodeIndices[C],j=S.tensorIndices[C];o($,g,x,O,P,j)}for(g.push(S);x.indexOf(S)>=0;)x.splice(x.indexOf(S),1);i.push(S)},l=[],u=[];for(let A of this.outputs)o(A,l,u);let d=i.slice().reverse();for(let A of d){n[A.id]=A,A.id in t||(t[A.id]=0);let g=t[A.id],x=a[A.outboundLayer.id]==null?0:a[A.outboundLayer.id];g=Math.max(g,x),a[A.outboundLayer.id]=g,r[A.outboundLayer.id]=A.outboundLayer,t[A.id]=g;for(let w=0;w<A.inboundLayers.length;w++){let b=A.inboundLayers[w],v=A.nodeIndices[w],S=b.inboundNodes[v],T=t[S.id]==null?0:t[S.id];t[S.id]=Math.max(g+1,T),n[S.id]=S}}let p={};for(let A in t){let g=t[A];g in p||(p[g]=[]),p[g].push(n[A])}let c={};for(let A in a){let g=a[A];g in c||(c[g]=[]),c[g].push(r[A])}let h=Object.keys(c).map(A=>parseInt(A,10)).sort(Vh);this.layers=[];for(let A of h){let g=c[A];g.sort((x,w)=>{let b=s[x.id],v=s[w.id];return b<v?-1:b>v?1:0});for(let x of g)x instanceof Ya&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=c,h=Object.keys(p).map(A=>parseInt(A,10)).sort(Vh);let m=this.inputs.slice(),f=[];for(let A of h)for(let g of p[A]){let x=g.outboundLayer;if(x!=null){for(let w of g.inputTensors)if(m.indexOf(w)===-1)throw new Sa(`Graph disconnected: cannot obtain value for tensor ${w} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let w of g.outputTensors)m.push(w);f.push(x.name)}}this.nodesByDepth=p;let y=this.layers.map(A=>A.name);for(let A of y){let g=y.filter(x=>x===A).length;if(g!==1)throw new Sa(`The name "${A}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(y))}this.outboundNodes=[],this.inboundNodes=[],new n0({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(A=>null),outputMasks:this.outputs.map(A=>null),inputShapes:this.inputs.map(A=>A.shape),outputShapes:this.outputs.map(A=>A.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new V("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new V(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new V(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new V(`${s.length} of ${a} weights are not set: ${s}`)}lA(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${yA}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=mA(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return B(()=>{e=ft(e);let n=new Wi;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return Vd(this.outputs,n,t)})}computeMask(e,t){return B(()=>{e=ft(e);let n;return t==null?n=Di(null,e.length):n=ft(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=e0(e);if(t.length!==this.inputLayers.length)throw new V(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Vh);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let d=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],y=l.nodeIndices[m],A=l.tensorIndices[m],g=`${f.name}_${y}_${A}`,x=n[g];d.push(x)}let p=u.computeOutputShape(Cn(d)),c=e0(p),h=u.inboundNodes.indexOf(l);for(let m=0;m<c.length;m++){let f=`${u.name}_${h}_${m}`;n[f]=c[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],d=`${o.name}_${l}_${u}`;s.push(d)}for(let i=0;i<s.length;i++){let o=s[i];Ka(o in n),r.push(n[o])}return Cn(r)}runInternalGraph(e,t){t==null&&(t=Di(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],d=t[o];n[l.id]=[u,d]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Vh);for(let o of a){let l=this.nodesByDepth[o];for(let u of l){let d=u.outboundLayer,p=u.inputTensors,c=u.outputTensors,h=new Array;for(let m of p)m.id in n&&h.push(n[m.id]);if(h.length===p.length){let m={},f,y,A,g;if(u.callArgs!=null&&(m=u.callArgs),h.length===1){let[x,w]=h[0];m.mask==null&&(m.mask=w),A=ft(d.call(x,m)),g=ft(d.computeMask(x,w)),f=[x],y=[w]}else f=h.map(x=>x[0]),y=h.map(x=>x[1]),m.mask==null&&(m.mask=y),A=ft(d.call(f,m)),g=ft(d.computeMask(f,y));if(d.activityRegularizer)throw new ze("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<c.length;++x){let w=c[x],b=A[x],v=g[x];n[w.id]=[b,v]}}}}let r=[],s=[],i=[];for(let o of this.outputs){Ka(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),r.push(l),s.push(u)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof Ya?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=Ya.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new V(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new V("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new V(`No such layer: ${e}`)}calculateLosses(){return B(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=Ya.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let d=0;d<s.inboundNodes.length;d++){let p=s.inboundNodes[d],c=Ya.nodeKey(s,d),h={};if(this.containerNodes.has(c)){if(p.callArgs)try{JSON.stringify(p.callArgs),h=p.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${p.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(p.inboundLayers.length>0){let m=[];for(let f=0;f<p.inboundLayers.length;f++){let y=p.inboundLayers[f],A=p.nodeIndices[f],g=p.tensorIndices[f],x=Ya.nodeKey(y,A),w=t[x];w==null&&(w=0),m.push([y.name,w,g,h])}l.push(m)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=Ya.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let d=this.inputLayersTensorIndices[s];a.push([i.name,u,d])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=Ya.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let d=this.outputLayersTensorIndices[s];r.push([i.name,u,d])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,y){f.name in s?s[f.name].push(y):s[f.name]=[y]}function o(f,y){let A=[],g;for(let x of y){let w=x[0],b=x[1],v=x[2];if(g=x[3]==null?{}:x[3],!(w in r)){i(f,y);return}let S=r[w];if(S.inboundNodes.length<=b){i(f,y);return}let T=S.inboundNodes[b];A.push(T.outputTensors[v])}A.length>0&&f.apply(Cn(A),g)}function l(f){let y=f.name,A=Ca(f,t.customObjects!=null?t.customObjects:{});A.setFastWeightInitDuringBuild(a),r[y]=A,f.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new V(`Corrupted configuration, expected array for nodeData: ${g}`);i(A,g)})}let u=t.name,d=t.layers;for(let f of d)l(f);for(;!Rte(s);)for(let f of d){let y=r[f.name];if(y.name in s){let A=s[y.name];delete s[y.name];for(let g of A)o(y,g)}}let p=[],c=[],h=t.inputLayers;for(let f of h){let y=f[0],A=f[1],g=f[2];Ka(y in r);let x=r[y].inboundNodes[A].outputTensors;p.push(x[g])}let m=t.outputLayers;for(let f of m){let y=f[0],A=f[1],g=f[2];Ka(y in r);let x=r[y].inboundNodes[A].outputTensors;c.push(x[g])}return new e({inputs:p,outputs:c,name:u})}get stateful(){if(this._stateful)throw new V("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){B(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function eae(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function O4(e,t){return eae(e,t,"classWeight")}async function _4(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=B(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());Ne(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Mt(i,"float32")}else return null}function tae(e,t){return L(e,t)}var nae=32;function P4(e,t){let n,a,r=t;n=r.xs,a=r.ys,k.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=L4("input",e.inputNames,n),i=L4("output",e.outputNames,a),o=s[0].shape[0];k.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),k.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)k.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)k.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function L4(e,t,n){if(n instanceof Le)return[n];if(Array.isArray(n))return k.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new V(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function aae(e){if(e.length===3)throw new ze("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function rae(e,t,n){let a=n.batchesPerEpoch!=null;if(k.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),k.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),k.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),k.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),k.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(W4(n.validationData))k.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let y=aae(n.validationData);s=y.xs,i=y.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(y=>"val_"+y)):u=l.slice();let d=I4(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:c,history:h}=S4(d,p,n.epochs,null,null,sae(t,n),null,r,u);c.setModel(e),e.history=h,await c.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let y={};await c.onEpochBegin(m);let A=0,g=0;for(a||(f=await t.iterator());a?A<n.batchesPerEpoch:!0;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${A} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:w,ys:b}=P4(e,x.value),v={};v.batch=g,v.size=w[0].shape[0],await c.onBatchBegin(g,v);let S=[];if(n.classWeight!=null){let $=O4(n.classWeight,e.outputNames);for(let O=0;O<$.length;++O)S.push(await _4(b[O],null,$[O]))}let T=w.concat(b).concat(S),C=o(T);Ne(T);for(let $=0;$<l.length;++$){let O=l[$],P=C[$];v[O]=P,Gt(P)}await c.onBatchEnd(g,v),x4(v),g++,A++}if(a?A>=n.batchesPerEpoch:x.done){if(r){let w;W4(n.validationData)?w=ft(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):w=ft(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?nae:n.validationBatchSize,verbose:0}));for(let b=0;b<e.metricsNames.length;++b)y[`val_${e.metricsNames[b]}`]=w[b]}break}if(e.stopTraining_)break}if(await c.onEpochEnd(m,y),m++,e.stopTraining_)break}return await c.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function sae(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function W4(e){return typeof e.iterator=="function"}function iae(e){return typeof e.next=="function"}async function oae(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new ze("Verbose mode is not implemented yet.");k.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=iae(t)?t:await t.iterator(),o=0,l=0;for(;a?l<n.batches:!0;){let u=await i.next();if(s=B(()=>{if(u.value){let{xs:d,ys:p}=P4(e,u.value),c=d.concat(p),h=B(()=>r(c));if(Ne(c),l===0)for(let f=0;f<h.length;++f)s.push(we(0));let m=c[0].shape[0];for(let f=0;f<h.length;++f){let y=h[f],A=s[f];s[f]=B(()=>se(s[f],L(m,y))),l>0&&Ne(A)}Ne(h),o+=m,++l}return s}),u.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let d=s[u];s[u]=fe(s[u],o),Ne(d)}return Cn(s)}function gA(e){k.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function jd(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>Pi(a,t,n-t)):Pi(e,t,n-t)}function xA(e,t){return B(()=>e==null?null:Array.isArray(e)?e.map(n=>xA(n,t)):u4(e,t.dtype==="int32"?t:t.toInt()))}function bA(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}async function lae(e,t,n,a,r,s,i,o,l,u,d,p,c,h,m){r==null&&(r=32),s==null&&(s=1),d==null&&(d=!0),c==null&&(c=0);let f=!1;if(l!=null&&u!=null&&(f=!0),m!=null&&(f=!0,h==null))throw new V("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let y=e.checkNumSamples(n,r,h,"steps_per_epoch"),A;y!=null&&(A=Na(0,y)),i==null&&(i=1);let{callbackList:g,history:x}=S4(o,i,s,c,y,h,r,f,p);g.setModel(e),e.history=x,await g.onTrainBegin(),e.stopTraining_=!1;for(let w=c;w<s;++w){await g.onEpochBegin(w);let b={};if(h!=null)throw new ze("stepsPerEpoch mode is not implemented yet.");{if(d==="batch")throw new ze("batch shuffling is not implemneted yet");d&&k.shuffle(A);let v=Mt(A),S=bA(y,r);for(let T=0;T<S.length;++T){let C={};if(await g.onBatchBegin(T,C),B(()=>{let $=S[T][0],O=S[T][1],P=Pi(v,$,O-$);C.batch=T,C.size=O-$;let j=xA(n,P),D=t(j);for(let U=0;U<a.length;++U){let X=a[U],G=D[U];C[X]=G,Gt(G)}if(T===S.length-1&&f){let U=e.testLoop(l,u,r);for(let X=0;X<a.length;++X){let G=a[X],ee=U[X];Gt(ee),b["val_"+G]=ee}}}),await g.onBatchEnd(T,C),x4(C),e.stopTraining_)break}v.dispose()}if(await g.onEpochEnd(w,b),e.stopTraining_)break}return await g.onTrainEnd(),await e.history.syncData(),e.history}async function uae(e,t,n,a={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,s,i,o,l,u,d;try{let p=a.batchSize==null?32:a.batchSize;gA(p);let c=!1,h=await e.standardizeUserData(t,n,a.sampleWeight,a.classWeight,c,p);r=h[0],s=h[1],d=h[2];let m=!1,f;if(a.validationData!=null&&a.validationData.length>0){if(m=!0,a.validationData.length===2)i=a.validationData[0],o=a.validationData[1];else throw a.validationData.length===3?new ze("validationData including sample weights is not supported yet."):new V(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${a.validationData} is invalid.`);let v=!0,S=await e.standardizeUserData(i,o,null,null,v,p);l=S[0],u=S[1],f=l.concat(u)}else if(a.validationSplit!=null&&a.validationSplit>0&&a.validationSplit<1){m=!0;let v=Math.floor(r[0].shape[0]*(1-a.validationSplit)),S=r[0].shape[0];l=jd(r,v,S),r=jd(r,0,v),u=jd(s,v,S),s=jd(s,0,v),f=l.concat(u)}else a.validationSteps!=null&&(m=!0);let y=r.concat(s).concat(d);e.checkTrainableWeightsConsistency();let A=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),x,w;m?(e.makeTestFunction(),x=e.testFunction,w=g.slice().concat(g.map(v=>"val_"+v))):(x=null,f=[],w=g.slice());let b=I4(a.callbacks,a.yieldEvery);return await lae(e,A,y,g,p,a.epochs,a.verbose,b,x,f,a.shuffle,w,a.initialEpoch,null,null)}finally{e.isTraining=!1,Bi(r,t),Bi(s,n),Bi(l,i),Bi(u,o),d!=null&&Ne(d)}}function B4(e){let t=[];e instanceof Le&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push(_d(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function Bi(e,t){if(e==null)return;let n=[];if(t instanceof Le)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Le)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function dae(e){return e instanceof Le}function vA(e){return Array.isArray(e)}function V4(e){return!dae(e)&&!vA(e)}function j4(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(vA(e)&&e.length>0)i=!0;else if(V4(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new V(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(V4(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new V(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(vA(e)){if(e=e,e.length!==t.length)throw new V(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new V(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=B4(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new V(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],d=n[i][l];if(d!=null&&d>=0&&u!==d)throw new V(`Error when checking ${r}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function pae(e,t,n){let a=Kr(e.map(s=>s.shape[0]));a.sort();let r=Kr(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new V(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new V(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!k.arraysEqual(a,r))throw new V(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function cae(e,t,n){let a=[Li,i0,Wd];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===Wd&&s.shape[s.shape.length-1]===1)throw new V(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let d=0;d<l.length;++d){let p=l[d],c=u[d];if(c!=null&&p!==c)throw new V(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function U4(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new V(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new V(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new V(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],d=n[i][l];if(d!=null&&d!==u)throw new V(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function hae(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var fae="layers-model",xr=class extends Ya{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new V("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");Hne(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=Une(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof mr))throw new V("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new V(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(dA(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new V(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>dA(s))}else{let s=dA(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],_i("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=hae(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};_i("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",u,d,p;for(let c of o){if(typeof c=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(c)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===i0?["accuracy","acc"].indexOf(c)!==-1?d=pA:["crossentropy","ce"].indexOf(c)!==-1&&(d=E4):this.lossFunctions[s]===s0?["accuracy","acc"].indexOf(c)!==-1?d=C4:["crossentropy","ce"].indexOf(c)!==-1&&(d=R4):["accuracy","acc"].indexOf(c)!==-1?d=cA:["crossentropy","ce"].indexOf(c)!==-1&&(d=hA);let f;["accuracy","acc"].indexOf(c)!==-1?f="acc":["crossentropy","ce"].indexOf(c)!==-1&&(f="ce"),p=d,u=l+f}else p=jne(c),u=l+u0(c);let h;_i(u,()=>{h=p}),r(s,u,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;gA(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return Cn(l)}finally{Bi(s[0],e),Bi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),oae(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new V(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new V(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new V("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new Wi;if(e instanceof Le&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new V(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new V(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=Vd(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=Di(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new V(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return B(()=>{let a=this.checkNumSamples(e);if(n)throw new ze("Verbose predictLoop() is not implemented yet.");let r=bA(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)B(()=>{let o=r[i][0],l=r[i][1],u=jd(e,o,l),d=[];if(Array.isArray(u))for(let c=0;c<u.length;++c)d.push({key:this.inputs[c],value:u[c]});else d.push({key:this.inputs[0],value:u});let p=new Wi(d);return Vd(this.outputs,p)}).forEach((o,l)=>s[l].push(o));return Cn(s.map(i=>lt(i,0)))})}predict(e,t={}){let n=B4(e);U4(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return gA(a),this.predictLoop(n,a)}finally{Bi(n,e)}}predictOnBatch(e){U4(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new Sa("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===s0?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=j4(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=j4(t,this.feedOutputNames,r,!1,"target"),pae(e,t,null),cae(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!=0)throw new V(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let u=O4(a,this.outputNames);l=[];for(let d=0;d<u.length;++d)l.push(await _4(o[d],null,u[d]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return B(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new ze("Verbose mode is not implemented yet.");if(r!=null)throw new ze("steps mode in testLoop() is not implemented yet");{let o=bA(s,n),l=Mt(Na(0,s));for(let u=0;u<o.length;++u){let d=o[u][0],p=o[u][1],c=Pi(l,d,p-d),h=xA(t,c),m=e(h);if(u===0)for(let f=0;f<m.length;++f)i.push(we(0));for(let f=0;f<m.length;++f){let y=m[f];i[f]=se(i[f],L(p-d,y))}}for(let u=0;u<i.length;++u)i[u]=fe(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;Z6(e,a)>1&&(r+=`_${Z6(e.slice(0,n),a)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let h=0;h<this.inputs.length;++h)u.push({key:this.inputs[h],value:n[h]});let d=new Wi(u),p=Vd(this.outputs,d,{training:!0}),c;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h](a[h],p[h]);r[h]!=null&&(m=tae(m,r[h]));let f=St(m);t.push(f),h===0?c=m:c=se(c,m)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],y=this.metricsTensors[h][1];m=St(f(a[y],p[y]))}Gt(m),s.push(m)}return c=St(c),this.calculateLosses().forEach(h=>{c=se(c,h)}),c},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>B(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new Wi(s),o=Vd(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],d=St(u(r[l],o[l]));l===0?n=d:n=se(n,d),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],d=this.metricsTensors[l][1],p=St(u(r[d],o[d]));t.push(p)}return t})}async fit(e,t,n={}){return uae(this,e,t,n)}async fitDataset(e,t){return rae(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Ne(s),Cn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Nc().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Nc().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=gr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>gr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=gr(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[gr(u0(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>gr(u0(e)));{let e={};for(let t in this.metrics)e[t]=gr(u0(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Bd(e.optimizer_config),n=Ca(t),a;if(typeof e.loss=="string")a=zi(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>zi(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=zi(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>zi(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=zi(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=In.getSaveHandlers(e);if(i.length===0)throw new V(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new V(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new V("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await In.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:fae,generatedBy:`TensorFlow.js tfjs-layers v${yA}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await In.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=In.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;F4(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){F4(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};xr.className="Model";ae.registerClass(xr);var H4=class extends xr{};H4.className="Functional";ae.registerClass(H4);async function mae(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=Bd(n),r=Ca(a,t);if(e.weightsManifest!=null){let s=await In.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),Ne(s)}return r}async function yae(e,t){if(t==null&&(t={}),typeof e=="string"){let n=In.getLoadHandlers(e,t);if(n.length===0)n.push(In.browserHTTPRequest(e,t));else if(n.length>1)throw new V(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return Aae(e,void 0,t)}async function Aae(e,t,n){if(n==null&&(n={}),e.load==null)throw new V("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=Ca(Bd(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new V("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:d}=gae(a.weightData,a.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&d.length>0&&await o.optimizer.setWeights(d),Ne(u),Ne(d.map(p=>p.tensor))}return o}function gae(e,t){let n=In.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var Jl=class extends xr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Qh("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new V(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Jl||e instanceof xr,n;if(t){if(n=e,n.outputs.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new V("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new V("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=g4({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new V(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=A4(this.outputs[0])}this.inboundNodes=[],new n0({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Di(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(st(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new xr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Sa("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Sa("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Sa("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Sa("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new V("Legacy serialization format not supported yet.");r=t}else k.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Jl))throw new ze(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=Ca(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new V("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new V("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Jl.className="Sequential";ae.registerClass(Jl);function xae(e){return new xr(e)}function bae(e){return new Jl(e)}function vae(e,t){return t==null&&(t={}),yae(e,t)}function G4(e){return g4(e)}function wae(e,t){ya.registerCallbackConstructor(e,t)}var Mn=class extends ae.Serializable{getConfig(){return{}}},q4=class extends Mn{apply(e,t=1){return Xte(e,t)}};q4.className="elu";ae.registerClass(q4);var X4=class extends Mn{apply(e){return Gc(e)}};X4.className="selu";ae.registerClass(X4);var K4=class extends Mn{apply(e){return Ua(e)}};K4.className="relu";ae.registerClass(K4);var Z4=class extends Mn{apply(e){return B(()=>Nl(6,Ua(e)))}};Z4.className="relu6";ae.registerClass(Z4);var Y4=class extends Mn{apply(e){return e}};Y4.className="linear";ae.registerClass(Y4);var J4=class extends Mn{apply(e){return Sn(e)}};J4.className="sigmoid";ae.registerClass(J4);var Q4=class extends Mn{apply(e){return Zte(e)}};Q4.className="hardSigmoid";ae.registerClass(Q4);var e8=class extends Mn{apply(e){return vi(e)}};e8.className="softplus";ae.registerClass(e8);var t8=class extends Mn{apply(e){return Kte(e)}};t8.className="softsign";ae.registerClass(t8);var n8=class extends Mn{apply(e){return gi(e)}};n8.className="tanh";ae.registerClass(n8);var wA=class extends Mn{apply(e,t=-1){return pd(e,t)}};wA.className="softmax";ae.registerClass(wA);var a8=class extends Mn{apply(e,t=-1){return Lc(e,t)}};a8.className="logSoftmax";ae.registerClass(a8);var r8=class extends Mn{apply(e,t=1){return B(()=>Sn(e.mul(t)).mul(e))}};r8.className="swish";ae.registerClass(r8);var s8=class extends Mn{apply(e){return B(()=>L(e,gi(vi(e))))}};s8.className="mish";ae.registerClass(s8);function Qr(e){return e.getClassName()}function kA(e,t={}){return $d(e,ae.SerializationMap.getMap().classNameMap,t,"activation")}function es(e){if(e==null){let t={};return t.className="linear",t.config={},kA(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},kA(t)}else return e instanceof Mn?e:kA(e)}function IA(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var i8=class extends ae.Serializable{},Ud=class extends i8{constructor(e){super();IA(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return B(()=>{let t=$t([1]);return this.hasL1&&(t=se(t,Ie(L(this.l1,Lt(e))))),this.hasL2&&(t=se(t,Ie(L(this.l2,Pd(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Ud.className="L1L2";ae.registerClass(Ud);function kae(e){return IA(e),new Ud({l1:e!=null?e.l1:null,l2:0})}function Iae(e){return IA(e),new Ud({l2:e!=null?e.l2:null,l1:0})}var o8={l1l2:"L1L2"};function dt(e){return B1(e)}function l8(e,t={}){return $d(e,ae.SerializationMap.getMap().classNameMap,t,"regularizer")}function At(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in o8?o8[e]:e,config:{}};return l8(t)}else return e instanceof i8?e:l8(e)}var SA=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=_e(e);let n=Ua(e);return this.maxValue!=null&&(n=Nn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};SA.className="ReLU";ae.registerClass(SA);var NA=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=_e(e);return rd(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};NA.className="LeakyReLU";ae.registerClass(NA);var TA=class extends qe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=yt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=At(e.alphaRegularizer),this.alphaConstraint=jt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new V(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=st(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new zt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=_e(e),ld(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Nt(this.alphaInitializer),alphaRegularizer:dt(this.alphaRegularizer),alphaConstraint:Vt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};TA.className="PReLU";ae.registerClass(TA);var EA=class extends qe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new ze(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=_e(e);return wl(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};EA.className="ELU";ae.registerClass(EA);var CA=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=_e(e);return n.mul(Od(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};CA.className="ThresholdedReLU";ae.registerClass(CA);var RA=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new wA().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=_e(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};RA.className="Softmax";ae.registerClass(RA);function Ql(e,t,n){if(typeof e=="number")return Di(e,t);if(e.length!==t)throw new V(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!Ute(r))throw new V(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Ra(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function Ja(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+Yr([n-t,0]);else if(a==="same")e=e*t;else throw new V(`Unsupport padding mode: ${a}.`);return e}function MA(e,t){return B(()=>(Ft(t),t==="channelsFirst"?Ye(e,[0,2,3,1]):e))}function u8(e,t){return B(()=>(Ft(t),t==="channelsFirst"?Ye(e,[0,2,3,4,1]):e))}function Sae(e,t,n,a=1,r="valid",s,i=1){return B(()=>{if(s==null&&(s=Ia()),Ft(s),e.shape.length!==3)throw new V(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new V(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new V(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Ye(e,[0,2,1])),r==="causal")throw new ze("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Mc(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=Ta(o,n)),o})}function d8(e,t,n,a=[1,1],r="valid",s,i,o=null){return B(()=>{if(s==null&&(s=Ia()),Ft(s),e.rank!==3&&e.rank!==4)throw new V(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new V(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=MA(e,s);if(r==="causal")throw new ze("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Ur.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Ye(l,[0,3,1,2])),l})}function Nae(e,t,n,a=[1,1,1],r="valid",s,i){return B(()=>{if(s==null&&(s=Ia()),Ft(s),e.rank!==4&&e.rank!==5)throw new V(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new V(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=u8(e,s);if(r==="causal")throw new ze("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=wy(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Ta(o,n)),s==="channelsFirst"&&(o=Ye(o,[0,4,1,2,3])),o})}var FA=class extends qe{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",FA.verifyArgs(t),this.rank=e,Kt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new ze(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Ql(t.kernelSize,e,"kernelSize"),this.strides=Ql(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,ra(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ft(this.dataFormat),this.activation=es(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=yt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=jt(t.biasConstraint),this.biasRegularizer=At(t.biasRegularizer),this.activityRegularizer=At(t.activityRegularizer),this.dilationRate=Ql(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new V(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new V(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new V(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Ka("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!j1(e.kernelSize,"number",1,3))throw new V(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Qr(this.activation),useBias:this.useBias,biasInitializer:Nt(this.biasInitializer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),biasConstraint:Vt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Hd=class extends FA{constructor(e,t){super(e,t);this.kernel=null,Hd.verifyArgs(t),this.filters=t.filters,Kt(this.filters,"filters"),this.kernelInitializer=yt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=jt(t.kernelConstraint),this.kernelRegularizer=At(t.kernelRegularizer)}build(e){e=st(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return B(()=>{e=_e(e);let n,a=this.bias==null?null:this.bias.read(),r=J6(this.activation.getClassName());if(r!=null&&this.rank===2)n=d8(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=Sae(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=d8(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=Nae(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new ze("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=st(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=Ra(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:Nt(this.kernelInitializer),kernelRegularizer:dt(this.kernelRegularizer),kernelConstraint:Vt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new V(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Gd=class extends Hd{constructor(e){super(2,e);Gd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!j1(e.kernelSize,"number",1,2))throw new V(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Gd.className="Conv2D";ae.registerClass(Gd);var qd=class extends Hd{constructor(e){super(3,e);qd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new V(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};qd.className="Conv3D";ae.registerClass(qd);var $A=class extends Gd{constructor(e){super(e);if(this.inputSpec=[new zt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new V(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=st(e),e.length!==4)throw new V("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new zt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return B(()=>{let n=_e(e);if(n.shape.length!==4)throw new V(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],u=this.kernelSize[0],d=this.kernelSize[1],p=this.strides[0],c=this.strides[1],h=Ja(o,p,u,this.padding),m=Ja(l,c,d,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Ye(n,[0,2,3,1]));let y=Fc(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(y=Ye(y,[0,3,1,2])),this.bias!=null&&(y=Ta(y,this.bias.read(),this.dataFormat)),this.activation!=null&&(y=this.activation.apply(y)),y})}computeOutputShape(e){e=st(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=Ja(t[a],o,s,this.padding),t[r]=Ja(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};$A.className="Conv2DTranspose";ae.registerClass($A);var DA=class extends qd{constructor(e){super(e);if(this.inputSpec=[new zt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new V(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=st(e),e.length!==5)throw new V("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new zt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return B(()=>{let n=_e(e);if(n.shape.length!==5)throw new V(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=a[o],u=a[s],d=a[i],p=this.kernelSize[0],c=this.kernelSize[1],h=this.kernelSize[2],m=this.strides[0],f=this.strides[1],y=this.strides[2],A=Ja(l,m,p,this.padding),g=Ja(u,f,c,this.padding),x=Ja(d,y,h,this.padding),w=[r,A,g,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Ye(n,[0,2,3,4,1]));let b=o3(n,this.kernel.read(),w,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(b=Ye(b,[0,4,1,2,3])),this.bias!==null&&(b=Ta(b,this.bias.read(),this.dataFormat)),this.activation!==null&&(b=this.activation.apply(b)),b})}computeOutputShape(e){e=st(e);let t=e.slice(),n,a,r,s;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3,s=4):(n=4,a=1,r=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],d=this.strides[1],p=this.strides[2];return t[n]=this.filters,t[a]=Ja(t[a],u,i,this.padding),t[r]=Ja(t[r],d,o,this.padding),t[s]=Ja(t[s],p,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};DA.className="Conv3DTranspose";ae.registerClass(DA);var p8=class extends Hd{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new V("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new V("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new V(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=yt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=At(t.depthwiseRegularizer),this.depthwiseConstraint=jt(t.depthwiseConstraint),this.pointwiseInitializer=yt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=At(t.pointwiseRegularizer),this.pointwiseConstraint=jt(t.pointwiseConstraint)}build(e){if(e=st(e),e.length<this.rank+2)throw new V(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new V(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new zt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return B(()=>{e=_e(e);let n;if(this.rank===1)throw new ze("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ye(e,[0,2,3,1])),n=Wy(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Ta(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ye(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Nt(this.depthwiseInitializer),e.pointwiseInitializer=Nt(this.pointwiseInitializer),e.depthwiseRegularizer=dt(this.depthwiseRegularizer),e.pointwiseRegularizer=dt(this.pointwiseRegularizer),e.depthwiseConstraint=Vt(this.depthwiseConstraint),e.pointwiseConstraint=Vt(this.pointwiseConstraint),e}};p8.className="SeparableConv";var zA=class extends p8{constructor(e){super(2,e)}};zA.className="SeparableConv2D";ae.registerClass(zA);var p0=class extends Hd{constructor(e){super(1,e);p0.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!j1(e.kernelSize,"number",1,1))throw new V(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};p0.className="Conv1D";ae.registerClass(p0);var OA=class extends qe{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return B(()=>{if(e=_e(e),this.dataFormat==="channelsLast"){let n=jh(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return jh(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=jh(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return jh(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};OA.className="Cropping2D";ae.registerClass(OA);var _A=class extends qe{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,Bte(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return B(()=>{let n=_e(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=Ye(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s]);return Ye(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};_A.className="UpSampling2D";ae.registerClass(_A);function Tae(e,t,n=[1,1],a="valid",r,s){return B(()=>{r==null&&(r=Ia()),Ft(r);let i=MA(e,r);if(e.rank!==4)throw new V(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new V(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=vl(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=Ye(i,[0,3,1,2])),i})}var PA=class extends FA{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=yt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=jt(e.depthwiseConstraint),this.depthwiseRegularizer=At(e.depthwiseRegularizer)}build(e){if(e=st(e),e.length<4)throw new V(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new V(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return B(()=>{e=_e(e);let n=Tae(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Ta(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Ra(t,this.kernelSize[0],this.padding,this.strides[0]),s=Ra(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Nt(this.depthwiseInitializer),e.depthwiseRegularizer=dt(this.depthwiseRegularizer),e.depthwiseConstraint=Vt(this.depthwiseRegularizer),e}};PA.className="DepthwiseConv2D";ae.registerClass(PA);function c8(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new V("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function h8(e,t,n,a=!1,r,s,i=!1,o=!1){return B(()=>{let l=t.shape.length;if(l<3)throw new V(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Na(2,l));if(t=Ye(t,u),s!=null)throw new ze("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=r.asType("bool").asType("float32"),r.rank===l-1&&(r=dn(r,-1)),r=Ye(r,u)),a&&(t=Wn(t,0),r!=null&&(r=Wn(r,0)));let d=[],p,c=n,h=t.shape[0],m=ha(t),f;r!=null&&(f=ha(r));for(let A=0;A<h;++A){let g=m[A],x=B(()=>e(g,c));if(r==null)p=x[0],c=x[1];else{let w=B(()=>{let b=f[A],v=Ln(b).sub(b),S=x[0].mul(b).add(c[0].mul(v)),T=c.map((C,$)=>x[1][$].mul(b).add(C.mul(v)));return{output:S,newStates:T}});p=w.output,c=w.newStates}o&&d.push(p)}let y;return o&&(y=pn(d,1)),[p,y,c]})}var Qa=class extends qe{constructor(e){super(e);let t;if(e.cell==null)throw new V("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new f0({cells:e.cell}):t=e.cell,t.stateSize==null)throw new V("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new zt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Na(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){iA(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return B(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new ze("Constants support is not implemented in RNN yet.");iA(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,a=e.slice(2);this.inputSpec[0]=new zt({shape:[n,null,...a]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new ze("Constants support is not implemented in RNN yet.");this.cell.build(r);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!k.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new V(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new zt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){B(()=>{if(!this.stateful)throw new Ar("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>$t([n,a])):this.states_=[$t([n,this.cell.stateSize])];else if(e==null)Ne(this.states_),this.keptStates!=null&&(Ne(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>$t([n,a])):this.states_[0]=$t([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Ne(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!k.arraysEqual(r.shape,i))throw new V(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>Gt(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=c8(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new zt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof Ea){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let d=super.apply(o,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return B(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=_e(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new V(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=h8((c,h)=>{let m=this.cell.call([c].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],d=o[2];this.stateful&&this.resetStates(d,a);let p=this.returnSequences?u:l;return this.returnState?[p].concat(d):p})}getInitialState(e){return B(()=>{let t=$t(e.shape);return t=Ie(t,[1,2]),t=_d(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Y1(t,[1,n]):t):this.cell.stateSize>1?[Y1(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Qa.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let a=t.cell,r=Ca(a,n);return new e(Object.assign(t,{cell:r}))}};Qa.className="RNN";ae.registerClass(Qa);var Xd=class extends qe{},c0=class extends Xd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Kt(this.units,"units"),this.activation=es(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=yt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=yt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=yt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=At(e.kernelRegularizer),this.recurrentRegularizer=At(e.recurrentRegularizer),this.biasRegularizer=At(e.biasRegularizer),this.kernelConstraint=jt(e.kernelConstraint),this.recurrentConstraint=jt(e.recurrentConstraint),this.biasConstraint=jt(e.biasConstraint),this.dropout=Xl([1,Yr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Xl([1,Yr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=st(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return B(()=>{if(e=e,e.length!==2)throw new V(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ts({ones:()=>Ln(e),rate:this.dropout,training:a})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ts({ones:()=>Ln(n),rate:this.recurrentDropout,training:a}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=Za(L(e,s),this.kernel.read()):r=Za(e,this.kernel.read()),this.bias!=null&&(r=Ta(r,this.bias.read())),i!=null&&(n=L(n,i));let o=se(r,Za(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Qr(this.activation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),recurrentInitializer:Nt(this.recurrentInitializer),biasInitializer:Nt(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Vt(this.kernelConstraint),recurrentConstraint:Vt(this.recurrentConstraint),biasConstraint:Vt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};c0.className="SimpleRNNCell";ae.registerClass(c0);var LA=class extends Qa{constructor(e){e.cell=new c0(e),super(e)}call(e,t){return B(()=>{this.cell.dropoutMask!=null&&(Ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};LA.className="SimpleRNN";ae.registerClass(LA);var h0=class extends Xd{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new V("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Kt(this.units,"units"),this.activation=es(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=es(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=yt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=yt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=yt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=At(e.kernelRegularizer),this.recurrentRegularizer=At(e.recurrentRegularizer),this.biasRegularizer=At(e.biasRegularizer),this.kernelConstraint=jt(e.kernelConstraint),this.recurrentConstraint=jt(e.recurrentConstraint),this.biasConstraint=jt(e.biasConstraint),this.dropout=Xl([1,Yr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Xl([1,Yr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=st(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return B(()=>{if(e=e,e.length!==2)throw new V(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ts({ones:()=>Ln(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ts({ones:()=>Ln(a),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=L(e,r[0]));let u=Za(e,this.kernel.read());this.useBias&&(u=Ta(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=L(a,s[0]));let d=this.recurrentKernel.read(),[p,c]=qt(d,[2*this.units,this.units],d.rank-1),h=Za(a,p),[m,f,y]=qt(u,3,u.rank-1),[A,g]=qt(h,2,h.rank-1);i=this.recurrentActivation.apply(se(m,A)),o=this.recurrentActivation.apply(se(f,g));let x=Za(L(o,a),c);l=this.activation.apply(se(y,x));let w=se(L(i,a),L(se(1,It(i)),l));return[w,w]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Qr(this.activation),recurrentActivation:Qr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),recurrentInitializer:Nt(this.recurrentInitializer),biasInitializer:Nt(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Vt(this.kernelConstraint),recurrentConstraint:Vt(this.recurrentConstraint),biasConstraint:Vt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};h0.className="GRUCell";ae.registerClass(h0);var WA=class extends Qa{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new h0(e),super(e)}call(e,t){return B(()=>{this.cell.dropoutMask!=null&&(Ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};WA.className="GRU";ae.registerClass(WA);var Kd=class extends Xd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Kt(this.units,"units"),this.activation=es(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=es(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=yt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=yt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=yt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=At(e.kernelRegularizer),this.recurrentRegularizer=At(e.recurrentRegularizer),this.biasRegularizer=At(e.biasRegularizer),this.kernelConstraint=jt(e.kernelConstraint),this.recurrentConstraint=jt(e.recurrentConstraint),this.biasConstraint=jt(e.biasConstraint),this.dropout=Xl([1,Yr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Xl([1,Yr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=st(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends ma{apply(i,o){let l=r.apply([s]),u=new Hh().apply([s]),d=r.apply([s*2]);return l4(l4(l,u),d)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return B(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new V(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ts({ones:()=>Ln(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ts({ones:()=>Ln(a),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,d;0<this.dropout&&this.dropout<1&&(e=L(e,s[0]));let p=Za(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=L(a,i[0])),p=se(p,Za(a,this.recurrentKernel.read())),this.useBias&&(p=Ta(p,this.bias.read()));let[c,h,m,f]=qt(p,4,p.rank-1);o=this.recurrentActivation.apply(c),l=this.recurrentActivation.apply(h),u=se(L(l,r),L(o,this.activation.apply(m))),d=this.recurrentActivation.apply(f);let y=L(d,this.activation.apply(u));return[y,y,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Qr(this.activation),recurrentActivation:Qr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),recurrentInitializer:Nt(this.recurrentInitializer),biasInitializer:Nt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Vt(this.kernelConstraint),recurrentConstraint:Vt(this.recurrentConstraint),biasConstraint:Vt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Kd.className="LSTMCell";ae.registerClass(Kd);var BA=class extends Qa{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Kd(e),super(e)}call(e,t){return B(()=>{this.cell.dropoutMask!=null&&(Ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};BA.className="LSTM";ae.registerClass(BA);var f0=class extends Xd{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return B(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){iA(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{_i(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(Ca(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return oA(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}lA(t)}};f0.className="StackedRNNCells";ae.registerClass(f0);function ts(e){let{ones:t,rate:n,training:a=!1,count:r=1}=e,s=()=>d4(t(),n),i=()=>Ld(s,t,a);return!r||r<=1?Gt(i().clone()):Array(r).fill(void 0).map(i).map(o=>Gt(o.clone()))}var Eae=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},f8=class extends Qa{constructor(e){if(e.unroll)throw new ze("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new ze("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new zt({ndim:5})]}call(e,t){return B(()=>{if(this.cell.dropoutMask!=null&&(Ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new V("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return B(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=$t(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){B(()=>{if(!this.stateful)throw new Ar("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>$t(r)):this.states_=[$t(r)];else if(e==null)Ne(this.states_),this.keptStates!=null&&(Ne(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>$t(r)):this.states_[0]=$t(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Ne(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!k.arraysEqual(i.shape,o))throw new V(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Gt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],d=Ra(l,a[0],r,s[0],i[0]),p=Ra(u,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,d,p]:[d,p,n]]}};f8.className="ConvRNN2D";var m0=class extends Kd{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Kt(this.filters,"filters"),this.kernelSize=Ql(n,2,"kernelSize"),this.kernelSize.forEach(o=>Kt(o,"kernelSize")),this.strides=Ql(a||1,2,"strides"),this.strides.forEach(o=>Kt(o,"strides")),this.padding=r||"valid",ra(this.padding),this.dataFormat=s||"channelsLast",Ft(this.dataFormat),this.dilationRate=Ql(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Kt(o,"dilationRate"))}build(e){var t;e=st(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends ma{apply(d,p){let c=l.apply([u]),h=Pn([u]),m=l.apply([u*2]);return Z1([c,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return B(()=>{if(e.length!==3)throw new V(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ts({ones:()=>Ln(a),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Y,re,ne)=>!re||!re[ne]?Y:L(re[ne],Y),u=l(a,o,0),d=l(a,o,1),p=l(a,o,2),c=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ts({ones:()=>Ln(r),rate:this.recurrentDropout,training:n,count:i}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),y=l(r,h,2),A=l(r,h,3),g=3,[x,w,b,v]=qt(this.kernel.read(),i,g),[S,T,C,$]=this.useBias?qt(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,x,S,this.padding),d=this.inputConv(d,w,T,this.padding),p=this.inputConv(p,b,C,this.padding),c=this.inputConv(c,v,$,this.padding);let[O,P,j,D]=qt(this.recurrentKernel.read(),i,g);m=this.recurrentConv(m,O),f=this.recurrentConv(f,P),y=this.recurrentConv(y,j),A=this.recurrentConv(A,D);let U=this.recurrentActivation.apply(se(u,m)),X=this.recurrentActivation.apply(se(d,f)),G=se(L(X,s),L(U,this.activation.apply(se(p,y)))),ee=L(this.recurrentActivation.apply(se(c,A)),this.activation.apply(G));return[ee,ee,G]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=Eae(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,a)}inputConv(e,t,n,a){let r=pr(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Ta(r,n,this.dataFormat):r}recurrentConv(e,t){return pr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};m0.className="ConvLSTM2DCell";ae.registerClass(m0);var VA=class extends f8{constructor(e){let t=new m0(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};VA.className="ConvLSTM2D";ae.registerClass(VA);var y0=class extends qe{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=_e(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Ld(()=>d4(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};y0.className="Dropout";ae.registerClass(y0);var jA=class extends y0{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};jA.className="SpatialDropout1D";ae.registerClass(jA);var UA=class extends qe{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Kt(this.units,"units"),this.activation=es(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=yt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=yt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=jt(e.kernelConstraint),this.biasConstraint=jt(e.biasConstraint),this.kernelRegularizer=At(e.kernelRegularizer),this.biasRegularizer=At(e.biasRegularizer),this.activityRegularizer=At(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=st(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=st(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=_e(e),a=J6(this.activation.getClassName()),r;return a!=null?r=Za(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=Za(n,this.kernel.read()),this.bias!=null&&(r=Ta(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:Qr(this.activation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),biasInitializer:Nt(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Vt(this.kernelConstraint),biasConstraint:Vt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};UA.className="Dense";ae.registerClass(UA);var HA=class extends qe{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=st(e);for(let t of e.slice(1))if(t==null)throw new V(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Zr(e,1)]}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=_e(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=n.transpose(a)}return qte(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};HA.className="Flatten";ae.registerClass(HA);var GA=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.activation=es(e.activation)}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=_e(e);return this.activation.apply(n)})}getConfig(){let e={activation:Qr(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};GA.className="Activation";ae.registerClass(GA);var qA=class extends qe{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return B(()=>(e=_e(e),Hte(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};qA.className="RepeatVector";ae.registerClass(qA);var XA=class extends qe{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new V("Can only specifiy one unknown dimension.");else r*=l}let i=Zr(e);if(s!==null){if(r===0||i%r!=0)throw new V(n);a[s]=i/r}else if(i!==r)throw new V(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=_e(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return n.reshape(r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};XA.className="Reshape";ae.registerClass(XA);var KA=class extends qe{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Na(1,e.dims.length+1);if(!k.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new zt({ndim:this.dims.length+1})]}computeOutputShape(e){e=st(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return Ye(_e(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};KA.className="Permute";ae.registerClass(KA);var ZA=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=_e(e),a=-1;return Qu(ki(n,this.maskValue),a)}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=_e(e),a=-1,r=!0,s=Qu(ki(n,this.maskValue),a,r);return n.mul(s.asType(n.dtype))})}};ZA.className="Masking";ae.registerClass(ZA);var YA=class extends qe{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(ft(e.inputLength))}this.inputDim=e.inputDim,Kt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Kt(this.outputDim,"outputDim"),this.embeddingsInitializer=yt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=At(e.embeddingsRegularizer),this.activityRegularizer=At(e.activityRegularizer),this.embeddingsConstraint=jt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return B(()=>this.maskZero?(e=_e(e),ki(e,He(e))):null)}computeOutputShape(e){if(e=st(e),this.inputLength==null)return[...e,this.outputDim];let t=ft(this.inputLength);if(t.length!==e.length-1)throw new V(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new V(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=_e(e);return n.dtype!=="int32"&&(n=Od(n,"int32")),u4(this.embeddings.read(),n.as1D()).reshape(st(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Nt(this.embeddingsInitializer),embeddingsRegularizer:dt(this.embeddingsRegularizer),activityRegularizer:dt(this.activityRegularizer),embeddingsConstraint:Vt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};YA.className="Embedding";ae.registerClass(YA);var Vi=class extends qe{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new ze}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new V("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[st(e)]),e=e,e.length<2)throw new V(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=Kr(t),t.length>1)throw new V(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&Kr(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return B(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=Yr(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=_d(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,d=u[0],p=u.slice(1).concat([d]),c=o.reshape([d].concat(Zr(u.slice(1))));c=Ye(c,[1,0]),c=c.reshape(p),n.push(c),r=!0}else if(l>1){let u=Na(1,l).concat([0]);n.push(Ye(o,u)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,u=o[l-1],d=[u].concat(o.slice(0,o.length-1));s=Ye(s.reshape([-1,u]),[1,0]).reshape(d)}else if(i>1){let o=[i-1].concat(Na(0,i-1));s=Ye(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=Kr(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return B(()=>{if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an Array");if(!Array.isArray(e))throw new V("`inputs` should be an Array");if(t.length!==e.length)throw new V(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:dn(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=ca(n,t[a]);return n})}},JA=class extends Vi{constructor(e){super(e)}mergeFunction(e){return B(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=se(t,e[n]);return t})}};JA.className="Add";ae.registerClass(JA);var QA=class extends Vi{constructor(e){super(e)}mergeFunction(e){return B(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=L(t,e[n]);return t})}};QA.className="Multiply";ae.registerClass(QA);var e2=class extends Vi{constructor(e){super(e)}mergeFunction(e){return B(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=se(t,e[n]);return L(1/e.length,t)})}};e2.className="Average";ae.registerClass(e2);var t2=class extends Vi{constructor(e){super(e)}mergeFunction(e){return B(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=ja(t,e[n]);return t})}};t2.className="Maximum";ae.registerClass(t2);var n2=class extends Vi{constructor(e){super(e)}mergeFunction(e){return B(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Nl(t,e[n]);return t})}};n2.className="Minimum";ae.registerClass(n2);var a2=class extends Vi{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new V("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(k.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new V("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return B(()=>Z1(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new V("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new V("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new V(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return B(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(Ln(e[s]).asType("bool")):t[s].rank<e[s].rank?a.push(dn(t[s],-1)):a.push(t[s]);let r=lt(a,this.axis);return Cc(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};a2.className="Concatenate";ae.registerClass(a2);function Zd(e,t){for(;e<0;)e+=t;return e}function Cae(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new ze("batchDot is not implemented for tensors of 4D or higher rank yet");if(k.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),k.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new ze("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return B(()=>{let i;if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);t=t.reshape(t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);e=e.reshape(e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=e.mul(t).sum(s[0]):o=e.transpose([1,0]).mul(t).sum(s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=e.matMul(t,l,u)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let u=[];for(let d=l;d<l+i;++d)u.push(d);o=o.squeeze(u)}return o.shape.length===1&&(o=o.expandDims(1)),o})}var r2=class extends Vi{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new ze("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new V(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new V(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>Zd(r,e[s].shape.length)):a=[Zd(this.axes,t.shape.length),Zd(this.axes,n.shape.length)],this.normalize&&(t=a0(t,a[0]),n=a0(n,a[1])),Cae(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Zd(this.axes,e.length),Zd(this.axes,t.length)],n}computeOutputShape(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new ze("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};r2.className="Dot";ae.registerClass(r2);var s2=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=_e(e);return Ld(()=>Uh(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};s2.className="GaussianNoise";ae.registerClass(s2);var i2=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=_e(e);return this.rate>0&&this.rate<1?Ld(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return n.mul(Uh(n.shape,1,a))},()=>n,t.training||!1):n})}};i2.className="GaussianDropout";ae.registerClass(i2);var o2=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||_e(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return B(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Ld(()=>{let a=_e(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=Vr(Tl(n),this.rate);o=Od(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate;return a.mul(o).add(o.add(-1).mul(i)).mul(l).add(u)},()=>_e(e),t.training||!1)}return e})}};o2.className="AlphaDropout";ae.registerClass(o2);function Yd(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=e3(e,t,n,a,r,s);else if(e.rank===3)i=t3(e,t,n,a,r,s);else if(e.rank===4)i=n3(e,t,n,a,r,s);else throw new ze(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function Rae(e,t,n,a,r=.001){return B(()=>{let s=Bc(e,a),i=s.mean,o=s.variance;return[Yd(e,i,o,n,t,r),i,o]})}function Mae(e,t,n,a,r=.001){return B(()=>{let s=Bc(e,a),i=s.mean,o=s.variance,l=[];for(let h of Na(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let u=i.reshape(l),d=o.reshape(l),p=t==null?null:t.reshape(l),c=n==null?null:n.reshape(l);return[Yd(e,u,d,c,p,r),i,o]})}function Fae(e,t,n,a,r=.001){return k.arraysEqual(a.slice().sort(),Na(0,e.rank-1))?Rae(e,t,n,a,r):Mae(e,t,n,a,r)}var l2=class extends qe{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=yt(e.betaInitializer||"zeros"),this.gammaInitializer=yt(e.gammaInitializer||"ones"),this.movingMeanInitializer=yt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=yt(e.movingVarianceInitializer||"ones"),this.betaConstraint=jt(e.betaConstraint),this.gammaConstraint=jt(e.gammaConstraint),this.betaRegularizer=At(e.betaRegularizer),this.gammaRegularizer=At(e.gammaRegularizer)}build(e){e=st(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new V(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new zt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return B(()=>{let n=t.training==null?!1:t.training,a=_e(e),r=a.shape,s=r.length,i=Na(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=Di(1,s);l[o]=r[o];let u=i.slice();u.sort();let d=!k.arraysEqual(u,Na(0,s).slice(0,s-1)),p=()=>{if(d){let y=this.movingMean.read().reshape(l),A=this.movingVariance.read().reshape(l),g=this.center?this.beta.read().reshape(l):null,x=this.scale?this.gamma.read().reshape(l):null;return Yd(a,y,A,g,x,this.epsilon)}else return Yd(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[c,h,m]=Fae(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(y,A,g)=>{B(()=>{let x=1-g,w=y.read(),b=w.sub(A).mul(x);y.write(w.sub(b))})};return(()=>{f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum)})(),c})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Nt(this.betaInitializer),gammaInitializer:Nt(this.gammaInitializer),movingMeanInitializer:Nt(this.movingMeanInitializer),movingVarianceInitializer:Nt(this.movingVarianceInitializer),betaRegularizer:dt(this.betaRegularizer),gammaRegularizer:dt(this.gammaRegularizer),betaConstraint:Vt(this.betaConstraint),gammaConstraint:Vt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};l2.className="BatchNormalization";ae.registerClass(l2);var u2=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=yt(e.betaInitializer||"zeros"),this.gammaInitializer=yt(e.gammaInitializer||"ones"),this.betaRegularizer=At(e.betaRegularizer),this.gammaRegularizer=At(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=st(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==Kr(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=_e(e),a=n.shape,r=a.length;return B(()=>{let s=!0,{mean:i,variance:o}=Bc(n,this.axis,s),l=Di(1,r);for(let m of this.axis)l[m]=a[m];let u=m=>m!=null&&m.shape.length!==r&&this.axis!==[r-1]?m.reshape(l):m,d=u(this.gamma.read()),p=u(this.beta.read()),c=[],h=[];for(let m=0;m<r;++m)this.axis.indexOf(m)!==-1?(c.push(a[m]),h.push(1)):(c.push(1),h.push(a[m]));return i=i.tile(c),o=o.tile(c),d=d.tile(h),p=p.tile(h),Yd(n,i,o,p,d,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Nt(this.betaInitializer),gammaInitializer:Nt(this.gammaInitializer),betaRegularizer:dt(this.betaRegularizer),gammaRegularizer:dt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};u2.className="LayerNormalization";ae.registerClass(u2);function $ae(e,t,n){return B(()=>{if(e.rank!==4)throw new V(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new V("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Ia()),n!=="channelsLast"&&n!=="channelsFirst")throw new V(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],cr(e,a)})}var d2=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Ia():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new V(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new V(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new V(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){e=st(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return B(()=>$ae(_e(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};d2.className="ZeroPadding2D";ae.registerClass(d2);function A0(e,t,n,a,r,s){return B(()=>{Ft(r),n4(s),ra(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=Ia()),s==null&&(s="max"),e=MA(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=id(e,t,n,o):i=td(e,t,n,o),r==="channelsFirst"&&(i=Ye(i,[0,3,1,2])),i})}function m8(e,t,n,a,r,s){return B(()=>{Ft(r),n4(s),ra(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=Ia()),s==null&&(s="max"),e=u8(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Dy(e,t,n,o):i=gy(e,t,n,o),r==="channelsFirst"&&(i=Ye(i,[0,4,1,2,3])),i})}var y8=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new V(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Kt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new V(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Kt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,ra(this.padding),this.inputSpec=[new zt({ndim:3})]}computeOutputShape(e){e=st(e);let t=Ra(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return B(()=>{this.invokeCallHook(e,t),e=_d(_e(e),2);let n=this.poolingFunction(_e(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Ha(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},p2=class extends y8{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ft(r),ra(a),A0(e,t,n,a,r,"max")}};p2.className="MaxPooling1D";ae.registerClass(p2);var c2=class extends y8{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ft(r),ra(a),A0(e,t,n,a,r,"avg")}};c2.className="AveragePooling1D";ae.registerClass(c2);var A8=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new V(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Kt(this.poolSize,"poolSize"),Kt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),ra(this.padding),this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Ra(t,this.poolSize[0],this.padding,this.strides[0]),n=Ra(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return B(()=>(this.invokeCallHook(e,t),this.poolingFunction(_e(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},h2=class extends A8{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ft(r),ra(a),A0(e,t,n,a,r,"max")}};h2.className="MaxPooling2D";ae.registerClass(h2);var f2=class extends A8{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ft(r),ra(a),A0(e,t,n,a,r,"avg")}};f2.className="AveragePooling2D";ae.registerClass(f2);var g8=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new V(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Kt(this.poolSize,"poolSize"),Kt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),ra(this.padding),this.inputSpec=[new zt({ndim:5})]}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Ra(t,this.poolSize[0],this.padding,this.strides[0]),n=Ra(n,this.poolSize[1],this.padding,this.strides[1]),a=Ra(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return B(()=>(this.invokeCallHook(e,t),this.poolingFunction(_e(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},m2=class extends g8{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ft(r),ra(a),m8(e,t,n,a,r,"max")}};m2.className="MaxPooling3D";ae.registerClass(m2);var y2=class extends g8{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ft(r),ra(a),m8(e,t,n,a,r,"avg")}};y2.className="AveragePooling3D";ae.registerClass(y2);var x8=class extends qe{constructor(e){super(e);this.inputSpec=[new zt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new ze}},A2=class extends x8{constructor(e){super(e||{})}call(e,t){return B(()=>{let n=_e(e);return St(n,1)})}};A2.className="GlobalAveragePooling1D";ae.registerClass(A2);var g2=class extends x8{constructor(e){super(e||{})}call(e,t){return B(()=>{let n=_e(e);return Tn(n,1)})}};g2.className="GlobalMaxPooling1D";ae.registerClass(g2);var b8=class extends qe{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new ze}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},x2=class extends b8{call(e,t){return B(()=>{let n=_e(e);return this.dataFormat==="channelsLast"?St(n,[1,2]):St(n,[2,3])})}};x2.className="GlobalAveragePooling2D";ae.registerClass(x2);var b2=class extends b8{call(e,t){return B(()=>{let n=_e(e);return this.dataFormat==="channelsLast"?Tn(n,[1,2]):Tn(n,[2,3])})}};b2.className="GlobalMaxPooling2D";ae.registerClass(b2);var v8=class extends qe{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=Ca(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},v2=class extends v8{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=st(e),e.length<3)throw new V(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=st(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return B(()=>(e=_e(e),h8((n,a)=>[_e(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};v2.className="TimeDistributed";ae.registerClass(v2);function Dae(e){Oi(Wte,"BidirectionalMergeMode",e)}var zae="concat",w2=class extends v8{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Ca(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=Ca(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?zae:e.mergeMode,Dae(this.mergeMode),e.weights)throw new ze("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):Cn(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=c8(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new V("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(d=>new zt({shape:d.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(a!=null)throw new ze("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Ea;for(let l of s)if(l instanceof Ea!==o)throw new V("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),d=this.inputSpec;this.inputSpec=u;let p=super.apply(l,t);return this.inputSpec=d,p}else return super.apply(e,t)}call(e,t){return B(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=Wn(r,1));let i;return this.mergeMode==="concat"?i=Z1([a,r]):this.mergeMode==="sum"?i=se(a,r):this.mergeMode==="ave"?i=L(.5,se(a,r)):this.mergeMode==="mul"?i=L(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){_i(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),_i(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Ca(t.layer);if(delete t.layer,t.numConstants!=null)throw new ze("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};w2.className="Bidirectional";ae.registerClass(w2);function Oae(e){return new Kl(e)}function _ae(e){return new EA(e)}function Pae(e){return new SA(e)}function Lae(e){return new NA(e)}function Wae(e){return new TA(e)}function Bae(e){return new RA(e)}function Vae(e){return new CA(e)}function jae(e){return new p0(e)}function Uae(e){return new Gd(e)}function Hae(e){return new $A(e)}function Gae(e){return new qd(e)}function qae(e){return new DA(e)}function Xae(e){return new zA(e)}function Kae(e){return new OA(e)}function Zae(e){return new _A(e)}function Yae(e){return new PA(e)}function Jae(e){return new GA(e)}function Qae(e){return new UA(e)}function ere(e){return new y0(e)}function tre(e){return new jA(e)}function nre(e){return new HA(e)}function are(e){return new qA(e)}function rre(e){return new XA(e)}function sre(e){return new KA(e)}function ire(e){return new YA(e)}function ore(e){return new JA(e)}function lre(e){return new e2(e)}function ure(e){return new a2(e)}function dre(e){return new t2(e)}function pre(e){return new n2(e)}function cre(e){return new QA(e)}function hre(e){return new r2(e)}function fre(e){return new l2(e)}function mre(e){return new u2(e)}function yre(e){return new d2(e)}function k2(e){return new c2(e)}function Are(e){return k2(e)}function gre(e){return k2(e)}function I2(e){return new f2(e)}function xre(e){return I2(e)}function bre(e){return I2(e)}function S2(e){return new y2(e)}function vre(e){return S2(e)}function wre(e){return S2(e)}function kre(e){return new A2(e)}function Ire(e){return new x2(e)}function w8(e){return new g2(e)}function k8(e){return new b2(e)}function I8(e){return new p2(e)}function S8(e){return new h2(e)}function Sre(e){return new m2(e)}function Nre(e){return new WA(e)}function Tre(e){return new h0(e)}function Ere(e){return new BA(e)}function Cre(e){return new Kd(e)}function Rre(e){return new LA(e)}function Mre(e){return new c0(e)}function Fre(e){return new VA(e)}function $re(e){return new m0(e)}function Dre(e){return new Qa(e)}function zre(e){return new f0(e)}function Ore(e){return new w2(e)}function _re(e){return new v2(e)}var Pre=w8,Lre=k8,Wre=I8,Bre=S8;function Vre(e){return new s2(e)}function jre(e){return new i2(e)}function Ure(e){return new o2(e)}function Hre(e){return new ZA(e)}var N8={};Fe(N8,{MAPE:()=>nse,MSE:()=>sse,binaryAccuracy:()=>Gre,binaryCrossentropy:()=>qre,categoricalAccuracy:()=>Kre,categoricalCrossentropy:()=>Zre,cosineProximity:()=>Qre,mape:()=>ase,meanAbsoluteError:()=>ese,meanAbsolutePercentageError:()=>tse,meanSquaredError:()=>rse,mse:()=>ise,precision:()=>Yre,recall:()=>Jre,sparseCategoricalAccuracy:()=>Xre});function Gre(e,t){return pA(e,t)}function qre(e,t){return E4(e,t)}function Xre(e,t){return C4(e,t)}function Kre(e,t){return cA(e,t)}function Zre(e,t){return hA(e,t)}function Yre(e,t){return T4(e,t)}function Jre(e,t){return zne(e,t)}function Qre(e,t){return uA(e,t)}function ese(e,t){return r0(e,t)}function tse(e,t){return Yl(e,t)}function nse(e,t){return Yl(e,t)}function ase(e,t){return Yl(e,t)}function rse(e,t){return Li(e,t)}function sse(e,t){return Li(e,t)}function ise(e,t){return Li(e,t)}var T8={};Fe(T8,{modelFromJSON:()=>mae});var E8={};Fe(E8,{l1:()=>lse,l1l2:()=>ose,l2:()=>use});function ose(e){return new Ud(e)}function lse(e){return kae(e)}function use(e){return Iae(e)}var C8=class extends Zl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof xr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function g0(e,t){return e<t}function R8(e,t){return e>t}var M8=class extends C8{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new ze("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=g0:this.mode==="max"?this.monitorFunc=R8:this.monitor.indexOf("acc")!==-1?this.monitorFunc=R8:this.monitorFunc=g0,this.monitorFunc===g0&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===g0?Infinity:-Infinity}async onEpochEnd(e,t){await Jr(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function dse(e){return new M8(e)}var pse={earlyStopping:dse},Ma;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Ma||(Ma={}));var F8;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(F8||(F8={}));var N2={};function cse(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};N2[e]=n}function $8(e){return N2[e]}function hse(e){delete N2[e]}function I(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return gn(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(p=>gn(p,n,a,r));let u=gn(t.inputNames.slice(o)[0],n,a,r),d=u.dataSync();return s.type==="number"?d[0]:k.toNestedArray(u.shape,d)}let i=t.attrParams[e];return i&&i.value}function gn(e,t,n,a){let[r,s]=jn(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[x0(r,o)]);return i!==void 0?t[x0(r,i)][s]:void 0}function fse(e,t,n){return t[x0(e,n.currentContextId)]}function br(e,t){let[n,a]=jn(e);return[x0(n,t&&t.currentContextId),a]}function x0(e,t){return t?`${e}-${t}`:e}function jn(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function b0(e,t,n){let a=I("pad",e,t,n);if(a==="explicit"){a=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function vr(e){return e.kept?e:Wa(e)}var D8={};Fe(D8,{json:()=>mse});var mse=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],z8={};Fe(z8,{json:()=>yse});var yse=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],O8={};Fe(O8,{json:()=>Ase});var Ase=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],_8={};Fe(_8,{json:()=>gse});var gse=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],P8={};Fe(P8,{json:()=>xse});var xse=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],L8={};Fe(L8,{json:()=>bse});var bse=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],W8={};Fe(W8,{json:()=>vse});var vse=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],B8={};Fe(B8,{json:()=>wse});var wse=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],V8={};Fe(V8,{json:()=>kse});var kse=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],j8={};Fe(j8,{json:()=>Ise});var Ise=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],U8={};Fe(U8,{json:()=>Sse});var Sse=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],H8={};Fe(H8,{json:()=>Nse});var Nse=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],G8={};Fe(G8,{json:()=>Tse});var Tse=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],q8={};Fe(q8,{json:()=>Ese});var Ese=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],X8={};Fe(X8,{json:()=>Cse});var Cse=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],K8={};Fe(K8,{json:()=>Rse});var Rse=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],Z8={};Fe(Z8,{json:()=>Mse});var Mse=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],Y8=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[D8,z8,O8,_8,P8,L8,W8,U8,j8,B8,H8,G8,q8,X8,K8,Z8,V8],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],u={},d={};t!=null&&(u=this.mapSignatureEntries(t.inputs),d=this.mapSignatureEntries(t.outputs));let p=Object.keys(i);p.forEach(m=>{let f=i[m];f.inputNames.forEach(y=>{let[A]=br(y);f.inputs.push(i[A]),i[A].children.push(f)})}),Object.keys(d).length===0?p.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(d).forEach(m=>{let[f]=br(m),y=i[f];y!=null&&(y.signatureKey=d[m],l.push(y))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=br(m),y=i[f];y&&(y.signatureKey=u[m],o.push(y))}):o=a;let c={};e.library!=null&&e.library.function!=null&&(c=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:c};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=$8(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.substr(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=T2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=T2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=z2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=z2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=C2(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=C2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=D2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=D2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=E2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=E2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=_2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=_2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=$2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=$2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=O2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=O2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=M2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=M2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=F2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=F2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=Q8(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Q8(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((u,d)=>(u[d.name]=this.mapNode(d),d.op==="Const"&&a.push(u[d.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[d]=br(u.name),p={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:R2(u.type),type:"dtype"}},children:[]};p.signatureKey=u.name,s.push(p),r[d]=p}),Object.keys(r).forEach(u=>{let d=r[u];d.inputNames.forEach(p=>{let[c]=br(p);d.inputs.push(r[c]),r[c].children.push(d)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[d,p]=br(o[u.name]),c=r[d];c!=null&&(c.defaultOutput=p,i.push(c))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function Fse(e){let t=J().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function J8(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):Fse(e);return t?n:n.toLowerCase()}function T2(e,t,n,a=!1){let r=e[t];return r!=null?J8(r.s,a):n}function E2(e,t,n){let a=e[t];return a?a.b:n}function C2(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function R2(e){switch(typeof e=="string"&&(e=Ma[e]),e){case Ma.DT_FLOAT:return"float32";case Ma.DT_INT32:case Ma.DT_INT64:case Ma.DT_INT8:case Ma.DT_UINT8:return"int32";case Ma.DT_BOOL:return"bool";case Ma.DT_DOUBLE:return"float32";case Ma.DT_STRING:return"string";default:return null}}function Q8(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function M2(e,t,n){let a=e[t];return a&&a.type?R2(a.type):n}function F2(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>R2(r)):n}function ek(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function $2(e,t,n){let a=e[t];return a&&a.shape?ek(a.shape):n}function D2(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function z2(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>J8(s,a)):n}function O2(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>ek(r)):n}function _2(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var $se=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return gn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return gn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return C2(this.node.rawAttrs,e,t);if(n.s!=null)return T2(this.node.rawAttrs,e,t);if(n.b!=null)return E2(this.node.rawAttrs,e,t);if(n.shape!=null)return $2(this.node.rawAttrs,e,t);if(n.type!=null)return M2(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return D2(this.node.rawAttrs,e,t);if(n.list.s!=null)return z2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return O2(this.node.rawAttrs,e,t);if(n.list.b!=null)return _2(this.node.rawAttrs,e,t);if(n.list.type!=null)return F2(this.node.rawAttrs,e,t)}return t}},Dse=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[se(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[Ec(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[Oy(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[L(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[fe(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[Sy(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[Tc(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[ye(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Nl(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[ja(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[hr(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[Jc(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},zse=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Lt(I("x",e,t,n))];case"Acos":return[ly(I("x",e,t,n))];case"Acosh":return[uy(I("x",e,t,n))];case"Asin":return[py(I("x",e,t,n))];case"Asinh":return[cy(I("x",e,t,n))];case"Atan":return[hy(I("x",e,t,n))];case"Atan2":return[fy(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[my(I("x",e,t,n))];case"Ceil":return[by(I("x",e,t,n))];case"Complex":return[zr(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[ad(I("x",e,t,n))];case"Cosh":return[$c(I("x",e,t,n))];case"Elu":return[wl(I("x",e,t,n))];case"Erf":return[Ny(I("x",e,t,n))];case"Exp":return[ea(I("x",e,t,n))];case"Expm1":return[Ty(I("x",e,t,n))];case"Floor":return[Il(I("x",e,t,n))];case"Log":return[_n(I("x",e,t,n))];case"Log1p":return[_c(I("x",e,t,n))];case"Imag":return[zc(I("x",e,t,n))];case"Neg":return[It(I("x",e,t,n))];case"Reciprocal":return[Ly(I("x",e,t,n))];case"Real":return[ud(I("x",e,t,n))];case"Relu":return[Ua(I("x",e,t,n))];case"Round":return[Uc(I("x",e,t,n))];case"Selu":return[Gc(I("x",e,t,n))];case"Sigmoid":return[Sn(I("x",e,t,n))];case"Sin":return[qc(I("x",e,t,n))];case"Sign":return[By(I("x",e,t,n))];case"Sinh":return[Xc(I("x",e,t,n))];case"Softplus":return[vi(I("x",e,t,n))];case"Sqrt":return[en(I("x",e,t,n))];case"Square":return[ot(I("x",e,t,n))];case"Tanh":return[gi(I("x",e,t,n))];case"Tan":return[Uy(I("x",e,t,n))];case"ClipByValue":return[Nn(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[jc(I("x",e,t,n))];case"Rsqrt":return[Hc(gn(e.inputNames[0],t,n))];case"Prod":return[Vc(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[rd(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[ld(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[Cy(gn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Aa(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){k.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];k.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function tk(e){return!(typeof e=="number"||e.some(t=>t<0))}function Jd(e,t,n){let a=P2(e,n),r=!tk(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=P2(s.shape,a)}),!tk(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function P2(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var Ose=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=we(0),Gt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Aa(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Gt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return pa([],[0].concat(this.elementShape));let n=this.readMany(e);return Aa(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),pn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return pa([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return Aa(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),lt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ha(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];B(()=>{t=H(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=o===0?0:a[o-1],u=[0,l,0],d=[1,e[o],r];s[o]=H(Re(t,u,d),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Qd=class{constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Aa(t,r.shape,"TensorList shape mismatch: "),Gt(r)}),this.idTensor=we(0),this.maxNumElements=a,Gt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Qd([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Aa(e,this.elementShape,"TensorList shape mismatch: ");let a=Jd(this.elementShape,this.tensors,e);return B(()=>{let r=this.tensors.map(s=>H(s,a));return pn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Jd(this.elementShape,this.tensors,e),a=this.tensors.pop();return Aa(a.shape,e,"TensorList shape mismatch: "),H(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Aa(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Gt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Aa(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=Jd(this.elementShape,this.tensors,t);return H(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Aa(this.elementShape,t.shape,"TensorList shape mismatch: "),Gt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Aa(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=Jd(this.elementShape,this.tensors,n);return e.length===0?pa([],[0].concat(a)):B(()=>{let r=e.map(s=>H(this.tensors[s],a));return pn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Aa(this.elementShape,t,"TensorList shape mismatch: ");let n=Jd(this.elementShape,this.tensors,t);return this.size()===0?pa([],[0].concat(n)):B(()=>{let a=this.tensors.map(r=>H(r,n));return lt(a,0)})}};function _se(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Aa(r,t,"TensorList shape mismatch: ");let s=ha(e);return new Qd(s,t,a)}function Pse(e,t,n){return new Qd([],e,t,n)}function Lse(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new Qd([],n,e.dtype,a),i=ha(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function Wse(e,t,n){let a=0,r=t.map(d=>(a+=d,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=P2(s,n),o=a===0?0:e.size/a,l=B(()=>{let d=[];e=H(e,[1,a,o]);for(let p=0;p<t.length;++p){let c=p===0?0:r[p-1],h=[0,c,0],m=[1,t[p],o];d[p]=H(Re(e,h,m),i)}return e.dispose(),d}),u=new Qd([],n,e.dtype,t.length);for(let d=0;d<l.length;d++)u.setItem(d,l[d]);return u}var Bse=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=I("body",e,t,n),r=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(d=>d.id),l=await i[0].data();i.forEach(d=>{!d.kept&&o.indexOf(d.id)===-1&&d.dispose()});let u=s;for(;l[0];){let d=u;u=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let p=u.map(h=>h.id);d.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let c=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await c[0].data(),c.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let a=I("pred",e,t,n);return[vr(a)]}case"Switch":{let a=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=vr(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>gn(r,t,n)!==void 0);if(a){let r=gn(a,t,n);return[vr(r)]}return}case"Enter":{let a=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(a),[vr(r)]}case"Exit":{let a=I("tensor",e,t,n);return n.exitFrame(),[vr(a)]}case"NextIteration":{let a=I("tensor",e,t,n);return n.nextIteration(),[vr(a)]}case"TensorArrayV3":{let a=I("size",e,t,n),r=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),u=I("name",e,t,n),d=new Ose(u,r,a,s,l,i,o);return n.addTensorArray(d),[d.idTensor,we(1)]}case"TensorArrayWriteV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=I("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[we(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=I("indices",e,t,n),r=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=Lse(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=I("elementShape",e,t,n),r=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=Pse(a,r,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let a=I("tensorListId",e,t,n),r=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=_se(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let a=I("tensorListId",e,t,n),r=n.getTensorList(a.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=I("tensorListId",e,t,n),r=I("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=Wse(a,s,r);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function nk(e,t,n){let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=a==="fusedbatchnorm",l=I("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let u=I("strides",e,t,n),d=b0(e,t,n),p=I("dataFormat",e,t,n).toUpperCase(),c=I("dilations",e,t,n),[h,m]=I("args",e,t,n),f=I("leakyreluAlpha",e,t,n);return{stride:u,pad:d,dataFormat:p,dilations:c,biasArg:h,preluArg:m,activationFunc:r,leakyreluAlpha:f}}var Vse=(e,t,n)=>{switch(e.op){case"Conv1D":{let a=I("stride",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[Mc(I("x",e,t,n),I("filter",e,t,n),a,r,s,i)]}case"Conv2D":{let a=I("strides",e,t,n),r=b0(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[pr(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:d}=nk(e,t,n);return[Ur.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:d})]}case"FusedDepthwiseConv2dNative":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:d}=nk(e,t,n);return[Ur.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:d})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let a=I("outputShape",e,t,n),r=I("strides",e,t,n),s=b0(e,t,n);return[Fc(I("x",e,t,n),I("filter",e,t,n),a,[r[1],r[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let a=I("strides",e,t,n),r=b0(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[vl(I("input",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,i,[s[1],s[2]])]}case"Conv3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[wy(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2],a[3]],r,s,[i[1],i[2],i[3]])]}case"AvgPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[td(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[id(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPoolWithArgmax":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=b3(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r,i);return[o,l]}case"AvgPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[gy(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"MaxPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Dy(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"Dilation2D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dilations",e,t,n),i=a[1],o=a[2],l=s[1],u=s[2];return[Iy(I("x",e,t,n),I("filter",e,t,n),[i,o],r,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},jse=(e,t,n)=>{switch(e.op){case"Fill":{let a=I("shape",e,t,n),r=I("dtype",e,t,n),s=I("value",e,t,n);return[kl(a,s,r)]}case"LinSpace":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("num",e,t,n);return[h3(a,r,s)]}case"Multinomial":{let a=I("logits",e,t,n),r=I("numSamples",e,t,n),s=I("seed",e,t,n);return[v3(a,r,s)]}case"OneHot":{let a=I("indices",e,t,n),r=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[ml(a,r,s,i)]}case"Ones":return[Pn(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[Ln(I("x",e,t,n))];case"RandomUniform":return[Tl(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("step",e,t,n);return[El(a,r,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let a=I("shape",e,t,n),r=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[Qc(a,r,s,I("dtype",e,t,n),i)]}case"Zeros":return[$t(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[He(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function L2(e,t,n){let a=I("boxes",e,t,n),r=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var Use=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=L2(e,t,n),u=await Ve.nonMaxSuppressionWithScoreAsync(a,r,s,i,o,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=L2(e,t,n),l=I("padToMaxOutputSize",e,t,n),u=await Ve.nonMaxSuppressionPaddedAsync(a,r,s,i,o,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=L2(e,t,n);return[await Ve.nonMaxSuppressionAsync(a,r,s,i,o)]}case"Where":{let a=me(I("condition",e,t,n),"bool"),r=[await qy(a)];return a.dispose(),r}case"ListDiff":return I3(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},Hse=(e,t,n)=>{switch(e.op){case"TopKV2":{let a=I("x",e,t,n),r=I("k",e,t,n),s=I("sorted",e,t,n),i=Hy(a,r,s);return[i.values,i.indices]}case"Unique":{let a=I("x",e,t,n),r=eh(a);return[r.values,r.indices]}case"UniqueV2":{let a=I("x",e,t,n),r=I("axis",e,t,n),s=eh(a,r);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Gse=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let a=I("default",e,t,n);return[gn(e.name,t,n)||a];case"Placeholder":return[gn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=I("x",e,t,n);return[vr(u)]}case"IdentityN":return I("x",e,t,n).map(u=>vr(u));case"Snapshot":let r=I("x",e,t,n);return[vr(r)];case"Shape":return[Mt(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(u=>Mt(u.shape));case"Size":return[we(I("x",e,t,n).size,"int32")];case"Rank":return[we(I("x",e,t,n).rank,"int32")];case"NoOp":return[we(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let u=0;u<i.length;u++)console.log(Array.prototype.slice.call(i[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},qse=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=we(0),this.tensorMap=new Map,Gt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return we(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),B(()=>{let a=ha(t),r=n.length,s=a.length;k.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];Gt(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return B(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return pn(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},Xse=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new qse(r,s);return a.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Kse=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ve.resizeBilinear(a,[r[0],r[1]],s,i)]}case"ResizeNearestNeighbor":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ve.resizeNearestNeighbor(a,[r[0],r[1]],s,i)]}case"CropAndResize":{let a=I("image",e,t,n),r=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Ve.cropAndResize(a,r,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Zse=(e,t,n)=>{switch(e.op){case"Equal":return[Wr(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[ki(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[On(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[Vr(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Oc(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[jr(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[ca(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[sd(I("a",e,t,n))];case"LogicalOr":return[Wc(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[rn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Yse=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Be(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[d3(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Ye(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,d]=I("args",e,t,n);return[Ur.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:u,activation:r,preluActivationWeights:d,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Jse=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[xi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[xi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[Ry(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[pd(I("x",e,t,n))];case"LogSoftmax":return[Lc(I("x",e,t,n))];case"SparseToDense":return[Xy(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Qse=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Tn(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[St(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Sl(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Ie(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Cc(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Qu(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[yi(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[dy(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Vc(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[Dc(I("x",e,t,n),i,o,l)]}case"Bincount":let a=I("x",e,t,n),r=I("weights",e,t,n),s=I("size",e,t,n);return[xy(a,r,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),u=I("binaryOutput",e,t,n);return[l3(i,o,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},eie=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let a=I("n",e,t,n),r=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,a),[lt(s,r)]}case"Gather":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[bi(a,me(r,"int32"),0)]}case"GatherV2":{let a=I("axis",e,t,n),r=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[bi(s,me(i,"int32"),a,r)]}case"Reverse":{let a=I("dims",e,t,n),r=[];for(let i=0;i<a.length;i++)a[i]&&r.push(i);let s=I("x",e,t,n);return[Wn(s,r)]}case"ReverseV2":{let a=I("axis",e,t,n),r=I("x",e,t,n);return[Wn(r,a)]}case"Slice":{let a=I("begin",e,t,n),r=I("size",e,t,n);return[Re(I("x",e,t,n),a,r)]}case"StridedSlice":{let a=I("begin",e,t,n),r=I("end",e,t,n),s=I("strides",e,t,n),i=I("beginMask",e,t,n),o=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),u=I("newAxisMask",e,t,n),d=I("shrinkAxisMask",e,t,n),p=I("x",e,t,n);return[jy(p,a,r,s,i,o,l,u,d)]}case"Pack":return B(()=>{let a=I("axis",e,t,n),r=I("tensors",e,t,n),s=r[0].shape,i=Ha(r[0]).shape,o=r.map(l=>{let u=k.arraysEqual(l.shape,s);if(!u&&!k.arraysEqual(Ha(l).shape,i))throw new Error("the input tensors shape does not match");return u?l:H(l,s)});return[pn(o,a)]});case"Unpack":{let a=I("axis",e,t,n),r=I("tensor",e,t,n);return ha(r,a)}case"Tile":{let a=I("reps",e,t,n);return[Br(I("x",e,t,n),a)]}case"Split":case"SplitV":{let a=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return qt(s,r,a)}case"ScatterNd":{let a=I("indices",e,t,n),r=I("values",e,t,n),s=I("shape",e,t,n);return[E3(a,r,s)]}case"GatherNd":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[C3(a,r)]}case"SparseToDense":{let a=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[Xy(a,s,r,s.dtype===i.dtype?i:me(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},tie=(e,t,n)=>{switch(e.op){case"SparseReshape":{let{outputIndices:a,outputShape:r}=U3.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[a,r]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},nie=(e,t,n)=>{switch(e.op){case"FFT":return[cd(I("x",e,t,n))];case"IFFT":return[Cl(I("x",e,t,n))];case"RFFT":return[hd(I("x",e,t,n))];case"IRFFT":return[Yc(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},aie=(e,t,n)=>{switch(e.op){case"Cast":return[me(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let a=I("axis",e,t,n);return[dn(I("x",e,t,n),a)]}case"Squeeze":{let a=I("axis",e,t,n);return[Ha(I("x",e,t,n),a)]}case"Reshape":return[H(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[zy(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[cr(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let a=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[od(I("x",e,t,n),a,r)]}case"BatchToSpaceND":{let a=I("blockShape",e,t,n),r=I("crops",e,t,n);return[nd(I("x",e,t,n),a,r)]}case"DepthToSpace":{let a=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[ky(I("x",e,t,n),a,r)]}case"BroadcastTo":return[xl(I("x",e,t,n),I("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ak(e,t,n,a){let r=((s,i,o)=>{switch(s.category){case"arithmetic":return B(()=>Dse(s,i,o));case"basic_math":return B(()=>zse(s,i,o));case"control":return Bse(s,i,o);case"convolution":return B(()=>Vse(s,i,o));case"creation":return B(()=>jse(s,i,o));case"dynamic":return Use(s,i,o);case"evaluation":return B(()=>Hse(s,i,o));case"image":return B(()=>Kse(s,i,o));case"graph":return B(()=>Gse(s,i,o));case"logical":return B(()=>Zse(s,i,o));case"matrices":return B(()=>Yse(s,i,o));case"normalization":return B(()=>Jse(s,i,o));case"reduction":return B(()=>Qse(s,i,o));case"slice_join":return B(()=>eie(s,i,o));case"sparse":return B(()=>tie(s,i,o));case"spectral":return B(()=>nie(s,i,o));case"transformation":return B(()=>aie(s,i,o));case"hash_table":return Xse(s,i,o,a);case"custom":let l=$8(s.op);if(l&&l.customExecutor)return l.customExecutor(new $se(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return k.isPromise(r)?r.then(s=>[].concat(s)):[].concat(r)}var rk=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function sk(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(c=>jn(c)[0]),d=[];a!=null&&(d=a.map(c=>jn(c.name)[0]));let p=[...t];for(;p.length>0;){let c=p.pop();if((ik(c)||lie(c)||uie(c))&&i==null&&(i=c,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(c.name),n[c.name]==null&&u.indexOf(c.name)===-1&&d.indexOf(c.name)===-1){if(c.inputs.length===0){s.push(c.name);continue}c.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function rie(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(d=>jn(d)[0]).map(d=>e.nodes[d]),o=e.initNodes;i.forEach(d=>{a.has(d.name)&&s.push(d)}),e.weights.forEach(d=>{a.has(d.name)&&s.push(d)}),o!=null&&o.forEach(d=>{a.has(d.name)&&s.push(d)});let l=new Set,u=[];for(;s.length>0;){let d=s.pop();l.add(d.name),t[d.name]||u.push(d),d.children.forEach(p=>{!l.has(p.name)&&a.has(p.name)&&p.inputs.every(c=>l.has(c.name))&&s.push(p)})}return u}var sie=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],iie=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],oie=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function ik(e){return sie.indexOf(e.op)>=0}function lie(e){return iie.indexOf(e.op)>=0}function uie(e){return oie.indexOf(e.op)>=0}var W2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new W2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=sk(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return rie(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(d=>this.graph.nodes[jn(d)[0]]),r=t.map(d=>jn(d)[0]),s=r.map(d=>this.graph.nodes[d]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return B(()=>{let d=new rk(this.weightMap,l,u,this.functionExecutorMap),p=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,y]=jn(m),A=[];A[y]=e[m],p[f]=A});let c=this.getFrozenTensorIds(p),h={};for(let m=0;m<o.length;m++){let f=o[m];if(!p[f.name]){let y=ak(f,p,d,this._resourceManager);if(k.isPromise(y))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);p[f.name]=y,this.checkTensorForDisposal(f.name,f,p,d,c,r,h)}}return this.parent==null&&d.dispose(c),t.map(m=>gn(m,p,d))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=fse(o.name,n,a);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let d=i[u.id];d===1?(u.dispose(),delete i[u.id]):d!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,a={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new rk(this.weightMap,a,r,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(p=>gn(p,i,s)),l=o.map(p=>p.id),u=Object.keys(e).map(p=>e[p].id),d=new Set([...l,...u,...this.weightIds]);return Object.keys(i).forEach(p=>{i[p].forEach(c=>{c&&!c.kept&&!c.isDisposed&&!d.has(c.id)&&c.dispose()})}),this.parent==null&&s.dispose(d),o}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(g=>this.graph.nodes[jn(g)[0]]),i=n.map(g=>jn(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:d,syncInputs:p}=sk(e,o,this.weightMap,this._initNodes),c=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[x,w]=jn(g),b=[];b[w]=e[g],h[x]=b});let m={},f=this.getFrozenTensorIds(h),y={};for(;c.length>0;){let g=this.processStack(s,c,t,h,y,f,i,m,l);await Promise.all(g)}d==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let A=o.filter(g=>!ik(g)&&!gn(g.name,h,t)).map(g=>g.name);if(A.length>0){let g="";throw d!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${A}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${g}`)}return h}processStack(e,t,n,a,r,s,i,o,l){let u=[];for(;t.length>0;){let d=t.pop();n.currentContext=d.contexts;let p="";if(d.node.op==="Enter"&&I("isConstant",d.node,a,n)&&([p]=br(d.node.name,n)),a[d.node.name]==null){let c=ak(d.node,a,n,this._resourceManager);p||([p]=br(d.node.name,n));let h=n.currentContext;k.isPromise(c)?u.push(c.then(m=>(a[p]=m,n.currentContext=h,this.checkTensorForDisposal(p,d.node,a,n,s,i,o),this.processChildNodes(d.node,t,n,a,r,l),m))):(a[p]=c,this.checkTensorForDisposal(p,d.node,a,n,s,i,o),this.processChildNodes(d.node,t,n,a,r,l))}else this.processChildNodes(d.node,t,n,a,r,l)}return u}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=br(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!gn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!gn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=jn(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);k.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&k.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let a=this._signature.inputs[n];t[a.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=jn(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=jn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},die=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},pie="?tfjs-format=file",cie="model.json",ok=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new die}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=In.browserHTTPRequest(e,this.loadOptions);else{let t=In.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(In.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=In.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new W2(Y8.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=Y8.Instance.transformGraph(e.modelInitializer);this.initializer=new W2(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=In.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Le)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,a)=>(t[n]=e[a],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function gt(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${cie}${pie}`);let n=new ok(e,t);return await n.load(),n}var hie="3.6.0",lk={};Fe(lk,{CSVDataset:()=>bk,Dataset:()=>tu,FileDataSource:()=>Tk,TextLineDataset:()=>Ak,URLDataSource:()=>Ek,array:()=>Oie,csv:()=>qie,func:()=>Xie,generator:()=>Kie,microphone:()=>Yie,version_data:()=>Jie,webcam:()=>Zie,zip:()=>_ie});var fie=ro(f5()),mie=ro(f5());function yie(e,t){return v0(e,t)}function v0(e,t,n=new Map,a=new Set){if(e==null)return null;if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(eu(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=v0(o,t,n,a);s[i]=l}return a.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function Aie(e,t=dk){return uk(e,t)}function uk(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(eu(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(u=>u[i]),l=uk(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function dk(e){return e===null?null:eu(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function pk(e,t){let n=new Map;v0(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(k.isPromise(r)){let s=await r;n.set(a,s)}}return v0(e,t,n)}function eu(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Le))}function gie(e){return e==null||xie(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Le||k.isTypedArray(e)}function xie(e){return e===null||typeof e!="object"&&typeof e!="function"}function bie(e){return yie(e,vie)}function vie(e){return e instanceof Le?{value:e.clone(),recurse:!1}:eu(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var ck=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},B2=class extends ck{constructor(){super(B2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};B2.INITIAL_CAPACITY=32;function hk(e){return new Iie(e)}function V2(e){return new Sie(e)}function wie(e,t){return new mk(e,t)}function kie(e,t=ns.FAIL){return new Die(e,t)}var Zt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new Fie(this,e)}filter(e){return new Rie(this,e)}map(e){return new Mie(this,e)}mapAsync(e){return new fk(this,e)}serialMapAsync(e){return new fk(this,e).serial()}flatmap(e){return new $ie(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new Cie(this,e,t)}columnMajorBatch(e,t=!0,n=dk){return this.rowMajorBatch(e,t).map(a=>Aie(a,n))}concatenate(e,t){return new mk(hk([this,e]),t)}take(e){return e<0||e==null?this:new Eie(this,e)}skip(e){return e<0||e==null?this:new Tie(this,e)}prefetch(e){return new yk(this,e)}shuffle(e,t){return new zie(this,e,t)}serial(){return new Nie(this)}},Iie=class extends Zt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:bie(e),done:!1}}},Sie=class extends Zt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},Nie=class extends Zt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},Tie=class extends Zt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Ne(e.value)}return this.upstream.next()}},Eie=class extends Zt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},Cie=class extends Zt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},Rie=class extends Zt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Ne(e.value)}}},Mie=class extends Zt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=xa.getTensorsInContainer(e.value),n=this.transform(e.value),a=xa.getTensorsInContainer(n);for(let r of t)xa.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},Fie=class extends Zt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},fk=class extends Zt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=xa.getTensorsInContainer(e.value),n=await this.transform(e.value),a=xa.getTensorsInContainer(n);for(let r of t)xa.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},j2=class extends Zt{constructor(){super();this.outputQueue=new B2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},$ie=class extends j2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=xa.getTensorsInContainer(e.value),n=this.transform(e.value),a=xa.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)xa.isTensorInList(r,a)||r.dispose();return!0}},mk=class extends Zt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},ns;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(ns||(ns={}));var Die=class extends Zt{constructor(e,t=ns.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof Zt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await pk(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case ns.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ns.SHORTEST:return{value:null,done:!0};case ns.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},yk=class extends Zt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new ck(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},zie=class extends yk{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=mie.alea(n||k.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},tu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;k.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let a;return this.size===Infinity||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),Un(async()=>(await n.iterator()).columnMajorBatch(e,t,Pie),a)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Un(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Un(async()=>(await t.iterator()).filter(a=>B(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Un(async()=>(await t.iterator()).map(n=>B(()=>e(n))),this.size)}mapAsync(e){let t=this;return Un(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Un(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Un(async()=>{let a=V2(async()=>({value:await t.iterator(),done:!1}));return wie(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Un(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=fie.alea(t||k.now().toString());return Un(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Un(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};tu.MAX_BUFFER_SIZE=1e4;function Un(e,t=null){return new class extends tu{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function Oie(e){return Un(async()=>hk(e),e.length)}function _ie(e){if(!eu(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Un(async()=>{let n=await pk(e,a=>{if(a instanceof tu)return{value:a.iterator(),recurse:!1};if(eu(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return kie(n,ns.SHORTEST)},t)}function Pie(e){if(e===null)return null;let t=e[0];return gie(t)?{value:Lie(e),recurse:!1}:{value:null,recurse:!0}}function Lie(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Le?pn(e):pa(e)}var Ak=class extends tu{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},w0='"',ep=Symbol("out"),gk=Symbol("field"),k0=Symbol("quote"),U2=Symbol("quoteafterquote"),xk=Symbol("quoteinquote"),bk=class extends tu{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new Ak(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(k.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&k.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(k.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=ep;for(let i=0;i<r;i++)switch(s){case ep:switch(e.charAt(i)){case w0:a=i+1,s=k0;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=ep;break;default:s=gk,a=i;break}break;case gk:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=ep,a=i+1;break;default:}break;case k0:switch(e.charAt(i)){case w0:s=U2;break;default:}break;case U2:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=ep,a=i+1;break;case w0:s=k0;break;default:s=xk;break}break;case xk:switch(e.charAt(i)){case w0:s=k0;break;default:}break;default:}if(s===U2?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},vk=class extends Zt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(J().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new vk(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(k.sizeFromShape(t));return n.set(e,n.length-e.length),pa(n,t)}},wk=class extends Zt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Mt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=va([s,r,o,i],[1,4])}else this.cropBox=va([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(J().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new wk(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&k.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=fi.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return B(()=>{let t=dn(me(e,"float32"),0),n;n=Ve.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return H(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},kk=class{},Ik=class extends Zt{split(e){return new Wie(this,e)}},Wie=class extends Ik{constructor(e,t){super();this.upstream=e,this.impl=new Bie(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Bie=class extends j2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},Vie=class extends Zt{decodeUTF8(){return new jie(this)}},jie=class extends Ik{constructor(e){super();this.upstream=e,this.impl=new Uie(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Uie=class extends j2{constructor(e){super();if(this.upstream=e,J().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=BI();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return J().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},Sk=class extends Vie{constructor(e,t={}){super();this.file=e,this.options=t,k.assert(e instanceof Uint8Array||(J().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function Hie(e,t={}){let n,a;typeof e=="string"?n=e:(n=e.url,a=Gie(e));let r=await k.fetch(n,a);if(r.ok){let s=new Uint8Array(await r.arrayBuffer());return new Sk(s,t)}else throw new Error(r.statusText)}var Gie=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function Nk(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var Tk=class extends kk{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(Nk(this.input)&&J().get("IS_NODE")){let e=ao("fs");this.input=e.readFileSync(this.input.substr(7))}return new Sk(this.input,this.options)}},Ek=class extends kk{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return Nk(this.url)?new Tk(this.url,this.fileOptions).iterator():Hie(this.url,this.fileOptions)}};function qie(e,t={}){return new bk(new Ek(e),t)}function Xie(e){let t=V2(e);return Un(async()=>t)}function Kie(e){return Un(async()=>{let t=await e();return V2(()=>t.next())})}async function Zie(e,t){return wk.create(e,t)}async function Yie(e){return vk.create(e)}var Jie="3.6.0",Qie={tfjs:(vm==null?void 0:vm.version)||void 0,"tfjs-core":(wm==null?void 0:wm.version)||void 0,"tfjs-data":(km==null?void 0:km.version)||void 0,"tfjs-layers":(Im==null?void 0:Im.version)||void 0,"tfjs-converter":(Sm==null?void 0:Sm.version)||void 0,"tfjs-backend-cpu":I7||void 0,"tfjs-backend-webgl":qv||void 0,"tfjs-backend-wasm":L6||void 0};var Hn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Ck(){if(!oy(Hn.name)){de("backend registration:",Hn.name);try{Hn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Hn.width,Hn.height):document.createElement("canvas")}catch(e){de("error: cannot create canvas:",e);return}try{Hn.gl=Hn.canvas.getContext("webgl2",Hn.webGLattr)}catch(e){de("error: cannot get WebGL2 context:",e);return}try{xh(2,Hn.gl)}catch(e){de("error: cannot set WebGL2 context:",e);return}try{let e=new Nh(Hn.gl);Al(Hn.name,()=>new jl(e),Hn.priority)}catch(e){de("error: cannot register WebGL backend:",e);return}try{dl("webgl").forEach(t=>{let n={...t,backendName:Hn.name};di(n)})}catch(e){de("error: cannot update WebGL backend registration:",e);return}try{ua.set("WEBGL_VERSION",2)}catch(e){de("error: cannot set WebGL backend flags:",e);return}de("backend registered:",Hn.name)}}var eg={};_a(eg,{load:()=>Q2,predict:()=>J2,triangulation:()=>Bk,uvmap:()=>Vk});function Rk(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],a=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:a}}function np(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function nu(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function au(e,t,n){let a=t.shape[1],r=t.shape[2],s=[[e.startPoint[1]/a,e.startPoint[0]/r,e.endPoint[1]/a,e.endPoint[0]/r]];return Ve.cropAndResize(t,s,[0],n)}function I0(e,t=1.5){let n=nu(e),a=np(e),r=[t*a[0]/2,t*a[1]/2],s=[n[0]-r[0],n[1]-r[1]],i=[n[0]+r[0],n[1]+r[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function S0(e){let t=nu(e),n=np(e),r=Math.max(...n)/2,s=[Math.round(t[0]-r),Math.round(t[1]-r)],i=[Math.round(t[0]+r),Math.round(t[1]+r)];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function H2(e){let t=e.map(s=>s[0]),n=e.map(s=>s[1]),a=[Math.min(...t),Math.min(...n)],r=[Math.max(...t),Math.max(...n)];return{startPoint:a,endPoint:r,landmarks:e}}var Mk=e=>({startPoint:Re(e,[0,0],[-1,2]),endPoint:Re(e,[0,2],[-1,2])});var N0=[[1,0,0],[0,1,0],[0,0,1]];function eoe(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function G2(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return eoe(n)}function Fk(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function as(e,t){let n=0;for(let a=0;a<e.length;a++)n+=e[a]*t[a];return n}function toe(e,t){let n=[];for(let a=0;a<e.length;a++)n.push(e[a][t]);return n}function $k(e,t){let n=[],a=e.length;for(let r=0;r<a;r++){n.push([]);for(let s=0;s<a;s++)n[r].push(as(e[r],toe(t,s)))}return n}function T0(e,t){let n=Math.cos(e),a=Math.sin(e),r=[[n,-a,0],[a,n,0],[0,0,1]],s=Fk(t[0],t[1]),i=$k(s,r),o=Fk(-t[0],-t[1]);return $k(i,o)}function Dk(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],a=[-as(t[0],n),-as(t[1],n)];return[t[0].concat(a[0]),t[1].concat(a[1]),[0,0,1]]}function zk(e,t){return[as(e,t[0]),as(e,t[1])]}function Ok(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let a=0;a<t.strides.length;a++){let r=t.strides[a],s=Math.floor((e+r-1)/r),i=Math.floor((e+r-1)/r),o=t.anchors[a];for(let l=0;l<s;l++){let u=r*(l+.5);for(let d=0;d<i;d++){let p=r*(d+.5);for(let c=0;c<o;c++)n.push([p,u])}}}return n}var _k=6;function noe(e,t,n){let a=Re(e,[0,1],[-1,2]),r=se(a,t),s=Re(e,[0,3],[-1,2]),i=fe(s,n),o=fe(r,n),l=fe(i,2),u=ye(o,l),d=se(o,l),p=L(u,n),c=L(d,n);return bl([p,c],1)}var Pk=class{constructor(t,n){this.model=t,this.anchorsData=Ok(t.inputs[0].shape[1]),this.anchors=va(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=n}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[n,a,r]=B(()=>{let u=t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(.5),d=this.model.execute(u),p;if(Array.isArray(d)){let f=d.sort((x,w)=>x.size-w.size),y=lt([f[0],f[2]],2),A=lt([f[1],f[3]],2);p=lt([A,y],1).squeeze(0)}else p=d.squeeze();let c=noe(p,this.anchors,[this.inputSize,this.inputSize]),h=Re(p,[0,0],[-1,1]),m=Sn(h).squeeze().dataSync();return[p,c,m]}),s=await Ve.nonMaxSuppressionAsync(a,r,this.config.face.detector.maxDetected,this.config.face.detector.iouThreshold,this.config.face.detector.minConfidence),i=s.arraySync();s.dispose();let o=[];for(let l=0;l<i.length;l++){let u=r[i[l]];if(u>this.config.face.detector.minConfidence){let d=Re(a,[i[l],0],[1,-1]),p=Mk(d);d.dispose();let c=this.anchorsData[i[l]],h=B(()=>Re(n,[i[l],_k-1],[1,-1]).squeeze().reshape([_k,-1]));o.push({box:p,landmarks:h,anchor:c,confidence:u})}}return n.dispose(),a.dispose(),{boxes:o,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function Lk(e){let t=await gt(vt(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new Pk(t,e);return!t||!t.modelUrl?de("load model failed:",e.face.detector.modelPath):e.debug&&de("load model:",t.modelUrl),n}var er={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},q2=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],ap=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],ji=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var aoe=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],roe=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],soe=[33,133,362,263,1,78,308],Koe=aoe.map(e=>ap[e]),Zoe=roe.map(e=>ap[e]),Yoe=soe.map(e=>ap[e]);var X2=er.leftEyeLower0,K2=er.rightEyeLower0,ru={leftBounds:[X2[0],X2[X2.length-1]],rightBounds:[K2[0],K2[K2.length-1]]},E0={count:468,mouth:13,symmetryLine:[13,er.midwayBetweenEyes[0]]},Wk={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},su={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function C0(e,t,n,a){for(let r=0;r<q2.length;r++){let{key:s,indices:i}=q2[r],o=er[`${n}${s}`];if(!a||a.includes(s))for(let l=0;l<i.length;l++){let u=i[l];e[o[l]]=[t[u][0],t[u][1],(t[u][2]+e[o[l]][2])/2]}}}var Z2=class{constructor(t,n,a){var r,s;this.storedBoxes=[],this.boundingBoxDetector=t,this.meshDetector=n,this.irisModel=a,this.boxSize=((r=t==null?void 0:t.model)==null?void 0:r.inputs[0].shape[2])||0,this.meshSize=(n==null?void 0:n.inputs[0].shape[2])||((s=t==null?void 0:t.model)==null?void 0:s.inputs[0].shape[2]),this.irisSize=(a==null?void 0:a.inputs[0].shape[1])||0,this.irisEnlarge=2.3,this.skipped=0,this.detectedFaces=0}transformRawCoords(t,n,a,r){let s=np({startPoint:n.startPoint,endPoint:n.endPoint}),i=t.map(p=>[s[0]/this.meshSize*(p[0]-this.meshSize/2),s[1]/this.meshSize*(p[1]-this.meshSize/2),p[2]]),o=a!==0?T0(a,[0,0]):N0,l=a!==0?i.map(p=>[...zk(p,o),p[2]]):i,u=a!==0?Dk(r):N0,d=[...nu({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(p=>[Math.round(p[0]+as(d,u[0])),Math.round(p[1]+as(d,u[1])),Math.round(p[2])])}getLeftToRightEyeDepthDifference(t){let n=t[ru.leftBounds[0]][2],a=t[ru.rightBounds[0]][2];return n-a}getEyeBox(t,n,a,r,s=!1){let i=S0(I0(H2([t[a],t[r]]),this.irisEnlarge)),o=np(i),l=Ve.cropAndResize(n,[[i.startPoint[1]/this.meshSize,i.startPoint[0]/this.meshSize,i.endPoint[1]/this.meshSize,i.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return s&&ua.flags.IS_BROWSER&&(l=Ve.flipLeftRight(l)),{box:i,boxSize:o,crop:l}}getEyeCoords(t,n,a,r=!1){let s=[];for(let i=0;i<su.numCoordinates;i++){let o=t[i*3],l=t[i*3+1],u=t[i*3+2];s.push([(r?1-o/this.irisSize:o/this.irisSize)*a[0]+n.startPoint[0],l/this.irisSize*a[1]+n.startPoint[1],u])}return{rawCoords:s,iris:s.slice(su.index)}}getAdjustedIrisCoords(t,n,a){let r=t[er[`${a}EyeUpper0`][su.upperCenter]][2],s=t[er[`${a}EyeLower0`][su.lowerCenter]][2],i=(r+s)/2;return n.map((o,l)=>{let u=i;return l===2?u=r:l===4&&(u=s),[o[0],o[1],u]})}async predict(t,n){let a=!1,r;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.skipFrame)&&(r=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.skipFrame&&this.skipped++,!n.skipFrame||r&&r.boxes&&(!n.face.mesh.enabled||r.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxDetected)){this.storedBoxes=[],this.detectedFaces=0;for(let i of r.boxes)this.storedBoxes.push({startPoint:i.box.startPoint.dataSync(),endPoint:i.box.endPoint.dataSync(),landmarks:i.landmarks.arraySync(),confidence:i.confidence});this.storedBoxes.length>0&&(a=!0)}if(a){if(!r||!r.boxes||r.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i<this.storedBoxes.length;i++){let o=Rk({startPoint:this.storedBoxes[i].startPoint,endPoint:this.storedBoxes[i].endPoint},r.scaleFactor),l=I0(o),u=S0(l),d=this.storedBoxes[i].landmarks,p=this.storedBoxes[i].confidence;this.storedBoxes[i]={...u,confidence:p,landmarks:d}}}r&&r.boxes&&r.boxes.forEach(i=>{i.box.startPoint.dispose(),i.box.endPoint.dispose(),i.landmarks.dispose()});let s=B(()=>this.storedBoxes.map((i,o)=>{let l,u=0,d;if(n.face.detector.rotation&&n.face.mesh.enabled&&ua.flags.IS_BROWSER){let[x,w]=i.landmarks.length>=E0.count?E0.symmetryLine:Wk.symmetryLine;u=G2(i.landmarks[x],i.landmarks[w]);let b=nu({startPoint:i.startPoint,endPoint:i.endPoint}),v=[b[0]/t.shape[2],b[1]/t.shape[1]],S=Ve.rotateWithOffset(t,u,0,v);d=T0(-u,b),n.face.mesh.enabled?l=au({startPoint:i.startPoint,endPoint:i.endPoint},S,[this.meshSize,this.meshSize]).div(255):l=au({startPoint:i.startPoint,endPoint:i.endPoint},S,[this.boxSize,this.boxSize]).div(255)}else{d=N0;let x=t.clone();n.face.mesh.enabled?l=au({startPoint:i.startPoint,endPoint:i.endPoint},x,[this.meshSize,this.meshSize]).div(255):l=au({startPoint:i.startPoint,endPoint:i.endPoint},x,[this.boxSize,this.boxSize]).div(255)}if(!n.face.mesh.enabled)return{mesh:[],box:i,faceConfidence:null,boxConfidence:i.confidence,confidence:i.confidence,image:l};let[,p,c]=this.meshDetector.execute(l),h=p.dataSync()[0];if(h<n.face.detector.minConfidence)return this.storedBoxes[o].confidence=h,null;let f=H(c,[-1,3]).arraySync();if(n.face.iris.enabled){let{box:x,boxSize:w,crop:b}=this.getEyeBox(f,l,ru.leftBounds[0],ru.leftBounds[1],!0),{box:v,boxSize:S,crop:T}=this.getEyeBox(f,l,ru.rightBounds[0],ru.rightBounds[1]),$=this.irisModel.predict(lt([b,T])).dataSync(),O=$.slice(0,su.numCoordinates*3),{rawCoords:P,iris:j}=this.getEyeCoords(O,x,w,!0),D=$.slice(su.numCoordinates*3),{rawCoords:U,iris:X}=this.getEyeCoords(D,v,S),G=this.getLeftToRightEyeDepthDifference(f);Math.abs(G)<30?(C0(f,P,"left",null),C0(f,U,"right",null)):G<1?C0(f,P,"left",["EyeUpper0","EyeLower0"]):C0(f,U,"right",["EyeUpper0","EyeLower0"]);let ee=this.getAdjustedIrisCoords(f,j,"left"),Y=this.getAdjustedIrisCoords(f,X,"right");f=f.concat(ee).concat(Y)}let y=this.transformRawCoords(f,i,u,d),A=i.confidence;if(i=I0(H2(y),1.5),i.confidence=A,n.face.detector.rotation&&n.face.mesh.enabled&&n.face.description.enabled&&ua.flags.IS_BROWSER){let[x,w]=i.landmarks.length>=E0.count?E0.symmetryLine:Wk.symmetryLine;u=G2(i.landmarks[x],i.landmarks[w]);let b=nu({startPoint:i.startPoint,endPoint:i.endPoint}),v=[b[0]/t.shape[2],b[1]/t.shape[1]],S=Ve.rotateWithOffset(t.toFloat(),u,0,v);d=T0(-u,b),l=au({startPoint:i.startPoint,endPoint:i.endPoint},S,[this.meshSize,this.meshSize]).div(255)}let g={mesh:y,box:i,faceConfidence:h,boxConfidence:i.confidence,image:l};return this.storedBoxes[o]={...S0(i),confidence:i.confidence,faceConfidence:h},g}));return n.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(i=>i.confidence>n.face.detector.minConfidence)),this.detectedFaces=s.length,s}};var Ct=[null,null,null],Y2;async function J2(e,t){let n=await Y2.predict(e,t),a=[];for(let r of n||[]){if(!r||r.isDisposedInternal)continue;let s=r.mesh.map(u=>[u[0]/e.shape[2],u[1]/e.shape[1],u[2]/Y2.meshSize]),i={};if(r.mesh&&r.mesh.length>0)for(let u of Object.keys(er))i[u]=er[u].map(d=>r.mesh[d]);let o=r.box?[Math.max(0,r.box.startPoint[0]),Math.max(0,r.box.startPoint[1]),Math.min(e.shape[2],r.box.endPoint[0])-Math.max(0,r.box.startPoint[0]),Math.min(e.shape[1],r.box.endPoint[1])-Math.max(0,r.box.startPoint[1])]:0,l=r.box?[r.box.startPoint[0]/e.shape[2],r.box.startPoint[1]/e.shape[1],(r.box.endPoint[0]-r.box.startPoint[0])/e.shape[2],(r.box.endPoint[1]-r.box.startPoint[1])/e.shape[1]]:[];a.push({confidence:Math.round(100*r.faceConfidence||100*r.boxConfidence||0)/100,boxConfidence:Math.round(100*r.boxConfidence)/100,faceConfidence:Math.round(100*r.faceConfidence)/100,box:o,boxRaw:l,mesh:r.mesh,meshRaw:s,annotations:i,image:r.image}),r.coords&&r.coords.dispose()}return a}async function Q2(e){return!Ct[0]&&e.face.enabled||!Ct[1]&&e.face.mesh.enabled||!Ct[2]&&e.face.iris.enabled?(Ct=await Promise.all([!Ct[0]&&e.face.enabled?Lk(e):null,!Ct[1]&&e.face.mesh.enabled?gt(vt(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Ct[2]&&e.face.iris.enabled?gt(vt(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!Ct[1]||!Ct[1].modelUrl?de("load model failed:",e.face.mesh.modelPath):e.debug&&de("load model:",Ct[1].modelUrl)),e.face.iris.enabled&&(!Ct[2]||!Ct[2].modelUrl?de("load model failed:",e.face.iris.modelPath):e.debug&&de("load model:",Ct[2].modelUrl))):e.debug&&(Ct[0]&&de("cached model:",Ct[0].model.modelUrl),Ct[1]&&de("cached model:",Ct[1].modelUrl),Ct[2]&&de("cached model:",Ct[2].modelUrl)),Y2=new Z2(Ct[0],Ct[1],Ct[2]),Ct}var Bk=ji,Vk=ap;var rg={};_a(rg,{load:()=>ag,predict:()=>M0});var ioe=["angry","disgust","fear","happy","sad","surprise","neutral"],Fa,R0=[],jk=0,tg=Number.MAX_SAFE_INTEGER,ng=[.2989,.587,.114];async function ag(e){return Fa?e.debug&&de("cached model:",Fa.modelUrl):(Fa=await gt(vt(e.modelBasePath,e.face.emotion.modelPath)),!Fa||!Fa.modelUrl?de("load model failed:",e.face.emotion.modelPath):e.debug&&de("load model:",Fa.modelUrl)),Fa}async function M0(e,t,n,a){return Fa?tg<t.face.emotion.skipFrames&&t.skipFrame&&jk===a&&R0[n]&&R0[n].length>0?(tg++,R0[n]):(tg=0,new Promise(async r=>{let s=Ve.resizeBilinear(e,[Fa.inputs[0].shape[2],Fa.inputs[0].shape[1]],!1),[i,o,l]=qt(s,3,3);s.dispose();let u=L(i,ng[0]),d=L(o,ng[1]),p=L(l,ng[2]);i.dispose(),o.dispose(),l.dispose();let c=Ec([u,d,p]);u.dispose(),d.dispose(),p.dispose();let h=B(()=>c.sub(.5).mul(2));c.dispose();let m=[];if(t.face.emotion.enabled){let f=await Fa.predict(h),y=f.dataSync();Ne(f);for(let A=0;A<y.length;A++)y[A]>t.face.emotion.minConfidence&&m.push({score:Math.min(.99,Math.trunc(100*y[A])/100),emotion:ioe[A]});m.sort((A,g)=>g.score-A.score)}h.dispose(),R0[n]=m,jk=a,r(m)})):null}var ug={};_a(ug,{enhance:()=>lg,load:()=>ig,match:()=>Hk,predict:()=>$0,similarity:()=>og});var $a,F0=[],Uk=0,sg=Number.MAX_SAFE_INTEGER;async function ig(e){let t=vt(e.modelBasePath,e.face.description.modelPath);return $a?e.debug&&de("cached model:",t):($a=await gt(t),$a?e.debug&&de("load model:",t):de("load model failed:",e.face.description.modelPath)),$a}function og(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let a=5*e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(0,100-a)/100}function Hk(e,t,n=0){let a={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return a;for(let r of t)if(r.embedding&&r.name){let s=og(e,r.embedding);s>n&&s>a.similarity&&(a={...r,similarity:s})}return a}function lg(e){return B(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Le))return null;let a=[[.05,.15,.85,.85]];return $a.inputs[0].shape?(n.shape.length===3?Ve.cropAndResize(dn(n,0),a,[0],[$a.inputs[0].shape[2],$a.inputs[0].shape[1]]):Ve.cropAndResize(n,a,[0],[$a.inputs[0].shape[2],$a.inputs[0].shape[1]])).mul(255):null})}async function $0(e,t,n,a){var r,s;return $a?sg<t.face.description.skipFrames&&t.skipFrame&&Uk===a&&((r=F0[n])==null?void 0:r.age)&&((s=F0[n])==null?void 0:s.age)>0?(sg++,F0):(sg=0,new Promise(async i=>{let o=lg(e),l,u={age:0,gender:"unknown",genderConfidence:0,descriptor:[]};t.face.description.enabled&&(l=await $a.predict(o)),Ne(o),l&&(B(()=>{let d=l.find(f=>f.shape[1]===1).dataSync(),p=Math.trunc(200*Math.abs(d[0]-.5))/100;p>t.face.description.minConfidence&&(u.gender=d[0]<=.5?"female":"male",u.genderConfidence=Math.min(.99,p));let c=l.find(f=>f.shape[1]===100).argMax(1).dataSync()[0],h=l.find(f=>f.shape[1]===100).dataSync();u.age=Math.round(h[c-1]>h[c+1]?10*c-100*h[c-1]:10*c+100*h[c+1])/10;let m=l.find(f=>f.shape[1]===1024);u.descriptor=[...m.dataSync()]}),l.forEach(d=>Ne(d))),F0[n]=u,Uk=a,i(u)})):null}var ooe=e=>{let t=(p,c)=>Math.atan2(p[1]-c[1],p[0]-c[0]),n=[0,0],a=5,r=e[33][2]>e[263][2],s=r?e[473]:e[468],i=r?[(e[133][0]+e[33][0])/2,(e[133][1]+e[33][1])/2]:[(e[263][0]+e[362][0])/2,(e[263][1]+e[362][1])/2],o=r?[e[133][0]-e[33][0],e[23][1]-e[27][1]]:[e[263][0]-e[362][0],e[253][1]-e[257][1]],l=[(i[0]-s[0])/o[0]-n[0],a*(s[1]-i[1])/o[1]-n[1]],u=Math.sqrt(l[0]**2+l[1]**2);return{angle:t([0,0],l),strength:u}},loe=(e,t)=>{let n=y=>{let A=Math.sqrt(y[0]*y[0]+y[1]*y[1]+y[2]*y[2]);return y[0]/=A,y[1]/=A,y[2]/=A,y},a=(y,A)=>{let g=y[0]-A[0],x=y[1]-A[1],w=y[2]-A[2];return[g,x,w]},r=(y,A)=>{let g=y[1]*A[2]-y[2]*A[1],x=y[2]*A[0]-y[0]*A[2],w=y[0]*A[1]-y[1]*A[0];return[g,x,w]},s=y=>{let[A,g,x,w,b,v,S,T,C]=y,$,O,P;return w<1?w>-1?(P=Math.asin(w),O=Math.atan2(-S,A),$=Math.atan2(-v,b)):(P=-Math.PI/2,O=-Math.atan2(T,C),$=0):(P=Math.PI/2,O=Math.atan2(T,C),$=0),{pitch:2*-$,yaw:2*-O,roll:2*-P}},i=y=>{let A=(x,w,b,v)=>Math.atan2(v-w,b-x);return{pitch:A(y[10][1],y[10][2],y[152][1],y[152][2]),yaw:A(y[33][0],y[33][2],y[263][0],y[263][2]),roll:A(y[33][0],y[33][1],y[263][0],y[263][1])}},o=e.meshRaw;if(!o||o.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{angle:0,strength:0}};let l=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,u=[o[10],o[152],o[234],o[454]].map(y=>[y[0]*t[0]/l,y[1]*t[1]/l,y[2]]),d=n(a(u[1],u[0])),p=n(a(u[3],u[2])),c=n(r(p,d));p=r(d,c);let h=[p[0],p[1],p[2],d[0],d[1],d[2],c[0],c[1],c[2]],m=s(h),f=o.length===478?ooe(o):{angle:0,strength:0};return{angle:m,matrix:h,gaze:f}},dg=async(e,t)=>{var d,p,c,h,m,f,y,A;let n,a,r,s,i,o,l=[];e.state="run:face",n=at();let u=await J2(t,e.config);if(e.perf.face=Math.trunc(at()-n),!u)return[];for(let g=0;g<u.length;g++){if(e.analyze("Get Face"),!u[g].image||u[g].image.isDisposedInternal){de("Face object is disposed:",u[g].image);continue}let x=loe(u[g],[t.shape[2],t.shape[1]]);e.analyze("Start Emotion:"),e.config.async?s=e.config.face.emotion.enabled?M0(u[g].image,e.config,g,u.length):{}:(e.state="run:emotion",n=at(),s=e.config.face.emotion.enabled?await M0(u[g].image,e.config,g,u.length):{},e.perf.emotion=Math.trunc(at()-n)),e.analyze("End Emotion:"),e.analyze("Start Description:"),e.config.async?o=e.config.face.description.enabled?$0(u[g],e.config,g,u.length):[]:(e.state="run:description",n=at(),o=e.config.face.description.enabled?await $0(u[g].image,e.config,g,u.length):[],e.perf.embedding=Math.trunc(at()-n)),e.analyze("End Description:"),e.config.async&&([a,r,s,i,o]=await Promise.all([a,r,s,i,o])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((p=(d=u[g])==null?void 0:d.annotations)==null?void 0:p.leftEyeIris)&&((h=(c=u[g])==null?void 0:c.annotations)==null?void 0:h.rightEyeIris)&&(delete u[g].annotations.leftEyeIris,delete u[g].annotations.rightEyeIris);let w=((m=u[g].annotations)==null?void 0:m.leftEyeIris)&&((f=u[g].annotations)==null?void 0:f.rightEyeIris)?Math.max(Math.abs(u[g].annotations.leftEyeIris[3][0]-u[g].annotations.leftEyeIris[1][0]),Math.abs(u[g].annotations.rightEyeIris[4][1]-u[g].annotations.rightEyeIris[2][1]))/t.shape[2]:0;l.push({id:g,...u[g],age:o.age,gender:o.gender,genderConfidence:o.genderConfidence,embedding:o.descriptor,emotion:s,iris:w!==0?Math.trunc(500/w/11.7)/100:0,rotation:x,tensor:e.config.face.detector.return?(y=u[g].image)==null?void 0:y.squeeze():null}),(A=u[g].image)==null||A.dispose(),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.perf.face&&delete e.perf.face,e.perf.age&&delete e.perf.age,e.perf.gender&&delete e.perf.gender,e.perf.emotion&&delete e.perf.emotion),l};var gg={};_a(gg,{load:()=>Ag,predict:()=>yg});var rp=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Gk=rp.length,sp=rp.reduce((e,t,n)=>(e[t]=n,e),{}),uoe=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],doe=uoe.map(([e,t])=>[sp[e],sp[t]]),qk=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function Xk(e){let t=e.reduce(({maxX:n,maxY:a,minX:r,minY:s},{position:{x:i,y:o}})=>({maxX:Math.max(n,i),maxY:Math.max(a,o),minX:Math.min(r,i),minY:Math.min(s,o)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function Kk(e,[t,n],[a,r]){let s=t/a,i=n/r,o=(u,d)=>({id:d,score:u.score,boxRaw:[u.box[0]/r,u.box[1]/a,u.box[2]/r,u.box[3]/a],box:[Math.trunc(u.box[0]*i),Math.trunc(u.box[1]*s),Math.trunc(u.box[2]*i),Math.trunc(u.box[3]*s)],keypoints:u.keypoints.map(({score:p,part:c,position:h})=>({score:p,part:c,position:{x:Math.trunc(h.x*i),y:Math.trunc(h.y*s)}}))});return e.map((u,d)=>o(u,d))}var pg=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let a=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=a}};function cg(e,t,n,a){return{y:a.get(e,t,n),x:a.get(e,t,n+Gk)}}function hg(e,t,n){let{heatmapY:a,heatmapX:r,id:s}=e,{y:i,x:o}=cg(a,r,s,n);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}function fg(e,t,n){return e<t?t:e>n?n:e}function Zk(e,t,n,a){let r=n-e,s=a-t;return r*r+s*s}function mg(e,t){return{x:e.x+t.x,y:e.y+t.y}}var D0=1,iu=16,poe=50**2;function Yk(e,t,n,a,r,s,i=2){let o=A=>({y:s.get(A.y,A.x,e),x:s.get(A.y,A.x,s.shape[2]/2+e)}),l=(A,g,x)=>({y:fg(Math.round(A.y/iu),0,g-1),x:fg(Math.round(A.x/iu),0,x-1)}),[u,d]=a.shape,p=l(t.position,u,d),c=o(p),m=mg(t.position,c);for(let A=0;A<i;A++){let g=l(m,u,d),x=cg(g.y,g.x,n,r);m=mg({x:g.x*iu,y:g.y*iu},{x:x.x,y:x.y})}let f=l(m,u,d),y=a.get(f.y,f.x,n);return{position:m,part:rp[n],score:y}}function coe(e,t,n,a,r){let s=qk.map(([c,h])=>[sp[c],sp[h]]),i=s.map(([,c])=>c),o=s.map(([c])=>c),l=t.shape[2],u=i.length,d=new Array(l),p=hg(e.part,iu,n);d[e.part.id]={score:e.score,part:rp[e.part.id],position:p};for(let c=u-1;c>=0;--c){let h=i[c],m=o[c];d[h]&&!d[m]&&(d[m]=Yk(c,d[h],m,t,n,r))}for(let c=0;c<u;++c){let h=o[c],m=i[c];d[h]&&!d[m]&&(d[m]=Yk(c,d[h],m,t,n,a))}return d}function hoe(e,t,n,a,r){let[s,i]=r.shape,o=!0,l=Math.max(n-D0,0),u=Math.min(n+D0+1,s);for(let d=l;d<u;++d){let p=Math.max(a-D0,0),c=Math.min(a+D0+1,i);for(let h=p;h<c;++h)if(r.get(d,h,e)>t){o=!1;break}if(!o)break}return o}function foe(e,t){let[n,a,r]=t.shape,s=new pg(n*a*r,({score:i})=>i);for(let i=0;i<n;++i)for(let o=0;o<a;++o)for(let l=0;l<r;++l){let u=t.get(i,o,l);u<e||hoe(l,u,i,o,t)&&s.enqueue({score:u,part:{heatmapY:i,heatmapX:o,id:l}})}return s}function Jk(e,{x:t,y:n},a){return e.some(({keypoints:r})=>{var i;let s=(i=r[a])==null?void 0:i.position;return s?Zk(n,t,s.y,s.x)<=poe:!1})}function moe(e,t){return t.reduce((a,{position:r,score:s},i)=>(Jk(e,r,i)||(a+=s),a),0)/t.length}function Qk(e,t,n,a,r,s){let i=[],o=foe(s,t);for(;i.length<r&&!o.empty();){let l=o.dequeue(),u=hg(l.part,iu,e);if(Jk(i,u,l.part.id))continue;let d=coe(l,t,e,n,a);d=d.filter(h=>h.score>s);let p=moe(i,d),c=Xk(d);p>s&&i.push({keypoints:d,box:c,score:Math.round(100*p)/100})}return i}var Gn,yoe=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function yg(e,t){let n=B(()=>{if(!Gn.inputs[0].shape)return[];let o=e.resizeBilinear([Gn.inputs[0].shape[2],Gn.inputs[0].shape[1]]).toFloat().div(127.5).sub(1),u=Gn.execute(o,yoe).map(d=>d.squeeze([0]));return u[1]=u[1].sigmoid(),u}),a=await Promise.all(n.map(i=>i.buffer()));for(let i of n)i.dispose();let r=await Qk(a[0],a[1],a[2],a[3],t.body.maxDetected,t.body.minConfidence);return Gn.inputs[0].shape?Kk(r,[e.shape[1],e.shape[2]],[Gn.inputs[0].shape[2],Gn.inputs[0].shape[1]]):[]}async function Ag(e){return Gn?e.debug&&de("cached model:",Gn.modelUrl):(Gn=await gt(vt(e.modelBasePath,e.body.modelPath)),!Gn||!Gn.modelUrl?de("load model failed:",e.body.modelPath):e.debug&&de("load model:",Gn.modelUrl)),Gn}var Sg={};_a(Sg,{load:()=>Ig,predict:()=>kg});function z0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function ip(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function e9(e,t,n){let a=t.shape[1],r=t.shape[2],s=[[e.startPoint[1]/a,e.startPoint[0]/r,e.endPoint[1]/a,e.endPoint[0]/r]];return Ve.cropAndResize(t,s,[0],n)}function t9(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],a=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:a,palmLandmarks:r,confidence:e.confidence}}function O0(e,t=1.5){let n=ip(e),a=z0(e),r=[t*a[0]/2,t*a[1]/2],s=[n[0]-r[0],n[1]-r[1]],i=[n[0]+r[0],n[1]+r[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function _0(e){let t=ip(e),n=z0(e),r=Math.max(...n)/2,s=[t[0]-r,t[1]-r],i=[t[0]+r,t[1]+r];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}var n9=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var xg=class{constructor(t){var n;this.model=t,this.anchors=n9.map(a=>[a.x,a.y]),this.anchorsTensor=va(this.anchors),this.inputSize=(n=this.model)==null?void 0:n.inputs[0].shape[2],this.inputSizeTensor=Mt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Mt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return B(()=>{let n=Re(t,[0,0],[-1,2]),a=Re(t,[0,2],[-1,2]),r=se(fe(n,this.inputSizeTensor),this.anchorsTensor),s=fe(a,this.doubleInputSizeTensor),i=L(ye(r,s),this.inputSizeTensor),o=L(se(r,s),this.inputSizeTensor);return bl([i,o],1)})}normalizeLandmarks(t,n){return B(()=>{let a=se(fe(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return L(a,this.inputSizeTensor)})}async getBoxes(t,n){let a=this.model.predict(t),r=a.squeeze();a.dispose();let s=B(()=>Sn(Re(r,[0,0],[-1,1])).squeeze()),i=s.dataSync(),o=Re(r,[0,1],[-1,4]),l=this.normalizeBoxes(o);o.dispose();let u=await Ve.nonMaxSuppressionAsync(l,i,n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence),d=u.arraySync();s.dispose(),u.dispose();let p=[];for(let c of d)if(i[c]>=n.hand.minConfidence){let h=Re(l,[c,0],[1,-1]),m=Re(r,[c,5],[1,14]),f=B(()=>this.normalizeLandmarks(m,c).reshape([-1,2]));m.dispose(),p.push({box:h,palmLandmarks:f,confidence:i[c]})}return r.dispose(),l.dispose(),p}async estimateHandBounds(t,n){let a=t.shape[1],r=t.shape[2],s=B(()=>t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),i=await this.getBoxes(s,n);s.dispose();let o=[];if(!i||i.length===0)return o;for(let l of i){let u=l.box.dataSync(),d=u.slice(0,2),p=u.slice(2,4),c=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),o.push(t9({startPoint:d,endPoint:p,palmLandmarks:c,confidence:l.confidence},[r/this.inputSize,a/this.inputSize]))}return o}};function Aoe(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function a9(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Aoe(n)}var r9=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function rs(e,t){let n=0;for(let a=0;a<e.length;a++)n+=e[a]*t[a];return n}function goe(e,t){let n=[];for(let a=0;a<e.length;a++)n.push(e[a][t]);return n}function s9(e,t){let n=[],a=e.length;for(let r=0;r<a;r++){n.push([]);for(let s=0;s<a;s++)n[r].push(rs(e[r],goe(t,s)))}return n}function bg(e,t){let n=Math.cos(e),a=Math.sin(e),r=[[n,-a,0],[a,n,0],[0,0,1]],s=r9(t[0],t[1]),i=s9(s,r),o=r9(-t[0],-t[1]);return s9(i,o)}function i9(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],a=[-rs(t[0],n),-rs(t[1],n)];return[t[0].concat(a[0]),t[1].concat(a[1]),[0,0,1]]}function vg(e,t){return[rs(e,t[0]),rs(e,t[1])]}var xoe=5,o9=1.65,l9=[0,5,9,13,17,1,2],boe=0,voe=2,wg=class{constructor(t,n){var a;this.handDetector=t,this.handPoseModel=n,this.inputSize=(a=this.handPoseModel)==null?void 0:a.inputs[0].shape[2],this.storedBoxes=[],this.skipped=0,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),a=t.map(i=>i[1]),r=[Math.min(...n),Math.min(...a)],s=[Math.max(...n),Math.max(...a)];return{startPoint:r,endPoint:s}}getBoxForPalmLandmarks(t,n){let a=t.map(s=>vg([...s,1],n)),r=this.calculateLandmarksBoundingBox(a);return O0(_0(r),xoe)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),a=O0(_0(n),o9);a.palmLandmarks=[];for(let r=0;r<l9.length;r++)a.palmLandmarks.push(t[l9[r]].slice(0,2));return a}transformRawCoords(t,n,a,r){let s=z0(n),i=[s[0]/this.inputSize,s[1]/this.inputSize,(s[0]+s[1])/this.inputSize/2],o=t.map(h=>[i[0]*(h[0]-this.inputSize/2),i[1]*(h[1]-this.inputSize/2),i[2]*h[2]]),l=bg(a,[0,0]),u=o.map(h=>[...vg(h,l),h[2]]),d=i9(r),p=[...ip(n),1],c=[rs(p,d[0]),rs(p,d[1])];return u.map(h=>[h[0]+c[0],h[1]+c[1],h[2]])}async estimateHands(t,n){let a=!1,r;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.skipFrame)&&(r=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.skipFrame&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(a=!0));let s=[];for(let i=0;i<this.storedBoxes.length;i++){let o=this.storedBoxes[i];if(!!o)if(n.hand.landmarks){let l=n.hand.rotation?a9(o.palmLandmarks[boe],o.palmLandmarks[voe]):0,u=ip(o),d=[u[0]/t.shape[2],u[1]/t.shape[1]],p=n.hand.rotation?Ve.rotateWithOffset(t,l,0,d):t.clone(),c=bg(-l,u),h=a?this.getBoxForPalmLandmarks(o.palmLandmarks,c):o,m=e9(h,p,[this.inputSize,this.inputSize]),f=m.div(255);m.dispose(),p.dispose();let[y,A]=await this.handPoseModel.predict(f);f.dispose();let g=y.dataSync()[0];if(y.dispose(),g>=n.hand.minConfidence){let x=H(A,[-1,3]),w=x.arraySync();A.dispose(),x.dispose();let b=this.transformRawCoords(w,h,l,c),v=this.getBoxForHandLandmarks(b);this.storedBoxes[i]={...v,confidence:g};let S={landmarks:b,confidence:g,box:{topLeft:v.startPoint,bottomRight:v.endPoint}};s.push(S)}else this.storedBoxes[i]=null;A.dispose()}else{let l=O0(_0(o),o9),u={confidence:o.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};s.push(u)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}};var u9={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},ss,is,d9;async function kg(e,t){let n=await d9.estimateHands(e,t);if(!n)return[];let a=[];for(let r=0;r<n.length;r++){let s={};if(n[r].landmarks)for(let u of Object.keys(u9))s[u]=u9[u].map(d=>n[r].landmarks[d]);let i=n[r].landmarks,o=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(i&&i.length>0){for(let u of i)u[0]<o[0]&&(o[0]=u[0]),u[1]<o[1]&&(o[1]=u[1]),u[0]>o[2]&&(o[2]=u[0]),u[1]>o[3]&&(o[3]=u[1]);o[2]-=o[0],o[3]-=o[1],l=[o[0]/e.shape[2],o[1]/e.shape[1],o[2]/e.shape[2],o[3]/e.shape[1]]}else o=n[r].box?[Math.max(0,n[r].box.topLeft[0]),Math.max(0,n[r].box.topLeft[1]),Math.min(e.shape[2],n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0]),Math.min(e.shape[1],n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1])]:[0,0,0,0],l=[n[r].box.topLeft[0]/e.shape[2],n[r].box.topLeft[1]/e.shape[1],(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/e.shape[2],(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/e.shape[1]];a.push({id:r,confidence:Math.round(100*n[r].confidence)/100,box:o,boxRaw:l,landmarks:i,annotations:s})}return a}async function Ig(e){!ss||!is?([ss,is]=await Promise.all([e.hand.enabled?gt(vt(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?gt(vt(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!ss||!ss.modelUrl?de("load model failed:",e.hand.detector.modelPath):e.debug&&de("load model:",ss.modelUrl),!is||!is.modelUrl?de("load model failed:",e.hand.skeleton.modelPath):e.debug&&de("load model:",is.modelUrl))):(e.debug&&de("cached model:",ss.modelUrl),e.debug&&de("cached model:",is.modelUrl));let t=new xg(ss);return d9=new wg(t,is),[ss,is]}var Tg={};_a(Tg,{load:()=>P0,predict:()=>Ng});var p9=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],c9=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var Fn;async function P0(e){return Fn?e.debug&&de("cached model:",Fn.modelUrl):(Fn=await gt(vt(e.modelBasePath,e.body.modelPath)),Fn.width=parseInt(Fn.signature.inputs["input_1:0"].tensorShape.dim[2].size),Fn.height=parseInt(Fn.signature.inputs["input_1:0"].tensorShape.dim[1].size),!Fn||!Fn.modelUrl?de("load model failed:",e.body.modelPath):e.debug&&de("load model:",Fn.modelUrl)),Fn}async function Ng(e,t){var f;if(!Fn)return[];if(!t.body.enabled)return[];let n={width:e.shape[2],height:e.shape[1]},a=Ve.resizeBilinear(e,[Fn.width,Fn.height],!1),r=fe(a,[255]);a.dispose();let s=await Fn.predict(r),i=((f=s.find(y=>y.size===195||y.size===155))==null?void 0:f.dataSync())||[];s.forEach(y=>y.dispose()),r.dispose();let o=[],l=(i==null?void 0:i.length)===195?p9:c9,u=5;for(let y=0;y<i.length/u;y++)o.push({id:y,part:l[y],position:{x:Math.trunc(n.width*i[u*y+0]/255),y:Math.trunc(n.height*i[u*y+1]/255),z:Math.trunc(i[u*y+2])+0},score:(100-Math.trunc(100/(1+Math.exp(i[u*y+3]))))/100,presence:(100-Math.trunc(100/(1+Math.exp(i[u*y+4]))))/100});let d=o.map(y=>y.position.x),p=o.map(y=>y.position.y),c=[Math.min(...d),Math.min(...p),Math.max(...d)-Math.min(...d),Math.max(...p)-Math.min(...d)],h=[0,0,0,0],m=o.reduce((y,A)=>A.score>y?A.score:y,0);return[{id:0,score:m,box:c,boxRaw:h,keypoints:o}]}var $n,tr=[],Eg=[0,0,0,0],Cg=[0,0,0,0],L0=0,Rg=Number.MAX_SAFE_INTEGER,woe=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function h9(e){return $n?e.debug&&de("cached model:",$n.modelUrl):($n=await gt(vt(e.modelBasePath,e.body.modelPath)),!$n||!$n.modelUrl?de("load model failed:",e.body.modelPath):e.debug&&de("load model:",$n.modelUrl)),$n}function koe(e,t){let[n,a]=e.shape;return B(()=>{let r=(o,l)=>ye(o,L(fe(o,we(l,"int32")),we(l,"int32"))),s=H(e,[a*n]),i=Tn(s,0).dataSync()[0];if(i>t){let o=yi(s,0),l=r(o,n).dataSync()[0],u=fe(o,we(n,"int32")).dataSync()[0];return[l,u,i]}return[0,0,i]})}async function Mg(e,t){return Rg<t.body.skipFrames&&t.skipFrame&&Object.keys(tr).length>0?(Rg++,[{id:0,score:L0,box:Eg,boxRaw:Cg,keypoints:tr}]):(Rg=0,new Promise(async n=>{let a=B(()=>{if(!$n.inputs[0].shape)return null;let u=Ve.resizeBilinear(e,[$n.inputs[0].shape[2],$n.inputs[0].shape[1]],!1);return L(u,2).sub(1)}),r;if(t.body.enabled&&(r=await $n.predict(a)),a.dispose(),r){tr.length=0;let u=r.squeeze();Ne(r);let d=u.unstack(2);Ne(u);for(let p=0;p<d.length;p++){let[c,h,m]=koe(d[p],t.body.minConfidence);L0>t.body.minConfidence&&tr.push({score:Math.round(100*m)/100,part:woe[p],positionRaw:{x:c/$n.inputs[0].shape[2],y:h/$n.inputs[0].shape[1]},position:{x:Math.round(e.shape[2]*c/$n.inputs[0].shape[2]),y:Math.round(e.shape[1]*h/$n.inputs[0].shape[1])}})}d.forEach(p=>Ne(p))}L0=tr.reduce((u,d)=>d.score>u?d.score:u,0);let s=tr.map(u=>u.position.x),i=tr.map(u=>u.position.y);Eg=[Math.min(...s),Math.min(...i),Math.max(...s)-Math.min(...s),Math.max(...i)-Math.min(...i)];let o=tr.map(u=>u.positionRaw.x),l=tr.map(u=>u.positionRaw.y);Cg=[Math.min(...o),Math.min(...l),Math.max(...o)-Math.min(...o),Math.max(...l)-Math.min(...l)],n([{id:0,score:L0,box:Eg,boxRaw:Cg,keypoints:tr}])}))}var Da,nr=[],Fg=[0,0,0,0],$g=[0,0,0,0],ou=0,Dg=Number.MAX_SAFE_INTEGER,Ioe=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"];async function zg(e){return Da?e.debug&&de("cached model:",Da.modelUrl):(Da=await gt(vt(e.modelBasePath,e.body.modelPath)),!Da||!Da.modelUrl?de("load model failed:",e.body.modelPath):e.debug&&de("load model:",Da.modelUrl)),Da}async function Og(e,t){return Dg<t.body.skipFrames&&t.skipFrame&&Object.keys(nr).length>0?(Dg++,[{id:0,score:ou,box:Fg,boxRaw:$g,keypoints:nr}]):(Dg=0,new Promise(async n=>{let a=B(()=>{if(!Da.inputs[0].shape)return null;let u=Ve.resizeBilinear(e,[Da.inputs[0].shape[2],Da.inputs[0].shape[1]],!1);return me(u,"int32")}),r;if(t.body.enabled&&(r=await Da.predict(a)),a.dispose(),r){nr.length=0;let u=r.arraySync();Ne(r);let d=u[0][0];for(let p=0;p<d.length;p++)ou=d[p][2],ou>t.body.minConfidence&&nr.push({score:Math.round(100*ou)/100,part:Ioe[p],positionRaw:{x:d[p][1],y:d[p][0]},position:{x:Math.round(e.shape[2]*d[p][1]),y:Math.round(e.shape[1]*d[p][0])}})}ou=nr.reduce((u,d)=>d.score>u?d.score:u,0);let s=nr.map(u=>u.position.x),i=nr.map(u=>u.position.y);Fg=[Math.min(...s),Math.min(...i),Math.max(...s)-Math.min(...s),Math.max(...i)-Math.min(...i)];let o=nr.map(u=>u.positionRaw.x),l=nr.map(u=>u.positionRaw.y);$g=[Math.min(...o),Math.min(...l),Math.max(...o)-Math.min(...o),Math.max(...l)-Math.min(...l)],n([{id:0,score:ou,box:Fg,boxRaw:$g,keypoints:nr}])}))}var Bg={};_a(Bg,{load:()=>Lg,predict:()=>Wg});var lu=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var qn,_g=[],Pg=Number.MAX_SAFE_INTEGER,W0=2.5;async function Lg(e){if(qn)e.debug&&de("cached model:",qn.modelUrl);else{qn=await gt(vt(e.modelBasePath,e.object.modelPath));let t=Object.values(qn.modelSignature.inputs);if(qn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!qn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!qn||!qn.modelUrl?de("load model failed:",e.object.modelPath):e.debug&&de("load model:",qn.modelUrl)}return qn}async function Soe(e,t,n,a){let r=0,s=[];for(let u of[1,2,4])B(()=>{var y,A;let d=u*13,p=(y=e.find(g=>g.shape[1]===d**2&&g.shape[2]===lu.length))==null?void 0:y.squeeze(),c=(A=e.find(g=>g.shape[1]===d**2&&g.shape[2]<lu.length))==null?void 0:A.squeeze(),m=c.reshape([-1,4,c.shape[1]/4]).argMax(2).arraySync(),f=p.arraySync();for(let g=0;g<p.shape[0];g++)for(let x=0;x<p.shape[1];x++){let w=f[g][x];if(w>a.object.minConfidence&&x!==61){let b=(.5+Math.trunc(g%d))/d,v=(.5+Math.trunc(g/d))/d,S=m[g].map(U=>U*(d/u/t)),[T,C]=[b-W0/u*S[0],v-W0/u*S[1]],[$,O]=[b+W0/u*S[2]-T,v+W0/u*S[3]-C],P=[T,C,$,O];P=P.map(U=>Math.max(0,Math.min(U,1)));let j=[P[0]*n[0],P[1]*n[1],P[2]*n[0],P[3]*n[1]],D={id:r++,strideSize:u,score:Math.round(100*w)/100,class:x+1,label:lu[x].label,center:[Math.trunc(n[0]*b),Math.trunc(n[1]*v)],centerRaw:[b,v],box:j.map(U=>Math.trunc(U)),boxRaw:P};s.push(D)}}});e.forEach(u=>Ne(u));let i=s.map(u=>[u.boxRaw[1],u.boxRaw[0],u.boxRaw[3],u.boxRaw[2]]),o=s.map(u=>u.score),l=[];if(i&&i.length>0){let u=await Ve.nonMaxSuppressionAsync(i,o,a.object.maxDetected,a.object.iouThreshold,a.object.minConfidence);l=u.dataSync(),Ne(u)}return s=s.filter((u,d)=>l.includes(d)).sort((u,d)=>d.score-u.score),s}async function Wg(e,t){return Pg<t.object.skipFrames&&t.skipFrame&&_g.length>0?(Pg++,_g):(Pg=0,new Promise(async n=>{let a=[e.shape[2],e.shape[1]],r=Ve.resizeBilinear(e,[qn.inputSize,qn.inputSize],!1),s=r.div(255),i=s.transpose([0,3,1,2]);s.dispose(),r.dispose();let o;t.object.enabled&&(o=await qn.predict(i)),i.dispose();let l=await Soe(o,qn.inputSize,a,t);_g=l,n(l)}))}var Gg={};_a(Gg,{load:()=>Ug,predict:()=>Hg});var Xn,Vg=[],jg=Number.MAX_SAFE_INTEGER;async function Ug(e){if(Xn)e.debug&&de("cached model:",Xn.modelUrl);else{Xn=await gt(vt(e.modelBasePath,e.object.modelPath));let t=Object.values(Xn.modelSignature.inputs);if(Xn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!Xn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!Xn||!Xn.modelUrl?de("load model failed:",e.object.modelPath):e.debug&&de("load model:",Xn.modelUrl)}return Xn}async function Noe(e,t,n,a){if(!e)return[];let r=[],s=e.arraySync(),i=Ha(e);e.dispose();let o=qt(i,6,1);i.dispose();let u=pn([o[1],o[0],o[3],o[2]],1).squeeze(),d=o[4].squeeze(),p=o[5].squeeze();o.forEach(f=>f.dispose());let c=await Ve.nonMaxSuppressionAsync(u,d,a.object.maxDetected,a.object.iouThreshold,a.object.minConfidence);u.dispose(),d.dispose(),p.dispose();let h=c.dataSync();c.dispose();let m=0;for(let f of h){let y=Math.trunc(100*s[0][f][4])/100,A=s[0][f][5],g=lu[A].label,x=[s[0][f][0]/t,s[0][f][1]/t,s[0][f][2]/t,s[0][f][3]/t],w=[Math.trunc(x[0]*n[0]),Math.trunc(x[1]*n[1]),Math.trunc(x[2]*n[0]),Math.trunc(x[3]*n[1])];r.push({id:m++,score:y,class:A,label:g,box:w,boxRaw:x})}return r}async function Hg(e,t){return jg<t.object.skipFrames&&t.skipFrame&&Vg.length>0?(jg++,Vg):(jg=0,new Promise(async n=>{let a=[e.shape[2],e.shape[1]],r=Ve.resizeBilinear(e,[Xn.inputSize,Xn.inputSize]),s=t.object.enabled?Xn.execute(r,["tower_0/detections"]):null;r.dispose();let i=await Noe(s,Xn.inputSize,a,t);Vg=i,n(i)}))}var f9=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let a=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&a&&r&&a.position.y<s.position.y&&r.position.y<s.position.y?t.push({body:n,gesture:"i give up"}):s&&a&&a.position.y<s.position.y?t.push({body:n,gesture:"raise left hand"}):s&&r&&r.position.y<s.position.y&&t.push({body:n,gesture:"raise right hand"});let i=e[n].keypoints.find(l=>l.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},m9=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>0){let a=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(a)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${a<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t},y9=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.rightEyeIris)continue;let a=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],s=Math.abs(a*r),i=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],o=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(i*o),u=!1;Math.abs(s-l)/Math.max(s,l)<.25&&(u=!0,t.push({iris:n,gesture:"facing center"}));let p=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].box[2],c=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].box[2];(c>.06||p>.06)&&(u=!1),c>.06&&t.push({iris:n,gesture:"looking right"}),p>.06&&t.push({iris:n,gesture:"looking left"});let h=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],m=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(m<.01||h<.01||m>.022||h>.022)&&(u=!1),(m<.01||h<.01)&&t.push({iris:n,gesture:"looking down"}),(m>.022||h>.022)&&t.push({iris:n,gesture:"looking up"}),u&&t.push({iris:n,gesture:"looking center"})}return t},A9=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let a=[];for(let[r,s]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(s)&&a.push({name:r.toLowerCase(),position:s[0]});if(a&&a.length>0){let r=a.reduce((i,o)=>i.position[2]<o.position[2]?i:o),s=a.reduce((i,o)=>i.position[1]<o.position[1]?i:o);t.push({hand:n,gesture:`${r.name} forward ${s.name} up`})}}return t};function Toe(e,t,n){let a=function(o,l,u){let d=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(d,(p,c)=>(u[c]=0,p))},r=function(o,l){let u=e.createShader(l);if(e.shaderSource(u,o),e.compileShader(u),!e.getShaderParameter(u,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(u));return u};this.uniform={},this.attribute={};let s=r(t,e.VERTEX_SHADER),i=r(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),a(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);a(t,"uniform",this.uniform),a(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)}function g9(e){e||(e={});let t=0,n=null,a=!1,r=-1,s=[null,null],i=[],o=-1,l=-1,u=null,d=null,p={},c=e.canvas||document.createElement("canvas"),h={},m={INTERMEDIATE:1},f=c.getContext("webgl");if(!f)throw new Error("Filter: getContext() failed");this.addFilter=function(b){let v=Array.prototype.slice.call(arguments,1),S=p[b];i.push({func:S,args:v})},this.reset=function(){i=[]};let y=function(b,v){if(!(b===o&&v===l)){if(c.width=b,o=b,c.height=v,l=v,!u){let S=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);u=f.createBuffer(),f.bindBuffer(f.ARRAY_BUFFER,u),f.bufferData(f.ARRAY_BUFFER,S,f.STATIC_DRAW),f.pixelStorei(f.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}f.viewport(0,0,o,l),s=[null,null]}},A=function(b,v){let S=f.createFramebuffer();f.bindFramebuffer(f.FRAMEBUFFER,S);let T=f.createRenderbuffer();f.bindRenderbuffer(f.RENDERBUFFER,T);let C=f.createTexture();return f.bindTexture(f.TEXTURE_2D,C),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,b,v,0,f.RGBA,f.UNSIGNED_BYTE,null),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.framebufferTexture2D(f.FRAMEBUFFER,f.COLOR_ATTACHMENT0,f.TEXTURE_2D,C,0),f.bindTexture(f.TEXTURE_2D,null),f.bindFramebuffer(f.FRAMEBUFFER,null),{fbo:S,texture:C}},g=function(b){return s[b]=s[b]||A(o,l),s[b]},x=function(b=null){var C,$;let v=null,S=null,T=!1;t===0?v=n:v=(C=g(r))==null?void 0:C.texture,t++,a&&!(b&m.INTERMEDIATE)?(S=null,T=t%2==0):(r=(r+1)%2,S=($=g(r))==null?void 0:$.fbo),f.bindTexture(f.TEXTURE_2D,v),f.bindFramebuffer(f.FRAMEBUFFER,S),f.uniform1f(d.uniform.flipY,T?-1:1),f.drawArrays(f.TRIANGLES,0,6)};this.apply=function(b){if(y(b.width,b.height),t=0,n||(n=f.createTexture()),f.bindTexture(f.TEXTURE_2D,n),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.NEAREST),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.NEAREST),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,f.RGBA,f.UNSIGNED_BYTE,b),i.length===0)return x(),c;for(let v=0;v<i.length;v++){a=v===i.length-1;let S=i[v];S.func.apply(this,S.args||[])}return c};let w=function(b){if(h[b])return d=h[b],f.useProgram(d.id),d;let v={};v.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
|
|
`),v.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
|
|
`),d=new Toe(f,v.VERTEX_IDENTITY,b);let S=Float32Array.BYTES_PER_ELEMENT,T=4*S;return f.enableVertexAttribArray(d.attribute.pos),f.vertexAttribPointer(d.attribute.pos,2,f.FLOAT,!1,T,0*S),f.enableVertexAttribArray(d.attribute.uv),f.vertexAttribPointer(d.attribute.uv,2,f.FLOAT,!1,T,2*S),h[b]=d,d};p.colorMatrix=function(b){let v=new Float32Array(b);v[4]/=255,v[9]/=255,v[14]/=255,v[19]/=255;let S=v[18]===1&&v[3]===0&&v[8]===0&&v[13]===0&&v[15]===0&&v[16]===0&&v[17]===0&&v[19]===0?p.colorMatrix.SHADER.WITHOUT_ALPHA:p.colorMatrix.SHADER.WITH_ALPHA,T=w(S);f.uniform1fv(T.uniform.m,v),x()},p.colorMatrix.SHADER={},p.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
|
|
`),p.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
|
|
`),p.brightness=function(b){let v=(b||0)+1;p.colorMatrix([v,0,0,0,0,0,v,0,0,0,0,0,v,0,0,0,0,0,1,0])},p.saturation=function(b){let v=(b||0)*2/3+1,S=(v-1)*-.5;p.colorMatrix([v,S,S,0,0,S,v,S,0,0,S,S,v,0,0,0,0,0,1,0])},p.desaturate=function(){p.saturation(-1)},p.contrast=function(b){let v=(b||0)+1,S=-128*(v-1);p.colorMatrix([v,0,0,0,S,0,v,0,0,S,0,0,v,0,S,0,0,0,1,0])},p.negative=function(){p.contrast(-2)},p.hue=function(b){b=(b||0)/180*Math.PI;let v=Math.cos(b),S=Math.sin(b),T=.213,C=.715,$=.072;p.colorMatrix([T+v*(1-T)+S*-T,C+v*-C+S*-C,$+v*-$+S*(1-$),0,0,T+v*-T+S*.143,C+v*(1-C)+S*.14,$+v*-$+S*-.283,0,0,T+v*-T+S*-(1-T),C+v*-C+S*C,$+v*(1-$)+S*$,0,0,0,0,0,1,0])},p.desaturateLuminance=function(){p.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},p.sepia=function(){p.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},p.brownie=function(){p.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},p.vintagePinhole=function(){p.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},p.kodachrome=function(){p.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},p.technicolor=function(){p.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},p.polaroid=function(){p.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},p.shiftToBGR=function(){p.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},p.convolution=function(b){let v=new Float32Array(b),S=1/o,T=1/l,C=w(p.convolution.SHADER);f.uniform1fv(C.uniform.m,v),f.uniform2f(C.uniform.px,S,T),x()},p.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
|
|
`),p.detectEdges=function(){p.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},p.sobelX=function(){p.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},p.sobelY=function(){p.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},p.sharpen=function(b){let v=b||1;p.convolution.call(this,[0,-1*v,0,-1*v,1+4*v,-1*v,0,-1*v,0])},p.emboss=function(b){let v=b||1;p.convolution.call(this,[-2*v,-1*v,0,-1*v,1,1*v,0,1*v,2*v])},p.blur=function(b){let v=b/7/o,S=b/7/l,T=w(p.blur.SHADER);f.uniform2f(T.uniform.px,0,S),x(m.INTERMEDIATE),f.uniform2f(T.uniform.px,v,0),x()},p.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
|
|
`),p.pixelate=function(b){let v=b/o,S=b/l,T=w(p.pixelate.SHADER);f.uniform2f(T.uniform.size,v,S),x()},p.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
|
|
`)}var B0=2048,Ce,xt,Ot;function qg(e,t){let n;if(!e)throw new Error("Human: Input is missing");if(!(e instanceof Le)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("Human: Input type is not recognized");if(e instanceof Le)if(e.shape&&e.shape.length===4&&e.shape[0]===1&&e.shape[3]===3)n=Wa(e);else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);else{let r=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,s=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,i=r,o=s;if(i>B0&&(i=B0,o=i*s/r),o>B0&&(o=B0,i=o*r/s),t.filter.width>0?i=t.filter.width:t.filter.height>0&&(i=r*(t.filter.height/s)),t.filter.height>0?o=t.filter.height:t.filter.width>0&&(o=s*(t.filter.width/r)),!i||!o)throw new Error("Human: Input cannot determine dimension");(!Ce||(Ce==null?void 0:Ce.width)!==i||(Ce==null?void 0:Ce.height)!==o)&&(Ce=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas"),(Ce==null?void 0:Ce.width)!==i&&(Ce.width=i),(Ce==null?void 0:Ce.height)!==o&&(Ce.height=o));let l=Ce.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):t.filter.flip&&typeof l.translate!="undefined"?(l.translate(r,0),l.scale(-1,1),l.drawImage(e,0,0,r,s,0,0,Ce==null?void 0:Ce.width,Ce==null?void 0:Ce.height),l.setTransform(1,0,0,1,0,0)):l.drawImage(e,0,0,r,s,0,0,Ce==null?void 0:Ce.width,Ce==null?void 0:Ce.height),t.filter.enabled){if((!Ot||!xt||Ce.width!==xt.width||(Ce==null?void 0:Ce.height)!==(xt==null?void 0:xt.height))&&(xt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ce==null?void 0:Ce.width,Ce==null?void 0:Ce.height):document.createElement("canvas"),(xt==null?void 0:xt.width)!==(Ce==null?void 0:Ce.width)&&(xt.width=Ce==null?void 0:Ce.width),(xt==null?void 0:xt.height)!==(Ce==null?void 0:Ce.height)&&(xt.height=Ce==null?void 0:Ce.height),Ot=ua.flags.IS_BROWSER?new g9({canvas:xt}):null),!Ot)return{tensor:null,canvas:Ce};Ot.reset(),Ot.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&Ot.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&Ot.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&Ot.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&Ot.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&Ot.addFilter("hue",t.filter.hue),t.filter.negative&&Ot.addFilter("negative"),t.filter.sepia&&Ot.addFilter("sepia"),t.filter.vintage&&Ot.addFilter("brownie"),t.filter.sepia&&Ot.addFilter("sepia"),t.filter.kodachrome&&Ot.addFilter("kodachrome"),t.filter.technicolor&&Ot.addFilter("technicolor"),t.filter.polaroid&&Ot.addFilter("polaroid"),t.filter.pixelate!==0&&Ot.addFilter("pixelate",t.filter.pixelate),Ot.apply(Ce)}else xt=Ce,Ot&&(Ot=null);let u;if(xt.data){let p=[xt.height,xt.width,3];u=Ic(xt.data,p,"int32")}else if(xt instanceof ImageData)u=fi.fromPixels(xt);else if(t.backend==="webgl"||t.backend==="humangl"){let p=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");p.width=i,p.height=o;let c=p.getContext("2d");c==null||c.drawImage(xt,0,0),u=fi.fromPixels(p)}else{let p=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");p.width=i,p.height=o;let c=p.getContext("2d");c==null||c.drawImage(xt,0,0);let h=c==null?void 0:c.getImageData(0,0,i,o);u=fi.fromPixels(h)}let d=u.toFloat();n=d.expandDims(0),u.dispose(),d.dispose()}let a=t.filter.return?xt:null;return{tensor:n,canvas:a}}var Zg={};_a(Zg,{all:()=>Moe,body:()=>v9,canvas:()=>Roe,face:()=>b9,gesture:()=>x9,hand:()=>w9,object:()=>k9,options:()=>os,person:()=>Eoe});var os={color:"rgba(173, 216, 230, 0.3)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:24,lineWidth:6,pointSize:2,roundRect:28,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,drawGaze:!1,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedFactor:2,bufferedOutput:!1},Je={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};function Xg(e,t,n,a=0,r){e.fillStyle=r.useDepth&&a?`rgba(${127.5+2*a}, ${127.5-2*a}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function op(e,t,n,a,r,s){if(e.beginPath(),s.useCurves){let i=(t+t+a)/2,o=(n+n+r)/2;e.ellipse(i,o,a/2,r/2,0,0,2*Math.PI)}else e.lineWidth=s.lineWidth,e.moveTo(t+s.roundRect,n),e.lineTo(t+a-s.roundRect,n),e.quadraticCurveTo(t+a,n,t+a,n+s.roundRect),e.lineTo(t+a,n+r-s.roundRect),e.quadraticCurveTo(t+a,n+r,t+a-s.roundRect,n+r),e.lineTo(t+s.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-s.roundRect),e.lineTo(t,n+s.roundRect),e.quadraticCurveTo(t,n,t+s.roundRect,n),e.closePath();e.stroke()}function Kg(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let a of t){let r=a[2]||0;e.strokeStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(a[0],Math.round(a[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function lp(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){Kg(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let a=0;a<t.length-2;a++){let r=(t[a][0]+t[a+1][0])/2,s=(t[a][1]+t[a+1][1])/2;e.quadraticCurveTo(t[a][0],t[a][1],r,s)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}async function x9(e,t,n){let a=zn(os,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!r)return;r.font=a.font,r.fillStyle=a.color;let s=1;for(let i=0;i<t.length;i++){let o=[],l=[];if([o,l]=Object.entries(t[i]),l.length>1&&l[1].length>0){let u=o[1]>0?`#${o[1]}`:"",d=`${o[0]} ${u}: ${l[1]}`;a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(d,8,2+s*a.lineHeight)),r.fillStyle=a.labelColor,r.fillText(d,6,0+s*a.lineHeight),s+=1}}}async function b9(e,t,n){var s,i,o,l;let a=zn(os,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r)for(let u of t){r.font=a.font,r.strokeStyle=a.color,r.fillStyle=a.color,a.drawBoxes&&op(r,u.box[0],u.box[1],u.box[2],u.box[3],a);let d=[];if(d.push(`face confidence: ${Math.trunc(100*u.confidence)}%`),u.genderConfidence&&d.push(`${u.gender||""} ${Math.trunc(100*u.genderConfidence)}% confident`),u.age&&d.push(`age: ${u.age||""}`),u.iris&&d.push(`iris distance: ${u.iris}`),u.emotion&&u.emotion.length>0){let p=u.emotion.map(c=>`${Math.trunc(100*c.score)}% ${c.emotion}`);d.push(p.join(" "))}u.rotation&&u.rotation.angle&&u.rotation.angle.roll&&d.push(`roll: ${Math.trunc(100*u.rotation.angle.roll)/100} yaw:${Math.trunc(100*u.rotation.angle.yaw)/100} pitch:${Math.trunc(100*u.rotation.angle.pitch)/100}`),d.length===0&&d.push("face"),r.fillStyle=a.color;for(let p=d.length-1;p>=0;p--){let c=Math.max(u.box[0],0),h=p*a.lineHeight+u.box[1];a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(d[p],c+5,h+16)),r.fillStyle=a.labelColor,r.fillText(d[p],c+4,h+15)}if(r.lineWidth=1,u.mesh&&u.mesh.length>0){if(a.drawPoints)for(let p of u.mesh)Xg(r,p[0],p[1],p[2],a);if(a.drawPolygons){r.lineWidth=1;for(let p=0;p<ji.length/3;p++){let c=[ji[p*3+0],ji[p*3+1],ji[p*3+2]].map(h=>u.mesh[h]);Kg(r,c,a)}if(u.annotations&&u.annotations.leftEyeIris){r.strokeStyle=a.useDepth?"rgba(255, 200, 255, 0.3)":a.color,r.beginPath();let p=Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0])/2,c=Math.abs(u.annotations.leftEyeIris[4][1]-u.annotations.leftEyeIris[2][1])/2;r.ellipse(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1],p,c,0,0,2*Math.PI),r.stroke(),a.fillPolygons&&(r.fillStyle=a.useDepth?"rgba(255, 255, 200, 0.3)":a.color,r.fill())}if(u.annotations&&u.annotations.rightEyeIris){r.strokeStyle=a.useDepth?"rgba(255, 200, 255, 0.3)":a.color,r.beginPath();let p=Math.abs(u.annotations.rightEyeIris[3][0]-u.annotations.rightEyeIris[1][0])/2,c=Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])/2;r.ellipse(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1],p,c,0,0,2*Math.PI),r.stroke(),a.fillPolygons&&(r.fillStyle=a.useDepth?"rgba(255, 255, 200, 0.3)":a.color,r.fill())}if(a.drawGaze&&((i=(s=u.rotation)==null?void 0:s.gaze)==null?void 0:i.strength)&&((l=(o=u.rotation)==null?void 0:o.gaze)==null?void 0:l.angle)){let p=[u.annotations.leftEyeIris[0][0]+Math.cos(u.rotation.gaze.angle)*u.rotation.gaze.strength*u.box[2],u.annotations.leftEyeIris[0][1]-Math.sin(u.rotation.gaze.angle)*u.rotation.gaze.strength*u.box[3]];r.beginPath(),r.moveTo(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1]),r.strokeStyle="pink",r.lineTo(p[0],p[1]),r.stroke();let c=[u.annotations.rightEyeIris[0][0]+Math.cos(u.rotation.gaze.angle)*u.rotation.gaze.strength*u.box[2],u.annotations.rightEyeIris[0][1]-Math.sin(u.rotation.gaze.angle)*u.rotation.gaze.strength*u.box[3]];r.beginPath(),r.moveTo(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1]),r.strokeStyle="pink",r.lineTo(c[0],c[1]),r.stroke()}}}}}async function v9(e,t,n){var s;let a=zn(os,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round";for(let i=0;i<t.length;i++){if(r.strokeStyle=a.color,r.fillStyle=a.color,r.lineWidth=a.lineWidth,r.font=a.font,a.drawBoxes&&t[i].box&&((s=t[i].box)==null?void 0:s.length)===4&&(op(r,t[i].box[0],t[i].box[1],t[i].box[2],t[i].box[3],a),a.drawLabels&&(a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(`body ${100*t[i].score}%`,t[i].box[0]+3,1+t[i].box[1]+a.lineHeight,t[i].box[2])),r.fillStyle=a.labelColor,r.fillText(`body ${100*t[i].score}%`,t[i].box[0]+2,0+t[i].box[1]+a.lineHeight,t[i].box[2]))),a.drawPoints)for(let o=0;o<t[i].keypoints.length;o++)r.fillStyle=a.useDepth&&t[i].keypoints[o].position.z?`rgba(${127.5+2*(t[i].keypoints[o].position.z||0)}, ${127.5-2*(t[i].keypoints[o].position.z||0)}, 255, 0.5)`:a.color,Xg(r,t[i].keypoints[o].position.x,t[i].keypoints[o].position.y,0,a);if(a.drawLabels&&(r.font=a.font,t[i].keypoints))for(let o of t[i].keypoints)r.fillStyle=a.useDepth&&o.position.z?`rgba(${127.5+2*o.position.z}, ${127.5-2*o.position.z}, 255, 0.5)`:a.color,r.fillText(`${o.part} ${Math.trunc(100*o.score)}%`,o.position.x+4,o.position.y+4);if(a.drawPolygons&&t[i].keypoints){let o,l=[];l.length=0,o=t[i].keypoints.find(u=>u.part==="leftShoulder"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="rightShoulder"),o&&l.push([o.position.x,o.position.y]),lp(r,l,a),l.length=0,o=t[i].keypoints.find(u=>u.part==="rightShoulder"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="rightHip"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="leftHip"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="leftShoulder"),o&&l.push([o.position.x,o.position.y]),l.length===4&&Kg(r,l,a),l.length=0,o=t[i].keypoints.find(u=>u.part==="leftHip"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="leftKnee"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="leftAnkle"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="leftHeel"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="leftFoot"),o&&l.push([o.position.x,o.position.y]),lp(r,l,a),l.length=0,o=t[i].keypoints.find(u=>u.part==="rightHip"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="rightKnee"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="rightAnkle"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="rightHeel"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="rightFoot"),o&&l.push([o.position.x,o.position.y]),lp(r,l,a),l.length=0,o=t[i].keypoints.find(u=>u.part==="leftShoulder"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="leftElbow"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="leftWrist"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="leftPalm"),o&&l.push([o.position.x,o.position.y]),lp(r,l,a),l.length=0,o=t[i].keypoints.find(u=>u.part==="rightShoulder"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="rightElbow"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="rightWrist"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="rightPalm"),o&&l.push([o.position.x,o.position.y]),lp(r,l,a)}}}}async function w9(e,t,n){let a=zn(os,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=a.font;for(let s of t){if(a.drawBoxes&&(r.strokeStyle=a.color,r.fillStyle=a.color,op(r,s.box[0],s.box[1],s.box[2],s.box[3],a),a.drawLabels&&(a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText("hand",s.box[0]+3,1+s.box[1]+a.lineHeight,s.box[2])),r.fillStyle=a.labelColor,r.fillText("hand",s.box[0]+2,0+s.box[1]+a.lineHeight,s.box[2])),r.stroke()),a.drawPoints&&s.landmarks&&s.landmarks.length>0)for(let i of s.landmarks)r.fillStyle=a.useDepth?`rgba(${127.5+2*i[2]}, ${127.5-2*i[2]}, 255, 0.5)`:a.color,Xg(r,i[0],i[1],0,a);if(a.drawLabels){let i=(o,l)=>{r.fillStyle=a.useDepth?`rgba(${127.5+2*o[o.length-1][2]}, ${127.5-2*o[o.length-1][2]}, 255, 0.5)`:a.color,r.fillText(l,o[o.length-1][0]+4,o[o.length-1][1]+4)};r.font=a.font,i(s.annotations.indexFinger,"index"),i(s.annotations.middleFinger,"middle"),i(s.annotations.ringFinger,"ring"),i(s.annotations.pinky,"pinky"),i(s.annotations.thumb,"thumb"),i(s.annotations.palmBase,"palm")}if(a.drawPolygons){let i=o=>{if(!!o)for(let l=0;l<o.length;l++)r.beginPath(),r.strokeStyle=a.useDepth?`rgba(${127.5+2*o[l][2]}, ${127.5-2*o[l][2]}, 255, 0.5)`:a.color,r.moveTo(o[l>0?l-1:0][0],o[l>0?l-1:0][1]),r.lineTo(o[l][0],o[l][1]),r.stroke()};r.lineWidth=a.lineWidth,i(s.annotations.indexFinger),i(s.annotations.middleFinger),i(s.annotations.ringFinger),i(s.annotations.pinky),i(s.annotations.thumb)}}}}async function k9(e,t,n){let a=zn(os,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=a.font;for(let s of t)if(a.drawBoxes){if(r.strokeStyle=a.color,r.fillStyle=a.color,op(r,s.box[0],s.box[1],s.box[2],s.box[3],a),a.drawLabels){let i=`${Math.round(100*s.score)}% ${s.label}`;a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(i,s.box[0]+3,1+s.box[1]+a.lineHeight,s.box[2])),r.fillStyle=a.labelColor,r.fillText(i,s.box[0]+2,0+s.box[1]+a.lineHeight,s.box[2])}r.stroke()}}}async function Eoe(e,t,n){let a=zn(os,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=a.font;for(let s=0;s<t.length;s++)if(a.drawBoxes){if(r.strokeStyle=a.color,r.fillStyle=a.color,op(r,t[s].box[0],t[s].box[1],t[s].box[2],t[s].box[3],a),a.drawLabels){let i=`person #${s}`;a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(i,t[s].box[0]+3,1+t[s].box[1]+a.lineHeight,t[s].box[2])),r.fillStyle=a.labelColor,r.fillText(i,t[s].box[0]+2,0+t[s].box[1]+a.lineHeight,t[s].box[2])}r.stroke()}}}function Coe(e,t){(!Je.body||e.body.length!==Je.body.length)&&(Je.body=JSON.parse(JSON.stringify(e.body)));for(let a=0;a<e.body.length;a++){let r=e.body[a].box.map((o,l)=>((t.bufferedFactor-1)*Je.body[a].box[l]+o)/t.bufferedFactor),s=e.body[a].boxRaw.map((o,l)=>((t.bufferedFactor-1)*Je.body[a].boxRaw[l]+o)/t.bufferedFactor),i=e.body[a].keypoints.map((o,l)=>({score:o.score,part:o.part,position:{x:Je.body[a].keypoints[l]?((t.bufferedFactor-1)*Je.body[a].keypoints[l].position.x+o.position.x)/t.bufferedFactor:o.position.x,y:Je.body[a].keypoints[l]?((t.bufferedFactor-1)*Je.body[a].keypoints[l].position.y+o.position.y)/t.bufferedFactor:o.position.y}}));Je.body[a]={...e.body[a],box:r,boxRaw:s,keypoints:i}}(!Je.hand||e.hand.length!==Je.hand.length)&&(Je.hand=JSON.parse(JSON.stringify(e.hand)));for(let a=0;a<e.hand.length;a++){let r=e.hand[a].box.map((u,d)=>((t.bufferedFactor-1)*Je.hand[a].box[d]+u)/t.bufferedFactor),s=e.hand[a].boxRaw.map((u,d)=>((t.bufferedFactor-1)*Je.hand[a].boxRaw[d]+u)/t.bufferedFactor),i=e.hand[a].landmarks.map((u,d)=>u.map((p,c)=>((t.bufferedFactor-1)*Je.hand[a].landmarks[d][c]+p)/t.bufferedFactor)),o=Object.keys(e.hand[a].annotations),l=[];for(let u of o)l[u]=e.hand[a].annotations[u].map((d,p)=>d.map((c,h)=>((t.bufferedFactor-1)*Je.hand[a].annotations[u][p][h]+c)/t.bufferedFactor));Je.hand[a]={...e.hand[a],box:r,boxRaw:s,landmarks:i,annotations:l}}(!Je.face||e.face.length!==Je.face.length)&&(Je.face=JSON.parse(JSON.stringify(e.face)));for(let a=0;a<e.face.length;a++){let r=e.face[a].box.map((i,o)=>((t.bufferedFactor-1)*Je.face[a].box[o]+i)/t.bufferedFactor),s=e.face[a].boxRaw.map((i,o)=>((t.bufferedFactor-1)*Je.face[a].boxRaw[o]+i)/t.bufferedFactor);Je.face[a]={...e.face[a],box:r,boxRaw:s}}let n=e.persons;(!Je.persons||n.length!==Je.persons.length)&&(Je.persons=JSON.parse(JSON.stringify(n)));for(let a=0;a<n.length;a++)Je.persons[a].box=n[a].box.map((r,s)=>((t.bufferedFactor-1)*Je.persons[a].box[s]+r)/t.bufferedFactor)}async function Roe(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let n=e.getContext("2d");n==null||n.drawImage(e,0,0)}async function Moe(e,t,n){let a=zn(os,n);!t||!e||e instanceof HTMLCanvasElement&&(a.bufferedOutput?Coe(t,a):Je=t,b9(e,Je.face,a),v9(e,Je.body,a),w9(e,Je.hand,a),x9(e,t.gesture,a),k9(e,t.object,a))}function I9(e,t,n,a,r){var o,l,u,d,p,c,h,m,f,y,A,g,x,w,b,v;let s=0,i=[];for(let S of e){let T={id:s++,face:S,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let D of t)S.box[0]>D.box[0]&&S.box[0]<D.box[0]+D.box[2]&&S.box[1]+S.box[3]>D.box[1]&&S.box[1]+S.box[3]<D.box[1]+D.box[3]&&(T.body=D);if(T.body)for(let D of n)D.box[0]+D.box[2]>T.body.box[0]&&D.box[0]+D.box[2]<T.body.box[0]+T.body.box[2]&&D.box[1]+D.box[3]>T.body.box[1]&&D.box[1]+D.box[3]<T.body.box[1]+T.body.box[3]&&T.hands&&(T.hands.left=D),D.box[0]<T.body.box[0]+T.body.box[2]&&D.box[0]>T.body.box[0]&&D.box[1]+D.box[3]>T.body.box[1]&&D.box[1]+D.box[3]<T.body.box[1]+T.body.box[3]&&T.hands&&(T.hands.right=D);for(let D of a)D.face!==void 0&&D.face===S.id?(o=T.gestures)==null||o.push(D):D.iris!==void 0&&D.iris===S.id?(l=T.gestures)==null||l.push(D):D.body!==void 0&&D.body===((u=T.body)==null?void 0:u.id)?(d=T.gestures)==null||d.push(D):D.hand!==void 0&&D.hand===((c=(p=T.hands)==null?void 0:p.left)==null?void 0:c.id)?(h=T.gestures)==null||h.push(D):D.hand!==void 0&&D.hand===((f=(m=T.hands)==null?void 0:m.right)==null?void 0:f.id)&&((y=T.gestures)==null||y.push(D));let C=[],$=[],O=D=>{D&&D.length===4&&(C.push(D[0],D[0]+D[2]),$.push(D[1],D[1]+D[3]))};O((A=T.face)==null?void 0:A.box),O((g=T.body)==null?void 0:g.box),O((w=(x=T.hands)==null?void 0:x.left)==null?void 0:w.box),O((v=(b=T.hands)==null?void 0:b.right)==null?void 0:v.box);let P=Math.min(...C),j=Math.min(...$);T.box=[P,j,Math.max(...C)-P,Math.max(...$)-j],r&&r.length===4&&(T.boxRaw=[T.box[0]/r[2],T.box[1]/r[1],T.box[2]/r[2],T.box[3]/r[1]]),i.push(T)}return i}var V0=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,j0=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;var S9="2.0.0";var uu,up,dp,Ui,Hi,du,U0,pp,H0,G0,q0,X0,$oe=class{constructor(t={}){Jn(this,uu,void 0);Jn(this,up,void 0);Jn(this,dp,void 0);Jn(this,Ui,void 0);Jn(this,Hi,void 0);Jn(this,du,void 0);this.analyze=(...t)=>{if(!on(this,up))return;let n=this.tf.engine().state.numTensors,a=on(this,uu);ga(this,uu,n);let r=n-a;r!==0&&de(...t,r)};Jn(this,U0,t=>{if(!on(this,dp))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof Le))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});Jn(this,pp,async(t=!1)=>{var n;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let a=at();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&this.config.debug&&de("running inside web worker"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&de("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&de("wasm path:",this.config.wasmPath),typeof((n=this.tf)==null?void 0:n.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let r=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),s=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&de(`wasm execution: ${r?"SIMD":"no SIMD"} ${s?"multithreaded":"singlethreaded"}`),this.config.debug&&!r&&de("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&Ck();try{await this.tf.setBackend(this.config.backend)}catch(r){de("error: cannot set backend:",this.config.backend,r)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_CPU_FORWARD",!0),ua.set("WEBGL_FORCE_F16_TEXTURES",!0),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),typeof this.config.deallocate!="undefined"&&(de("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0));let r=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&de(`gl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`)}await this.tf.ready(),this.perf.backend=Math.trunc(at()-a)}});Jn(this,H0,async t=>{if(this.config.cacheSensitivity===0)return!1;let n=32,a=t.resizeBilinear([Math.trunc(t.shape[1]/n),Math.trunc(t.shape[2]/n)]),r=a.dataSync(),s=0;for(let l=0;l<r.length/3;l++)s+=r[3*l+2];a.dispose();let i=100*(Math.max(s,on(this,Hi))/Math.min(s,on(this,Hi))-1);ga(this,Hi,s);let o=i<Math.max(this.config.cacheSensitivity,on(this,du));return ga(this,du,i>10*this.config.cacheSensitivity?0:i),o});Jn(this,G0,async()=>{let t=(r,s="application/octet-stream")=>fetch(`data:${s};base64,${r}`).then(i=>i.blob()),n,a;switch(this.config.warmup){case"face":n=await t(V0);break;case"full":n=await t(j0);break;default:n=null}if(n){let r=await createImageBitmap(n);a=await this.detect(r,this.config),r.close()}return a});Jn(this,q0,async()=>new Promise(t=>{let n,a=0;switch(this.config.warmup){case"face":a=256,n="data:image/jpeg;base64,"+V0;break;case"full":case"body":a=1200,n="data:image/jpeg;base64,"+j0;break;default:n=null}let r=new Image;r.onload=async()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(a,a):document.createElement("canvas");s.width=r.naturalWidth,s.height=r.naturalHeight;let i=s.getContext("2d");i==null||i.drawImage(r,0,0);let o=await this.detect(s,this.config);t(o)},n?r.src=n:t(null)}));Jn(this,X0,async()=>{let t=r=>Buffer.from(r,"base64"),n;if(this.config.warmup==="face"&&(n=t(V0)),(this.config.warmup==="body"||this.config.warmup==="full")&&(n=t(j0)),!n)return null;let a;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),s=r.expandDims(0);this.tf.dispose(r),a=await this.detect(s,this.config),this.tf.dispose(s)}else this.config.debug&&de("Warmup tfjs-node not loaded");return a});this.tf=tp,this.draw=Zg,this.version=S9,this.config=zn(d5,t),this.state="idle",ga(this,uu,0),ga(this,up,!1),ga(this,dp,!1),ga(this,Ui,!0),ga(this,du,0),this.perf={},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,movenet:null,handpose:null,iris:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,centernet:null,faceres:null},this.image=n=>qg(n,this.config),this.classes={facemesh:eg,emotion:rg,faceres:ug,body:this.config.body.modelPath.includes("posenet")?gg:Tg,hand:Sg,nanodet:Bg,centernet:Gg},this.faceTriangulation=Bk,this.faceUVMap=Vk,this.sysinfo=p5(),ga(this,Hi,1)}similarity(t,n){return og(t,n)}enhance(t){return lg(t)}match(t,n,a=0){return Hk(t,n,a)}async load(t={}){this.state="load";let n=at();t&&(this.config=zn(this.config,t)),on(this,Ui)&&(this.config.debug&&de(`version: ${this.version}`),this.config.debug&&de(`tfjs version: ${this.tf.version_core}`),this.config.debug&&de("platform:",this.sysinfo.platform),this.config.debug&&de("agent:",this.sysinfo.agent),await on(this,pp).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&de("configuration:",this.config),this.config.debug&&de("tf flags:",this.tf.ENV.flags))),this.config.async?[this.models.face,this.models.emotion,this.models.handpose,this.models.posenet,this.models.blazepose,this.models.efficientpose,this.models.movenet,this.models.nanodet,this.models.centernet,this.models.faceres]=await Promise.all([this.models.face||(this.config.face.enabled?Q2(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?ag(this.config):null),this.models.handpose||(this.config.hand.enabled?Ig(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelPath.includes("posenet")?Ag(this.config):null),this.models.blazepose||(this.config.body.enabled&&this.config.body.modelPath.includes("blazepose")?P0(this.config):null),this.models.efficientpose||(this.config.body.enabled&&this.config.body.modelPath.includes("efficientpose")?h9(this.config):null),this.models.movenet||(this.config.body.enabled&&this.config.body.modelPath.includes("movenet")?zg(this.config):null),this.models.nanodet||(this.config.object.enabled&&this.config.object.modelPath.includes("nanodet")?Lg(this.config):null),this.models.centernet||(this.config.object.enabled&&this.config.object.modelPath.includes("centernet")?Ug(this.config):null),this.models.faceres||(this.config.face.enabled&&this.config.face.description.enabled?ig(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await Q2(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await ag(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await Ig(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelPath.includes("posenet")&&(this.models.posenet=await Ag(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelPath.includes("blazepose")&&(this.models.blazepose=await P0(this.config)),this.config.body.enabled&&!this.models.efficientpose&&this.config.body.modelPath.includes("efficientpose")&&(this.models.efficientpose=await P0(this.config)),this.config.body.enabled&&!this.models.movenet&&this.config.body.modelPath.includes("movenet")&&(this.models.movenet=await zg(this.config)),this.config.object.enabled&&!this.models.nanodet&&this.config.object.modelPath.includes("nanodet")&&(this.models.nanodet=await Lg(this.config)),this.config.object.enabled&&!this.models.centernet&&this.config.object.modelPath.includes("centernet")&&(this.models.centernet=await Ug(this.config)),this.config.face.enabled&&this.config.face.description.enabled&&!this.models.faceres&&(this.models.faceres=await ig(this.config))),on(this,Ui)&&(this.config.debug&&de("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),ga(this,Ui,!1));let a=Math.trunc(at()-n);a>(this.perf.load||0)&&(this.perf.load=a)}async detect(t,n={}){return new Promise(async a=>{this.state="config";let r;this.config=zn(this.config,n),this.state="check";let s=on(this,U0).call(this,t);s&&(de(s,t),a({error:s}));let i=at();await on(this,pp).call(this),await this.load(),r=at();let o=qg(t,this.config);if(!o||!o.tensor){de("could not convert input to tensor"),a({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(at()-r),this.analyze("Get Image:"),r=at(),this.config.skipFrame=await on(this,H0).call(this,o.tensor),this.perf.frames||(this.perf.frames=0),this.perf.cached||(this.perf.cached=0),this.perf.frames++,this.config.skipFrame&&this.perf.cached++,this.perf.changed=Math.trunc(at()-r),this.analyze("Check Changed:");let l,u,d,p,c;this.config.async?(l=this.config.face.enabled?dg(this,o.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",r=at(),l=this.config.face.enabled?await dg(this,o.tensor):[],c=Math.trunc(at()-r),c>0&&(this.perf.face=c)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?u=this.config.body.enabled?yg(o.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?u=this.config.body.enabled?Ng(o.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?u=this.config.body.enabled?Mg(o.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(u=this.config.body.enabled?Og(o.tensor,this.config):[]),this.perf.body&&delete this.perf.body):(this.state="run:body",r=at(),this.config.body.modelPath.includes("posenet")?u=this.config.body.enabled?await yg(o.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?u=this.config.body.enabled?await Ng(o.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?u=this.config.body.enabled?await Mg(o.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(u=this.config.body.enabled?await Og(o.tensor,this.config):[]),c=Math.trunc(at()-r),c>0&&(this.perf.body=c)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(d=this.config.hand.enabled?kg(o.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",r=at(),d=this.config.hand.enabled?await kg(o.tensor,this.config):[],c=Math.trunc(at()-r),c>0&&(this.perf.hand=c)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(this.config.object.modelPath.includes("nanodet")?p=this.config.object.enabled?Wg(o.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(p=this.config.object.enabled?Hg(o.tensor,this.config):[]),this.perf.object&&delete this.perf.object):(this.state="run:object",r=at(),this.config.object.modelPath.includes("nanodet")?p=this.config.object.enabled?await Wg(o.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(p=this.config.object.enabled?await Hg(o.tensor,this.config):[]),c=Math.trunc(at()-r),c>0&&(this.perf.object=c)),this.analyze("End Object:"),this.config.async&&([l,u,d,p]=await Promise.all([l,u,d,p]));let h=[];this.config.gesture.enabled&&(r=at(),h=[...m9(l),...f9(u),...A9(d),...y9(l)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(at()-r)),this.perf.total=Math.trunc(at()-i),this.state="idle",this.result={face:l,body:u,hand:d,gesture:h,object:p,performance:this.perf,canvas:o.canvas,timestamp:Date.now(),get persons(){var m;return I9(l,u,d,h,(m=o==null?void 0:o.tensor)==null?void 0:m.shape)}},Ne(o.tensor),a(this.result)})}async warmup(t={}){let n=at();if(t&&(this.config=zn(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let a;typeof createImageBitmap=="function"?a=await on(this,G0).call(this):typeof Image!="undefined"?a=await on(this,q0).call(this):a=await on(this,X0).call(this);let r=at();return this.config.debug&&de("Warmup",this.config.warmup,Math.round(r-n),"ms",a),a}};uu=new WeakMap,up=new WeakMap,dp=new WeakMap,Ui=new WeakMap,Hi=new WeakMap,du=new WeakMap,U0=new WeakMap,pp=new WeakMap,H0=new WeakMap,G0=new WeakMap,q0=new WeakMap,X0=new WeakMap;export{$oe as Human,$oe as default};
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|
|
//# sourceMappingURL=human.esm.js.map
|