mirror of https://github.com/vladmandic/human
5547 lines
1.3 MiB
5547 lines
1.3 MiB
|
|
/*
|
|
Human library
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
var d5=Object.defineProperty;var WI=e=>d5(e,"__esModule",{value:!0});var $m=e=>{if(typeof require!="undefined")return require(e);throw new Error('Dynamic require of "'+e+'" is not supported')};var h5=(e,t)=>{WI(e);for(var n in t)d5(e,n,{get:t[n],enumerable:!0})};var p5=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var mn=(e,t,n)=>(p5(e,t,"read from private field"),n?n.call(e):t.get(e)),as=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},Ds=(e,t,n,s)=>(p5(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);function gt(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${r} Expecting JSON file`);return r}function ue(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var Ye=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function gn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=gn(a,o):n[r]=o}),n),{})}var Fm={backend:"webgl",modelBasePath:"../models/",wasmPath:"",debug:!0,async:!0,warmup:"full",cacheSensitivity:.75,skipFrame:!1,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:15,skipFrames:15,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:11,minConfidence:.1},emotion:{enabled:!0,minConfidence:.1,skipFrames:17,modelPath:"emotion.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:1,minConfidence:.2,skipFrames:1},hand:{enabled:!0,rotation:!0,skipFrames:18,minConfidence:.1,iouThreshold:.1,maxDetected:2,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:19},segmentation:{enabled:!1,modelPath:"selfie.json"}};function f5(){let e="",t="";if(typeof navigator!="undefined"){let n=navigator.userAgent.match(/\(([^()]+)\)/g);if(n&&n[0]){let s=n[0].match(/\(([^()]+)\)/g);e=s&&s[0]?s[0].replace(/\(|\)/g,""):"",t=navigator.userAgent.replace(n[0],""),e[1]&&(t=t.replace(n[1],"")),t=t.replace(/ /g," ")}}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var id={};h5(id,{Abs:()=>Ii,Acos:()=>Si,Acosh:()=>Ci,AdadeltaOptimizer:()=>gp,AdagradOptimizer:()=>Ap,AdamOptimizer:()=>yp,AdamaxOptimizer:()=>xp,Add:()=>Vr,AddN:()=>Na,All:()=>Ti,Any:()=>Ni,ArgMax:()=>Ea,ArgMin:()=>Pu,Asin:()=>Ei,Asinh:()=>Ri,Atan:()=>_i,Atan2:()=>$i,Atanh:()=>Di,AvgPool:()=>Ra,AvgPool3D:()=>Mu,AvgPool3DGrad:()=>Zd,AvgPoolGrad:()=>Kd,BackendWasm:()=>Wk,BatchMatMul:()=>_a,BatchToSpaceND:()=>Fi,Bincount:()=>Yd,BroadcastArgs:()=>Wm,BroadcastTo:()=>$5,Callback:()=>Lv,CallbackList:()=>_3,Cast:()=>Da,Ceil:()=>$a,ClipByValue:()=>Ur,Complex:()=>Jd,ComplexAbs:()=>zu,Concat:()=>Oi,Conv2D:()=>Fa,Conv2DBackpropFilter:()=>Qd,Conv2DBackpropInput:()=>Oa,Conv3D:()=>Lu,Conv3DBackpropFilterV2:()=>eh,Conv3DBackpropInputV2:()=>th,Cos:()=>Pa,Cosh:()=>Ma,CropAndResize:()=>Pi,Cumsum:()=>za,CustomCallback:()=>$3,DataStorage:()=>Hd,DenseBincount:()=>nh,DepthToSpace:()=>Mi,DepthwiseConv2dNative:()=>La,DepthwiseConv2dNativeBackpropFilter:()=>sh,DepthwiseConv2dNativeBackpropInput:()=>rh,Diag:()=>ah,Dilation2D:()=>Bu,Dilation2DBackpropFilter:()=>ih,Dilation2DBackpropInput:()=>oh,ENV:()=>os,EarlyStopping:()=>Wv,Einsum:()=>lh,Elu:()=>Wa,EluGrad:()=>uh,Environment:()=>_5,Equal:()=>Li,Erf:()=>zi,Exp:()=>Va,ExpandDims:()=>Bi,Expm1:()=>Wi,FFT:()=>ch,Fill:()=>Wu,FlipLeftRight:()=>Vi,Floor:()=>Ua,FloorDiv:()=>Ha,FromPixels:()=>_h,FusedBatchNorm:()=>Ga,FusedConv2D:()=>Co,FusedDepthwiseConv2D:()=>To,GPGPUContext:()=>wf,GatherNd:()=>Hi,GatherV2:()=>Ui,GraphModel:()=>x7,Greater:()=>Gi,GreaterEqual:()=>ja,History:()=>D3,IFFT:()=>dh,Identity:()=>qa,Imag:()=>hh,InputSpec:()=>zt,IsFinite:()=>ji,IsInf:()=>qi,IsNan:()=>Xi,KernelBackend:()=>$u,LRN:()=>Hu,LRNGrad:()=>fh,LayerVariable:()=>C3,LayersModel:()=>Nr,LeakyRelu:()=>Xa,Less:()=>Ki,LessEqual:()=>Zi,LinSpace:()=>ph,Log:()=>Ka,Log1p:()=>Yi,LogSoftmax:()=>F5,LogicalAnd:()=>Ji,LogicalNot:()=>Vu,LogicalOr:()=>Uu,MathBackendCPU:()=>of,MathBackendWebGL:()=>uu,Max:()=>Za,MaxPool:()=>Ja,MaxPool3D:()=>Gu,MaxPool3DGrad:()=>gh,MaxPoolGrad:()=>mh,MaxPoolWithArgmax:()=>Ah,Maximum:()=>Ya,Mean:()=>Qa,Min:()=>eo,Minimum:()=>to,MirrorPad:()=>no,Mod:()=>Qi,MomentumOptimizer:()=>bp,Multinomial:()=>yh,Multiply:()=>so,Neg:()=>el,NonMaxSuppressionV3:()=>nl,NonMaxSuppressionV4:()=>sl,NonMaxSuppressionV5:()=>rl,NotEqual:()=>tl,OP_SCOPE_SUFFIX:()=>K5,OneHot:()=>ro,OnesLike:()=>al,Optimizer:()=>Sr,Pack:()=>ol,PadV2:()=>ao,Pool:()=>GS,Pow:()=>oo,Prelu:()=>io,Prod:()=>il,RMSPropOptimizer:()=>vp,RNN:()=>ur,Range:()=>ju,Rank:()=>jm,Real:()=>xh,RealDiv:()=>Ba,Reciprocal:()=>ll,Reduction:()=>vn,Relu:()=>lo,Relu6:()=>co,Reshape:()=>ul,ResizeBilinear:()=>uo,ResizeBilinearGrad:()=>vh,ResizeNearestNeighbor:()=>qu,ResizeNearestNeighborGrad:()=>bh,Reverse:()=>ho,RotateWithOffset:()=>Il,Round:()=>po,Rsqrt:()=>fo,SGDOptimizer:()=>bc,ScatterNd:()=>cl,Select:()=>dl,Selu:()=>hl,Sequential:()=>Kl,Sigmoid:()=>go,Sign:()=>ml,Sin:()=>mo,Sinh:()=>fl,Slice:()=>pl,Softmax:()=>xo,Softplus:()=>gl,SpaceToBatchND:()=>Al,SparseFillEmptyRows:()=>wh,SparseReshape:()=>kh,SparseSegmentMean:()=>Ih,SparseSegmentSum:()=>Sh,SparseToDense:()=>Ch,SplitV:()=>yl,Sqrt:()=>Ao,Square:()=>Xu,SquaredDifference:()=>bo,Step:()=>Gr,StridedSlice:()=>xl,StringNGrams:()=>Th,StringSplit:()=>Nh,StringToHashBucketFast:()=>Eh,Sub:()=>vo,Sum:()=>yo,SymbolicTensor:()=>Vs,Tan:()=>wo,Tanh:()=>ko,Tensor:()=>Ge,TensorBuffer:()=>Ut,Tile:()=>Hr,TopK:()=>bl,Transform:()=>vl,Transpose:()=>Io,Unique:()=>Rh,Unpack:()=>wl,UnsortedSegmentSum:()=>Ku,Variable:()=>sc,ZerosLike:()=>kl,_FusedMatMul:()=>So,abs:()=>Ht,acos:()=>Fx,acosh:()=>Ox,add:()=>ae,addN:()=>Uh,all:()=>vg,any:()=>Hh,argMax:()=>er,argMin:()=>Px,asin:()=>Mx,asinh:()=>zx,atan:()=>Lx,atan2:()=>Bx,atanh:()=>Wx,avgPool:()=>jh,avgPool3d:()=>Ig,backend:()=>$x,backend_util:()=>D,basicLSTMCell:()=>ET,batchNorm:()=>Ol,batchNorm2d:()=>Gx,batchNorm3d:()=>jx,batchNorm4d:()=>qx,batchToSpaceND:()=>qh,bincount:()=>Sg,booleanMaskAsync:()=>VR,broadcastArgs:()=>Xx,broadcastTo:()=>cc,browser:()=>ls,buffer:()=>We,callbacks:()=>rL,cast:()=>ce,ceil:()=>Kx,clipByValue:()=>Gn,clone:()=>Os,complex:()=>qr,concat:()=>ft,concat1d:()=>Zx,concat2d:()=>Pl,concat3d:()=>Yx,concat4d:()=>Jx,constraints:()=>a3,conv1d:()=>Cg,conv2d:()=>Jr,conv2dTranspose:()=>Ng,conv3d:()=>Eg,conv3dTranspose:()=>eb,copyRegisteredKernels:()=>XS,cos:()=>Xh,cosh:()=>Rg,cosineWindow:()=>tA,cumsum:()=>_g,customGrad:()=>nr,data:()=>b7,denseBincount:()=>tb,deprecationWarn:()=>yg,depthToSpace:()=>nb,depthwiseConv2d:()=>dc,deregisterOp:()=>oL,device_util:()=>ac,diag:()=>aN,dilation2d:()=>sb,disableDeprecationWarnings:()=>VC,dispose:()=>K,disposeVariables:()=>UC,div:()=>de,divNoNan:()=>rb,dot:()=>pN,dropout:()=>Fb,einsum:()=>ab,elu:()=>hc,enableDebugMode:()=>WC,enableProdMode:()=>BC,enclosingPowerOfTwo:()=>Ob,engine:()=>wr,env:()=>Q,equal:()=>us,erf:()=>ob,exp:()=>cs,expandDims:()=>Ot,expm1:()=>ib,eye:()=>Dg,fft:()=>lp,fill:()=>Ml,findBackend:()=>xg,findBackendFactory:()=>ZC,floor:()=>pc,floorDiv:()=>bg,forceHalfFloat:()=>j6,fused:()=>ta,gather:()=>zl,gatherND:()=>$b,gather_util:()=>dg,getBackend:()=>XC,getGradient:()=>Vm,getKernel:()=>Dh,getKernelsForBackend:()=>Cl,gpgpu_util:()=>b6,grad:()=>zN,grads:()=>LN,greater:()=>jn,greaterEqual:()=>Po,ifft:()=>Ac,imag:()=>Kh,image:()=>_e,inTopKAsync:()=>QR,initializers:()=>h3,input:()=>nv,io:()=>_n,irfft:()=>Kg,isFinite:()=>NN,isInf:()=>RN,isNaN:()=>lb,keep:()=>Jt,kernel_impls:()=>rr,layers:()=>k3,leakyRelu:()=>Zh,less:()=>$g,lessEqual:()=>Mo,linalg:()=>Gb,linspace:()=>ub,loadGraphModel:()=>mt,loadLayersModel:()=>fM,localResponseNormalization:()=>cb,log:()=>ds,log1p:()=>Yh,logSigmoid:()=>GN,logSoftmax:()=>Fg,logSumExp:()=>mb,logicalAnd:()=>Ps,logicalNot:()=>Qh,logicalOr:()=>Mg,logicalXor:()=>sE,losses:()=>MD,matMul:()=>Ve,math:()=>px,max:()=>hs,maxPool:()=>ep,maxPool3d:()=>zg,maxPoolWithArgmax:()=>gb,maximum:()=>kr,mean:()=>_t,memory:()=>Vh,meshgrid:()=>uE,metrics:()=>Pv,min:()=>tp,minimum:()=>fc,mirrorPad:()=>Ab,mod:()=>yb,model:()=>hM,models:()=>Mv,moments:()=>np,movingAverage:()=>GR,mul:()=>L,multiRNNCell:()=>AE,multinomial:()=>xb,neg:()=>Tt,nextFrame:()=>wp,norm:()=>Qg,notEqual:()=>Bl,oneHot:()=>lc,ones:()=>qn,onesLike:()=>ps,op:()=>W,outerProduct:()=>wE,pad:()=>Qr,pad1d:()=>SE,pad2d:()=>TE,pad3d:()=>EE,pad4d:()=>_E,pool:()=>PE,pow:()=>ea,prelu:()=>rp,print:()=>ix,prod:()=>Lg,profile:()=>HC,rand:()=>WE,randomGamma:()=>GE,randomNormal:()=>bb,randomUniform:()=>Wl,range:()=>Vl,ready:()=>qC,real:()=>mc,reciprocal:()=>vb,registerBackend:()=>Dl,registerCallbackConstructor:()=>mM,registerGradient:()=>O5,registerKernel:()=>No,registerOp:()=>aL,regularizers:()=>zv,relu:()=>sr,relu6:()=>Vg,removeBackend:()=>KC,reshape:()=>U,reverse:()=>fs,reverse1d:()=>eR,reverse2d:()=>nR,reverse3d:()=>rR,reverse4d:()=>oR,rfft:()=>up,round:()=>Ug,rsqrt:()=>Hg,scalar:()=>Ie,scatterND:()=>Db,scatter_util:()=>hg,selu:()=>Gg,separableConv2d:()=>wb,sequential:()=>pM,serialization:()=>oe,setBackend:()=>jC,setPlatform:()=>YC,setWasmPath:()=>Lie,setWasmPaths:()=>Bie,setWebGLContext:()=>pf,setdiff1dAsync:()=>kb,shared:()=>d2,sigmoid:()=>Hn,sign:()=>Ib,signal:()=>PD,sin:()=>jg,sinh:()=>qg,slice:()=>Re,slice1d:()=>ap,slice2d:()=>Xg,slice3d:()=>op,slice4d:()=>gc,slice_util:()=>xn,softmax:()=>ip,softplus:()=>Ll,spaceToBatchND:()=>sp,sparse:()=>xc,sparseToDense:()=>eA,spectral:()=>OD,split:()=>an,sqrt:()=>hn,square:()=>ct,squaredDifference:()=>Zg,squeeze:()=>lt,stack:()=>Dn,step:()=>yc,stridedSlice:()=>Sb,string:()=>mp,sub:()=>ge,sum:()=>ve,sumOutType:()=>Mh,tan:()=>Cb,tanh:()=>Fl,tensor:()=>dn,tensor1d:()=>Mt,tensor2d:()=>Ms,tensor3d:()=>Bh,tensor4d:()=>DR,tensor5d:()=>$R,tensor6d:()=>FR,tensor_util:()=>$s,test_util:()=>Ex,tidy:()=>H,tile:()=>Ts,time:()=>GC,topk:()=>Tb,train:()=>Bo,transpose:()=>Xe,truncatedNormal:()=>cp,unique:()=>Yg,unregisterGradient:()=>qS,unregisterKernel:()=>jS,unsortedSegmentSum:()=>Nb,unstack:()=>ms,upcastType:()=>Cs,util:()=>w,valueAndGrad:()=>BN,valueAndGrads:()=>WN,variable:()=>Eb,variableGrads:()=>db,version:()=>Uie,version_converter:()=>uB,version_core:()=>Dx,version_cpu:()=>KW,version_layers:()=>PA,version_wasm:()=>Wie,version_webgl:()=>wK,webgl:()=>kK,webgl_util:()=>Hw,where:()=>bn,whereAsync:()=>Jg,zeros:()=>Pt,zerosLike:()=>Ke});var VI=Object.create,Ud=Object.defineProperty,UI=Object.getOwnPropertyDescriptor,HI=Object.getOwnPropertyNames,GI=Object.getPrototypeOf,jI=Object.prototype.hasOwnProperty,m5=e=>Ud(e,"__esModule",{value:!0}),vi=e=>{if(typeof $m!="undefined")return $m(e);throw new Error('Dynamic require of "'+e+'" is not supported')},vt=(e,t)=>function(){return t||(0,e[Object.keys(e)[0]])((t={exports:{}}).exports,t),t.exports},Pe=(e,t)=>{m5(e);for(var n in t)Ud(e,n,{get:t[n],enumerable:!0})},qI=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let s of HI(t))!jI.call(e,s)&&s!=="default"&&Ud(e,s,{get:()=>t[s],enumerable:!(n=UI(t,s))||n.enumerable});return e},Sa=e=>qI(m5(Ud(e!=null?VI(GI(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),XI=vt({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(R){}function s(R,T,P){this.low=R|0,this.high=T|0,this.unsigned=!!P}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(R){return(R&&R.__isLong__)===!0}s.isLong=r;var a={},o={};function i(R,T){var P,V,j;return T?(R>>>=0,(j=0<=R&&R<256)&&(V=o[R],V)?V:(P=u(R,(R|0)<0?-1:0,!0),j&&(o[R]=P),P)):(R|=0,(j=-128<=R&&R<128)&&(V=a[R],V)?V:(P=u(R,R<0?-1:0,!1),j&&(a[R]=P),P))}s.fromInt=i;function l(R,T){if(isNaN(R))return T?b:x;if(T){if(R<0)return b;if(R>=g)return _}else{if(R<=-A)return O;if(R+1>=A)return C}return R<0?l(-R,T).neg():u(R%m|0,R/m|0,T)}s.fromNumber=l;function u(R,T,P){return new s(R,T,P)}s.fromBits=u;var c=Math.pow;function d(R,T,P){if(R.length===0)throw Error("empty string");if(R==="NaN"||R==="Infinity"||R==="+Infinity"||R==="-Infinity")return x;if(typeof T=="number"?(P=T,T=!1):T=!!T,P=P||10,P<2||36<P)throw RangeError("radix");var V;if((V=R.indexOf("-"))>0)throw Error("interior hyphen");if(V===0)return d(R.substring(1),T,P).neg();for(var j=l(c(P,8)),q=x,X=0;X<R.length;X+=8){var ee=Math.min(8,R.length-X),te=parseInt(R.substring(X,X+ee),P);if(ee<8){var ne=l(c(P,ee));q=q.mul(ne).add(l(te))}else q=q.mul(j),q=q.add(l(te))}return q.unsigned=T,q}s.fromString=d;function h(R,T){return typeof R=="number"?l(R,T):typeof R=="string"?d(R,T):u(R.low,R.high,typeof T=="boolean"?T:R.unsigned)}s.fromValue=h;var p=1<<16,f=1<<24,m=p*p,g=m*m,A=g/2,y=i(f),x=i(0);s.ZERO=x;var b=i(0,!0);s.UZERO=b;var v=i(1);s.ONE=v;var k=i(1,!0);s.UONE=k;var S=i(-1);s.NEG_ONE=S;var C=u(4294967295|0,2147483647|0,!1);s.MAX_VALUE=C;var _=u(4294967295|0,4294967295|0,!0);s.MAX_UNSIGNED_VALUE=_;var O=u(0,2147483648|0,!1);s.MIN_VALUE=O;var E=s.prototype;E.toInt=function(){return this.unsigned?this.low>>>0:this.low},E.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},E.toString=function(T){if(T=T||10,T<2||36<T)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(O)){var P=l(T),V=this.div(P),j=V.mul(P).sub(this);return V.toString(T)+j.toInt().toString(T)}else return"-"+this.neg().toString(T);for(var q=l(c(T,6),this.unsigned),X=this,ee="";;){var te=X.div(q),ne=X.sub(te.mul(q)).toInt()>>>0,se=ne.toString(T);if(X=te,X.isZero())return se+ee;for(;se.length<6;)se="0"+se;ee=""+se+ee}},E.getHighBits=function(){return this.high},E.getHighBitsUnsigned=function(){return this.high>>>0},E.getLowBits=function(){return this.low},E.getLowBitsUnsigned=function(){return this.low>>>0},E.getNumBitsAbs=function(){if(this.isNegative())return this.eq(O)?64:this.neg().getNumBitsAbs();for(var T=this.high!=0?this.high:this.low,P=31;P>0&&(T&1<<P)==0;P--);return this.high!=0?P+33:P+1},E.isZero=function(){return this.high===0&&this.low===0},E.eqz=E.isZero,E.isNegative=function(){return!this.unsigned&&this.high<0},E.isPositive=function(){return this.unsigned||this.high>=0},E.isOdd=function(){return(this.low&1)==1},E.isEven=function(){return(this.low&1)==0},E.equals=function(T){return r(T)||(T=h(T)),this.unsigned!==T.unsigned&&this.high>>>31==1&&T.high>>>31==1?!1:this.high===T.high&&this.low===T.low},E.eq=E.equals,E.notEquals=function(T){return!this.eq(T)},E.neq=E.notEquals,E.ne=E.notEquals,E.lessThan=function(T){return this.comp(T)<0},E.lt=E.lessThan,E.lessThanOrEqual=function(T){return this.comp(T)<=0},E.lte=E.lessThanOrEqual,E.le=E.lessThanOrEqual,E.greaterThan=function(T){return this.comp(T)>0},E.gt=E.greaterThan,E.greaterThanOrEqual=function(T){return this.comp(T)>=0},E.gte=E.greaterThanOrEqual,E.ge=E.greaterThanOrEqual,E.compare=function(T){if(r(T)||(T=h(T)),this.eq(T))return 0;var P=this.isNegative(),V=T.isNegative();return P&&!V?-1:!P&&V?1:this.unsigned?T.high>>>0>this.high>>>0||T.high===this.high&&T.low>>>0>this.low>>>0?-1:1:this.sub(T).isNegative()?-1:1},E.comp=E.compare,E.negate=function(){return!this.unsigned&&this.eq(O)?O:this.not().add(v)},E.neg=E.negate,E.add=function(T){r(T)||(T=h(T));var P=this.high>>>16,V=this.high&65535,j=this.low>>>16,q=this.low&65535,X=T.high>>>16,ee=T.high&65535,te=T.low>>>16,ne=T.low&65535,se=0,J=0,ie=0,le=0;return le+=q+ne,ie+=le>>>16,le&=65535,ie+=j+te,J+=ie>>>16,ie&=65535,J+=V+ee,se+=J>>>16,J&=65535,se+=P+X,se&=65535,u(ie<<16|le,se<<16|J,this.unsigned)},E.subtract=function(T){return r(T)||(T=h(T)),this.add(T.neg())},E.sub=E.subtract,E.multiply=function(T){if(this.isZero())return x;if(r(T)||(T=h(T)),n){var P=n.mul(this.low,this.high,T.low,T.high);return u(P,n.get_high(),this.unsigned)}if(T.isZero())return x;if(this.eq(O))return T.isOdd()?O:x;if(T.eq(O))return this.isOdd()?O:x;if(this.isNegative())return T.isNegative()?this.neg().mul(T.neg()):this.neg().mul(T).neg();if(T.isNegative())return this.mul(T.neg()).neg();if(this.lt(y)&&T.lt(y))return l(this.toNumber()*T.toNumber(),this.unsigned);var V=this.high>>>16,j=this.high&65535,q=this.low>>>16,X=this.low&65535,ee=T.high>>>16,te=T.high&65535,ne=T.low>>>16,se=T.low&65535,J=0,ie=0,le=0,he=0;return he+=X*se,le+=he>>>16,he&=65535,le+=q*se,ie+=le>>>16,le&=65535,le+=X*ne,ie+=le>>>16,le&=65535,ie+=j*se,J+=ie>>>16,ie&=65535,ie+=q*ne,J+=ie>>>16,ie&=65535,ie+=X*te,J+=ie>>>16,ie&=65535,J+=V*se+j*ne+q*te+X*ee,J&=65535,u(le<<16|he,J<<16|ie,this.unsigned)},E.mul=E.multiply,E.divide=function(T){if(r(T)||(T=h(T)),T.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&T.low===-1&&T.high===-1)return this;var P=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,T.low,T.high);return u(P,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:x;var V,j,q;if(this.unsigned){if(T.unsigned||(T=T.toUnsigned()),T.gt(this))return b;if(T.gt(this.shru(1)))return k;q=b}else{if(this.eq(O)){if(T.eq(v)||T.eq(S))return O;if(T.eq(O))return v;var X=this.shr(1);return V=X.div(T).shl(1),V.eq(x)?T.isNegative()?v:S:(j=this.sub(T.mul(V)),q=V.add(j.div(T)),q)}else if(T.eq(O))return this.unsigned?b:x;if(this.isNegative())return T.isNegative()?this.neg().div(T.neg()):this.neg().div(T).neg();if(T.isNegative())return this.div(T.neg()).neg();q=x}for(j=this;j.gte(T);){V=Math.max(1,Math.floor(j.toNumber()/T.toNumber()));for(var ee=Math.ceil(Math.log(V)/Math.LN2),te=ee<=48?1:c(2,ee-48),ne=l(V),se=ne.mul(T);se.isNegative()||se.gt(j);)V-=te,ne=l(V,this.unsigned),se=ne.mul(T);ne.isZero()&&(ne=v),q=q.add(ne),j=j.sub(se)}return q},E.div=E.divide,E.modulo=function(T){if(r(T)||(T=h(T)),n){var P=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,T.low,T.high);return u(P,n.get_high(),this.unsigned)}return this.sub(this.div(T).mul(T))},E.mod=E.modulo,E.rem=E.modulo,E.not=function(){return u(~this.low,~this.high,this.unsigned)},E.and=function(T){return r(T)||(T=h(T)),u(this.low&T.low,this.high&T.high,this.unsigned)},E.or=function(T){return r(T)||(T=h(T)),u(this.low|T.low,this.high|T.high,this.unsigned)},E.xor=function(T){return r(T)||(T=h(T)),u(this.low^T.low,this.high^T.high,this.unsigned)},E.shiftLeft=function(T){return r(T)&&(T=T.toInt()),(T&=63)===0?this:T<32?u(this.low<<T,this.high<<T|this.low>>>32-T,this.unsigned):u(0,this.low<<T-32,this.unsigned)},E.shl=E.shiftLeft,E.shiftRight=function(T){return r(T)&&(T=T.toInt()),(T&=63)===0?this:T<32?u(this.low>>>T|this.high<<32-T,this.high>>T,this.unsigned):u(this.high>>T-32,this.high>=0?0:-1,this.unsigned)},E.shr=E.shiftRight,E.shiftRightUnsigned=function(T){if(r(T)&&(T=T.toInt()),T&=63,T===0)return this;var P=this.high;if(T<32){var V=this.low;return u(V>>>T|P<<32-T,P>>>T,this.unsigned)}else return T===32?u(P,0,this.unsigned):u(P>>>T-32,0,this.unsigned)},E.shru=E.shiftRightUnsigned,E.shr_u=E.shiftRightUnsigned,E.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},E.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},E.toBytes=function(T){return T?this.toBytesLE():this.toBytesBE()},E.toBytesLE=function(){var T=this.high,P=this.low;return[P&255,P>>>8&255,P>>>16&255,P>>>24,T&255,T>>>8&255,T>>>16&255,T>>>24]},E.toBytesBE=function(){var T=this.high,P=this.low;return[T>>>24,T>>>16&255,T>>>8&255,T&255,P>>>24,P>>>16&255,P>>>8&255,P&255]},s.fromBytes=function(T,P,V){return V?s.fromBytesLE(T,P):s.fromBytesBE(T,P)},s.fromBytesLE=function(T,P){return new s(T[0]|T[1]<<8|T[2]<<16|T[3]<<24,T[4]|T[5]<<8|T[6]<<16|T[7]<<24,P)},s.fromBytesBE=function(T,P){return new s(T[4]<<24|T[5]<<16|T[6]<<8|T[7],T[0]<<24|T[1]<<16|T[2]<<8|T[3],P)}}}),KI=vt({"(disabled):node_modules/.pnpm/node-fetch@2.6.1/node_modules/node-fetch/browser.js"(){}}),ZI=vt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(u){var c=this,d=l();c.next=function(){var h=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=h-(c.c=h|0)},c.c=1,c.s0=d(" "),c.s1=d(" "),c.s2=d(" "),c.s0-=d(u),c.s0<0&&(c.s0+=1),c.s1-=d(u),c.s1<0&&(c.s1+=1),c.s2-=d(u),c.s2<0&&(c.s2+=1),d=null}function o(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function i(u,c){var d=new a(u),h=c&&c.state,p=d.next;return p.int32=function(){return d.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,h&&(typeof h=="object"&&o(h,d),p.state=function(){return o(d,{})}),p}function l(){var u=4022871197,c=function(d){d=d.toString();for(var h=0;h<d.length;h++){u+=d.charCodeAt(h);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),YI=vt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var h=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^h^h>>>8},l===(l|0)?u.x=l:c+=l;for(var d=0;d<c.length+64;d++)u.x^=c.charCodeAt(d)|0,u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),JI=vt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var h=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(h^h<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var d=0;d<c.length+64;d++)u.x^=c.charCodeAt(d)|0,d==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),QI=vt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.x,h=u.i,p,f,m;return p=d[h],p^=p>>>7,f=p^p<<24,p=d[h+1&7],f^=p^p>>>10,p=d[h+3&7],f^=p^p>>>3,p=d[h+4&7],f^=p^p<<7,p=d[h+7&7],p=p^p<<13,f^=p^p<<9,d[h]=f,u.i=h+1&7,f};function c(d,h){var p,f,m=[];if(h===(h|0))f=m[0]=h;else for(h=""+h,p=0;p<h.length;++p)m[p&7]=m[p&7]<<15^h.charCodeAt(p)+m[p+1&7]<<13;for(;m.length<8;)m.push(0);for(p=0;p<8&&m[p]===0;++p);for(p==8?f=m[7]=-1:f=m[p],d.x=m,d.i=0,p=256;p>0;--p)d.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(d.x&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),eS=vt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.w,h=u.X,p=u.i,f,m;return u.w=d=d+1640531527|0,m=h[p+34&127],f=h[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=h[p]=m^f,u.i=p,m+(d^d>>>16)|0};function c(d,h){var p,f,m,g,A,y=[],x=128;for(h===(h|0)?(f=h,h=null):(h=h+"\0",f=0,x=Math.max(x,h.length)),m=0,g=-32;g<x;++g)h&&(f^=h.charCodeAt((g+32)%h.length)),g===0&&(A=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(A=A+1640531527|0,p=y[g&127]^=f+A,m=p==0?m+1:0);for(m>=128&&(y[(h&&h.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=y[m+34&127],p=y[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,y[m]=f^p;d.w=A,d.X=y,d.i=m}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(d.X&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),tS=vt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var h=u.b,p=u.c,f=u.d,m=u.a;return h=h<<25^h>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-h|0,u.b=h=h<<20^h>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-h|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var d=0;d<c.length+20;d++)u.b^=c.charCodeAt(d)|0,u.next()}function o(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),g5=vt({"(disabled):crypto"(){}}),nS=vt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s){var r=this,a=256,o=6,i=52,l="random",u=s.pow(a,o),c=s.pow(2,i),d=c*2,h=a-1,p;function f(v,k,S){var C=[];k=k==!0?{entropy:!0}:k||{};var _=y(A(k.entropy?[v,b(n)]:v==null?x():v,3),C),O=new m(C),E=function(){for(var R=O.g(o),T=u,P=0;R<c;)R=(R+P)*a,T*=a,P=O.g(1);for(;R>=d;)R/=2,T/=2,P>>>=1;return(R+P)/T};return E.int32=function(){return O.g(4)|0},E.quick=function(){return O.g(4)/4294967296},E.double=E,y(b(O.S),n),(k.pass||S||function(R,T,P,V){return V&&(V.S&&g(V,O),R.state=function(){return g(O,{})}),P?(s[l]=R,T):R})(E,_,"global"in k?k.global:this==s,k.state)}s["seed"+l]=f;function m(v){var k,S=v.length,C=this,_=0,O=C.i=C.j=0,E=C.S=[];for(S||(v=[S++]);_<a;)E[_]=_++;for(_=0;_<a;_++)E[_]=E[O=h&O+v[_%S]+(k=E[_])],E[O]=k;(C.g=function(R){for(var T,P=0,V=C.i,j=C.j,q=C.S;R--;)T=q[V=h&V+1],P=P*a+q[h&(q[V]=q[j=h&j+T])+(q[j]=T)];return C.i=V,C.j=j,P})(a)}function g(v,k){return k.i=v.i,k.j=v.j,k.S=v.S.slice(),k}function A(v,k){var S=[],C=typeof v,_;if(k&&C=="object")for(_ in v)try{S.push(A(v[_],k-1))}catch(O){}return S.length?S:C=="string"?v:v+"\0"}function y(v,k){for(var S=v+"",C,_=0;_<S.length;)k[h&_]=h&(C^=k[h&_]*19)+S.charCodeAt(_++);return b(k)}function x(){try{var v;return p&&(v=p.randomBytes)?v=v(a):(v=new Uint8Array(a),(r.crypto||r.msCrypto).getRandomValues(v)),b(v)}catch(C){var k=r.navigator,S=k&&k.plugins;return[+new Date,r,S,r.screen,b(n)]}}function b(v){return String.fromCharCode.apply(0,v)}if(y(s.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{p=g5()}catch(v){}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}}),A5=vt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/index.js"(e,t){var n=ZI(),s=YI(),r=JI(),a=QI(),o=eS(),i=tS(),l=nS();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),sS=vt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(u){var c=this,d=l();c.next=function(){var h=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=h-(c.c=h|0)},c.c=1,c.s0=d(" "),c.s1=d(" "),c.s2=d(" "),c.s0-=d(u),c.s0<0&&(c.s0+=1),c.s1-=d(u),c.s1<0&&(c.s1+=1),c.s2-=d(u),c.s2<0&&(c.s2+=1),d=null}function o(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function i(u,c){var d=new a(u),h=c&&c.state,p=d.next;return p.int32=function(){return d.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,h&&(typeof h=="object"&&o(h,d),p.state=function(){return o(d,{})}),p}function l(){var u=4022871197,c=function(d){d=String(d);for(var h=0;h<d.length;h++){u+=d.charCodeAt(h);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),rS=vt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var h=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^h^h>>>8},l===(l|0)?u.x=l:c+=l;for(var d=0;d<c.length+64;d++)u.x^=c.charCodeAt(d)|0,u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),aS=vt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var h=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(h^h<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var d=0;d<c.length+64;d++)u.x^=c.charCodeAt(d)|0,d==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),oS=vt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.x,h=u.i,p,f,m;return p=d[h],p^=p>>>7,f=p^p<<24,p=d[h+1&7],f^=p^p>>>10,p=d[h+3&7],f^=p^p>>>3,p=d[h+4&7],f^=p^p<<7,p=d[h+7&7],p=p^p<<13,f^=p^p<<9,d[h]=f,u.i=h+1&7,f};function c(d,h){var p,f,m=[];if(h===(h|0))f=m[0]=h;else for(h=""+h,p=0;p<h.length;++p)m[p&7]=m[p&7]<<15^h.charCodeAt(p)+m[p+1&7]<<13;for(;m.length<8;)m.push(0);for(p=0;p<8&&m[p]===0;++p);for(p==8?f=m[7]=-1:f=m[p],d.x=m,d.i=0,p=256;p>0;--p)d.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(d.x&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),iS=vt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.w,h=u.X,p=u.i,f,m;return u.w=d=d+1640531527|0,m=h[p+34&127],f=h[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=h[p]=m^f,u.i=p,m+(d^d>>>16)|0};function c(d,h){var p,f,m,g,A,y=[],x=128;for(h===(h|0)?(f=h,h=null):(h=h+"\0",f=0,x=Math.max(x,h.length)),m=0,g=-32;g<x;++g)h&&(f^=h.charCodeAt((g+32)%h.length)),g===0&&(A=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(A=A+1640531527|0,p=y[g&127]^=f+A,m=p==0?m+1:0);for(m>=128&&(y[(h&&h.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=y[m+34&127],p=y[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,y[m]=f^p;d.w=A,d.X=y,d.i=m}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(d.X&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),lS=vt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var h=u.b,p=u.c,f=u.d,m=u.a;return h=h<<25^h>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-h|0,u.b=h=h<<20^h>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-h|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var d=0;d<c.length+20;d++)u.b^=c.charCodeAt(d)|0,u.next()}function o(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),uS=vt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",u=r.pow(a,o),c=r.pow(2,i),d=c*2,h=a-1,p;function f(v,k,S){var C=[];k=k==!0?{entropy:!0}:k||{};var _=y(A(k.entropy?[v,b(s)]:v==null?x():v,3),C),O=new m(C),E=function(){for(var R=O.g(o),T=u,P=0;R<c;)R=(R+P)*a,T*=a,P=O.g(1);for(;R>=d;)R/=2,T/=2,P>>>=1;return(R+P)/T};return E.int32=function(){return O.g(4)|0},E.quick=function(){return O.g(4)/4294967296},E.double=E,y(b(O.S),s),(k.pass||S||function(R,T,P,V){return V&&(V.S&&g(V,O),R.state=function(){return g(O,{})}),P?(r[l]=R,T):R})(E,_,"global"in k?k.global:this==r,k.state)}function m(v){var k,S=v.length,C=this,_=0,O=C.i=C.j=0,E=C.S=[];for(S||(v=[S++]);_<a;)E[_]=_++;for(_=0;_<a;_++)E[_]=E[O=h&O+v[_%S]+(k=E[_])],E[O]=k;(C.g=function(R){for(var T,P=0,V=C.i,j=C.j,q=C.S;R--;)T=q[V=h&V+1],P=P*a+q[h&(q[V]=q[j=h&j+T])+(q[j]=T)];return C.i=V,C.j=j,P})(a)}function g(v,k){return k.i=v.i,k.j=v.j,k.S=v.S.slice(),k}function A(v,k){var S=[],C=typeof v,_;if(k&&C=="object")for(_ in v)try{S.push(A(v[_],k-1))}catch(O){}return S.length?S:C=="string"?v:v+"\0"}function y(v,k){for(var S=v+"",C,_=0;_<S.length;)k[h&_]=h&(C^=k[h&_]*19)+S.charCodeAt(_++);return b(k)}function x(){try{var v;return p&&(v=p.randomBytes)?v=v(a):(v=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(v)),b(v)}catch(C){var k=n.navigator,S=k&&k.plugins;return[+new Date,n,S,n.screen,b(s)]}}function b(v){return String.fromCharCode.apply(0,v)}if(y(r.random(),s),typeof t=="object"&&t.exports){t.exports=f;try{p=g5()}catch(v){}}else typeof define=="function"&&define.amd?define(function(){return f}):r["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}}),y5=vt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js"(e,t){var n=sS(),s=rS(),r=aS(),a=oS(),o=iS(),i=lS(),l=uS();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),x5=vt({"(disabled):node_modules/.pnpm/string_decoder@1.1.1/node_modules/string_decoder/lib/string_decoder.js"(){}}),Du=vt({"(disabled):path"(){}}),cS=vt({"(disabled):worker_threads"(){}}),dS=vt({"(disabled):perf_hooks"(){}}),hS=vt({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.9.0_@tensorflow+tfjs-core@3.9.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return J.buffer!=He&&sn(J.buffer),Nn}function o(){return J.buffer!=He&&sn(J.buffer),St}function i(){return J.buffer!=He&&sn(J.buffer),ks}function l(){return J.buffer!=He&&sn(J.buffer),pn}function u(){return J.buffer!=He&&sn(J.buffer),ns}var c=typeof r!="undefined"?r:{},d,h;c.ready=new Promise(function(N,F){d=N,h=F});var p={},f;for(f in c)c.hasOwnProperty(f)&&(p[f]=c[f]);var m=[],g="./this.program",A=function(N,F){throw F},y=!1,x=!1,b=!1,v=!1;y=typeof window=="object",x=typeof importScripts=="function",b=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",v=!y&&!b&&!x;var k=c.ENVIRONMENT_IS_PTHREAD||!1;k&&(He=c.buffer);var S="";function C(N){return c.locateFile?c.locateFile(N,S):S+N}var _,O,E,R,T,P;if(b){x?S=Du().dirname(S)+"/":S=__dirname+"/",_=function(F,B){return T||(T=vi("fs")),P||(P=Du()),F=P.normalize(F),T.readFileSync(F,B?null:"utf8")},E=function(F){var B=_(F,!0);return B.buffer||(B=new Uint8Array(B)),Ae(B.buffer),B},process.argv.length>1&&(g=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(N){if(!(N instanceof _u))throw N}),process.on("unhandledRejection",Ar),A=function(N){process.exit(N)},c.inspect=function(){return"[Emscripten Module object]"};var V;try{V=cS()}catch(N){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),N}global.Worker=V.Worker}else v?(typeof read!="undefined"&&(_=function(F){return read(F)}),E=function(F){var B;return typeof readbuffer=="function"?new Uint8Array(readbuffer(F)):(B=read(F,"binary"),Ae(typeof B=="object"),B)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(A=function(N){quit(N)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(y||x)&&(x?S=self.location.href:typeof document!="undefined"&&document.currentScript&&(S=document.currentScript.src),typeof s!="undefined"&&s&&(S=s),S.indexOf("blob:")!==0?S=S.substr(0,S.lastIndexOf("/")+1):S="",b?(_=function(F,B){return T||(T=vi("fs")),P||(P=Du()),F=P.normalize(F),T.readFileSync(F,B?null:"utf8")},E=function(F){var B=_(F,!0);return B.buffer||(B=new Uint8Array(B)),Ae(B.buffer),B}):(_=function(N){var F=new XMLHttpRequest;return F.open("GET",N,!1),F.send(null),F.responseText},x&&(E=function(N){var F=new XMLHttpRequest;return F.open("GET",N,!1),F.responseType="arraybuffer",F.send(null),new Uint8Array(F.response)}),O=function(N,F,B){var Z=new XMLHttpRequest;Z.open("GET",N,!0),Z.responseType="arraybuffer",Z.onload=function(){if(Z.status==200||Z.status==0&&Z.response){F(Z.response);return}B()},Z.onerror=B,Z.send(null)}),R=function(N){document.title=N});b&&typeof performance=="undefined"&&(global.performance=dS().performance);var j=c.print||console.log.bind(console),q=c.printErr||console.warn.bind(console);for(f in p)p.hasOwnProperty(f)&&(c[f]=p[f]);p=null,c.arguments&&(m=c.arguments),c.thisProgram&&(g=c.thisProgram),c.quit&&(A=c.quit);var X=Atomics.load,ee=Atomics.store,te=Atomics.compareExchange,ne;c.wasmBinary&&(ne=c.wasmBinary);var se=c.noExitRuntime||!0;typeof WebAssembly!="object"&&Ar("no native wasm support detected");var J,ie,le=!1,he;function Ae(N,F){N||Ar("Assertion failed: "+F)}function Ce(N){var F=c["_"+N];return Ae(F,"Cannot call unknown function "+N+", make sure it is exported"),F}function Te(N,F,B,Z,me){var pe={string:function(fn){var bi=0;if(fn!=null&&fn!==0){var c5=(fn.length<<2)+1;bi=Ai(c5),nt(fn,bi,c5)}return bi},array:function(fn){var bi=Ai(fn.length);return et(fn,bi),bi}};function fe(fn){return F==="string"?Fe(fn):F==="boolean"?Boolean(fn):fn}var we=Ce(N),rt=[],Kt=0;if(Z)for(var Vt=0;Vt<Z.length;Vt++){var Lr=pe[B[Vt]];Lr?(Kt===0&&(Kt=Ru()),rt[Vt]=Lr(Z[Vt])):rt[Vt]=Z[Vt]}var xi=we.apply(null,rt);return xi=fe(xi),Kt!==0&&gi(Kt),xi}function De(N,F,B,Z){B=B||[];var me=B.every(function(fe){return fe==="number"}),pe=F!=="string";return pe&&me&&!Z?Ce(N):function(){return Te(N,F,B,arguments,Z)}}function Me(N,F,B){for(var Z=F+B,me="";!(F>=Z);){var pe=N[F++];if(!pe)return me;if(!(pe&128)){me+=String.fromCharCode(pe);continue}var fe=N[F++]&63;if((pe&224)==192){me+=String.fromCharCode((pe&31)<<6|fe);continue}var we=N[F++]&63;if((pe&240)==224?pe=(pe&15)<<12|fe<<6|we:pe=(pe&7)<<18|fe<<12|we<<6|N[F++]&63,pe<65536)me+=String.fromCharCode(pe);else{var rt=pe-65536;me+=String.fromCharCode(55296|rt>>10,56320|rt&1023)}}return me}function Fe(N,F){return N?Me(o(),N,F):""}function ut(N,F,B,Z){if(!(Z>0))return 0;for(var me=B,pe=B+Z-1,fe=0;fe<N.length;++fe){var we=N.charCodeAt(fe);if(we>=55296&&we<=57343){var rt=N.charCodeAt(++fe);we=65536+((we&1023)<<10)|rt&1023}if(we<=127){if(B>=pe)break;F[B++]=we}else if(we<=2047){if(B+1>=pe)break;F[B++]=192|we>>6,F[B++]=128|we&63}else if(we<=65535){if(B+2>=pe)break;F[B++]=224|we>>12,F[B++]=128|we>>6&63,F[B++]=128|we&63}else{if(B+3>=pe)break;F[B++]=240|we>>18,F[B++]=128|we>>12&63,F[B++]=128|we>>6&63,F[B++]=128|we&63}}return F[B]=0,B-me}function nt(N,F,B){return ut(N,o(),F,B)}function st(N){for(var F=0,B=0;B<N.length;++B){var Z=N.charCodeAt(B);Z>=55296&&Z<=57343&&(Z=65536+((Z&1023)<<10)|N.charCodeAt(++B)&1023),Z<=127?++F:Z<=2047?F+=2:Z<=65535?F+=3:F+=4}return F}function et(N,F){a().set(N,F)}function it(N,F){return N%F>0&&(N+=F-N%F),N}var He,Nn,St,Wn,nn,ks,pn,ts,ns;function sn(N){He=N,c.HEAP8=Nn=new Int8Array(N),c.HEAP16=Wn=new Int16Array(N),c.HEAP32=ks=new Int32Array(N),c.HEAPU8=St=new Uint8Array(N),c.HEAPU16=nn=new Uint16Array(N),c.HEAPU32=pn=new Uint32Array(N),c.HEAPF32=ts=new Float32Array(N),c.HEAPF64=ns=new Float64Array(N)}var ss=c.INITIAL_MEMORY||16777216;if(k)J=c.wasmMemory,He=c.buffer;else if(c.wasmMemory)J=c.wasmMemory;else if(J=new WebAssembly.Memory({initial:ss/65536,maximum:2147483648/65536,shared:!0}),!(J.buffer instanceof SharedArrayBuffer))throw q("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");J&&(He=J.buffer),ss=He.byteLength,sn(He);var rs,Vn=[],Ks=[],mr=[],Fr=[],ci=[],Zs=!1,vd=!1;k||Ks.push({func:function(){Pd()}});function i0(){if(!k){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)kd(c.preRun.shift());hi(Vn)}}function vu(){Zs=!0,!k&&hi(Ks)}function l0(){k||hi(mr)}function wd(){k||(vd=!0)}function En(){if(!k){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)u0(c.postRun.shift());hi(ci)}}function kd(N){Vn.unshift(N)}function u0(N){ci.unshift(N)}var gr=0,Or=null,wa=null;function c0(N){Ae(!k,"addRunDependency cannot be used in a pthread worker"),gr++,c.monitorRunDependencies&&c.monitorRunDependencies(gr)}function d0(N){if(gr--,c.monitorRunDependencies&&c.monitorRunDependencies(gr),gr==0&&(Or!==null&&(clearInterval(Or),Or=null),wa)){var F=wa;wa=null,F()}}c.preloadedImages={},c.preloadedAudios={};function Ar(N){c.onAbort&&c.onAbort(N),k&&console.error("Pthread aborting at "+new Error().stack),N+="",q(N),le=!0,he=1,N="abort("+N+"). Build with -s ASSERTIONS=1 for more info.";var F=new WebAssembly.RuntimeError(N);throw h(F),F}function Id(N,F){return String.prototype.startsWith?N.startsWith(F):N.indexOf(F)===0}var di="data:application/octet-stream;base64,";function Sd(N){return Id(N,di)}var h0="file://";function Cd(N){return Id(N,h0)}var Rn="tfjs-backend-wasm-threaded-simd.wasm";Sd(Rn)||(Rn=C(Rn));function Td(N){try{if(N==Rn&&ne)return new Uint8Array(ne);if(E)return E(N);throw"both async and sync fetching of the wasm failed"}catch(F){Ar(F)}}function p0(){if(!ne&&(y||x)){if(typeof fetch=="function"&&!Cd(Rn))return fetch(Rn,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+Rn+"'";return N.arrayBuffer()}).catch(function(){return Td(Rn)});if(O)return new Promise(function(N,F){O(Rn,function(B){N(new Uint8Array(B))},F)})}return Promise.resolve().then(function(){return Td(Rn)})}function f0(){var N={a:rm};function F(fe,we){var rt=fe.exports;if(c.asm=rt,rs=c.asm.F,ie=we,!k){var Kt=Se.unusedWorkers.length;Se.unusedWorkers.forEach(function(Vt){Se.loadWasmModuleToWorker(Vt,function(){--Kt||d0("wasm-instantiate")})})}}k||c0("wasm-instantiate");function B(fe){F(fe.instance,fe.module)}function Z(fe){return p0().then(function(we){return WebAssembly.instantiate(we,N)}).then(fe,function(we){q("failed to asynchronously prepare wasm: "+we),Ar(we)})}function me(){return!ne&&typeof WebAssembly.instantiateStreaming=="function"&&!Sd(Rn)&&!Cd(Rn)&&typeof fetch=="function"?fetch(Rn,{credentials:"same-origin"}).then(function(fe){var we=WebAssembly.instantiateStreaming(fe,N);return we.then(B,function(rt){return q("wasm streaming compile failed: "+rt),q("falling back to ArrayBuffer instantiation"),Z(B)})}):Z(B)}if(c.instantiateWasm)try{var pe=c.instantiateWasm(N,F);return pe}catch(fe){return q("Module.instantiateWasm callback failed with error: "+fe),!1}return me().catch(h),{}}var m0={10024:function(){throw"Canceled!"},10042:function(N,F){setTimeout(function(){r5(N,F)},0)}};function Nd(){Se.initRuntime()}function hi(N){for(;N.length>0;){var F=N.shift();if(typeof F=="function"){F(c);continue}var B=F.func;typeof B=="number"?F.arg===void 0?rs.get(B)():rs.get(B)(F.arg):B(F.arg===void 0?null:F.arg)}}function wu(N,F){if(N<=0||N>a().length||N&!0||F<0)return-28;if(F==0)return 0;F>=2147483647&&(F=1/0);var B=Atomics.load(i(),yi>>2),Z=0;if(B==N){var me=Atomics.compareExchange(i(),yi>>2,B,0);if(me==B&&(--F,Z=1,F<=0))return 1}var pe=Atomics.notify(i(),N>>2,F);if(pe>=0)return pe+Z;throw"Atomics.notify returned an unexpected value "+pe}c._emscripten_futex_wake=wu;function g0(N){if(k)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in killThread!";i()[N+12>>2]=0;var F=Se.pthreads[N];F.worker.terminate(),Se.freeThreadData(F),Se.runningWorkers.splice(Se.runningWorkers.indexOf(F.worker),1),F.worker.pthread=void 0}function A0(N){if(k)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cancelThread!";var F=Se.pthreads[N];F.worker.postMessage({cmd:"cancel"})}function y0(N){if(k)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cleanupThread!";var F=Se.pthreads[N];if(F){i()[N+12>>2]=0;var B=F.worker;Se.returnWorkerToPool(B)}}var Se={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var N=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),F=0;F<N;++F)Se.allocateUnusedWorker()},initRuntime:function(){for(var N=Ia(228),F=0;F<228/4;++F)l()[N/4+F]=0;i()[N+12>>2]=N;var B=N+152;i()[B>>2]=B;for(var Z=Ia(512),F=0;F<128;++F)l()[Z/4+F]=0;Atomics.store(l(),N+100>>2,Z),Atomics.store(l(),N+40>>2,N),_m(N,!x,1),s5(N)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Se.threadExitHandlers.length>0;)Se.threadExitHandlers.pop()();k&&mi()&&n5()},runExitHandlersAndDeinitThread:function(N,F){Atomics.store(l(),N+56>>2,1),Atomics.store(l(),N+60>>2,0),Se.runExitHandlers(),Atomics.store(l(),N+4>>2,F),Atomics.store(l(),N+0>>2,1),wu(N+0,2147483647),_m(0,0,0)},threadExit:function(N){var F=mi();F&&(Se.runExitHandlersAndDeinitThread(F,N),k&&postMessage({cmd:"exit"}))},threadCancel:function(){Se.runExitHandlersAndDeinitThread(mi(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var N in Se.pthreads){var F=Se.pthreads[N];F&&F.worker&&Se.returnWorkerToPool(F.worker)}Se.pthreads={};for(var B=0;B<Se.unusedWorkers.length;++B){var Z=Se.unusedWorkers[B];Z.terminate()}Se.unusedWorkers=[];for(var B=0;B<Se.runningWorkers.length;++B){var Z=Se.runningWorkers[B],F=Z.pthread;Se.freeThreadData(F),Z.terminate()}Se.runningWorkers=[]},freeThreadData:function(N){if(!!N){if(N.threadInfoStruct){var F=i()[N.threadInfoStruct+100>>2];i()[N.threadInfoStruct+100>>2]=0,Eu(F),Eu(N.threadInfoStruct)}N.threadInfoStruct=0,N.allocatedOwnStack&&N.stackBase&&Eu(N.stackBase),N.stackBase=0,N.worker&&(N.worker.pthread=null)}},returnWorkerToPool:function(N){Se.runWithoutMainThreadQueuedCalls(function(){delete Se.pthreads[N.pthread.threadInfoStruct],Se.unusedWorkers.push(N),Se.runningWorkers.splice(Se.runningWorkers.indexOf(N),1),Se.freeThreadData(N.pthread),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){i()[u5>>2]=0;try{N()}finally{i()[u5>>2]=1}},receiveObjectTransfer:function(N){},loadWasmModuleToWorker:function(N,F){N.onmessage=function(B){var Z=B.data,me=Z.cmd;if(N.pthread&&(Se.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),Z.targetThread&&Z.targetThread!=mi()){var pe=Se.pthreads[Z.targetThread];pe?pe.worker.postMessage(B.data,Z.transferList):console.error('Internal error! Worker sent a message "'+me+'" to target pthread '+Z.targetThread+", but that thread no longer exists!"),Se.currentProxiedOperationCallerThread=void 0;return}if(me==="processQueuedMainThreadWork")Em();else if(me==="spawnThread")Fd(B.data);else if(me==="cleanupThread")y0(Z.thread);else if(me==="killThread")g0(Z.thread);else if(me==="cancelThread")A0(Z.thread);else if(me==="loaded")N.loaded=!0,F&&F(N),N.runPthread&&(N.runPthread(),delete N.runPthread);else if(me==="print")j("Thread "+Z.threadId+": "+Z.text);else if(me==="printErr")q("Thread "+Z.threadId+": "+Z.text);else if(me==="alert")alert("Thread "+Z.threadId+": "+Z.text);else if(me==="exit"){var fe=N.pthread&&Atomics.load(l(),N.pthread.threadInfoStruct+64>>2);fe&&Se.returnWorkerToPool(N)}else if(me==="exitProcess")try{BI(Z.returnCode)}catch(we){if(we instanceof _u)return;throw we}else me==="cancelDone"?Se.returnWorkerToPool(N):me==="objectTransfer"?Se.receiveObjectTransfer(B.data):B.data.target==="setimmediate"?N.postMessage(B.data):q("worker sent an unknown command "+me);Se.currentProxiedOperationCallerThread=void 0},N.onerror=function(B){q("pthread sent an error! "+B.filename+":"+B.lineno+": "+B.message)},b&&(N.on("message",function(B){N.onmessage({data:B})}),N.on("error",function(B){N.onerror(B)}),N.on("exit",function(B){})),N.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||s,wasmMemory:J,wasmModule:ie})},allocateUnusedWorker:function(){var N=C("tfjs-backend-wasm-threaded-simd.worker.js");Se.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return Se.unusedWorkers.length==0&&(Se.allocateUnusedWorker(),Se.loadWasmModuleToWorker(Se.unusedWorkers[0])),Se.unusedWorkers.length>0?Se.unusedWorkers.pop():null},busySpinWait:function(N){for(var F=performance.now()+N;performance.now()<F;);}};function x0(N,F){i5(N,F),gi(N)}c.establishStackSpace=x0;function b0(){return se}c.getNoExitRuntime=b0;function v0(N,F){return rs.get(N)(F)}c.invokeEntryPoint=v0;function w0(N,F,B,Z){Ar("Assertion failed: "+Fe(N)+", at: "+[F?Fe(F):"unknown filename",B,Z?Fe(Z):"unknown function"])}function k0(N,F){var B=_main(N,F)}var ka;b?ka=function(){var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:k?ka=function(){return performance.now()-c.__performance_now_clock_drift}:typeof dateNow!="undefined"?ka=dateNow:ka=function(){return performance.now()};function I0(N){return i()[e5()>>2]=N,N}function S0(N,F){if(k)return Pr(1,1,N,F)}function C0(N,F){if(N==F)postMessage({cmd:"processQueuedMainThreadWork"});else if(k)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var B=Se.pthreads[N],Z=B&&B.worker;if(!Z)return;Z.postMessage({cmd:"processThreadQueue"})}return 1}function T0(){Ar()}function N0(N,F,B){var Z=$0(F,B);return m0[N].apply(null,Z)}function E0(N,F){}function R0(N,F,B){if(N<=0||N>a().length||N&!0)return-28;if(y){if(Atomics.load(i(),N>>2)!=F)return-6;for(var me=performance.now(),pe=me+B,fe=Atomics.exchange(i(),yi>>2,N);;){if(me=performance.now(),me>pe)return fe=Atomics.exchange(i(),yi>>2,0),-73;if(fe=Atomics.exchange(i(),yi>>2,0),fe==0)break;if(Em(),Atomics.load(i(),N>>2)!=F)return-6;fe=Atomics.exchange(i(),yi>>2,N)}return 0}else{var Z=Atomics.wait(i(),N>>2,F,B);if(Z==="timed-out")return-73;if(Z==="not-equal")return-6;if(Z==="ok")return 0;throw"Atomics.wait returned an unexpected value "+Z}}function _0(N,F,B){o().copyWithin(N,F,F+B)}function D0(){return b?vi("os").cpus().length:navigator.hardwareConcurrency}function Pr(N,F){for(var B=arguments.length-2,Z=Ru(),me=B,pe=Ai(me*8),fe=pe>>3,we=0;we<B;we++){var rt=arguments[2+we];u()[fe+we]=rt}var Kt=o5(N,me,pe,F);return gi(Z),Kt}var ku=[],Iu=[];function $0(N,F){Iu.length=0;var B;for(F>>=2;B=o()[N++];){var Z=B<105;Z&&F&1&&F++,Iu.push(Z?u()[F++>>1]:i()[F]),++F}return Iu}function F0(N,F,B){ku.length=F;for(var Z=B>>3,me=0;me<F;me++)ku[me]=u()[Z+me];var pe=N<0,fe=pe?m0[-N-1]:sm[N];return fe.apply(null,ku)}function O0(){return o().length}function P0(N){try{return J.grow(N-He.byteLength+65535>>>16),sn(J.buffer),1}catch(F){}}function M0(N){var F=O0();if(N<=F)return!1;var B=2147483648;if(N>B)return!1;for(var Z=1;Z<=4;Z*=2){var me=F*(1+.2/Z);me=Math.min(me,N+100663296);var pe=Math.min(B,it(Math.max(N,me),65536)),fe=P0(pe);if(fe)return!0}return!1}var Le={inEventHandler:0,removeAllEventListeners:function(){for(var N=Le.eventHandlers.length-1;N>=0;--N)Le._removeHandler(N);Le.eventHandlers=[],Le.deferredCalls=[]},registerRemoveEventListeners:function(){Le.removeEventListenersRegistered||(Fr.push(Le.removeAllEventListeners),Le.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,F,B){function Z(fe,we){if(fe.length!=we.length)return!1;for(var rt in fe)if(fe[rt]!=we[rt])return!1;return!0}for(var me in Le.deferredCalls){var pe=Le.deferredCalls[me];if(pe.targetFunction==N&&Z(pe.argsList,B))return}Le.deferredCalls.push({targetFunction:N,precedence:F,argsList:B}),Le.deferredCalls.sort(function(fe,we){return fe.precedence<we.precedence})},removeDeferredCalls:function(N){for(var F=0;F<Le.deferredCalls.length;++F)Le.deferredCalls[F].targetFunction==N&&(Le.deferredCalls.splice(F,1),--F)},canPerformEventHandlerRequests:function(){return Le.inEventHandler&&Le.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Le.canPerformEventHandlerRequests())for(var N=0;N<Le.deferredCalls.length;++N){var F=Le.deferredCalls[N];Le.deferredCalls.splice(N,1),--N,F.targetFunction.apply(null,F.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,F){for(var B=0;B<Le.eventHandlers.length;++B)Le.eventHandlers[B].target==N&&(!F||F==Le.eventHandlers[B].eventTypeString)&&Le._removeHandler(B--)},_removeHandler:function(N){var F=Le.eventHandlers[N];F.target.removeEventListener(F.eventTypeString,F.eventListenerFunc,F.useCapture),Le.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var F=function(me){++Le.inEventHandler,Le.currentEventHandler=N,Le.runDeferredCalls(),N.handlerFunc(me),Le.runDeferredCalls(),--Le.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=F,N.target.addEventListener(N.eventTypeString,F,N.useCapture),Le.eventHandlers.push(N),Le.registerRemoveEventListeners();else for(var B=0;B<Le.eventHandlers.length;++B)Le.eventHandlers[B].target==N.target&&Le.eventHandlers[B].eventTypeString==N.eventTypeString&&Le._removeHandler(B--)},queueEventHandlerOnThread_iiii:function(N,F,B,Z,me){var pe=Ru(),fe=Ai(12);i()[fe>>2]=B,i()[fe+4>>2]=Z,i()[fe+8>>2]=me,Rm(0,N,637534208,F,Z,fe),gi(pe)},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return Se.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function z0(N){var F=st(N)+1,B=Ia(F);return nt(N,B,F),B}function L0(N,F,B,Z){var me=Ru(),pe=Ai(12),fe=0;F&&(fe=z0(F)),i()[pe>>2]=fe,i()[pe+4>>2]=B,i()[pe+8>>2]=Z,Rm(0,N,657457152,0,fe,pe),gi(me)}function B0(N,F,B,Z){F=F?Fe(F):"",L0(N,F,B,Z)}function W0(N){return N>2?Fe(N):N}var V0=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function U0(N){N=W0(N);var F=V0[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return F}function Su(N){return U0(N)}function Ed(N,F,B){var Z=Su(N);if(!Z)return-4;if(Z.canvasSharedPtr&&(i()[Z.canvasSharedPtr>>2]=F,i()[Z.canvasSharedPtr+4>>2]=B),Z.offscreenCanvas||!Z.controlTransferredOffscreen){Z.offscreenCanvas&&(Z=Z.offscreenCanvas);var me=!1;if(Z.GLctxObject&&Z.GLctxObject.GLctx){var pe=Z.GLctxObject.GLctx.getParameter(2978);me=pe[0]===0&&pe[1]===0&&pe[2]===Z.width&&pe[3]===Z.height}Z.width=F,Z.height=B,me&&Z.GLctxObject.GLctx.viewport(0,0,F,B)}else if(Z.canvasSharedPtr){var fe=i()[Z.canvasSharedPtr+8>>2];return B0(fe,N,F,B),1}else return-4;return 0}function Rd(N,F,B){return k?Pr(2,1,N,F,B):Ed(N,F,B)}function H0(N,F,B){var Z=Su(N);return Z?Ed(N,F,B):Rd(N,F,B)}function G0(N){}function j0(N,F){}function q0(N){var F=N.getExtension("ANGLE_instanced_arrays");if(F)return N.vertexAttribDivisor=function(B,Z){F.vertexAttribDivisorANGLE(B,Z)},N.drawArraysInstanced=function(B,Z,me,pe){F.drawArraysInstancedANGLE(B,Z,me,pe)},N.drawElementsInstanced=function(B,Z,me,pe,fe){F.drawElementsInstancedANGLE(B,Z,me,pe,fe)},1}function X0(N){var F=N.getExtension("OES_vertex_array_object");if(F)return N.createVertexArray=function(){return F.createVertexArrayOES()},N.deleteVertexArray=function(B){F.deleteVertexArrayOES(B)},N.bindVertexArray=function(B){F.bindVertexArrayOES(B)},N.isVertexArray=function(B){return F.isVertexArrayOES(B)},1}function K0(N){var F=N.getExtension("WEBGL_draw_buffers");if(F)return N.drawBuffers=function(B,Z){F.drawBuffersWEBGL(B,Z)},1}function Z0(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var tt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(F){tt.lastError||(tt.lastError=F)},getNewId:function(N){for(var F=tt.counter++,B=N.length;B<F;B++)N[B]=null;return F},getSource:function(N,F,B,Z){for(var me="",pe=0;pe<F;++pe){var fe=Z?i()[Z+pe*4>>2]:-1;me+=Fe(i()[B+pe*4>>2],fe<0?void 0:fe)}return me},createContext:function(N,F){var B=N.getContext("webgl",F);if(!B)return 0;var Z=tt.registerContext(B,F);return Z},registerContext:function(N,F){var B=Ia(8);i()[B+4>>2]=mi();var Z={handle:B,attributes:F,version:F.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=Z),tt.contexts[B]=Z,(typeof F.enableExtensionsByDefault=="undefined"||F.enableExtensionsByDefault)&&tt.initExtensions(Z),B},makeContextCurrent:function(N){return tt.currentContext=tt.contexts[N],c.ctx=Mr=tt.currentContext&&tt.currentContext.GLctx,!(N&&!Mr)},getContext:function(N){return tt.contexts[N]},deleteContext:function(N){tt.currentContext===tt.contexts[N]&&(tt.currentContext=null),typeof Le=="object"&&Le.removeAllHandlersOnTarget(tt.contexts[N].GLctx.canvas),tt.contexts[N]&&tt.contexts[N].GLctx.canvas&&(tt.contexts[N].GLctx.canvas.GLctxObject=void 0),Eu(tt.contexts[N].handle),tt.contexts[N]=null},initExtensions:function(N){if(N||(N=tt.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var F=N.GLctx;q0(F),X0(F),K0(F),F.disjointTimerQueryExt=F.getExtension("EXT_disjoint_timer_query"),Z0(F);var B=F.getSupportedExtensions()||[];B.forEach(function(Z){Z.indexOf("lose_context")<0&&Z.indexOf("debug")<0&&F.getExtension(Z)})}},populateUniformTable:function(N){for(var F=tt.programs[N],B=tt.programInfos[N]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},Z=B.uniforms,me=Mr.getProgramParameter(F,35718),pe=0;pe<me;++pe){var fe=Mr.getActiveUniform(F,pe),we=fe.name;B.maxUniformLength=Math.max(B.maxUniformLength,we.length+1),we.slice(-1)=="]"&&(we=we.slice(0,we.lastIndexOf("[")));var rt=Mr.getUniformLocation(F,we);if(rt){var Kt=tt.getNewId(tt.uniforms);Z[we]=[fe.size,Kt],tt.uniforms[Kt]=rt;for(var Vt=1;Vt<fe.size;++Vt){var Lr=we+"["+Vt+"]";rt=Mr.getUniformLocation(F,Lr),Kt=tt.getNewId(tt.uniforms),tt.uniforms[Kt]=rt}}}}},Y0=["default","low-power","high-performance"];function J0(N,F){var B=F>>2,Z=i()[B+(24>>2)],me={alpha:!!i()[B+(0>>2)],depth:!!i()[B+(4>>2)],stencil:!!i()[B+(8>>2)],antialias:!!i()[B+(12>>2)],premultipliedAlpha:!!i()[B+(16>>2)],preserveDrawingBuffer:!!i()[B+(20>>2)],powerPreference:Y0[Z],failIfMajorPerformanceCaveat:!!i()[B+(28>>2)],majorVersion:i()[B+(32>>2)],minorVersion:i()[B+(36>>2)],enableExtensionsByDefault:i()[B+(40>>2)],explicitSwapControl:i()[B+(44>>2)],proxyContextToMainThread:i()[B+(48>>2)],renderViaOffscreenBackBuffer:i()[B+(52>>2)]},pe=Su(N);if(!pe||me.explicitSwapControl)return 0;var fe=tt.createContext(pe,me);return fe}function Q0(N,F){return J0(N,F)}var pi={mappings:{},buffers:[null,[],[]],printChar:function(N,F){var B=pi.buffers[N];F===0||F===10?((N===1?j:q)(Me(B,0)),B.length=0):B.push(F)},varargs:void 0,get:function(){pi.varargs+=4;var N=i()[pi.varargs-4>>2];return N},getStr:function(N){var F=Fe(N);return F},get64:function(N,F){return N}};function _d(N){return k?Pr(3,1,N):0}function Dd(N,F,B,Z,me){if(k)return Pr(4,1,N,F,B,Z,me)}function $d(N,F,B,Z){if(k)return Pr(5,1,N,F,B,Z);for(var me=0,pe=0;pe<B;pe++){for(var fe=i()[F+pe*8>>2],we=i()[F+(pe*8+4)>>2],rt=0;rt<we;rt++)pi.printChar(N,o()[fe+rt]);me+=we}return i()[Z>>2]=me,0}function em(N){var F=Se.threadExitHandlers.pop();N&&F()}function tm(N,F){Se.threadExitHandlers.push(function(){rs.get(N)(F)})}function Fd(N){if(k)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var F=Se.getNewWorker();if(F.pthread!==void 0)throw"Internal error!";if(!N.pthread_ptr)throw"Internal error, no pthread ptr!";Se.runningWorkers.push(F);for(var B=Ia(128*4),Z=0;Z<128;++Z)i()[B+Z*4>>2]=0;var me=N.stackBase+N.stackSize,pe=Se.pthreads[N.pthread_ptr]={worker:F,stackBase:N.stackBase,stackSize:N.stackSize,allocatedOwnStack:N.allocatedOwnStack,threadInfoStruct:N.pthread_ptr},fe=pe.threadInfoStruct>>2;Atomics.store(l(),fe+(64>>2),N.detached),Atomics.store(l(),fe+(100>>2),B),Atomics.store(l(),fe+(40>>2),pe.threadInfoStruct),Atomics.store(l(),fe+(80>>2),N.stackSize),Atomics.store(l(),fe+(76>>2),me),Atomics.store(l(),fe+(104>>2),N.stackSize),Atomics.store(l(),fe+(104+8>>2),me),Atomics.store(l(),fe+(104+12>>2),N.detached);var we=t5(),rt=we+40;Atomics.store(l(),fe+(172>>2),rt),F.pthread=pe;var Kt={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr,stackBase:N.stackBase,stackSize:N.stackSize};F.runPthread=function(){Kt.time=performance.now(),F.postMessage(Kt,N.transferList)},F.loaded&&(F.runPthread(),delete F.runPthread)}function nm(N,F,B,Z){if(typeof SharedArrayBuffer=="undefined")return q("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!N)return q("pthread_create called with a null thread pointer!"),28;var me=[],pe=0;if(k&&(me.length===0||pe))return a5(687865856,N,F,B,Z);if(pe)return pe;var fe=0,we=0,rt=0;F&&F!=-1?(fe=i()[F>>2],fe+=81920,we=i()[F+8>>2],rt=i()[F+12>>2]!==0):fe=2097152;var Kt=we==0;Kt?we=l5(16,fe):(we-=fe,Ae(we>0));for(var Vt=Ia(228),Lr=0;Lr<228>>2;++Lr)l()[(Vt>>2)+Lr]=0;i()[N>>2]=Vt,i()[Vt+12>>2]=Vt;var xi=Vt+152;i()[xi>>2]=xi;var fn={stackBase:we,stackSize:fe,allocatedOwnStack:Kt,detached:rt,startRoutine:B,pthread_ptr:Vt,arg:Z,transferList:me};return k?(fn.cmd="spawnThread",postMessage(fn,me)):Fd(fn),0}function Od(N){if(k)return Pr(6,1,N);switch(N){case 30:return 16384;case 85:var F=2147483648;return F/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return I0(28),-1}k||Se.initMainThreadBlock();var Mr,sm=[null,S0,Rd,_d,Dd,$d,Od],rm={e:w0,r:k0,x:C0,b:T0,y:N0,j:E0,c:R0,d:wu,f:ka,p:_0,z:D0,u:F0,q:M0,v:H0,i:G0,t:j0,w:Q0,m:_d,n:Dd,g:$d,o:Nd,a:J||c.wasmMemory,k:em,l:tm,h:nm,s:Od},Qy=f0(),Pd=c.___wasm_call_ctors=function(){return(Pd=c.___wasm_call_ctors=c.asm.A).apply(null,arguments)},am=c._init=function(){return(am=c._init=c.asm.B).apply(null,arguments)},om=c._register_tensor=function(){return(om=c._register_tensor=c.asm.C).apply(null,arguments)},im=c._dispose_data=function(){return(im=c._dispose_data=c.asm.D).apply(null,arguments)},lm=c._dispose=function(){return(lm=c._dispose=c.asm.E).apply(null,arguments)},um=c._Abs=function(){return(um=c._Abs=c.asm.G).apply(null,arguments)},cm=c._Add=function(){return(cm=c._Add=c.asm.H).apply(null,arguments)},dm=c._AddN=function(){return(dm=c._AddN=c.asm.I).apply(null,arguments)},hm=c._All=function(){return(hm=c._All=c.asm.J).apply(null,arguments)},pm=c._Any=function(){return(pm=c._Any=c.asm.K).apply(null,arguments)},fm=c._ArgMax=function(){return(fm=c._ArgMax=c.asm.L).apply(null,arguments)},mm=c._AvgPool=function(){return(mm=c._AvgPool=c.asm.M).apply(null,arguments)},gm=c._BatchMatMul=function(){return(gm=c._BatchMatMul=c.asm.N).apply(null,arguments)},Am=c._Ceil=function(){return(Am=c._Ceil=c.asm.O).apply(null,arguments)},ym=c._ClipByValue=function(){return(ym=c._ClipByValue=c.asm.P).apply(null,arguments)},xm=c._Conv2D=function(){return(xm=c._Conv2D=c.asm.Q).apply(null,arguments)},bm=c._Conv2DBackpropInput=function(){return(bm=c._Conv2DBackpropInput=c.asm.R).apply(null,arguments)},vm=c._Cos=function(){return(vm=c._Cos=c.asm.S).apply(null,arguments)},wm=c._Cosh=function(){return(wm=c._Cosh=c.asm.T).apply(null,arguments)},km=c._CropAndResize=function(){return(km=c._CropAndResize=c.asm.U).apply(null,arguments)},Im=c._Cumsum=function(){return(Im=c._Cumsum=c.asm.V).apply(null,arguments)},Sm=c._DepthToSpace=function(){return(Sm=c._DepthToSpace=c.asm.W).apply(null,arguments)},Cm=c._DepthwiseConv2dNative=function(){return(Cm=c._DepthwiseConv2dNative=c.asm.X).apply(null,arguments)},Tm=c._Elu=function(){return(Tm=c._Elu=c.asm.Y).apply(null,arguments)},Md=c._Equal=function(){return(Md=c._Equal=c.asm.Z).apply(null,arguments)},zd=c._Exp=function(){return(zd=c._Exp=c.asm._).apply(null,arguments)},Ld=c._FlipLeftRight=function(){return(Ld=c._FlipLeftRight=c.asm.$).apply(null,arguments)},Cu=c._Floor=function(){return(Cu=c._Floor=c.asm.aa).apply(null,arguments)},fi=c._FloorDiv=function(){return(fi=c._FloorDiv=c.asm.ba).apply(null,arguments)},Nm=c._FusedBatchNorm=function(){return(Nm=c._FusedBatchNorm=c.asm.ca).apply(null,arguments)},Tu=c._FusedConv2D=function(){return(Tu=c._FusedConv2D=c.asm.da).apply(null,arguments)},Y=c._FusedDepthwiseConv2D=function(){return(Y=c._FusedDepthwiseConv2D=c.asm.ea).apply(null,arguments)},re=c._Gather=function(){return(re=c._Gather=c.asm.fa).apply(null,arguments)},xe=c._GatherNd=function(){return(xe=c._GatherNd=c.asm.ga).apply(null,arguments)},Qe=c._Greater=function(){return(Qe=c._Greater=c.asm.ha).apply(null,arguments)},Et=c._GreaterEqual=function(){return(Et=c._GreaterEqual=c.asm.ia).apply(null,arguments)},bt=c._LeakyRelu=function(){return(bt=c._LeakyRelu=c.asm.ja).apply(null,arguments)},je=c._Less=function(){return(je=c._Less=c.asm.ka).apply(null,arguments)},qe=c._LessEqual=function(){return(qe=c._LessEqual=c.asm.la).apply(null,arguments)},rn=c._Log=function(){return(rn=c._Log=c.asm.ma).apply(null,arguments)},yr=c._LogicalAnd=function(){return(yr=c._LogicalAnd=c.asm.na).apply(null,arguments)},xr=c._Max=function(){return(xr=c._Max=c.asm.oa).apply(null,arguments)},Bd=c._MaxPool=function(){return(Bd=c._MaxPool=c.asm.pa).apply(null,arguments)},Nu=c._Maximum=function(){return(Nu=c._Maximum=c.asm.qa).apply(null,arguments)},Un=c._Mean=function(){return(Un=c._Mean=c.asm.ra).apply(null,arguments)},zr=c._Min=function(){return(zr=c._Min=c.asm.sa).apply(null,arguments)},Wd=c._Minimum=function(){return(Wd=c._Minimum=c.asm.ta).apply(null,arguments)},Q8=c._MirrorPad=function(){return(Q8=c._MirrorPad=c.asm.ua).apply(null,arguments)},eI=c._Multiply=function(){return(eI=c._Multiply=c.asm.va).apply(null,arguments)},tI=c._Neg=function(){return(tI=c._Neg=c.asm.wa).apply(null,arguments)},nI=c._NonMaxSuppressionV3=function(){return(nI=c._NonMaxSuppressionV3=c.asm.xa).apply(null,arguments)},sI=c._NonMaxSuppressionV4=function(){return(sI=c._NonMaxSuppressionV4=c.asm.ya).apply(null,arguments)},rI=c._NonMaxSuppressionV5=function(){return(rI=c._NonMaxSuppressionV5=c.asm.za).apply(null,arguments)},aI=c._NotEqual=function(){return(aI=c._NotEqual=c.asm.Aa).apply(null,arguments)},oI=c._OneHot=function(){return(oI=c._OneHot=c.asm.Ba).apply(null,arguments)},iI=c._PadV2=function(){return(iI=c._PadV2=c.asm.Ca).apply(null,arguments)},lI=c._Pow=function(){return(lI=c._Pow=c.asm.Da).apply(null,arguments)},uI=c._Prelu=function(){return(uI=c._Prelu=c.asm.Ea).apply(null,arguments)},cI=c._Prod=function(){return(cI=c._Prod=c.asm.Fa).apply(null,arguments)},dI=c._RealDiv=function(){return(dI=c._RealDiv=c.asm.Ga).apply(null,arguments)},hI=c._Relu=function(){return(hI=c._Relu=c.asm.Ha).apply(null,arguments)},pI=c._Relu6=function(){return(pI=c._Relu6=c.asm.Ia).apply(null,arguments)},fI=c._ResizeBilinear=function(){return(fI=c._ResizeBilinear=c.asm.Ja).apply(null,arguments)},mI=c._Reverse=function(){return(mI=c._Reverse=c.asm.Ka).apply(null,arguments)},gI=c._RotateWithOffset=function(){return(gI=c._RotateWithOffset=c.asm.La).apply(null,arguments)},AI=c._Round=function(){return(AI=c._Round=c.asm.Ma).apply(null,arguments)},yI=c._Rsqrt=function(){return(yI=c._Rsqrt=c.asm.Na).apply(null,arguments)},xI=c._ScatterNd=function(){return(xI=c._ScatterNd=c.asm.Oa).apply(null,arguments)},bI=c._SelectV2=function(){return(bI=c._SelectV2=c.asm.Pa).apply(null,arguments)},vI=c._Sigmoid=function(){return(vI=c._Sigmoid=c.asm.Qa).apply(null,arguments)},wI=c._Sin=function(){return(wI=c._Sin=c.asm.Ra).apply(null,arguments)},kI=c._Softmax=function(){return(kI=c._Softmax=c.asm.Sa).apply(null,arguments)},II=c._Sqrt=function(){return(II=c._Sqrt=c.asm.Ta).apply(null,arguments)},SI=c._Square=function(){return(SI=c._Square=c.asm.Ua).apply(null,arguments)},CI=c._SquaredDifference=function(){return(CI=c._SquaredDifference=c.asm.Va).apply(null,arguments)},TI=c._Step=function(){return(TI=c._Step=c.asm.Wa).apply(null,arguments)},NI=c._StridedSlice=function(){return(NI=c._StridedSlice=c.asm.Xa).apply(null,arguments)},EI=c._Sub=function(){return(EI=c._Sub=c.asm.Ya).apply(null,arguments)},RI=c._Sum=function(){return(RI=c._Sum=c.asm.Za).apply(null,arguments)},_I=c._Tan=function(){return(_I=c._Tan=c.asm._a).apply(null,arguments)},DI=c._Tanh=function(){return(DI=c._Tanh=c.asm.$a).apply(null,arguments)},$I=c._Tile=function(){return($I=c._Tile=c.asm.ab).apply(null,arguments)},FI=c._TopK=function(){return(FI=c._TopK=c.asm.bb).apply(null,arguments)},OI=c._Transform=function(){return(OI=c._Transform=c.asm.cb).apply(null,arguments)},PI=c._Transpose=function(){return(PI=c._Transpose=c.asm.db).apply(null,arguments)},MI=c.__FusedMatMul=function(){return(MI=c.__FusedMatMul=c.asm.eb).apply(null,arguments)},Ia=c._malloc=function(){return(Ia=c._malloc=c.asm.fb).apply(null,arguments)},Eu=c._free=function(){return(Eu=c._free=c.asm.gb).apply(null,arguments)},e5=c.___errno_location=function(){return(e5=c.___errno_location=c.asm.hb).apply(null,arguments)},t5=c._emscripten_get_global_libc=function(){return(t5=c._emscripten_get_global_libc=c.asm.ib).apply(null,arguments)},mi=c._pthread_self=function(){return(mi=c._pthread_self=c.asm.jb).apply(null,arguments)},n5=c.___pthread_tsd_run_dtors=function(){return(n5=c.___pthread_tsd_run_dtors=c.asm.kb).apply(null,arguments)},Em=c._emscripten_main_thread_process_queued_calls=function(){return(Em=c._emscripten_main_thread_process_queued_calls=c.asm.lb).apply(null,arguments)},zI=c._emscripten_current_thread_process_queued_calls=function(){return(zI=c._emscripten_current_thread_process_queued_calls=c.asm.mb).apply(null,arguments)},s5=c._emscripten_register_main_browser_thread_id=function(){return(s5=c._emscripten_register_main_browser_thread_id=c.asm.nb).apply(null,arguments)},r5=c.__emscripten_do_dispatch_to_thread=function(){return(r5=c.__emscripten_do_dispatch_to_thread=c.asm.ob).apply(null,arguments)},a5=c._emscripten_sync_run_in_main_thread_4=function(){return(a5=c._emscripten_sync_run_in_main_thread_4=c.asm.pb).apply(null,arguments)},o5=c._emscripten_run_in_main_runtime_thread_js=function(){return(o5=c._emscripten_run_in_main_runtime_thread_js=c.asm.qb).apply(null,arguments)},Rm=c.__emscripten_call_on_thread=function(){return(Rm=c.__emscripten_call_on_thread=c.asm.rb).apply(null,arguments)},LI=c._emscripten_tls_init=function(){return(LI=c._emscripten_tls_init=c.asm.sb).apply(null,arguments)},_m=c.__emscripten_thread_init=function(){return(_m=c.__emscripten_thread_init=c.asm.tb).apply(null,arguments)},Ru=c.stackSave=function(){return(Ru=c.stackSave=c.asm.ub).apply(null,arguments)},gi=c.stackRestore=function(){return(gi=c.stackRestore=c.asm.vb).apply(null,arguments)},Ai=c.stackAlloc=function(){return(Ai=c.stackAlloc=c.asm.wb).apply(null,arguments)},i5=c._emscripten_stack_set_limits=function(){return(i5=c._emscripten_stack_set_limits=c.asm.xb).apply(null,arguments)},l5=c._memalign=function(){return(l5=c._memalign=c.asm.yb).apply(null,arguments)},u5=c.__emscripten_allow_main_runtime_queued_calls=10016,yi=c.__emscripten_main_thread_futex=11652;c.cwrap=De,c.PThread=Se,c.PThread=Se,c.wasmMemory=J,c.ExitStatus=_u;var Vd;function _u(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}wa=function N(){Vd||Dm(),Vd||(wa=N)};function Dm(N){if(N=N||m,gr>0)return;if(k){d(c),vu(),postMessage({cmd:"loaded"});return}if(i0(),gr>0)return;function F(){Vd||(Vd=!0,c.calledRun=!0,!le&&(vu(),l0(),d(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),En()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),F()},1)):F()}c.run=Dm;function BI(N,F){if(!(F&&se&&N===0)){if(!F&&k)throw postMessage({cmd:"exitProcess",returnCode:N}),new _u(N);se||(Se.terminateAllThreads(),he=N,wd(),c.onExit&&c.onExit(N),le=!0),A(N,new _u(N))}}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();return k&&(se=!1,Se.initWorker()),Dm(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),pS=vt({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.9.0_@tensorflow+tfjs-core@3.9.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(Y,re){o=Y,i=re});var l={},u;for(u in a)a.hasOwnProperty(u)&&(l[u]=a[u]);var c=[],d="./this.program",h=function(Y,re){throw re},p=!1,f=!1,m=!1,g=!1;p=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!p&&!m&&!f;var A="";function y(Y){return a.locateFile?a.locateFile(Y,A):A+Y}var x,b,v,k,S,C;m?(f?A=Du().dirname(A)+"/":A=__dirname+"/",x=function(re,xe){return S||(S=vi("fs")),C||(C=Du()),re=C.normalize(re),S.readFileSync(re,xe?null:"utf8")},v=function(re){var xe=x(re,!0);return xe.buffer||(xe=new Uint8Array(xe)),j(xe.buffer),xe},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(Y){if(!(Y instanceof Nm))throw Y}),process.on("unhandledRejection",Zs),h=function(Y){process.exit(Y)},a.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(x=function(re){return read(re)}),v=function(re){var xe;return typeof readbuffer=="function"?new Uint8Array(readbuffer(re)):(xe=read(re,"binary"),j(typeof xe=="object"),xe)},typeof scriptArgs!="undefined"?c=scriptArgs:typeof arguments!="undefined"&&(c=arguments),typeof quit=="function"&&(h=function(Y){quit(Y)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(p||f)&&(f?A=self.location.href:typeof document!="undefined"&&document.currentScript&&(A=document.currentScript.src),s&&(A=s),A.indexOf("blob:")!==0?A=A.substr(0,A.lastIndexOf("/")+1):A="",x=function(Y){var re=new XMLHttpRequest;return re.open("GET",Y,!1),re.send(null),re.responseText},f&&(v=function(Y){var re=new XMLHttpRequest;return re.open("GET",Y,!1),re.responseType="arraybuffer",re.send(null),new Uint8Array(re.response)}),b=function(Y,re,xe){var Qe=new XMLHttpRequest;Qe.open("GET",Y,!0),Qe.responseType="arraybuffer",Qe.onload=function(){if(Qe.status==200||Qe.status==0&&Qe.response){re(Qe.response);return}xe()},Qe.onerror=xe,Qe.send(null)},k=function(Y){document.title=Y});var _=a.print||console.log.bind(console),O=a.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(a[u]=l[u]);l=null,a.arguments&&(c=a.arguments),a.thisProgram&&(d=a.thisProgram),a.quit&&(h=a.quit);var E;a.wasmBinary&&(E=a.wasmBinary);var R=a.noExitRuntime||!0;typeof WebAssembly!="object"&&Zs("no native wasm support detected");var T,P=!1,V;function j(Y,re){Y||Zs("Assertion failed: "+re)}function q(Y){var re=a["_"+Y];return j(re,"Cannot call unknown function "+Y+", make sure it is exported"),re}function X(Y,re,xe,Qe,Et){var bt={string:function(Un){var zr=0;if(Un!=null&&Un!==0){var Wd=(Un.length<<2)+1;zr=Cu(Wd),ie(Un,zr,Wd)}return zr},array:function(Un){var zr=Cu(Un.length);return le(Un,zr),zr}};function je(Un){return re==="string"?se(Un):re==="boolean"?Boolean(Un):Un}var qe=q(Y),rn=[],yr=0;if(Qe)for(var xr=0;xr<Qe.length;xr++){var Bd=bt[xe[xr]];Bd?(yr===0&&(yr=zd()),rn[xr]=Bd(Qe[xr])):rn[xr]=Qe[xr]}var Nu=qe.apply(null,rn);return Nu=je(Nu),yr!==0&&Ld(yr),Nu}function ee(Y,re,xe,Qe){xe=xe||[];var Et=xe.every(function(je){return je==="number"}),bt=re!=="string";return bt&&Et&&!Qe?q(Y):function(){return X(Y,re,xe,arguments,Qe)}}var te=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ne(Y,re,xe){for(var Qe=re+xe,Et=re;Y[Et]&&!(Et>=Qe);)++Et;if(Et-re>16&&Y.subarray&&te)return te.decode(Y.subarray(re,Et));for(var bt="";re<Et;){var je=Y[re++];if(!(je&128)){bt+=String.fromCharCode(je);continue}var qe=Y[re++]&63;if((je&224)==192){bt+=String.fromCharCode((je&31)<<6|qe);continue}var rn=Y[re++]&63;if((je&240)==224?je=(je&15)<<12|qe<<6|rn:je=(je&7)<<18|qe<<12|rn<<6|Y[re++]&63,je<65536)bt+=String.fromCharCode(je);else{var yr=je-65536;bt+=String.fromCharCode(55296|yr>>10,56320|yr&1023)}}return bt}function se(Y,re){return Y?ne(Te,Y,re):""}function J(Y,re,xe,Qe){if(!(Qe>0))return 0;for(var Et=xe,bt=xe+Qe-1,je=0;je<Y.length;++je){var qe=Y.charCodeAt(je);if(qe>=55296&&qe<=57343){var rn=Y.charCodeAt(++je);qe=65536+((qe&1023)<<10)|rn&1023}if(qe<=127){if(xe>=bt)break;re[xe++]=qe}else if(qe<=2047){if(xe+1>=bt)break;re[xe++]=192|qe>>6,re[xe++]=128|qe&63}else if(qe<=65535){if(xe+2>=bt)break;re[xe++]=224|qe>>12,re[xe++]=128|qe>>6&63,re[xe++]=128|qe&63}else{if(xe+3>=bt)break;re[xe++]=240|qe>>18,re[xe++]=128|qe>>12&63,re[xe++]=128|qe>>6&63,re[xe++]=128|qe&63}}return re[xe]=0,xe-Et}function ie(Y,re,xe){return J(Y,Te,re,xe)}function le(Y,re){Ce.set(Y,re)}function he(Y,re){return Y%re>0&&(Y+=re-Y%re),Y}var Ae,Ce,Te,De,Me,Fe,ut,nt,st;function et(Y){Ae=Y,a.HEAP8=Ce=new Int8Array(Y),a.HEAP16=De=new Int16Array(Y),a.HEAP32=Fe=new Int32Array(Y),a.HEAPU8=Te=new Uint8Array(Y),a.HEAPU16=Me=new Uint16Array(Y),a.HEAPU32=ut=new Uint32Array(Y),a.HEAPF32=nt=new Float32Array(Y),a.HEAPF64=st=new Float64Array(Y)}var it=a.INITIAL_MEMORY||16777216,He,Nn=[],St=[],Wn=[],nn=[],ks=!1;St.push({func:function(){Nd()}});function pn(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)ss(a.preRun.shift());Or(Nn)}function ts(){ks=!0,Or(St)}function ns(){Or(Wn)}function sn(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)rs(a.postRun.shift());Or(nn)}function ss(Y){Nn.unshift(Y)}function rs(Y){nn.unshift(Y)}var Vn=0,Ks=null,mr=null;function Fr(Y){Vn++,a.monitorRunDependencies&&a.monitorRunDependencies(Vn)}function ci(Y){if(Vn--,a.monitorRunDependencies&&a.monitorRunDependencies(Vn),Vn==0&&(Ks!==null&&(clearInterval(Ks),Ks=null),mr)){var re=mr;mr=null,re()}}a.preloadedImages={},a.preloadedAudios={};function Zs(Y){a.onAbort&&a.onAbort(Y),Y+="",O(Y),P=!0,V=1,Y="abort("+Y+"). Build with -s ASSERTIONS=1 for more info.";var re=new WebAssembly.RuntimeError(Y);throw i(re),re}function vd(Y,re){return String.prototype.startsWith?Y.startsWith(re):Y.indexOf(re)===0}var i0="data:application/octet-stream;base64,";function vu(Y){return vd(Y,i0)}var l0="file://";function wd(Y){return vd(Y,l0)}var En="tfjs-backend-wasm.wasm";vu(En)||(En=y(En));function kd(Y){try{if(Y==En&&E)return new Uint8Array(E);if(v)return v(Y);throw"both async and sync fetching of the wasm failed"}catch(re){Zs(re)}}function u0(){if(!E&&(p||f)){if(typeof fetch=="function"&&!wd(En))return fetch(En,{credentials:"same-origin"}).then(function(Y){if(!Y.ok)throw"failed to load wasm binary file at '"+En+"'";return Y.arrayBuffer()}).catch(function(){return kd(En)});if(b)return new Promise(function(Y,re){b(En,function(xe){Y(new Uint8Array(xe))},re)})}return Promise.resolve().then(function(){return kd(En)})}function gr(){var Y={a:f0};function re(je,qe){var rn=je.exports;a.asm=rn,T=a.asm.i,et(T.buffer),He=a.asm.o,ci("wasm-instantiate")}Fr("wasm-instantiate");function xe(je){re(je.instance)}function Qe(je){return u0().then(function(qe){return WebAssembly.instantiate(qe,Y)}).then(je,function(qe){O("failed to asynchronously prepare wasm: "+qe),Zs(qe)})}function Et(){return!E&&typeof WebAssembly.instantiateStreaming=="function"&&!vu(En)&&!wd(En)&&typeof fetch=="function"?fetch(En,{credentials:"same-origin"}).then(function(je){var qe=WebAssembly.instantiateStreaming(je,Y);return qe.then(xe,function(rn){return O("wasm streaming compile failed: "+rn),O("falling back to ArrayBuffer instantiation"),Qe(xe)})}):Qe(xe)}if(a.instantiateWasm)try{var bt=a.instantiateWasm(Y,re);return bt}catch(je){return O("Module.instantiateWasm callback failed with error: "+je),!1}return Et().catch(i),{}}function Or(Y){for(;Y.length>0;){var re=Y.shift();if(typeof re=="function"){re(a);continue}var xe=re.func;typeof xe=="number"?re.arg===void 0?He.get(xe)():He.get(xe)(re.arg):xe(re.arg===void 0?null:re.arg)}}function wa(){Zs()}function c0(Y,re,xe){Te.copyWithin(Y,re,re+xe)}function d0(){return Te.length}function Ar(Y){try{return T.grow(Y-Ae.byteLength+65535>>>16),et(T.buffer),1}catch(re){}}function Id(Y){var re=d0(),xe=2147483648;if(Y>xe)return!1;for(var Qe=1;Qe<=4;Qe*=2){var Et=re*(1+.2/Qe);Et=Math.min(Et,Y+100663296);var bt=Math.min(xe,he(Math.max(Y,Et),65536)),je=Ar(bt);if(je)return!0}return!1}var di={mappings:{},buffers:[null,[],[]],printChar:function(Y,re){var xe=di.buffers[Y];re===0||re===10?((Y===1?_:O)(ne(xe,0)),xe.length=0):xe.push(re)},varargs:void 0,get:function(){di.varargs+=4;var Y=Fe[di.varargs-4>>2];return Y},getStr:function(Y){var re=se(Y);return re},get64:function(Y,re){return Y}};function Sd(Y){return 0}function h0(Y,re,xe,Qe,Et){}function Cd(Y,re,xe,Qe){for(var Et=0,bt=0;bt<xe;bt++){for(var je=Fe[re+bt*8>>2],qe=Fe[re+(bt*8+4)>>2],rn=0;rn<qe;rn++)di.printChar(Y,Te[je+rn]);Et+=qe}return Fe[Qe>>2]=Et,0}function Rn(){return 6}function Td(Y){return Fe[Md()>>2]=Y,Y}function p0(Y){switch(Y){case 30:return 16384;case 85:var re=2147483648;return re/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Td(28),-1}var f0={a:wa,d:c0,e:Id,f:Sd,c:h0,b:Cd,g:Rn,h:p0},m0=gr(),Nd=a.___wasm_call_ctors=function(){return(Nd=a.___wasm_call_ctors=a.asm.j).apply(null,arguments)},hi=a._init=function(){return(hi=a._init=a.asm.k).apply(null,arguments)},wu=a._register_tensor=function(){return(wu=a._register_tensor=a.asm.l).apply(null,arguments)},g0=a._dispose_data=function(){return(g0=a._dispose_data=a.asm.m).apply(null,arguments)},A0=a._dispose=function(){return(A0=a._dispose=a.asm.n).apply(null,arguments)},y0=a._Abs=function(){return(y0=a._Abs=a.asm.p).apply(null,arguments)},Se=a._Add=function(){return(Se=a._Add=a.asm.q).apply(null,arguments)},x0=a._AddN=function(){return(x0=a._AddN=a.asm.r).apply(null,arguments)},b0=a._All=function(){return(b0=a._All=a.asm.s).apply(null,arguments)},v0=a._Any=function(){return(v0=a._Any=a.asm.t).apply(null,arguments)},w0=a._ArgMax=function(){return(w0=a._ArgMax=a.asm.u).apply(null,arguments)},k0=a._AvgPool=function(){return(k0=a._AvgPool=a.asm.v).apply(null,arguments)},ka=a._BatchMatMul=function(){return(ka=a._BatchMatMul=a.asm.w).apply(null,arguments)},I0=a._Ceil=function(){return(I0=a._Ceil=a.asm.x).apply(null,arguments)},S0=a._ClipByValue=function(){return(S0=a._ClipByValue=a.asm.y).apply(null,arguments)},C0=a._Conv2D=function(){return(C0=a._Conv2D=a.asm.z).apply(null,arguments)},T0=a._Conv2DBackpropInput=function(){return(T0=a._Conv2DBackpropInput=a.asm.A).apply(null,arguments)},N0=a._Cos=function(){return(N0=a._Cos=a.asm.B).apply(null,arguments)},E0=a._Cosh=function(){return(E0=a._Cosh=a.asm.C).apply(null,arguments)},R0=a._CropAndResize=function(){return(R0=a._CropAndResize=a.asm.D).apply(null,arguments)},_0=a._Cumsum=function(){return(_0=a._Cumsum=a.asm.E).apply(null,arguments)},D0=a._DepthToSpace=function(){return(D0=a._DepthToSpace=a.asm.F).apply(null,arguments)},Pr=a._DepthwiseConv2dNative=function(){return(Pr=a._DepthwiseConv2dNative=a.asm.G).apply(null,arguments)},ku=a._Elu=function(){return(ku=a._Elu=a.asm.H).apply(null,arguments)},Iu=a._Equal=function(){return(Iu=a._Equal=a.asm.I).apply(null,arguments)},$0=a._Exp=function(){return($0=a._Exp=a.asm.J).apply(null,arguments)},F0=a._FlipLeftRight=function(){return(F0=a._FlipLeftRight=a.asm.K).apply(null,arguments)},O0=a._Floor=function(){return(O0=a._Floor=a.asm.L).apply(null,arguments)},P0=a._FloorDiv=function(){return(P0=a._FloorDiv=a.asm.M).apply(null,arguments)},M0=a._FusedBatchNorm=function(){return(M0=a._FusedBatchNorm=a.asm.N).apply(null,arguments)},Le=a._FusedConv2D=function(){return(Le=a._FusedConv2D=a.asm.O).apply(null,arguments)},z0=a._FusedDepthwiseConv2D=function(){return(z0=a._FusedDepthwiseConv2D=a.asm.P).apply(null,arguments)},L0=a._Gather=function(){return(L0=a._Gather=a.asm.Q).apply(null,arguments)},B0=a._GatherNd=function(){return(B0=a._GatherNd=a.asm.R).apply(null,arguments)},W0=a._Greater=function(){return(W0=a._Greater=a.asm.S).apply(null,arguments)},V0=a._GreaterEqual=function(){return(V0=a._GreaterEqual=a.asm.T).apply(null,arguments)},U0=a._LeakyRelu=function(){return(U0=a._LeakyRelu=a.asm.U).apply(null,arguments)},Su=a._Less=function(){return(Su=a._Less=a.asm.V).apply(null,arguments)},Ed=a._LessEqual=function(){return(Ed=a._LessEqual=a.asm.W).apply(null,arguments)},Rd=a._Log=function(){return(Rd=a._Log=a.asm.X).apply(null,arguments)},H0=a._LogicalAnd=function(){return(H0=a._LogicalAnd=a.asm.Y).apply(null,arguments)},G0=a._Max=function(){return(G0=a._Max=a.asm.Z).apply(null,arguments)},j0=a._MaxPool=function(){return(j0=a._MaxPool=a.asm._).apply(null,arguments)},q0=a._Maximum=function(){return(q0=a._Maximum=a.asm.$).apply(null,arguments)},X0=a._Mean=function(){return(X0=a._Mean=a.asm.aa).apply(null,arguments)},K0=a._Min=function(){return(K0=a._Min=a.asm.ba).apply(null,arguments)},Z0=a._Minimum=function(){return(Z0=a._Minimum=a.asm.ca).apply(null,arguments)},tt=a._MirrorPad=function(){return(tt=a._MirrorPad=a.asm.da).apply(null,arguments)},Y0=a._Multiply=function(){return(Y0=a._Multiply=a.asm.ea).apply(null,arguments)},J0=a._Neg=function(){return(J0=a._Neg=a.asm.fa).apply(null,arguments)},Q0=a._NonMaxSuppressionV3=function(){return(Q0=a._NonMaxSuppressionV3=a.asm.ga).apply(null,arguments)},pi=a._NonMaxSuppressionV4=function(){return(pi=a._NonMaxSuppressionV4=a.asm.ha).apply(null,arguments)},_d=a._NonMaxSuppressionV5=function(){return(_d=a._NonMaxSuppressionV5=a.asm.ia).apply(null,arguments)},Dd=a._NotEqual=function(){return(Dd=a._NotEqual=a.asm.ja).apply(null,arguments)},$d=a._OneHot=function(){return($d=a._OneHot=a.asm.ka).apply(null,arguments)},em=a._PadV2=function(){return(em=a._PadV2=a.asm.la).apply(null,arguments)},tm=a._Pow=function(){return(tm=a._Pow=a.asm.ma).apply(null,arguments)},Fd=a._Prelu=function(){return(Fd=a._Prelu=a.asm.na).apply(null,arguments)},nm=a._Prod=function(){return(nm=a._Prod=a.asm.oa).apply(null,arguments)},Od=a._RealDiv=function(){return(Od=a._RealDiv=a.asm.pa).apply(null,arguments)},Mr=a._Relu=function(){return(Mr=a._Relu=a.asm.qa).apply(null,arguments)},sm=a._Relu6=function(){return(sm=a._Relu6=a.asm.ra).apply(null,arguments)},rm=a._ResizeBilinear=function(){return(rm=a._ResizeBilinear=a.asm.sa).apply(null,arguments)},Qy=a._Reverse=function(){return(Qy=a._Reverse=a.asm.ta).apply(null,arguments)},Pd=a._RotateWithOffset=function(){return(Pd=a._RotateWithOffset=a.asm.ua).apply(null,arguments)},am=a._Round=function(){return(am=a._Round=a.asm.va).apply(null,arguments)},om=a._Rsqrt=function(){return(om=a._Rsqrt=a.asm.wa).apply(null,arguments)},im=a._ScatterNd=function(){return(im=a._ScatterNd=a.asm.xa).apply(null,arguments)},lm=a._SelectV2=function(){return(lm=a._SelectV2=a.asm.ya).apply(null,arguments)},um=a._Sigmoid=function(){return(um=a._Sigmoid=a.asm.za).apply(null,arguments)},cm=a._Sin=function(){return(cm=a._Sin=a.asm.Aa).apply(null,arguments)},dm=a._Softmax=function(){return(dm=a._Softmax=a.asm.Ba).apply(null,arguments)},hm=a._Sqrt=function(){return(hm=a._Sqrt=a.asm.Ca).apply(null,arguments)},pm=a._Square=function(){return(pm=a._Square=a.asm.Da).apply(null,arguments)},fm=a._SquaredDifference=function(){return(fm=a._SquaredDifference=a.asm.Ea).apply(null,arguments)},mm=a._Step=function(){return(mm=a._Step=a.asm.Fa).apply(null,arguments)},gm=a._StridedSlice=function(){return(gm=a._StridedSlice=a.asm.Ga).apply(null,arguments)},Am=a._Sub=function(){return(Am=a._Sub=a.asm.Ha).apply(null,arguments)},ym=a._Sum=function(){return(ym=a._Sum=a.asm.Ia).apply(null,arguments)},xm=a._Tan=function(){return(xm=a._Tan=a.asm.Ja).apply(null,arguments)},bm=a._Tanh=function(){return(bm=a._Tanh=a.asm.Ka).apply(null,arguments)},vm=a._Tile=function(){return(vm=a._Tile=a.asm.La).apply(null,arguments)},wm=a._TopK=function(){return(wm=a._TopK=a.asm.Ma).apply(null,arguments)},km=a._Transform=function(){return(km=a._Transform=a.asm.Na).apply(null,arguments)},Im=a._Transpose=function(){return(Im=a._Transpose=a.asm.Oa).apply(null,arguments)},Sm=a.__FusedMatMul=function(){return(Sm=a.__FusedMatMul=a.asm.Pa).apply(null,arguments)},Cm=a._malloc=function(){return(Cm=a._malloc=a.asm.Qa).apply(null,arguments)},Tm=a._free=function(){return(Tm=a._free=a.asm.Ra).apply(null,arguments)},Md=a.___errno_location=function(){return(Md=a.___errno_location=a.asm.Sa).apply(null,arguments)},zd=a.stackSave=function(){return(zd=a.stackSave=a.asm.Ta).apply(null,arguments)},Ld=a.stackRestore=function(){return(Ld=a.stackRestore=a.asm.Ua).apply(null,arguments)},Cu=a.stackAlloc=function(){return(Cu=a.stackAlloc=a.asm.Va).apply(null,arguments)};a.cwrap=ee;var fi;function Nm(Y){this.name="ExitStatus",this.message="Program terminated with exit("+Y+")",this.status=Y}mr=function Y(){fi||Tu(),fi||(mr=Y)};function Tu(Y){if(Y=Y||c,Vn>0||(pn(),Vn>0))return;function re(){fi||(fi=!0,a.calledRun=!0,!P&&(ts(),ns(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),sn()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),re()},1)):re()}if(a.run=Tu,a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();return Tu(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),fS="3.9.0",mS="3.9.0",gS="3.9.0",AS="3.9.0",yS="3.9.0",xS="3.9.0",bS="3.9.0",vS="3.9.0",wS=1e-7,kS=1e-4,Hd=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},$u=class{refCount(e){return Is("refCount")}incRef(e){return Is("incRef")}timerAvailable(){return!0}time(e){return Is("time")}read(e){return Is("read")}readSync(e){return Is("readSync")}numDataIds(){return Is("numDataIds")}disposeData(e,t){return Is("disposeData")}write(e,t,n){return Is("write")}move(e,t,n,s,r){return Is("move")}memory(){return Is("memory")}floatPrecision(){return Is("floatPrecision")}epsilon(){return this.floatPrecision()===32?wS:kS}dispose(){return Is("dispose")}};function Is(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function b5(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,Gd(e,t,n)}function IS(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,Gd(e,n,s),Gd(t,n,s)}function Fu(e,t,n){return Math.max(e,Math.min(t,n))}function SS(e){return e%2==0?e:e+1}function Gd(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function CS(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function TS(e,t){let n=Math.random();return t*n+(1-n)*e}function NS(e,t){let n=0;for(let s=0;s<e.length;s++){let r=Number(e[s])-Number(t[s]);n+=r*r}return n}function M(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function An(e,t,n=""){M(br(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function Ca(e){M(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Ta(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||cn(e)&&!n)for(let s=0;s<e.length;++s)Ta(e[s],t,n);else t.push(e);return t}function $t(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function ES(e){return e.length===0}function br(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Zt(e){return e%1==0}function RS(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function _S(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function DS(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return b5(t),t}function Ou(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function $S(e,t=s=>0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function FS(e,t){let n=1,s=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function Ss(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),M(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),M(e.every(s=>Zt(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function v5(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:Ss(t,e).sort(),o=0;for(let i=0;i<e.length;++i){if(a!=null){if(a[o]===i&&e[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${e[i]}' is not 1`);(a[o]==null||a[o]>i)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function w5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function k5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function I5(e,t){for(let n=0;n<e.length;n++){let s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function S5(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function OS(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function cn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function Om(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function C5(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Br(e){return typeof e=="string"||e instanceof String}function T5(e){return typeof e=="boolean"}function N5(e){return typeof e=="number"}function jd(e){return Array.isArray(e)?jd(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":N5(e)?"float32":Br(e)?"string":T5(e)?"bool":"float32"}function Wr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function qd(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function wi(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function E5(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;o<a;o++)r[o]=n[e+o]}else{let a=t[0],o=t.slice(1),i=o.reduce((l,u)=>l*u)*(s?2:1);for(let l=0;l<a;l++)r[l]=E5(e+l*i,o,n,s)}return r}function ki(e,t,n=!1){if(e.length===0)return t[0];let s=e.reduce((r,a)=>r*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return E5(0,e,t,n)}function Pm(e,t){let n=Xd(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function Xd(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function PS(e,t){let n=e.reduce((s,r)=>s*r,1);if(t==null||t==="float32")return ki(e,new Float32Array(n));if(t==="int32")return ki(e,new Int32Array(n));if(t==="bool")return ki(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Mm(e){e.forEach(t=>{M(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function MS(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r<e.length-1;++r)s+=n[r]*e[r];return s}function zS(e,t,n){if(t===0)return[];if(t===1)return[e];let s=new Array(t);for(let r=0;r<s.length-1;++r)s[r]=Math.floor(e/n[r]),e-=s[r]*n[r];return s[s.length-1]=e,s}function zm(e){return e&&e.then&&typeof e.then=="function"}function Ys(...e){Q().getBool("IS_TEST")||Q().getBool("PROD")||console.warn(...e)}function LS(...e){Q().getBool("IS_TEST")||Q().getBool("PROD")||console.log(...e)}var R5="tfjsflags",_5=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=BS,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&Ys(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let s=this.urlFlags[e];Ys(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(zm(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);R5 in e&&e[R5].split(",").forEach(n=>{let[s,r]=n.split(":");this.urlFlags[s]=VS(s,r)})}};function BS(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(WS(t,s[0],s[1]),s.join("="))),t}function WS(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function VS(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Q(){return os}var os=null;function US(e){os=e}var Lm;function D5(){if(Lm==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Lm=e}return Lm}function HS(){let e=D5();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Bm(e,t){let n=HS();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var Ii="Abs",Si="Acos",Ci="Acosh",Vr="Add",Na="AddN",Ti="All",Ni="Any",Ea="ArgMax",Pu="ArgMin",Ei="Asin",Ri="Asinh",_i="Atan",Di="Atanh",$i="Atan2",Ra="AvgPool",Kd="AvgPoolGrad",Mu="AvgPool3D",Zd="AvgPool3DGrad",_a="BatchMatMul",Fi="BatchToSpaceND",Yd="Bincount",$5="BroadcastTo",Wm="BroadcastArgs",Da="Cast",$a="Ceil",Ur="ClipByValue",Jd="Complex",zu="ComplexAbs",Oi="Concat",Fa="Conv2D",Qd="Conv2DBackpropFilter",Oa="Conv2DBackpropInput",Lu="Conv3D",eh="Conv3DBackpropFilterV2",th="Conv3DBackpropInputV2",Pa="Cos",Ma="Cosh",za="Cumsum",Pi="CropAndResize",nh="DenseBincount",Mi="DepthToSpace",La="DepthwiseConv2dNative",sh="DepthwiseConv2dNativeBackpropFilter",rh="DepthwiseConv2dNativeBackpropInput",ah="Diag",Bu="Dilation2D",oh="Dilation2DBackpropInput",ih="Dilation2DBackpropFilter",Ba="RealDiv",lh="Einsum",Wa="Elu",uh="EluGrad",zi="Erf",Li="Equal",Va="Exp",Bi="ExpandDims",Wi="Expm1",ch="FFT",Wu="Fill",Vi="FlipLeftRight",Ua="Floor",Ha="FloorDiv",Ga="FusedBatchNorm",Ui="GatherV2",Hi="GatherNd",Gi="Greater",ja="GreaterEqual",qa="Identity",dh="IFFT",hh="Imag",ji="IsFinite",qi="IsInf",Xi="IsNan",Xa="LeakyRelu",Ki="Less",Zi="LessEqual",ph="LinSpace",Ka="Log",Yi="Log1p",Ji="LogicalAnd",Vu="LogicalNot",Uu="LogicalOr",F5="LogSoftmax",Hu="LRN",fh="LRNGrad",Za="Max",Ya="Maximum",Ja="MaxPool",mh="MaxPoolGrad",Gu="MaxPool3D",gh="MaxPool3DGrad",Ah="MaxPoolWithArgmax",Qa="Mean",eo="Min",to="Minimum",no="MirrorPad",Qi="Mod",yh="Multinomial",so="Multiply",el="Neg",tl="NotEqual",nl="NonMaxSuppressionV3",sl="NonMaxSuppressionV4",rl="NonMaxSuppressionV5",al="OnesLike",ro="OneHot",ol="Pack",ao="PadV2",GS="Pool",oo="Pow",io="Prelu",il="Prod",ju="Range",xh="Real",ll="Reciprocal",lo="Relu",ul="Reshape",qu="ResizeNearestNeighbor",bh="ResizeNearestNeighborGrad",uo="ResizeBilinear",vh="ResizeBilinearGrad",co="Relu6",ho="Reverse",po="Round",fo="Rsqrt",cl="ScatterNd",dl="Select",hl="Selu",pl="Slice",mo="Sin",fl="Sinh",ml="Sign",go="Sigmoid",gl="Softplus",Ao="Sqrt",yo="Sum",Al="SpaceToBatchND",yl="SplitV",xo="Softmax",wh="SparseFillEmptyRows",kh="SparseReshape",Ih="SparseSegmentMean",Sh="SparseSegmentSum",Ch="SparseToDense",bo="SquaredDifference",Xu="Square",xl="StridedSlice",Th="StringNGrams",Nh="StringSplit",Eh="StringToHashBucketFast",vo="Sub",wo="Tan",ko="Tanh",Hr="Tile",bl="TopK",vl="Transform",Io="Transpose",Rh="Unique",wl="Unpack",Ku="UnsortedSegmentSum",kl="ZerosLike",Gr="Step",_h="FromPixels",Il="RotateWithOffset",So="_FusedMatMul",Co="FusedConv2D",To="FusedDepthwiseConv2D",Sl=Bm("kernelRegistry",()=>new Map),Zu=Bm("gradRegistry",()=>new Map);function Dh(e,t){let n=Um(e,t);return Sl.get(n)}function Vm(e){return Zu.get(e)}function Cl(e){let t=Sl.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function No(e){let{kernelName:t,backendName:n}=e,s=Um(t,n);Sl.has(s)&&Ys(`The kernel '${t}' for backend '${n}' is already registered`),Sl.set(s,e)}function O5(e){let{kernelName:t}=e;Zu.has(t)&&Q().getBool("DEBUG")&&Ys(`Overriding the gradient for '${t}'`),Zu.set(t,e)}function jS(e,t){let n=Um(e,t);if(!Sl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Sl.delete(n)}function qS(e){if(!Zu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Zu.delete(e)}function XS(e,t){Cl(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});No(r)})}function Um(e,t){return`${t}_${e}`}var w={};Pe(w,{arraysEqual:()=>br,assert:()=>M,assertNonNegativeIntegerDimensions:()=>Mm,assertNonNull:()=>Ca,assertShapesMatch:()=>An,bytesFromStringArray:()=>C5,bytesPerElement:()=>Om,checkConversionForErrors:()=>I5,clamp:()=>Fu,computeStrides:()=>wi,createScalarValue:()=>e9,createShuffledIndices:()=>DS,decodeString:()=>Oh,distSquared:()=>NS,encodeString:()=>Qu,fetch:()=>n9,fingerPrint64:()=>QS,flatten:()=>Ta,getArrayFromDType:()=>k5,getTypedArrayFromDType:()=>w5,hasEncodingLoss:()=>OS,hexToLong:()=>Yu,indexToLoc:()=>zS,inferDtype:()=>jd,inferFromImplicitShape:()=>FS,isBoolean:()=>T5,isFunction:()=>Wr,isInt:()=>Zt,isNumber:()=>N5,isPromise:()=>zm,isScalarShape:()=>ES,isString:()=>Br,isTypedArray:()=>cn,isValidDtype:()=>S5,locToIndex:()=>MS,makeOnesTypedArray:()=>Pm,makeZerosNestedTypedArray:()=>PS,makeZerosTypedArray:()=>Xd,nearestDivisor:()=>qd,nearestLargerEven:()=>SS,now:()=>Ju,parseAxisParam:()=>Ss,randUniform:()=>TS,repeatedTry:()=>$S,rightPad:()=>Ou,shuffle:()=>b5,shuffleCombo:()=>IS,sizeFromShape:()=>$t,sizeToSquarishShape:()=>_S,squeezeShape:()=>v5,sum:()=>CS,swap:()=>Gd,tanh:()=>RS,toNestedArray:()=>ki,toTypedArray:()=>Fh});var P5=Sa(XI()),Eo=P5.default||P5;function Yu(e){return Eo.fromString(e,!0,16)}var M5=Yu("c3a5c85c97cb3127"),Ro=Yu("b492b66fbe98f273"),yn=Yu("9ae16a3b2f90404f");function Hm(e){return e.xor(e.shru(47))}function z5(e,t,n){let s=e.slice(t,t+n);return Eo.fromBytes(Array.from(s),!0,!0)}function pt(e,t){return z5(e,t,8)}function L5(e,t){return z5(e,t,4)}function Yt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function jr(e,t,n=Yu("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function KS(e,t,n,s,r,a){r=r.add(e),a=Yt(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(Yt(r,44)),[r.add(s),a.add(o)]}function $h(e,t,n,s){return KS(pt(e,t),pt(e,t+8),pt(e,t+16),pt(e,t+24),n,s)}function ZS(e,t=e.length){if(t>=8){let n=yn.add(t*2),s=pt(e,0).add(yn),r=pt(e,t-8),a=Yt(r,37).mul(n).add(s),o=Yt(s,25).add(r).mul(n);return jr(a,o,n)}if(t>=4){let n=yn.add(t*2),s=L5(e,0);return jr(s.shl(3).add(t),L5(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return Hm(yn.mul(a).xor(M5.mul(o))).mul(yn)}return yn}function YS(e,t=e.length){let n=yn.add(t*2),s=pt(e,0).mul(Ro),r=pt(e,8),a=pt(e,t-8).mul(n),o=pt(e,t-16).mul(yn);return jr(Yt(s.add(r),43).add(Yt(a,30)).add(o),s.add(Yt(r.add(yn),18)).add(a),n)}function JS(e,t=e.length){let n=yn.add(t*2),s=pt(e,0).mul(yn),r=pt(e,8),a=pt(e,t-8).mul(n),o=pt(e,t-16).mul(yn),i=Yt(s.add(r),43).add(Yt(a,30)).add(o),l=jr(i,s.add(Yt(r.add(yn),18)).add(a),n),u=pt(e,16).mul(n),c=pt(e,24),d=i.add(pt(e,t-32)).mul(n),h=l.add(pt(e,t-24)).mul(n);return jr(Yt(u.add(c),43).add(Yt(d,30)).add(h),u.add(Yt(c.add(s),18)).add(d),n)}function QS(e,t=e.length){let n=Eo.fromNumber(81,!0);if(t<=32)return t<=16?ZS(e,t):YS(e,t);if(t<=64)return JS(e,t);let s=n,r=n.mul(Ro).add(113),a=Hm(r.mul(yn).add(113)).mul(yn),o=[Eo.UZERO,Eo.UZERO],i=[Eo.UZERO,Eo.UZERO];s=s.mul(yn).add(pt(e,0));let l=0,u=(t-1>>6)*64,c=u+(t-1&63)-63;do s=Yt(s.add(r).add(o[0]).add(pt(e,l+8)),37).mul(Ro),r=Yt(r.add(o[1]).add(pt(e,l+48)),42).mul(Ro),s=s.xor(i[1]),r=r.add(o[0]).add(pt(e,l+40)),a=Yt(a.add(i[0]),33).mul(Ro),o=$h(e,l,o[1].mul(Ro),s.add(i[0])),i=$h(e,l+32,a.add(i[1]),r.add(pt(e,l+16))),[a,s]=[s,a],l+=64;while(l!==u);let d=Ro.add(a.and(255).shl(1));return l=c,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=Yt(s.add(r).add(o[0]).add(pt(e,l+8)),37).mul(d),r=Yt(r.add(o[1]).add(pt(e,l+48)),42).mul(d),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(pt(e,l+40))),a=Yt(a.add(i[0]),33).mul(d),o=$h(e,l,o[1].mul(d),s.add(i[0])),i=$h(e,l+32,a.add(i[1]),r.add(pt(e,l+16))),[a,s]=[s,a],jr(jr(o[0],i[0],d).add(Hm(r).mul(M5)).add(a),jr(o[1],i[1],d).add(s),d)}function e9(e,t){return t==="string"?Qu(e):Fh([e],t)}function t9(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Fh(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Ta(e)),Q().getBool("DEBUG")&&I5(e,t),t9(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Ju(){return Q().platform.now()}function n9(e,t){return Q().platform.fetch(e,t)}function Qu(e,t="utf-8"){return t=t||"utf-8",Q().platform.encode(e,t)}function Oh(e,t="utf-8"){return t=t||"utf-8",Q().platform.decode(e,t)}var s9=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new a9)}profileKernel(e,t,n){let s,r=()=>{s=n()},a,o=Ju();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:Ju()-o})}if(Q().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<s.length;l++){let u=s[l];u.data().then(c=>{r9(c,u.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function r9(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){let r=e[s];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var a9=class{logKernelProfile(e,t,n,s,r,a){let o=typeof s=="number"?Ou(`${s}ms`,9):s.error,i=Ou(e,25),l=t.rank,u=t.size,c=Ou(t.shape.toString(),14),d="";for(let h in r){let p=r[h];if(p!=null){let f=p.shape||t.shape,m=f.length;d+=`${h}: ${m}D ${m>0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${c} %c${u} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function o9(e,t,n){let s={},r={};for(let l=0;l<t.length;l++)s[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],c=u.inputs;for(let d in c){let h=c[d],p=!1;for(let f=0;f<t.length;f++)if(s[h.id]){u.outputs.forEach(m=>s[m.id]=!0),p=!0,r[u.id]=!0;break}if(p)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let d=0;d<u.outputs.length;d++)if(a[u.outputs[d].id]){for(let h in c)a[c[h].id]=!0,o[u.id]=!0;break}}let i=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&o[u.id]){let c={};for(let h in u.inputs){let p=u.inputs[h];s[p.id]&&(c[h]=p)}let d=Object.assign({},u);d.inputs=c,d.outputs=u.outputs,i.push(d)}}return i}function i9(e,t,n,s){for(let r=t.length-1;r>=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let u=e[l.id];u!=null?o.push(u):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=n(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=a.inputs[l];if(!br(u.shape,c.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let d=e[c.id];e[c.id]=s(d,u),d.dispose()}}}}var B5=20,ec=3,Gm=7;function l9(e,t,n,s){let r=wi(t),a=u9(e,t,n,r),o=t.length,i=Ph(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function u9(e,t,n,s){let r=$t(t),a=s[s.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?nc(e):e;if(i>1)for(let u=0;u<r/a;u++){let c=u*a;for(let d=0;d<a;d++)o[d]=Math.max(o[d],tc(l[c+d],0,n).length)}return o}function tc(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(Gm))} + ${parseFloat(e[1].toFixed(Gm))}j`:Br(e)?s=`'${e}'`:n==="bool"?s=W5(e):s=parseFloat(e.toFixed(Gm)).toString(),Ou(s,t)}function W5(e){return e===0?"false":"true"}function Ph(e,t,n,s,r,a=!0){let o=n==="complex64"?2:1,i=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=nc(e);return[tc(m[0],0,n)]}return n==="bool"?[W5(e[0])]:[e[0].toString()]}if(l===1){if(i>B5){let g=ec*o,A=Array.from(e.slice(0,g)),y=Array.from(e.slice((i-ec)*o,i*o));return n==="complex64"&&(A=nc(A),y=nc(y)),["["+A.map((x,b)=>tc(x,r[b],n)).join(", ")+", ..., "+y.map((x,b)=>tc(x,r[i-ec+b],n)).join(", ")+"]"]}let m=n==="complex64"?nc(e):Array.from(e);return["["+m.map((g,A)=>tc(g,r[A],n)).join(", ")+"]"]}let u=t.slice(1),c=s.slice(1),d=s[0]*o,h=[];if(i>B5){for(let m=0;m<ec;m++){let g=m*d,A=g+d;h.push(...Ph(e.slice(g,A),u,n,c,r,!1))}h.push("...");for(let m=i-ec;m<i;m++){let g=m*d,A=g+d;h.push(...Ph(e.slice(g,A),u,n,c,r,m===i-1))}}else for(let m=0;m<i;m++){let g=m*d,A=g+d;h.push(...Ph(e.slice(g,A),u,n,c,r,m===i-1))}let p=l===2?",":"";h[0]="["+h[0]+p;for(let m=1;m<h.length-1;m++)h[m]=" "+h[m]+p;let f=`,
|
|
`;for(let m=2;m<l;m++)f+=`
|
|
`;return h[h.length-1]=" "+h[h.length-1]+"]"+(a?"":f),h}function nc(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Ut=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=$t(e),n!=null){let s=n.length;M(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||k5(t,this.size),this.strides=wi(e)}set(e,...t){t.length===0&&(t=[0]),M(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Js().makeTensor(this.values,this.shape,this.dtype)}},Js=null,Tl=null,c9=null;function d9(e){Js=e}function h9(e){Tl=e}function p9(e){c9=e}var Ge=class{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=$t(e),this.strides=wi(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Tl.buffer(this.shape,this.dtype,e)}bufferSync(){return Tl.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return ki(this.shape,e,this.dtype==="complex64")}arraySync(){return ki(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Js().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Oh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Js().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Oh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Js().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Js().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Tl.print(this,e)}clone(){return this.throwIfDisposed(),Tl.clone(this)}toString(e=!1){let t=this.dataSync();return l9(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Tl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Js().makeVariable(this,e,t,n)}};Object.defineProperty(Ge,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function f9(){return Bm("Tensor",()=>Ge)}f9();var sc=class extends Ge{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!br(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Js().disposeTensor(this),this.dataId=e.dataId,Js().incRef(this,null)}dispose(){Js().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(sc,Symbol.hasInstance,{value:e=>e instanceof Ge&&e.assign!=null&&e.assign instanceof Function});var $s={};Pe($s,{assertTypesMatch:()=>V5,getTensorsInContainer:()=>Ym,isTensorInList:()=>g9,makeTypesMatch:()=>Ct});var jm;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(jm||(jm={}));var qm;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(qm||(qm={}));var Xm;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Xm||(Xm={}));var Km;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Km||(Km={}));var Zm;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Zm||(Zm={}));var m9={float32:Km,int32:qm,bool:Xm,complex64:Zm};function Cs(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return m9[e][t]}function Mh(e){return Cs(e,"int32")}function Ct(e,t){if(e.dtype===t.dtype)return[e,t];let n=Cs(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function V5(e,t){M(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function g9(e,t){return t.some(n=>n.id===e.id)}function Ym(e){let t=[],n=new Set;return U5(e,t,n),t}function U5(e,t,n){if(e==null)return;if(e instanceof Ge){t.push(e);return}if(!A9(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),U5(a,t,n))}}function A9(e){return Array.isArray(e)||typeof e=="object"}function Jm(e){return e.kernelName!=null}var H5=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},rc=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new H5}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(Ys(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new s9(this.backendInstance),!0}setupRegisteredKernels(){Cl(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Cl(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof $u)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,Ys(`Initialization of backend ${e} failed`),Ys(a.stack||a.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return Ys(`Initialization of backend ${e} failed`),Ys(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:s,asyncInit:r}=this.initializeBackend(n);if(r||s)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),s=n.backend,r=this.readSync(t),a=s.refCount(t);s.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return rc.nextTensorId++}nextVariableId(){return rc.nextVariableId++}clone(e){let t=z.runKernel(qa,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return z.runKernel(Da,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(Dh(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=Jm(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Jm(e)){let{kernelName:p,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=Dh(p,this.backendName);M(g!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),o=()=>{let A=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let y=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,A,y);let x=y.map(b=>{if(b.rank!=null)return b;let{dataId:v,shape:k,dtype:S}=b;return this.makeTensorFromDataId(v,k,S)});if(s){let b=this.getTensorsForGradient(p,f,x);n=this.saveTensorsForBackwardMode(b)}return x}}else{let{forwardFunc:p}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>p(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:u,attrs:c}=e,d=Jm(e)?null:e.backwardsFunc,h;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(h=this.profiler.profileKernel(l,u,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(h),t=h.outputs)}),s&&this.addTapeNode(l,u,t,d,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(p=>u[p]!=null?u[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:h.timeMs,extraInfo:h.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=Vm(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(M(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,u)=>a[u]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&Br(e[0])&&(r=e.map(i=>Qu(i)));let a=s.write(r,t,n),o=new Ge(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=C5(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r=new Ge(t,n,e,this.nextTensorId());return this.trackTensor(r,s),r}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new sc(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Om(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof sc||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Om(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=Vm(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((u,c)=>{if(u==null){let d=n[c],h=Xd(d.size,d.dtype);return this.makeTensor(h,d.shape,d.dtype)}return u}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Ym(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let a=this.state.activeScope.track[r];!a.kept&&!n.has(a.id)&&a.dispose()}let s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(M(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));M(r instanceof Ge,()=>"The result y returned by f() must be a tensor.");let a=o9(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n==null?y9(r.shape):n,i9(o,a,l=>this.tidy(l),x9);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return M(Wr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{M(t.every(o=>o instanceof Ge),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),M(n.value instanceof Ge,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),M(Wr(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),u=Array.isArray(l)?l:[l];M(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),M(u.every(d=>d instanceof Ge),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((d,h)=>{c[h]=()=>d}),c};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Ju(),n=await this.backend.time(e);return n.wallMs=Ju()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new H5;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};rc.nextTensorId=0;rc.nextVariableId=0;function y9(e){let t=Pm($t(e),"float32");return z.makeTensor(t,e,"float32")}function G5(){let e=D5();if(e._tfengine==null){let t=new _5(e);e._tfengine=new rc(t)}return US(e._tfengine.ENV),d9(()=>e._tfengine),e._tfengine}var z=G5();function x9(e,t){let n={a:e,b:t};return z.runKernel(Vr,n)}var ac={};Pe(ac,{isBrowser:()=>j5,isMobile:()=>v9});function b9(){return typeof navigator!="undefined"&&navigator!=null}function v9(e){if(e||b9()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function j5(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Fs=Q();Fs.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Fs.registerFlag("IS_BROWSER",()=>j5());Fs.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Fs.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Fs.registerFlag("PROD",()=>!1);Fs.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Fs.getBool("DEBUG"));Fs.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Fs.registerFlag("IS_TEST",()=>!1);Fs.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Fs.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Qs(e,t){let n=e;if(cn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||cn(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&Q().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&q5(e,s,[]),s}function q5(e,t,n){if(n=n||[],!Array.isArray(e)&&!cn(e)){M(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}M(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),M(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r<e.length;++r)q5(e[r],s,n.concat(r))}function X5(e,t,n,s){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}}function $(e,t,n,s="numeric"){if(e instanceof Ge)return X5(s,e.dtype,t,n),e;let r=jd(e);if(r!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(r=s),X5(s,r,t,n),e==null||!cn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=Qs(e,r);!cn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Fh(e,r):Ta(e,[],!0);return z.makeTensor(i,a,r)}function oc(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>$(a,`${t}[${o}]`,n,s))}var K5="__op";function W(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+K5;let r=(...a)=>{z.startScope(n);try{let o=s(...a);return zm(o)&&console.error("Cannot return a Promise inside of tidy."),z.endScope(o),o}catch(o){throw z.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function w9(e,t){let n=$(e,"real","complex"),s=$(t,"imag","complex");An(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return z.runKernel(Jd,r)}var qr=W({complex_:w9});function Xr(e,t,n,s){if(s==null&&(s=jd(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!cn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Mm(t);let r=$t(t),a=$t(n);M(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o<n.length;++o){let i=n[o],l=o===n.length-1?i!==$t(t.slice(o)):!0;M(n[o]===t[o]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!cn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?Fh(e,s):Ta(e,[],!0),z.makeTensor(e,t,s)}function dn(e,t,n){let s=Qs(e,n);return Xr(e,t,s,n)}var Qm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},zh=4;async function k9(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<r.length;++o){let i=r[o],l=Array.isArray(e)?e[o].tensor:e[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let u={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async d=>{let h=await l.bytes(),p=h.reduce((g,A)=>g+A.length,0)+zh*h.length,f=new Uint8Array(p),m=0;for(let g=0;g<h.length;g++){let A=h[g],y=new Uint8Array(new Uint32Array([A.length]).buffer);f.set(y,m),m+=zh,f.set(A,m),m+=A.length}d(f)});s.push(c)}else s.push(l.data());t!=null&&(u.group=t),n.push(u)}let a=await Promise.all(s);return{data:I9(a),specs:n}}function Z5(e,t){let n={},s,r=0;for(let a of t){let o=a.name,i=a.dtype,l=a.shape,u=$t(l),c;if("quantization"in a){let d=a.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${a.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${a.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let h=Qm[d.dtype],p=e.slice(r,r+u*h),f=d.dtype==="uint8"?new Uint8Array(p):new Uint16Array(p);if(i==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){c=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=g*d.scale+d.min}}else if(d.dtype==="float16")s===void 0&&(s=R9()),c=s(f);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(i==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);c=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=u*h}else if(i==="string"){let d=$t(a.shape);c=[];for(let h=0;h<d;h++){let p=new Uint32Array(e.slice(r,r+zh))[0];r+=zh;let f=new Uint8Array(e.slice(r,r+p));c.push(f),r+=p}}else{let d=Qm[i],h=e.slice(r,r+u*d);if(i==="float32")c=new Float32Array(h);else if(i==="int32")c=new Int32Array(h);else if(i==="bool")c=new Uint8Array(h);else if(i==="complex64"){c=new Float32Array(h);let p=new Float32Array(c.length/2),f=new Float32Array(c.length/2);for(let A=0;A<p.length;A++)p[A]=c[A*2],f[A]=c[A*2+1];let m=dn(p,l,"float32"),g=dn(f,l,"float32");n[o]=qr(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=u*d}i!=="complex64"&&(n[o]=dn(c,l,i))}return n}function I9(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var eg=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Y5(e){return eg?Buffer.byteLength(e):new Blob([e]).size}function S9(e){if(eg)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s<r;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function C9(e){if(eg){let s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function tg(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function J5(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function Q5(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function ng(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function ic(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Y5(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Y5(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function T9(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)==0;)r-=8388608,s<<=1;return s&=~8388608,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function N9(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function E9(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function R9(){let e=T9(),t=N9(),n=E9();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o<s.length;o++){let i=s[o],l=e[n[i>>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var Rt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Rt.instance==null&&(Rt.instance=new Rt),Rt.instance}static registerSaveRouter(e){Rt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Rt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Rt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Rt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?Rt.getInstance().loadRouters:Rt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},_9=e=>Rt.registerSaveRouter(e),D9=e=>Rt.registerLoadRouter(e),$9=e=>Rt.getSaveHandlers(e),F9=(e,t)=>Rt.getLoadHandlers(e,t),sg="tensorflowjs",rg=1,_o="models_store",Kr="model_info_store";function ex(){if(!Q().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function ag(e){let t=e.result;t.createObjectStore(_o,{keyPath:"modelPath"}),t.createObjectStore(Kr,{keyPath:"modelPath"})}var Do=class{constructor(e){if(this.indexedDB=ex(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(sg,rg);r.onupgradeneeded=()=>ag(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(_o,"readonly"),l=o.objectStore(_o).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=u=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=ic(t),i=a.transaction(Kr,"readwrite"),l=i.objectStore(Kr),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),c;u.onsuccess=()=>{c=a.transaction(_o,"readwrite");let h=c.objectStore(_o).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});h.onsuccess=()=>n({modelArtifactsInfo:o}),h.onerror=p=>{l=i.objectStore(Kr);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(h.error)),f.onerror=m=>(a.close(),s(h.error))}},u.onerror=d=>(a.close(),s(u.error)),i.oncomplete=()=>{c==null?a.close():c.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};Do.URL_SCHEME="indexeddb://";var tx=e=>Q().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Do.URL_SCHEME)?O9(e.slice(Do.URL_SCHEME.length)):null;Rt.registerSaveRouter(tx);Rt.registerLoadRouter(tx);function O9(e){return new Do(e)}function P9(e){return e.startsWith(Do.URL_SCHEME)?e.slice(Do.URL_SCHEME.length):e}var M9=class{constructor(){this.indexedDB=ex()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(sg,rg);n.onupgradeneeded=()=>ag(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(Kr,"readonly"),o=r.objectStore(Kr).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=P9(e),new Promise((t,n)=>{let s=this.indexedDB.open(sg,rg);s.onupgradeneeded=()=>ag(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(Kr,"readwrite"),o=a.objectStore(Kr),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=o.delete(e),c=()=>{l=r.transaction(_o,"readwrite");let h=l.objectStore(_o).delete(e);h.onsuccess=()=>t(i.result.modelArtifactsInfo),h.onerror=p=>n(i.error)};u.onsuccess=c,u.onerror=d=>(c(),r.close(),n(i.error))}},i.onerror=u=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},vr="/",Nl="tensorflowjs_models",nx="info",z9="model_topology",L9="weight_specs",B9="weight_data",W9="model_metadata";function sx(e){return{info:[Nl,e,nx].join(vr),topology:[Nl,e,z9].join(vr),weightSpecs:[Nl,e,L9].join(vr),weightData:[Nl,e,B9].join(vr),modelMetadata:[Nl,e,W9].join(vr)}}function rx(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function V9(e){let t=e.split(vr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(vr)}function U9(e){return e.startsWith($o.URL_SCHEME)?e.slice($o.URL_SCHEME.length):e}var $o=class{constructor(e){if(!Q().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=sx(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=ic(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,S9(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw rx(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=C9(a),t}};$o.URL_SCHEME="localstorage://";var ax=e=>Q().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith($o.URL_SCHEME)?H9(e.slice($o.URL_SCHEME.length)):null;Rt.registerSaveRouter(ax);Rt.registerLoadRouter(ax);function H9(e){return new $o(e)}var G9=class{constructor(){M(Q().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),M(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Nl+vr,n=vr+nx;for(let s=0;s<this.LS.length;++s){let r=this.LS.key(s);if(r.startsWith(t)&&r.endsWith(n)){let a=V9(r);e[a]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=U9(e);let t=sx(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return rx(t),n}},El="://",is=class{constructor(){this.managers={}}static getInstance(){return is.instance==null&&(is.instance=new is),is.instance}static registerManager(e,t){M(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(El)&&(e=e.slice(0,e.indexOf(El))),M(e.length>0,()=>"scheme must not be an empty string.");let n=is.getInstance();M(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Lh(e){if(e.indexOf(El)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${is.getSchemes().join(",")}`);return{scheme:e.split(El)[0],path:e.split(El)[1]}}async function ox(e,t,n=!1){M(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=Rt.getLoadHandlers(e);M(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),M(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=Rt.getSaveHandlers(t);M(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),M(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=Lh(e).scheme,l=Lh(e).path,u=i===Lh(e).scheme,c=await r.load();n&&u&&await is.getManager(i).removeModel(l);let d=await o.save(c);return n&&!u&&await is.getManager(i).removeModel(l),d.modelArtifactsInfo}async function j9(){let e=is.getSchemes(),t={};for(let n of e){let s=await is.getManager(n).listModels();for(let r in s){let a=n+El+r;t[a]=s[r]}}return t}async function q9(e){let t=Lh(e);return is.getManager(t.scheme).removeModel(t.path)}async function X9(e,t){return ox(e,t,!1)}async function K9(e,t){return ox(e,t,!0)}var Z9=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Q().get("IS_BROWSER")){Q().setPlatform("browser",new Z9);try{is.registerManager($o.URL_SCHEME,new G9)}catch(e){}try{is.registerManager(Do.URL_SCHEME,new M9)}catch(e){}}var Y9={importFetch:()=>KI()},og,J9=class{constructor(){this.util=vi("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Q().global.fetch!=null?Q().global.fetch(e,t):(og==null&&(og=Y9.importFetch()),og(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Q().get("IS_NODE")&&Q().setPlatform("node",new J9);function We(e,t="float32",n){return t=t||"float32",Mm(e),new Ut(e,t,n)}function Q9(e,t){let n=$(e,"x","cast");if(!S5(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return z.runKernel(Da,s,r)}var ce=W({cast_:Q9});function eC(e){let n={x:$(e,"x","clone","string_or_numeric")};return z.runKernel(qa,n)}var Os=W({clone_:eC});function ix(e,t=!1){console.log(e.toString(t))}G5();var tC={buffer:We,cast:ce,clone:Os,print:ix};h9(tC);var _n={};Pe(_n,{browserFiles:()=>lC,browserHTTPRequest:()=>pC,concatenateArrayBuffers:()=>tg,copyModel:()=>X9,decodeWeights:()=>Z5,encodeWeights:()=>k9,fromMemory:()=>mC,getLoadHandlers:()=>F9,getModelArtifactsForJSON:()=>ng,getModelArtifactsInfoForJSON:()=>ic,getSaveHandlers:()=>$9,http:()=>ug,isHTTPScheme:()=>lg,listModels:()=>j9,loadWeights:()=>uC,moveModel:()=>K9,registerLoadRouter:()=>D9,registerSaveRouter:()=>_9,removeModel:()=>q9,weightsLoaderFactory:()=>dx,withSaveHandler:()=>gC});var nC="model",sC=".json",rC=".weights.bin";function lx(e){return new Promise(t=>setTimeout(t)).then(e)}var Rl=class{constructor(e){if(!Q().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Rl.URL_SCHEME)&&(e=e.slice(Rl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=nC),this.modelJsonFileName=e+sC,this.weightDataFileName=e+rC}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=Q5(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await lx(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await lx(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:ic(e)}}}};Rl.URL_SCHEME="downloads://";var aC=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=ng(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,tg(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>J5(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=J5(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},oC=e=>Q().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Rl.URL_SCHEME)?iC(e.slice(Rl.URL_SCHEME.length)):null;Rt.registerSaveRouter(oC);function iC(e="model"){return new Rl(e)}function lC(e){return new aC(e)}function ux(e,t,n,s){o(e),n=n==null?0:n,s=s==null?1:s,i(n,s);let r=0,a=l=>(l.then(u=>{let c=n+ ++r/e.length*(s-n);return t(c),u}),l);function o(l){M(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){M(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),M(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),M(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(a))}async function cx(e,t){t==null&&(t={});let n=t.fetchFunc==null?Q().platform.fetch:t.fetchFunc,s=e.map(d=>n(d,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await ux(s,t.onProgress,r,a)).map(d=>d.arrayBuffer()),l=.5,u=1;return t.onProgress==null?await Promise.all(i):await ux(i,t.onProgress,l,u)}async function uC(e,t="",n,s){return dx(o=>cx(o,{requestInit:s}))(e,t,n)}function dx(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((p,f)=>{let m=0;p.weights.forEach(g=>{let A="quantization"in g?g.quantization.dtype:g.dtype,y=Qm[A]*$t(g.shape),x=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:y})};s!=null?s.forEach((b,v)=>{b===g.name&&(x(),o[v]=!0)}):x(),i.push(g.name),m+=y})}),!o.every(p=>p)){let p=s.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}.
|
|
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((p,f,m)=>(f&&p.push(m),p),[]),u=[];l.forEach(p=>{t[p].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;u.push(m)})});let c=await e(u),d={},h=0;return l.forEach(p=>{let f=t[p].paths.length,m=0;for(let b=0;b<f;b++)m+=c[h+b].byteLength;let g=new ArrayBuffer(m),A=new Uint8Array(g),y=0;for(let b=0;b<f;b++){let v=new Uint8Array(c[h+b]);A.set(v,y),y+=v.byteLength}a[p].forEach(b=>{let v=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),k=Z5(v,[b.manifestEntry]);for(let S in k)d[S]=k[S]}),h+=f}),d}}var cC="application/octet-stream",dC="application/json",ig=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(M(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Q().platform.fetch,M(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&M(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=Q5(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:dC}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:cC}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:ic(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return ng(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=hC(t),r=this.weightPathPrefix||n,a=[];for(let u of e)a.push(...u.weights);let o=[],i=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(c)):o.push(r+c+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await cx(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,tg(l)]}};ig.URL_SCHEME_REGEX=/^https?:\/\//;function hC(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function lg(e){return e.match(ig.URL_SCHEME_REGEX)!=null}var hx=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>lg(s)):n=lg(e),n)return ug(e,t)}return null};Rt.registerSaveRouter(hx);Rt.registerLoadRouter(hx);function ug(e,t){return new ig(e,t)}function pC(e,t){return ug(e,t)}var cg=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},fC=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function mC(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new cg(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new cg({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new cg({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function gC(e){return new fC(e)}var px={};Pe(px,{confusionMatrix:()=>vC});function AC(e,t,n=!1,s=!1){let r=$(e,"a","matMul"),a=$(t,"b","matMul");[r,a]=Ct(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return z.runKernel(_a,o,i)}var Ve=W({matMul_:AC});function yC(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:$(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:s};return z.runKernel(ro,a,o)}var lc=W({oneHot_:yC});function xC(e,t){let n=$(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{M(a>=0&&a<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let s={x:n},r={perm:t};return z.runKernel(Io,s,r)}var Xe=W({transpose_:xC});function bC(e,t,n){let s=$(e,"labels","confusionMatrix"),r=$(t,"predictions","confusionMatrix");M(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),M(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),M(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),M(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),M(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=lc(ce(s,"int32"),n),o=lc(ce(r,"int32"),n),i=Xe(a),l=Ve(i,o);return ce(l,"int32")}var vC=W({confusionMatrix_:bC}),ls={};Pe(ls,{fromPixels:()=>NC,fromPixelsAsync:()=>CC,toPixels:()=>TC});function Bh(e,t,n){if(Ca(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=Qs(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Xr(e,t,s,n)}var _l;function fx(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let f=2;if(r&&e.readyState<f)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Dh(_h,z.backendName)!=null){let f={pixels:e},m={numChannels:t};return z.runKernel(_h,f,m)}let[u,c]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;o?d=e.getContext("2d").getImageData(0,0,u,c).data:s||n?d=e.data:(a||r||i)&&(_l==null&&(_l=document.createElement("canvas").getContext("2d")),_l.canvas.width=u,_l.canvas.height=c,_l.drawImage(e,0,0,u,c),d=_l.getImageData(0,0,u,c).data);let h;if(t===4)h=new Int32Array(d);else{let f=u*c;h=new Int32Array(f*t);for(let m=0;m<f;m++)for(let g=0;g<t;++g)h[m*t+g]=d[m*4+g]}return Bh(h,[c,u,t],"int32")}function wC(e){return e!=null&&e.data instanceof Uint8Array}function kC(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function IC(e){return e!=null&&e.width!==0&&e.height!==0}function SC(e){return kC()&&!(e instanceof ImageBitmap)&&IC(e)&&!wC(e)}async function CC(e,t=3){let n=null;if(Q().getBool("WRAP_TO_IMAGEBITMAP")&&SC(e)){let s;try{s=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){s=null}s!=null&&s.width===e.width&&s.height===e.height?n=s:n=e}else n=e;return fx(n,t)}async function TC(e,t){let n=$(e,"img","toPixels");if(!(e instanceof Ge)){let u=n;n=ce(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[s,r]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let u=0;u<s*r;++u){let c=[0,0,0,255];for(let h=0;h<a;h++){let p=o[u*a+h];if(n.dtype==="float32"){if(p<0||p>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);a===1?(c[0]=p*i,c[1]=p*i,c[2]=p*i):c[h]=p*i}let d=u*4;l[d+0]=Math.round(c[0]),l[d+1]=Math.round(c[1]),l[d+2]=Math.round(c[2]),l[d+3]=Math.round(c[3])}if(t!=null){t.width=r,t.height=s;let u=t.getContext("2d"),c=new ImageData(l,r,s);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var NC=W({fromPixels_:fx}),dg={};Pe(dg,{prepareAndValidate:()=>mx});function mx(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if($t(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let d=0;d<r.length-1;++d)o*=r[d];let i=e.shape,l=r.slice();l.pop();let u=1;for(let d=a;d<n;++d)u*=i[d],l.push(i[d]);let c=[...wi(e.shape).map(d=>d/u),1].slice(0,a);return[l,o,u,c]}var hg={};Pe(hg,{calculateShapes:()=>gx,validateInput:()=>fg,validateUpdateShape:()=>pg});function pg(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(a+` update.rank < ${r}. `);if(e.length<s+(n.rank-r))throw new Error(a+` Output shape length < ${s+(n.rank-r)}`);if(n.rank!==r+e.length-s)throw new Error(a+` update.rank != ${r+e.length-s}`);for(let o=0;o<r;++o)if(n.shape[o]!==t.shape[o])throw new Error(a+` updates.shape[${o}] (${n.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<n.rank-r;++o)if(n.shape[o+r]!==e[o+s])throw new Error(a+` updates.shape[${o+r}] (${n.shape[o+r]}) != shape[${o+r}] (${e[o+r]})`)}function fg(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}pg(n,t,e)}function gx(e,t,n){let s=t.shape.length,r=s>1?t.shape[s-1]:1,a=n.length,o=1;for(let d=r;d<a;++d)o*=n[d];let i=r<1?1:r,l=$t(t.shape)/i,u=[...wi(n.slice(0,r)),1],c=$t(n);return{sliceRank:r,numUpdates:l,sliceSize:o,strides:u,outputSize:c}}var xn={};Pe(xn,{assertParamsValid:()=>EC,computeFlatOffset:()=>_C,computeOutShape:()=>Ax,getNormalizedAxes:()=>vx,isSliceContinous:()=>RC,maskToAxes:()=>Wh,parseSliceParams:()=>Tx,sliceInfo:()=>DC,startForAxis:()=>Sx,startIndicesWithElidedDims:()=>wx,stopForAxis:()=>Cx,stopIndicesWithElidedDims:()=>kx,stridesForAxis:()=>Ix,stridesWithElidedDims:()=>yx});function EC(e,t,n){let s=e.shape.length;M(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),M(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r<s;++r)M(t[r]+n[r]<=e.shape[r],()=>`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function Wh(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function Ax(e,t,n){let s=[];for(let r=0;r<e.length;r++)s[r]=Math.ceil((t[r]-e[r])/n[r]);return s}function yx(e,t,n,s){let r=[...e];for(let a=r.length;a<s.length;a++)r.push(1);for(let a=0;a<n;a++)a===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function xx(e,t,n){return n<=e?n:n-(t-1)}function bx(e,t){let n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function vx(e,t,n,s,r,a,o,i,l){let u=e.length,c=new Array(u),d=new Array(u),h=new Array(u);if(t.length&&n>0){let p=t[0],f=n+1;c=wx(o,p,f,s,e),d=kx(i,p,f,r,e),h=yx(a,p,f,e)}else for(let p=0;p<u;p++)c[p]=Sx(o,s,a,e,p,l),d[p]=Cx(i,r,a,e,p,l),h[p]=Ix(a,p,l);return{begin:c,end:d,strides:h}}function wx(e,t,n,s,r){let a=[...r],o=bx(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=0;else{let l=xx(t,n,i),u=s[l];e&1<<l&&(u=0),a[i]=u}return a}function kx(e,t,n,s,r){let a=[...r],o=bx(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=xx(t,n,i),u=s[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),a[i]=u}for(let i=0;i<a.length;i++){let l=r[i];a[i]<0&&(a[i]+=l),a[i]=Fu(0,a[i],r[i])}return a}function Ix(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function Sx(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=Fu(0,o,l-1),o}function Cx(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=Fu(0,o,l):o=Fu(-1,o,l-1),o}function RC(e,t,n){let s=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){s=r;break}for(let r=s+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function _C(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function Tx(e,t,n){let s,r=e.shape.length;typeof t=="number"?s=[t,...new Array(r-1).fill(0)]:t.length<r?s=t.concat(new Array(r-t.length).fill(0)):s=t.slice(),s.forEach(o=>{M(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.length<r?a=n.concat(new Array(r-n.length).fill(-1)):a=n,a=a.map((o,i)=>o>=0?o:(M(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function DC(e,t,n,s,r,a,o,i,l){let u=t.slice(),c=n.slice(),d=s;s==null&&(d=new Array(u.length));let h=Wh(o);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(o!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(o!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-u.length,f=Wh(i),m=e.slice();f.forEach(S=>{u[S]=0,c[S]=1,m.splice(S,0,1)});let{begin:g,end:A,strides:y}=vx(m,h,p,u,c,d,r,a,o);u=g,c=A,d=y;let x=Wh(l);x.forEach(S=>{c[S]=u[S]+1,d[S]=1});let b=Ax(u,c,d),v=b.filter((S,C)=>x.indexOf(C)===-1);return{nonStrided:d.every(S=>S===1),$begin:u,$end:c,$strides:d,size:b,newShape:m,outShape:v}}var oe={};Pe(oe,{Serializable:()=>Nx,SerializationMap:()=>Fo,registerClass:()=>Zr});var Nx=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Fo=class{constructor(){this.classNameMap={}}static getMap(){return Fo.instance==null&&(Fo.instance=new Fo),Fo.instance}static register(e){Fo.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Zr(e){M(e.className!=null,()=>"Class being registered does not have the static className property defined."),M(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),M(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Fo.register(e)}var Ex={};Pe(Ex,{TEST_EPSILON_FLOAT16:()=>Rx,encodeStrings:()=>_x,expectArrayBuffersEqual:()=>LC,expectArraysClose:()=>FC,expectArraysEqual:()=>PC,expectNumbersClose:()=>MC,expectPromiseToFail:()=>OC,expectValuesInRange:()=>zC,testEpsilon:()=>mg});var $C=.001,Rx=.1;function FC(e,t,n){return n==null&&(n=mg()),gg(e,t,(s,r)=>Ag(s,r,n))}function mg(){return z.backend.floatPrecision()===32?$C:Rx}function gg(e,t,n){let s=!0;if((cn(e)||cn(t))&&(s=!1),cn(e)&&cn(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=Qs(e),i=Qs(t);if(!br(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=cn(e)?e:Ta(e),a=cn(t)?t:Ta(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`);for(let o=0;o<a.length;++o){let i=r[o],l=a[o];if(!n(i,l))throw new Error(`Arrays differ: actual[${o}] = ${i}, expected[${o}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`)}}function OC(e,t){e().then(()=>t.fail(),()=>t())}function PC(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Br(e)||Br(e[0])||Br(t)||Br(t[0])?gg(e,n,(s,r)=>s==r):gg(e,t,(s,r)=>Ag(s,r,0))}function MC(e,t,n){if(n==null&&(n=mg()),!Ag(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Ag(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function zC(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function LC(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function _x(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?_x(n):e[t]=Qu(n)}return e}var Dx="3.9.0";function BC(){Q().set("PROD",!0)}function WC(){Q().set("DEBUG",!0)}function VC(){Q().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function yg(e){Q().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}p9(yg);function UC(){z.disposeVariables()}function wr(){return z}function Vh(){return z.memory()}function HC(e){return z.profile(e)}function H(e,t){return z.tidy(e,t)}function K(e){Ym(e).forEach(n=>n.dispose())}function Jt(e){return z.keep(e)}function GC(e){return z.time(e)}function jC(e){return z.setBackend(e)}function qC(){return z.ready()}function XC(){return z.backendName}function KC(e){z.removeBackend(e)}function xg(e){return z.findBackend(e)}function ZC(e){return z.findBackendFactory(e)}function Dl(e,t,n=1){return z.registerBackend(e,t,n)}function $x(){return z.backend}function YC(e,t){Q().setPlatform(e,t)}function JC(e,t){let n=$(e,"a","add"),s=$(t,"b","add");[n,s]=Ct(n,s);let r={a:n,b:s};return z.runKernel(Vr,r)}var ae=W({add_:JC});function QC(e,t){let n=$(e,"a","floorDiv"),s=$(t,"b","floorDiv");[n,s]=Ct(n,s);let r={a:n,b:s};return z.runKernel(Ha,r)}var bg=W({floorDiv_:QC});function eT(e,t){let n=$(e,"a","div"),s=$(t,"b","div");if([n,s]=Ct(n,s),n.dtype==="int32"&&s.dtype==="int32")return bg(n,s);let r={a:n,b:s},a={};return z.runKernel(Ba,r,a)}var de=W({div_:eT});function tT(e,t){let n=$(e,"a","mul"),s=$(t,"b","mul");[n,s]=Ct(n,s);let r={a:n,b:s};return z.runKernel(so,r)}var L=W({mul_:tT});function nT(e){let t=$(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return z.runKernel(zu,n)}else{let n={x:t};return z.runKernel(Ii,n)}}var Ht=W({abs_:nT});function sT(e){let n={x:$(e,"x","acos")};return z.runKernel(Si,n)}var Fx=W({acos_:sT});function rT(e){let n={x:$(e,"x","acosh")};return z.runKernel(Ci,n)}var Ox=W({acosh_:rT});function aT(e){M(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),M(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>$(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!br(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return z.runKernel(Na,s)}var Uh=W({addN_:aT});function oT(e,t=null,n=!1){let r={x:$(e,"x","all","bool")},a={axis:t,keepDims:n};return z.runKernel(Ti,r,a)}var vg=W({all_:oT});function iT(e,t=null,n=!1){let r={x:$(e,"x","any","bool")},a={axis:t,keepDims:n};return z.runKernel(Ni,r,a)}var Hh=W({any_:iT});function lT(e,t=0){let s={x:$(e,"x","argMax")},r={axis:t};return z.runKernel(Ea,s,r)}var er=W({argMax_:lT});function uT(e,t=0){let s={x:$(e,"x","argMin")},r={axis:t};return z.runKernel(Pu,s,r)}var Px=W({argMin_:uT});function cT(e){let n={x:$(e,"x","asin")};return z.runKernel(Ei,n)}var Mx=W({asin_:cT});function dT(e){let n={x:$(e,"x","asinh")};return z.runKernel(Ri,n)}var zx=W({asinh_:dT});function hT(e){let n={x:$(e,"x","atan")};return z.runKernel(_i,n)}var Lx=W({atan_:hT});function pT(e,t){let n=$(e,"a","atan2"),s=$(t,"b","atan2");[n,s]=Ct(n,s);let r={a:n,b:s};return z.runKernel($i,r)}var Bx=W({atan2_:pT});function fT(e){let n={x:$(e,"x","atanh")};return z.runKernel(Di,n)}var Wx=W({atanh_:fT});function mT(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=Hx(r);return uc(e,i,n,a,s,null,null,l)}function Vx(e,t,n,s,r,a,o="channelsLast"){let[i,l]=Gh(t),u;if(o==="channelsLast")u=[i,l,e[3],e[3]];else if(o==="channelsFirst")u=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return uc(e,u,n,s,r,a,!1,o)}function gT(e,t,n,s,r,a,o="NDHWC"){let[i,l,u]=kg(t),c,d;if(o==="NDHWC")d="channelsLast",c=[i,l,u,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",c=[i,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return Ux(e,c,n,s,r,!1,d,a)}function uc(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,u,c,d]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,d]=e;else if(i==="channelsFirst")[l,d,u,c]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,p,,f]=t,[m,g]=Gh(n),[A,y]=Gh(s),x=$l(h,A),b=$l(p,y),{padInfo:v,outHeight:k,outWidth:S}=xT(r,u,c,m,g,x,b,a,i),C=o?f*d:f,_;return i==="channelsFirst"?_=[l,C,k,S]:i==="channelsLast"&&(_=[l,k,S,C]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:d,outHeight:k,outWidth:S,outChannels:C,padInfo:v,strideHeight:m,strideWidth:g,filterHeight:h,filterWidth:p,effectiveFilterHeight:x,effectiveFilterWidth:b,dilationHeight:A,dilationWidth:y,inShape:e,outShape:_,filterShape:t}}function Ux(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,u,c,d,h]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,d,h]=e;else if(o==="channelsFirst")[l,h,u,c,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[p,f,m,,g]=t,[A,y,x]=kg(n),[b,v,k]=kg(s),S=$l(p,b),C=$l(f,v),_=$l(m,k),{padInfo:O,outDepth:E,outHeight:R,outWidth:T}=bT(r,u,c,d,A,y,x,S,C,_,i),P=a?g*h:g,V;return o==="channelsFirst"?V=[l,P,E,R,T]:o==="channelsLast"&&(V=[l,E,R,T,P]),{batchSize:l,dataFormat:o,inDepth:u,inHeight:c,inWidth:d,inChannels:h,outDepth:E,outHeight:R,outWidth:T,outChannels:P,padInfo:O,strideDepth:A,strideHeight:y,strideWidth:x,filterDepth:p,filterHeight:f,filterWidth:m,effectiveFilterDepth:S,effectiveFilterHeight:C,effectiveFilterWidth:_,dilationDepth:b,dilationHeight:v,dilationWidth:k,inShape:e,outShape:V,filterShape:t}}function AT(e,t,n,s,r){s==null&&(s=wg(e,t,n));let a=e[0],o=e[1],i=Oo((a-t+2*s)/n+1,r),l=Oo((o-t+2*s)/n+1,r);return[i,l]}function yT(e,t,n,s,r,a){r==null&&(r=wg(e,t,s));let o=e[0],i=e[1],l=e[2],u=Oo((o-t+2*r)/s+1,a),c=Oo((i-t+2*r)/s+1,a),d=Oo((l-t+2*r)/s+1,a);return[u,c,d,n]}function wg(e,t,n,s=1){let r=$l(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function Gh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function kg(e){return typeof e=="number"?[e,e,e]:e}function $l(e,t){return t<=1?e:e+(e-1)*(t-1)}function xT(e,t,n,s,r,a,o,i,l){let u,c,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let p=AT([t,n],a,s,e,i);c=p[0],d=p[1]}else if(e==="same"){c=Math.ceil(t/s),d=Math.ceil(n/r);let h=Math.max(0,(c-1)*s+a-t),p=Math.max(0,(d-1)*r+o-n),f=Math.floor(h/2),m=h-f,g=Math.floor(p/2),A=p-g;u={top:f,bottom:m,left:g,right:A,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-a+1)/s),d=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let h=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:h,bottom:p,left:f,right:m,type:h===0&&p===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=Oo((t-a+h+p)/s+1,i),d=Oo((n-o+f+m)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:d}}function bT(e,t,n,s,r,a,o,i,l,u,c){let d,h,p,f;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=yT([t,n,s,1],i,1,r,e,c);h=g[0],p=g[1],f=g[2]}else if(e==="same"){h=Math.ceil(t/r),p=Math.ceil(n/a),f=Math.ceil(s/o);let m=(h-1)*r+i-t,g=(p-1)*a+l-n,A=(f-1)*o+u-s,y=Math.floor(m/2),x=m-y,b=Math.floor(g/2),v=g-b,k=Math.floor(A/2),S=A-k;d={top:b,bottom:v,left:k,right:S,front:y,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},h=Math.ceil((t-i+1)/r),p=Math.ceil((n-l+1)/a),f=Math.ceil((s-u+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:h,outHeight:p,outWidth:f}}function Oo(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Yr(e){let[t,n,s]=Gh(e);return t===1&&n===1&&s===1}function tr(e,t){return Yr(e)||Yr(t)}function Hx(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function vT(e,t){let s={x:$(e,"x","reshape","string_or_numeric")},r={shape:t};return z.runKernel(ul,s,r)}var U=W({reshape_:vT});function wT(e,t,n,s,r){let a=$(e,"x","avgPool","float32"),o=1;M(tr(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),r!=null&&M(Zt(s),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=z.runKernel(Ra,u,c);return d=ce(d,a.dtype),l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var jh=W({avgPool_:wT});function kT(e,t,n,s,r,a="NDHWC"){let o=$(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&M(Zt(s),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=z.runKernel(Mu,u,c);return d=ce(d,i.dtype),l?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Ig=W({avgPool3d_:kT});function IT(e,t=0){M(e.length>=1,()=>"Pass at least one tensor to concat");let n=oc(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${a.dtype}. `)}),n.length===1)return Os(n[0]);let s=n,r={axis:t};return z.runKernel(Oi,s,r)}var ft=W({concat_:IT});function ST(e){let n={x:$(e,"x","sigmoid")};return z.runKernel(go,n)}var Hn=W({sigmoid_:ST});function CT(e,t,n){let s=$(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return z.runKernel(pl,r,a)}var Re=W({slice_:CT});function TT(e){let n={x:$(e,"x","tanh")};return z.runKernel(ko,n)}var Fl=W({tanh_:TT});function NT(e,t,n,s,r,a){let o=$(e,"forgetBias","basicLSTMCell"),i=$(t,"lstmKernel","basicLSTMCell"),l=$(n,"lstmBias","basicLSTMCell"),u=$(s,"data","basicLSTMCell"),c=$(r,"c","basicLSTMCell"),d=$(a,"h","basicLSTMCell"),h=ft([u,d],1),p=Ve(h,i),f=ae(p,l),m=f.shape[0],g=f.shape[1]/4,A=[m,g],y=Re(f,[0,0],A),x=Re(f,[0,g],A),b=Re(f,[0,g*2],A),v=Re(f,[0,g*3],A),k=ae(L(Hn(y),Fl(x)),L(c,Hn(ae(o,b)))),S=L(Fl(k),Hn(v));return[k,S]}var ET=W({basicLSTMCell_:NT});function RT(e,t,n){let s=$(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);M(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),M(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),M(s.shape[0]%r==0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return z.runKernel(Fi,a,o)}var qh=W({batchToSpaceND_:RT});function _T(e){let t;return e.rank===0||e.rank===1?t=U(e,[1,1,1,e.size]):e.rank===2?t=U(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function DT(e,t,n,s,r,a){a==null&&(a=.001);let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;s!=null&&(c=$(s,"offset","batchNorm")),M(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),M(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),M(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:_T(o),scale:u,offset:c,mean:i,variance:l},p={varianceEpsilon:a},f=z.runKernel(Ga,h,p);return U(f,o.shape)}var Ol=W({batchNorm_:DT});function $T(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;return s!=null&&(c=$(s,"offset","batchNorm")),M(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),M(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),M(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Ol(o,i,l,c,u,a)}var Gx=W({batchNorm2d_:$T});function FT(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;return s!=null&&(c=$(s,"offset","batchNorm")),M(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),M(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),M(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Ol(o,i,l,c,u,a)}var jx=W({batchNorm3d_:FT});function OT(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;return s!=null&&(c=$(s,"offset","batchNorm")),M(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),M(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),M(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Ol(o,i,l,c,u,a)}var qx=W({batchNorm4d_:OT});function PT(e,t,n){let s=$(e,"x","bincount"),r=$(t,"weights","bincount");M(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return z.runKernel(Yd,a,o)}var Sg=W({bincount_:PT});function MT(e,t){let n=$(e,"s0","broadcastArgs","int32"),s=$(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return z.runKernel(Wm,r)}var Xx=W({broadcastArgs_:MT});function zT(e,t){let n=$(e,"broadcastTo","x"),s=n.shape;if(t.some(u=>!(u>0)||u%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let u=n.shape.slice();for(;u.length<t.length;)u.unshift(1);n=U(n,u)}let r=n.shape,a=Array.from(t);for(let u=t.length-1;u>=0;u--)if(r[u]===t[u])a[u]=1;else if(n.shape[u]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Os(n);let i={x:n},l={reps:a};return z.runKernel(Hr,i,l)}var cc=W({broadcastTo_:zT});function LT(e){let n={x:$(e,"x","ceil")};return z.runKernel($a,n)}var Kx=W({ceil_:LT});function BT(e,t,n){let s=$(e,"x","clipByValue");M(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return z.runKernel(Ur,r,a)}var Gn=W({clipByValue_:BT});function WT(e){return ft(e,0)}var Zx=W({concat1d_:WT});function VT(e,t){return ft(e,t)}var Pl=W({concat2d_:VT});function UT(e,t){return ft(e,t)}var Yx=W({concat3d_:UT});function HT(e,t){return ft(e,t)}var Jx=W({concat4d_:HT});function GT(e,t,n,s,r="NHWC",a=[1,1],o){let i=$(e,"x","conv2d"),l=$(t,"filter","conv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),o!=null&&M(Zt(s),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d=r==="NHWC"?u.shape[3]:u.shape[1];M(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),M(tr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let h={x:u,filter:l},p={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=z.runKernel(Fa,h,p);return c?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Jr=W({conv2d_:GT});function jT(e,t,n,s,r="NWC",a=1,o){let i=$(e,"x","conv1d"),l=$(t,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1]])),M(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),M(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),o!=null&&M(Zt(s),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),M(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),M(tr(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),M(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=U(l,[1,l.shape[0],l.shape[1],l.shape[2]]),h=U(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=Jr(h,d,[1,n],s,"NHWC",[1,a],o);return c?U(g,[g.shape[2],g.shape[3]]):U(g,[g.shape[0],g.shape[2],g.shape[3]])}var Cg=W({conv1d_:jT});function qT(e,t,n,s,r,a="NHWC",o){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,u=!1;t.rank===3&&(u=!0,l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),M(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),M(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),M(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?l.shape[3]:l.shape[1];M(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),M(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),o!=null&&M(Zt(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let h={dy:l,filter:n},p={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},f=z.runKernel(Oa,h,p);return u?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Tg=W({conv2DBackpropInput_:qT});function XT(e,t,n,s,r,a){let o=$(e,"x","conv2dTranspose"),i=$(t,"filter","conv2dTranspose");return Tg(n,o,i,s,r,"NHWC",a)}var Ng=W({conv2dTranspose_:XT});function KT(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=$(e,"x","conv3d"),i=$(t,"filter","conv3d"),l=o,u=!1;o.rank===4&&(u=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),M(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),M(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),M(tr(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),M(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let c={x:l,filter:i},d={strides:n,pad:s,dataFormat:r,dilations:a},h=z.runKernel(Lu,c,d);return u?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Eg=W({conv3d_:KT});function ZT(e,t,n,s,r){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],u=o.shape[4];M(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),M(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),M(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),M(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),M(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:o,filter:n},d={pad:r,strides:s,inputShape:a},h=z.runKernel(th,c,d);return i?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Qx=W({conv3DBackpropInput_:ZT});function YT(e,t,n,s,r){let a=$(e,"x","conv3dTranspose"),o=$(t,"filter","conv3dTranspose");return Qx(n,a,o,s,r)}var eb=W({conv3dTranspose_:YT});function JT(e){let n={x:$(e,"x","cos")};return z.runKernel(Pa,n)}var Xh=W({cos_:JT});function QT(e){let n={x:$(e,"x","cosh")};return z.runKernel(Ma,n)}var Rg=W({cosh_:QT});function eN(e,t=0,n=!1,s=!1){let a={x:$(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return z.runKernel(za,a,o)}var _g=W({cumsum_:eN});function tN(e,t,n,s=!1){let r=$(e,"x","denseBincount"),a=$(t,"weights","denseBincount");M(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),M(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return z.runKernel(nh,o,i)}var tb=W({denseBincount_:tN});function nN(e,t,n="NHWC"){let s=$(e,"x","depthToSpace"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];M(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),M(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),M(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return z.runKernel(Mi,i,l)}var nb=W({depthToSpace_:nN});function sN(e,t,n,s,r="NHWC",a=[1,1],o){let i=$(e,"x","depthwiseConv2d"),l=$(t,"filter","depthwiseConv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),M(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),o!=null&&M(Zt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d={x:u,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},p=z.runKernel(La,d,h);return c?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var dc=W({depthwiseConv2d_:sN});function rN(e){let n={x:$(e,"x","diag")};return z.runKernel(ah,n)}var aN=W({diag_:rN});function oN(e,t,n,s,r=[1,1],a="NHWC"){let o=$(e,"x","dilation2d"),i=$(t,"filter","dilation2d");M(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),M(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),M(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,u=!1;o.rank===3&&(l=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),u=!0);let c={x:l,filter:i},d={strides:n,pad:s,dilations:r},h=z.runKernel(Bu,c,d);return u?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var sb=W({dilation2d_:oN});function iN(e,t){let n=e.length,s=[];for(let r=0;r<n;r++){let a=n-1-r,o=e[a]||1;(t[t.length-1-r]||1)>1&&o===1&&s.unshift(a)}return s}function Gt(e,t){let n=[];for(let s=0;s<t.length;s++){let r=e[e.length-s-1],a=t.length-s-1,o=t[a];(r==null||r===1&&o>1)&&n.unshift(a)}return n}function At(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r<s;r++){let a=e[e.length-r-1];a==null&&(a=1);let o=t[t.length-r-1];if(o==null&&(o=1),a===1)n.unshift(o);else if(o===1)n.unshift(a);else if(a!==o){let i=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(i)}else n.unshift(a)}return n}function lN(e,t){let n=$(e,"a","equal","string_or_numeric"),s=$(t,"b","equal","string_or_numeric");[n,s]=Ct(n,s),At(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(Li,r)}var us=W({equal_:lN});function uN(e,t,n){let s=$(t,"a","where"),r=$(n,"b","where"),a=$(e,"condition","where","bool"),o=At(At(a.shape,s.shape),r.shape),i=cc(a,o),l=cc(s,o),u=cc(r,o),c={condition:i,t:l,e:u};return z.runKernel(dl,c)}var bn=W({where_:uN});function cN(e){let n={x:$(e,"x","zerosLike")};return z.runKernel(kl,n)}var Ke=W({zerosLike_:cN});function dN(e,t){let n=$(e,"a","div"),s=$(t,"b","div");[n,s]=Ct(n,s);let r=de(n,s),a=Ke(r),o=us(s,a);return bn(o,a,r)}var rb=W({divNoNan_:dN});function hN(e,t){let n=$(e,"t1","dot"),s=$(t,"t2","dot");M((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(M(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=U(n,[1,-1]),i=U(s,[-1,1]),l=Ve(o,i);return U(l,[])}else if(n.rank===1&&s.rank===2){let o=U(n,[1,-1]),i=U(s,[s.shape[0],s.shape[1]]),l=Ve(o,i);return U(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=U(s,[-1,1]),i=Ve(n,o);return U(i,[i.size])}else{let o=U(s,[s.shape[0],s.shape[1]]);return Ve(n,o)}}var pN=W({dot_:hN});function fN(e,...t){let n=t.map((r,a)=>$(r,`tensors${a}`,"einsum")),s={equation:e};return z.runKernel(lh,n,s)}var ab=W({einsum_:fN});function mN(e){let n={x:$(e,"x","elu")};return z.runKernel(Wa,n)}var hc=W({elu_:mN});function gN(e){let t=$(e,"x","erf");M(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ce(t,"float32"));let n={x:t};return z.runKernel(zi,n)}var ob=W({erf_:gN});function AN(e){let n={x:$(e,"x","exp")};return z.runKernel(Va,n)}var cs=W({exp_:AN});function yN(e,t=0){let n=$(e,"x","expandDims","string_or_numeric");M(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return z.runKernel(Bi,s,r)}var Ot=W({expandDims_:yN});function xN(e){let n={x:$(e,"x","expm1")};return z.runKernel(Wi,n)}var ib=W({expm1_:xN});function bN(e,t){let n=$(e,"x","tile","string_or_numeric");M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return z.runKernel(Hr,s,r)}var Ts=W({tile_:bN});function vN(e,t,n,s="float32"){t==null&&(t=e);let r=We([e,t],s),a=e<=t?e:t;for(let i=0;i<a;++i)r.set(1,i,i);let o=U(r.toTensor(),[e,t]);if(n==null)return o;if(n.length===1)return Ts(Ot(o,0),[n[0],1,1]);if(n.length===2)return Ts(Ot(Ot(o,0),0),[n[0],n[1],1,1]);if(n.length===3)return Ts(Ot(Ot(Ot(o,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var Dg=W({eye_:vN});function Ml(e,t,n){let s={shape:e,value:t,dtype:n};return z.runKernel(Wu,{},s)}function wN(e){let n={x:$(e,"x","floor")};return z.runKernel(Ua,n)}var pc=W({floor_:wN});function kN(e,t,n=0,s=0){let r=$(e,"x","gather"),a=$(t,"indices","gather","int32"),o={x:r,indices:a},i={axis:n,batchDims:s};return z.runKernel(Ui,o,i)}var zl=W({gather_:kN});function IN(e,t){let n=$(e,"a","greater","string_or_numeric"),s=$(t,"b","greater","string_or_numeric");[n,s]=Ct(n,s),At(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(Gi,r)}var jn=W({greater_:IN});function SN(e,t){let n=$(e,"a","greaterEqual","string_or_numeric"),s=$(t,"b","greaterEqual","string_or_numeric");[n,s]=Ct(n,s),At(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(ja,r)}var Po=W({greaterEqual_:SN});function CN(e){let n={input:$(e,"input","imag")};return z.runKernel(hh,n)}var Kh=W({imag_:CN});function TN(e){let n={x:$(e,"x","isFinite")};return z.runKernel(ji,n)}var NN=W({isFinite_:TN});function EN(e){let n={x:$(e,"x","isInf")};return z.runKernel(qi,n)}var RN=W({isInf_:EN});function _N(e){let n={x:$(e,"x","isNaN")};return z.runKernel(Xi,n)}var lb=W({isNaN_:_N});function DN(e,t=.2){let s={x:$(e,"x","leakyRelu")},r={alpha:t};return z.runKernel(Xa,s,r)}var Zh=W({leakyRelu_:DN});function $N(e,t){let n=$(e,"a","less","string_or_numeric"),s=$(t,"b","less","string_or_numeric");[n,s]=Ct(n,s),At(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(Ki,r)}var $g=W({less_:$N});function FN(e,t){let n=$(e,"a","lessEqual","string_or_numeric"),s=$(t,"b","lessEqual","string_or_numeric");[n,s]=Ct(n,s),At(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(Zi,r)}var Mo=W({lessEqual_:FN});function ub(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let s={start:e,stop:t,num:n};return z.runKernel(ph,{},s)}function ON(e,t=5,n=1,s=1,r=.5){let a=$(e,"x","localResponseNormalization");M(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${a.rank}.`),M(Zt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=U(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},u={depthRadius:t,bias:n,alpha:s,beta:r},c=z.runKernel(Hu,l,u);return i?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var cb=W({localResponseNormalization_:ON});function PN(e){let n={x:$(e,"x","log")};return z.runKernel(Ka,n)}var ds=W({log_:PN});function MN(e){let n={x:$(e,"x","log1p")};return z.runKernel(Yi,n)}var Yh=W({log1p_:MN});function zN(e){return M(Wr(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=$(t,"x","tf.grad","string_or_numeric"),r=n!=null?$(n,"dy","tf.grad"):null;return z.tidy(()=>{let{value:a,grads:o}=z.gradients(()=>e(s),[s],r);return r!=null&&An(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Jh(o),o[0]})}}function LN(e){return M(Wr(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{M(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=oc(t,"args","tf.grads","string_or_numeric"),r=n!=null?$(n,"dy","tf.grads"):null;return z.tidy(()=>{let{value:a,grads:o}=z.gradients(()=>e(...s),s,r);return r!=null&&An(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Jh(o),o})}}function BN(e){return M(Wr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{M(t instanceof Ge,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),M(n==null||n instanceof Ge,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=z.gradients(()=>e(t),[t],n);return Jh(s),{grad:s[0],value:r}}}function WN(e){return M(Wr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{M(Array.isArray(t)&&t.every(r=>r instanceof Ge),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),M(n==null||n instanceof Ge,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=z.gradients(()=>e(...t),t,n);return n!=null&&An(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Jh(s.grads),s}}function db(e,t){M(Wr(e),()=>"The f passed in variableGrads(f) must be a function"),M(t==null||Array.isArray(t)&&t.every(u=>u instanceof sc),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in z.registeredVariables)t.push(z.registeredVariables[u])}let s=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),M(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=z.gradients(e,t,null,a);M(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),M(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),s!=null&&s.forEach(u=>l[u.name]=null),{value:o,grads:l}}function nr(e){return z.customGrad(e)}function Jh(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function VN(e){let n={x:$(e,"x","neg")};return z.runKernel(el,n)}var Tt=W({neg_:VN});function UN(e){let n={x:$(e,"x","softplus")};return z.runKernel(gl,n)}var Ll=W({softplus_:UN});function HN(e){let t=$(e,"x","logSigmoid");return nr(s=>({value:Tt(Ll(Tt(s))),gradFunc:o=>L(o,Hn(Tt(s)))}))(t)}var GN=W({logSigmoid_:HN});function jN(e,t=null,n=!1){let r={x:$(e,"x","max")},a={reductionIndices:t,keepDims:n};return z.runKernel(Za,r,a)}var hs=W({max_:jN});function qN(e,t){let n=$(e,"a","sub"),s=$(t,"b","sub");[n,s]=Ct(n,s);let r={a:n,b:s};return z.runKernel(vo,r)}var ge=W({sub_:qN});function XN(e,t=null,n=!1){let s=$(e,"x","sum");s.dtype==="bool"&&(s=ce(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return z.runKernel(yo,r,a)}var ve=W({sum_:XN});function KN(e,t=-1){let n=$(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return nr((r,a)=>{let o=!0,i=hs(r,t,!0),l=ge(r,i),u=ge(ce(l,"float32"),ds(ve(cs(l),t,o)));return a([u]),{value:u,gradFunc:(d,h)=>{let[p]=h,f=!0,m=cs(p);return ge(d,L(ve(d,t,f),m))}}})(n)}var Fg=W({logSoftmax_:KN});function Og(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function hb(e,t,n){let s=e.length+t.length,r=[],a=0,o=0;for(let i=0;i<s;i++)n.indexOf(i)===-1?r.push(e[a++]):r.push(t[o++]);return r}function pb(e,t){let n=[],s=e.length;for(let a=0;a<s;a++)t.indexOf(a)===-1&&n.push(e[a]);let r=t.map(a=>e[a]);return[n,r]}function zo(e,t){let n=t.map(s=>1);return hb(e,n,t)}function ZN(e,t,n){M(Og(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function fb(e,t){if(Og(e,t))return null;let n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function Pg(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function YN(e,t){let n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function JN(e,t=null,n=!1){let s=$(e,"x","logSumExp"),r=Ss(t,s.shape),a=hs(s,r,!0),o=ge(s,a),i=cs(o),l=ve(i,r),u=ds(l),c=ae(U(a,u.shape),u);if(n){let d=zo(c.shape,r);return U(c,d)}return c}var mb=W({logSumExp_:JN});function QN(e,t){let n=$(e,"a","logicalAnd","bool"),s=$(t,"b","logicalAnd","bool");At(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(Ji,r)}var Ps=W({logicalAnd_:QN});function eE(e){let n={x:$(e,"x","logicalNot","bool")};return z.runKernel(Vu,n)}var Qh=W({logicalNot_:eE});function tE(e,t){let n=$(e,"a","logicalOr","bool"),s=$(t,"b","logicalOr","bool");At(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(Uu,r)}var Mg=W({logicalOr_:tE});function nE(e,t){let n=$(e,"a","logicalXor","bool"),s=$(t,"b","logicalXor","bool");return At(n.shape,s.shape),Ps(Mg(e,t),Qh(Ps(e,t)))}var sE=W({logicalXor_:nE});function rE(e,t,n,s,r){let a=$(e,"x","maxPool"),o=1,i=a,l=!1;a.rank===3&&(l=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),M(tr(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),r!=null&&M(Zt(s),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=z.runKernel(Ja,u,c);return l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var ep=W({maxPool_:rE});function aE(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=$(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&M(Zt(s),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=z.runKernel(Gu,u,c);return l?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var zg=W({maxPool3d_:aE});function oE(e,t,n,s,r=!1){let o={x:$(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=z.runKernel(Ah,o,i);return{result:l[0],indexes:l[1]}}var gb=W({maxPoolWithArgmax_:oE});function iE(e,t){let n=$(e,"a","maximum"),s=$(t,"b","maximum");[n,s]=Ct(n,s),n.dtype==="bool"&&(n=ce(n,"int32"),s=ce(s,"int32")),At(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(Ya,r)}var kr=W({maximum_:iE});function lE(e,t=null,n=!1){let r={x:$(e,"x","mean")},a={axis:t,keepDims:n};return z.runKernel(Qa,r,a)}var _t=W({mean_:lE});function Pt(e,t="float32"){if(t==="complex64"){let s=Pt(e,"float32"),r=Pt(e,"float32");return qr(s,r)}let n=Xd($t(e),t);return z.makeTensor(n,e,t)}function qn(e,t="float32"){if(t==="complex64"){let s=qn(e,"float32"),r=Pt(e,"float32");return qr(s,r)}let n=Pm($t(e),t);return z.makeTensor(n,e,t)}function uE(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=$(e,"x","meshgrid",e instanceof Ge?e.dtype:"float32");if(t===void 0)return[s];let r=$(t,"y","meshgrid",t instanceof Ge?t.dtype:"float32"),a=$t(s.shape),o=$t(r.shape);return n==="xy"?(s=U(s,[1,-1]),r=U(r,[-1,1]),[Ve(qn([o,1],s.dtype),s),Ve(r,qn([1,a],r.dtype))]):(s=U(s,[-1,1]),r=U(r,[1,-1]),[Ve(s,qn([1,o],s.dtype)),Ve(qn([a,1],r.dtype),r)])}function cE(e,t=null,n=!1){let r={x:$(e,"x","min")},a={axis:t,keepDims:n};return z.runKernel(eo,r,a)}var tp=W({min_:cE});function dE(e,t){let n=$(e,"a","minimum"),s=$(t,"b","minimum");[n,s]=Ct(n,s),n.dtype==="bool"&&(n=ce(n,"int32"),s=ce(s,"int32")),At(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(to,r)}var fc=W({minimum_:dE});function hE(e,t,n){M(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=$(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");M(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i<s.rank;i++)M(t[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),M(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return z.runKernel(no,o,a)}var Ab=W({mirrorPad_:hE});function pE(e,t){let n=$(e,"a","mod"),s=$(t,"b","mod");[n,s]=Ct(n,s);let r={a:n,b:s};return z.runKernel(Qi,r)}var yb=W({mod_:pE});function fE(e){let t=$(e,"x","square"),n={};return z.runKernel("Square",{x:t},n)}var ct=W({square_:fE});function mE(e,t=null,n=!1){e=$(e,"x","moments");let s=Ss(t,e.shape),r=_t(e,s,n),a=r.shape;n||(a=zo(r.shape,s));let o=ct(ge(ce(e,"float32"),U(r,a))),i=_t(o,s,n);return{mean:r,variance:i}}var np=W({moments_:mE});function gE(e,t,n,s){let r=$(t,"data","multiRNNCell"),a=oc(n,"c","multiRNNCell"),o=oc(s,"h","multiRNNCell"),i=r,l=[];for(let d=0;d<e.length;d++){let h=e[d](i,a[d],o[d]);l.push(h[0]),l.push(h[1]),i=h[1]}let u=[],c=[];for(let d=0;d<l.length;d+=2)u.push(l[d]),c.push(l[d+1]);return[u,c]}var AE=W({multiRNNCell_:gE});function yE(e,t,n,s=!1){let r=$(e,"logits","multinomial"),a=r.size,o=r.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?U(r,[1,-1]):r},u={numSamples:t,seed:n,normalized:s},c=z.runKernel(yh,l,u);return o===1?U(c,[c.size]):c}var xb=W({multinomial_:yE});function xE(e,t){let n=$(e,"a","notEqual","string_or_numeric"),s=$(t,"b","notEqual","string_or_numeric");[n,s]=Ct(n,s),At(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(tl,r)}var Bl=W({notEqual_:xE});function bE(e){let n={x:$(e,"x","onesLike")};return z.runKernel(al,n)}var ps=W({onesLike_:bE});function vE(e,t){let n=$(e,"v1","outerProduct"),s=$(t,"v2","outerProduct");M(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=U(n,[-1,1]),a=U(s,[1,-1]);return Ve(r,a)}var wE=W({outerProduct_:vE});function kE(e,t,n=0){let s=$(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return z.runKernel(ao,a,r)}var Qr=W({pad_:kE});function IE(e,t,n=0){return M(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Qr(e,[t],n)}var SE=W({pad1d_:IE});function CE(e,t,n=0){return M(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Qr(e,t,n)}var TE=W({pad2d_:CE});function NE(e,t,n=0){return M(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Qr(e,t,n)}var EE=W({pad3d_:NE});function RE(e,t,n=0){return M(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Qr(e,t,n)}var _E=W({pad4d_:RE});function DE(e,t,n){let s=$(e,"x","spaceToBatchND");M(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),M(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),M(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]==0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return z.runKernel(Al,r,a)}var sp=W({spaceToBatchND_:DE});function $E(e,t,n,s,r,a){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let o=$(e,"x","maxPool"),i=o,l=!1;o.rank===3&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(tr(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let u=Vx(i.shape,t,a,r,s),c=[u.dilationHeight,u.dilationWidth],d;s==="same"?d=OE([u.filterHeight,u.filterWidth],c):d=[[0,0],[0,0]];let h=c[0]===1&&c[1]===1,[p,f]=FE([u.inHeight,u.inWidth],c,d),m=h?s:"valid",g=h?i:sp(i,c,p),y=(n==="avg"?()=>jh(g,t,a,m):()=>ep(g,t,a,m))(),x=h?y:qh(y,c,f);return l?U(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function FE(e,t,n){let s=n.map(c=>c[0]),r=n.map(c=>c[1]),a=e.concat(s,r),o=t.map((c,d)=>(c-a[d]%c)%c),i=r.map((c,d)=>c+o[d]),l=t.map((c,d)=>[s[d],i[d]]),u=t.map((c,d)=>[0,o[d]]);return[l,u]}function OE(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var PE=W({pool_:$E});function ME(e,t){let n=$(e,"base","pow"),s=$(t,"exp","pow");[n,s]=Ct(n,s);let r={a:n,b:s};return z.runKernel(oo,r)}var ea=W({pow_:ME});function zE(e,t){let n=$(e,"x","prelu"),s=$(t,"alpha","prelu"),r={x:n,alpha:s};return z.runKernel(io,r)}var rp=W({prelu_:zE});function LE(e,t=null,n=!1){let s=$(e,"x","prod");s.dtype==="bool"&&(s=ce(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return z.runKernel(il,r,a)}var Lg=W({prod_:LE});function BE(e,t,n){let s=$t(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<s;a++)r[a]=t();return z.makeTensor(r,e,n)}var WE=W({rand_:BE}),Bg=Sa(A5()),Wg=class{constructor(e,t,n,s,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=r||Math.random();this.random=Bg.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,r,a;do s=2*this.random()-1,r=2*this.random()-1,a=s*s+r*r;while(a>=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},VE=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=Bg.alea(r.toString()),this.randn=new Wg(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),r<t||Math.log(r)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},UE=class{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Bg.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function HE(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new VE(t,n,s,r),o=We(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var GE=W({randomGamma_:HE});function jE(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);let a=new Wg(t,n,s,!1,r),o=We(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var bb=W({randomNormal_:jE});function qE(e,t=0,n=1,s="float32",r){let a=We(e,s),o=new UE(t,n,null,r);for(let i=0;i<a.values.length;i++)a.values[i]=o.nextValue();return a.toTensor()}var Wl=W({randomUniform_:qE});function Vl(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:s};return z.runKernel(ju,{},r)}function XE(e){let n={input:$(e,"input","real")};return z.runKernel(xh,n)}var mc=W({real_:XE});function KE(e){let n={x:$(e,"x","reciprocal")};return z.runKernel(ll,n)}var vb=W({reciprocal_:KE});function ZE(e){let n={x:$(e,"x","relu")};return z.runKernel(lo,n)}var sr=W({relu_:ZE});function YE(e){let n={x:$(e,"x","relu6")};return z.runKernel(co,n)}var Vg=W({relu6_:YE});function JE(e,t){let s={x:$(e,"x","reverse")},r={dims:t};return z.runKernel(ho,s,r)}var fs=W({reverse_:JE});function QE(e){let t=$(e,"x","reverse");return M(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),fs(t,0)}var eR=W({reverse1d_:QE});function tR(e,t){let n=$(e,"x","reverse");return M(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),fs(n,t)}var nR=W({reverse2d_:tR});function sR(e,t){let n=$(e,"x","reverse");return M(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),fs(n,t)}var rR=W({reverse3d_:sR});function aR(e,t){let n=$(e,"x","reverse");return M(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),fs(n,t)}var oR=W({reverse4d_:aR});function iR(e){let n={x:$(e,"x","round")};return z.runKernel(po,n)}var Ug=W({round_:iR});function lR(e){let n={x:$(e,"x","rsqrt")};return z.runKernel(fo,n)}var Hg=W({rsqrt_:lR});function Ie(e,t){if((cn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&cn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Xr(e,[],[],t)}function uR(e){let n={x:$(e,"x","selu")};return z.runKernel(hl,n)}var Gg=W({selu_:uR});function cR(e,t,n,s,r,a=[1,1],o="NHWC"){let i=$(e,"x","separableConv2d"),l=$(t,"depthwiseFilter","separableConv2d"),u=$(n,"pointwiseFilter","separableConv2d"),c=i,d=!1;if(i.rank===3&&(d=!0,c=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");M(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),M(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),M(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),M(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let h=l.shape[2],p=l.shape[3];M(u.shape[2]===h*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${h*p}, but got ${u.shape[2]}.`);let f=dc(c,l,s,r,o,a),g=Jr(f,u,1,"valid",o);return d?U(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var wb=W({separableConv2d_:cR});async function dR(e,t){let n=$(e,"x","setdiff1d"),s=$(t,"y","setdiff1d");M(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),M(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),M(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let c=0;c<r.length;c++)o.has(r[c])||i++;let l=new Ut([i],n.dtype),u=new Ut([i],"int32");for(let c=0,d=0;c<r.length;c++)o.has(r[c])||(l.values[d]=r[c],u.values[d]=c,d++);return[l.toTensor(),u.toTensor()]}var kb=dR;function hR(e){let n={x:$(e,"x","sign")};return z.runKernel(ml,n)}var Ib=W({sign_:hR});function pR(e){let n={x:$(e,"x","sin")};return z.runKernel(mo,n)}var jg=W({sin_:pR});function fR(e){let n={x:$(e,"x","sinh")};return z.runKernel(fl,n)}var qg=W({sinh_:fR});function mR(e,t,n){let s=$(e,"x","slice1d");return M(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),Re(s,[t],[n])}var ap=W({slice1d_:mR});function gR(e,t,n){let s=$(e,"x","slice2d");return M(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),Re(s,t,n)}var Xg=W({slice2d_:gR});function AR(e,t,n){let s=$(e,"x","slice3d");return M(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),Re(s,t,n)}var op=W({slice3d_:AR});function yR(e,t,n){let s=$(e,"x","slice4d");return M(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),Re(s,t,n)}var gc=W({slice4d_:yR});function xR(e,t=-1){let n=$(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return z.runKernel(xo,s,r)}var ip=W({softmax_:xR});function bR(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return z.runKernel(ch,t)}var lp=W({fft_:bR});function vR(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return z.runKernel(dh,t)}var Ac=W({ifft_:vR});function wR(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=U(e,[n,t]);s=Ac(r)}else{let r=[n,2*(t-1)],a=U(mc(e),[n,t]),o=U(Kh(e),[n,t]),i=fs(Re(a,[0,1],[n,t-2]),1),l=L(fs(Re(o,[0,1],[n,t-2]),1),Ie(-1)),u=ft([a,i],1),c=ft([o,l],1),d=U(qr(u,c),[r[0],r[1]]);s=Ac(d)}if(s=mc(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=U(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var Kg=W({irfft_:wR});function kR(e,t,n=0){let r={x:$(e,"x","split")},a={numOrSizeSplits:t,axis:n};return z.runKernel(yl,r,a)}var an=W({split_:kR});function IR(e,t){M(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t<n){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=Re(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=ft([e,Pt(f)],e.shape.length-1),n=t}else r=e;let a=Ke(r),o=U(qr(r,a),[s,n]),i=lp(o),l=Math.floor(n/2)+1,u=mc(i),c=Kh(i),d=an(u,[l,n-l],u.shape.length-1),h=an(c,[l,n-l],c.shape.length-1),p=r.shape.slice();return p[r.shape.length-1]=l,U(qr(d[0],h[0]),p)}var up=W({rfft_:IR});function SR(e){let n={x:$(e,"x","sqrt")};return z.runKernel(Ao,n)}var hn=W({sqrt_:SR});function CR(e,t){let n=$(e,"a","squaredDifference"),s=$(t,"b","squaredDifference");[n,s]=Ct(n,s),At(n.shape,s.shape);let r={a:n,b:s},a={};return z.runKernel(bo,r,a)}var Zg=W({squaredDifference_:CR});function TR(e,t){let n=$(e,"x","squeeze");return U(n,v5(n.shape,t).newShape)}var lt=W({squeeze_:TR});function NR(e,t=0){let n=oc(e,"tensors","stack","string_or_numeric");M(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&M(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return z.runKernel(ol,s,r)}var Dn=W({stack_:NR});function ER(e,t=0){let s={x:$(e,"x","step")},r={alpha:t};return z.runKernel(Gr,s,r)}var yc=W({step_:ER});function RR(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let c={x:$(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return z.runKernel(xl,c,d)}var Sb=W({stridedSlice_:RR});function _R(e){let n={x:$(e,"x","tan")};return z.runKernel(wo,n)}var Cb=W({tan_:_R});function Mt(e,t){Ca(e);let n=Qs(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Xr(e,null,n,t)}function Ms(e,t,n){if(Ca(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=Qs(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Xr(e,t,s,n)}function DR(e,t,n){if(Ca(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=Qs(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Xr(e,t,s,n)}function $R(e,t,n){if(Ca(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=Qs(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Xr(e,t,s,n)}function FR(e,t,n){if(Ca(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=Qs(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,Xr(e,t,s,n)}function OR(e,t=1,n=!0){let s=$(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=z.runKernel(bl,a,o);return{values:i,indices:l}}var Tb=W({topk_:OR});function PR(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new Wg(t,n,s,!0,r),o=We(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var cp=W({truncatedNormal_:PR});function MR(e,t=0){let n=$(e,"x","unique","string_or_numeric");M(n.rank>0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=z.runKernel(Rh,s,r);return{values:a,indices:o}}var Yg=W({unique_:MR});function zR(e,t,n){let s=$(e,"x","unsortedSegmentSum"),r=$(t,"segmentIds","unsortedSegmentSum","int32");M(Zt(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return z.runKernel(Ku,a,o)}var Nb=W({unsortedSegmentSum_:zR});function LR(e,t=0){let n=$(e,"x","unstack","string_or_numeric");M(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return z.runKernel(wl,s,r)}var ms=W({unstack_:LR});function Eb(e,t=!0,n,s){return z.makeVariable(e,t,n,s)}function Rb(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let s=We(e,"int32"),r=We([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let o=s.indexToLoc(n[a]),i=a*e.length;r.values.set(o,i)}return r.toTensor()}async function BR(e){let t=$(e,"condition","whereAsync","bool"),n=await t.data(),s=Rb(t.shape,n);return e!==t&&t.dispose(),s}var Jg=BR;async function WR(e,t,n){let s=$(e,"tensor","boolMask"),r=$(t,"mask","boolMask","bool"),a=n==null?0:n,o=r.rank,i=s.shape;M(o>0,()=>"mask cannot be scalar"),An(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m<a+o;m++)l*=i[m];let u=i.slice(0,a).concat([l],i.slice(a+o)),c=U(s,u),d=U(r,[-1]),h=await Jg(d),p=lt(h,[1]),f=zl(c,p,a);return e!==s&&s.dispose(),t!==r&&r.dispose(),p.dispose(),c.dispose(),d.dispose(),h.dispose(),f}var VR=WR;function UR(e,t="euclidean",n=null,s=!1){e=$(e,"x","norm");let r=_b(e,t,n),a=r.shape;if(s){let o=Ss(n,e.shape);a=zo(r.shape,o)}return U(r,a)}function _b(e,t,n=null){if(e.rank===0)return Ht(e);if(e.rank!==1&&n===null)return _b(U(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return ve(Ht(e),n);if(t===1/0)return hs(Ht(e),n);if(t===-1/0)return tp(Ht(e),n);if(t==="euclidean"||t===2)return hn(ve(ea(Ht(e),Ie(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return hs(ve(Ht(e),n[0]),n[1]-1);if(t===1/0)return hs(ve(Ht(e),n[1]),n[0]);if(t===-1/0)return tp(ve(Ht(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return hn(ve(ct(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Qg=W({norm_:UR});function HR(e,t,n,s,r=!0){let a=$(e,"v","movingAverage"),o=$(t,"x","movingAverage"),i=$(n,"decay","movingAverage");V5(a,o),M(br(a.shape,o.shape),()=>"Shape mismatch in v and x");let l=Ie(1),u=ge(l,i),c=L(ge(o,a),u);if(r){M(s!=null,()=>"When using zeroDebias: true, step is required.");let d=$(s,"step","movingAverage");c=de(c,ge(l,ea(i,d)))}return ae(a,c)}var GR=W({movingAverage_:HR});function jR(e,t,n){let s=$(e,"indices","scatterND","int32"),r=$(t,"updates","scatterND");fg(r,s,n);let a={indices:s,updates:r},o={shape:n};return z.runKernel(cl,a,o)}var Db=W({scatterND_:jR});function qR(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function XR(e,t,n,s=0){let r=$(e,"sparseIndices","sparseToDense","int32"),a=$(t,"sparseValues","sparseToDense"),o=$(s,"defaultValue","sparseToDense",a.dtype);qR(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return z.runKernel(Ch,i,l)}var eA=W({sparseToDense_:XR});function KR(e,t){let n=$(t,"indices","gatherND","int32"),r={params:$(e,"x","gatherND","string_or_numeric"),indices:n};return z.runKernel(Hi,r)}var $b=W({gatherND_:KR});function ZR(e,t){if(t==null)return e.shape.slice();if(br(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function YR(e,t,n,s){let r=$(e,"x","dropout");if(M(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),M(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ge?r.clone():r;let a=ZR(r,n),o=1-t,i=de(pc(ae(Wl(a,0,1,"float32",s),o)),o);return L(r,i)}var Fb=W({dropout_:YR});function Ob(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function tA(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a<e;++a){let o=2*Math.PI*a/(e+s-1);r[a]=t-n*Math.cos(o)}return Mt(r,"float32")}async function JR(e,t,n=1){let s=$(e,"predictions","inTopK"),r=$(t,"targets","inTopK");M(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),M(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),An(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];M(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,u]=[o.length/a,a],c=w5("bool",l);for(let d=0;d<l;d++){let h=d*u,p=o.subarray(h,h+u),f=[];for(let m=0;m<p.length;m++)f.push({value:p[m],index:m});f.sort((m,g)=>g.value-m.value),c[d]=0;for(let m=0;m<n;m++)if(f[m].index===i[d]){c[d]=1;break}}return e!==s&&s.dispose(),t!==r&&r.dispose(),dn(c,r.shape,"bool")}var QR=JR,ta={};Pe(ta,{conv2d:()=>n_,depthwiseConv2d:()=>o_,matMul:()=>l_});function e_(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]])),M(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),M(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),M(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=a==="NHWC"?i.shape[3]:i.shape[1],c=a==="NHWC"?l.shape[3]:l.shape[1];M(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),M(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),o!=null&&M(Zt(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d={x:i,dy:l},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return z.runKernel(Qd,d,h)}var nA=W({conv2DBackpropFilter_:e_});function dp(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return L(e,yc(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function hp(e,t){let n=t,s=Gt(e.shape,t.shape);return s.length>0&&(n=ve(n,s)),U(n,e.shape)}function pp(e,t,n,s){if(t==="linear")return e;if(t==="relu")return sr(e);if(t==="elu")return hc(e);if(t==="relu6")return Vg(e);if(t==="prelu")return rp(e,n);if(t==="leakyrelu")return Zh(e,s);if(t==="sigmoid")return Hn(e);throw new Error(`Unknown fused activation ${t}.`)}var fp=(e,t)=>!(e>0)||t==="linear";function t_({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",fp(z.state.gradientDepth,l)===!1){let v=Jr(e,t,n,s,r,a,o);return i!=null&&(v=ae(v,i)),pp(v,l,u,c)}let d=$(e,"x","conv2d"),h=$(t,"filter","conv2d"),p=d,f=!1;d.rank===3&&(f=!0,p=U(d,[1,d.shape[0],d.shape[1],d.shape[2]])),M(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),M(h.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${h.rank}.`),o!=null&&M(Zt(s),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),M(p.shape[3]===h.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${h.shape[2]}.`),M(tr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),M(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let m=uc(p.shape,h.shape,n,a,s,o),g;i!=null&&(g=$(i,"bias","fused conv2d"),[g]=Ct(g,d),At(m.outShape,g.shape));let A;u!=null&&(A=$(u,"prelu weights","fused conv2d"));let y=(v,k)=>{let[S,C,_,O]=k,E=dp(v,_,l);M(Yr(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let R=Tg(C.shape,E,S,n,s),T=nA(C,E,S.shape,n,s),P=[R,T];if(O!=null){let V=hp(O,E);P.push(V)}return P},x={x:p,filter:h,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?nr((k,S,C)=>{let _=z.runKernel(Co,x,b);return C([S,k,_]),f&&(_=U(_,[_.shape[1],_.shape[2],_.shape[3]])),{value:_,gradFunc:y}})(p,h):nr((k,S,C,_)=>{let O=z.runKernel(Co,x,b);return _([S,k,O,C]),f&&(O=U(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:y}})(p,h,g)}var n_=W({fusedConv2d_:t_});function s_(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:i,dy:l},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return z.runKernel(sh,u,c)}var Pb=W({depthwiseConv2dNativeBackpropFilter_:s_});function r_(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:i,filter:n},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},d=z.runKernel(rh,u,c);return l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Mb=W({depthwiseConv2dNativeBackpropInput_:r_});function a_({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(fp(z.state.gradientDepth,l)===!1){let v=dc(e,t,n,s,r,a,o);return i!=null&&(v=ae(v,i)),pp(v,l,u,c)}let d=$(e,"x","depthwiseConv2d"),h=$(t,"filter","depthwiseConv2d"),p=d,f=!1;d.rank===3&&(f=!0,p=U(d,[1,d.shape[0],d.shape[1],d.shape[2]])),M(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),M(h.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${h.rank}.`),M(p.shape[3]===h.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${h.shape[2]}.`),a==null&&(a=[1,1]),M(tr(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),o!=null&&M(Zt(s),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${s}.`);let m=uc(p.shape,h.shape,n,a,s,o,!0),g;i!=null&&(g=$(i,"bias","fused conv2d"),[g]=Ct(g,d),At(m.outShape,g.shape));let A;u!=null&&(A=$(u,"prelu weights","fused depthwiseConv2d"));let y=(v,k)=>{M(Yr(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[S,C,_,O]=k,E=dp(v,_,l),R=Mb(C.shape,E,S,n,s,a,o),T=Pb(C,E,S.shape,n,s,a,o);if(O!=null){let P=hp(g,E);return[R,T,P]}return[R,T]},x={x:p,filter:h,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?nr((k,S,C)=>{let _=z.runKernel(To,x,b);return C([S,k,_]),f&&(_=U(_,[_.shape[1],_.shape[2],_.shape[3]])),{value:_,gradFunc:y}})(p,h):nr((k,S,C,_)=>{let O=z.runKernel(To,x,b);return _([S,k,O,C]),f&&(O=U(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:y}})(p,h,g)}var o_=W({fusedDepthwiseConv2d_:a_});function i_({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(fp(z.state.gradientDepth,a)===!1){let O=Ve(e,t,n,s);return r!=null&&(O=ae(O,r)),pp(O,a,o,i)}let l=$(e,"a","fused matMul"),u=$(t,"b","fused matMul");[l,u]=Ct(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=s?u.shape[u.rank-1]:u.shape[u.rank-2],h=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=s?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),g=$t(f),A=$t(m);M(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),M(br(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),M(c===d,()=>`Error in fused matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${s} must match.`);let y=l.shape.slice(0,-2).concat([h,p]),x=n?U(l,[g,c,h]):U(l,[g,h,c]),b=s?U(u,[A,p,d]):U(u,[A,d,p]),v;r!=null&&(v=$(r,"bias","fused matMul"),[v]=Ct(v,l),At(y,v.shape));let k;o!=null&&(k=$(o,"prelu weights","fused matMul"));let S=(O,E)=>{let[R,T,P,V]=E,j=dp(U(O,P.shape),P,a),q,X;if(!n&&!s?(q=Ve(j,T,!1,!0),X=Ve(R,j,!0,!1)):!n&&s?(q=Ve(j,T,!1,!1),X=Ve(j,R,!0,!1)):n&&!s?(q=Ve(T,j,!1,!0),X=Ve(R,j,!1,!1)):(q=Ve(T,j,!0,!0),X=Ve(j,R,!0,!0)),r!=null){let ee=hp(V,j);return[q,X,ee]}else return[q,X]},C={a:x,b,bias:v,preluActivationWeights:k},_={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?nr((E,R,T)=>{let P=z.runKernel(So,C,_);return T([E,R,P]),{value:U(P,y),gradFunc:S}})(x,b):nr((E,R,T,P)=>{let V=z.runKernel(So,C,_);return P([E,R,V,T]),{value:U(V,y),gradFunc:S}})(x,b,v)}var l_=W({fusedMatMul_:i_});function u_(e){return tA(e,.54,.46)}var c_=W({hammingWindow_:u_});function d_(e){return tA(e,.5,.5)}var zb=W({hannWindow_:d_});function h_(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(Re(e,a,t)),a+=n;if(s)for(;a<e.size;){let i=a+t-e.size,l=ft([Re(e,a,t-i),Ml([i],r)]);o.push(l),a+=n}return o.length===0?Ms([],[0,t]):U(ft(o),[o.length,t])}var Lb=W({frame_:h_});function p_(e,t,n,s,r=zb){s==null&&(s=Ob(t));let a=Lb(e,t,n),o=L(a,r(t));return up(o,s)}var f_=W({stft_:p_});function m_(e,t,n,s,r="bilinear",a=0){let o=$(e,"image","cropAndResize"),i=$(t,"boxes","cropAndResize","float32"),l=$(n,"boxInd","cropAndResize","int32"),u=i.shape[0];M(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),M(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),M(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),M(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),M(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let c={image:o,boxes:i,boxInd:l},d={method:r,extrapolationValue:a,cropSize:s};return z.runKernel(Pi,c,d)}var g_=W({cropAndResize_:m_});function A_(e){let t=$(e,"image","flipLeftRight","float32");M(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return z.runKernel(Vi,n,{})}var y_=W({flipLeftRight_:A_});function x_(e){let t=$(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];M(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),M(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,Ts(t,r)}var b_=W({grayscaleToRGB_:x_});function v_(e,t,n=0,s=.5){let r=$(e,"image","rotateWithOffset","float32");M(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return z.runKernel(Il,a,o)}var w_=W({rotateWithOffset_:v_});function Ul(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),M(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),M(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),M(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),M(t.rank===1,()=>"scores must be a 1D tensor"),M(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),M(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function k_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=$(e,"boxes","nonMaxSuppression"),o=$(t,"scores","nonMaxSuppression"),i=Ul(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return z.runKernel(nl,{boxes:a,scores:o},l)}var I_=W({nonMaxSuppression_:k_});function S_(e,t,n){let s=C_(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function C_(e,t,n){return N_(e,t,n||T_)}function T_(e,t){return e>t?1:e<t?-1:0}function N_(e,t,n){let s=0,r=e.length,a=0,o=!1;for(;s<r;){a=s+(r-s>>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function Bb(e,t,n,s,r){return sA(e,t,n,s,r,0)}function Wb(e,t,n,s,r,a){return sA(e,t,n,s,r,0,!1,a,!0)}function Vb(e,t,n,s,r,a){return sA(e,t,n,s,r,a,!0)}function sA(e,t,n,s,r,a,o=!1,i=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(Ub);let c=a>0?-.5/a:0,d=[],h=[];for(;d.length<n&&u.length>0;){let g=u.pop(),{score:A,boxIndex:y,suppressBeginIndex:x}=g;if(A<r)break;let b=!1;for(let v=d.length-1;v>=x;--v){let k=E_(e,y,d[v]);if(k>=s){b=!0;break}if(g.score=g.score*R_(s,c,k),g.score<=r)break}g.suppressBeginIndex=d.length,b||(g.score===A?(d.push(y),h.push(g.score)):g.score>r&&S_(u,g,Ub))}let p=d.length,f=n-p;i&&f>0&&(d.push(...new Array(f).fill(0)),h.push(...new Array(f).fill(0)));let m={selectedIndices:d};return o&&(m.selectedScores=h),l&&(m.validOutputs=p),m}function E_(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),u=Math.min(r[0],r[2]),c=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),h=Math.max(r[1],r[3]),p=(i-a)*(l-o),f=(d-u)*(h-c);if(p<=0||f<=0)return 0;let m=Math.max(a,u),g=Math.max(o,c),A=Math.min(i,d),y=Math.min(l,h),x=Math.max(A-m,0)*Math.max(y-g,0);return x/(p+f-x)}function R_(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function Ub(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function __(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=$(e,"boxes","nonMaxSuppressionAsync"),o=$(t,"scores","nonMaxSuppressionAsync"),i=Ul(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),u=l[0],c=l[1],{selectedIndices:d}=Bb(u,c,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),Mt(d,"int32")}var D_=__;function $_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=$(e,"boxes","nonMaxSuppression"),i=$(t,"scores","nonMaxSuppression"),l=Ul(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u={boxes:o,scores:i},c={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},d=z.runKernel(rl,u,c);return{selectedIndices:d[0],selectedScores:d[1]}}var F_=W({nonMaxSuppressionWithScore_:$_});async function O_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=$(e,"boxes","nonMaxSuppressionAsync"),i=$(t,"scores","nonMaxSuppressionAsync"),l=Ul(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u=await Promise.all([o.data(),i.data()]),c=u[0],d=u[1],{selectedIndices:h,selectedScores:p}=Vb(c,d,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Mt(h,"int32"),selectedScores:Mt(p)}}var P_=O_;function M_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=$(e,"boxes","nonMaxSuppression"),i=$(t,"scores","nonMaxSuppression"),l=Ul(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,d=l.scoreThreshold,h={boxes:o,scores:i},p={maxOutputSize:u,iouThreshold:c,scoreThreshold:d,padToMaxOutputSize:a},f=z.runKernel(sl,h,p);return{selectedIndices:f[0],validOutputs:f[1]}}var z_=W({nonMaxSuppressionPadded_:M_});async function L_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=$(e,"boxes","nonMaxSuppressionAsync"),i=$(t,"scores","nonMaxSuppressionAsync"),l=Ul(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,d=l.scoreThreshold,[h,p]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=Wb(h,p,u,c,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Mt(f,"int32"),validOutputs:Ie(m,"int32")}}var B_=L_;function W_(e,t,n=!1,s=!1){let r=$(e,"images","resizeBilinear");M(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),M(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=z.runKernel(uo,i,l);return o?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var V_=W({resizeBilinear_:W_});function U_(e,t,n=!1,s=!1){let r=$(e,"images","resizeNearestNeighbor");M(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),M(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),M(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=z.runKernel(qu,i,l);return o?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var H_=W({resizeNearestNeighbor_:U_});function G_(e,t="binary",n=!1,s=.5){let r=$(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],u=L(Mt([s]),255),c,d,h,p;if(M(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),M(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),M(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),M(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[c,d,h]=an(r,[1,1,1],-1);let g=L(c,a),A=L(d,o),y=L(h,i);p=ae(ae(g,A),y)}else p=e;if(t==="otsu"){let g=Sg(ce(Ug(p),"int32"),dn([]),256);u=j_(g,l)}let f=n?Mo(p,u):jn(p,u);return ce(L(f,255),"int32")}function j_(e,t){let n=Mt([-1]),s=Mt([0]),r=Mt([0]),a,o,i,l,u,c;for(let d=0;d<e.size-1;d++){a=Re(e,0,d+1),o=Re(e,d+1),u=de(ve(a),t),c=de(ve(o),t);let h=ve(L(a,Vl(0,a.size)));i=de(h,ve(a));let p=Ml(o.shape,a.size),f=ae(Vl(0,o.size),p),m=L(o,f);l=de(ve(m),ve(o));let g=ge(i,l),A=ge(i,l),y=L(u,c);r=L(L(y,g),A);let x=jn(r,s);s=bn(x,r,s),n=bn(x,Mt([d]),n)}return n}var q_=W({threshold_:G_});function X_(e,t,n="nearest",s="constant",r=0,a){let o=$(e,"image","transform","float32"),i=$(t,"transforms","transform","float32");M(o.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),M(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},u={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return z.runKernel(vl,l,u)}var K_=W({transform_:X_});function Z_(e,t,n){M(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),M(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=$(e,"a","bandPart");M(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=U(Vl(0,a,1,"int32"),[-1,1]),l=Vl(0,o,1,"int32"),u=ge(i,l),c=Ps(Mo(u,Ie(+t,"int32")),Po(u,Ie(-n,"int32"))),d=Pt([a,o],s.dtype);return U(Dn(ms(U(s,[-1,a,o])).map(h=>bn(c,h,d))),r)}var Y_=W({bandPart_:Z_});function J_(e){let t;if(Array.isArray(e)){t=!1,M(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a<e.length;++a)M(e[a].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=an(e,e.shape[0],0).map(r=>lt(r,[0]));M(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r<e.length;++r)n.push(z.tidy(()=>{let a=s[r];if(r>0)for(let o=0;o<r;++o){let i=L(ve(L(n[o],a)),n[o]);a=ge(a,i)}return de(a,Qg(a,"euclidean"))}));return t?Dn(n,0):n}var Q_=W({gramSchmidt_:J_});function eD(e,t=!1){if(M(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Hb(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),s=ms(U(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[u,c]=Hb(l,t);r.push(u),a.push(c)});let o=U(Dn(r,0),e.shape),i=U(Dn(a,0),e.shape);return[o,i]}}function Hb(e,t=!1){return z.tidy(()=>{M(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=Dg(n),a=Os(e),o=Ms([[1]],[1,1]),i=Os(o),l=n>=s?s:n;for(let u=0;u<l;++u){let c=a,d=i,h=r;[i,a,r]=z.tidy(()=>{let p=Re(a,[u,u],[n-u,1]),f=Qg(p),m=Re(a,[u,u],[1,1]),g=bn(jn(m,0),Ms([[-1]]),Ms([[1]])),A=ge(m,L(g,f)),y=de(p,A);y.shape[0]===1?i=Os(o):i=ft([o,Re(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let x=Tt(de(Ve(g,A),f)),b=Re(a,[u,0],[n-u,s]),v=L(x,i),k=Xe(i);if(u===0)a=ge(b,Ve(v,Ve(k,b)));else{let _=ge(b,Ve(v,Ve(k,b)));a=ft([Re(a,[0,0],[u,s]),_],0)}let S=Xe(v),C=Re(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=ge(C,Ve(Ve(C,i),S));else{let _=ge(C,Ve(Ve(C,i),S));r=ft([Re(r,[0,0],[n,u]),_],1)}return[i,a,r]}),K([c,d,h])}return!t&&n>s&&(r=Re(r,[0,0],[n,s]),a=Re(a,[0,0],[s,s])),[r,a]})}var tD=W({qr_:eD}),vn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(vn||(vn={}));function nD(e,t,n=vn.SUM_BY_NONZERO_WEIGHTS){let s=$(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=$(t,"weights","computeWeightedLoss"));let a=r==null?s:L(s,r);if(n===vn.NONE)return a;if(n===vn.SUM)return ve(a);if(n===vn.MEAN){if(r==null)return _t(a);{let o=s.size/r.size,i=de(ve(a),ve(r));return o>1?de(i,Ie(o)):i}}if(n===vn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return de(ve(a),Ie(s.size));{let o=L(r,qn(s.shape)),i=ce(ve(Bl(o,Ie(0))),"float32");return de(ve(a),i)}}throw Error(`Unknown reduction: ${n}`)}var Ir=W({computeWeightedLoss_:nD});function sD(e,t,n,s=vn.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","absoluteDifference"),a=$(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=$(n,"weights","absoluteDifference")),An(r.shape,a.shape,"Error in absoluteDifference: ");let i=Ht(ge(r,a));return Ir(i,o,s)}var rD=W({absoluteDifference_:sD});function aD(e,t,n,s,r=vn.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","cosineDistance"),o=$(t,"predictions","cosineDistance"),i=null;s!=null&&(i=$(s,"weights","cosineDistance")),An(a.shape,o.shape,"Error in cosineDistance: ");let l=Ie(1),u=ge(l,ve(L(a,o),n,!0));return Ir(u,i,r)}var oD=W({cosineDistance_:aD});function iD(e,t,n,s=vn.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","hingeLoss"),a=$(t,"predictions","hingeLoss"),o=null;n!=null&&(o=$(n,"weights","hingeLoss")),An(r.shape,a.shape,"Error in hingeLoss: ");let i=Ie(1);r=ge(L(Ie(2),r),i);let l=sr(ge(i,L(r,a)));return Ir(l,o,s)}var lD=W({hingeLoss_:iD});function uD(e,t,n,s=1,r=vn.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","huberLoss"),o=$(t,"predictions","huberLoss"),i=null;n!=null&&(i=$(n,"weights","huberLoss")),An(a.shape,o.shape,"Error in huberLoss: ");let l=Ie(s),u=Ht(ge(o,a)),c=fc(u,l),d=ge(u,c),h=ae(L(Ie(.5),ct(c)),L(l,d));return Ir(h,i,r)}var cD=W({huberLoss_:uD});function dD(e,t,n,s=1e-7,r=vn.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","logLoss"),o=$(t,"predictions","logLoss"),i=null;n!=null&&(i=$(n,"weights","logLoss")),An(a.shape,o.shape,"Error in logLoss: ");let l=Ie(1),u=Ie(s),c=Tt(L(a,ds(ae(o,u)))),d=L(ge(l,a),ds(ae(ge(l,o),u))),h=ge(c,d);return Ir(h,i,r)}var hD=W({logLoss_:dD});function pD(e,t,n,s=vn.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","meanSquaredError"),a=$(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=$(n,"weights","meanSquaredError")),An(r.shape,a.shape,"Error in meanSquaredError: ");let i=Zg(r,a);return Ir(i,o,s)}var fD=W({meanSquaredError_:pD});function mD(e,t){let n=$(e,"labels","sigmoidCrossEntropyWithLogits"),s=$(t,"logits","sigmoidCrossEntropyWithLogits");An(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=sr(s),a=L(s,n),o=Yh(cs(Tt(Ht(s))));return ae(ge(r,a),o)}function gD(e,t,n,s=0,r=vn.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"multiClassLabels","sigmoidCrossEntropy"),o=$(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=$(n,"weights","sigmoidCrossEntropy")),An(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let u=Ie(s),c=Ie(1),d=Ie(.5);a=ae(L(a,ge(c,u)),L(d,u))}let l=mD(a,o);return Ir(l,i,r)}var AD=W({sigmoidCrossEntropy_:gD});function yD(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return nr((r,a,o)=>{let l=mb(a,[n],!0),u=ge(ce(a,"float32"),l);o([r,u]);let c=Tt(L(u,r));return{value:ve(c,[n]),gradFunc:(p,f)=>{let[m,g]=f,A=zo(p.shape,[n]);return[L(U(p,A),ge(ce(m,"float32"),cs(g))),L(U(p,A),ge(cs(g),ce(m,"float32")))]}}})(e,t)}function xD(e,t,n,s=0,r=vn.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"onehotLabels","softmaxCrossEntropy"),o=$(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=$(n,"weights","softmaxCrossEntropy")),An(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let u=Ie(s),c=Ie(1),d=Ie(a.shape[1]);a=ae(L(a,ge(c,u)),de(u,d))}let l=yD(a,o);return Ir(l,i,r)}var bD=W({softmaxCrossEntropy_:xD});function vD(e,t,n,s){let r=$(e,"indices","sparseFillEmptyRows"),a=$(t,"values","sparseFillEmptyRows"),o=$(n,"denseShape","sparseFillEmptyRows"),i=$(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},u=z.runKernel(wh,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var wD=W({sparseFillEmptyRows_:vD});function kD(e,t,n){let s=$(e,"inputIndices","sparseReshape"),r=$(t,"inputShape","sparseReshape"),a=$(n,"newShape","sparseReshape");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=z.runKernel(kh,o);return{outputIndices:i[0],outputShape:i[1]}}var ID=W({sparseReshape_:kD});function SD(e,t,n){let s=$(e,"data","sparseSegmentMean"),r=$(t,"indices","sparseSegmentMean"),a=$(n,"segmentIds","sparseSegmentMean");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return z.runKernel(Ih,o)}var CD=W({sparseSegmentMean_:SD});function TD(e,t,n){let s=$(e,"data","sparseSegmentSum"),r=$(t,"indices","sparseSegmentSum"),a=$(n,"segmentIds","sparseSegmentSum");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return z.runKernel(Sh,o)}var ND=W({sparseSegmentSum_:TD});function ED(e,t,n,s,r,a,o,i){let l=$(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=$(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:l,dataSplits:u},h=z.runKernel(Th,d,c);return{nGrams:h[0],nGramsSplits:h[1]}}var RD=W({stringNGrams_:ED});function _D(e,t,n=!0){let s=$(e,"input","stringSplit","string"),r=$(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=z.runKernel(Nh,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var DD=W({stringSplit_:_D});function $D(e,t){let n=$(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return z.runKernel(Eh,r,s)}var FD=W({stringToHashBucketFast_:$D}),OD={fft:lp,ifft:Ac,rfft:up,irfft:Kg},PD={hammingWindow:c_,hannWindow:zb,frame:Lb,stft:f_},_e={flipLeftRight:y_,grayscaleToRGB:b_,resizeNearestNeighbor:H_,resizeBilinear:V_,rotateWithOffset:w_,cropAndResize:g_,nonMaxSuppression:I_,nonMaxSuppressionAsync:D_,nonMaxSuppressionWithScore:F_,nonMaxSuppressionWithScoreAsync:P_,nonMaxSuppressionPadded:z_,nonMaxSuppressionPaddedAsync:B_,threshold:q_,transform:K_},Gb={bandPart:Y_,gramSchmidt:Q_,qr:tD},MD={absoluteDifference:rD,computeWeightedLoss:Ir,cosineDistance:oD,hingeLoss:lD,huberLoss:cD,logLoss:hD,meanSquaredError:fD,sigmoidCrossEntropy:AD,softmaxCrossEntropy:bD},xc={sparseFillEmptyRows:wD,sparseReshape:ID,sparseSegmentMean:CD,sparseSegmentSum:ND},mp={stringNGrams:RD,stringSplit:DD,stringToHashBucketFast:FD},Sr=class extends Nx{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return K(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return db(e,t)}dispose(){this.iterations_!=null&&K(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ie(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Sr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var gp=class extends Sr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=z.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:H(()=>Ke(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:H(()=>Ke(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;H(()=>{let u=ae(L(i,this.rho),L(ct(o),1-this.rho)),c=L(de(hn(ae(l,this.epsilon)),hn(ae(i,this.epsilon))),o),d=ae(L(l,this.rho),L(ct(c),1-this.rho));i.assign(u),l.assign(d);let h=ae(L(c,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(K(this.accumulatedGrads.map(e=>e.variable)),K(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};gp.className="Adadelta";Zr(gp);var Ap=class extends Sr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=z.registeredVariables[n];if(this.accumulatedGrads[s]==null){let i=!1;this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:H(()=>Ml(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;H(()=>{let i=ae(o,ct(a));o.assign(i);let l=ae(L(de(a,hn(ae(i,z.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&K(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Ap.className="Adagrad";Zr(Ap);var yp=class extends Sr{constructor(e,t,n,s=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],H(()=>{this.accBeta1=Ie(t).variable(),this.accBeta2=Ie(n).variable()}),s==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);H(()=>{let n=ge(1,this.accBeta1),s=ge(1,this.accBeta2);t.forEach((r,a)=>{let o=z.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:H(()=>Ke(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:H(()=>Ke(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedSecondMoment[a].variable,d=ae(L(u,this.beta1),L(l,1-this.beta1)),h=ae(L(c,this.beta2),L(ct(l),1-this.beta2)),p=de(d,n),f=de(h,s);u.assign(d),c.assign(h);let m=ae(L(de(p,ae(hn(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(L(this.accBeta1,this.beta1)),this.accBeta2.assign(L(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&K(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&K(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),H(()=>{this.accBeta1.assign(ea(this.beta1,this.iterations_+1)),this.accBeta2.assign(ea(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};yp.className="Adam";Zr(yp);var xp=class extends Sr{constructor(e,t,n,s=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],H(()=>{this.iteration=Ie(0).variable(),this.accBeta1=Ie(t).variable()}),s==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);H(()=>{let n=ge(1,this.accBeta1),s=de(-this.learningRate,ae(L(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=z.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:Ke(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:Ke(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedWeightedInfNorm[a].variable,d=ae(L(u,this.beta1),L(l,1-this.beta1)),h=L(c,this.beta2),p=Ht(l),f=kr(h,p);u.assign(d),c.assign(f);let m=ae(L(de(s,n),de(d,ae(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(ae(this.iteration,1)),this.accBeta1.assign(L(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&K(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&K(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};xp.className="Adamax";Zr(xp);var bc=class extends Sr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=z.registeredVariables[n];H(()=>{let o=ae(L(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Jt(Ie(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};bc.className="SGD";Zr(bc);var bp=class extends bc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ie(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=z.registeredVariables[n];if(this.accumulations[s]==null){let i=!1;this.accumulations[s]={originalName:`${n}/momentum`,variable:H(()=>Ke(r).variable(i))}}let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&H(()=>{let i,l=ae(L(this.m,a),o);this.useNesterov?i=ae(L(this.c,ae(o,L(l,this.m))),r):i=ae(L(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&K(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};bp.className="Momentum";Zr(bp);var vp=class extends Sr{constructor(e,t=.9,n=0,s=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=z.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=z.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:H(()=>Ke(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:H(()=>Ke(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:H(()=>Ke(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;H(()=>{let u=ae(L(i,this.decay),L(ct(o),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[s].variable,d=ae(L(c,this.decay),L(o,1-this.decay)),h=de(L(o,this.learningRate),hn(ge(u,ae(ct(d),this.epsilon)))),p=ae(L(l,this.momentum),h);i.assign(u),c.assign(d),l.assign(p);let f=ge(r,p);r.assign(f)}else{let c=ae(L(i,this.decay),L(ct(o),1-this.decay)),d=ae(L(l,this.momentum),de(L(o,this.learningRate),hn(ae(c,this.epsilon))));i.assign(c),l.assign(d);let h=ge(r,d);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&K(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&K(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&K(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};vp.className="RMSProp";Zr(vp);var Lo=class{static sgd(e){return new bc(e)}static momentum(e,t,n=!1){return new bp(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new vp(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new yp(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new gp(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new xp(e,t,n,s,r)}static adagrad(e,t=.1){return new Ap(e,t)}},Bo={sgd:Lo.sgd,momentum:Lo.momentum,adadelta:Lo.adadelta,adagrad:Lo.adagrad,rmsprop:Lo.rmsprop,adamax:Lo.adamax,adam:Lo.adam},zD=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function wp(){return new Promise(e=>zD(()=>e()))}var D={};Pe(D,{ERF_A1:()=>KD,ERF_A2:()=>ZD,ERF_A3:()=>YD,ERF_A4:()=>JD,ERF_A5:()=>QD,ERF_P:()=>XD,PARALLELIZE_THRESHOLD:()=>rA,SELU_SCALE:()=>qb,SELU_SCALEALPHA:()=>jb,applyActivation:()=>pp,assertAndGetBroadcastShape:()=>At,assertAxesAreInnerMostDims:()=>ZN,assertParamsConsistent:()=>LD,assignToTypedArray:()=>a$,axesAreInnerMostDims:()=>Og,calculateShapes:()=>gx,checkEinsumDimSizes:()=>d$,combineLocations:()=>hb,complexWithEvenIndex:()=>n$,complexWithOddIndex:()=>s$,computeConv2DInfo:()=>uc,computeConv3DInfo:()=>Ux,computeDefaultPad:()=>wg,computeDilation2DInfo:()=>mT,computeOptimalWindowSize:()=>WD,computeOutAndReduceShapes:()=>pb,computeOutShape:()=>BD,computePool2DInfo:()=>Vx,computePool3DInfo:()=>gT,convertConv2DDataFormat:()=>Hx,decodeEinsumEquation:()=>u$,eitherStridesOrDilationsAreOne:()=>tr,expandShapeToKeepDim:()=>zo,exponent:()=>i$,exponents:()=>o$,fromStringArrayToUint8:()=>b$,fromUint8ToStringArray:()=>x$,getAxesPermutation:()=>fb,getBroadcastDims:()=>iN,getComplexWithIndex:()=>r$,getEinsumComputePath:()=>h$,getEinsumPermutation:()=>c$,getFusedBiasGradient:()=>hp,getFusedDyActivation:()=>dp,getImageCenter:()=>VD,getInnerMostAxes:()=>YN,getPermuted:()=>HD,getReductionAxes:()=>Gt,getReshaped:()=>UD,getReshapedPermuted:()=>GD,getSliceBeginCoords:()=>jD,getSliceSize:()=>qD,getUndoAxesPermutation:()=>Pg,isIdentityPermutation:()=>p$,log:()=>LS,mergeRealAndImagArrays:()=>e$,prepareAndValidate:()=>mx,prepareSplitSize:()=>m$,segment_util:()=>Zb,shouldFuse:()=>fp,slice_util:()=>xn,splitRealAndImagArrays:()=>t$,tupleValuesAreOne:()=>Yr,upcastType:()=>Cs,validateInput:()=>fg,validateUpdateShape:()=>pg,warn:()=>Ys});function LD(e,t){let n=e[0].length;e.forEach((r,a)=>{M(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),M(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o<n;o++)M(o===t||r[o]===s[o],()=>`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function BD(e,t){let n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}var rA=30;function WD(e){return e<=rA?e:qd(e,Math.floor(Math.sqrt(e)))}function VD(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function UD(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let o=0;o<a;++o)r=r.concat([e[o+1]/t[o],t[o]]);r=r.concat(e.slice(a+1))}return r}function HD(e,t,n=!0){let s=[];if(n){s.push(t);for(let r=t+1;r<e;++r)r<=2*t?(s.push(r),s.push(r-(t+1))):s.push(r)}else{let r=[],a=[];for(let o=1;o<e;++o)o>=t*2+1||o%2==1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function GD(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?s?r.push(t[a-1]*e[a]):r.push(e[a]/t[a-1]):r.push(e[a]);return r}function jD(e,t){let n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function qD(e,t,n){let s=e.slice(0,1);for(let r=0;r<n;++r)s.push(e[r+1]-t[r][0]-t[r][1]);return s}var jb=1.7580993408473768,qb=1.0507009873554805,XD=.3275911,KD=.254829592,ZD=-.284496736,YD=1.421413741,JD=-1.453152027,QD=1.061405429;function e$(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function t$(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function n$(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function s$(e){let t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function r$(e,t){let n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function a$(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function o$(e,t){let n=new Float32Array(e/2),s=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let a=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(a),s[r]=Math.sin(a)}return{real:n,imag:s}}function i$(e,t,n){let s=(n?2:-2)*Math.PI*(e/t),r=Math.cos(s),a=Math.sin(s);return{real:r,imag:a}}var aA="->",l$=/->/g,Xb=",",Kb="...";function u$(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(l$,"").length)/aA.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${aA}").`);let[s,r]=e.split(aA);M(s.indexOf(Kb)===-1,()=>`The ellipsis notation ("${Kb}") is not supported yet.`);let a=s.split(Xb),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let h=0;h<r.length;++h){let p=r[h];if(!a.some(f=>f.indexOf(p)!==-1))throw new Error(`Output subscripts contain the label ${p} not present in the input subscripts.`);i.indexOf(p)===-1&&i.push(p)}for(let h=0;h<s.length;++h){let p=s[h];i.indexOf(p)===-1&&p!==Xb&&i.push(p)}let l=new Array(a.length);for(let h=0;h<o;++h){if(new Set(a[h].split("")).size!==a[h].length)throw new Error(`Found duplicate axes in input component ${a[h]}. Support for duplicate axes in input is not implemented yet.`);l[h]=[];for(let p=0;p<a[h].length;++p)l[h].push(i.indexOf(a[h][p]))}let u=i.length,c=r.length,d=[];for(let h=c;h<u;++h)d.push(h);return{allDims:i,summedDims:d,idDims:l}}function c$(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let s=[];for(let r=0;r<e;++r)n[r]===-1&&s.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:s}}function d$(e,t,n){let s=new Array(e);for(let r=0;r<n.length;++r){let a=n[r].shape;for(let o=0;o<t[r].length;++o)s[t[r][o]]===void 0?s[t[r][o]]=a[o]:M(s[t[r][o]]===a[o],()=>`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function h$(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;o<r;++o)s.push([]);let a=[];for(let o=0;o<n.length;++o){let i=n[o],l=f$(t,i);for(let u of l)a.indexOf(u)===-1&&(s[o].push(u),a.push(u))}return{path:n,steps:s}}function p$(e){return e.every((t,n)=>t===n)}function f$(e,t){let n=[];for(let s=0;s<e.length;++s)(e[s].length===0||e[s].indexOf(t)!==-1||t===-1)&&n.push(s);return n}function m$(e,t,n=0){let s=[];if(typeof t=="number")M(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);M(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}M(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}var Zb={};Pe(Zb,{collectGatherOpShapeInfo:()=>y$,computeOutShape:()=>A$,segOpComputeOptimalWindowSize:()=>g$});function g$(e,t){let n=!1,s;for(e<=rA?(s=e,n=!0):s=qd(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=qd(e,s+1);return s}function A$(e,t,n){let s=[],r=e.length;for(let a=0;a<r;a++)a!==t?s.push(e[a]):s.push(n);return s}function y$(e,t,n,s){let r=t.shape.length,a=e.shape.length;if(s!==0&&(s<-r||s>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) (
|
|
${a}).`);if(n<s)throw new Error(`batchDims (${s}) must be less than or equal to axis (${n}).`);for(let d=0;d<s;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let o=e.shape[n],i=[],l=1,u=1,c=1;for(let d=0;d<s;++d)i.push(e.shape[d]),l*=e.shape[d];for(let d=s;d<n;d++)i.push(e.shape[d]),u*=e.shape[d];for(let d=s;d<r;d++)i.push(t.shape[d]);for(let d=n+1;d<a;d++)i.push(e.shape[d]),c*=e.shape[d];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:o,outputShape:i}}function x$(e){try{return e.map(t=>Oh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function b$(e){return e.map(t=>Qu(t))}var rr={};Pe(rr,{nonMaxSuppressionV3Impl:()=>Bb,nonMaxSuppressionV4Impl:()=>Wb,nonMaxSuppressionV5Impl:()=>Vb,whereImpl:()=>Rb});var Yb={kernelName:Ii,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,yc(ce(n,"float32"),-1))}}},v$={kernelName:Si,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=ct(ce(n,"float32")),r=hn(ge(Ie(1),s));return Tt(de(e,r))}}}},w$={kernelName:Ci,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=hn(ge(ct(ce(n,"float32")),1));return de(e,s)}}}},k$={kernelName:Vr,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=At(n.shape,s.shape);return{a:()=>{let i=e,l=Gt(n.shape,r);return l.length>0&&(i=ve(i,l)),U(i,n.shape)},b:()=>{let i=e,l=Gt(s.shape,r);return l.length>0&&(i=ve(i,l)),U(i,s.shape)}}}},I$={kernelName:Na,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},S$={kernelName:Ea,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ke(n)}}},C$={kernelName:Pu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ke(n)}}},T$={kernelName:Ei,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,hn(ge(Ie(1),ct(ce(n,"float32")))))}}},N$={kernelName:Ri,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=hn(ae(Ie(1),ct(ce(n,"float32"))));return de(e,s)}}}},E$={kernelName:$i,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=At(n.shape,s.shape);return{a:()=>{let i=ae(ct(n),ct(s)),l=L(e,de(s,i)),u=Gt(n.shape,r);return u.length>0&&(l=ve(l,u)),U(l,n.shape)},b:()=>{let i=ae(ct(n),ct(s)),l=Tt(L(e,de(n,i))),u=Gt(s.shape,r);return u.length>0&&(l=ve(l,u)),U(l,s.shape)}}}},R$={kernelName:_i,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,ae(ct(ce(n,"float32")),1))}}},_$={kernelName:Di,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,ge(Ie(1),ct(ce(n,"float32"))))}}};function D$(e,t,n,s,r,a){let o=$(e,"dy","avgPool3dGrad"),i=$(t,"input","avgPool3dGrad"),l=o,u=i,c=!1;i.rank===4&&(c=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),u=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),M(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),a!=null&&M(Zt(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let d={dy:l,input:u},h={filterSize:n,strides:s,pad:r,dimRoundingMode:a},p=z.runKernel(Zd,d,h);return c?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var $$=W({avgPool3dGrad_:D$}),F$={kernelName:Mu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>$$(e,s,r,a,o,i)}}};function O$(e,t,n,s,r){let a=$(e,"dy","avgPoolGrad"),o=$(t,"input","avgPoolGrad");M(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,u=!1;o.rank===3&&(u=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),M(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},d={filterSize:n,strides:s,pad:r},h=z.runKernel(Kd,c,d);return u?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var P$=W({avgPoolGrad_:O$}),M$={kernelName:Ra,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>P$(e,s,r,a,o)}}},z$={kernelName:_a,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>Ve(e,r,!1,!0),b:()=>Ve(s,e,!0,!1)}:!a&&o?{a:()=>Ve(e,r,!1,!1),b:()=>Ve(e,s,!0,!1)}:a&&!o?{a:()=>Ve(r,e,!1,!0),b:()=>Ve(s,e,!1,!1)}:{a:()=>Ve(r,e,!0,!0),b:()=>Ve(e,s,!0,!0)}}},L$={kernelName:Fi,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>sp(e,s,r)}}},B$={kernelName:$5,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l<o.length;l++)o[l]>1&&i.push(l);return{x:()=>ve(e,i,!0)}}},W$={kernelName:Da,gradFunc:e=>({x:()=>e.clone()})},V$={kernelName:$a,gradFunc:e=>({x:()=>Ke(e)})},U$={kernelName:Ur,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>bn(Ps(Po(s,r),Mo(s,a)),e,Ke(e))}}},H$={kernelName:zu,inputsToSave:["x"],gradFunc:Yb.gradFunc},G$={kernelName:Oi,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=Ss(r,t[0].shape)[0],o=s.map(l=>l[a]);return an(e,o,a).map(l=>()=>l)}},j$={kernelName:Fa,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return M(Yr(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>Tg(s.shape,e,r,o,i,l),filter:()=>nA(s,e,r.shape,o,i,l)}}},q$={kernelName:Oa,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>Jr(e,r,a,o,i,1,l),filter:()=>nA(e,s,r.shape,a,o,i,l)}}};function X$(e,t,n,s,r){let a=e;e.rank===4&&(a=U(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),M(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),M(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),M(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),M(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),M(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return z.runKernel(eh,i,l)}var K$=W({conv3DBackpropFilter_:X$}),Z$={kernelName:Lu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;M(Yr(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>Qx(o.shape,e,i,r,a),filter:()=>K$(o,e,i.shape,r,a)}}},Y$={kernelName:Pa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Tt(jg(ce(n,"float32"))),e)}}},J$={kernelName:Ma,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(qg(ce(n,"float32")),e)}}},Q$={kernelName:za,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=fb([r],s.rank),l=_g(e,r,a,!o);return i!=null&&(l=Xe(l,i)),l}}}},eF={kernelName:La,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s==null?[1,1]:s;M(Yr(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=t;return M(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),M(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),M(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),M(tr(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),o!=null&&M(Zt(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`),{x:()=>Mb(l.shape,e,u,r,a,i,o),filter:()=>Pb(l,e,u.shape,r,a,i,o)}}},tF={kernelName:Bu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>z.runKernel(oh,a,n),filter:()=>z.runKernel(ih,o,n)}}},nF={kernelName:Wa,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>z.runKernel(uh,s)}}},sF={kernelName:zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=L(cs(Tt(ct(n))),2/Math.sqrt(Math.PI));return{x:()=>L(e,s)}}},rF={kernelName:Va,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,n)}}},aF={kernelName:Bi,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>U(e,n.shape)}}},oF={kernelName:Wi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,cs(n))}}},iF={kernelName:Ua,gradFunc:e=>({x:()=>Ke(e)})},lF={kernelName:Ha,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=At(n.shape,s.shape);return{a:()=>{let i=de(e,ce(s,"float32")),l=Gt(n.shape,r);return l.length>0?U(ve(i,l),n.shape):i},b:()=>{let i=L(e,ce(n,"float32")),l=Gt(s.shape,r);l.length>0&&(i=U(ve(i,l),s.shape));let u=ct(s);return Tt(de(i,ce(u,"float32")))}}}},uF={kernelName:Ga,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i==null?Ie(1):i,u=Gt(a.shape,r.shape),c=[];if(a.rank===1){for(let b=0;b<r.shape.length-1;++b)c.push(r.shape[b]);c.push(1)}let d=ge(r,a),h=L(e,l),p=Hg(ae(o,Ie(s))),f=L(L(L(p,p),p),Ie(-.5));return{x:()=>a.rank===1?U(L(L(e,Ts(U(p,[1,1,1,a.shape[0]]),c)),l),r.shape):U(L(L(e,p),l),r.shape),mean:()=>{let b=L(L(p,Ie(-1)),h);return a.rank===1&&(b=ve(b,u)),U(b,a.shape)},variance:()=>{let b=L(L(f,d),h);return a.rank===1&&(b=ve(b,u)),U(b,a.shape)},scale:()=>{let b=L(d,p),v=L(e,b);return a.rank===1&&(v=ve(v,u)),U(v,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=ve(b,u)),U(b,a.shape)}}}},cF={kernelName:Ui,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=Ss(a,s.shape)[0];return{x:()=>{let l=s.shape,u=r.size,c=l.slice(0,o),d=c.length,h=l.slice(a,l.length).slice(1),p=h.length,f=Jb(0,d),m=Jb(d+1,d+1+p),g=Qb([c,[u],h]),A=U(e,g),y=U(r,[u]),x=Qb([[d],f,m]),b=Xe(A,x),v=Nb(b,y,s.shape[o]),k=Pg(x);return v=Xe(v,k),v},indices:()=>r}}};function Jb(e,t){let n=[];for(let s=e;s<t;++s)n.push(s);return n}function Qb(e){let t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}var dF={kernelName:ja,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>Ke(n),b:()=>Ke(s)}}},hF={kernelName:qa,gradFunc:e=>({x:()=>ce(e,"float32")})},pF={kernelName:ji,gradFunc:e=>({x:()=>Ke(e)})},fF={kernelName:qi,gradFunc:e=>({x:()=>Ke(e)})},mF={kernelName:Xi,gradFunc:e=>({x:()=>Ke(e)})},gF={kernelName:Xa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=jn(s,0);return{x:()=>bn(a,e,L(e,r))}}},AF={kernelName:Yi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,ae(n,1))}}},yF={kernelName:Ka,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,ce(n,"float32"))}}},xF={kernelName:F5,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let a=!0,o=cs(s);return ge(e,L(ve(e,r,a),o))}}}};function bF(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return z.runKernel(fh,i,l)}var vF=W({localResponseNormalizationBackprop_:bF}),wF={kernelName:Hu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>vF(s,r,e,a,o,i,l)}}};function e3(e,t,n,s){return t.rank<n.rank&&(t=U(t,zo(t.shape,s))),e.rank<n.rank&&(e=U(e,zo(e.shape,s))),{x:()=>L(e,ce(us(n,t),e.dtype))}}var t3={kernelName:Za,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=Ss(r,a.shape),l=e3(e,o,a,i);return{x:()=>l.x()}}},kF={kernelName:Ya,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>L(e,ce(Po(n,s),"float32")),b:()=>L(e,ce($g(n,s),"float32"))}}};function IF(e,t,n,s,r,a,o){let i=$(e,"dy","maxPool3dGrad"),l=$(t,"input","maxPool3dGrad"),u=$(n,"output","maxPool3dGrad"),c=i,d=l,h=u,p=!1;l.rank===4&&(p=!0,c=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=U(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),h=U(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),M(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),M(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),M(h.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${h.rank}.`),o!=null&&M(Zt(a),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let f={dy:c,input:d,output:h},m={filterSize:s,strides:r,pad:a,dimRoundingMode:o},g=z.runKernel(gh,f,m);return p?U(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var SF=W({maxPool3dGrad_:IF}),CF={kernelName:Gu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>SF(e,s,r,a,o,i,l)}}};function TF(e,t,n,s,r,a,o){let i=$(e,"dy","maxPoolGrad"),l=$(t,"input","maxPoolGrad"),u=$(n,"output","maxPoolGrad");M(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),M(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),M(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),o!=null&&M(Zt(a),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let c={dy:i,input:l,output:u},d={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return z.runKernel(mh,c,d)}var NF=W({maxPoolGrad_:TF}),EF={kernelName:Ja,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>NF(e,s,r,a,o,i)}}},RF={kernelName:Qa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=Ss(r,s.shape),i=pb(s.shape,a)[1],l=$t(i);return{x:()=>{let c=s.shape.slice();a.forEach(p=>{c[p]=1});let d=U(e,c);return de(L(d,qn(s.shape,"float32")),l)}}}},_F={kernelName:eo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=Ss(r,a.shape),l=e3(e,o,a,i);return{x:()=>l.x()}}},DF={kernelName:to,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>L(e,ce(Mo(n,s),"float32")),b:()=>L(e,ce(jn(n,s),"float32"))}}},$F={kernelName:no,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Re(e,a,s.shape)}}},FF={kernelName:Qi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=At(n.shape,s.shape);return{a:()=>{let i=Gt(n.shape,r);return i.length>0?U(ve(e,i),n.shape):e},b:()=>{let i=L(e,Tt(pc(de(n,s)))),l=Gt(s.shape,r);return l.length>0?U(ve(i,l),s.shape):i}}}},OF={kernelName:so,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=At(n.shape,s.shape);return{a:()=>{let i=L(e,ce(s,"float32")),l=Gt(n.shape,r);return l.length>0?U(ve(i,l),n.shape):i},b:()=>{let i=L(e,ce(n,"float32")),l=Gt(s.shape,r);return l.length>0?U(ve(i,l),s.shape):i}}}},PF={kernelName:el,gradFunc:e=>({x:()=>Tt(e)})},MF={kernelName:ro,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Pt(n.shape,"float32")}}},zF={kernelName:al,gradFunc:e=>({x:()=>Ke(e)})},LF={kernelName:ol,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return ms(e,s).map(a=>()=>a)}},n3={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Re(e,a,s.shape)}}},BF={kernelName:oo,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=At(a.shape,o.shape);return{a:()=>{let c=ce(o,"float32"),d=L(e,L(c,ea(a,ge(c,Ie(1))))),h=Gt(a.shape,i);return h.length>0&&(d=ve(d,h)),U(d,a.shape)},b:()=>{let c=jn(a,0),d=bn(c,ds(a),Ke(a)),h=L(e,L(r,d)),p=Gt(o.shape,i);return p.length>0&&(h=ve(h,p)),U(h,o.shape)}}}},WF={kernelName:io,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=jn(n,0);return{x:()=>bn(r,e,L(e,s)),alpha:()=>{let a=bn(r,Ke(e),L(e,n)),o=Gt(s.shape,e.shape);return o.length>0&&(a=ve(a,o)),U(a,s.shape)}}}},VF={kernelName:Ba,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=At(n.shape,s.shape);return{a:()=>{let i=de(e,ce(s,"float32")),l=Gt(n.shape,r);return l.length>0?U(ve(i,l),n.shape):i},b:()=>{let i=L(e,ce(n,"float32")),l=Gt(s.shape,r);l.length>0&&(i=U(ve(i,l),s.shape));let u=ct(s);return Tt(de(i,ce(u,"float32")))}}}},UF={kernelName:ll,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,Tt(ct(n)))}}},HF={kernelName:co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=L(Mo(n,6),yc(n));return{x:()=>L(e,ce(s,"float32"))}}},GF={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,ce(yc(n),"float32"))}}},jF={kernelName:ul,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>U(e,n.shape)}}},qF={kernelName:uo,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>z.runKernel(vh,r,n)}}},XF={kernelName:qu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>z.runKernel(bh,r,n)}}},KF={kernelName:ho,gradFunc:(e,t,n)=>{let{dims:s}=n,r=Ss(s,e.shape);return{x:()=>fs(e,r)}}},ZF={kernelName:po,gradFunc:e=>({x:()=>Ke(e)})},YF={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Tt(de(e,L(ea(n,1.5),2)))}}},JF={kernelName:dl,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ce(Ke(n),"float32"),t:()=>L(e,ce(n,e.dtype)),e:()=>L(e,ce(Qh(n),e.dtype))}}},QF={kernelName:hl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=jn(n,Ie(0)),r=Ie(jb),a=Ie(qb),o=L(e,a),i=L(L(e,r),cs(ce(n,"float32")));return bn(s,o,i)}}}},eO={kernelName:go,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(n,ge(Ie(1),n)))}}},tO={kernelName:ml,gradFunc:e=>({x:()=>Ke(e)})},nO={kernelName:mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Xh(ce(n,"float32")),e)}}},sO={kernelName:fl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Rg(ce(n,"float32")),e)}}},rO={kernelName:pl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=Tx(s,r,a),u=[];for(let c=0;c<e.rank;c++)u.push([i[c],o[c]-i[c]-l[c]]);return{x:()=>Qr(e,u)}}},aO={kernelName:xo,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=L(e,s);return{logits:()=>ge(o,L(ve(o,[r],a),s))}}},oO={kernelName:gl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Hn(n))}}},s3={kernelName:Al,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>qh(e,s,r)}}},r3={kernelName:yl,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>ft(e,s)}}},iO={kernelName:Ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,L(hn(ce(n,"float32")),2))}}},lO={kernelName:Xu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(ce(n,"float32"),2))}}},uO={kernelName:bo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Ie(2);return{a:()=>L(e,L(r,ge(n,s))),b:()=>L(e,L(r,ge(s,n)))}}},cO={kernelName:Gr,gradFunc:e=>({x:()=>Ke(e)})},dO={kernelName:vo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=At(n.shape,s.shape);return{a:()=>{let i=e,l=Gt(n.shape,r);return l.length>0&&(i=ve(i,l)),U(i,n.shape)},b:()=>{let i=e,l=Gt(s.shape,r);return l.length>0&&(i=ve(i,l)),U(Tt(i),s.shape)}}}},hO={kernelName:yo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;Ss(a,s.shape).forEach(u=>{r[u]=1});let i=U(e,r),l=L(i,qn(s.shape,"float32"));return{x:()=>l}}},pO={kernelName:wo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,ct(Xh(n)))}}},fO={kernelName:ko,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(ge(Ie(1),ct(n)),e)}}},mO={kernelName:Hr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=Ke(s);if(s.rank===1)for(let i=0;i<r[0];++i)o=ae(o,Re(e,[i*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)o=ae(o,Re(e,[i*s.shape[0],l*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let u=0;u<r[2];++u)o=ae(o,Re(e,[i*s.shape[0],l*s.shape[1],u*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let u=0;u<r[2];++u)for(let c=0;c<r[3];++c)o=ae(o,Re(e,[i*s.shape[0],l*s.shape[1],u*s.shape[2],c*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return o}}}},gO={kernelName:Io,gradFunc:(e,t,n)=>{let s=n,{perm:r}=s,a=Pg(r);return{x:()=>Xe(e,a)}}},AO={kernelName:wl,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>Dn(e,r)}}},yO={kernelName:Ku,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xO(e,n)}}};function xO(e,t){let n=kr(t,Ke(t)),s=zl(e,n),r=Po(t,Ie(0,"int32")),a=s.rank-r.rank;for(let i=0;i<a;++i)r=Ot(r,i+1);r=Ps(r,qn(s.shape,"bool"));let o=Ke(s);return bn(r,s,o)}var bO={kernelName:kl,gradFunc:e=>({x:()=>Ke(e)})},vO=[Yb,v$,w$,k$,I$,S$,C$,T$,N$,E$,R$,_$,F$,M$,z$,L$,B$,W$,V$,U$,H$,G$,q$,j$,Z$,Y$,J$,Q$,eF,tF,VF,nF,sF,rF,aF,oF,lF,iF,uF,cF,dF,hF,pF,fF,mF,gF,AF,yF,xF,wF,t3,t3,kF,CF,EF,RF,_F,DF,$F,FF,OF,PF,MF,zF,LF,n3,n3,BF,WF,UF,HF,GF,jF,qF,XF,KF,ZF,YF,JF,QF,eO,tO,nO,sO,rO,aO,oO,s3,s3,r3,r3,iO,uO,lO,cO,dO,hO,pO,fO,mO,gO,AO,yO,bO];for(let e of vO)O5(e);var a3={};Pe(a3,{maxNorm:()=>SO,minMaxNorm:()=>NO,nonNeg:()=>TO,unitNorm:()=>CO});var oA;function jt(){return oA==null&&(oA=$x().epsilon()),oA}function zs(){return"channelsLast"}var Cr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Cr.prototype)}},Ls=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ls.prototype)}},G=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,G.prototype)}},Oe=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Oe.prototype)}},o3=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,o3.prototype)}};function Wo(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function ar(e,t){if(!e)throw new o3(t)}function i3(e,t){let n=0;for(let s of e)s===t&&n++;return n}function $n(e){return e.length===1?e[0]:e}function yt(e){return Array.isArray(e)?e:[e]}function Tr(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function Vo(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var Ns={};function iA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function lA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>lA(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:lA(s))}}}function vc(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in Ns)o=Ns[a];else if(o=t[a],o==null)throw new G(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new G(`${s}: Improper config format: ${JSON.stringify(a)}.
|
|
'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in Ns?[i,l]=Ns.className:o in t&&([i,l]=t[o]),i==null)throw new G(`Unknown ${s}: ${o}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let p of Object.keys(Ns))u[p]=Ns[p];for(let p of Object.keys(n))u[p]=n[p];let c=a.config;c.customObjects=u;let d=Object.assign({},Ns);for(let p of Object.keys(n))Ns[p]=n[p];lA(a.config);let h=l(i,a.config,n,r);return Ns=Object.assign({},d),h}else{let u=Object.assign({},Ns);for(let d of Object.keys(n))Ns[d]=n[d];let c=new i(a.config);return Ns=Object.assign({},u),c}}}function wO(e,t){return e<t?-1:e>t?1:0}function kp(e,t){return-1*wO(e,t)}function na(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function kO(e){if(e==null)throw new G(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Uo(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new G(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function uA(e,t,n=0,s=1/0){return ar(n>=0),ar(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function Qt(e,t){Array.isArray(e)?(w.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>Qt(n,`element ${s+1} of ${t}`))):w.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${l3(e)}.`)}function l3(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>l3(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function IO(e,t){let n=w.now(),s;return(...a)=>{let o=w.now();return o-n<t||(n=o,s=e(...a)),s}}function u3(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function cA(e,t){return H(()=>hn(ve(L(e,e),t,!0)))}var wc=class extends oe.Serializable{getConfig(){return{}}},dA=class extends wc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>{let t=cA(e,this.axis),n=Gn(t,0,this.maxValue);return L(e,de(n,ae(jt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};dA.className="MaxNorm";oe.registerClass(dA);var hA=class extends wc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>de(e,ae(jt(),cA(e,this.axis))))}getConfig(){return{axis:this.axis}}};hA.className="UnitNorm";oe.registerClass(hA);var pA=class extends wc{apply(e){return sr(e)}};pA.className="NonNeg";oe.registerClass(pA);var fA=class extends wc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>{let t=cA(e,this.axis),n=ae(L(this.rate,Gn(t,this.minValue,this.maxValue)),L(1-this.rate,t));return L(e,de(n,ae(jt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};fA.className="MinMaxNorm";oe.registerClass(fA);var c3={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function qt(e){return iA(e)}function d3(e,t={}){return vc(e,oe.SerializationMap.getMap().classNameMap,t,"constraint")}function Xt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in c3?c3[e]:e,config:{}};return d3(n)}else return e instanceof wc?e:d3(e)}function SO(e){return new dA(e)}function CO(e){return new hA(e)}function TO(){return new pA}function NO(e){return new fA(e)}var h3={};Pe(h3,{constant:()=>YO,glorotNormal:()=>rP,glorotUniform:()=>sP,heNormal:()=>aP,heUniform:()=>oP,identity:()=>tP,leCunNormal:()=>iP,leCunUniform:()=>lP,ones:()=>ZO,orthogonal:()=>uP,randomNormal:()=>QO,randomUniform:()=>JO,truncatedNormal:()=>eP,varianceScaling:()=>nP,zeros:()=>KO});var EO=["channelsFirst","channelsLast"],RO=["nearest","bilinear"],_O=["valid","same","causal"],DO=["max","avg"],$O=["sum","mul","concat","ave"],Hl=new Map;function Ft(e){Uo(EO,"DataFormat",e)}function FO(e){Uo(RO,"InterpolationFormat",e)}function gs(e){Uo(_O,"PaddingMode",e)}function p3(e){Uo(DO,"PoolMode",e)}var kc=[],f3="/";function Ho(e,t){kc.push(e);try{let n=t();return kc.pop(),n}catch(n){throw kc.pop(),n}}function OO(){return kc.length===0?"":kc.join(f3)+f3}function m3(e){if(!A3(e))throw new Error("Not a valid tensor name: '"+e+"'");return OO()+e}function g3(e){if(!A3(e))throw new Error("Not a valid tensor name: '"+e+"'");Hl.has(e)||Hl.set(e,0);let t=Hl.get(e);if(Hl.set(e,Hl.get(e)+1),t>0){let n=`${e}_${t}`;return Hl.set(n,1),n}else return e}var PO=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function A3(e){return!!e.match(PO)}function MO(e){return e===parseInt(e.toString(),10)}function sa(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;r<n;++r)s*=e[r];return s}function Gl(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s<t&&(t=s)}return t}function ra(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s>t&&(t=s)}return t}function Bs(e,t){if(t<e)throw new G(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let s=e;s<t;++s)n.push(s);return n}function Ip(e,t){return ce(e,t)}function Ic(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),U(e,n)}function zO(e,t){return H(()=>{if(e.shape.length!==2)throw new G(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Ic(e,1);return AA(n,[1,t,1])})}function LO(e){let t=[sa(e.shape)];return U(e,t)}function BO(e){if(e.rank<=1)throw new G(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],sa(e.shape,1)];return U(e,t)}function Go(e,t,n){return H(()=>{switch(e.rank){case 1:return ap(e,t,n);case 2:return Xg(e,[t,0],[n,e.shape[1]]);case 3:return op(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return gc(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Re(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Re(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new G(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function mA(e,t,n){return H(()=>{switch(e.rank){case 1:return ap(e,t,n);case 2:return Xg(e,[0,t],[e.shape[0],n]);case 3:return op(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return gc(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new G(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Sp(e,t,n,s){return H(()=>{switch(e.rank){case 1:return ap(e,t,n);case 2:switch(s){case 1:return Go(e,t,n);case 2:return mA(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return Go(e,t,n);case 2:return op(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return mA(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return Go(e,t,n);case 2:return gc(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return gc(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return mA(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}default:throw new G(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function gA(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),ft(e,t)}function y3(e,t){switch(e.rank){case 1:return Zx([e,t]);case 2:return Pl([e,t],0);case 3:return Yx([e,t],0);case 4:return Jx([e,t],0);default:throw new G(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function AA(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new G(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ts(e,t)}function Cp(e,t=0,n=1,s,r){return bb(e,t,n,s,r)}function or(e,t,n,s){if(e.rank<2||t.rank<2)throw new Oe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new Oe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,a=!1;return ta.matMul({a:e,b:t,transposeA:r,transposeB:a,bias:s?yA(e.rank,s,zs()):null,activation:n})}else{let r=e.shape.slice(),a=r.pop();e=U(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),u=[...o,i],c=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=U(Xe(t,c),[l,-1]);let d=[...r,...u],h=!1,p=!1;return U(ta.matMul({a:e,b:t,transposeA:h,transposeB:p,bias:s?yA(e.rank,s,zs()):null,activation:n}),d)}}function x3(e,t,n){return H(()=>(Array.isArray(t)?t=Mt(t,"int32"):t=ce(t,"int32"),zl(e,t,n)))}function Sc(e){return L(e,e)}function yA(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new G(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1,1]):U(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1]):U(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1]):U(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,s[0]]):U(t,[1].concat(s))}else if(e<3)return t;throw new G(`Unsupported input rank by biasAdd: ${t.rank}`)}function Ws(e,t,n){return H(()=>(n==null&&(n=zs()),Ft(n),ae(e,yA(e.rank,t,n))))}function WO(e,t=1){if(t!==1)throw new Oe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return hc(e)}function VO(e){return H(()=>de(e,ae(Ht(e),1)))}function b3(e,t,n,s){return H(()=>Fb(e,t,n,s))}function UO(e){return H(()=>{let t=ae(.5,L(.2,e));return Gn(t,0,1)})}function Cc(e,t,n=!1){return n?e():t()}var HO=["fanIn","fanOut","fanAvg"],GO=["normal","uniform","truncatedNormal"];function jO(e){Uo(HO,"FanMode",e)}function qO(e){Uo(GO,"Distribution",e)}var Es=class extends oe.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},xA=class extends Es{apply(e,t){return Pt(e,t)}};xA.className="Zeros";oe.registerClass(xA);var Tp=class extends Es{apply(e,t){return qn(e,t)}};Tp.className="Ones";oe.registerClass(Tp);var bA=class extends Es{constructor(e){super();if(typeof e!="object")throw new G(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new G(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return H(()=>L(Ie(this.value),qn(e,t)))}getConfig(){return{value:this.value}}};bA.className="Constant";oe.registerClass(bA);var vA=class extends Es{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Wl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};vA.className="RandomUniform";oe.registerClass(vA);var wA=class extends Es{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`randomNormal does not support dType ${t}.`);return Cp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};wA.className="RandomNormal";oe.registerClass(wA);var kA=class extends Es{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`truncatedNormal does not support dType ${t}.`);return cp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};kA.className="TruncatedNormal";oe.registerClass(kA);var IA=class extends Es{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return H(()=>{if(e.length!==2||e[0]!==e[1])throw new G("Identity matrix initializer can only be used for 2D square matrices.");return L(this.gain,Dg(e[0]))})}getConfig(){return{gain:this.gain}}};IA.className="Identity";oe.registerClass(IA);function XO(e,t="channelsLast"){let n,s;if(Ft(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=sa(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=sa(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=sa(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var Fn=class extends Es{constructor(e){super();if(e.scale<0)throw new G(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,jO(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,qO(this.distribution),this.seed=e.seed}apply(e,t){let n=XO(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`${this.getClassName()} does not support dType ${t}.`);return cp(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return Wl(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Fn.className="VarianceScaling";oe.registerClass(Fn);var Np=class extends Fn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Fn.className}};Np.className="GlorotUniform";oe.registerClass(Np);var Ep=class extends Fn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Fn.className}};Ep.className="GlorotNormal";oe.registerClass(Ep);var Rp=class extends Fn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Fn.className}};Rp.className="HeNormal";oe.registerClass(Rp);var _p=class extends Fn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Fn.className}};_p.className="HeUniform";oe.registerClass(_p);var Dp=class extends Fn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Fn.className}};Dp.className="LeCunNormal";oe.registerClass(Dp);var $p=class extends Fn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Fn.className}};$p.className="LeCunNormal";oe.registerClass($p);var SA=class extends Es{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Oe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return H(()=>{if(e.length<2)throw new Oe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=Cp(n,0,1,"float32"),r=Gb.gramSchmidt(s);return e[0]>e[1]&&(r=Xe(r)),L(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};SA.className="Orthogonal";oe.registerClass(SA);var v3={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function w3(e,t={}){return vc(e,oe.SerializationMap.getMap().classNameMap,t,"initializer")}function Nt(e){return iA(e)}function wt(e){if(typeof e=="string"){let t=e in v3?v3[e]:e;if(t==="GlorotNormal")return new Ep;if(t==="GlorotUniform")return new Np;if(t==="HeNormal")return new Rp;if(t==="HeUniform")return new _p;if(t==="LeCunNormal")return new Dp;if(t==="LeCunUniform")return new $p;{let n={};return n.className=t,n.config={},w3(n)}}else return e instanceof Es?e:w3(e)}function KO(){return new xA}function ZO(){return new Tp}function YO(e){return new bA(e)}function JO(e){return new vA(e)}function QO(e){return new wA(e)}function eP(e){return new kA(e)}function tP(e){return new IA(e)}function nP(e){return new Fn(e)}function sP(e){return new Np(e)}function rP(e){return new Ep(e)}function aP(e){return new Rp(e)}function oP(e){return new _p(e)}function iP(e){return new Dp(e)}function lP(e){return new $p(e)}function uP(e){return new SA(e)}var k3={};Pe(k3,{Layer:()=>Ze,RNN:()=>ur,RNNCell:()=>Oc,activation:()=>GM,add:()=>ez,alphaDropout:()=>Mz,average:()=>tz,averagePooling1d:()=>U1,averagePooling2d:()=>H1,averagePooling3d:()=>G1,avgPool1d:()=>cz,avgPool2d:()=>hz,avgPool3d:()=>fz,avgPooling1d:()=>dz,avgPooling2d:()=>pz,avgPooling3d:()=>mz,batchNormalization:()=>iz,bidirectional:()=>Ez,concatenate:()=>nz,conv1d:()=>PM,conv2d:()=>MM,conv2dTranspose:()=>zM,conv3d:()=>LM,conv3dTranspose:()=>BM,convLstm2d:()=>Sz,convLstm2dCell:()=>Cz,cropping2D:()=>VM,dense:()=>jM,depthwiseConv2d:()=>HM,dot:()=>oz,dropout:()=>qM,elu:()=>RM,embedding:()=>QM,flatten:()=>KM,gaussianDropout:()=>Pz,gaussianNoise:()=>Oz,globalAveragePooling1d:()=>gz,globalAveragePooling2d:()=>Az,globalMaxPool1d:()=>_z,globalMaxPool2d:()=>Dz,globalMaxPooling1d:()=>Dv,globalMaxPooling2d:()=>$v,gru:()=>xz,gruCell:()=>bz,input:()=>nv,inputLayer:()=>EM,layerNormalization:()=>lz,leakyReLU:()=>DM,lstm:()=>vz,lstmCell:()=>wz,masking:()=>zz,maxPool1d:()=>$z,maxPool2d:()=>Fz,maxPooling1d:()=>Fv,maxPooling2d:()=>Ov,maxPooling3d:()=>yz,maximum:()=>sz,minimum:()=>rz,multiply:()=>az,permute:()=>JM,prelu:()=>$M,reLU:()=>_M,repeatVector:()=>ZM,reshape:()=>YM,rnn:()=>Tz,separableConv2d:()=>WM,simpleRNN:()=>kz,simpleRNNCell:()=>Iz,softmax:()=>FM,spatialDropout1d:()=>XM,stackedRNNCells:()=>Nz,thresholdedReLU:()=>OM,timeDistributed:()=>Rz,upSampling2d:()=>UM,zeroPadding2d:()=>uz});var cP=0;function I3(){return cP++}var Fp={};function Op(e=""){return e in Fp||(Fp[e]=0),Fp[e]+=1,e+Fp[e].toString()}function CA(e){return Array.isArray(e)&&Array.isArray(e[0])}function Pp(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function ze(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new G(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function at(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new G(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Mp(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var S3="Variable",C3=class{constructor(e,t="float32",n=S3,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=I3(),n=n==null?S3:n,this.originalName=m3(n),this.name=g3(this.originalName),this.trainable_=s,this.constraint=r,this.val=Eb(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),dP(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function dP(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function TA(e){return e.map(t=>t.read())}function NA(e){e.forEach(t=>{t[0].write(t[1])})}var zt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Vs=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=I3(),a!=null&&(this.originalName=m3(a),this.name=g3(this.originalName)),this.rank=t.length}},hP=0,zp=class{constructor(e,t){this.callArgs=t,this.id=hP++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},pP=0,Ze=class extends oe.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=pP++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Tr(n)+"_"+Op(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Ls(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new G(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return $n(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return $n(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Cr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Cr(`Layer ${this.name} is not connected, no input to return.`);return $n(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Cr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Cr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return $n(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=yt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=yt(this.inputSpec);if(e.length!==t.length)throw new G(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let s=e[n],r=t[n];if(r==null)continue;let a=s.rank;if(r.ndim!=null&&a!==r.ndim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${a}`);if(r.maxNDim!=null&&a>r.maxNDim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a<r.minNDim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${a}.`);if(r.dtype!=null&&s.dtype!==r.dtype)throw new G(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${s.dtype}.`);if(r.axes){let o=s.shape;for(let i in r.axes){let l=Number(i),u=r.axes[i],c=l>=0?o[l]:o[o.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o<r.shape.length;++o){let i=r.shape[o],l=s.shape[o];if(i!=null&&l!=null&&i!==l)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=yt(e),s=!0;for(let a of n)if(!(a instanceof Vs)){s=!1;break}let r=!0;for(let a of n)if(a instanceof Vs){r=!1;break}if(s===r)throw new G("Arguments to apply() must be all SymbolicTensors or all Tensors");return Ho(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of yt(e))a.push(o.shape);this.build($n(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=yt(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=$n(i),this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=fP(e),o=this.computeOutputShape(a),i,l=mP(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((u,c)=>new Vs(l,u,this,yt(e),t,this.name,c)):i=new Vs(l,o,this,yt(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Cr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Cr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Ls(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Mp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return TA(e?this.trainableWeights:this.weights)}setWeights(e){H(()=>{let t=this.weights;if(t.length!==e.length)throw new G(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=TA(t);for(let r=0;r<s.length;++r){let a=s[r],o=t[r],i=e[r];if(!w.arraysEqual(a.shape,i.shape))throw new G(`Layer weight shape ${a.shape} not compatible with provided weight shape ${i.shape}`);n.push([o,i])}NA(n)})}addWeight(e,t,n,s,r,a,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new G(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=wt("zeros"));let i=s.apply(t,n),l=new C3(i,n,e,a,o);return i.dispose(),r!=null&&this.addLoss(()=>r.apply(l.read())),a==null&&(a=!0),a?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=yt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=yt(e);t=yt(t),n=yt(n),s=yt(s),r=Pp(r),a=Pp(a);let l=[],u=[],c=[];for(let d of i)l.push(d.sourceLayer),u.push(d.nodeIndex),c.push(d.tensorIndex);new zp({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function fP(e){e=yt(e);let t=[];for(let n of e)t.push(n.shape);return $n(t)}function mP(e){return"float32"}function T3(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a<s.inboundLayers.length;a++){let o=s.inputTensors[a],i=s.inboundLayers[a],l=s.nodeIndices[a],u=T3(o,i,l);for(let c of u)r.indexOf(c)===-1&&r.push(c)}return r}}}var jl=class extends Ze{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Op("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new G("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new G("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new G("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let s=new Vs(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new zp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new G(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};jl.className="InputLayer";oe.registerClass(jl);function N3(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new G("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new jl({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function aa(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(r),s.push(o)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;a<r.length;++a)e[n[a]]=r[a][0];K(s)}}function E3(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var R3;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(R3||(R3={}));var gP=125,ql=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},_3=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},AP=class extends ql{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let s in t){let r=t[s];if(typeof r=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+r*n;else{let a;s in this.totals?a=this.totals[s]:this.totals[s]=0;let o=H(()=>ae(this.totals[s],L(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:H(()=>{let s=L(de(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),Jt(t[n])}))}},D3=class extends ql{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;o<a.length;++o)if(typeof a[o]!="number"){let i=a[o];e.push(i.data()),t.push(r),n.push(o)}}let s=await Promise.all(e);for(let r=0;r<s.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=s[r][0]}},$3=class extends ql{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=gP),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");w.isNumber(this.yieldEvery)&&(this.maybeWait=IO(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let s=[];this.yield!=null&&(await aa(n),s.push(this.yield(e,t,n))),s.push(wp()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await aa(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await aa(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(wp()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await aa(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await aa(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(wp()):w.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await aa(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await aa(e),await this.trainEnd(e))}};function F3(e,t){return e==null&&(e={}),e instanceof ql?[e]:Array.isArray(e)&&e[0]instanceof ql?e:yt(e).map(s=>new $3(s,t))}var Rs=class{constructor(){}static registerCallbackConstructor(e,t){w.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Rs.checkForDuplicate(t),Rs.constructors[e]==null&&(Rs.constructors[e]=[]),Rs.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Rs.constructors)Rs.constructors[+t].forEach(s=>{if(s===e)throw new G("Duplicate callback constructor.")})}static clear(){Rs.constructors={}}static createCallbacks(e){let t=[];for(let n in Rs.constructors){let s=+n;e>=s&&t.push(...Rs.constructors[s])}return t.map(n=>new n)}};Rs.constructors={};function O3(e,t,n,s,r,a,o,i,l){let u=new D3,c=[new AP,...Rs.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let d=new _3(c);return d.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:d,history:u}}function Us(e,t={},n=!1){return vc(e,oe.SerializationMap.getMap().classNameMap,t,"layer",n)}function Lp(e,t){return H(()=>{e.dtype!=="float32"&&(e=ce(e,"float32"));let n=ve(Sc(e),t,!0),s=Ml(n.shape,jt()),r=hn(kr(n,s));return de(e,r)})}function jo(e,t){return H(()=>_t(Sc(ge(t,e)),-1))}function Bp(e,t){return H(()=>_t(Ht(ge(t,e)),-1))}function Xl(e,t){return H(()=>{let n=ge(e,t),s=Gn(Ht(e),jt(),Number.MAX_VALUE),r=Ht(de(n,s));return L(100,_t(r,-1))})}function yP(e,t){return H(()=>{let n=Gn(t,jt(),Number.MAX_VALUE),s=ds(ae(1,n)),r=Gn(e,jt(),Number.MAX_VALUE),a=ds(ae(1,r));return _t(Sc(ge(s,a)),-1)})}function xP(e,t){return H(()=>{let n=kr(0,ge(1,L(e,t)));return _t(Sc(n),-1)})}function bP(e,t){return H(()=>{let n=kr(0,ge(1,L(e,t)));return _t(n,-1)})}function vP(e,t){return H(()=>{let n=ve(L(e,t),-1),s=hs(L(ge(1,e),t),-1);return kr(0,ae(1,ge(s,n)))})}function wP(e,t){return H(()=>{let n=Math.log(2),s=ge(t,e),r=ge(ae(s,Ll(L(-2,s))),n);return _t(r,-1)})}function Tc(e,t,n=!1){return H(()=>{if(n)t=ip(t);else{let s=ve(t,t.shape.length-1,!0);t=de(t,s)}return t=Gn(t,jt(),1-jt()),Tt(ve(L(ce(e,"float32"),ds(t)),t.shape.length-1))})}function Wp(e,t,n=!1){return H(()=>{let s=ce(pc(LO(e)),"int32");t=Gn(t,jt(),1-jt());let r=t.shape,a=U(lc(s,r[r.length-1]),r);return Tc(a,t,n)})}function kP(e,t){if(!w.arraysEqual(e.shape,t.shape))throw new G(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return H(()=>{let n=sr(t),s=Tt(Ht(t));return ae(ge(n,L(t,e)),Yh(cs(s)))})}function Vp(e,t){return H(()=>{let n;return n=Gn(t,jt(),1-jt()),n=ds(de(n,ge(1,n))),_t(kP(e,n),-1)})}function IP(e,t){return H(()=>{let n=Gn(e,jt(),1),s=Gn(t,jt(),1);return ve(L(e,ds(de(n,s))),-1)})}function SP(e,t){return H(()=>{let n=ds(ae(jt(),t));return _t(ge(t,L(e,n)),-1)})}function EA(e,t){return H(()=>{let n=Lp(e,-1),s=Lp(t,-1),r=L(n,s);return Tt(ve(r,-1))})}var Up={meanSquaredError:jo,meanAbsoluteError:Bp,meanAbsolutePercentageError:Xl,meanSquaredLogarithmicError:yP,squaredHinge:xP,hinge:bP,categoricalHinge:vP,logcosh:wP,categoricalCrossentropy:Tc,sparseCategoricalCrossentropy:Wp,binaryCrossentropy:Vp,kullbackLeiblerDivergence:IP,poisson:SP,cosineProximity:EA};function RA(e){if(typeof e=="string"){if(e in Up)return Up[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new G(t)}else return e}function _A(e,t){return H(()=>{let n=L(.5,ps(t)),s=Ip(jn(t,n),e.dtype);return _t(us(e,s),-1)})}function DA(e,t){return H(()=>Ip(us(er(e,-1),er(t,-1)),"float32"))}function P3(e,t){return H(()=>ce(ve(Ps(us(e,1),us(t,1))),"float32"))}function CP(e,t){return H(()=>ce(ve(Ps(us(e,1),us(t,0))),"float32"))}function TP(e,t){return H(()=>ce(ve(Ps(us(e,0),us(t,1))),"float32"))}function M3(e,t){return H(()=>{let n=P3(e,t),s=TP(e,t),r=ae(n,s);return ce(bn(jn(r,0),de(n,r),0),"float32")})}function NP(e,t){return H(()=>{let n=P3(e,t),s=CP(e,t),r=ae(n,s);return ce(bn(jn(r,0),de(n,r),0),"float32")})}function z3(e,t){return Vp(e,t)}function L3(e,t){return e.rank===t.rank&&(e=lt(e,[e.rank-1])),t=er(t,-1),t.dtype!==e.dtype&&(t=ce(t,e.dtype)),ce(us(e,t),"float32")}var EP=jo,RP=jo,_P=Bp,DP=Bp,$P=Xl,FP=Xl,$A=Tc,OP=EA,B3=Wp,Hp={binaryAccuracy:_A,categoricalAccuracy:DA,precision:M3,categoricalCrossentropy:$A,sparseCategoricalCrossentropy:B3,mse:EP,MSE:RP,mae:_P,MAE:DP,mape:$P,MAPE:FP,cosine:OP};function PP(e){if(typeof e=="string"&&e in Hp)return Hp[e];if(typeof e!="string"&&e!=null)return e;throw new G(`Unknown metric ${e}`)}function Gp(e){if(ar(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Up))if(Up[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Hp))if(Hp[n]===e){t=n;break}return t!==void 0?t:e.name}}function MP(e){let t={Adagrad:()=>Bo.adagrad(.01),Adadelta:()=>Bo.adadelta(1,.95,jt()),Adam:()=>Bo.adam(.001,.9,.999,jt()),Adamax:()=>Bo.adamax(.002,.9,.999,jt(),0),RMSProp:()=>Bo.rmsprop(.001,.9,0,jt()),SGD:()=>Bo.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new G(`Unknown Optimizer ${e}`)}var W3=1*1024*1024;function V3(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!FA(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>W3&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${W3}.`)}}function FA(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!FA(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!FA(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function zP(e,t,n,s=console.log){let r=BP(e),a=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let o;if(!r){a.push("Receives inputs"),o=[];for(let c in e.nodesByDepth)o.push(...e.nodesByDepth[c])}s("_".repeat(t)),jp(a,n,s),s("=".repeat(t));let i=e.layers;for(let c=0;c<i.length;++c)r?WP(i[c],n,s):VP(i[c],n,o,s),s((c===i.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=LP(e),u=Mp(e.nonTrainableWeights);s(`Total params: ${l+u}`),s(`Trainable params: ${l}`),s(`Non-trainable params: ${u}`),s("_".repeat(t))}function LP(e){let t;return e.collectedTrainableWeights!=null?t=Mp(e.collectedTrainableWeights):t=Mp(e.trainableWeights),t}function BP(e){let t=!0,n=[],s=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function jp(e,t,n=console.log){let s="";for(let r=0;r<e.length;++r)r>0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function WP(e,t,n){let s;try{s=JSON.stringify(e.outputShape)}catch(i){s="multiple"}let r=e.name,a=e.getClassName(),o=[`${r} (${a})`,s,e.countParams().toString()];jp(o,t,n)}function VP(e,t,n,s){let r;try{r=JSON.stringify(e.outputShape)}catch(c){r="multiple"}let a=[];for(let c of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(c)===-1))for(let d=0;d<c.inboundLayers.length;++d){let h=c.inboundLayers[d].name,p=c.nodeIndices[d],f=c.tensorIndices[d];a.push(`${h}[${p}][${f}]`)}let o=e.name,i=e.getClassName(),l=a.length===0?"":a[0],u=[`${o} (${i})`,r,e.countParams().toString(),l];jp(u,t,s);for(let c=1;c<a.length;++c)jp(["","","",a[c]],t,s)}function U3(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Nc(e,t){if(e===null)return null;if(typeof e=="string")return Vo(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];U3(t,r,a)?n.push(a):n.push(Nc(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s];if(s==="name"&&typeof r=="string")n[s]=r;else{let a=Vo(s);n[a]=Nc(r,a)}}return n}}function OA(e,t){if(e==null)return null;if(typeof e=="string")return Tr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];U3(t,r,a)?n.push(a):n.push(OA(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s],a=Tr(s);(s==="name"||s==="className")&&typeof r=="string"?n[a]=r:n[a]=OA(r,s)}return n}}var PA="3.9.0";function UP(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ce(t,e.dtype)}catch(n){throw new G(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var qo=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof qo)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=UP(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new G(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Vs){if(this.id2Value[e.id]==null)throw new G(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new G(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Vs){if(this.id2Value[e.id]==null)throw new G(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new G(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&K(this.id2Mask)}},MA={},H3={};function Ec(e,t,n,s){let r=n==null?!1:n.training,a=Array.isArray(e),o=a?e:[e],i=o.map(f=>f.name),l=[],u=t.names();for(let f of i)u.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let c=i.join(",")+"|"+t.names().join(","),d,h;if(MA[c]==null){let f=HP(o,t);d=f.sorted,h=f.recipientCounts,MA[c]=d,H3[c]=h}d=MA[c],h={},r||Object.assign(h,H3[c]);let p=new qo(t);for(let f=0;f<d.length;++f){if(s!=null){let _=Vh().numTensors;_>s.maxNumTensors&&(s.maxNumTensors=_),_<s.minNumTensors&&(s.minNumTensors=_)}let m=d[f],g=m.sourceLayer;if(g instanceof jl)continue;let A=[],y=[],x=[],b=!1;for(let _ of m.inputs){let O=p.getValue(_),E=p.getMask(_);A.push(O),y.push(E),E!=null&&(b=!0),r||(h[_.name]--,h[_.name]===0&&!t.hasKey(_)&&i.indexOf(_.name)===-1&&!O.isDisposed&&_.sourceLayer.stateful!==!0&&x.push(O))}b&&(n=n||{},n.mask=y[0]);let v=yt(g.apply(A,n)),k=null;g.supportsMasking&&(k=g.computeMask(A,y));let S=jP(m),C=Array.isArray(S)?S:[S];for(let _=0;_<C.length;++_){p.hasKey(C[_])||p.add(C[_],v[_],Array.isArray(k)?k[0]:k);let O=i.indexOf(C[_].name);O!==-1&&(l[O]=v[_])}r||K(x)}return p.disposeMasks(),a?l:l[0]}function HP(e,t){w.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=G3(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=G3(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(u=>s[l].add(u))}}return{sorted:n,recipientCounts:GP(s)}}function GP(e){let t={};for(let n in e)t[n]=e[n].size;return t}function G3(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let u of i.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(i.name),!n.has(u.name)&&a.push(u)}}return{sorted:s,recipientMap:r}}function jP(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(let r of e.sourceLayer.inboundNodes[s].outputTensors)if(r.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}var ir=class extends Ze{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let A=this.getClassName().toLowerCase();this.name=Op(A)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],na(this.inputs).length!==this.inputs.length)throw new G(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(A=>A.name)}`);na(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(A=>A.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let A of this.outputs){let y=A.sourceLayer,x=A.nodeIndex,b=A.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(b)}for(let A of this.inputs){let y=A.sourceLayer,x=A.nodeIndex,b=A.tensorIndex;ar(x===0,"input layer has >1 nodes"),ar(b===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let A=0;A<this.inputLayers.length;A++){let y=this.inputLayers[A];if(!(y instanceof jl))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${A} (0-based) originates from layer type ${y.getClassName()}.`);this.inputNames.push(y.name),this.feedInputShapes.push(y.batchInputShape),this.feedInputNames.push(y.name)}for(let A of this.outputLayers)this.outputNames.push(A.name);this.internalInputShapes=this.inputs.map(A=>A.shape),this.internalOutputShapes=this.outputs.map(A=>A.shape);let t={},n={},s={},r={},a={},o=[],i=(A,y,x,b,v,k)=>{(b==null||v==null||k==null)&&(b=A.sourceLayer,v=A.nodeIndex,k=A.tensorIndex);let S=b.inboundNodes[v];if(x.indexOf(S)!==-1)throw new Ls(`The tensor ${A.name} at layer "${b.name}" is part of a cycle.`);if(y.indexOf(S)!==-1)return;this.containerNodes.add(ir.nodeKey(b,v)),b.id in a||(a[b.id]=Object.keys(a).length),x.indexOf(S)===-1&&x.push(S);let C=S.inboundLayers.length;for(let _=0;_<C;_++){let O=S.inputTensors[_],E=S.inboundLayers[_],R=S.nodeIndices[_],T=S.tensorIndices[_];i(O,y,x,E,R,T)}for(y.push(S);x.indexOf(S)>=0;)x.splice(x.indexOf(S),1);o.push(S)},l=[],u=[];for(let A of this.outputs)i(A,l,u);let c=o.slice().reverse();for(let A of c){n[A.id]=A,A.id in t||(t[A.id]=0);let y=t[A.id],x=s[A.outboundLayer.id]==null?0:s[A.outboundLayer.id];y=Math.max(y,x),s[A.outboundLayer.id]=y,r[A.outboundLayer.id]=A.outboundLayer,t[A.id]=y;for(let b=0;b<A.inboundLayers.length;b++){let v=A.inboundLayers[b],k=A.nodeIndices[b],S=v.inboundNodes[k],C=t[S.id]==null?0:t[S.id];t[S.id]=Math.max(y+1,C),n[S.id]=S}}let d={};for(let A in t){let y=t[A];y in d||(d[y]=[]),d[y].push(n[A])}let h={};for(let A in s){let y=s[A];y in h||(h[y]=[]),h[y].push(r[A])}let p=Object.keys(h).map(A=>parseInt(A,10)).sort(kp);this.layers=[];for(let A of p){let y=h[A];y.sort((x,b)=>{let v=a[x.id],k=a[b.id];return v<k?-1:v>k?1:0});for(let x of y)x instanceof ir&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=h,p=Object.keys(d).map(A=>parseInt(A,10)).sort(kp);let f=this.inputs.slice(),m=[];for(let A of p)for(let y of d[A]){let x=y.outboundLayer;if(x!=null){for(let b of y.inputTensors)if(f.indexOf(b)===-1)throw new Ls(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${x.name}". The following previous layers were accessed without issue: ${m}`);for(let b of y.outputTensors)f.push(b);m.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(A=>A.name);for(let A of g){let y=g.filter(x=>x===A).length;if(y!==1)throw new Ls(`The name "${A}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new zp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(A=>null),outputMasks:this.outputs.map(A=>null),inputShapes:this.inputs.map(A=>A.shape),outputShapes:this.outputs.map(A=>A.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new G("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new G(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new G(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new G(`${a.length} of ${s} weights are not set: ${a}`)}NA(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${PA}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=OA(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return H(()=>{e=yt(e);let n=new qo;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return Ec(this.outputs,n,t)})}computeMask(e,t){return H(()=>{e=yt(e);let n;return t==null?n=Wo(null,e.length):n=yt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Pp(e);if(t.length!==this.inputLayers.length)throw new G(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;o<t.length;o++){let i=this.inputLayers[o],l=t[o],u=i.name+"_0_0";n[u]=l}let s=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(kp);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let u=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(u.id)!==-1)continue;let c=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],g=l.nodeIndices[f],A=l.tensorIndices[f],y=`${m.name}_${g}_${A}`,x=n[y];c.push(x)}let d=u.computeOutputShape($n(c)),h=Pp(d),p=u.inboundNodes.indexOf(l);for(let f=0;f<h.length;f++){let m=`${u.name}_${p}_${f}`;n[m]=h[f]}}}let r=[],a=[];for(let o=0;o<this.outputLayers.length;o++){let i=this.outputLayers[o],l=this.outputLayersNodeIndices[o],u=this.outputLayersTensorIndices[o],c=`${i.name}_${l}_${u}`;a.push(c)}for(let o=0;o<a.length;o++){let i=a[o];ar(i in n),r.push(n[i])}return $n(r)}runInternalGraph(e,t){t==null&&(t=Wo(null,e.length));let n={};for(let i=0;i<this.inputs.length;++i){let l=this.inputs[i],u=e[i],c=t[i];n[l.id]=[u,c]}let s=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(kp);for(let i of s){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer,d=u.inputTensors,h=u.outputTensors,p=new Array;for(let f of d)f.id in n&&p.push(n[f.id]);if(p.length===d.length){let f={},m,g,A,y;if(u.callArgs!=null&&(f=u.callArgs),p.length===1){let[x,b]=p[0];f.mask==null&&(f.mask=b),A=yt(c.call(x,f)),y=yt(c.computeMask(x,b)),m=[x],g=[b]}else m=p.map(x=>x[0]),g=p.map(x=>x[1]),f.mask==null&&(f.mask=g),A=yt(c.call(m,f)),y=yt(c.computeMask(m,g));if(c.activityRegularizer)throw new Oe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<h.length;++x){let b=h[x],v=A[x],k=y[x];n[b.id]=[v,k]}}}}let r=[],a=[],o=[];for(let i of this.outputs){ar(i.id in n,`Could not compute output ${i.name} : ${i.id}`);let[l,u]=n[i.id];o.push(l.shape),r.push(l),a.push(u)}return[r,a,o]}buildNodeConversionMap(e){let t={},n;for(let s of this.layers){n=s instanceof ir?1:0;for(let r=0;r<s.inboundNodes.length;r++){let a=ir.nodeKey(s,r);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new G(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new G("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new G(`No such layer: ${e}`)}calculateLosses(){return H(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let s=ir.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let o=a.getClassName(),i=a.getConfig(),l=[];for(let c=0;c<a.inboundNodes.length;c++){let d=a.inboundNodes[c],h=ir.nodeKey(a,c),p={};if(this.containerNodes.has(h)){if(d.callArgs)try{JSON.stringify(d.callArgs),p=d.callArgs}catch(f){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),p={}}if(d.inboundLayers.length>0){let f=[];for(let m=0;m<d.inboundLayers.length;m++){let g=d.inboundLayers[m],A=d.nodeIndices[m],y=d.tensorIndices[m],x=ir.nodeKey(g,A),b=t[x];b==null&&(b=0),f.push([g.name,b,y,p])}l.push(f)}}}let u={};u.name=a.name,u.className=o,u.config=i,u.inboundNodes=l,n.push(u)}e.layers=n;let s=[];for(let a=0;a<this.inputLayers.length;a++){let o=this.inputLayers[a],i=this.inputLayersNodeIndices[a],l=ir.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.inputLayersTensorIndices[a];s.push([o.name,u,c])}e.inputLayers=s;let r=[];for(let a=0;a<this.outputLayers.length;a++){let o=this.outputLayers[a],i=this.outputLayersNodeIndices[a],l=ir.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.outputLayersTensorIndices[a];r.push([o.name,u,c])}return e.outputLayers=r,e}static fromConfig(e,t,n={},s=!1){let r={},a={};function o(m,g){m.name in a?a[m.name].push(g):a[m.name]=[g]}function i(m,g){let A=[],y;for(let x of g){let b=x[0],v=x[1],k=x[2];if(y=x[3]==null?{}:x[3],!(b in r)){o(m,g);return}let S=r[b];if(S.inboundNodes.length<=v){o(m,g);return}let C=S.inboundNodes[v];A.push(C.outputTensors[k])}A.length>0&&m.apply($n(A),y)}function l(m){let g=m.name,A=Us(m,t.customObjects!=null?t.customObjects:{});A.setFastWeightInitDuringBuild(s),r[g]=A,m.inboundNodes.forEach(x=>{if(!(x instanceof Array))throw new G(`Corrupted configuration, expected array for nodeData: ${x}`);o(A,x)})}let u=t.name,c=t.layers;for(let m of c)l(m);for(;!kO(a);)for(let m of c){let g=r[m.name];if(g.name in a){let A=a[g.name];delete a[g.name];for(let y of A)i(g,y)}}let d=[],h=[],p=t.inputLayers;for(let m of p){let g=m[0],A=m[1],y=m[2];ar(g in r);let b=r[g].inboundNodes[A].outputTensors;d.push(b[y])}let f=t.outputLayers;for(let m of f){let g=m[0],A=m[1],y=m[2];ar(g in r);let b=r[g].inboundNodes[A].outputTensors;h.push(b[y])}return new e({inputs:d,outputs:h,name:u})}get stateful(){if(this._stateful)throw new G("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){H(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function qP(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function j3(e,t){return qP(e,t,"classWeight")}async function q3(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=H(()=>{if(e.shape.length===1)return Os(e);if(e.shape.length===2){if(e.shape[1]>1)return er(e,1);if(e.shape[1]===1)return U(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());K(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),Mt(o,"float32")}else return null}function XP(e,t){return L(e,t)}var KP=32;function X3(e,t){let n,s,r=t;n=r.xs,s=r.ys,w.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=K3("input",e.inputNames,n),o=K3("output",e.outputNames,s),i=a[0].shape[0];w.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),w.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<a.length;l++)w.assert(a[l].shape[0]===i,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l<o.length;l++)w.assert(o[l].shape[0]===i,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function K3(e,t,n){if(n instanceof Ge)return[n];if(Array.isArray(n))return w.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new G(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function ZP(e){if(e.length===3)throw new Oe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function YP(e,t,n){let s=n.batchesPerEpoch!=null;if(w.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),w.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),w.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),w.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),w.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(Z3(n.validationData))w.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=ZP(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=F3(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:h,history:p}=O3(c,d,n.epochs,null,null,JP(t,n),null,r,u);h.setModel(e),e.history=p,await h.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let g={};await h.onEpochBegin(f);let A=0,y=0;for(s||(m=await t.iterator());s?A<n.batchesPerEpoch:!0;){let x=await m.next();if(s&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${A} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:b,ys:v}=X3(e,x.value),k={};k.batch=y,k.size=b[0].shape[0],await h.onBatchBegin(y,k);let S=[];if(n.classWeight!=null){let O=j3(n.classWeight,e.outputNames);for(let E=0;E<O.length;++E)S.push(await q3(v[E],null,O[E]))}let C=b.concat(v).concat(S),_=i(C);K(C);for(let O=0;O<l.length;++O){let E=l[O],R=_[O];k[E]=R,Jt(R)}await h.onBatchEnd(y,k),E3(k),y++,A++}if(s?A>=n.batchesPerEpoch:x.done){if(r){let b;Z3(n.validationData)?b=yt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=yt(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?KP:n.validationBatchSize,verbose:0}));for(let v=0;v<e.metricsNames.length;++v)g[`val_${e.metricsNames[v]}`]=b[v]}break}if(e.stopTraining_)break}if(await h.onEpochEnd(f,g),f++,e.stopTraining_)break}return await h.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function JP(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function Z3(e){return typeof e.iterator=="function"}function QP(e){return typeof e.next=="function"}async function eM(e,t,n){n=n||{};let s=n.batches!=null,r=e.testFunction,a=[];if(n.verbose>0)throw new Oe("Verbose mode is not implemented yet.");w.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=QP(t)?t:await t.iterator(),i=0,l=0;for(;s?l<n.batches:!0;){let u=await o.next();if(a=H(()=>{if(u.value){let{xs:c,ys:d}=X3(e,u.value),h=c.concat(d),p=H(()=>r(h));if(K(h),l===0)for(let m=0;m<p.length;++m)a.push(Ie(0));let f=h[0].shape[0];for(let m=0;m<p.length;++m){let g=p[m],A=a[m];a[m]=H(()=>ae(a[m],L(f,g))),l>0&&K(A)}K(p),i+=f,++l}return a}),u.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<a.length;++u){let c=a[u];a[u]=de(a[u],i),K(c)}return $n(a)}function zA(e){w.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Rc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>Go(s,t,n-t)):Go(e,t,n-t)}function LA(e,t){return H(()=>e==null?null:Array.isArray(e)?e.map(n=>LA(n,t)):x3(e,t.dtype==="int32"?t:ce(t,"int32")))}function BA(e,t){let n=[],s=0,r=null;for(;s<e;)r=s+t,r>=e&&(r=e),n.push([s,r]),s=r;return n}async function tM(e,t,n,s,r,a,o,i,l,u,c,d,h,p,f){r==null&&(r=32),a==null&&(a=1),c==null&&(c=!0),h==null&&(h=0);let m=!1;if(l!=null&&u!=null&&(m=!0),f!=null&&(m=!0,p==null))throw new G("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,p,"steps_per_epoch"),A;g!=null&&(A=Bs(0,g)),o==null&&(o=1);let{callbackList:y,history:x}=O3(i,o,a,h,g,p,r,m,d);y.setModel(e),e.history=x,await y.onTrainBegin(),e.stopTraining_=!1;for(let b=h;b<a;++b){await y.onEpochBegin(b);let v={};if(p!=null)throw new Oe("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Oe("batch shuffling is not implemneted yet");c&&w.shuffle(A);let k=Mt(A),S=BA(g,r);for(let C=0;C<S.length;++C){let _={};if(await y.onBatchBegin(C,_),H(()=>{let O=S[C][0],E=S[C][1],R=Go(k,O,E-O);_.batch=C,_.size=E-O;let T=LA(n,R),P=t(T);for(let V=0;V<s.length;++V){let j=s[V],q=P[V];_[j]=q,Jt(q)}if(C===S.length-1&&m){let V=e.testLoop(l,u,r);for(let j=0;j<s.length;++j){let q=s[j],X=V[j];Jt(X),v["val_"+q]=X}}}),await y.onBatchEnd(C,_),E3(_),e.stopTraining_)break}k.dispose()}if(await y.onEpochEnd(b,v),e.stopTraining_)break}return await y.onTrainEnd(),await e.history.syncData(),e.history}async function nM(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,a,o,i,l,u,c;try{let d=s.batchSize==null?32:s.batchSize;zA(d);let h=!1,p=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,h,d);r=p[0],a=p[1],c=p[2];let f=!1,m;if(s.validationData!=null&&s.validationData.length>0){if(f=!0,s.validationData.length===2)o=s.validationData[0],i=s.validationData[1];else throw s.validationData.length===3?new Oe("validationData including sample weights is not supported yet."):new G(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let S=!0,C=await e.standardizeUserData(o,i,null,null,S,d);l=C[0],u=C[1],m=l.concat(u)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){f=!0;let S=Math.floor(r[0].shape[0]*(1-s.validationSplit)),C=r[0].shape[0];l=Rc(r,S,C),r=Rc(r,0,S),u=Rc(a,S,C),a=Rc(a,0,S),m=l.concat(u)}else s.validationSteps!=null&&(f=!0);let g=r.concat(a).concat(c);e.checkTrainableWeightsConsistency();let A=e.makeTrainFunction(),y=e.getDedupedMetricsNames(),x,b;f?(e.makeTestFunction(),x=e.testFunction,b=y.slice().concat(y.map(S=>"val_"+S))):(x=null,m=[],b=y.slice());let v=F3(s.callbacks,s.yieldEvery);return await tM(e,A,g,y,d,s.epochs,s.verbose,v,x,m,s.shuffle,b,s.initialEpoch,null,null)}finally{e.isTraining=!1,Xo(r,t),Xo(a,n),Xo(l,o),Xo(u,i),c!=null&&K(c)}}function Y3(e){let t=[];e instanceof Ge&&(e=[e]);for(let n=0;n<e.length;++n){let s=e[n];if(s.rank===1)t.push(Ic(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function Xo(e,t){if(e==null)return;let n=[];if(t instanceof Ge)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof Ge)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function sM(e){return e instanceof Ge}function WA(e){return Array.isArray(e)}function J3(e){return!sM(e)&&!WA(e)}function Q3(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(WA(e)&&e.length>0)o=!0;else if(J3(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new G(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(J3(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new G(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(WA(e)){if(e=e,e.length!==t.length)throw new G(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new G(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=Y3(a),n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new G(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let u=i.shape[l],c=n[o][l];if(c!=null&&c>=0&&u!==c)throw new G(`${r} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${r} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function rM(e,t,n){let s=na(e.map(a=>a.shape[0]));s.sort();let r=na(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new G(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new G(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!w.arraysEqual(s,r))throw new G(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function aM(e,t,n){let s=[jo,Vp,Tc];for(let r=0;r<e.length;++r){let a=e[r],o=t[r],i=n[r];if(o!=null){if(o===Tc&&a.shape[a.shape.length-1]===1)throw new G(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(o)!==-1){let l=a.shape.slice(1),u=i.slice(1);for(let c=0;c<l.length;++c){let d=l[c],h=u[c];if(h!=null&&d!==h)throw new G(`A target Tensor with shape ${a.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function ev(e,t,n,s=!0,r=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new G(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new G(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new G(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let u=i.shape[l],c=n[o][l];if(c!=null&&c!==u)throw new G(`Error when checking ${r}: expected ${t[o]} to have shape ${JSON.stringify(n[o])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function oM(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var iM="layers-model",Nr=class extends ir{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new G("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");zP(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=MP(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Sr))throw new G("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new G(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(RA(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new G(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>RA(o))}else{let a=RA(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let o=this.internalOutputShapes[a],i=this.outputNames[a];this.feedOutputNames.push(i),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Ho("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=oM(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};Ho("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=s[a];(l=>{let u="",c,d,h;for(let p of l){if(typeof p=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(p)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===Vp?["accuracy","acc"].indexOf(p)!==-1?d=_A:["crossentropy","ce"].indexOf(p)!==-1&&(d=z3):this.lossFunctions[a]===Wp?["accuracy","acc"].indexOf(p)!==-1?d=L3:["crossentropy","ce"].indexOf(p)!==-1&&(d=B3):["accuracy","acc"].indexOf(p)!==-1?d=DA:["crossentropy","ce"].indexOf(p)!==-1&&(d=$A);let g;["accuracy","acc"].indexOf(p)!==-1?g="acc":["crossentropy","ce"].indexOf(p)!==-1&&(g="ce"),h=d,c=u+g}else h=PP(p),c=u+Gp(p);let f;Ho(c,()=>{f=h}),r(a,c,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;zA(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return $n(l)}finally{Xo(a[0],e),Xo(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),eM(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new G(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new G(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new G("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new qo;if(e instanceof Ge&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new G(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;i<this.inputs.length;++i)a.add(this.inputs[i],e[i])}else for(let i of this.inputs){let l=e[i.name];if(l==null)throw new G(`No value is provided for the model's input ${i.name}`);a.add(i,l)}let o=Ec(r,a);return n?o:o[0]}retrieveSymbolicTensors(e){let t=Wo(null,e.length),n=e.length;for(let s of this.layers){let r=Array.isArray(s.output)?s.output:[s.output],a=r.map(o=>o.name);for(let o=0;o<e.length;++o){let i=a.indexOf(e[o]);if(i!==-1&&(t[o]=r[i],n--),n===0)break}if(n===0)break}if(n>0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new G(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return H(()=>{let s=this.checkNumSamples(e);if(n)throw new Oe("Verbose predictLoop() is not implemented yet.");let r=BA(s,t),a=this.outputs.map(o=>[]);for(let o=0;o<r.length;++o)H(()=>{let l=r[o][0],u=r[o][1],c=Rc(e,l,u),d=[];if(Array.isArray(c))for(let p=0;p<c.length;++p)d.push({key:this.inputs[p],value:c[p]});else d.push({key:this.inputs[0],value:c});let h=new qo(d);return Ec(this.outputs,h)}).forEach((l,u)=>a[u].push(l));return $n(a.map(o=>ft(o,0)))})}predict(e,t={}){let n=Y3(e);ev(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return zA(s),this.predictLoop(n,s)}finally{Xo(n,e)}}predictOnBatch(e){ev(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new Ls("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a<this.feedOutputShapes.length;++a){let o=this.feedOutputShapes[a];this.feedLossFns[a]===Wp?r.push(o.slice(0,o.length-1).concat([1])):r.push(o)}if(e=Q3(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=Q3(t,this.feedOutputNames,r,!1,"target"),rM(e,t,null),aM(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!=0)throw new G(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let u=j3(s,this.outputNames);l=[];for(let c=0;c<u.length;++c)l.push(await q3(i[c],null,u[c]))}return[o,i,l]}testLoop(e,t,n,s=0,r){return H(()=>{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new Oe("Verbose mode is not implemented yet.");if(r!=null)throw new Oe("steps mode in testLoop() is not implemented yet");{let i=BA(a,n),l=Mt(Bs(0,a));for(let u=0;u<i.length;++u){let c=i[u][0],d=i[u][1],h=Go(l,c,d-c),p=LA(t,h),f=e(p);if(u===0)for(let m=0;m<f.length;++m)o.push(Ie(0));for(let m=0;m<f.length;++m){let g=f[m];o[m]=ae(o[m],L(d-c,g))}}for(let u=0;u<o.length;++u)o[u]=de(o[u],a)}return o})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let s=e[n],r=s;i3(e,s)>1&&(r+=`_${i3(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let c=[];for(let f=0;f<this.inputs.length;++f)c.push({key:this.inputs[f],value:n[f]});let d=new qo(c),h=Ec(this.outputs,d,{training:!0}),p;for(let f=0;f<this.lossFunctions.length;++f){let g=this.lossFunctions[f](s[f],h[f]);r[f]!=null&&(g=XP(g,r[f]));let A=_t(g);t.push(A),f===0?p=g:p=ae(p,g)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let g=this.metricsTensors[f][0],A=this.metricsTensors[f][1];m=_t(g(s[A],h[A]))}Jt(m),a.push(m)}return p=_t(p),this.calculateLosses().forEach(f=>{p=ae(p,f)}),p},i=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>H(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;l<this.inputs.length;++l)a.push({key:this.inputs[l],value:s[l]});let o=new qo(a),i=Ec(this.outputs,o);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],c=_t(u(r[l],i[l]));l===0?n=c:n=ae(n,c),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],c=this.metricsTensors[l][1],d=_t(u(r[c],i[c]));t.push(d)}return t})}async fit(e,t,n={}){return nM(this,e,t,n)}async fitDataset(e,t){return YP(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),s=n[0],r=n[1],o=this.makeTrainFunction()(s.concat(r)),i=[];for(let l of o){let u=await l.data();i.push(u[0])}return K(o),$n(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let a=0;a<s.length;++a)n&&!s[a].trainable||t.push({name:s[a].originalName,tensor:r[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Vh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Vh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Tr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Tr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=Tr(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Tr(Gp(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Tr(Gp(e)));{let e={};for(let t in this.metrics)e[t]=Tr(Gp(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Nc(e.optimizer_config),n=Us(t),s;if(typeof e.loss=="string")s=Vo(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>Vo(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=Vo(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>Vo(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=Vo(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=_n.getSaveHandlers(e);if(l.length===0)throw new G(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new G(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new G("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await _n.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:iM,generatedBy:`TensorFlow.js tfjs-layers v${PA}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:u,specs:c}=await _n.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...c),n.data=_n.concatenateArrayBuffers([n.data,u])}if(this.userDefinedMetadata!=null){let l=!0;V3(this.userDefinedMetadata,this.name,l),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){V3(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Nr.className="Model";oe.registerClass(Nr);var tv=class extends Nr{};tv.className="Functional";oe.registerClass(tv);async function lM(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=Nc(n),r=Us(s,t);if(e.weightsManifest!=null){let a=await _n.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),K(a)}return r}async function uM(e,t){if(t==null&&(t={}),typeof e=="string"){let n=_n.getLoadHandlers(e,t);if(n.length===0)n.push(_n.browserHTTPRequest(e,t));else if(n.length>1)throw new G(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return cM(e,void 0,t)}async function cM(e,t,n){if(n==null&&(n={}),e.load==null)throw new G("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=Us(Nc(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new G("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=dM(s.weightData,s.weightSpecs);i.loadWeights(u,a),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),K(u),K(c.map(d=>d.tensor))}return i}function dM(e,t){let n=_n.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var Kl=class extends Nr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Op("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new G(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Kl||e instanceof Nr,n;if(t){if(n=e,n.outputs.length!==1)throw new G("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new G("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new G("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=N3({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new G(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new G("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=T3(this.outputs[0])}this.inboundNodes=[],new zp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Wo(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(at(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Nr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Ls("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Ls("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Ls("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Ls("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new G("Legacy serialization format not supported yet.");r=t}else w.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof Kl))throw new Oe(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let u=Us(i,void 0,s);s&&u.setFastWeightInitDuringBuild(!0),o.add(u)}return o}set stopTraining(e){if(this.model==null)throw new G("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new G("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Kl.className="Sequential";oe.registerClass(Kl);function hM(e){return new Nr(e)}function pM(e){return new Kl(e)}function fM(e,t){return t==null&&(t={}),uM(e,t)}function nv(e){return N3(e)}function mM(e,t){Rs.registerCallbackConstructor(e,t)}var On=class extends oe.Serializable{getConfig(){return{}}},sv=class extends On{apply(e,t=1){return WO(e,t)}};sv.className="elu";oe.registerClass(sv);var rv=class extends On{apply(e){return Gg(e)}};rv.className="selu";oe.registerClass(rv);var av=class extends On{apply(e){return sr(e)}};av.className="relu";oe.registerClass(av);var ov=class extends On{apply(e){return H(()=>fc(6,sr(e)))}};ov.className="relu6";oe.registerClass(ov);var iv=class extends On{apply(e){return e}};iv.className="linear";oe.registerClass(iv);var lv=class extends On{apply(e){return Hn(e)}};lv.className="sigmoid";oe.registerClass(lv);var uv=class extends On{apply(e){return UO(e)}};uv.className="hardSigmoid";oe.registerClass(uv);var cv=class extends On{apply(e){return Ll(e)}};cv.className="softplus";oe.registerClass(cv);var dv=class extends On{apply(e){return VO(e)}};dv.className="softsign";oe.registerClass(dv);var hv=class extends On{apply(e){return Fl(e)}};hv.className="tanh";oe.registerClass(hv);var VA=class extends On{apply(e,t=-1){return ip(e,t)}};VA.className="softmax";oe.registerClass(VA);var pv=class extends On{apply(e,t=-1){return Fg(e,t)}};pv.className="logSoftmax";oe.registerClass(pv);var fv=class extends On{apply(e,t=1){return H(()=>L(Hn(L(e,t)),e))}};fv.className="swish";oe.registerClass(fv);var mv=class extends On{apply(e){return H(()=>L(e,Fl(Ll(e))))}};mv.className="mish";oe.registerClass(mv);function oa(e){return e.getClassName()}function UA(e,t={}){return vc(e,oe.SerializationMap.getMap().classNameMap,t,"activation")}function ia(e){if(e==null){let t={};return t.className="linear",t.config={},UA(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},UA(t)}else return e instanceof On?e:UA(e)}function HA(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var gv=class extends oe.Serializable{},_c=class extends gv{constructor(e){super();HA(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return H(()=>{let t=Pt([1]);return this.hasL1&&(t=ae(t,ve(L(this.l1,Ht(e))))),this.hasL2&&(t=ae(t,ve(L(this.l2,Sc(e))))),U(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};_c.className="L1L2";oe.registerClass(_c);function gM(e){return HA(e),new _c({l1:e!=null?e.l1:null,l2:0})}function AM(e){return HA(e),new _c({l2:e!=null?e.l2:null,l1:0})}var Av={l1l2:"L1L2"};function dt(e){return iA(e)}function yv(e,t={}){return vc(e,oe.SerializationMap.getMap().classNameMap,t,"regularizer")}function kt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in Av?Av[e]:e,config:{}};return yv(n)}else return e instanceof gv?e:yv(e)}var GA=class extends Ze{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=ze(e);let n=sr(e);return this.maxValue!=null&&(n=Gn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};GA.className="ReLU";oe.registerClass(GA);var jA=class extends Ze{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return Zh(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};jA.className="LeakyReLU";oe.registerClass(jA);var qA=class extends Ze{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=wt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=kt(e.alphaRegularizer),this.alphaConstraint=Xt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new G(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=at(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new zt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=ze(e),rp(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Nt(this.alphaInitializer),alphaRegularizer:dt(this.alphaRegularizer),alphaConstraint:qt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};qA.className="PReLU";oe.registerClass(qA);var XA=class extends Ze{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Oe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return hc(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};XA.className="ELU";oe.registerClass(XA);var KA=class extends Ze{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=ze(e);return L(n,ce(jn(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};KA.className="ThresholdedReLU";oe.registerClass(KA);var ZA=class extends Ze{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new VA().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=ze(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};ZA.className="Softmax";oe.registerClass(ZA);function Zl(e,t,n){if(typeof e=="number")return Wo(e,t);if(e.length!==t)throw new G(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){let r=e[s];if(!MO(r))throw new G(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Hs(e,t,n,s,r=1){if(e==null)return e;let a=t+(t-1)*(r-1),o;return n==="same"?o=e:o=e-a+1,Math.floor((o+s-1)/s)}function lr(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+ra([n-t,0]);else if(s==="same")e=e*t;else throw new G(`Unsupport padding mode: ${s}.`);return e}function YA(e,t){return H(()=>(Ft(t),t==="channelsFirst"?Xe(e,[0,2,3,1]):e))}function xv(e,t){return H(()=>(Ft(t),t==="channelsFirst"?Xe(e,[0,2,3,4,1]):e))}function yM(e,t,n,s=1,r="valid",a,o=1){return H(()=>{if(a==null&&(a=zs()),Ft(a),e.shape.length!==3)throw new G(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new G(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new G(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=Xe(e,[0,2,1])),r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=Cg(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=Ws(i,n)),i})}function bv(e,t,n,s=[1,1],r="valid",a,o,i=null){return H(()=>{if(a==null&&(a=zs()),Ft(a),e.rank!==3&&e.rank!==4)throw new G(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new G(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=YA(e,a);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=ta.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=Xe(l,[0,3,1,2])),l})}function xM(e,t,n,s=[1,1,1],r="valid",a,o){return H(()=>{if(a==null&&(a=zs()),Ft(a),e.rank!==4&&e.rank!==5)throw new G(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new G(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=xv(e,a);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=Eg(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=Ws(i,n)),a==="channelsFirst"&&(i=Xe(i,[0,4,1,2,3])),i})}var JA=class extends Ze{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",JA.verifyArgs(t),this.rank=e,Qt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Oe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Zl(t.kernelSize,e,"kernelSize"),this.strides=Zl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,gs(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ft(this.dataFormat),this.activation=ia(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=wt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Xt(t.biasConstraint),this.biasRegularizer=kt(t.biasRegularizer),this.activityRegularizer=kt(t.activityRegularizer),this.dilationRate=Zl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new G(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new G(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new G(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(ar("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!uA(e.kernelSize,"number",1,3))throw new G(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:oa(this.activation),useBias:this.useBias,biasInitializer:Nt(this.biasInitializer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),biasConstraint:qt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Dc=class extends JA{constructor(e,t){super(e,t);this.kernel=null,Dc.verifyArgs(t),this.filters=t.filters,Qt(this.filters,"filters"),this.kernelInitializer=wt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Xt(t.kernelConstraint),this.kernelRegularizer=kt(t.kernelRegularizer)}build(e){e=at(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return H(()=>{e=ze(e);let n,s=this.bias==null?null:this.bias.read(),r=u3(this.activation.getClassName());if(r!=null&&this.rank===2)n=bv(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=yM(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=bv(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=xM(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Oe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=at(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let a=Hs(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(a)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){let e={filters:this.filters,kernelInitializer:Nt(this.kernelInitializer),kernelRegularizer:dt(this.kernelRegularizer),kernelConstraint:qt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new G(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},$c=class extends Dc{constructor(e){super(2,e);$c.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!uA(e.kernelSize,"number",1,2))throw new G(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};$c.className="Conv2D";oe.registerClass($c);var Fc=class extends Dc{constructor(e){super(3,e);Fc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new G(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Fc.className="Conv3D";oe.registerClass(Fc);var QA=class extends $c{constructor(e){super(e);if(this.inputSpec=[new zt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new G(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=at(e),e.length!==4)throw new G("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new zt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{let n=ze(e);if(n.shape.length!==4)throw new G(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],u=this.kernelSize[0],c=this.kernelSize[1],d=this.strides[0],h=this.strides[1],p=lr(i,d,u,this.padding),f=lr(l,h,c,this.padding),m=[r,p,f,this.filters];this.dataFormat!=="channelsLast"&&(n=Xe(n,[0,2,3,1]));let g=Ng(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Xe(g,[0,3,1,2])),this.bias!=null&&(g=Ws(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=at(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=lr(t[s],i,a,this.padding),t[r]=lr(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};QA.className="Conv2DTranspose";oe.registerClass(QA);var e1=class extends Fc{constructor(e){super(e);if(this.inputSpec=[new zt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new G(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=at(e),e.length!==5)throw new G("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new zt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{let n=ze(e);if(n.shape.length!==5)throw new G(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],u=s[a],c=s[o],d=this.kernelSize[0],h=this.kernelSize[1],p=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],A=lr(l,f,d,this.padding),y=lr(u,m,h,this.padding),x=lr(c,g,p,this.padding),b=[r,A,y,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Xe(n,[0,2,3,4,1]));let v=eb(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(v=Xe(v,[0,4,1,2,3])),this.bias!==null&&(v=Ws(v,this.bias.read(),this.dataFormat)),this.activation!==null&&(v=this.activation.apply(v)),v})}computeOutputShape(e){e=at(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],c=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[s]=lr(t[s],u,o,this.padding),t[r]=lr(t[r],c,i,this.padding),t[a]=lr(t[a],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};e1.className="Conv3DTranspose";oe.registerClass(e1);var vv=class extends Dc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new G("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new G("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new G(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=wt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=kt(t.depthwiseRegularizer),this.depthwiseConstraint=Xt(t.depthwiseConstraint),this.pointwiseInitializer=wt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=kt(t.pointwiseRegularizer),this.pointwiseConstraint=Xt(t.pointwiseConstraint)}build(e){if(e=at(e),e.length<this.rank+2)throw new G(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new G(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let o=0;o<this.rank;++o)r.push(1);r.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new zt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{e=ze(e);let n;if(this.rank===1)throw new Oe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Xe(e,[0,2,3,1])),n=wb(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Ws(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Xe(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Nt(this.depthwiseInitializer),e.pointwiseInitializer=Nt(this.pointwiseInitializer),e.depthwiseRegularizer=dt(this.depthwiseRegularizer),e.pointwiseRegularizer=dt(this.pointwiseRegularizer),e.depthwiseConstraint=qt(this.depthwiseConstraint),e.pointwiseConstraint=qt(this.pointwiseConstraint),e}};vv.className="SeparableConv";var t1=class extends vv{constructor(e){super(2,e)}};t1.className="SeparableConv2D";oe.registerClass(t1);var qp=class extends Dc{constructor(e){super(1,e);qp.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!uA(e.kernelSize,"number",1,1))throw new G(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};qp.className="Conv1D";oe.registerClass(qp);var n1=class extends Ze{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return H(()=>{if(e=ze(e),this.dataFormat==="channelsLast"){let n=Sp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Sp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Sp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Sp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};n1.className="Cropping2D";oe.registerClass(n1);var s1=class extends Ze{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,FO(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return H(()=>{let n=ze(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=Xe(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?_e.resizeNearestNeighbor(n,[r,a]):_e.resizeBilinear(n,[r,a]);return Xe(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?_e.resizeNearestNeighbor(n,[r,a]):_e.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};s1.className="UpSampling2D";oe.registerClass(s1);function bM(e,t,n=[1,1],s="valid",r,a){return H(()=>{r==null&&(r=zs()),Ft(r);let o=YA(e,r);if(e.rank!==4)throw new G(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new G(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=dc(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=Xe(o,[0,3,1,2])),o})}var r1=class extends JA{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=wt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Xt(e.depthwiseConstraint),this.depthwiseRegularizer=kt(e.depthwiseRegularizer)}build(e){if(e=at(e),e.length<4)throw new G(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new G(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{e=ze(e);let n=bM(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Ws(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Hs(t,this.kernelSize[0],this.padding,this.strides[0]),a=Hs(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Nt(this.depthwiseInitializer),e.depthwiseRegularizer=dt(this.depthwiseRegularizer),e.depthwiseConstraint=qt(this.depthwiseRegularizer),e}};r1.className="DepthwiseConv2D";oe.registerClass(r1);function wv(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new G("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function kv(e,t,n,s=!1,r,a,o=!1,i=!1){return H(()=>{let l=t.shape.length;if(l<3)throw new G(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Bs(2,l));if(t=Xe(t,u),a!=null)throw new Oe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=ce(ce(r,"bool"),"float32"),r.rank===l-1&&(r=Ot(r,-1)),r=Xe(r,u)),s&&(t=fs(t,0),r!=null&&(r=fs(r,0)));let c=[],d,h=n,p=t.shape[0],f=ms(t),m;r!=null&&(m=ms(r));for(let A=0;A<p;++A){let y=f[A],x=H(()=>e(y,h));if(r==null)d=x[0],h=x[1];else{let b=H(()=>{let v=m[A],k=ge(ps(v),v),S=ae(L(x[0],v),L(h[0],k)),C=h.map((_,O)=>ae(L(x[1][O],v),L(_,k)));return{output:S,newStates:C}});d=b.output,h=b.newStates}i&&c.push(d)}let g;return i&&(g=Dn(c,1)),[d,g,h]})}var ur=class extends Ze{constructor(e){super(e);let t;if(e.cell==null)throw new G("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Zp({cells:e.cell}):t=e.cell,t.stateSize==null)throw new G("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new zt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Bs(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){CA(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return H(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Oe("Constants support is not implemented in RNN yet.");CA(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new zt({shape:[n,null,...s]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new Oe("Constants support is not implemented in RNN yet.");this.cell.build(r);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!w.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),a))throw new G(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new zt({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){H(()=>{if(!this.stateful)throw new Cr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new G("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Pt([n,s])):this.states_=[Pt([n,this.cell.stateSize])];else if(e==null)K(this.states_),this.keptStates!=null&&(K(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Pt([n,s])):this.states_[0]=Pt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new G(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):K(this.states_);for(let s=0;s<this.states_.length;++s){let r=e[s],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,o=[n,a];if(!w.arraysEqual(r.shape,o))throw new G(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${r.shape}`);this.states_[s]=r}}this.states_=this.states_.map(s=>Jt(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=wv(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new zt({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof Vs){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=c,d}else return super.apply(e,t)}call(e,t){return H(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=ze(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new G(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=kv((p,f)=>{let m=this.cell.call([p].concat(f),o);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),u=l[0],c=l[1],d=l[2];this.stateful&&this.resetStates(d,s);let h=this.returnSequences?c:u;return this.returnState?[h].concat(d):h})}getInitialState(e){return H(()=>{let t=Pt(e.shape);return t=ve(t,[1,2]),t=Ic(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?AA(t,[1,n]):t):this.cell.stateSize>1?[AA(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===ur.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let s=t.cell,r=Us(s,n);return new e(Object.assign(t,{cell:r}))}};ur.className="RNN";oe.registerClass(ur);var Oc=class extends Ze{},Xp=class extends Oc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Qt(this.units,"units"),this.activation=ia(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=wt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=kt(e.kernelRegularizer),this.recurrentRegularizer=kt(e.recurrentRegularizer),this.biasRegularizer=kt(e.biasRegularizer),this.kernelConstraint=Xt(e.kernelConstraint),this.recurrentConstraint=Xt(e.recurrentConstraint),this.biasConstraint=Xt(e.biasConstraint),this.dropout=Gl([1,ra([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,ra([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=at(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{if(e=e,e.length!==2)throw new G(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=la({ones:()=>ps(e),rate:this.dropout,training:s})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=la({ones:()=>ps(n),rate:this.recurrentDropout,training:s}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=or(L(e,a),this.kernel.read()):r=or(e,this.kernel.read()),this.bias!=null&&(r=Ws(r,this.bias.read())),o!=null&&(n=L(n,o));let i=ae(r,or(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:oa(this.activation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),recurrentInitializer:Nt(this.recurrentInitializer),biasInitializer:Nt(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),recurrentConstraint:qt(this.recurrentConstraint),biasConstraint:qt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Xp.className="SimpleRNNCell";oe.registerClass(Xp);var a1=class extends ur{constructor(e){e.cell=new Xp(e);super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(K(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(K(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};a1.className="SimpleRNN";oe.registerClass(a1);var Kp=class extends Oc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new G("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Qt(this.units,"units"),this.activation=ia(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ia(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=wt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=kt(e.kernelRegularizer),this.recurrentRegularizer=kt(e.recurrentRegularizer),this.biasRegularizer=kt(e.biasRegularizer),this.kernelConstraint=Xt(e.kernelConstraint),this.recurrentConstraint=Xt(e.recurrentConstraint),this.biasConstraint=Xt(e.biasConstraint),this.dropout=Gl([1,ra([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,ra([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=at(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{if(e=e,e.length!==2)throw new G(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=la({ones:()=>ps(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=la({ones:()=>ps(s),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0<this.dropout&&this.dropout<1&&(e=L(e,r[0]));let u=or(e,this.kernel.read());this.useBias&&(u=Ws(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=L(s,a[0]));let c=this.recurrentKernel.read(),[d,h]=an(c,[2*this.units,this.units],c.rank-1),p=or(s,d),[f,m,g]=an(u,3,u.rank-1),[A,y]=an(p,2,p.rank-1);o=this.recurrentActivation.apply(ae(f,A)),i=this.recurrentActivation.apply(ae(m,y));let x=or(L(i,s),h);l=this.activation.apply(ae(g,x));let b=ae(L(o,s),L(ae(1,Tt(o)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:oa(this.activation),recurrentActivation:oa(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),recurrentInitializer:Nt(this.recurrentInitializer),biasInitializer:Nt(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),recurrentConstraint:qt(this.recurrentConstraint),biasConstraint:qt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};Kp.className="GRUCell";oe.registerClass(Kp);var o1=class extends ur{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Kp(e);super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(K(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(K(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};o1.className="GRU";oe.registerClass(o1);var Pc=class extends Oc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Qt(this.units,"units"),this.activation=ia(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ia(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=wt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=kt(e.kernelRegularizer),this.recurrentRegularizer=kt(e.recurrentRegularizer),this.biasRegularizer=kt(e.biasRegularizer),this.kernelConstraint=Xt(e.kernelConstraint),this.recurrentConstraint=Xt(e.recurrentConstraint),this.biasConstraint=Xt(e.biasConstraint),this.dropout=Gl([1,ra([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,ra([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=at(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends Es{apply(i,l){let u=r.apply([a]),c=new Tp().apply([a]),d=r.apply([a*2]);return y3(y3(u,c),d)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return H(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new G(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=la({ones:()=>ps(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=la({ones:()=>ps(s),rate:this.recurrentDropout,training:n,count:4}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,u,c;0<this.dropout&&this.dropout<1&&(e=L(e,a[0]));let d=or(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=L(s,o[0])),d=ae(d,or(s,this.recurrentKernel.read())),this.useBias&&(d=Ws(d,this.bias.read()));let[h,p,f,m]=an(d,4,d.rank-1);i=this.recurrentActivation.apply(h),l=this.recurrentActivation.apply(p),u=ae(L(l,r),L(i,this.activation.apply(f))),c=this.recurrentActivation.apply(m);let g=L(c,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:oa(this.activation),recurrentActivation:oa(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),recurrentInitializer:Nt(this.recurrentInitializer),biasInitializer:Nt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),recurrentConstraint:qt(this.recurrentConstraint),biasConstraint:qt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Pc.className="LSTMCell";oe.registerClass(Pc);var i1=class extends ur{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Pc(e);super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(K(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(K(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};i1.className="LSTM";oe.registerClass(i1);var Zp=class extends Oc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return H(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o<this.cells.length;++o){let i=this.cells[o];n=s[o],o===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=i.call(a,t),r.push(a.slice(1))}n=[];for(let o of r.slice().reverse())n.push(...o);return[a[0]].concat(n)})}build(e){CA(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{Ho(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return Object.assign({},e,s)}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(Us(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return TA(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],r[a]])}NA(t)}};Zp.className="StackedRNNCells";oe.registerClass(Zp);function la(e){let{ones:t,rate:n,training:s=!1,count:r=1}=e,a=()=>b3(t(),n),o=()=>Cc(a,t,s);return!r||r<=1?Jt(o().clone()):Array(r).fill(void 0).map(o).map(l=>Jt(l.clone()))}var vM=function(e,t){var n={};for(var s in e)Object.prototype.hasOwnProperty.call(e,s)&&t.indexOf(s)<0&&(n[s]=e[s]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,s=Object.getOwnPropertySymbols(e);r<s.length;r++)t.indexOf(s[r])<0&&Object.prototype.propertyIsEnumerable.call(e,s[r])&&(n[s[r]]=e[s[r]]);return n},Iv=class extends ur{constructor(e){if(e.unroll)throw new Oe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Oe("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new zt({ndim:5})]}call(e,t){return H(()=>{if(this.cell.dropoutMask!=null&&(K(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(K(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new G("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return H(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Pt(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){H(()=>{if(!this.stateful)throw new Cr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new G("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Pt(r)):this.states_=[Pt(r)];else if(e==null)K(this.states_),this.keptStates!=null&&(K(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Pt(r)):this.states_[0]=Pt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new G(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):K(this.states_);for(let o=0;o<this.states_.length;++o){let i=e[o],l=r;if(!w.arraysEqual(i.shape,l))throw new G(`State ${o} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${i.shape}`);this.states_[o]=i}}this.states_=this.states_.map(o=>Jt(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],u=e[i?4:3],c=Hs(l,s[0],r,a[0],o[0]),d=Hs(u,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,c,d]:[c,d,n]]}};Iv.className="ConvRNN2D";var Yp=class extends Pc{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super(Object.assign({},e,{units:t}));this.filters=t,Qt(this.filters,"filters"),this.kernelSize=Zl(n,2,"kernelSize"),this.kernelSize.forEach(i=>Qt(i,"kernelSize")),this.strides=Zl(s||1,2,"strides"),this.strides.forEach(i=>Qt(i,"strides")),this.padding=r||"valid",gs(this.padding),this.dataFormat=a||"channelsLast",Ft(this.dataFormat),this.dilationRate=Zl(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>Qt(i,"dilationRate"))}build(e){var t;e=at(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new G(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;i=new(t=class extends Es{apply(d,h){let p=l.apply([u]),f=qn([u]),m=l.apply([u*2]);return gA([p,f,m])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return H(()=>{if(e.length!==3)throw new G(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=la({ones:()=>ps(s),rate:this.dropout,training:n,count:o}));let i=this.dropoutMask,l=(ee,te,ne)=>!te||!te[ne]?ee:L(te[ne],ee),u=l(s,i,0),c=l(s,i,1),d=l(s,i,2),h=l(s,i,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=la({ones:()=>ps(r),rate:this.recurrentDropout,training:n,count:o}));let p=this.recurrentDropoutMask,f=l(r,p,0),m=l(r,p,1),g=l(r,p,2),A=l(r,p,3),y=3,[x,b,v,k]=an(this.kernel.read(),o,y),[S,C,_,O]=this.useBias?an(this.bias.read(),o):[null,null,null,null];u=this.inputConv(u,x,S,this.padding),c=this.inputConv(c,b,C,this.padding),d=this.inputConv(d,v,_,this.padding),h=this.inputConv(h,k,O,this.padding);let[E,R,T,P]=an(this.recurrentKernel.read(),o,y);f=this.recurrentConv(f,E),m=this.recurrentConv(m,R),g=this.recurrentConv(g,T),A=this.recurrentConv(A,P);let V=this.recurrentActivation.apply(ae(u,f)),j=this.recurrentActivation.apply(ae(c,m)),q=ae(L(j,a),L(V,this.activation.apply(ae(d,g)))),X=L(this.recurrentActivation.apply(ae(h,A)),this.activation.apply(q));return[X,X,q]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=vM(e,["units"]),s={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,s)}inputConv(e,t,n,s){let r=Jr(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Ws(r,n,this.dataFormat):r}recurrentConv(e,t){return Jr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Yp.className="ConvLSTM2DCell";oe.registerClass(Yp);var l1=class extends Iv{constructor(e){let t=new Yp(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};l1.className="ConvLSTM2D";oe.registerClass(l1);var Jp=class extends Ze{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e);if(0<this.rate&&this.rate<1){let s=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Cc(()=>b3(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Jp.className="Dropout";oe.registerClass(Jp);var u1=class extends Jp{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};u1.className="SpatialDropout1D";oe.registerClass(u1);var c1=class extends Ze{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Qt(this.units,"units"),this.activation=ia(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Xt(e.kernelConstraint),this.biasConstraint=Xt(e.biasConstraint),this.kernelRegularizer=kt(e.kernelRegularizer),this.biasRegularizer=kt(e.biasRegularizer),this.activityRegularizer=kt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=at(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=at(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e),s=u3(this.activation.getClassName()),r;return s!=null?r=or(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=or(n,this.kernel.read()),this.bias!=null&&(r=Ws(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:oa(this.activation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),biasInitializer:Nt(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),biasConstraint:qt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};c1.className="Dense";oe.registerClass(c1);var d1=class extends Ze{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=at(e);for(let t of e.slice(1))if(t==null)throw new G(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],sa(e,1)]}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r<n.rank;++r)s.push(r);s.push(1),n=Xe(n,s)}return BO(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};d1.className="Flatten";oe.registerClass(d1);var h1=class extends Ze{constructor(e){super(e);this.supportsMasking=!0,this.activation=ia(e.activation)}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.activation.apply(n)})}getConfig(){let e={activation:oa(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};h1.className="Activation";oe.registerClass(h1);var p1=class extends Ze{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return H(()=>(e=ze(e),zO(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};p1.className="RepeatVector";oe.registerClass(p1);var f1=class extends Ze{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",s=t.slice(),r=1,a=null;for(let i=0;i<s.length;++i){let l=s[i];if(this.isUnknown(l))if(a===null)a=i;else throw new G("Can only specifiy one unknown dimension.");else r*=l}let o=sa(e);if(a!==null){if(r===0||o%r!=0)throw new G(n);s[a]=o/r}else if(o!==r)throw new G(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return U(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};f1.className="Reshape";oe.registerClass(f1);var m1=class extends Ze{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Bs(1,e.dims.length+1);if(!w.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new zt({ndim:this.dims.length+1})]}computeOutputShape(e){e=at(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return Xe(ze(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};m1.className="Permute";oe.registerClass(m1);var g1=class extends Ze{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=ze(e),s=-1;return Hh(Bl(n,this.maskValue),s)}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e),s=-1,r=!0,a=Hh(Bl(n,this.maskValue),s,r);return L(n,ce(a,n.dtype))})}};g1.className="Masking";oe.registerClass(g1);var A1=class extends Ze{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(yt(e.inputLength))}this.inputDim=e.inputDim,Qt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Qt(this.outputDim,"outputDim"),this.embeddingsInitializer=wt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=kt(e.embeddingsRegularizer),this.activityRegularizer=kt(e.activityRegularizer),this.embeddingsConstraint=Xt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return H(()=>this.maskZero?(e=ze(e),Bl(e,Ke(e))):null)}computeOutputShape(e){if(e=at(e),this.inputLength==null)return[...e,this.outputDim];let t=yt(this.inputLength);if(t.length!==e.length-1)throw new G(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){let r=t[s],a=e[s+1];if(r!=null&&a!=null&&r!==a)throw new G(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e);n.dtype!=="int32"&&(n=Ip(n,"int32"));let s=x3(this.embeddings.read(),U(n,[n.size]));return U(s,at(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Nt(this.embeddingsInitializer),embeddingsRegularizer:dt(this.embeddingsRegularizer),activityRegularizer:dt(this.activityRegularizer),embeddingsConstraint:qt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};A1.className="Embedding";oe.registerClass(A1);var Ko=class extends Ze{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Oe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){let r=e[e.length-t.length+s],a=t[s];if(r==null||a==null||r<0||a<0)n.push(null);else if(r===1)n.push(a);else if(a===1)n.push(r);else{if(r!==a)throw new G("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[at(e)]),e=e,e.length<2)throw new G(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=na(t),t.length>1)throw new G(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let s=e.map(r=>r.length);e.indexOf(null)===-1&&na(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return H(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=ra(s);for(let a of e){let o=a.rank;for(let i=0;i<r-o;++i)a=Ic(a,1);n.push(a)}return this.mergeFunction(n)}else{let r=!1;for(let i of e){let l=i.rank;if(l==null){let u=i.shape,c=u[0],d=u.slice(1).concat([c]),h=U(i,[c].concat(sa(u.slice(1))));h=Xe(h,[1,0]),h=U(h,d),n.push(h),r=!0}else if(l>1){let u=Bs(1,l).concat([0]);n.push(Xe(i,u)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,u=i[l-1],c=[u].concat(i.slice(0,i.length-1));a=U(Xe(U(a,[-1,u]),[1,0]),c)}else if(o>1){let i=[o-1].concat(Bs(0,o-1));a=Xe(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){let r=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=na(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return H(()=>{if(t==null)return null;if(!Array.isArray(t))throw new G("`mask` should be an Array");if(!Array.isArray(e))throw new G("`inputs` should be an Array");if(t.length!==e.length)throw new G(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Ot(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=Ps(n,t[s]);return n})}},y1=class extends Ko{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ae(t,e[n]);return t})}};y1.className="Add";oe.registerClass(y1);var x1=class extends Ko{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=L(t,e[n]);return t})}};x1.className="Multiply";oe.registerClass(x1);var b1=class extends Ko{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ae(t,e[n]);return L(1/e.length,t)})}};b1.className="Average";oe.registerClass(b1);var v1=class extends Ko{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=kr(t,e[n]);return t})}};v1.className="Maximum";oe.registerClass(v1);var w1=class extends Ko{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=fc(t,e[n]);return t})}};w1.className="Minimum";oe.registerClass(w1);var k1=class extends Ko{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new G("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let s of e)if(s!=null){t=!1;break}if(t)return;let n=[];for(let s=0;s<e.length;++s){let r=e[s].slice();r.splice(this.axis,1);let a=!1;for(let o of n)if(w.arraysEqual(o,r)){a=!0;break}a||n.push(r)}if(n.length>1)throw new G("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return H(()=>gA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new G("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new G("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new G("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new G(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return H(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a<e.length;++a)t[a]==null?s.push(ce(ps(e[a]),"bool")):t[a].rank<e[a].rank?s.push(Ot(t[a],-1)):s.push(t[a]);let r=ft(s,this.axis);return vg(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};k1.className="Concatenate";oe.registerClass(k1);function Mc(e,t){for(;e<0;)e+=t;return e}function wM(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Oe("batchDot is not implemented for tensors of 4D or higher rank yet");if(w.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),w.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Oe("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return H(()=>{let o;if(s>r){o=s-r;let l=[];for(let u=0;u<o;++u)l.push(1);t=U(t,t.shape.concat(l))}else if(r>s){o=r-s;let l=[];for(let u=0;u<o;++u)l.push(1);e=U(e,e.shape.concat(l))}else o=0;let i;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?i=ve(L(e,t),a[0]):i=ve(L(Xe(e,[1,0]),t),a[1]);else{let l=a[0]!==e.shape.length-1,u=a[1]===t.shape.length-1;i=Ve(e,t,l,u)}if(o>0){let l;s>r?l=s+r-3:l=s-1;let u=[];for(let c=l;c<l+o;++c)u.push(c);i=lt(i,u)}return i.shape.length===1&&(i=Ot(i,1)),i})}var I1=class extends Ko{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new G(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new G(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>Mc(r,e[a].shape.length)):s=[Mc(this.axes,t.shape.length),Mc(this.axes,n.shape.length)],this.normalize&&(t=Lp(t,s[0]),n=Lp(n,s[1])),wM(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Mc(this.axes,e.length),Mc(this.axes,t.length)],n}computeOutputShape(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};I1.className="Dot";oe.registerClass(I1);var S1=class extends Ze{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e);return Cc(()=>ae(Cp(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};S1.className="GaussianNoise";oe.registerClass(S1);var C1=class extends Ze{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.rate>0&&this.rate<1?Cc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return L(n,Cp(n.shape,1,r))},()=>n,t.training||!1):n})}};C1.className="GaussianDropout";oe.registerClass(C1);var T1=class extends Ze{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||ze(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return H(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Cc(()=>{let r=ze(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=Po(Wl(n),this.rate);l=Ip(l,"float32");let u=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-u*i*this.rate,d=ae(L(r,l),L(ae(l,-1),i));return ae(L(d,u),c)},()=>ze(e),t.training||!1)}return e})}};T1.className="AlphaDropout";oe.registerClass(T1);function zc(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=Gx(e,t,n,s,r,a);else if(e.rank===3)o=jx(e,t,n,s,r,a);else if(e.rank===4)o=qx(e,t,n,s,r,a);else throw new Oe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function kM(e,t,n,s,r=.001){return H(()=>{let a=np(e,s),o=a.mean,i=a.variance;return[zc(e,o,i,n,t,r),o,i]})}function IM(e,t,n,s,r=.001){return H(()=>{let a=np(e,s),o=a.mean,i=a.variance,l=[];for(let f of Bs(0,e.rank))s.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let u=U(o,l),c=U(i,l),d=t==null?null:U(t,l),h=n==null?null:U(n,l);return[zc(e,u,c,h,d,r),o,i]})}function SM(e,t,n,s,r=.001){return w.arraysEqual(s.slice().sort(),Bs(0,e.rank-1))?kM(e,t,n,s,r):IM(e,t,n,s,r)}var N1=class extends Ze{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=wt(e.betaInitializer||"zeros"),this.gammaInitializer=wt(e.gammaInitializer||"ones"),this.movingMeanInitializer=wt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=wt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Xt(e.betaConstraint),this.gammaConstraint=Xt(e.gammaConstraint),this.betaRegularizer=kt(e.betaRegularizer),this.gammaRegularizer=kt(e.gammaRegularizer)}build(e){e=at(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new G(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new zt({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return H(()=>{let n=t.training==null?!1:t.training,s=ze(e),r=s.shape,a=r.length,o=Bs(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=Wo(1,a);l[i]=r[i];let u=o.slice();u.sort();let c=!w.arraysEqual(u,Bs(0,a).slice(0,a-1)),d=()=>{if(c){let A=U(this.movingMean.read(),l),y=U(this.movingVariance.read(),l),x=this.center?U(this.beta.read(),l):null,b=this.scale?U(this.gamma.read(),l):null;return zc(s,A,y,x,b,this.epsilon)}else return zc(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[h,p,f]=SM(s,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(A,y,x)=>{H(()=>{let b=1-x,v=A.read(),k=L(ge(v,y),b);A.write(ge(v,k))})};return(()=>{m(this.movingMean,p,this.momentum),m(this.movingVariance,f,this.momentum)})(),h})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Nt(this.betaInitializer),gammaInitializer:Nt(this.gammaInitializer),movingMeanInitializer:Nt(this.movingMeanInitializer),movingVarianceInitializer:Nt(this.movingVarianceInitializer),betaRegularizer:dt(this.betaRegularizer),gammaRegularizer:dt(this.gammaRegularizer),betaConstraint:qt(this.betaConstraint),gammaConstraint:qt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};N1.className="BatchNormalization";oe.registerClass(N1);var E1=class extends Ze{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=wt(e.betaInitializer||"zeros"),this.gammaInitializer=wt(e.gammaInitializer||"ones"),this.betaRegularizer=kt(e.betaRegularizer),this.gammaRegularizer=kt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=at(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==na(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=ze(e),s=n.shape,r=s.length;return H(()=>{let a=!0,{mean:o,variance:i}=np(n,this.axis,a),l=Wo(1,r);for(let f of this.axis)l[f]=s[f];let u=f=>f!=null&&f.shape.length!==r&&this.axis!==[r-1]?U(f,l):f,c=u(this.gamma.read()),d=u(this.beta.read()),h=[],p=[];for(let f=0;f<r;++f)this.axis.indexOf(f)!==-1?(h.push(s[f]),p.push(1)):(h.push(1),p.push(s[f]));return o=Ts(o,h),i=Ts(i,h),c=Ts(c,p),d=Ts(d,p),zc(n,o,i,d,c,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Nt(this.betaInitializer),gammaInitializer:Nt(this.gammaInitializer),betaRegularizer:dt(this.betaRegularizer),gammaRegularizer:dt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};E1.className="LayerNormalization";oe.registerClass(E1);function CM(e,t,n){return H(()=>{if(e.rank!==4)throw new G(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new G("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=zs()),n!=="channelsLast"&&n!=="channelsFirst")throw new G(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],Qr(e,s)})}var R1=class extends Ze{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?zs():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new G(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new G(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new G(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){e=at(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return H(()=>CM(ze(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};R1.className="ZeroPadding2D";oe.registerClass(R1);function Qp(e,t,n,s,r,a){return H(()=>{Ft(r),p3(a),gs(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=zs()),a==null&&(a="max"),e=YA(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=ep(e,t,n,i):o=jh(e,t,n,i),r==="channelsFirst"&&(o=Xe(o,[0,3,1,2])),o})}function Sv(e,t,n,s,r,a){return H(()=>{Ft(r),p3(a),gs(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=zs()),a==null&&(a="max"),e=xv(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=zg(e,t,n,i):o=Ig(e,t,n,i),r==="channelsFirst"&&(o=Xe(o,[0,4,1,2,3])),o})}var Cv=class extends Ze{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new G(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Qt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new G(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,gs(this.padding),this.inputSpec=[new zt({ndim:3})]}computeOutputShape(e){e=at(e);let t=Hs(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return H(()=>{this.invokeCallHook(e,t),e=Ic(ze(e),2);let n=this.poolingFunction(ze(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return lt(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},_1=class extends Cv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ft(r),gs(s),Qp(e,t,n,s,r,"max")}};_1.className="MaxPooling1D";oe.registerClass(_1);var D1=class extends Cv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ft(r),gs(s),Qp(e,t,n,s,r,"avg")}};D1.className="AveragePooling1D";oe.registerClass(D1);var Tv=class extends Ze{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new G(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Qt(this.poolSize,"poolSize"),Qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),gs(this.padding),this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Hs(t,this.poolSize[0],this.padding,this.strides[0]),n=Hs(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return H(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},$1=class extends Tv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ft(r),gs(s),Qp(e,t,n,s,r,"max")}};$1.className="MaxPooling2D";oe.registerClass($1);var F1=class extends Tv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ft(r),gs(s),Qp(e,t,n,s,r,"avg")}};F1.className="AveragePooling2D";oe.registerClass(F1);var Nv=class extends Ze{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new G(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Qt(this.poolSize,"poolSize"),Qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),gs(this.padding),this.inputSpec=[new zt({ndim:5})]}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Hs(t,this.poolSize[0],this.padding,this.strides[0]),n=Hs(n,this.poolSize[1],this.padding,this.strides[1]),s=Hs(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return H(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},O1=class extends Nv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ft(r),gs(s),Sv(e,t,n,s,r,"max")}};O1.className="MaxPooling3D";oe.registerClass(O1);var P1=class extends Nv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ft(r),gs(s),Sv(e,t,n,s,r,"avg")}};P1.className="AveragePooling3D";oe.registerClass(P1);var Ev=class extends Ze{constructor(e){super(e);this.inputSpec=[new zt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Oe}},M1=class extends Ev{constructor(e){super(e||{})}call(e,t){return H(()=>{let n=ze(e);return _t(n,1)})}};M1.className="GlobalAveragePooling1D";oe.registerClass(M1);var z1=class extends Ev{constructor(e){super(e||{})}call(e,t){return H(()=>{let n=ze(e);return hs(n,1)})}};z1.className="GlobalMaxPooling1D";oe.registerClass(z1);var Rv=class extends Ze{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Oe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},L1=class extends Rv{call(e,t){return H(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?_t(n,[1,2]):_t(n,[2,3])})}};L1.className="GlobalAveragePooling2D";oe.registerClass(L1);var B1=class extends Rv{call(e,t){return H(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?hs(n,[1,2]):hs(n,[2,3])})}};B1.className="GlobalMaxPooling2D";oe.registerClass(B1);var _v=class extends Ze{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=Us(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},W1=class extends _v{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=at(e),e.length<3)throw new G(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=at(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return H(()=>(e=ze(e),kv((a,o)=>[ze(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};W1.className="TimeDistributed";oe.registerClass(W1);function TM(e){Uo($O,"BidirectionalMergeMode",e)}var NM="concat",V1=class extends _v{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Us(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=Us(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?NM:e.mergeMode,TM(this.mergeMode),e.weights)throw new Oe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):$n(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=wv(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new G("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let u=n.map(c=>new zt({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),o.push(...u)}if(s!=null)throw new Oe("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof Vs;for(let l of a)if(l instanceof Vs!==i)throw new G("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=c,d}else return super.apply(e,t)}call(e,t){return H(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=fs(r,1));let o;return this.mergeMode==="concat"?o=gA([s,r]):this.mergeMode==="sum"?o=ae(s,r):this.mergeMode==="ave"?o=L(.5,ae(s,r)):this.mergeMode==="mul"?o=L(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Ho(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Ho(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Us(t.layer);if(delete t.layer,t.numConstants!=null)throw new Oe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};V1.className="Bidirectional";oe.registerClass(V1);function EM(e){return new jl(e)}function RM(e){return new XA(e)}function _M(e){return new GA(e)}function DM(e){return new jA(e)}function $M(e){return new qA(e)}function FM(e){return new ZA(e)}function OM(e){return new KA(e)}function PM(e){return new qp(e)}function MM(e){return new $c(e)}function zM(e){return new QA(e)}function LM(e){return new Fc(e)}function BM(e){return new e1(e)}function WM(e){return new t1(e)}function VM(e){return new n1(e)}function UM(e){return new s1(e)}function HM(e){return new r1(e)}function GM(e){return new h1(e)}function jM(e){return new c1(e)}function qM(e){return new Jp(e)}function XM(e){return new u1(e)}function KM(e){return new d1(e)}function ZM(e){return new p1(e)}function YM(e){return new f1(e)}function JM(e){return new m1(e)}function QM(e){return new A1(e)}function ez(e){return new y1(e)}function tz(e){return new b1(e)}function nz(e){return new k1(e)}function sz(e){return new v1(e)}function rz(e){return new w1(e)}function az(e){return new x1(e)}function oz(e){return new I1(e)}function iz(e){return new N1(e)}function lz(e){return new E1(e)}function uz(e){return new R1(e)}function U1(e){return new D1(e)}function cz(e){return U1(e)}function dz(e){return U1(e)}function H1(e){return new F1(e)}function hz(e){return H1(e)}function pz(e){return H1(e)}function G1(e){return new P1(e)}function fz(e){return G1(e)}function mz(e){return G1(e)}function gz(e){return new M1(e)}function Az(e){return new L1(e)}function Dv(e){return new z1(e)}function $v(e){return new B1(e)}function Fv(e){return new _1(e)}function Ov(e){return new $1(e)}function yz(e){return new O1(e)}function xz(e){return new o1(e)}function bz(e){return new Kp(e)}function vz(e){return new i1(e)}function wz(e){return new Pc(e)}function kz(e){return new a1(e)}function Iz(e){return new Xp(e)}function Sz(e){return new l1(e)}function Cz(e){return new Yp(e)}function Tz(e){return new ur(e)}function Nz(e){return new Zp(e)}function Ez(e){return new V1(e)}function Rz(e){return new W1(e)}var _z=Dv,Dz=$v,$z=Fv,Fz=Ov;function Oz(e){return new S1(e)}function Pz(e){return new C1(e)}function Mz(e){return new T1(e)}function zz(e){return new g1(e)}var Pv={};Pe(Pv,{MAPE:()=>Kz,MSE:()=>Jz,binaryAccuracy:()=>Lz,binaryCrossentropy:()=>Bz,categoricalAccuracy:()=>Vz,categoricalCrossentropy:()=>Uz,cosineProximity:()=>jz,mape:()=>Zz,meanAbsoluteError:()=>qz,meanAbsolutePercentageError:()=>Xz,meanSquaredError:()=>Yz,mse:()=>Qz,precision:()=>Hz,recall:()=>Gz,sparseCategoricalAccuracy:()=>Wz});function Lz(e,t){return _A(e,t)}function Bz(e,t){return z3(e,t)}function Wz(e,t){return L3(e,t)}function Vz(e,t){return DA(e,t)}function Uz(e,t){return $A(e,t)}function Hz(e,t){return M3(e,t)}function Gz(e,t){return NP(e,t)}function jz(e,t){return EA(e,t)}function qz(e,t){return Bp(e,t)}function Xz(e,t){return Xl(e,t)}function Kz(e,t){return Xl(e,t)}function Zz(e,t){return Xl(e,t)}function Yz(e,t){return jo(e,t)}function Jz(e,t){return jo(e,t)}function Qz(e,t){return jo(e,t)}var Mv={};Pe(Mv,{modelFromJSON:()=>lM});var zv={};Pe(zv,{l1:()=>tL,l1l2:()=>eL,l2:()=>nL});function eL(e){return new _c(e)}function tL(e){return gM(e)}function nL(e){return AM(e)}var Lv=class extends ql{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof Nr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function ef(e,t){return e<t}function Bv(e,t){return e>t}var Wv=class extends Lv{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Oe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=ef:this.mode==="max"?this.monitorFunc=Bv:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Bv:this.monitorFunc=ef,this.monitorFunc===ef&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===ef?1/0:-1/0}async onEpochEnd(e,t){await aa(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function sL(e){return new Wv(e)}var rL={earlyStopping:sL},Gs;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Gs||(Gs={}));var Vv;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(Vv||(Vv={}));var j1={};function aL(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};j1[e]=n}function Uv(e){return j1[e]}function oL(e){delete j1[e]}function I(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return wn(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(h=>wn(h,n,s,r));let u=wn(t.inputNames.slice(i)[0],n,s,r),c=u.dataSync();return a.type==="number"?c[0]:w.toNestedArray(u.shape,c)}let o=t.attrParams[e];return o&&o.value}function wn(e,t,n,s){let[r,a]=Xn(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[tf(r,i)]);return o!==void 0?t[tf(r,o)][a]:void 0}function iL(e,t,n){return t[tf(e,n.currentContextId)]}function Er(e,t){let[n,s,r]=Xn(e);return[tf(n,t&&t.currentContextId),s,r]}function tf(e,t){return t?`${e}-${t}`:e}function Xn(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function nf(e,t,n){let s=I("pad",e,t,n);if(s==="explicit"){s=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function Rr(e){return e.kept?e:Os(e)}var Hv={};Pe(Hv,{json:()=>lL});var lL=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Gv={};Pe(Gv,{json:()=>uL});var uL=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],jv={};Pe(jv,{json:()=>cL});var cL=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],qv={};Pe(qv,{json:()=>dL});var dL=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],Xv={};Pe(Xv,{json:()=>hL});var hL=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],Kv={};Pe(Kv,{json:()=>pL});var pL=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Zv={};Pe(Zv,{json:()=>fL});var fL=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],Yv={};Pe(Yv,{json:()=>mL});var mL=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],Jv={};Pe(Jv,{json:()=>gL});var gL=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],Qv={};Pe(Qv,{json:()=>AL});var AL=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],e7={};Pe(e7,{json:()=>yL});var yL=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],t7={};Pe(t7,{json:()=>xL});var xL=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],n7={};Pe(n7,{json:()=>bL});var bL=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],s7={};Pe(s7,{json:()=>vL});var vL=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],r7={};Pe(r7,{json:()=>wL});var wL=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],a7={};Pe(a7,{json:()=>kL});var kL=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],o7={};Pe(o7,{json:()=>IL});var IL=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],i7={};Pe(i7,{json:()=>SL});var SL=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],l7={};Pe(l7,{json:()=>CL});var CL=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],u7=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[Hv,Gv,jv,qv,Xv,Kv,Zv,Yv,Jv,Qv,e7,t7,n7,s7,r7,a7,o7,i7,l7],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let d=Object.keys(o);d.forEach(f=>{let m=o[f];m.inputNames.forEach((g,A)=>{let[y,,x]=Er(g),b=o[y];if(b.outputs!=null){let v=b.outputs.indexOf(x);if(v!==-1){let k=`${y}:${v}`;m.inputNames[A]=k}}m.inputs.push(b),b.children.push(m)})}),Object.keys(c).length===0?d.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(c).forEach(f=>{let[m]=Er(f),g=o[m];g!=null&&(g.signatureKey=c[f],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=Er(f),g=o[m];g&&(g.signatureKey=u[f],i.push(g))}):i=s;let h={};e.library!=null&&e.library.function!=null&&(h=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let p={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:h};return a.length>0&&(p.initNodes=a),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=Uv(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.substr(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=q1(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=q1(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=t2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=t2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=K1(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=K1(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=e2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=e2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=X1(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=X1(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=s2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=s2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=Q1(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Q1(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=n2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=n2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=Y1(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Y1(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=J1(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=J1(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=d7(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=d7(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((c,d)=>(c[d.name]=this.mapNode(d),d.op==="Const"&&s.push(c[d.name]),c),{}));let a=[],o=[];e.signature.inputArg.forEach(c=>{let[d]=Er(c.name),h={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Z1(c.type),type:"dtype"}},children:[]};h.signatureKey=c.name,a.push(h),r[d]=h}),Object.keys(r).forEach(c=>{let d=r[c];d.inputNames.forEach((h,p)=>{let[f,,m]=Er(h),g=r[f];if(g.outputs!=null){let A=g.outputs.indexOf(m);if(A!==-1){let y=`${f}:${A}`;d.inputNames[p]=y}}d.inputs.push(g),g.children.push(d)})});let l=e.ret;e.signature.outputArg.forEach(c=>{let[d,h]=Er(l[c.name]),p=r[d];p!=null&&(p.defaultOutput=h,o.push(p))});let u=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:u}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function TL(e){let t=Q().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function c7(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):TL(e);return t?n:n.toLowerCase()}function q1(e,t,n,s=!1){let r=e[t];return r!=null?c7(r.s,s):n}function X1(e,t,n){let s=e[t];return s?s.b:n}function K1(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function Z1(e){switch(typeof e=="string"&&(e=Gs[e]),e){case Gs.DT_FLOAT:return"float32";case Gs.DT_INT32:case Gs.DT_INT64:case Gs.DT_INT8:case Gs.DT_UINT8:return"int32";case Gs.DT_BOOL:return"bool";case Gs.DT_DOUBLE:return"float32";case Gs.DT_STRING:return"string";default:return null}}function d7(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function Y1(e,t,n){let s=e[t];return s&&s.type?Z1(s.type):n}function J1(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>Z1(r)):n}function h7(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Q1(e,t,n){let s=e[t];return s&&s.shape?h7(s.shape):n}function e2(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function t2(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>c7(a,s)):n}function n2(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>h7(r)):n}function s2(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var NL=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return wn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return wn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return K1(this.node.rawAttrs,e,t);if(n.s!=null)return q1(this.node.rawAttrs,e,t);if(n.b!=null)return X1(this.node.rawAttrs,e,t);if(n.shape!=null)return Q1(this.node.rawAttrs,e,t);if(n.type!=null)return Y1(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return e2(this.node.rawAttrs,e,t);if(n.list.s!=null)return t2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return n2(this.node.rawAttrs,e,t);if(n.list.b!=null)return s2(this.node.rawAttrs,e,t);if(n.list.type!=null)return J1(this.node.rawAttrs,e,t)}return t}},EL=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[ae(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[Uh(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[yb(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[L(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[de(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[rb(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[bg(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[ge(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[fc(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[kr(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[ea(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[Zg(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},RL=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Ht(I("x",e,t,n))];case"Acos":return[Fx(I("x",e,t,n))];case"Acosh":return[Ox(I("x",e,t,n))];case"Asin":return[Mx(I("x",e,t,n))];case"Asinh":return[zx(I("x",e,t,n))];case"Atan":return[Lx(I("x",e,t,n))];case"Atan2":return[Bx(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[Wx(I("x",e,t,n))];case"Ceil":return[Kx(I("x",e,t,n))];case"Complex":return[qr(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[Xh(I("x",e,t,n))];case"Cosh":return[Rg(I("x",e,t,n))];case"Elu":return[hc(I("x",e,t,n))];case"Erf":return[ob(I("x",e,t,n))];case"Exp":return[cs(I("x",e,t,n))];case"Expm1":return[ib(I("x",e,t,n))];case"Floor":return[pc(I("x",e,t,n))];case"Log":return[ds(I("x",e,t,n))];case"Log1p":return[Yh(I("x",e,t,n))];case"Imag":return[Kh(I("x",e,t,n))];case"Neg":return[Tt(I("x",e,t,n))];case"Reciprocal":return[vb(I("x",e,t,n))];case"Real":return[mc(I("x",e,t,n))];case"Relu":return[sr(I("x",e,t,n))];case"Round":return[Ug(I("x",e,t,n))];case"Selu":return[Gg(I("x",e,t,n))];case"Sigmoid":return[Hn(I("x",e,t,n))];case"Sin":return[jg(I("x",e,t,n))];case"Sign":return[Ib(I("x",e,t,n))];case"Sinh":return[qg(I("x",e,t,n))];case"Softplus":return[Ll(I("x",e,t,n))];case"Sqrt":return[hn(I("x",e,t,n))];case"Square":return[ct(I("x",e,t,n))];case"Tanh":return[Fl(I("x",e,t,n))];case"Tan":return[Cb(I("x",e,t,n))];case"ClipByValue":return[Gn(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[Vg(I("x",e,t,n))];case"Rsqrt":return[Hg(wn(e.inputNames[0],t,n))];case"Prod":return[Lg(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[Zh(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[rp(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[lb(wn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function _s(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){w.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;s<e.length;s++){let r=e[s],a=t[s];w.assert(r<0||a<0||r===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function p7(e){return!(typeof e=="number"||e.some(t=>t<0))}function Lc(e,t,n){let s=r2(e,n),r=!p7(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=r2(a.shape,s)}),!p7(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function r2(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s<e.length;++s){let r=e[s],a=t[s];if(r>=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var _L=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Ie(0),Jt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),_s(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Jt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return dn([],[0].concat(this.elementShape));let n=this.readMany(e);return _s(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Dn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return dn([],[0].concat(this.elementShape));let t=[];for(let s=0;s<this.size();s++)t.push(s);let n=this.readMany(t);return _s(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),ft(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ms(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];H(()=>{t=U(t,[1,n,r]);for(let i=0;i<e.length;++i){let l=i===0?0:s[i-1],u=[0,l,0],c=[1,e[i],r];a[i]=U(Re(t,u,c),this.elementShape)}return a});let o=[];for(let i=0;i<e.length;i++)o[i]=i;this.writeMany(o,a)}},Bc=class{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);_s(t,r.shape,"TensorList shape mismatch: "),Jt(r)}),this.idTensor=Ie(0),this.maxNumElements=s,Jt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Bc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);_s(e,this.elementShape,"TensorList shape mismatch: ");let s=Lc(this.elementShape,this.tensors,e);return H(()=>{let r=this.tensors.map(a=>U(a,s));return Dn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Lc(this.elementShape,this.tensors,e),s=this.tensors.pop();return _s(s.shape,e,"TensorList shape mismatch: "),U(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(_s(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Jt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);_s(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=Lc(this.elementShape,this.tensors,t);return U(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);_s(this.elementShape,t.shape,"TensorList shape mismatch: "),Jt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);_s(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=Lc(this.elementShape,this.tensors,n);return e.length===0?dn([],[0].concat(s)):H(()=>{let r=e.map(a=>U(this.tensors[a],s));return Dn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);_s(this.elementShape,t,"TensorList shape mismatch: ");let n=Lc(this.elementShape,this.tensors,t);return this.size()===0?dn([],[0].concat(n)):H(()=>{let s=this.tensors.map(r=>U(r,n));return ft(s,0)})}};function DL(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);_s(r,t,"TensorList shape mismatch: ");let a=ms(e);return new Bc(a,t,s)}function $L(e,t,n){return new Bc([],e,t,n)}function FL(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new Bc([],n,e.dtype,s),o=ms(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function OL(e,t,n){let s=0,r=t.map(c=>(s+=c,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=r2(a,n),i=s===0?0:e.size/s,l=H(()=>{let c=[];e=U(e,[1,s,i]);for(let d=0;d<t.length;++d){let h=d===0?0:r[d-1],p=[0,h,0],f=[1,t[d],i];c[d]=U(Re(e,p,f),o)}return e.dispose(),c}),u=new Bc([],n,e.dtype,t.length);for(let c=0;c<l.length;c++)u.setItem(c,l[c]);return u}var PL=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let s=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),a=I("cond",e,t,n),o=I("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=I("body",e,t,n),r=I("cond",e,t,n),a=I("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(c=>c.id),l=await o[0].data();o.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=a;for(;l[0];){let c=u;u=await n.functionMap[s].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let d=u.map(p=>p.id);c.forEach(p=>{!p.kept&&i.indexOf(p.id)===-1&&d.indexOf(p.id)===-1&&p.dispose()});let h=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await h[0].data(),h.forEach(p=>{!p.kept&&i.indexOf(p.id)===-1&&d.indexOf(p.id)===-1&&p.dispose()})}return u}case"LoopCond":{let s=I("pred",e,t,n);return[Rr(s)]}case"Switch":{let s=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=Rr(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>wn(r,t,n)!==void 0);if(s){let r=wn(s,t,n);return[Rr(r)]}return}case"Enter":{let s=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(s),[Rr(r)]}case"Exit":{let s=I("tensor",e,t,n);return n.exitFrame(),[Rr(s)]}case"NextIteration":{let s=I("tensor",e,t,n);return n.nextIteration(),[Rr(s)]}case"TensorArrayV3":{let s=I("size",e,t,n),r=I("dtype",e,t,n),a=I("elementShape",e,t,n),o=I("dynamicSize",e,t,n),i=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),u=I("name",e,t,n),c=new _L(u,r,s,a,l,o,i);return n.addTensorArray(c),[c.idTensor,Ie(1)]}case"TensorArrayWriteV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=I("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),a=I("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Ie(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=I("indices",e,t,n),r=I("tensor",e,t,n),a=I("elementShape",e,t,n),o=I("numElements",e,t,n),i=FL(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=I("elementShape",e,t,n),r=I("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=I(a,e,t,n),i=$L(s,r,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let s=I("tensorListId",e,t,n),r=I("indices",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=I("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=DL(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let s=I("tensorListId",e,t,n),r=n.getTensorList(s.id),a=I("dtype",e,t,n),o=I("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=I("tensorListId",e,t,n),r=I("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("lengths",e,t,n),o=OL(s,a,r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function f7(e,t,n){let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",u=I("numArgs",e,t,n);if(a){if(i&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=I("strides",e,t,n),d=nf(e,t,n),h=I("dataFormat",e,t,n).toUpperCase(),p=I("dilations",e,t,n),[f,m]=I("args",e,t,n);o&&(m=f,f=void 0);let g=I("leakyreluAlpha",e,t,n);return{stride:c,pad:d,dataFormat:h,dilations:p,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var ML=(e,t,n)=>{switch(e.op){case"Conv1D":{let s=I("stride",e,t,n),r=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilation",e,t,n);return[Cg(I("x",e,t,n),I("filter",e,t,n),s,r,a,o)]}case"Conv2D":{let s=I("strides",e,t,n),r=nf(e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[Jr(I("x",e,t,n),I("filter",e,t,n),[s[1],s[2]],r,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=f7(e,t,n);return[ta.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=f7(e,t,n);return[ta.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let s=I("outputShape",e,t,n),r=I("strides",e,t,n),a=nf(e,t,n);return[Ng(I("x",e,t,n),I("filter",e,t,n),s,[r[1],r[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let s=I("strides",e,t,n),r=nf(e,t,n),a=I("dilations",e,t,n),o=I("dataFormat",e,t,n).toUpperCase();return[dc(I("input",e,t,n),I("filter",e,t,n),[s[1],s[2]],r,o,[a[1],a[2]])]}case"Conv3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[Eg(I("x",e,t,n),I("filter",e,t,n),[s[1],s[2],s[3]],r,a,[o[1],o[2],o[3]])]}case"AvgPool":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[jh(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPool":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[ep(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPoolWithArgmax":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n),o=I("includeBatchInIndex",e,t,n),{result:i,indexes:l}=gb(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r,o);return[i,l]}case"AvgPool3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Ig(I("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"MaxPool3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[zg(I("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"Dilation2D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("dilations",e,t,n),o=s[1],i=s[2],l=a[1],u=a[2];return[sb(I("x",e,t,n),I("filter",e,t,n),[o,i],r,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},zL=(e,t,n)=>{switch(e.op){case"Fill":{let s=I("shape",e,t,n),r=I("dtype",e,t,n),a=I("value",e,t,n);return[Ml(s,a,r)]}case"LinSpace":{let s=I("start",e,t,n),r=I("stop",e,t,n),a=I("num",e,t,n);return[ub(s,r,a)]}case"Multinomial":{let s=I("logits",e,t,n),r=I("numSamples",e,t,n),a=I("seed",e,t,n);return[xb(s,r,a)]}case"OneHot":{let s=I("indices",e,t,n),r=I("depth",e,t,n),a=I("onValue",e,t,n),o=I("offValue",e,t,n);return[lc(s,r,a,o)]}case"Ones":return[qn(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[ps(I("x",e,t,n))];case"RandomUniform":return[Wl(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let s=I("start",e,t,n),r=I("stop",e,t,n),a=I("step",e,t,n);return[Vl(s,r,a,I("dtype",e,t,n))]}case"TruncatedNormal":{let s=I("shape",e,t,n),r=I("mean",e,t,n),a=I("stdDev",e,t,n),o=I("seed",e,t,n);return[cp(s,r,a,I("dtype",e,t,n),o)]}case"Zeros":return[Pt(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Ke(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function a2(e,t,n){let s=I("boxes",e,t,n),r=I("scores",e,t,n),a=I("maxOutputSize",e,t,n),o=I("iouThreshold",e,t,n),i=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var LL=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}=a2(e,t,n),u=await _e.nonMaxSuppressionWithScoreAsync(s,r,a,o,i,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=a2(e,t,n),l=I("padToMaxOutputSize",e,t,n),u=await _e.nonMaxSuppressionPaddedAsync(s,r,a,o,i,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=a2(e,t,n);return[await _e.nonMaxSuppressionAsync(s,r,a,o,i)]}case"Where":{let s=ce(I("condition",e,t,n),"bool"),r=[await Jg(s)];return s.dispose(),r}case"ListDiff":return kb(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},BL=(e,t,n)=>{switch(e.op){case"TopKV2":{let s=I("x",e,t,n),r=I("k",e,t,n),a=I("sorted",e,t,n),o=Tb(s,r,a);return[o.values,o.indices]}case"Unique":{let s=I("x",e,t,n),r=Yg(s);return[r.values,r.indices]}case"UniqueV2":{let s=I("x",e,t,n),r=I("axis",e,t,n),a=Yg(s,r);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},WL=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let s=I("default",e,t,n);return[wn(e.name,t,n)||s];case"Placeholder":return[wn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=I("x",e,t,n);return[Rr(u)]}case"IdentityN":return I("x",e,t,n).map(u=>Rr(u));case"Snapshot":let r=I("x",e,t,n);return[Rr(r)];case"Shape":return[Mt(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(u=>Mt(u.shape));case"Size":return[Ie(I("x",e,t,n).size,"int32")];case"Rank":return[Ie(I("x",e,t,n).rank,"int32")];case"NoOp":return[Ie(1)];case"Print":let a=I("x",e,t,n),o=I("data",e,t,n),i=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let u=0;u<o.length;u++)console.log(Array.prototype.slice.call(o[u].dataSync()).slice(0,l));return[a];default:throw TypeError(`Node type ${e.op} is not implemented`)}},VL=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Ie(0),this.tensorMap=new Map,Jt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Ie(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),H(()=>{let s=ms(t),r=n.length,a=s.length;w.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o<r;o++){let i=n[o],l=s[o];Jt(l),this.tensorMap.set(i,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return H(()=>{let s=[];for(let r=0;r<n.length;r++){let a=n[r],o=this.findWithDefault(a,t);s.push(o)}return Dn(s)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},UL=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),a=I("valueDType",e,t,n),o=new VL(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},HL=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let s=I("images",e,t,n),r=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[_e.resizeBilinear(s,[r[0],r[1]],a,o)]}case"ResizeNearestNeighbor":{let s=I("images",e,t,n),r=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[_e.resizeNearestNeighbor(s,[r[0],r[1]],a,o)]}case"CropAndResize":{let s=I("image",e,t,n),r=I("boxes",e,t,n),a=I("boxInd",e,t,n),o=I("cropSize",e,t,n),i=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[_e.cropAndResize(s,r,a,o,i,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},GL=(e,t,n)=>{switch(e.op){case"Equal":return[us(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[Bl(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[jn(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[Po(I("a",e,t,n),I("b",e,t,n))];case"Less":return[$g(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[Mo(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[Ps(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[Qh(I("a",e,t,n))];case"LogicalOr":return[Mg(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[bn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},jL=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ve(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[ab(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Xe(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=r==="prelu",i=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=I("args",e,t,n);return[ta.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:u,activation:r,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},qL=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Ol(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[Ol(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[cb(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[ip(I("x",e,t,n))];case"LogSoftmax":return[Fg(I("x",e,t,n))];case"SparseToDense":return[eA(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},XL=(e,t,n)=>{switch(e.op){case"Max":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[hs(I("x",e,t,n),o,i)]}case"Mean":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[_t(I("x",e,t,n),o,i)]}case"Min":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[tp(I("x",e,t,n),o,i)]}case"Sum":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[ve(I("x",e,t,n),o,i)]}case"All":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[vg(I("x",e,t,n),o,i)]}case"Any":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Hh(I("x",e,t,n),o,i)]}case"ArgMax":{let o=I("axis",e,t,n);return[er(I("x",e,t,n),o)]}case"ArgMin":{let o=I("axis",e,t,n);return[Px(I("x",e,t,n),o)]}case"Prod":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Lg(I("x",e,t,n),o,i)]}case"Cumsum":{let o=I("axis",e,t,n),i=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[_g(I("x",e,t,n),o,i,l)]}case"Bincount":let s=I("x",e,t,n),r=I("weights",e,t,n),a=I("size",e,t,n);return[Sg(s,r,a)];case"DenseBincount":{let o=I("x",e,t,n),i=I("weights",e,t,n),l=I("size",e,t,n),u=I("binaryOutput",e,t,n);return[tb(o,i,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},KL=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let s=I("n",e,t,n),r=I("axis",e,t,n),a=I("tensors",e,t,n);return a=a.slice(0,s),[ft(a,r)]}case"Gather":{let s=I("x",e,t,n),r=I("indices",e,t,n);return[zl(s,ce(r,"int32"),0)]}case"GatherV2":{let s=I("axis",e,t,n),r=I("batchDims",e,t,n),a=I("x",e,t,n),o=I("indices",e,t,n);return[zl(a,ce(o,"int32"),s,r)]}case"Reverse":{let s=I("dims",e,t,n),r=[];for(let o=0;o<s.length;o++)s[o]&&r.push(o);let a=I("x",e,t,n);return[fs(a,r)]}case"ReverseV2":{let s=I("axis",e,t,n),r=I("x",e,t,n);return[fs(r,s)]}case"Slice":{let s=I("begin",e,t,n),r=I("size",e,t,n);return[Re(I("x",e,t,n),s,r)]}case"StridedSlice":{let s=I("begin",e,t,n),r=I("end",e,t,n),a=I("strides",e,t,n),o=I("beginMask",e,t,n),i=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),u=I("newAxisMask",e,t,n),c=I("shrinkAxisMask",e,t,n),d=I("x",e,t,n);return[Sb(d,s,r,a,o,i,l,u,c)]}case"Pack":return H(()=>{let s=I("axis",e,t,n),r=I("tensors",e,t,n),a=r[0].shape,o=lt(r[0]).shape,i=r.map(l=>{let u=w.arraysEqual(l.shape,a);if(!u&&!w.arraysEqual(lt(l).shape,o))throw new Error("the input tensors shape does not match");return u?l:U(l,a)});return[Dn(i,s)]});case"Unpack":{let s=I("axis",e,t,n),r=I("tensor",e,t,n);return ms(r,s)}case"Tile":{let s=I("reps",e,t,n);return[Ts(I("x",e,t,n),s)]}case"Split":case"SplitV":{let s=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),a=I("x",e,t,n);return an(a,r,s)}case"ScatterNd":{let s=I("indices",e,t,n),r=I("values",e,t,n),a=I("shape",e,t,n);return[Db(s,r,a)]}case"GatherNd":{let s=I("x",e,t,n),r=I("indices",e,t,n);return[$b(s,r)]}case"SparseToDense":{let s=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),a=I("sparseValues",e,t,n),o=I("defaultValue",e,t,n);return[eA(s,a,r,a.dtype===o.dtype?o:ce(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},ZL=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:s,outputValues:r,emptyRowIndicator:a,reverseIndexMap:o}=xc.sparseFillEmptyRows(I("indices",e,t,n),I("values",e,t,n),I("denseShape",e,t,n),I("defaultValue",e,t,n));return[s,r,a,o]}case"SparseReshape":{let{outputIndices:s,outputShape:r}=xc.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[s,r]}case"SparseSegmentMean":return[xc.sparseSegmentMean(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];case"SparseSegmentSum":return[xc.sparseSegmentSum(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},YL=(e,t,n)=>{switch(e.op){case"FFT":return[lp(I("x",e,t,n))];case"IFFT":return[Ac(I("x",e,t,n))];case"RFFT":return[up(I("x",e,t,n))];case"IRFFT":return[Kg(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},JL=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:s,nGramsSplits:r}=mp.stringNGrams(I("data",e,t,n),I("dataSplits",e,t,n),I("separator",e,t,n),I("nGramWidths",e,t,n),I("leftPad",e,t,n),I("rightPad",e,t,n),I("padWidth",e,t,n),I("preserveShortSequences",e,t,n));return[s,r]}case"StringSplit":{let{indices:s,values:r,shape:a}=mp.stringSplit(I("input",e,t,n),I("delimiter",e,t,n),I("skipEmpty",e,t,n));return[s,r,a]}case"StringToHashBucketFast":return[mp.stringToHashBucketFast(I("input",e,t,n),I("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},QL=(e,t,n)=>{switch(e.op){case"Cast":return[ce(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let s=I("axis",e,t,n);return[Ot(I("x",e,t,n),s)]}case"Squeeze":{let s=I("axis",e,t,n);return[lt(I("x",e,t,n),s)]}case"Reshape":return[U(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[Ab(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[Qr(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let s=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[sp(I("x",e,t,n),s,r)]}case"BatchToSpaceND":{let s=I("blockShape",e,t,n),r=I("crops",e,t,n);return[qh(I("x",e,t,n),s,r)]}case"DepthToSpace":{let s=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[nb(I("x",e,t,n),s,r)]}case"BroadcastTo":return[cc(I("x",e,t,n),I("shape",e,t,n))];case"BroadcastArgs":return[Xx(I("s0",e,t,n),I("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function m7(e,t,n,s){let r=((a,o,i)=>{switch(a.category){case"arithmetic":return H(()=>EL(a,o,i));case"basic_math":return H(()=>RL(a,o,i));case"control":return PL(a,o,i);case"convolution":return H(()=>ML(a,o,i));case"creation":return H(()=>zL(a,o,i));case"dynamic":return LL(a,o,i);case"evaluation":return H(()=>BL(a,o,i));case"image":return H(()=>HL(a,o,i));case"graph":return H(()=>WL(a,o,i));case"logical":return H(()=>GL(a,o,i));case"matrices":return H(()=>jL(a,o,i));case"normalization":return H(()=>qL(a,o,i));case"reduction":return H(()=>XL(a,o,i));case"slice_join":return H(()=>KL(a,o,i));case"sparse":return H(()=>ZL(a,o,i));case"spectral":return H(()=>YL(a,o,i));case"string":return H(()=>JL(a,o,i));case"transformation":return H(()=>QL(a,o,i));case"hash_table":return UL(a,o,i,s);case"custom":let l=Uv(a.op);if(l&&l.customExecutor)return l.customExecutor(new NL(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return w.isPromise(r)?r.then(a=>[].concat(a)):[].concat(r)}var g7=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function A7(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,u=Object.keys(e).map(h=>Xn(h)[0]),c=[];s!=null&&(c=s.map(h=>Xn(h.name)[0]));let d=[...t];for(;d.length>0;){let h=d.pop();if((y7(h)||rB(h)||aB(h))&&o==null&&(o=h,i=o.children.map(p=>p.name).filter(p=>r.has(p))),r.add(h.name),n[h.name]==null&&u.indexOf(h.name)===-1&&c.indexOf(h.name)===-1){if(h.inputs.length===0){a.push(h.name);continue}h.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),d.push(p))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function eB(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(c=>Xn(c)[0]).map(c=>e.nodes[c]),i=e.initNodes;o.forEach(c=>{s.has(c.name)&&a.push(c)}),e.weights.forEach(c=>{s.has(c.name)&&a.push(c)}),i!=null&&i.forEach(c=>{s.has(c.name)&&a.push(c)});let l=new Set,u=[];for(;a.length>0;){let c=a.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(d=>{!l.has(d.name)&&s.has(d.name)&&d.inputs.every(h=>l.has(h.name))&&a.push(d)})}return u}var tB=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],nB=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],sB=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function y7(e){return tB.indexOf(e.op)>=0}function rB(e){return nB.indexOf(e.op)>=0}function aB(e){return sB.indexOf(e.op)>=0}var o2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new o2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=A7(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return eB(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(c=>this.graph.nodes[Xn(c)[0]]),r=t.map(c=>Xn(c)[0]),a=r.map(c=>this.graph.nodes[c]);a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},u={};return H(()=>{let c=new g7(this.weightMap,l,u,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,g]=Xn(f),A=[];A[g]=e[f],d[m]=A});let h=this.getFrozenTensorIds(d),p={};for(let f=0;f<i.length;f++){let m=i[f];if(!d[m.name]){let g=m7(m,d,c,this._resourceManager);if(w.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);d[m.name]=g,this.checkTensorForDisposal(m.name,m,d,c,h,r,p)}}return this.parent==null&&c.dispose(h),t.map(f=>wn(f,d,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=iL(i.name,n,s);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let c=o[u.id];c===1?(u.dispose(),delete o[u.id]):c!=null&&o[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new g7(this.weightMap,s,r,this.functionExecutorMap),o=await this.executeWithControlFlow(e,a,t,n),i=t.map(d=>wn(d,o,a)),l=i.map(d=>d.id),u=Object.keys(e).map(d=>e[d].id),c=new Set([...l,...u,...this.weightIds]);return Object.keys(o).forEach(d=>{o[d].forEach(p=>{p&&!p.kept&&!p.isDisposed&&!c.has(p.id)&&p.dispose()})}),this.parent==null&&a.dispose(c),i}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(y=>this.graph.nodes[Xn(y)[0]]),o=n.map(y=>Xn(y)[0]),i=o.map(y=>this.graph.nodes[y]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:d}=A7(e,i,this.weightMap,this._initNodes),h=[...a,...this.graph.weights,...this._initNodes||[]].map(y=>({node:y,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(y=>{let[x,b]=Xn(y),v=[];v[b]=e[y],p[x]=v});let f={},m=this.getFrozenTensorIds(p),g={};for(;h.length>0;){let y=this.processStack(a,h,t,p,g,m,o,f,l);await Promise.all(y)}c==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let A=i.filter(y=>!y7(y)&&!wn(y.name,p,t)).map(y=>y.name);if(A.length>0){let y="";throw c!=null&&(y=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${A}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${y}`)}return p}processStack(e,t,n,s,r,a,o,i,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let d="";if(c.node.op==="Enter"&&I("isConstant",c.node,s,n)&&([d]=Er(c.node.name,n)),s[c.node.name]==null){let h=m7(c.node,s,n,this._resourceManager);d||([d]=Er(c.node.name,n));let p=n.currentContext;w.isPromise(h)?u.push(h.then(f=>(s[d]=f,n.currentContext=p,this.checkTensorForDisposal(d,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l),f))):(s[d]=h,this.checkTensorForDisposal(d,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l))}else this.processChildNodes(c.node,t,n,s,r,l)}return u}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=Er(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!wn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!wn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=Xn(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);w.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&w.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=Xn(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Xn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},oB=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},iB="?tfjs-format=file",lB="model.json",x7=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new oB}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=_n.browserHTTPRequest(e,this.loadOptions);else{let t=_n.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(_n.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=_n.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new o2(u7.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=u7.Instance.transformGraph(e.modelInitializer);this.initializer=new o2(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=_n.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ge)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function mt(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${lB}${iB}`);let n=new x7(e,t);return await n.load(),n}var uB="3.9.0",b7={};Pe(b7,{CSVDataset:()=>D7,Dataset:()=>Jl,FileDataSource:()=>L7,TextLineDataset:()=>E7,URLDataSource:()=>B7,array:()=>DB,csv:()=>UB,func:()=>HB,generator:()=>GB,microphone:()=>qB,version_data:()=>XB,webcam:()=>jB,zip:()=>$B});var cB=Sa(y5()),dB=Sa(y5());function hB(e,t){return sf(e,t)}function sf(e,t,n=new Map,s=new Set){if(e==null)return null;if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Yl(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=sf(i,t,n,s);a[o]=l}return s.delete(e),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function pB(e,t=w7){return v7(e,t)}function v7(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Yl(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(u=>u[o]),l=v7(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function w7(e){return e===null?null:Yl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function k7(e,t){let n=new Map;sf(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(w.isPromise(a)){let o=await a;n.set(r,o)}}return sf(e,t,n)}function Yl(e){let t=!1;if(Q().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=x5();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ge)&&!(e instanceof Promise)&&!t)}function fB(e){return e==null||mB(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ge||w.isTypedArray(e)}function mB(e){return e===null||typeof e!="object"&&typeof e!="function"}function gB(e){return hB(e,AB)}function AB(e){return e instanceof Ge?{value:e.clone(),recurse:!1}:Yl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var I7=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},i2=class extends I7{constructor(){super(i2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};i2.INITIAL_CAPACITY=32;function S7(e){return new bB(e)}function l2(e){return new vB(e)}function yB(e,t){return new T7(e,t)}function xB(e,t=ua.FAIL){return new RB(e,t)}var en=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new NB(this,e)}filter(e){return new CB(this,e)}map(e){return new TB(this,e)}mapAsync(e){return new C7(this,e)}serialMapAsync(e){return new C7(this,e).serial()}flatmap(e){return new EB(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new SB(this,e,t)}columnMajorBatch(e,t=!0,n=w7){return this.rowMajorBatch(e,t).map(r=>pB(r,n))}concatenate(e,t){return new T7(S7([this,e]),t)}take(e){return e<0||e==null?this:new IB(this,e)}skip(e){return e<0||e==null?this:new kB(this,e)}prefetch(e){return new N7(this,e)}shuffle(e,t){return new _B(this,e,t)}serial(){return new wB(this)}},bB=class extends en{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:gB(e),done:!1}}},vB=class extends en{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},wB=class extends en{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},kB=class extends en{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;K(e.value)}return this.upstream.next()}},IB=class extends en{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},SB=class extends en{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},CB=class extends en{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;K(e.value)}}},TB=class extends en{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=$s.getTensorsInContainer(e.value),n=this.transform(e.value),s=$s.getTensorsInContainer(n);for(let r of t)$s.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},NB=class extends en{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},C7=class extends en{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=$s.getTensorsInContainer(e.value),n=await this.transform(e.value),s=$s.getTensorsInContainer(n);for(let r of t)$s.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},u2=class extends en{constructor(){super();this.outputQueue=new i2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},EB=class extends u2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=$s.getTensorsInContainer(e.value),n=this.transform(e.value),s=$s.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)$s.isTensorInList(r,s)||r.dispose();return!0}},T7=class extends en{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},ua;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(ua||(ua={}));var RB=class extends en{constructor(e,t=ua.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof en?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await k7(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case ua.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ua.SHORTEST:return{value:null,done:!0};case ua.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},N7=class extends en{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new I7(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},_B=class extends N7{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=dB.alea(n||w.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Jl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;w.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),Kn(async()=>(await n.iterator()).columnMajorBatch(e,t,FB),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Kn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,Kn(async()=>(await t.iterator()).filter(s=>H(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Kn(async()=>(await t.iterator()).map(n=>H(()=>e(n))),this.size)}mapAsync(e){let t=this;return Kn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Kn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,Kn(async()=>{let s=l2(async()=>({value:await t.iterator(),done:!1}));return yB(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Kn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=cB.alea(t||w.now().toString());return Kn(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Kn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Jl.MAX_BUFFER_SIZE=1e4;function Kn(e,t=null){return new class extends Jl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function DB(e){return Kn(async()=>S7(e),e.length)}function $B(e){if(!Yl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Kn(async()=>{let n=await k7(e,s=>{if(s instanceof Jl)return{value:s.iterator(),recurse:!1};if(Yl(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return xB(n,ua.SHORTEST)},t)}function FB(e){if(e===null)return null;let t=e[0];return fB(t)?{value:OB(e),recurse:!1}:{value:null,recurse:!0}}function OB(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ge?Dn(e):dn(e)}var E7=class extends Jl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},rf='"',Wc=Symbol("out"),R7=Symbol("field"),af=Symbol("quote"),c2=Symbol("quoteafterquote"),_7=Symbol("quoteinquote"),D7=class extends Jl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new E7(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(w.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&w.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(w.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r<this.fullColumnNames.length;r++){let a=this.fullColumnNames[r],o=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!o)){let i=t[r],l=null;if(i==="")if(o&&o.default!==void 0)l=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);l=void 0}else{let u=Number(i);if(isNaN(u))o&&o.dtype==="bool"?l=this.getBoolean(i):l=i;else if(!o||!o.dtype)l=u;else switch(o.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(i);break;default:l=u}}o&&o.isLabel?s[a]=l:n[a]=l}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],s=0,r=e.length,a=Wc;for(let o=0;o<r;o++)switch(a){case Wc:switch(e.charAt(o)){case rf:s=o+1,a=af;break;case this.delimiter:if(s=o+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=Wc;break;default:a=R7,s=o;break}break;case R7:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o)),a=Wc,s=o+1;break;default:}break;case af:switch(e.charAt(o)){case rf:a=c2;break;default:}break;case c2:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o-1)),a=Wc,s=o+1;break;case rf:a=af;break;default:a=_7;break}break;case _7:switch(e.charAt(o)){case rf:a=af;break;default:}break;default:}if(a===c2?n.push(e.substring(s,r-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},$7=class extends en{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(Q().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new $7(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(w.sizeFromShape(t));return n.set(e,n.length-e.length),dn(n,t)}},F7=class extends en{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Mt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=Ms([a,r,i,o],[1,4])}else this.cropBox=Ms([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(Q().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new F7(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&w.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=ls.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return H(()=>{let t=Ot(ce(e,"float32"),0),n;n=_e.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return U(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},O7=class{},P7=class extends en{split(e){return new PB(this,e)}},PB=class extends P7{constructor(e,t){super();this.upstream=e,this.impl=new MB(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},MB=class extends u2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},zB=class extends en{decodeUTF8(){return new LB(this)}},LB=class extends P7{constructor(e){super();this.upstream=e,this.impl=new BB(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},BB=class extends u2{constructor(e){super();if(this.upstream=e,Q().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=x5();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return Q().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},M7=class extends zB{constructor(e,t={}){super();this.file=e,this.options=t,w.assert(e instanceof Uint8Array||(Q().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function WB(e,t={}){let n,s;typeof e=="string"?n=e:(n=e.url,s=VB(e));let r=await w.fetch(n,s);if(r.ok){let a=new Uint8Array(await r.arrayBuffer());return new M7(a,t)}else throw new Error(r.statusText)}var VB=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function z7(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var L7=class extends O7{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(z7(this.input)&&Q().get("IS_NODE")){let e=vi("fs");this.input=e.readFileSync(this.input.substr(7))}return new M7(this.input,this.options)}},B7=class extends O7{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return z7(this.url)?new L7(this.url,this.fileOptions).iterator():WB(this.url,this.fileOptions)}};function UB(e,t={}){return new D7(new B7(e),t)}function HB(e){let t=l2(e);return Kn(async()=>t)}function GB(e){return Kn(async()=>{let t=await e();return l2(()=>t.next())})}async function jB(e,t){return F7.create(e,t)}async function qB(e){return $7.create(e)}var XB="3.9.0";function ke(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var KB=rr.whereImpl,of=class extends $u{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Hd(this,wr())}nextDataId(){return of.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,Q().get("IS_NODE")&&D.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(a=>w.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return D.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>w.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}makeOutput(e,t,n){let s=this.write(e,t,n);return wr().makeTensorFromDataId(s,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ke([e],"where");let t=this.readSync(e.dataId);return KB(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};of.nextDataId=0;var d2={};Pe(d2,{addImpl:()=>V7,bincountImpl:()=>p2,bincountReduceImpl:()=>U7,ceilImpl:()=>H7,concatImpl:()=>f2,equalImpl:()=>G7,expImpl:()=>q7,expm1Impl:()=>K7,floorImpl:()=>Z7,gatherNdImpl:()=>Y7,gatherV2Impl:()=>J7,greaterEqualImpl:()=>ew,greaterImpl:()=>Q7,lessEqualImpl:()=>nw,lessImpl:()=>tw,linSpaceImpl:()=>sw,logImpl:()=>rw,maxImpl:()=>aw,maximumImpl:()=>ow,minimumImpl:()=>iw,multiplyImpl:()=>m2,negImpl:()=>lw,notEqualImpl:()=>uw,prodImpl:()=>cw,rangeImpl:()=>A2,rsqrtImpl:()=>dw,sigmoidImpl:()=>MW,simpleAbsImpl:()=>W7,sliceImpl:()=>cf,sparseFillEmptyRowsImpl:()=>pw,sparseReshapeImpl:()=>fw,sparseSegmentReductionImpl:()=>y2,sqrtImpl:()=>BW,squaredDifferenceImpl:()=>mw,stridedSliceImpl:()=>gw,stringNGramsImpl:()=>Aw,stringSplitImpl:()=>yw,stringToHashBucketFastImpl:()=>xw,subImpl:()=>bw,tileImpl:()=>vw,topKImpl:()=>kw,transposeImpl:()=>g2,uniqueImpl:()=>Iw});function W7(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var ZB=e=>{let{x:t}=e.inputs,n=e.backend;ke(t,"abs");let s=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=W7(r),n.makeOutput(s,t.shape,"float32")},YB={kernelName:Ii,backendName:"cpu",kernelFunc:ZB};function Lt(e){return(t,n,s,r,a)=>{let o=D.assertAndGetBroadcastShape(t,n),i=o.length,l=w.computeStrides(o),u=w.sizeFromShape(o),c=w.getTypedArrayFromDType(a,u),d=t.length,h=n.length,p=w.computeStrides(t),f=w.computeStrides(n),m=D.getBroadcastDims(t,o),g=D.getBroadcastDims(n,o);if(m.length+g.length===0)for(let A=0;A<c.length;++A)c[A]=e(s[A%s.length],r[A%r.length]);else for(let A=0;A<c.length;++A){let y=w.indexToLoc(A,i,l),x=y.slice(-d);m.forEach(S=>x[S]=0);let b=w.locToIndex(x,d,p),v=y.slice(-h);g.forEach(S=>v[S]=0);let k=w.locToIndex(v,h,f);c[A]=e(s[b],r[k])}return[c,o]}}function Zn(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var JB={kernelName:Jd,backendName:"cpu",kernelFunc:Zn};function lf(e,t,n="float32"){if(n==="complex64"){let r=lf(e,t,"float32"),a=lf(e,t,"float32");return Zn({inputs:{real:r,imag:a},backend:e})}let s=w.makeZerosTypedArray(w.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function cr(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var QB={kernelName:qa,backendName:"cpu",kernelFunc:cr};function Zo(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var eW={kernelName:xh,backendName:"cpu",kernelFunc:Zo};function ca(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return cr({inputs:{x:r},backend:n});let o=lf(n,r.shape,r.dtype),i=ca({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Zn({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=Zo({inputs:{input:r},backend:n}),i=ca({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!w.hasEncodingLoss(r.dtype,a)){let o=cr({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(r.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(r.shape,"int32",i)}if(a==="bool"){let o=n.data.get(r.dataId).values,i=w.toTypedArray([0],r.dtype),[l,u]=Lt((c,d)=>c!==d?1:0)(r.shape,[],o,i,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var tW={kernelName:Da,backendName:"cpu",kernelFunc:ca};function tn(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;ke([o,i],e);let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,d=o.dtype==="string"?D.fromUint8ToStringArray(u):u,h=o.dtype==="string"?D.fromUint8ToStringArray(c):c,p=s||o.dtype,[f,m]=t(o.shape,i.shape,d,h,p);return l.makeTensorInfo(m,p,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let u=ca({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),d=c.complexTensorInfos.real,h=c.complexTensorInfos.imag,p=l.data.get(d.dataId).values,f=l.data.get(h.dataId).values,m=ca({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),A=g.complexTensorInfos.real,y=g.complexTensorInfos.imag,x=l.data.get(A.dataId).values,b=l.data.get(y.dataId).values,[v,k,S]=n(o.shape,i.shape,p,f,x,b),C=l.makeTensorInfo(S,"float32",v),_=l.makeTensorInfo(S,"float32",k),O=Zn({inputs:{real:C,imag:_},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(C),l.disposeIntermediateTensorInfo(_),O}else{let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,d=s||o.dtype,[h,p]=t(o.shape,i.shape,u,c,d);return l.makeTensorInfo(p,d,h)}}}function h2(e){return(t,n,s,r,a,o)=>{let i=D.assertAndGetBroadcastShape(t,n),l=w.sizeFromShape(i),u=i.length,c=w.computeStrides(i),d=w.getTypedArrayFromDType("float32",l),h=w.getTypedArrayFromDType("float32",l),p=D.getBroadcastDims(t,i),f=D.getBroadcastDims(n,i),m=D.mergeRealAndImagArrays(s,r),g=D.mergeRealAndImagArrays(a,o),A=t.length,y=w.computeStrides(t),x=n.length,b=w.computeStrides(n);if(p.length+f.length===0)for(let v=0;v<d.length;v++){let k=v%m.length,S=v%g.length,C=e(m[k*2],m[k*2+1],g[S*2],g[S*2+1]);d[v]=C.real,h[v]=C.imag}else for(let v=0;v<d.length;v++){let k=w.indexToLoc(v,u,c),S=k.slice(-A);p.forEach(R=>S[R]=0);let C=w.locToIndex(S,A,y),_=k.slice(-x);f.forEach(R=>_[R]=0);let O=w.locToIndex(_,x,b),E=e(m[C*2],m[C*2+1],g[O*2],g[O*2+1]);d[v]=E.real,h[v]=E.imag}return[d,h,i]}}var V7=Lt((e,t)=>e+t),nW=h2((e,t,n,s)=>({real:e+n,imag:t+s})),Vc=tn(Vr,V7,nW),sW={kernelName:Vr,backendName:"cpu",kernelFunc:Vc};function p2(e,t,n,s,r){let a=w.sizeFromShape(s),o=w.makeZerosTypedArray(r,n);for(let i=0;i<e.length;i++){let l=e[i];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function U7(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=We([r,n],t.dtype);for(let i=0;i<r;i++)for(let l=0;l<a;l++){let u=e.get(i,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(s?o.set(1,i,u):t.size>0?o.set(o.get(i,u)+t.get(i,l),i,u):o.set(o.get(i,u)+1,i,u))}return o}function da(e){return(t,n,s)=>{let r=w.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function ot(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(ke(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=w.sizeFromShape(o.shape),c=n||o.dtype,d=w.getArrayFromDType(c,u);for(let h=0;h<u;++h)d[h]=t(l[h],r);return i.makeTensorInfo(o.shape,c,d)}}function Ql(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(ke(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=n||o.dtype,c=t(l,u,r);return i.makeTensorInfo(o.shape,u,c)}}var H7=da(e=>Math.ceil(e)),rW=Ql($a,H7),aW={kernelName:$a,backendName:"cpu",kernelFunc:rW};function f2(e,t,n,s){let r=w.getArrayFromDType(n,w.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=w.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?D.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let u=0;u<o.shape[0];++u){let c=u*t[1]+a;for(let d=0;d<o.shape[1];++d)r[c+d]=i[l++]}a+=o.shape[1]})}return r}var G7=Lt((e,t)=>e===t?1:0),j7=tn(Li,G7,null,"bool"),oW={kernelName:Li,backendName:"cpu",kernelFunc:j7},q7=da(e=>Math.exp(e)),X7=Ql(Va,q7),iW={kernelName:Va,backendName:"cpu",kernelFunc:X7},K7=da(e=>Math.expm1(e)),lW=Ql(Wi,K7),uW={kernelName:Wi,backendName:"cpu",kernelFunc:lW},Z7=da(e=>Math.floor(e)),cW=Ql(Ua,Z7),dW={kernelName:Ua,backendName:"cpu",kernelFunc:cW};function Y7(e,t,n,s,r,a,o,i,l){let u=We([s,a],n);for(let c=0;c<s;c++){let d=[],h=0;for(let p=0;p<r;p++){let f=e[c*r+p];h+=f*o[p],d.push(f)}if(h<0||h>=l/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let p=0;p<a;p++)u.values[c*a+p]=t.get(...t.indexToLoc(h*a+p))}return u}function J7(e,t,n){let s=We(n,e.dtype);for(let r=0;r<s.size;++r){let o=s.indexToLoc(r).slice(),i=o[0],l=o[2],u=t.locToIndex([i,l]);o[2]=t.values[u];let c=e.locToIndex(o);s.values[r]=e.values[c]}return s}var Q7=Lt((e,t)=>e>t?1:0),hW=tn(Gi,Q7,null,"bool"),pW={kernelName:Gi,backendName:"cpu",kernelFunc:hW},ew=Lt((e,t)=>e>=t?1:0),fW=tn(ja,ew,null,"bool"),mW={kernelName:ja,backendName:"cpu",kernelFunc:fW},tw=Lt((e,t)=>e<t?1:0),gW=tn(Ki,tw,null,"bool"),AW={kernelName:Ki,backendName:"cpu",kernelFunc:gW},nw=Lt((e,t)=>e<=t?1:0),yW=tn(Zi,nw,null,"bool"),xW={kernelName:Zi,backendName:"cpu",kernelFunc:yW};function sw(e,t,n){let s=(t-e)/(n-1),r=w.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var rw=da(e=>Math.log(e)),bW=Ql(Ka,rw),vW={kernelName:Ka,backendName:"cpu",kernelFunc:bW};function aw(e,t,n,s){let r=w.getTypedArrayFromDType(s,w.sizeFromShape(n));for(let a=0;a<r.length;++a){let o=a*t,i=e[o];for(let l=0;l<t;++l){let u=e[o+l];(Number.isNaN(u)||u>i)&&(i=u)}r[a]=i}return r}var ow=Lt((e,t)=>Math.max(e,t)),wW=tn(Ya,ow),kW={kernelName:Ya,backendName:"cpu",kernelFunc:wW},iw=Lt((e,t)=>Math.min(e,t)),IW=tn(to,iw),SW={kernelName:to,backendName:"cpu",kernelFunc:IW},m2=Lt((e,t)=>e*t),CW=h2((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),uf=tn(so,m2,CW),TW={kernelName:so,backendName:"cpu",kernelFunc:uf};function lw(e,t,n){let s=w.createScalarValue(-1,n);return m2([],t,s,e,n)}function NW(e){let{inputs:t,backend:n}=e,{x:s}=t;ke(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=lw(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var EW={kernelName:el,backendName:"cpu",kernelFunc:NW},uw=Lt((e,t)=>e!==t?1:0),RW=tn(tl,uw,null,"bool"),_W={kernelName:tl,backendName:"cpu",kernelFunc:RW};function g2(e,t,n,s,r){let a=t.length,o=w.sizeFromShape(t),i=w.computeStrides(t),l=w.computeStrides(r),u=w.getTypedArrayFromDType(n,w.sizeFromShape(r));for(let c=0;c<o;++c){let d=w.indexToLoc(c,a,i),h=new Array(d.length);for(let f=0;f<h.length;f++)h[f]=d[s[f]];let p=w.locToIndex(h,a,l);u[p]=e[c]}return u}function As(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{perm:a}=n;ke(r,"transpose");let o=r.shape.length,i=new Array(o);for(let d=0;d<i.length;d++)i[d]=r.shape[a[d]];let l=s.data.get(r.dataId).values,u=g2(l,r.shape,r.dtype,a,i);return{dataId:s.write(u,i,r.dtype),shape:i,dtype:r.dtype}}var DW={kernelName:Io,backendName:"cpu",kernelFunc:As};function cw(e,t,n,s){let[r,a]=D.computeOutAndReduceShapes(e,s),o=Cs(t,"int32"),i=w.makeZerosTypedArray(w.sizeFromShape(r),o),l=w.sizeFromShape(a);for(let u=0;u<i.length;++u){let c=u*l,d=1;for(let h=0;h<l;++h)d*=n[c+h];i[u]=d}return{outVals:i,outShape:r,outDtype:o}}function $W(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;ke(r,"prod");let i=r.shape.length,l=w.parseAxisParam(a,r.shape),u=D.getAxesPermutation(l,i),c=l,d=r,h=[];u!=null&&(d=As({inputs:{x:r},backend:n,attrs:{perm:u}}),h.push(d),c=D.getInnerMostAxes(c.length,i));let p=n.data.get(d.dataId).values,{outVals:f,outShape:m,outDtype:g}=cw(d.shape,d.dtype,p,c),A=m;return o&&(A=D.expandShapeToKeepDim(m,l)),h.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(A,g,f)}var FW={kernelName:il,backendName:"cpu",kernelFunc:$W};function A2(e,t,n,s){let r=e===t,a=e<t&&n<0,o=t<e&&n>1;if(r||a||o)return w.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=w.makeZerosTypedArray(i,s);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var dw=da(e=>1/Math.sqrt(e)),OW=Ql(fo,dw),PW={kernelName:fo,backendName:"cpu",kernelFunc:OW},MW=da(e=>1/(1+Math.exp(-e))),hw=ot(go,e=>1/(1+Math.exp(-e))),zW={kernelName:go,backendName:"cpu",kernelFunc:hw};function cf(e,t,n,s,r){let a=xn.isSliceContinous(s,t,n),o=w.sizeFromShape(n),i=w.computeStrides(s);if(a){let d=xn.computeFlatOffset(t,i);return r==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let l=r==="string"?D.fromUint8ToStringArray(e):e,u=We(s,r,l),c=We(n,r);for(let d=0;d<c.size;++d){let h=c.indexToLoc(d),p=h.map((f,m)=>f+t[m]);c.set(u.get(...p),...h)}return r==="string"?D.fromStringArrayToUint8(c.values):c.values}function Yo(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;ke(r,"slice");let[i,l]=xn.parseSliceParams(r,a,o);xn.assertParamsValid(r,i,l);let u=n.data.get(r.dataId).values,c=cf(u,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}var LW={kernelName:pl,backendName:"cpu",kernelFunc:Yo};function pw(e,t,n,s,r,a,o){let i=t[0],l=a[0],u=new Array(l),c=new Array(i),d=t[1];if(l===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${i}`);let g=w.getArrayFromDType(n,0),A=w.getArrayFromDType(r,0);return[g,[0,d],A,u,c]}let h=!0,p=0,f=new Array(l).fill(0);for(let g=0;g<i;++g){let A=e[g*d];if(A<0)throw new Error(`indices(${g}, 0) is invalid: ${A} < 0`);if(A>=l)throw new Error(`indices(${g}, 0) is invalid: ${A} >= ${l}`);++f[A],h=h&&A>=p,p=A}let m=!0;for(let g=0;g<l;++g){let A=f[g]===0;u[g]=A,m=m&&!A,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&h){let g=e,A=s;for(let y=0;y<i;++y)c[y]=y;return[g,[i,d],A,u,c]}else{let g=f[l-1],A=w.getArrayFromDType(n,g*d),y=w.getArrayFromDType(r,g),x=new Array(l).fill(0);for(let b=0;b<i;++b){let v=e[b*d],k=x[v],S=(v===0?0:f[v-1])+k;x[v]++;for(let C=0;C<d;++C)A[S*d+C]=e[b*d+C];y[S]=s[b],c[b]=S}for(let b=0;b<l;++b)if(x[b]===0){let k=b===0?0:f[b-1];A[k*d+0]=b;for(let S=1;S<d;++S)A[k*d+S]=0;y[k]=o}return[A,[g,d],y,u,c]}}function fw(e,t,n,s,r){let a=w.sizeFromShape(s),o=t[0],i=r.length,l=[],u=1,c=-1;for(let g=0;g<i;++g){let A=r[g];if(A===-1){if(c!==-1)throw new Error(`only one output dimension may be -1, not both ${c} and ${g}`);c=g,l.push(1)}else{if(A<0)throw new Error(`size ${g} must be non-negative, not ${A}`);u*=A,l.push(A)}}if(c!==-1){if(u<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let g=Math.trunc(a/u);if(u*g!==a)throw new Error(`Input to reshape is a SparseTensor with ${a}
|
|
dense values, but the requested shape requires a multiple of ${u}. inputShape=${s} outputShape= ${l}`);l[c]=g}let d=w.sizeFromShape(l);if(d!==a)throw new Error(`Input to reshape is a tensor with ${a} dense values, but the requested shape has ${d}. inputShape=${s} outputShape=${l}`);let h=s.length,p=[];if(h>0){p[h-1]=1;for(let g=h-2;g>=0;--g)p[g]=p[g+1]*s[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=w.getArrayFromDType(n,o*i);for(let g=0;g<o;++g){let A=0;for(let y=0;y<h;++y)A+=e[g*h+y]*p[y];for(let y=0;y<i;++y)m[g*i+y]=Math.trunc(A/f[y]),A%=f[y]}return[m,[o,i],l]}function y2(e,t,n,s,r,a=!1,o=0){let i=s.length;if(i!==r.length)throw new Error("segmentIds and indices should have same size.");let l=[t[0],e.length/t[0]],u=l[1],d=i>0?r[i-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let h=t.slice();h[0]=d;let p=h.reduce((x,b)=>x*b,1),f=w.getArrayFromDType(n,p);if(i===0)return d>0&&f.fill(o),[f,h];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,g=1,A=0,y=r[m];for(;;){let x=0;if(g<i){if(x=r[g],y===x){++g;continue}if(y>=x)throw new Error("segment ids are not increasing")}if(y<0||y>=d)throw new Error(`Segment id ${y} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);y>A&&f.fill(o,A*u,y*u);for(let b=m;b<g;++b){let v=s[b];if(v<0||v>=l[0])throw new Error(`Bad: indices[${b}] == ${s[b]} out of range [0, ${l[0]})`);for(let k=0;k<u;k++)f[y*u+k]+=e[v*u+k]}if(a)for(let b=0;b<u;b++)f[y*u+b]/=g-m;if(m=g,++g,A=y+1,y=x,g>i)break}return A<d&&f.fill(o,A*u,d*u),[f,h]}var BW=da(e=>Math.sqrt(e)),WW=ot(Ao,e=>Math.sqrt(e)),VW={kernelName:Ao,backendName:"cpu",kernelFunc:WW},mw=Lt((e,t)=>{let n=e-t;return n*n}),UW=tn(bo,mw),HW={kernelName:bo,backendName:"cpu",kernelFunc:UW};function gw(e,t,n,s){let r=We(e,t.dtype);for(let a=0;a<r.size;a++){let o=r.indexToLoc(a),i=new Array(o.length);for(let l=0;l<i.length;l++)i[l]=o[l]*n[l]+s[l];r.set(t.get(...i),...o)}return r}var GW=class{constructor(e,t,n,s,r,a){this.separator=w.encodeString(e),this.nGramWidths=t,this.leftPad=w.encodeString(n),this.rightPad=w.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let o=0;o<r;++o){let i=this.getPadWidth(a),l=Math.max(0,i-o),u=Math.max(0,i-(r-(o+1))),c=a-(l+u),d=t+(l>0?0:o-i),h=0;h+=l*this.leftPad.length;for(let A=0;A<c;++A)h+=e[d+A].length;h+=u*this.rightPad.length,h+=(l+u+c-1)*this.separator.length,n[s+o]=new Uint8Array(h);let f=n[s+o],m=0,g=A=>A.forEach(y=>f[m++]=y);for(let A=0;A<l;++A)g(this.leftPad),g(this.separator);for(let A=0;A<c-1;++A)g(e[d+A]),g(this.separator);if(c>0){g(e[d+c-1]);for(let A=0;A<u;++A)g(this.separator),g(this.rightPad)}else{for(let A=0;A<u-1;++A)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l<s;++l){let u=t[l]>=i;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=w.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],u=0;this.nGramWidths.forEach(c=>{u+=this.getNumNGrams(l,c)}),this.preserveShort&&l>0&&u===0&&(u=1),a[i]=a[i-1]+u}let o=new Array(a[r]);for(let i=0;i<r;++i){let l=t[i],u=a[i];if(this.nGramWidths.forEach(c=>{let d=t[i+1]-t[i],h=this.getNumNGrams(d,c);this.createNGrams(e,l,o,u,h,c),u+=h}),this.preserveShort&&u===a[i]){let c=t[i+1]-t[i];if(c===0)continue;let d=c+2*this.padWidth,h=1;this.createNGrams(e,l,o,u,h,d)}}return[o,a]}};function Aw(e,t,n,s,r,a,o,i){return new GW(n,s,r,a,o,i).compute(e,t)}function jW(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)s.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],o=e.indexOf(a);for(;o!==-1;){let i=e.subarray(0,o);(!n||i.length!==0)&&s.push(i),e=e.subarray(o+1),o=e.indexOf(a)}(!n||e.length!==0)&&s.push(e);return}let r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(r,a);(!n||o.length!==0)&&s.push(o),r=a+1}}function yw(e,t,n){let s=e.length,r=[],a=0,o=0,i=new Array(s);for(let h=0;h<s;++h){let p=r.length;jW(e[h],t,n,r);let f=r.length-p;i[h]=f,a+=f,o=Math.max(o,f)}let l=w.getArrayFromDType("int32",a*2),u=new Array(a),c=[s,o],d=0;for(let h=0;h<s;++h)for(let p=0;p<i[h];++p)l[d*2]=h,l[d*2+1]=p,u[d]=r[d],++d;return[l,u,c]}function xw(e,t){let n=w.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=w.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var bw=Lt((e,t)=>e-t),qW=h2((e,t,n,s)=>({real:e-n,imag:t-s})),x2=tn(vo,bw,qW),XW={kernelName:vo,backendName:"cpu",kernelFunc:x2};function vw(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=We(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),o=new Array(e.rank);for(let l=0;l<o.length;l++)o[l]=a[l]%e.shape[l];let i=e.locToIndex(o);s.values[r]=e.values[i]}return s}var Uc=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function ww(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,u=Math.log(i),c=.5*Math.exp(2*u/3),d=.5*Math.sqrt(u*c*(i-c)/i)*Math.sign(l-i/2),h=Math.max(n,Math.floor(t-l*c/i+d)),p=Math.min(s,Math.floor(t+(i-l)*c/i+d));ww(e,t,h,p)}let r=e[t],a=n,o=s;for(w.swap(e,n,t),Uc(e[s],r)>0&&w.swap(e,n,s);a<o;){for(w.swap(e,a,o),a++,o--;Uc(e[a],r)<0;)a=a+1;for(;Uc(e[o],r)>0;)o=o-1}Uc(e[n],r)===0?w.swap(e,n,o):(o=o+1,w.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function kw(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=w.getTypedArrayFromDType(n,o*s),u=w.getTypedArrayFromDType("int32",o*s);for(let d=0;d<o;d++){let h=d*i,p=e.subarray(h,h+i),f=new Array(p.length);p.forEach((y,x)=>f[x]={value:y,index:x}),s<f.length&&(ww(f,s),f=f.slice(0,s)),r&&f.sort(Uc);let m=d*s,g=l.subarray(m,m+s),A=u.subarray(m,m+s);for(let y=0;y<s;y++)g[y]=f[y].value,A[y]=f[y].index}let c=t.slice();return c[c.length-1]=s,[We(c,n,l),We(c,"int32",u)]}function Iw(e,t,n,s){let r=w.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<r;f++)a[0]*=n[f];a[1]=n[r];for(let f=r+1;f<n.length;f++)a[2]*=n[f];let o={},i=new Int32Array(n[r]),l=new Ut(a,s,e),u=[],c=a[0]===1&&a[2]===1;for(let f=0;f<n[r];f++){let m;if(c)m=e[f].toString();else{let g=[];for(let A=0;A<a[0];A++)for(let y=0;y<a[2];y++)g.push(l.get(A,f,y));m=g.join(",")}if(o[m]!==void 0)i[f]=o[m];else{let g=Object.keys(o).length;o[m]=g,i[f]=g,u.push(f)}}let d=a.slice();d[1]=Object.keys(o).length;let h=new Ut(d,s);u.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let A=0;A<a[2];A++)h.set(l.get(g,f,A),g,m,A)});let p=n.slice();return p[r]=d[1],{outputValues:h.values,outputShape:p,indices:i}}var KW="3.9.0";Dl("cpu",()=>new of,1);var Sw=ot(Wa,e=>e>=0?e:Math.exp(e)-1),ZW={kernelName:Wa,backendName:"cpu",kernelFunc:Sw};function Cw(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;ke([r],"leakyRelu");let o=w.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=w.getTypedArrayFromDType("float32",o);for(let u=0;u<i.length;u++)l[u]=i[u]<0?a*i[u]:i[u];return n.makeTensorInfo(r.shape,"float32",l)}var YW={kernelName:Xa,backendName:"cpu",kernelFunc:Cw},JW=Lt((e,t)=>e<0?t*e:e);function Tw(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;ke([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=JW(s.shape,r.shape,a,o,s.dtype);return n.makeTensorInfo(l,s.dtype,i)}var QW={kernelName:io,backendName:"cpu",kernelFunc:Tw},Nw=ot(lo,e=>Math.max(0,e)),eV={kernelName:lo,backendName:"cpu",kernelFunc:Nw},Ew=ot(co,e=>Math.min(Math.max(0,e),6)),tV={kernelName:co,backendName:"cpu",kernelFunc:Ew};function b2(e,t,n,s,r){if(n==="linear")return cr({inputs:{x:t},backend:e});if(n==="relu")return Nw({inputs:{x:t},backend:e});if(n==="elu")return Sw({inputs:{x:t},backend:e});if(n==="relu6")return Ew({inputs:{x:t},backend:e});if(n==="prelu")return Tw({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return Cw({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return hw({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function xt(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=w.sizeFromShape(r.shape),i=w.inferFromImplicitShape(a,o),l=w.sizeFromShape(i);w.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,d=u.complexTensorInfos.imag;c.shape=i,d.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var nV={kernelName:ul,backendName:"cpu",kernelFunc:xt};function Rw(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;ke([r,a],"matMul");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[u-1]:a.shape[u-2],h=o?r.shape[l-1]:r.shape[l-2],p=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),A=w.sizeFromShape(m),y=g===A||g===1||A===1;w.assert(l>=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>A?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([h,p]);w.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[g,c,h]:[g,h,c],k=i?[A,p,d]:[A,d,p],S=xt({inputs:{x:r},backend:n,attrs:{shape:v}}),C=xt({inputs:{x:a},backend:n,attrs:{shape:k}}),_=o?S.shape[1]:S.shape[2],O=o?S.shape[2]:S.shape[1],E=i?C.shape[1]:C.shape[2],R=Math.max(g,A),T=n.data.get(S.dataId).values,P=n.data.get(C.dataId).values,V=w.computeStrides(S.shape),j=w.computeStrides(C.shape),[q,X,ee]=o?[V[0],1,V[1]]:[V[0],V[1],1],[te,ne,se]=i?[1,j[1],j[0]]:[j[1],1,j[0]],J=O*E,ie=We([R,O,E],S.dtype),le=ie.values,he=n.blockSize;for(let Ae=0;Ae<R;Ae++)for(let Ce=0;Ce<O;Ce+=he)for(let Te=0;Te<E;Te+=he)for(let De=0;De<_;De+=he){let Me=Math.min(Ce+he,O),Fe=Math.min(Te+he,E),ut=Math.min(De+he,_);for(let nt=Ce;nt<Me;nt++)for(let st=Te;st<Fe;st++){let et=0;for(let it=De;it<ut;it++){let He=Math.min(Ae,g-1)*q,Nn=Math.min(Ae,A-1)*se,St=T[He+nt*X+it*ee],Wn=P[it*te+st*ne+Nn];et+=St*Wn}le[Ae*J+(nt*E+st)]+=et}}return n.disposeIntermediateTensorInfo(S),n.disposeIntermediateTensorInfo(C),n.makeTensorInfo(b,ie.dtype,ie.values)}var sV={kernelName:_a,backendName:"cpu",kernelFunc:Rw};function rV(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=s,h,p,f,m=[];h=Rw({inputs:{a:r,b:a},attrs:{transposeA:l,transposeB:u},backend:n}),o&&(p=Vc({inputs:{a:h,b:o},backend:n}),m.push(h),h=p),c&&(f=b2(n,h,c,i,d),m.push(h),h=f);for(let A of m)n.disposeIntermediateTensorInfo(A);return h}var aV={kernelName:So,backendName:"cpu",kernelFunc:rV},oV=ot(Si,e=>Math.acos(e)),iV={kernelName:Si,backendName:"cpu",kernelFunc:oV},lV=ot(Ci,e=>Math.acosh(e)),uV={kernelName:Ci,backendName:"cpu",kernelFunc:lV};function cV(e){let{inputs:t,backend:n}=e,s=t;ke(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=We(s[0].shape,s[0].dtype),o=a.values;for(let i=0;i<s.length;i++){let l=r[i];for(let u=0;u<o.length;u++)o[u]+=l[u]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var dV={kernelName:Na,backendName:"cpu",kernelFunc:cV};function hV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;ke(r,"all");let i=w.parseAxisParam(a,r.shape),l=i,u=D.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=As({inputs:{x:r},backend:n,attrs:{perm:u}}),l=D.getInnerMostAxes(l.length,r.shape.length)),D.assertAxesAreInnerMostDims("all",l,c.shape.length);let[d,h]=D.computeOutAndReduceShapes(c.shape,l),p=w.sizeFromShape(h),f=w.makeZerosTypedArray(w.sizeFromShape(d),c.dtype),m=n.data.get(c.dataId).values;for(let A=0;A<f.length;++A){let y=A*p,x=m[y];for(let b=0;b<p;++b){let v=m[y+b];x=x&&v}f[A]=x}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(d,c.dtype,f);if(o){let A=D.expandShapeToKeepDim(d,i),y=xt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var pV={kernelName:Ti,backendName:"cpu",kernelFunc:hV};function fV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;ke(r,"any");let i=w.parseAxisParam(a,r.shape),l=i,u=D.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=As({inputs:{x:r},backend:n,attrs:{perm:u}}),l=D.getInnerMostAxes(l.length,r.shape.length)),D.assertAxesAreInnerMostDims("any",l,c.shape.length);let[d,h]=D.computeOutAndReduceShapes(c.shape,l),p=w.sizeFromShape(h),f=w.makeZerosTypedArray(w.sizeFromShape(d),c.dtype),m=n.data.get(c.dataId).values;for(let A=0;A<f.length;++A){let y=A*p,x=m[y];for(let b=0;b<p;++b){let v=m[y+b];x=x||v}f[A]=x}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(d,c.dtype,f);if(o){let A=D.expandShapeToKeepDim(d,i),y=xt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var mV={kernelName:Ni,backendName:"cpu",kernelFunc:fV};function gV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;ke(r,"argMax");let o=w.parseAxisParam(a,r.shape),i=D.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=As({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=D.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],D.assertAxesAreInnerMostDims("argMax",o,l.shape.length);let[c,d]=D.computeOutAndReduceShapes(l.shape,o),h=w.sizeFromShape(c),p=w.makeZerosTypedArray(h,"int32"),f=w.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<p.length;++g){let A=g*f,y=m[A],x=0;for(let b=0;b<f;++b){let v=m[A+b];v>y&&(y=v,x=b)}p[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",p)}var AV={kernelName:Ea,backendName:"cpu",kernelFunc:gV};function yV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;ke(r,"argMin");let o=w.parseAxisParam(a,r.shape),i=D.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=As({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=D.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],D.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[c,d]=D.computeOutAndReduceShapes(l.shape,o),h=w.sizeFromShape(c),p=w.makeZerosTypedArray(h,"int32"),f=w.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<p.length;++g){let A=g*f,y=m[A],x=0;for(let b=0;b<f;++b){let v=m[A+b];v<y&&(y=v,x=b)}p[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",p)}var xV={kernelName:Pu,backendName:"cpu",kernelFunc:yV},bV=ot(Ei,e=>Math.asin(e)),vV={kernelName:Ei,backendName:"cpu",kernelFunc:bV},wV=ot(Ri,e=>Math.asinh(e)),kV={kernelName:Ri,backendName:"cpu",kernelFunc:wV},IV=ot(_i,e=>Math.atan(e)),SV={kernelName:_i,backendName:"cpu",kernelFunc:IV},CV=Lt((e,t)=>Math.atan2(e,t)),TV=tn($i,CV),NV={kernelName:$i,backendName:"cpu",kernelFunc:TV},EV=ot(Di,e=>Math.atanh(e)),RV={kernelName:Di,backendName:"cpu",kernelFunc:EV};function v2(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,c=r.effectiveFilterHeight,d=r.effectiveFilterWidth,h=r.padInfo.top,p=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=We(r.outShape,n),g=m.values,A=r.outShape[1]*r.outShape[2]*r.outShape[3],y=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let b=0;b<r.batchSize;++b){let v=b*A,k=b*s[0];for(let S=0;S<r.inChannels;++S)for(let C=0;C<r.outHeight;++C){let _=C*o-h,O=Math.max(0,_),E=Math.min(r.inHeight,c+_),R=v+C*y;for(let T=0;T<r.outWidth;++T){let P=T*i-p,V=Math.max(0,P),j=Math.min(r.inWidth,d+P),q=f,X=0,ee=0;for(let ne=O;ne<E;ne+=l){let se=k+ne*s[1];for(let J=V;J<j;J+=u){let ie=se+J*s[2],le=e[ie+S];a==="max"&&le>q?q=le:a==="avg"&&(X+=le,ee++)}if(isNaN(q))break}let te=R+T*x+S;g[te]=a==="avg"?X/ee:q}}}return m}function _w(e,t,n,s,r=!1,a=!1){let o=We(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,u=s.dilationHeight,c=s.dilationWidth,d=s.effectiveFilterHeight,h=s.effectiveFilterWidth,p=s.padInfo.top,f=s.padInfo.left,m=We(t,n,e);for(let g=0;g<s.batchSize;++g)for(let A=0;A<s.inChannels;++A)for(let y=0;y<s.outHeight;++y){let x=y*i-p,b=x;for(;b<0;)b+=u;let v=Math.min(s.inHeight,d+x);for(let k=0;k<s.outWidth;++k){let S=k*l-f,C=S;for(;C<0;)C+=c;let _=Math.min(s.inWidth,h+S),O=Number.NEGATIVE_INFINITY,E=-1;for(let R=b;R<v;R+=u){let T=R-x;for(let P=C;P<_;P+=c){let V=P-S,j=m.get(g,R,P,A);j>O&&(O=j,r?E=a?((g*s.inHeight+R)*s.inWidth+P)*s.inChannels+A:(R*s.inWidth+P)*s.inChannels+A:E=T*h+V)}}o.set(E,g,y,k,A)}}return o}function Dw(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,c=r.dilationHeight,d=r.dilationWidth,h=r.effectiveFilterDepth,p=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,A=r.padInfo.left,y=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=We(r.outShape,n),b=x.values,v=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[2]*r.outShape[3]*r.outShape[4],S=r.outShape[3]*r.outShape[4],C=r.outShape[4];for(let _=0;_<r.batchSize;++_){let O=_*v,E=_*s[0];for(let R=0;R<r.inChannels;++R)for(let T=0;T<r.outDepth;++T){let P=T*o-m,V=P;for(;V<0;)V+=u;let j=Math.min(r.inDepth,h+P),q=O+T*k;for(let X=0;X<r.outHeight;++X){let ee=X*i-g,te=ee;for(;te<0;)te+=c;let ne=Math.min(r.inHeight,p+ee),se=q+X*S;for(let J=0;J<r.outWidth;++J){let ie=J*l-A,le=ie;for(;le<0;)le+=d;let he=Math.min(r.inWidth,f+ie),Ae=se+J*C,Ce=y,Te=0,De=0;for(let Fe=V;Fe<j;Fe+=u){let ut=E+Fe*s[1];for(let nt=te;nt<ne;nt+=c){let st=ut+nt*s[2];for(let et=le;et<he;et+=d){let it=st+et*s[3],He=e[it+R];if(a==="max"&&He>Ce?Ce=He:a==="avg"&&(Te+=He,De++),isNaN(Ce))break}if(isNaN(Ce))break}if(isNaN(Ce))break}let Me=Ae+R;b[Me]=a==="avg"?Te/De:Ce}}}}return x}function _V(e,t){let n=We(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,d=t.effectiveFilterWidth,h=t.padInfo.front,p=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let A=0;A<t.outDepth;++A){let y=A*s-h,x=y;for(;x<0;)x+=o;let b=Math.min(t.inDepth,u+y);for(let v=0;v<t.outHeight;++v){let k=v*r-p,S=k;for(;S<0;)S+=i;let C=Math.min(t.inHeight,c+k);for(let _=0;_<t.outWidth;++_){let O=_*a-f,E=O;for(;E<0;)E+=l;let R=Math.min(t.inWidth,d+O),T=Number.NEGATIVE_INFINITY,P=-1;for(let V=x;V<b;V+=o){let j=V-y;for(let q=S;q<C;q+=i){let X=q-k;for(let ee=E;ee<R;ee+=l){let te=ee-O,ne=e.get(m,V,q,ee,g);ne>=T&&(T=ne,P=j*c*d+X*c+te)}}}n.set(P,m,A,v,_,g)}}}return n}function DV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;ke(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;w.assert(D.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=D.computePool2DInfo(r.shape,a,o,u,i,l),d;if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))d=cr({inputs:{x:r},backend:n});else{let h=n.data.get(r.dataId).values,p=w.computeStrides(r.shape),f=v2(h,r.shape,r.dtype,p,c,"avg");d=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return d}var $V={kernelName:Ra,backendName:"cpu",kernelFunc:DV};function FV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;ke(r,"avgPool3d");let c=D.computePool3DInfo(r.shape,a,o,1,i,l,u),d=n.data.get(r.dataId).values,h=Dw(d,r.shape,r.dtype,w.computeStrides(r.shape),c,"avg");return n.makeTensorInfo(h.shape,"float32",h.values)}var OV={kernelName:Mu,backendName:"cpu",kernelFunc:FV};function PV(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;ke([r,a],"avgPool3DGrad");let c=D.computePool3DInfo(a.shape,o,i,1,l,u),d=c.strideDepth,h=c.strideHeight,p=c.strideWidth,f=c.filterDepth,m=c.filterHeight,g=c.filterWidth,A=c.dilationDepth,y=c.dilationHeight,x=c.dilationWidth,b=c.effectiveFilterDepth,v=c.effectiveFilterHeight,k=c.effectiveFilterWidth,S=b-1-c.padInfo.front,C=k-1-c.padInfo.left,_=v-1-c.padInfo.top,O=We(a.shape,"float32"),E=1/(f*m*g),R=n.bufferSync(r);for(let T=0;T<c.batchSize;++T)for(let P=0;P<c.inChannels;++P)for(let V=0;V<c.inDepth;++V)for(let j=0;j<c.inHeight;++j)for(let q=0;q<c.inWidth;++q){let X=V-S,ee=j-_,te=q-C,ne=0;for(let se=0;se<b;se+=A){let J=(X+se)/d;if(!(J<0||J>=c.outDepth||Math.floor(J)!==J))for(let ie=0;ie<v;ie+=y){let le=(ee+ie)/h;if(!(le<0||le>=c.outHeight||Math.floor(le)!==le))for(let he=0;he<k;he+=x){let Ae=(te+he)/p;if(Ae<0||Ae>=c.outWidth||Math.floor(Ae)!==Ae)continue;ne+=R.get(T,J,le,Ae,P)}}}O.set(ne*E,T,V,j,q,P)}return n.makeTensorInfo(O.shape,O.dtype,O.values)}var MV={kernelName:Zd,backendName:"cpu",kernelFunc:PV};function zV(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;ke([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=D.computePool2DInfo(o.shape,i,l,1,u),d=c.strideHeight,h=c.strideWidth,p=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,g=c.dilationWidth,A=c.effectiveFilterHeight,y=c.effectiveFilterWidth,x=y-1-c.padInfo.left,b=A-1-c.padInfo.top,v=We(o.shape,"float32"),k=1/(p*f),S=n.data.get(r.dataId).values,C=We(r.shape,"float32",S);for(let _=0;_<c.batchSize;++_)for(let O=0;O<c.inChannels;++O)for(let E=0;E<c.inHeight;++E)for(let R=0;R<c.inWidth;++R){let T=E-b,P=R-x,V=0;for(let j=0;j<A;j+=m){let q=(T+j)/d;if(!(q<0||q>=c.outHeight||Math.floor(q)!==q))for(let X=0;X<y;X+=g){let ee=(P+X)/h;if(ee<0||ee>=c.outWidth||Math.floor(ee)!==ee)continue;V+=C.get(_,q,ee,O)}}v.set(V*k,_,E,R,O)}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var LV={kernelName:Kd,backendName:"cpu",kernelFunc:zV};function BV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;w.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ke([r,i,l,a,o],"batchNorm");let{varianceEpsilon:u}=s;u==null&&(u=.001);let c=n.data.get(r.dataId).values,d=n.data.get(i.dataId).values,h=n.data.get(l.dataId).values,p=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),g=f.length,A=p.length,y=h.length,x=d.length,b=0,v=0,k=0,S=0;for(let C=0;C<c.length;++C)m[C]=f[b++]+(c[C]-d[v++])*p[k++]/Math.sqrt(h[S++]+u),b>=g&&(b=0),v>=x&&(v=0),k>=A&&(k=0),S>=y&&(S=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var WV={kernelName:Ga,backendName:"cpu",kernelFunc:BV};function VV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;ke([r],"batchToSpaceND");let i=a.reduce((A,y)=>A*y),l=D.getReshaped(r.shape,a,i),u=D.getPermuted(l.length,a.length),c=D.getReshapedPermuted(r.shape,a,i),d=D.getSliceBeginCoords(o,a.length),h=D.getSliceSize(c,o,a.length),p=xt({inputs:{x:r},backend:n,attrs:{shape:l}}),f=As({inputs:{x:p},backend:n,attrs:{perm:u}}),m=xt({inputs:{x:f},backend:n,attrs:{shape:c}}),g=Yo({inputs:{x:m},backend:n,attrs:{begin:d,size:h}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var UV={kernelName:Fi,backendName:"cpu",kernelFunc:VV};function HV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=p2(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var GV={kernelName:Yd,backendName:"cpu",kernelFunc:HV};function jV(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=D.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var qV={kernelName:Wm,backendName:"cpu",kernelFunc:jV},XV=ot(Ur,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),KV={kernelName:Ur,backendName:"cpu",kernelFunc:XV},ZV=e=>{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let u=0;u<i.length;u++){let c=i[u],d=l[u];s[u]=Math.hypot(c,d)}return n.makeOutput(s,t.shape,"float32")},YV={kernelName:zu,backendName:"cpu",kernelFunc:ZV};function eu(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.imag,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var JV={kernelName:hh,backendName:"cpu",kernelFunc:eu};function tu(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=w.parseAxisParam(r,t[0].shape)[0],o=D.computeOutShape(t.map(m=>m.shape),a);if(w.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>w.sizeFromShape(m.shape)>0);if(i.length===1)return cr({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if(D.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>Zo({inputs:{input:b},backend:n})),g=i.map(b=>eu({inputs:{input:b},backend:n})),A=tu({inputs:m,backend:n,attrs:{axis:a}}),y=tu({inputs:g,backend:n,attrs:{axis:a}}),x=Zn({inputs:{real:A,imag:y},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(y),x}let u=i.map(m=>{let g=w.sizeFromShape(m.shape.slice(a));return xt({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),c=u.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=D.computeOutShape(u.map(m=>m.shape),1);let d=u[0].shape[0]===1,h=f2(c,o,t[0].dtype,d),p=D.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(p,t[0].dtype,h);return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var QV={kernelName:Oi,backendName:"cpu",kernelFunc:tu};function $w(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s;ke([r,a],"conv2d");let d=D.convertConv2DDataFormat(l),h=D.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,d),p=h.filterHeight,f=h.filterWidth,m=h.dilationHeight,g=h.dilationWidth,A=h.padInfo.left,y=h.padInfo.top,x=h.dataFormat==="channelsLast",b=new Ut(h.outShape,r.dtype),v=w.computeStrides(r.shape),k=w.computeStrides(a.shape),S=v[0],C=x?v[1]:v[2],_=x?v[2]:1,O=x?1:v[1],E=b.strides[0],R=x?b.strides[1]:b.strides[2],T=x?b.strides[2]:1,P=x?1:b.strides[1],V=n.data.get(r.dataId).values,j=n.data.get(a.dataId).values,q=b.values;for(let X=0;X<h.batchSize;++X){let ee=X*S,te=X*E;for(let ne=0;ne<h.outHeight;++ne){let se=te+ne*R,J=ne*h.strideHeight-y;for(let ie=0;ie<p;++ie){let le=J+ie*m;if(le<0||le>=h.inHeight)continue;let he=ie*k[0],Ae=ee+le*C;for(let Ce=0;Ce<h.outWidth;++Ce){let Te=se+Ce*T,De=Ce*h.strideWidth-A;for(let Me=0;Me<f;++Me){let Fe=De+Me*g;if(Fe<0||Fe>=h.inWidth)continue;let ut=he+Me*k[1],nt=Ae+Fe*_,st=ut;for(let et=0;et<h.inChannels;++et){let it=V[nt+et*O];for(let He=0;He<h.outChannels;++He)q[Te+He*P]+=it*j[st+He];st+=h.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,q)}var eU={kernelName:Fa,backendName:"cpu",kernelFunc:$w};function tU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s;ke([r,a],"conv2dBackpropFilter");let d=D.convertConv2DDataFormat(l),h=D.computeConv2DInfo(r.shape,c,o,1,i,u,!1,d),{strideHeight:p,strideWidth:f,filterHeight:m,filterWidth:g}=h,A=h.dataFormat==="channelsLast",y=new Ut(h.filterShape,"float32"),x=h.padInfo.left,b=h.padInfo.top,v=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,S=new Ut(r.shape,r.dtype,v),C=new Ut(a.shape,a.dtype,k);for(let _=0;_<m;++_){let O=Math.max(0,Math.ceil((b-_)/p)),E=Math.min(h.outHeight,(h.inHeight+b-_)/p);for(let R=0;R<g;++R){let T=Math.max(0,Math.ceil((x-R)/f)),P=Math.min(h.outWidth,(h.inWidth+x-R)/f);for(let V=0;V<h.inChannels;++V)for(let j=0;j<h.outChannels;++j){let q=0;for(let X=0;X<h.batchSize;++X)for(let ee=O;ee<E;++ee){let te=_+ee*p-b;for(let ne=T;ne<P;++ne){let se=R+ne*f-x;A?q+=S.get(X,te,se,V)*C.get(X,ee,ne,j):q+=S.get(X,V,te,se)*C.get(X,j,ee,ne)}}y.set(q,_,R,V,j)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var nU={kernelName:Qd,backendName:"cpu",kernelFunc:tU};function sU(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s;ke([r,a],"conv2dBackpropInput");let d=w.computeStrides(a.shape),h=w.computeStrides(r.shape),p=D.convertConv2DDataFormat(u),f=D.computeConv2DInfo(o,a.shape,i,1,l,c,!1,p),m=new Ut(f.inShape,"float32"),g=m.values,A=n.data.get(r.dataId).values,y=n.data.get(a.dataId).values,[x,b,v]=d,{batchSize:k,filterHeight:S,filterWidth:C,inChannels:_,inHeight:O,inWidth:E,outChannels:R,outHeight:T,outWidth:P,strideHeight:V,strideWidth:j}=f;p=f.dataFormat;let q=S-1-f.padInfo.top,X=C-1-f.padInfo.left,ee=p==="channelsLast",te=m.strides[0],ne=ee?m.strides[1]:m.strides[2],se=ee?m.strides[2]:1,J=ee?1:m.strides[1],ie=h[0],le=ee?h[1]:h[2],he=ee?h[2]:1,Ae=ee?1:h[1];for(let Ce=0;Ce<k;++Ce)for(let Te=0;Te<_;++Te)for(let De=0;De<O;++De){let Me=De-q,Fe=Math.max(0,Math.ceil(Me/V)),ut=Math.min(T,(S+Me)/V);for(let nt=0;nt<E;++nt){let st=nt-X,et=Math.max(0,Math.ceil(st/j)),it=Math.min(P,(C+st)/j),He=0;for(let St=Fe;St<ut;++St){let Wn=St*V-Me;for(let nn=et;nn<it;++nn){let ks=nn*j-st,pn=ie*Ce+le*St+he*nn,ts=x*(S-1-Wn)+b*(C-1-ks)+v*Te;for(let ns=0;ns<R;++ns){let sn=A[pn+Ae*ns],ss=y[ts+ns];He+=sn*ss}}}let Nn=te*Ce+ne*De+se*nt+J*Te;g[Nn]=He}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var rU={kernelName:Oa,backendName:"cpu",kernelFunc:sU};function aU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s;ke([r,a],"conv3d");let u=D.computeConv3DInfo(r.shape,a.shape,o,l,i),{filterDepth:c,filterHeight:d,filterWidth:h,dilationDepth:p,dilationHeight:f,dilationWidth:m,padInfo:g}=u,A=g.front,y=g.left,x=g.top,b=new Ut(u.outShape,r.dtype),v=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,S=b.values,C=w.computeStrides(r.shape),_=w.computeStrides(a.shape);for(let O=0;O<u.batchSize;++O){let E=O*C[0],R=O*b.strides[0];for(let T=0;T<u.outDepth;++T){let P=R+T*b.strides[1],V=T*u.strideDepth-A;for(let j=0;j<c;++j){let q=V+j*p;if(q<0||q>=u.inDepth)continue;let X=j*_[0],ee=E+q*C[1];for(let te=0;te<u.outHeight;++te){let ne=P+te*b.strides[2],se=te*u.strideHeight-x;for(let J=0;J<d;++J){let ie=se+J*f;if(ie<0||ie>=u.inHeight)continue;let le=X+J*_[1],he=ee+ie*C[2];for(let Ae=0;Ae<u.outWidth;++Ae){let Ce=ne+Ae*u.outChannels,Te=Ae*u.strideWidth-y;for(let De=0;De<h;++De){let Me=Te+De*m;if(Me<0||Me>=u.inWidth)continue;let Fe=le+De*_[2],ut=he+Me*u.inChannels,nt=Fe;for(let st=0;st<u.inChannels;++st){let et=v[ut+st];for(let it=0;it<u.outChannels;++it)S[Ce+it]+=et*k[nt+it];nt+=u.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var oU={kernelName:Lu,backendName:"cpu",kernelFunc:aU};function iU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s;ke([r,a],"conv3dBackpropFilterV2");let u=w.computeStrides(r.shape),c=w.computeStrides(a.shape),d=D.computeConv3DInfo(r.shape,l,o,1,i),h=d.strideDepth,p=d.strideHeight,f=d.strideWidth,m=d.filterDepth,g=d.filterHeight,A=d.filterWidth,y=new Ut(d.filterShape,"float32"),x=y.values,[b,v,k,S]=y.strides,C=n.data.get(a.dataId).values,[_,O,E,R]=c,T=n.data.get(r.dataId).values,[P,V,j,q]=u,X=d.padInfo.front,ee=d.padInfo.left,te=d.padInfo.top;for(let ne=0;ne<m;++ne){let se=Math.max(0,Math.ceil((X-ne)/h)),J=Math.min(d.outDepth,(d.inDepth+X-ne)/h),ie=ne*b;for(let le=0;le<g;++le){let he=Math.max(0,Math.ceil((te-le)/p)),Ae=Math.min(d.outHeight,(d.inHeight+te-le)/p),Ce=le*v+ie;for(let Te=0;Te<A;++Te){let De=Math.max(0,Math.ceil((ee-Te)/f)),Me=Math.min(d.outWidth,(d.inWidth+ee-Te)/f),Fe=Te*k+Ce;for(let ut=0;ut<d.inChannels;++ut){let nt=ut*S+Fe;for(let st=0;st<d.outChannels;++st){let et=0;for(let it=0;it<d.batchSize;++it){let He=it*P,Nn=it*_;for(let St=se;St<J;++St){let nn=(ne+St*h-X)*V+He,ks=St*O+Nn;for(let pn=he;pn<Ae;++pn){let ns=(le+pn*p-te)*j+nn,sn=pn*E+ks;for(let ss=De;ss<Me;++ss){let Vn=(Te+ss*f-ee)*q+ns,Ks=ss*R+sn;et+=T[Vn+ut]*C[Ks+st]}}}}x[nt+st]=et}}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var lU={kernelName:eh,backendName:"cpu",kernelFunc:iU};function uU(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s;ke([r],"conv3dBackpropInputV2");let u=w.computeStrides(r.shape),c=w.computeStrides(a.shape),d=D.computeConv3DInfo(l,a.shape,i,1,o),h=new Ut(d.inShape,"float32"),p=h.values,[f,m,g,A]=h.strides,y=n.data.get(r.dataId).values,[x,b,v,k]=u,S=n.data.get(a.dataId).values,[C,_,O,E]=c,{batchSize:R,filterDepth:T,filterHeight:P,filterWidth:V,inChannels:j,inDepth:q,inHeight:X,inWidth:ee,outChannels:te,outDepth:ne,outHeight:se,outWidth:J,strideDepth:ie,strideHeight:le,strideWidth:he}=d,Ae=T-1-d.padInfo.front,Ce=P-1-d.padInfo.top,Te=V-1-d.padInfo.left;for(let De=0;De<R;++De)for(let Me=0;Me<j;++Me)for(let Fe=0;Fe<q;++Fe){let ut=Fe-Ae,nt=Math.max(0,Math.ceil(ut/ie)),st=Math.min(ne,(T+ut)/ie);for(let et=0;et<X;++et){let it=et-Ce,He=Math.max(0,Math.ceil(it/le)),Nn=Math.min(se,(P+it)/le);for(let St=0;St<ee;++St){let Wn=St-Te,nn=Math.max(0,Math.ceil(Wn/he)),ks=Math.min(J,(V+Wn)/he),pn=0;for(let ts=nt;ts<st;++ts){let ns=ts*ie-ut;for(let sn=He;sn<Nn;++sn){let ss=sn*le-it;for(let rs=nn;rs<ks;++rs){let Vn=rs*he-Wn,Ks=x*De+b*ts+v*sn+k*rs,mr=C*(T-1-ns)+_*(P-1-ss)+O*(V-1-Vn)+E*Me;for(let Fr=0;Fr<te;++Fr){let ci=y[Ks+Fr],Zs=S[mr+Fr];pn+=ci*Zs}}}}p[f*De+m*Fe+g*et+A*St+Me]=pn}}}return n.makeTensorInfo(h.shape,h.dtype,h.values)}var cU={kernelName:th,backendName:"cpu",kernelFunc:uU},dU=ot(Pa,e=>Math.cos(e)),hU={kernelName:Pa,backendName:"cpu",kernelFunc:dU},pU=ot(Ma,e=>Math.cosh(e)),fU={kernelName:Ma,backendName:"cpu",kernelFunc:pU};function mU(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,[c,d,h,p]=r.shape,f=a.shape[0],[m,g]=i,A=We([f,m,g,p],"float32"),y=n.data.get(a.dataId).values,x=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,v=w.computeStrides(r.shape),k=w.computeStrides(A.shape);for(let S=0;S<f;S++){let C=S*4,_=y[C],O=y[C+1],E=y[C+2],R=y[C+3],T=x[S];if(T>=c)continue;let P=m>1?(E-_)*(d-1)/(m-1):0,V=g>1?(R-O)*(h-1)/(g-1):0;for(let j=0;j<m;j++){let q=m>1?_*(d-1)+j*P:.5*(_+E)*(d-1);if(q<0||q>d-1){for(let X=0;X<g;X++)for(let ee=0;ee<p;ee++){let te=ee+X*k[2]+j*k[1]+S*k[0];A.values[te]=u}continue}if(l==="bilinear"){let X=Math.floor(q),ee=Math.ceil(q),te=q-X;for(let ne=0;ne<g;ne++){let se=g>1?O*(h-1)+ne*V:.5*(O+R)*(h-1);if(se<0||se>h-1){for(let he=0;he<p;he++){let Ae=he+ne*k[2]+j*k[1]+S*k[0];A.values[Ae]=u}continue}let J=Math.floor(se),ie=Math.ceil(se),le=se-J;for(let he=0;he<p;he++){let Ae=he+J*v[2]+X*v[1]+T*v[0],Ce=b[Ae];Ae=he+ie*v[2]+X*v[1]+T*v[0];let Te=b[Ae];Ae=he+J*v[2]+ee*v[1]+T*v[0];let De=b[Ae];Ae=he+ie*v[2]+ee*v[1]+T*v[0];let Me=b[Ae],Fe=Ce+(Te-Ce)*le,ut=De+(Me-De)*le;Ae=he+ne*k[2]+j*k[1]+S*k[0],A.values[Ae]=Fe+(ut-Fe)*te}}}else for(let X=0;X<g;++X){let ee=g>1?O*(h-1)+X*V:.5*(O+R)*(h-1);if(ee<0||ee>h-1){for(let se=0;se<p;se++){let J=se+X*k[2]+j*k[1]+S*k[0];A.values[J]=u}continue}let te=Math.round(ee),ne=Math.round(q);for(let se=0;se<p;se++){let J=se+te*v[2]+ne*v[1]+T*v[0],ie=se+X*k[2]+j*k[1]+S*k[0];A.values[ie]=b[J]}}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var gU={kernelName:Pi,backendName:"cpu",kernelFunc:mU};function AU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;ke(r,"cumsum");let l=D.getAxesPermutation([a],r.shape.length),u=r;l!=null&&(u=As({inputs:{x:r},backend:n,attrs:{perm:l}}));let c=D.getInnerMostAxes(1,r.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let d=Cs(u.dtype,"int32"),h=w.makeZerosTypedArray(w.sizeFromShape(u.shape),d),p=n.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=i?(A,y)=>A+f-y-1:(A,y)=>A+y;for(let A=0;A<p.length;A+=f)for(let y=0;y<f;y++){let x=m(A,y);if(y===0)h[x]=o?0:p[x];else{let b=m(A,y-1);h[x]=o?p[b]+h[b]:p[x]+h[b]}}let g=n.makeTensorInfo(u.shape,d,h);if(l!=null){let A=D.getUndoAxesPermutation(l),y=As({inputs:{x:g},backend:n,attrs:{perm:A}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),y}return g}var yU={kernelName:za,backendName:"cpu",kernelFunc:AU};function xU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=p2(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=U7(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var bU={kernelName:nh,backendName:"cpu",kernelFunc:xU};function vU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;w.assert(o==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`),w.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=r.shape[1],u=r.shape[2],c=r.shape[3],d=l*a,h=u*a,p=c/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(i*d*h*p),g=0;for(let A=0;A<i;++A)for(let y=0;y<d;++y){let x=Math.floor(y/a),b=y%a;for(let v=0;v<h;++v){let k=Math.floor(v/a),S=v%a,C=(b*a+S)*p;for(let _=0;_<p;++_){let E=_+C+c*(k+u*(x+l*A));m[g++]=f[E]}}}return n.makeTensorInfo([i,d,h,p],r.dtype,m)}var wU={kernelName:Mi,backendName:"cpu",kernelFunc:vU};function Fw(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s;ke([r,a],"depthwiseConv2DNative");let c=w.computeStrides(r.shape),d=w.computeStrides(a.shape),h=l;h==null&&(h=[1,1]),w.assert(D.eitherStridesOrDilationsAreOne(o,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${h}'`);let p=D.computeConv2DInfo(r.shape,a.shape,o,h,i,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:A,padInfo:y}=p,x=y.left,b=y.top,v=p.outChannels/p.inChannels,k=new Ut(p.outShape,r.dtype),S=n.data.get(r.dataId).values,C=n.data.get(a.dataId).values,_=k.values;for(let O=0;O<p.batchSize;++O){let E=O*c[0],R=O*k.strides[0];for(let T=0;T<p.outHeight;++T){let P=R+T*k.strides[1],V=T*p.strideHeight-b;for(let j=0;j<f;++j){let q=V+j*g;if(q<0||q>=p.inHeight)continue;let X=j*d[0],ee=E+q*c[1];for(let te=0;te<p.outWidth;++te){let ne=P+te*k.strides[2],se=te*p.strideWidth-x;for(let J=0;J<m;++J){let ie=se+J*A;if(ie<0||ie>=p.inWidth)continue;let le=X+J*d[1],he=ee+ie*p.inChannels,Ae=ne,Ce=le;for(let Te=0;Te<p.inChannels;++Te){let De=S[he+Te];for(let Me=0;Me<v;++Me)_[Ae+Me]+=De*C[Ce+Me];Ae+=v,Ce+=v}}}}}}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var kU={kernelName:La,backendName:"cpu",kernelFunc:Fw};function IU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s;ke([r,a],"depthwiseConv2dNativeBackpropFilter");let d=D.computeConv2DInfo(r.shape,c,o,i,l,u,!0),{strideHeight:h,strideWidth:p,filterHeight:f,filterWidth:m}=d,g=new Ut(d.filterShape,"float32"),A=d.padInfo.left,y=d.padInfo.top,x=d.outChannels/d.inChannels,b=n.data.get(r.dataId).values,v=new Ut(r.shape,r.dtype,b),k=n.data.get(a.dataId).values,S=new Ut(a.shape,a.dtype,k);for(let C=0;C<f;++C){let _=Math.max(0,Math.ceil((y-C)/h)),O=Math.min(d.outHeight,(d.inHeight+y-C)/h);for(let E=0;E<m;++E){let R=Math.max(0,Math.ceil((A-E)/p)),T=Math.min(d.outWidth,(d.inWidth+A-E)/p);for(let P=0;P<d.outChannels;++P){let V=Math.trunc(P/x),j=P%x,q=0;for(let X=0;X<d.batchSize;++X)for(let ee=_;ee<O;++ee){let te=C+ee*h-y;for(let ne=R;ne<T;++ne){let se=E+ne*p-A;q+=v.get(X,te,se,V)*S.get(X,ee,ne,P)}}g.set(q,C,E,V,j)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var SU={kernelName:sh,backendName:"cpu",kernelFunc:IU};function CU(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s;ke([r,a],"depthwiseConv2DNativeBackpropInput");let d=w.computeStrides(r.shape),h=w.computeStrides(a.shape),p=D.computeConv2DInfo(c,a.shape,o,i,l,u,!0),f=new Ut(p.inShape,"float32"),m=f.values,[g,A,y]=f.strides,x=n.data.get(r.dataId).values,[b,v,k]=d,S=n.data.get(a.dataId).values,[C,_,O]=h,{batchSize:E,filterHeight:R,filterWidth:T,inChannels:P,inHeight:V,inWidth:j,outChannels:q,outHeight:X,outWidth:ee,strideHeight:te,strideWidth:ne}=p,se=R-1-p.padInfo.top,J=T-1-p.padInfo.left,ie=q/P;for(let le=0;le<E;++le)for(let he=0;he<P;++he)for(let Ae=0;Ae<V;++Ae){let Ce=Ae-se,Te=Math.max(0,Math.ceil(Ce/te)),De=Math.min(X,(R+Ce)/te);for(let Me=0;Me<j;++Me){let Fe=Me-J,ut=Math.max(0,Math.ceil(Fe/ne)),nt=Math.min(ee,(T+Fe)/ne),st=0;for(let et=Te;et<De;++et){let it=et*te-Ce;for(let He=ut;He<nt;++He){let Nn=He*ne-Fe,St=b*le+v*et+k*He,Wn=C*(R-1-it)+_*(T-1-Nn)+O*he;for(let nn=0;nn<ie;++nn){let ks=he*ie+nn,pn=x[St+ks],ts=S[Wn+nn];st+=pn*ts}}}m[g*le+A*Ae+y*Me+he]=st}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var TU={kernelName:rh,backendName:"cpu",kernelFunc:CU};function NU(e){let{inputs:t,backend:n}=e,{x:s}=t,r=w.sizeFromShape(s.shape),a=n.data.get(s.dataId).values,o=We([r,r],s.dtype),i=o.values;for(let u=0;u<a.length;u++)i[u*r+u]=a[u];let l=[...s.shape,...s.shape];return n.makeTensorInfo(l,o.dtype,o.values)}var EU={kernelName:ah,backendName:"cpu",kernelFunc:NU},RU={kernelName:Bu,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,u=l.data.get(s.dataId).values,c=s.shape.length,d=l.data.get(r.dataId).values,h=r.shape.length,{batchSize:p,inHeight:f,inWidth:m,inChannels:g,outHeight:A,outWidth:y,padInfo:x,strideHeight:b,strideWidth:v,filterHeight:k,filterWidth:S,dilationHeight:C,dilationWidth:_,outShape:O}=D.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),E=w.sizeFromShape(O),R=O.length,T=w.getArrayFromDType(s.dtype,E);for(let V=0;V<p;++V)for(let j=0;j<A;++j){let q=j*b-x.top;for(let X=0;X<y;++X){let ee=X*v-x.left;for(let te=0;te<g;++te){let ne=Number.MIN_SAFE_INTEGER;for(let J=0;J<k;++J){let ie=q+J*C;if(ie>=0&&ie<f)for(let le=0;le<S;++le){let he=ee+le*_;if(he>=0&&he<m){let Ae=w.locToIndex([V,ie,he,te],c,w.computeStrides(s.shape)),Ce=w.locToIndex([J,le,te],h,w.computeStrides(r.shape)),Te=u[Ae]+d[Ce];Te>ne&&(ne=Te)}}}let se=w.locToIndex([V,j,X,te],R,w.computeStrides(O));T[se]=ne}}}return{dataId:l.write(w.toTypedArray(T,s.dtype),O,s.dtype),shape:O,dtype:s.dtype}}},_U={kernelName:ih,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=w.toNestedArray(s.shape,u.data.get(s.dataId).values),d=w.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:h,inHeight:p,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:y,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:k,dilationHeight:S,dilationWidth:C,outShape:_}=D.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);w.assert(a.rank===_.length,()=>`Error in ${ih}, dy must have the same rank as output ${_.length}, but got ${a.rank}`);let O=w.toNestedArray(_,u.data.get(a.dataId).values),E=w.makeZerosNestedTypedArray(r.shape,r.dtype);for(let T=0;T<h;++T)for(let P=0;P<g;++P){let V=P*x-y.top;for(let j=0;j<A;++j){let q=j*b-y.left;for(let X=0;X<m;++X){let ee=Number.MIN_SAFE_INTEGER,te=0,ne=0;for(let se=0;se<v;++se){let J=V+se*S;if(J>=0&&J<p)for(let ie=0;ie<k;++ie){let le=q+ie*C;if(le>=0&&le<f){let he=c[T][J][le][X]+d[se][ie][X];he>ee&&(ee=he,te=se,ne=ie)}}}E[te][ne][X]+=O[T][P][j][X]}}}return{dataId:u.write(w.toTypedArray(E,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},DU={kernelName:oh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=w.toNestedArray(s.shape,u.data.get(s.dataId).values),d=w.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:h,inHeight:p,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:y,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:k,dilationHeight:S,dilationWidth:C,outShape:_}=D.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);w.assert(a.rank===_.length,()=>`Error in ${oh}, dy must have the same rank as output ${_.length}, but got ${a.rank}`);let O=w.toNestedArray(_,u.data.get(a.dataId).values),E=w.makeZerosNestedTypedArray(s.shape,s.dtype);for(let T=0;T<h;++T)for(let P=0;P<g;++P){let V=P*x-y.top;for(let j=0;j<A;++j){let q=j*b-y.left;for(let X=0;X<m;++X){let ee=Number.MIN_SAFE_INTEGER,te=V<0?0:V,ne=q<0?0:q;for(let se=0;se<v;++se){let J=V+se*S;if(J>=0&&J<p)for(let ie=0;ie<k;++ie){let le=q+ie*C;if(le>=0&&le<f){let he=c[T][J][le][X]+d[se][ie][X];he>ee&&(ee=he,te=J,ne=le)}}}E[T][te][ne][X]+=O[T][P][j][X]}}}return{dataId:u.write(w.toTypedArray(E,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function Hc(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;ke(r,"sum");let i;r.dtype==="bool"?i=ca({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=cr({inputs:{x:r},backend:n});let l=i.shape.length,u=w.parseAxisParam(a,i.shape),c=D.getAxesPermutation(u,l),d=u,h=i;c!=null&&(h=As({inputs:{x:i},backend:n,attrs:{perm:c}}),d=D.getInnerMostAxes(d.length,l)),D.assertAxesAreInnerMostDims("sum",d,h.shape.length);let[p,f]=D.computeOutAndReduceShapes(h.shape,d),m=D.upcastType(h.dtype,"int32"),g=lf(n,p,m),A=w.sizeFromShape(f),y=n.data.get(g.dataId).values,x=n.data.get(h.dataId).values;for(let b=0;b<y.length;++b){let v=b*A,k=0;for(let S=0;S<A;++S)k+=x[v+S];y[b]=k}if(o){let b=D.expandShapeToKeepDim(g.shape,u),v=g;g=xt({inputs:{x:g},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(v)}return n.disposeIntermediateTensorInfo(i),c!=null&&n.disposeIntermediateTensorInfo(h),g}var $U={kernelName:yo,backendName:"cpu",kernelFunc:Hc};function FU(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=D.decodeEinsumEquation(r,a.length);D.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=D.getEinsumComputePath(i,l),d=c.length,h=null,p=o.length,f=[];for(let m=0;m<d;++m){for(let g of c[m]){let{permutationIndices:A,expandDims:y}=D.getEinsumPermutation(p,l[g]),x;D.isIdentityPermutation(A)?x=a[g]:(x=As({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(x));let b=x.shape.slice();for(let v=0;v<y.length;++v)b.splice(y[v],0,1);w.arraysEqual(x.shape,b)||(x=xt({inputs:{x},backend:n,attrs:{shape:b}}),f.push(x)),h===null?h=x:(h=uf({inputs:{a:x,b:h},backend:n}),f.push(h))}m<d-1&&(u[m]>=0&&(h=Hc({inputs:{x:h},backend:n,attrs:{axis:u[m]-(o.length-p),keepDims:!1}}),f.push(h)),p--)}for(let m of f)m!==h&&n.disposeIntermediateTensorInfo(m);return h}var OU={kernelName:lh,backendName:"cpu",kernelFunc:FU};function PU(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;ke([s,r],"eluGrad");let a=new Float32Array(w.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l<o.length;++l){let u=o[l];u>=1?a[l]=i[l]:a[l]=i[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",a)}var MU={kernelName:uh,backendName:"cpu",kernelFunc:PU},zU=D.ERF_P,LU=D.ERF_A1,BU=D.ERF_A2,WU=D.ERF_A3,VU=D.ERF_A4,UU=D.ERF_A5,HU=ot(zi,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+zU*n);return t*(1-((((UU*s+VU)*s+WU)*s+BU)*s+LU)*s*Math.exp(-n*n))}),GU={kernelName:zi,backendName:"cpu",kernelFunc:HU};function df(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(w.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),xt({inputs:{x:r},backend:n,attrs:{shape:i}})}var jU={kernelName:Bi,backendName:"cpu",kernelFunc:df},qU=Lt((e,t)=>e/t),w2=tn(Ba,qU),k2={kernelName:Ba,backendName:"cpu",kernelFunc:w2};function Ow(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,u=[r,a],c=w.sizeFromShape(u),d=w.getTypedArrayFromDType("float32",c),h=w.getTypedArrayFromDType("float32",c);for(let g=0;g<r;g++){let A=Yo({inputs:{x:i},backend:n,attrs:{begin:[g,0],size:[1,a]}}),y=Yo({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,a]}}),x=Zn({inputs:{real:A,imag:y},backend:n}),{real:b,imag:v}=XU(x,t,n),k=D.mergeRealAndImagArrays(b,v);for(let S=0;S<a;S++){let C=D.getComplexWithIndex(k,S);d[g*a+S]=C.real,h[g*a+S]=C.imag}n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x)}let p=n.makeTensorInfo(u,"float32",d),f=n.makeTensorInfo(u,"float32",h),m=Zn({inputs:{real:p,imag:f},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),m}function XU(e,t,n){let s=w.sizeFromShape(e.shape),r=n.data.get(e.dataId),a=n.data.get(r.complexTensorInfos.real.dataId).values,o=n.data.get(r.complexTensorInfos.imag.dataId).values;if(KU(s)){let i=I2(a,o,s,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",i.real),c=n.makeTensorInfo(l,"float32",i.imag),d=n.makeTensorInfo([],"float32",w.createScalarValue(s,"float32")),h=cr({inputs:{x:d},backend:n}),p=k2.kernelFunc({inputs:{a:u,b:d},backend:n}),f=k2.kernelFunc({inputs:{a:c,b:h},backend:n}),m=n.data.get(p.dataId).values,g=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return i}else{let i=D.mergeRealAndImagArrays(a,o),l=ZU(i,s,t);return D.splitRealAndImagArrays(l)}}function KU(e){return(e&e-1)==0}function I2(e,t,n,s,r){if(n===1)return{real:e,imag:t};let a=D.mergeRealAndImagArrays(e,t),o=n/2,i=D.complexWithEvenIndex(a),l=i.real,u=i.imag,c=[l.length],d=r.makeTensorInfo(c,"float32",l),h=r.makeTensorInfo(c,"float32",u),p=Zn({inputs:{real:d,imag:h},backend:r}),f=D.complexWithOddIndex(a),m=f.real,g=f.imag,A=[m.length],y=r.makeTensorInfo(A,"float32",m),x=r.makeTensorInfo(A,"float32",g),b=Zn({inputs:{real:y,imag:x},backend:r}),v=I2(l,u,o,s,r),k=v.real,S=v.imag,C=[k.length],_=r.makeTensorInfo(C,"float32",k),O=r.makeTensorInfo(C,"float32",S),E=Zn({inputs:{real:_,imag:O},backend:r}),R=I2(m,g,o,s,r),T=R.real,P=R.imag,V=[T.length],j=r.makeTensorInfo(V,"float32",T),q=r.makeTensorInfo(V,"float32",P),X=Zn({inputs:{real:j,imag:q},backend:r}),ee=D.exponents(n,s),te=[ee.real.length],ne=r.makeTensorInfo(te,"float32",ee.real),se=r.makeTensorInfo(te,"float32",ee.imag),J=Zn({inputs:{real:ne,imag:se},backend:r}),ie=uf({inputs:{a:J,b:X},backend:r}),le=Vc({inputs:{a:E,b:ie},backend:r}),he=x2({inputs:{a:E,b:ie},backend:r}),Ae=Zo({inputs:{input:le},backend:r}),Ce=Zo({inputs:{input:he},backend:r}),Te=eu({inputs:{input:le},backend:r}),De=eu({inputs:{input:he},backend:r}),Me=tu({inputs:[Ae,Ce],backend:r,attrs:{axis:0}}),Fe=tu({inputs:[Te,De],backend:r,attrs:{axis:0}}),ut=r.data.get(Me.dataId).values,nt=r.data.get(Fe.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(_),r.disposeIntermediateTensorInfo(O),r.disposeIntermediateTensorInfo(E),r.disposeIntermediateTensorInfo(j),r.disposeIntermediateTensorInfo(q),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(ne),r.disposeIntermediateTensorInfo(se),r.disposeIntermediateTensorInfo(J),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(le),r.disposeIntermediateTensorInfo(he),r.disposeIntermediateTensorInfo(Ae),r.disposeIntermediateTensorInfo(Te),r.disposeIntermediateTensorInfo(Ce),r.disposeIntermediateTensorInfo(De),r.disposeIntermediateTensorInfo(Me),r.disposeIntermediateTensorInfo(Fe),{real:ut,imag:nt}}function ZU(e,t,n){let s=new Float32Array(t*2);for(let r=0;r<t;r++){let a=0,o=0;for(let i=0;i<t;i++){let l=D.exponent(r*i,t,n),u=D.getComplexWithIndex(e,i);a+=u.real*l.real-u.imag*l.imag,o+=u.real*l.imag+u.imag*l.real}n&&(a/=t,o/=t),D.assignToTypedArray(s,a,o,r)}return s}function YU(e){let{inputs:t,backend:n}=e,{input:s}=t,r=w.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=xt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=Ow(i,!1,n),u=xt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var JU={kernelName:ch,backendName:"cpu",kernelFunc:YU};function S2(e){let{backend:t,attrs:n}=e,{shape:s,value:r,dtype:a}=n,o=a||w.inferDtype(r),i=w.getArrayFromDType(o,w.sizeFromShape(s));return eH(i,r,o),t.makeTensorInfo(s,o,i)}var QU={kernelName:Wu,backendName:"cpu",kernelFunc:S2};function eH(e,t,n){e.fill(t)}var tH={kernelName:Vi,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,r=n,a=w.getTypedArrayFromDType(s.dtype,w.sizeFromShape(s.shape)),[o,i,l,u]=s.shape,c=r.data.get(s.dataId).values;for(let h=0;h<o;h++){let p=h*l*i*u;for(let f=0;f<i;f++){let m=f*(l*u);for(let g=0;g<l;g++){let A=g*u;for(let y=0;y<u;y++){let x=Math.round(l-g-1),b=p+m+A+y,v=c[b];if(x>=0&&x<l){let k=x*u,S=p+m+k+y;v=c[S]}a[b]=v}}}}return{dataId:r.write(a,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},nH=Lt((e,t)=>Math.floor(e/t)),sH=tn(Ha,nH,null,"int32"),rH={kernelName:Ha,backendName:"cpu",kernelFunc:sH};function aH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=s,m=$w({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h}});if(o){let g=m;m=Vc({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(p){let g=m;m=b2(n,m,p,i,f),n.disposeIntermediateTensorInfo(g)}return m}var oH={kernelName:Co,backendName:"cpu",kernelFunc:aH};function iH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=s,m=Fw({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h}});if(o){let g=m;m=Vc({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(p){let g=m;m=b2(n,m,p,i,f),n.disposeIntermediateTensorInfo(g)}return m}var lH={kernelName:To,backendName:"cpu",kernelFunc:iH};function uH(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=w.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,u,c,d]=D.prepareAndValidate(s,r);if(u===0)return n.makeTensorInfo(l,s.dtype,[]);let h=n.data.get(r.dataId).values,p=n.bufferSync(s),f=Y7(h,p,s.dtype,u,i,c,d,s.shape,a);return n.makeTensorInfo(l,s.dtype,f.values)}var cH={kernelName:Hi,backendName:"cpu",kernelFunc:uH};function dH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;ke([r,a],"gatherV2");let l=i;i==null&&(l=0);let u=w.sizeFromShape(a.shape),c=w.parseAxisParam(o,r.shape)[0],d=D.segment_util.collectGatherOpShapeInfo(r,a,c,l),h=xt({inputs:{x:r},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),p=xt({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,u/d.batchSize]}}),f=[d.batchSize,d.outerSize,u/d.batchSize,d.sliceSize],m=n.bufferSync(p),g=n.bufferSync(h),A=J7(g,m,f);return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.makeTensorInfo(d.outputShape,A.dtype,A.values)}var hH={kernelName:Ui,backendName:"cpu",kernelFunc:dH};function pH(e){let{inputs:t,backend:n}=e,{input:s}=t,r=w.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=xt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=Ow(i,!0,n),u=xt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var fH={kernelName:dh,backendName:"cpu",kernelFunc:pH},mH=ot(ji,e=>Number.isFinite(e)?1:0,"bool"),gH={kernelName:ji,backendName:"cpu",kernelFunc:mH},AH=ot(qi,e=>Math.abs(e)===1/0?1:0,"bool"),yH={kernelName:qi,backendName:"cpu",kernelFunc:AH},xH=ot(Xi,e=>Number.isNaN(e)?1:0,"bool"),bH={kernelName:Xi,backendName:"cpu",kernelFunc:xH};function vH(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=sw(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var wH={kernelName:ph,backendName:"cpu",kernelFunc:vH},kH=ot(Yi,e=>Math.log1p(e)),IH={kernelName:Yi,backendName:"cpu",kernelFunc:kH},SH=Lt((e,t)=>e&&t),CH=tn(Ji,SH,null,"bool"),TH={kernelName:Ji,backendName:"cpu",kernelFunc:CH},NH=ot(Vu,e=>e?0:1,"bool"),EH={kernelName:Vu,backendName:"cpu",kernelFunc:NH},RH=Lt((e,t)=>e||t),_H=tn(Uu,RH,null,"bool"),DH={kernelName:Uu,backendName:"cpu",kernelFunc:_H};function $H(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;ke(r,"LRN");let u=r.shape[3],c=u-1,d=n.data.get(r.dataId).values,h=w.sizeFromShape(r.shape),p=new Float32Array(h);function f(m){let g=m%u,A=m-g+Math.max(0,g-a),y=m-g+Math.min(g+a,c),x=0;for(;A<=y;A++){let b=d[A];x+=b*b}return x}for(let m=0;m<h;m++){let g=f(m),A=d[m]*Math.pow(o+i*g,-l);p[m]=A}return n.makeTensorInfo(r.shape,r.dtype,p)}var FH={kernelName:Hu,backendName:"cpu",kernelFunc:$H};function OH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s;ke(o,"LRNGrad");let d=w.sizeFromShape(o.shape),h=o.shape[3],p=n.data.get(o.dataId).values,f=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values,g=new Float32Array(d),A=d;for(let y=0;y<A;y++){let x=y%h,b=y-x+Math.max(0,x-i),v=y-x+Math.min(h,x+i+1),k=0;for(let S=b;S<v;S++)k+=Math.pow(f[S],2);k=u*k+l;for(let S=b;S<v;S++){let C=-2*u*c*f[S]*m[y]/k;y===S&&(C+=Math.pow(k,-c)),C*=p[y],g[S]+=C}}return n.makeTensorInfo(o.shape,r.dtype,g)}var PH={kernelName:fh,backendName:"cpu",kernelFunc:OH};function Pw(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=n,l=r.shape,u=l.length,c=w.parseAxisParam(a,l),d=c,h=D.getAxesPermutation(d,u),p=i.data.get(r.dataId).values;if(h!=null){let b=new Array(u);for(let v=0;v<b.length;v++)b[v]=l[h[v]];p=g2(p,l,r.dtype,h,b),d=D.getInnerMostAxes(d.length,u),l=b}ke(r,"max"),D.assertAxesAreInnerMostDims("max",d,u);let[f,m]=D.computeOutAndReduceShapes(l,d),g=w.sizeFromShape(m),A=aw(p,g,f,r.dtype),y=i.write(A,f,r.dtype),x=f;return o&&(x=D.expandShapeToKeepDim(f,c)),{dataId:y,shape:x,dtype:r.dtype}}var MH={kernelName:Za,backendName:"cpu",kernelFunc:Pw};function zH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;ke(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;w.assert(D.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=D.computePool2DInfo(r.shape,a,o,u,i,l),d;if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))d=cr({inputs:{x:r},backend:n});else{let h=n.data.get(r.dataId).values,p=w.computeStrides(r.shape),f=v2(h,r.shape,r.dtype,p,c,"max");d=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return d}var LH={kernelName:Ja,backendName:"cpu",kernelFunc:zH};function BH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;ke(r,"maxPool3d");let c=D.computePool3DInfo(r.shape,a,o,1,i,l,u),d=n.data.get(r.dataId).values,h=Dw(d,r.shape,r.dtype,w.computeStrides(r.shape),c,"max");return n.makeTensorInfo(h.shape,"float32",h.values)}var WH={kernelName:Gu,backendName:"cpu",kernelFunc:BH};function VH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;ke([r,a],"maxPool3DGrad");let c=D.computePool3DInfo(a.shape,o,i,1,l,u),d=n.bufferSync(a),h=_V(d,c),p=c.strideDepth,f=c.strideHeight,m=c.strideWidth,g=c.dilationDepth,A=c.dilationHeight,y=c.dilationWidth,x=c.effectiveFilterDepth,b=c.effectiveFilterHeight,v=c.effectiveFilterWidth,k=x-1-c.padInfo.front,S=v-1-c.padInfo.left,C=b-1-c.padInfo.top,_=We(a.shape,"float32"),O=n.bufferSync(r);for(let E=0;E<c.batchSize;++E)for(let R=0;R<c.inChannels;++R)for(let T=0;T<c.inDepth;++T)for(let P=0;P<c.inHeight;++P)for(let V=0;V<c.inWidth;++V){let j=T-k,q=P-C,X=V-S,ee=0;for(let te=0;te<x;te+=g){let ne=(j+te)/p;if(!(ne<0||ne>=c.outDepth||Math.floor(ne)!==ne))for(let se=0;se<b;se+=A){let J=(q+se)/f;if(!(J<0||J>=c.outHeight||Math.floor(J)!==J))for(let ie=0;ie<v;ie+=y){let le=(X+ie)/m;if(le<0||le>=c.outWidth||Math.floor(le)!==le)continue;let he=x*b*v-1-h.get(E,ne,J,le,R),Ae=te*b*v+se*v+ie,Ce=he===Ae?1:0;if(Ce===0)continue;ee+=O.get(E,ne,J,le,R)*Ce}}}_.set(ee,E,T,P,V,R)}return n.makeTensorInfo(_.shape,_.dtype,_.values)}var UH={kernelName:gh,backendName:"cpu",kernelFunc:VH};function HH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;ke([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:d}=s,h=D.computePool2DInfo(i.shape,l,u,1,c,d),p=n.data.get(i.dataId).values,f=We(h.outShape,i.dtype,_w(p,i.shape,i.dtype,h).values),m=h.strideHeight,g=h.strideWidth,A=h.dilationHeight,y=h.dilationWidth,x=h.effectiveFilterHeight,b=h.effectiveFilterWidth,v=b-1-h.padInfo.left,k=x-1-h.padInfo.top,S=We(i.shape,"float32"),C=n.data.get(r.dataId).values,_=We(r.shape,"float32",C);for(let O=0;O<h.batchSize;++O)for(let E=0;E<h.inChannels;++E)for(let R=0;R<h.inHeight;++R)for(let T=0;T<h.inWidth;++T){let P=R-k,V=T-v,j=0;for(let q=0;q<x;q+=A){let X=(P+q)/m;if(!(X<0||X>=h.outHeight||Math.floor(X)!==X))for(let ee=0;ee<b;ee+=y){let te=(V+ee)/g;if(te<0||te>=h.outWidth||Math.floor(te)!==te)continue;let ne=x*b-1-f.get(O,X,te,E),se=q*b+ee,J=ne===se?1:0;if(J===0)continue;j+=_.get(O,X,te,E)*J}}S.set(j,O,R,T,E)}return n.makeTensorInfo(S.shape,S.dtype,S.values)}var GH={kernelName:mh,backendName:"cpu",kernelFunc:HH};function jH(e,t,n,s,r){let a=w.computeStrides(t),o=v2(e,t,n,a,r,"max"),i=_w(e,t,n,r,!0,s);return[o.values,i.values]}var qH={kernelName:Ah,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;ke(s,"MaxPoolWithArgmax");let u=l.data.get(s.dataId).values,c=D.computePool2DInfo(s.shape,r,a,[1,1],o),[d,h]=jH(u,s.shape,s.dtype,i,c),p=l.write(d,c.outShape,s.dtype),f=l.write(h,c.outShape,s.dtype);return[{dataId:p,shape:c.outShape,dtype:s.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function XH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=w.parseAxisParam(a,r.shape),u=D.computeOutAndReduceShapes(r.shape,i)[1],c=w.sizeFromShape(u),d=[],h=n.makeTensorInfo([],"float32",new Float32Array([c]));d.push(h);let p=ca({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(p);let f=w2({inputs:{a:p,b:h},backend:n});d.push(f);let m=Hc({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var KH={kernelName:Qa,backendName:"cpu",kernelFunc:XH};function ZH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;ke(r,"min");let i=w.parseAxisParam(a,r.shape),l=i,u=D.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=As({inputs:{x:r},backend:n,attrs:{perm:u}}),l=D.getInnerMostAxes(l.length,r.shape.length)),D.assertAxesAreInnerMostDims("min",l,c.shape.length);let[d,h]=D.computeOutAndReduceShapes(c.shape,l),p=w.sizeFromShape(h),f=w.makeZerosTypedArray(w.sizeFromShape(d),c.dtype),m=n.data.get(c.dataId).values;for(let A=0;A<f.length;++A){let y=A*p,x=m[y];for(let b=0;b<p;++b){let v=m[y+b];(Number.isNaN(v)||v<x)&&(x=v)}f[A]=x}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(d,c.dtype,f);if(o){let A=D.expandShapeToKeepDim(d,i),y=xt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var YH={kernelName:eo,backendName:"cpu",kernelFunc:ZH};function JH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,mode:o}=s;ke(r,"mirrorPad");let i=a.map((x,b)=>x[0]+r.shape[b]+x[1]),l=a.map(x=>x[0]),u=a.map((x,b)=>x[0]+r.shape[b]),c=o==="reflect"?0:1,d=n.data.get(r.dataId).values,h=r.shape.length,p=w.computeStrides(r.shape),f=w.sizeFromShape(i),m=i.length,g=w.computeStrides(i),A=w.getTypedArrayFromDType(r.dtype,f);for(let x=0;x<f;x++){let b=w.indexToLoc(x,m,g);for(let k=0;k<m;k++)b[k]<l[k]?b[k]=l[k]*2-b[k]-c:b[k]>=u[k]&&(b[k]=(u[k]-1)*2-b[k]+c);b=b.map((k,S)=>k-l[S]);let v=w.locToIndex(b,h,p);A[x]=d[v]}return{dataId:n.write(A,i,r.dtype),shape:i,dtype:r.dtype}}var QH={kernelName:no,backendName:"cpu",kernelFunc:JH},eG=Lt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),tG=tn(Qi,eG),nG={kernelName:Qi,backendName:"cpu",kernelFunc:tG},sG=Sa(A5());function Mw(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=w.parseAxisParam([i],r.shape),u=Pw({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=D.expandShapeToKeepDim(u.shape,l),d=xt({inputs:{x:u},backend:n,attrs:{shape:c}}),h=x2({inputs:{a:r,b:d},backend:n}),p=X7({inputs:{x:h},backend:n}),f=Hc({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),m=xt({inputs:{x:f},backend:n,attrs:{shape:c}}),g=w2({inputs:{a:p,b:m},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var rG={kernelName:xo,backendName:"cpu",kernelFunc:Mw};function aG(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;ke(r,"multinomial");let l=i?r:Mw({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],d=n.data.get(l.dataId).values,h=[u,a],p=w.makeZerosTypedArray(w.sizeFromShape(h),"int32");for(let f=0;f<u;++f){let m=f*c,g=new Float32Array(c-1);g[0]=d[m];for(let x=1;x<g.length;++x)g[x]=g[x-1]+d[m+x];let A=sG.alea(o.toString()),y=f*a;for(let x=0;x<a;++x){let b=A();p[y+x]=g.length;for(let v=0;v<g.length;v++)if(b<g[v]){p[y+x]=v;break}}}return i||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(h,"int32",p)}var oG={kernelName:yh,backendName:"cpu",kernelFunc:aG},iG=rr.nonMaxSuppressionV3Impl;function lG(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s;ke(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,{selectedIndices:d}=iG(u,c,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var uG={kernelName:nl,backendName:"cpu",kernelFunc:lG},cG=rr.nonMaxSuppressionV4Impl;function dG(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s;ke(r,"NonMaxSuppressionPadded");let c=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,{selectedIndices:h,validOutputs:p}=cG(c,d,o,i,l,u);return[n.makeTensorInfo([h.length],"int32",new Int32Array(h)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var hG={kernelName:sl,backendName:"cpu",kernelFunc:dG},pG=rr.nonMaxSuppressionV5Impl;function fG(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s;ke(r,"NonMaxSuppressionWithScore");let c=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,h=o,p=i,f=l,m=u,{selectedIndices:g,selectedScores:A}=pG(c,d,h,p,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var mG={kernelName:rl,backendName:"cpu",kernelFunc:fG};function gG(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s;ke(r,"oneHot");let l=w.sizeFromShape(r.shape),u=new Float32Array(l*a);u.fill(i);let c=n.data.get(r.dataId).values;for(let d=0;d<l;++d)c[d]>=0&&c[d]<a&&(u[d*a+c[d]]=o);return n.makeTensorInfo([...r.shape,a],"int32",u)}var AG={kernelName:ro,backendName:"cpu",kernelFunc:gG};function hf(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(s.dtype==="complex64"){let r=Zo({inputs:{input:s},backend:n}),a=hf({inputs:{x:r},backend:n}),o=eu({inputs:{input:s},backend:n}),i=hf({inputs:{x:o},backend:n}),l=Zn({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return S2({backend:n,attrs:{shape:s.shape,value:0,dtype:s.dtype}})}var yG={kernelName:kl,backendName:"cpu",kernelFunc:hf};function zw(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(s.dtype==="complex64"){let r=Zo({inputs:{input:s},backend:n}),a=zw({inputs:{x:r},backend:n}),o=eu({inputs:{input:s},backend:n}),i=hf({inputs:{x:o},backend:n}),l=Zn({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return S2({backend:n,attrs:{shape:s.shape,value:1,dtype:s.dtype}})}var xG={kernelName:al,backendName:"cpu",kernelFunc:zw};function Lw(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return df({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=df({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(d),d}),u=tu({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var bG={kernelName:ol,backendName:"cpu",kernelFunc:Lw};function vG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;ke(r,"pad");let i=a.map((y,x)=>y[0]+r.shape[x]+y[1]),l=a.map(y=>y[0]),u=n.data.get(r.dataId).values,c=w.sizeFromShape(r.shape),d=r.shape.length,h=w.computeStrides(r.shape),p=w.sizeFromShape(i),f=i.length,m=w.computeStrides(i),g=w.getTypedArrayFromDType(r.dtype,p);o!==0&&g.fill(o);for(let y=0;y<c;y++){let b=w.indexToLoc(y,d,h).map((k,S)=>k+l[S]),v=w.locToIndex(b,f,m);g[v]=u[y]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var Bw={kernelName:ao,backendName:"cpu",kernelFunc:vG},wG=Lt((e,t)=>Math.pow(e,t)),kG=tn(oo,wG),IG={kernelName:oo,backendName:"cpu",kernelFunc:kG};function SG(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=A2(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var CG={kernelName:ju,backendName:"cpu",kernelFunc:SG},TG=ot(ll,e=>1/e),NG={kernelName:ll,backendName:"cpu",kernelFunc:TG};function EG(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;ke(r,"resizeBilinear");let l=w.computeStrides(r.shape),[u,c]=i,[d,h,p,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(w.sizeFromShape([d,u,c,f])),A=[a&&u>1?h-1:h,a&&c>1?p-1:p],y=[a&&u>1?u-1:u,a&&c>1?c-1:c],x=0,b=A[0]/y[0],v=A[1]/y[1];for(let k=0;k<d;k++)for(let S=0;S<u;S++){let C;o?C=b*(S+.5)-.5:C=b*S;let _=Math.max(0,Math.floor(C)),O=C-_,E=Math.min(h-1,Math.ceil(C)),R=k*l[0]+_*l[1],T=k*l[0]+E*l[1];for(let P=0;P<c;P++){let V;o?V=v*(P+.5)-.5:V=v*P;let j=Math.max(0,Math.floor(V)),q=V-j,X=Math.min(p-1,Math.ceil(V)),ee=R+j*l[2],te=T+j*l[2],ne=R+X*l[2],se=T+X*l[2];for(let J=0;J<f;J++){let ie=m[ee+J],le=m[te+J],he=m[ne+J],Ae=m[se+J],Ce=ie+(he-ie)*q,Te=le+(Ae-le)*q,De=Ce+(Te-Ce)*O;g[x++]=De}}}return n.makeTensorInfo([d,u,c,f],"float32",g)}var RG={kernelName:uo,backendName:"cpu",kernelFunc:EG};function _G(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;ke([a,r],"resizeBilinearGrad");let i=w.computeStrides(r.shape),[l,u,c,d]=r.shape,[,h,p]=a.shape,f=new Float32Array(l*u*c*d),m=[o&&h>1?u-1:u,o&&p>1?c-1:c],g=[o&&h>1?h-1:h,o&&p>1?p-1:p],A=m[0]/g[0],y=m[1]/g[1],x=n.data.get(a.dataId).values,b=0;for(let v=0;v<l;v++){let k=v*i[0];for(let S=0;S<h;S++){let C=S*A,_=Math.floor(C),O=Math.min(Math.ceil(C),u-1),E=k+_*i[1],R=k+O*i[1],T=C-_,P=1-T;for(let V=0;V<p;V++){let j=V*y,q=Math.floor(j),X=Math.min(Math.ceil(j),c-1),ee=j-q,te=1-ee,ne=E+q*i[2],se=E+X*i[2],J=R+q*i[2],ie=R+X*i[2],le=P*te,he=P*ee,Ae=T*te,Ce=T*ee;for(let Te=0;Te<d;Te++){let De=x[b++];f[ne+Te]+=De*le,f[se+Te]+=De*he,f[J+Te]+=De*Ae,f[ie+Te]+=De*Ce}}}}return n.makeTensorInfo([l,c,u,d],"float32",f)}var DG={kernelName:vh,backendName:"cpu",kernelFunc:_G};function $G(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;ke(r,"resizeNearestNeighbor");let l=w.computeStrides(r.shape),[u,c]=i,[d,h,p,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(d*u*c*f),A=[a&&u>1?h-1:h,a&&c>1?p-1:p],y=[a&&u>1?u-1:u,a&&c>1?c-1:c],x=A[0]/y[0],b=A[1]/y[1],v=0;for(let k=0;k<d;k++){let S=k*l[0];for(let C=0;C<u;C++){let _=o?x*(C+.5):x*C,O=Math.min(h-1,a?Math.round(_):Math.floor(_));o&&(O=Math.max(0,O));let E=S+O*l[1];for(let R=0;R<c;R++){let T=o?b*(R+.5):b*R,P=Math.min(p-1,a?Math.round(T):Math.floor(T));o&&(P=Math.max(0,P));let V=E+P*l[2];for(let j=0;j<f;j++){let q=m[V+j];g[v++]=q}}}}return n.makeTensorInfo([d,u,c,f],r.dtype,g)}var FG={kernelName:qu,backendName:"cpu",kernelFunc:$G};function OG(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;ke([a,r],"resizeNearestNeighborGrad");let i=w.computeStrides(r.shape),l=w.computeStrides(a.shape),[u,c,d,h]=r.shape,[,p,f]=a.shape,m=new Float32Array(u*c*d*h),g=n.data.get(a.dataId).values,A=[o&&p>1?c-1:c,o&&f>1?d-1:d],y=[o&&p>1?p-1:p,o&&f>1?f-1:f],x=A[0]/y[0],b=A[1]/y[1],v=1/x,k=1/b,S=Math.ceil(v)*2+2,C=Math.ceil(k)*2+2;for(let _=0;_<u;_++){let O=_*i[0];for(let E=0;E<c;E++){let R=O+E*i[1],T=Math.floor(E*v),P=Math.floor(T-S/2);for(let V=0;V<d;V++){let j=R+V*i[2],q=Math.floor(V*k),X=Math.floor(q-C/2);for(let ee=0;ee<h;ee++){let te=0;for(let ne=0;ne<S;ne++){let se=ne+P;if(se<0||se>=p)continue;let J=O+se*l[1],ie=se*x,le=Math.min(c-1,o?Math.round(ie):Math.floor(ie));if(E===le)for(let he=0;he<C;he++){let Ae=he+X;if(Ae<0||Ae>=f)continue;let Ce=J+Ae*l[2],Te=Ae*b,De=Math.min(d-1,o?Math.round(Te):Math.floor(Te));V===De&&(te+=g[Ce+ee])}}m[j+ee]=te}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var PG={kernelName:bh,backendName:"cpu",kernelFunc:OG};function MG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;ke(r,"reverse");let o=r.shape.length,i=w.parseAxisParam(a,r.shape);if(o===0)return cr({inputs:{x:r},backend:n});let l=new Ut(r.shape,r.dtype),u=n.bufferSync(r);for(let c=0;c<l.size;c++){let d=l.indexToLoc(c),h=d.slice();i.forEach(p=>h[p]=r.shape[p]-1-h[p]),l.set(u.get(...h),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var zG={kernelName:ho,backendName:"cpu",kernelFunc:MG},LG={kernelName:Il,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=w.getTypedArrayFromDType(s.dtype,w.sizeFromShape(s.shape)),[u,c,d,h]=s.shape,[p,f]=D.getImageCenter(o,c,d),m=255,g=Math.sin(r),A=Math.cos(r),y=i.data.get(s.dataId).values;for(let b=0;b<u;b++){let v=b*d*c*h;for(let k=0;k<c;k++){let S=k*(d*h);for(let C=0;C<d;C++){let _=C*h;for(let O=0;O<h;O++){let E=[u,k,C,O],R=E[2],T=E[1],P=(R-p)*A-(T-f)*g,V=(R-p)*g+(T-f)*A;P=Math.round(P+p),V=Math.round(V+f);let j=a;if(typeof a!="number"&&(O===3?j=m:j=a[O]),P>=0&&P<d&&V>=0&&V<c){let X=V*(d*h),ee=P*h,te=v+X+ee+O;j=y[te]}let q=v+S+_+O;l[q]=j}}}}return{dataId:i.write(l,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},BG=ot(po,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),WG={kernelName:po,backendName:"cpu",kernelFunc:BG};function Ww(e,t,n,s,r,a,o,i,l,u){let c=[s/r,r],d=e.values,h=t.values;if(s===0)return We(n,t.dtype);let p=We(c,t.dtype);p.values.fill(l);for(let f=0;f<a;f++){let m=[],g=0;for(let A=0;A<o;A++){let y=d[f*o+A];m.push(y),g+=y*i[A]}if(g<0||g>=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let A=0;A<r;A++)u?p.values[g*r+A]+=h[f*r+A]:p.values[g*r+A]=t.rank===0?h[0]:h[f*r+A]}return p}function VG(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:d}=D.calculateShapes(a,r,o),h=!0,p=n.bufferSync(r),f=n.bufferSync(a),m=Ww(p,f,o,d,u,l,i,c,0,h);return n.makeTensorInfo(o,m.dtype,m.values)}var UG={kernelName:cl,backendName:"cpu",kernelFunc:VG};function HG(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t;ke([s,r,a],"select");let o=s.shape.length,i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=Cs(r.dtype,a.dtype),d=w.makeZerosTypedArray(w.sizeFromShape(r.shape),c),h=0,p=o===0||o>1||r.shape.length===1?1:w.sizeFromShape(r.shape.slice(1));for(let f=0;f<i.length;f++)for(let m=0;m<p;m++)i[f]===1?d[h++]=l[f]:d[h++]=u[f];return n.makeTensorInfo(r.shape,c,d)}var GG={kernelName:dl,backendName:"cpu",kernelFunc:HG},jG=D.SELU_SCALEALPHA,qG=D.SELU_SCALE,XG=ot(hl,e=>e>=0?qG*e:jG*(Math.exp(e)-1)),KG={kernelName:hl,backendName:"cpu",kernelFunc:XG},ZG=ot(ml,e=>e<0?-1:e>0?1:0),YG={kernelName:ml,backendName:"cpu",kernelFunc:ZG},JG=ot(mo,e=>Math.sin(e)),QG={kernelName:mo,backendName:"cpu",kernelFunc:JG},ej=ot(fl,e=>Math.sinh(e)),tj={kernelName:fl,backendName:"cpu",kernelFunc:ej},nj=11920928955078125e-23,Vw=Math.log(nj)+2,sj=ot(gl,e=>{let t=e>-Vw,n=e<Vw,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),rj={kernelName:gl,backendName:"cpu",kernelFunc:sj};function aj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;ke([r],"spaceToBatchND");let i=w.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let u=Bw.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),c=D.getReshaped(u.shape,a,i,!1),d=D.getPermuted(c.length,a.length,!1),h=D.getReshapedPermuted(u.shape,a,i,!1),m=xt({inputs:{x:u},backend:n,attrs:{shape:c}}),y=As({inputs:{x:m},backend:n,attrs:{perm:d}}),v=xt({inputs:{x:y},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),v}var oj={kernelName:Al,backendName:"cpu",kernelFunc:aj};function ij(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=n.data.get(o.dataId).values[0],[d,h,p,f,m]=pw(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(h,s.dtype,d),n.makeTensorInfo([h[0]],r.dtype,p),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var lj={kernelName:wh,backendName:"cpu",kernelFunc:ij};function uj(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[u,c,d]=fw(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var cj={kernelName:kh,backendName:"cpu",kernelFunc:uj};function dj(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=y2(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var hj={kernelName:Ih,backendName:"cpu",kernelFunc:dj};function pj(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=y2(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var fj={kernelName:Sh,backendName:"cpu",kernelFunc:pj};function mj(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:d,outputSize:h}=D.calculateShapes(a,r,i),p=!1,f=n.bufferSync(r),m=n.bufferSync(a),g=n.data.get(o.dataId).values[0],A=Ww(f,m,i,h,c,u,l,d,g,p);return n.makeTensorInfo(i,A.dtype,A.values)}var gj={kernelName:Ch,backendName:"cpu",kernelFunc:mj};function Aj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=w.parseAxisParam(o,r.shape)[0],l=D.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(d=>{let h=[...c];h[i]=d;let p=Yo({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[i]+=d,p})}var yj={kernelName:yl,backendName:"cpu",kernelFunc:Aj},xj={kernelName:Xu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;ke(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i<r.length;++i){let l=r[i];a[i]=l*l}return{dataId:s.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},bj=ot(Gr,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),vj={kernelName:Gr,backendName:"cpu",kernelFunc:bj};function wj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:h}=s;ke(r,"stridedSlice");let{nonStrided:p,$begin:f,$strides:m,size:g,newShape:A,outShape:y}=xn.sliceInfo(r.shape,a,o,i,l,u,c,d,h),x=xt({inputs:{x:r},backend:n,attrs:{shape:A}}),b;if(p){let k=Yo({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=xt({inputs:{x:k},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(k)}else if(y.some(k=>k===0))b=n.makeTensorInfo(y,r.dtype,[]);else{let k=n.bufferSync(x),S=gw(y,k,m,f);b=n.makeTensorInfo(S.shape,S.dtype,S.values)}let v=xt({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var kj={kernelName:xl,backendName:"cpu",kernelFunc:wj};function Ij(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:d}=t,h=n.data.get(c.dataId).values,p=n.data.get(d.dataId).values,[f,m]=Aw(h,p,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var Sj={kernelName:Th,backendName:"cpu",kernelFunc:Ij};function Cj(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[u,c,d]=yw(i,l,r),h=c.length;return[n.makeTensorInfo([h,2],"int32",u),n.makeTensorInfo([h],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var Tj={kernelName:Nh,backendName:"cpu",kernelFunc:Cj};function Nj(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=xw(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var Ej={kernelName:Eh,backendName:"cpu",kernelFunc:Nj},Rj=ot(wo,e=>Math.tan(e)),_j={kernelName:wo,backendName:"cpu",kernelFunc:Rj},Dj=ot(ko,e=>Math.tanh(e)),$j={kernelName:ko,backendName:"cpu",kernelFunc:Dj};function Fj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;ke(r,"tile");let o=vw(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var Oj={kernelName:Hr,backendName:"cpu",kernelFunc:Fj};function Pj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;ke(r,"topk");let i=n.data.get(r.dataId).values,[l,u]=kw(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var Mj={kernelName:bl,backendName:"cpu",kernelFunc:Pj};function zj(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=n,[c,d,h,p]=r.shape,[f,m]=u!=null?u:[d,h],g=[c,f,m,p],A=w.computeStrides(r.shape),y=A[0],x=A[1],b=A[2],v=w.getTypedArrayFromDType(r.dtype,w.sizeFromShape(g));v.fill(l);let k=s.data.get(r.dataId).values,S=s.data.get(a.dataId).values;for(let _=0;_<c;++_){let O=a.shape[0]===1?S:S.subarray(_*8,_*8+8);for(let E=0;E<f;++E)for(let R=0;R<m;++R)for(let T=0;T<p;++T){let P,V=O[6]*R+O[7]*E+1;if(V===0)continue;let j=(O[0]*R+O[1]*E+O[2])/V,q=(O[3]*R+O[4]*E+O[5])/V,X=Uw(j,h,i),ee=Uw(q,d,i);switch(o){case"nearest":P=Hj(k,d,h,y,x,b,_,ee,X,T,l);break;case"bilinear":P=Gj(k,d,h,y,x,b,_,ee,X,T,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${o}`)}let te=_*y+E*x+R*b+T;v[te]=P}return s.makeTensorInfo(g,r.dtype,v)}return{dataId:s.write(v,g,r.dtype),shape:r.shape,dtype:r.dtype}}var Lj={kernelName:vl,backendName:"cpu",kernelFunc:zj};function Uw(e,t,n){switch(n){case"reflect":return Bj(e,t);case"wrap":return Wj(e,t);case"nearest":return Uj(e,t);case"constant":default:return Vj(e,t)}}function Bj(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=2*t;n<s&&(n=s*Math.trunc(-n/s)+n),n=n<-t?n+s:-n-1}else if(n>t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return w.clamp(0,n,t-1)}function Wj(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return w.clamp(0,n,t-1)}function Vj(e,t){return e}function Uj(e,t){return w.clamp(0,e,t-1)}function Gc(e,t,n,s,r,a,o,i,l,u,c){let d=o*s+i*r+l*a+u;return 0<=i&&i<t&&0<=l&&l<n?e[d]:c}function Hj(e,t,n,s,r,a,o,i,l,u,c){let d=Math.round(i),h=Math.round(l);return Gc(e,t,n,s,r,a,o,d,h,u,c)}function Gj(e,t,n,s,r,a,o,i,l,u,c){let d=Math.floor(i),h=Math.floor(l),p=d+1,f=h+1,m=(f-l)*Gc(e,t,n,s,r,a,o,d,h,u,c)+(l-h)*Gc(e,t,n,s,r,a,o,d,f,u,c),g=(f-l)*Gc(e,t,n,s,r,a,o,p,h,u,c)+(l-h)*Gc(e,t,n,s,r,a,o,p,f,u,c);return(p-i)*m+(i-d)*g}function jj(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;ke(a,"unique");let o=s.data.get(a.dataId).values,{outputValues:i,outputShape:l,indices:u}=Iw(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var qj={kernelName:Rh,backendName:"cpu",kernelFunc:jj};function Xj(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape.length,i=r.shape[a],l=new Array(o-1),u=0;for(let p=0;p<o;p++)p!==a&&(l[u++]=r.shape[p]);let c=new Array(o).fill(0),d=r.shape.slice();d[a]=1;let h=new Array(i);for(let p=0;p<h.length;p++){c[a]=p;let f=Yo({inputs:{x:r},backend:n,attrs:{begin:c,size:d}});h[p]=xt({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return h}var Kj={kernelName:wl,backendName:"cpu",kernelFunc:Xj};function Zj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s;ke(r,"unsortedSegmentSum");let i=r.shape.length,l=a.shape.length,u=[],c=[],d=i-l,h=a;for(let f=0;f<d;++f){let m=df({inputs:{input:h},backend:n,attrs:{dim:f+1}});h=m,c.push(m)}for(let f=0;f<o;++f){let m=w.createScalarValue(f,"int32"),g=n.makeTensorInfo([],"int32",m),A=j7({inputs:{a:g,b:h},backend:n}),y=ca({inputs:{x:A},backend:n,attrs:{dtype:"float32"}}),x=uf({inputs:{a:y,b:r},backend:n}),b=Hc({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});u.push(b),c.push(g),c.push(A),c.push(y),c.push(x),c.push(b)}let p=Lw({inputs:u,backend:n,attrs:{axis:0}});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var Yj={kernelName:Ku,backendName:"cpu",kernelFunc:Zj},Jj=[aV,YB,iV,uV,sW,dV,pV,mV,AV,xV,vV,kV,SV,NV,RV,$V,OV,MV,LV,sV,WV,UV,GV,qV,tW,aW,KV,JB,YV,QV,nU,rU,eU,lU,cU,oU,hU,fU,gU,yU,bU,wU,kU,SU,TU,EU,RU,DU,_U,k2,OU,ZW,MU,oW,GU,iW,jU,uW,JU,QU,tH,dW,rH,oH,lH,cH,hH,pW,mW,QB,fH,JV,gH,yH,bH,YW,AW,xW,wH,vW,IH,TH,EH,DH,FH,PH,kW,LH,WH,UH,GH,qH,MH,KH,YH,SW,QH,nG,oG,TW,EW,uG,hG,mG,_W,AG,xG,bG,Bw,IG,QW,FW,CG,eW,NG,eV,tV,nV,RG,DG,FG,PG,zG,LG,WG,PW,UG,GG,KG,zW,YG,QG,tj,LW,rG,rj,oj,lj,cj,hj,fj,gj,yj,VW,xj,HW,vj,kj,Sj,Tj,Ej,XW,$U,_j,$j,Oj,Mj,DW,Lj,qj,Kj,Yj,yG];for(let e of Jj)No(e);var Hw={};Pe(Hw,{assertNotComplex:()=>su,bindCanvasToFramebuffer:()=>cq,bindColorTextureToFramebuffer:()=>gf,bindTextureToProgramUniformSampler:()=>a6,bindTextureUnit:()=>n6,bindVertexBufferToProgramAttribute:()=>N2,callAndCheck:()=>be,canBeRepresented:()=>Gw,createFragmentShader:()=>Xw,createFramebuffer:()=>t6,createProgram:()=>Kw,createStaticIndexBuffer:()=>Jw,createStaticVertexBuffer:()=>Yw,createTexture:()=>Qw,createVertexShader:()=>qw,getBatchDim:()=>Qo,getExtensionOrThrow:()=>Xc,getFramebufferErrorMessage:()=>o6,getMaxTexturesInShader:()=>c6,getNumChannels:()=>lq,getProgramUniformLocation:()=>r6,getProgramUniformLocationOrThrow:()=>s6,getRowsCols:()=>ei,getShapeAs3D:()=>Af,getTextureShapeFromLogicalShape:()=>l6,getWebGLDisjointQueryTimerVersion:()=>d6,getWebGLErrorMessage:()=>jw,getWebGLMaxTextureSize:()=>u6,hasExtension:()=>xs,isCapableOfRenderingToFloatTexture:()=>h6,isDownloadFloatTextureEnabled:()=>p6,isReshapeFree:()=>Zc,isWebGLFenceEnabled:()=>f6,isWebGLVersionEnabled:()=>R2,linkProgram:()=>Zw,resetMaxTextureSize:()=>dq,resetMaxTexturesInShader:()=>hq,unbindColorTextureFromFramebuffer:()=>E2,unbindTextureUnit:()=>uq,validateFramebuffer:()=>Kc,validateProgram:()=>mf,validateTextureSize:()=>e6});var Jo={},C2={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function pf(e,t){Jo[e]=t}function dr(e){if(!(e in Jo)){let n=eq(e);if(n!==null)Jo[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Jo[e];return t.isContextLost()?(delete Jo[e],dr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Jo[e])}function Qj(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function eq(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=Qj(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Jo[e]},!1),e===1?t.getContext("webgl",C2)||t.getContext("experimental-webgl",C2):t.getContext("webgl2",C2)}var jc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(jc||(jc={}));var ys;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(ys||(ys={}));var on;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(on||(on={}));function qc(e,t){return[t,e]}function tq(e,t){return e*t}function ff(e){let t=w.sizeFromShape(e),n=Math.ceil(t/4);return w.sizeToSquarishShape(n)}function nu(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function nq(e,t){let[n,s]=nu(e,t);return n*s*4}function T2(e,t){let n=e,s,r,a,o,i,l,u,c,d,h;return Q().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,u=4,c=1,d=n.HALF_FLOAT,h=n.FLOAT):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,u=4,c=4,d=t!=null?t.HALF_FLOAT_OES:null,h=e.FLOAT),l=e.RGBA,{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:d,textureTypeFloat:h}}function be(e,t){let n=t();return Q().getBool("DEBUG")&&sq(e),n}function sq(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+jw(e,t))}var rq=596e-10,aq=65504;function Gw(e){return!!(Q().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||rq<Math.abs(e)&&Math.abs(e)<aq)}function jw(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Xc(e,t){return _r(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function qw(e,t){let n=_r(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(be(e,()=>e.shaderSource(n,t)),be(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function Xw(e,t){let n=_r(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(be(e,()=>e.shaderSource(n,t)),be(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw iq(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var oq=/ERROR: [0-9]+:([0-9]+):/g;function iq(e,t){let n=oq.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(`
|
|
`),a=r.length.toString().length+2,o=r.map((d,h)=>w.rightPad((h+1).toString(),a)+d),i=0;for(let d=0;d<o.length;d++)i=Math.max(o[d].length,i);let l=o.slice(0,s-1),u=o.slice(s-1,s),c=o.slice(s);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${w.rightPad(u[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
|
|
`))}function Kw(e){return _r(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function Zw(e,t){if(be(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function mf(e,t){if(be(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function Yw(e,t){let n=_r(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),be(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Jw(e,t){let n=_r(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return be(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),be(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function lq(){return Q().getNumber("WEBGL_VERSION")===2?1:4}function Qw(e){return _r(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function e6(e,t){let n=Q().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function t6(e){return _r(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function N2(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),be(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),be(e,()=>e.enableVertexAttribArray(i)),!0)}function n6(e,t,n){i6(e,n),be(e,()=>e.activeTexture(e.TEXTURE0+n)),be(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function uq(e,t){i6(e,t),be(e,()=>e.activeTexture(e.TEXTURE0+t)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function s6(e,t,n){return _r(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function r6(e,t,n){return e.getUniformLocation(t,n)}function a6(e,t,n,s){be(e,()=>n6(e,t,s)),be(e,()=>e.uniform1i(n,s))}function cq(e){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),be(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),be(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function gf(e,t,n){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),be(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function E2(e,t){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),be(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Kc(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+o6(e,t))}function o6(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function _r(e,t,n){let s=be(e,()=>t());if(s==null)throw new Error(n);return s}function i6(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function Qo(e,t=2){return w.sizeFromShape(e.slice(0,e.length-t))}function ei(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Af(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Qo(e),...ei(e)]),t}function l6(e,t=!1){let n=Q().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?w.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=w.squeezeShape(e).newShape);let s=w.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=Qo(e),a=2,o=2;return e.length&&([a,o]=ei(e)),s=r*(a/2)*(o/2),w.sizeToSquarishShape(s).map(i=>i*2)}return w.sizeToSquarishShape(s)}function yf(e){return e%2==0}function Zc(e,t){if(e=e.slice(-2),t=t.slice(-2),w.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||yf(n)&&yf(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&yf(e[0])&&yf(t[0])}var xf,bf;function u6(e){if(xf==null){let t=dr(e);xf=t.getParameter(t.MAX_TEXTURE_SIZE)}return xf}function dq(){xf=null}function hq(){bf=null}function c6(e){if(bf==null){let t=dr(e);bf=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,bf)}function d6(e){if(e===0)return 0;let t,n=dr(e);return xs(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:xs(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function xs(e,t){return e.getExtension(t)!=null}function R2(e){try{if(dr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function h6(e){if(e===0)return!1;let t=dr(e);if(e===1){if(!xs(t,"OES_texture_float"))return!1}else if(!xs(t,"EXT_color_buffer_float"))return!1;return _2(t)}function p6(e){if(e===0)return!1;let t=dr(e);if(e===1){if(!xs(t,"OES_texture_float")||!xs(t,"WEBGL_color_buffer_float"))return!1}else{if(xs(t,"EXT_color_buffer_float"))return _2(t);let s="EXT_color_buffer_half_float";if(xs(t,s)){let r=t.getExtension(s);return pq(t,r)}return!1}return _2(t)}function _2(e){let t=T2(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function pq(e,t){let n=T2(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function f6(e){return e!==2?!1:dr(e).fenceSync!=null}function su(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ne=Q();Ne.registerFlag("HAS_WEBGL",()=>Ne.getNumber("WEBGL_VERSION")>0);Ne.registerFlag("WEBGL_VERSION",()=>R2(2)?2:R2(1)?1:0);Ne.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ne.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ne.get("WEBGL_VERSION")===2);Ne.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ne.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ne.registerFlag("WEBGL_PACK",()=>Ne.getBool("HAS_WEBGL"));Ne.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_CLIP",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_REDUCE",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_CONV_IM2COL",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>u6(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>c6(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ne.getNumber("WEBGL_VERSION");return e===0?0:d6(e)});Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ne.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!ac.isMobile());Ne.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>h6(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ne.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ne.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ne.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>p6(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_FENCE_API_ENABLED",()=>f6(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ne.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ne.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ne.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>ac.isMobile()&&Ne.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Ne.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Ne.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Ne.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Ne.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function kn(){let e,t,n,s,r,a,o,i,l,u;return Q().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",o="",i=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function ti(e,t,n="index"){let s=w.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function vf(e,t,n="index"){let s=w.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function fq(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function mq(e,t,n="index"){let s=e.map((a,o)=>o),r=fq(s,t);return r.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${r[o]}`,l=o===r.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${r[o]}`:`index -= ${e[o]} * ${r[o]}`;return`${i}; ${l};`}).join("")}function D2(e){let t=w.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function $2(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var m6=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:g6}=D;function gq(e,t,n){let s=[];if(e.forEach(p=>{let f=w.sizeFromShape(p.shapeInfo.logicalShape);if(p.shapeInfo.isUniform?s.push(`uniform float ${p.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${p.name};`),s.push(`uniform int offset${p.name};`)),n.enableShapeUniforms){let{uniformShape:m}=F2(n.packedInputs,p.shapeInfo.logicalShape,p.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${p.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${p.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${p.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${p.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${p.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(p=>{s.push(`uniform ${p.type} ${p.name}${p.arrayIndex?`[${p.arrayIndex}]`:""};`)});let r=s.join(`
|
|
`),a=e.map(p=>Aq(p,t,n.packedInputs,n.enableShapeUniforms)).join(`
|
|
`),o=t.texShape,i=kn(),l=bq(i),u,c,d=kq(i);return t.isPacked?(u=yq(t.logicalShape,o,n.enableShapeUniforms),c=wq(i)):(u=xq(t.logicalShape,o,n.enableShapeUniforms),c=vq(i)),n.packedInputs&&(d+=Tq),[d,l,c,r,u,a,n.userCode].join(`
|
|
`)}function ru(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return Lq(e,t);case 1:return Wq(e,t);case 2:return Uq(e,t);case 3:return Gq(e,t);case 4:return qq(e,t);case 5:return Xq(e);case 6:return Kq(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function A6(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return zq(e);case 1:return Bq(e,t);case 2:return Vq(e,t);case 3:return Hq(e,t);default:return jq(e,t)}}function Aq(e,t,n=!1,s){let r="";n?r+=A6(e,s):r+=ru(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=Zq(e,t):r+=Yq(e,t)),r}function yq(e,t,n){switch(e.length){case 0:return y6();case 1:return Nq(e,t,n);case 2:return Pq(e,t,n);case 3:return Rq(e,t,n);default:return Dq(e,t,n)}}function xq(e,t,n){switch(e.length){case 0:return y6();case 1:return Eq(e,t,n);case 2:return Mq(e,t,n);case 3:return _q(e,t,n);case 4:return $q(e,t,n);case 5:return Fq(e,t);case 6:return Oq(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function bq(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function vq(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function wq(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function kq(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${Iq}
|
|
${Sq}
|
|
${Cq}
|
|
`}var Iq=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,Sq=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,Cq=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,Tq=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function y6(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function Nq(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${s[1]}.0);
|
|
}
|
|
`:s[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${s[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
|
|
}
|
|
`}function Eq(e,t,n){return t[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function Rq(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function _q(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${vf(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let s=ti(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function Dq(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),o=a,i="",l="b, r, c";for(let u=2;u<e.length-1;u++)o*=e[e.length-u-1],i=`
|
|
int b${u} = index / ${o};
|
|
index -= b${u} * ${o};
|
|
`+i,l=`b${u}, `+l;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${l});
|
|
}
|
|
`}function $q(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${vf(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let s=ti(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function Fq(e,t){let n=ti(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function Oq(e,t){let n=ti(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function Pq(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(w.arraysEqual(e,t))return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Mq(e,t,n){return w.arraysEqual(e,t)?n?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function ni(e){return`offset${e}`}function zq(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=kn();return`
|
|
vec4 ${n}() {
|
|
return ${s.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function Lq(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
|
|
float ${s}() {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let o=ni(n);if(t)return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let[i,l]=e.shapeInfo.texShape;return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${i}, ${l}, ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Bq(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=kn();if(t)return`
|
|
vec4 ${s}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`;let o=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
|
|
vec4 ${s}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${o[0]}, ${o[1]}, index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`}function Wq(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int index) {
|
|
${au(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,a=r[0],o=r[1];if(o===1&&a===1)return`
|
|
float ${s}(int index) {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let i=ni(n);return o===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:a===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${o}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${a}, ${o}, index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Vq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=kn();if(a!=null&&w.arraysEqual(n,a))return t?`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${o}.0);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${r}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;let u=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],c=Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${c}, ${u[0]}, ${u[1]}, row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`}function Uq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&w.arraysEqual(n,a)){if(t)return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let h=a[0],p=a[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}let{newShape:o,keptDims:i}=w.squeezeShape(n),l=o;if(l.length<n.length){let h=ou(e,l),p=["row","col"];return`
|
|
${ru(h,t)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${iu(p,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
|
|
${au(e)}
|
|
}
|
|
`;let u=a[0],c=a[1],d=ni(s);return c===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${s}TexShape[0]));
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:u===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${s}TexShape[1]), 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s}Shape[1] + col + ${d};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n[1]} + col + ${d};
|
|
vec2 uv = uvFromFlat(${u}, ${c}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function Hq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let h=n.slice(1),p=[1,2],f=ou(e,h),m=["b","row","col"];return`
|
|
${A6(f,t)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${iu(m,p)});
|
|
}
|
|
`}let i=kn();if(t)return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`;let l=o[0],u=o[1],c=Math.ceil(n[2]/2),d=c*Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${l}, ${u}, ${d}, ${c}, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`}function Gq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[1]*n[2],o=n[2],{newShape:i,keptDims:l}=w.squeezeShape(n),u=i;if(u.length<n.length){let m=ou(e,u),g=["row","col","depth"];return`
|
|
${ru(m,t)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${iu(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${a}, ${o}, 1)));
|
|
${au(e)}
|
|
}
|
|
`;let c=e.shapeInfo.texShape,d=c[0],h=c[1],p=e.shapeInfo.flatOffset;if(h===a&&p==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
int stride1 = ${s}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${o}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(h===o&&p==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${s}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let f=ni(s);return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${s}Shape[1] * ${s}Shape[2];
|
|
int stride1 = ${s}Shape[2];
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${d}, ${h}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function jq(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=kn();if(t)return`
|
|
vec4 ${s}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${n}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`;let a=e.shapeInfo.logicalShape,o=a.length,i=e.shapeInfo.texShape,l=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],u=l[0],c=l[1],d=Math.ceil(a[o-1]/2),h=d*Math.ceil(a[o-2]/2),p="int b, int row, int col",f=`b * ${h} + (row / 2) * ${d} + (col / 2)`;for(let m=2;m<o-1;m++)p=`int b${m}, `+p,h*=a[o-m-1],f=`b${m} * ${h} + `+f;return`
|
|
vec4 ${s}(${p}) {
|
|
int index = ${f};
|
|
int texR = index / ${c};
|
|
int texC = index - texR * ${c};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}, ${u});
|
|
return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`}function qq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[3],o=n[2]*a,i=n[1]*o,{newShape:l,keptDims:u}=w.squeezeShape(n);if(l.length<n.length){let y=ou(e,l),x=["row","col","depth","depth2"];return`
|
|
${ru(y,t)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${iu(x,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, 1)));
|
|
${au(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,h=d[0],p=d[1],f=`int stride2 = ${s}Shape[3];`,m=`int stride1 = ${s}Shape[2] * stride2;`,g=`int stride0 = ${s}Shape[1] * stride1;`;if(p===i&&c==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
${f}
|
|
${m}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${o}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(p===a&&c==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${s}Shape[1] * ${s}Shape[2], ${s}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n[1]*n[2]}, ${n[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let A=ni(s);return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${f}
|
|
${m}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index + ${A});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} +
|
|
depth * ${a} + depth2;
|
|
vec2 uv = uvFromFlat(${h}, ${p}, index + ${A});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function Xq(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],a=t[3]*r,o=t[2]*a,i=t[1]*o,{newShape:l,keptDims:u}=w.squeezeShape(t);if(l.length<t.length){let m=ou(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${ru(m)}
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${s}(${iu(g,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, ${r})) +
|
|
depth3;
|
|
${au(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,h=d[0],p=d[1];if(p===i&&c==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${o}, ${a}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(p===r&&c==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=ni(n);return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} + depth * ${a} +
|
|
depth2 * ${r} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${h}, ${p}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Kq(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:a}=w.squeezeShape(t);if(r.length<t.length){let g=ou(e,r),A=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${ru(g)}
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${s}(${iu(A,a)});
|
|
}
|
|
`}let o=t[5],i=t[4]*o,l=t[3]*i,u=t[2]*l,c=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${c}, ${u}, ${l}, ${i})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${o}, 1)));
|
|
${au(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,p=h[0],f=h[1];if(f===c&&d==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${i}, ${o})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(f===o&&d==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=ni(n);return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${c} + col * ${u} + depth * ${l} +
|
|
depth2 * ${i} + depth3 * ${o} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${p}, ${f}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function au(e){let t=e.name,n=w.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function Zq(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=g6(e.shapeInfo.logicalShape,t.logicalShape),l=ht(o),u=o-a,c,d=["x","y","z","w","u","v"];a===0?c="":o<2&&i.length>=1?c="coords = 0;":c=i.map(y=>`coords.${d[y+u]} = 0;`).join(`
|
|
`);let h="";o<2&&a>0?h="coords":h=e.shapeInfo.logicalShape.map((y,x)=>`coords.${d[x+u]}`).join(", ");let p="return outputValue;",m=w.sizeFromShape(e.shapeInfo.logicalShape)===1,A=w.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!A)p=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!A)o===1?p=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:p=`
|
|
return vec4(outputValue.x);
|
|
`;else if(i.length){let y=a-2,x=a-1;i.indexOf(y)>-1&&i.indexOf(x)>-1?p="return vec4(outputValue.x);":i.indexOf(y)>-1?p="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(x)>-1&&(p="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${c}
|
|
vec4 outputValue = get${s}(${h});
|
|
${p}
|
|
}
|
|
`}function Yq(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&w.arraysEqual(o,a))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let u=ht(l),c=g6(e.shapeInfo.logicalShape,t.logicalShape),d=l-i,h,p=["x","y","z","w","u","v"];i===0?h="":l<2&&c.length>=1?h="coords = 0;":h=c.map(m=>`coords.${p[m+d]} = 0;`).join(`
|
|
`);let f="";return l<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${p[g+d]}`).join(", "),`
|
|
float ${r}() {
|
|
${u} coords = getOutputCoords();
|
|
${h}
|
|
return get${s}(${f});
|
|
}
|
|
`}function ht(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function F2(e,t,n){let{newShape:s,keptDims:r}=w.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):s,l=!e&&a>1&&!w.arraysEqual(t,n)&&s.length<a||o;return{useSqueezeShape:l,uniformShape:l?i:t,keptDims:r}}function ou(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function iu(e,t){return t.map(n=>e[n]).join(", ")}function Jq(e,t,n,s){let r=n.map((x,b)=>{let v={logicalShape:x.shape,texShape:x.isUniform?null:x.texData.texShape,isUniform:x.isUniform,isPacked:x.isUniform?!1:x.texData.isPacked,flatOffset:null};return x.texData!=null&&x.texData.slice!=null&&x.texData.slice.flatOffset>0&&(v.flatOffset=x.texData.slice.flatOffset),{name:t.variableNames[b],shapeInfo:v}}),a=r.map(x=>x.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=gq(r,o,t),l=e.createProgram(i),u=null,c=e.getUniformLocation(l,"NAN",!1);Q().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(l,"INFINITY",!1));let d=!1,h={},p={},f={};for(let x=0;x<t.variableNames.length;x++){let b=t.variableNames[x];h[b]=e.getUniformLocation(l,b,d),h[`offset${b}`]=e.getUniformLocation(l,`offset${b}`,d),t.enableShapeUniforms&&(p[`${b}Shape`]=e.getUniformLocation(l,`${b}Shape`,d),f[`${b}TexShape`]=e.getUniformLocation(l,`${b}TexShape`,d))}let m,g,A;t.enableShapeUniforms&&(m=e.getUniformLocation(l,"outShape",d),A=e.getUniformLocation(l,"outShapeStrides",d),g=e.getUniformLocation(l,"outTexShape",d));let y=[];return t.customUniforms&&t.customUniforms.forEach((x,b)=>{y[b]=e.getUniformLocation(l,x.name,d)}),{program:t,source:i,webGLProgram:l,uniformLocations:h,customUniformLocations:y,inShapeInfos:a,outShapeInfo:o,infLoc:u,nanLoc:c,inShapesLocations:p,inTexShapesLocations:f,outShapeLocation:m,outShapeStridesLocation:A,outTexShapeLocation:g}}function x6(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!w.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!w.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function Qq(e,t,n,s,r){t.program.enableShapeUniforms||(x6(t.inShapeInfos,n),x6([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a,o[0],o[1]):e.setOutputMatrixTexture(a,o[0],o[1]),e.setProgram(t.webGLProgram),Q().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let c=t.program.variableNames[u],d=t.uniformLocations[c],h=t.uniformLocations[`offset${c}`],p=t.inShapesLocations[`${c}Shape`],f=t.inTexShapesLocations[`${c}TexShape`];if(p){let{uniformShape:m}=F2(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(p,new Int32Array(m));break;case 2:e.gl.uniform2iv(p,new Int32Array(m));break;case 3:e.gl.uniform3iv(p,new Int32Array(m));break;case 4:e.gl.uniform4iv(p,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(w.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(d,m)}return}l.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture,d,u)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=w.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let c=t.customUniformLocations[u],d=r[u];if(l.type==="float")e.gl.uniform1fv(c,d);else if(l.type==="vec2")e.gl.uniform2fv(c,d);else if(l.type==="vec3")e.gl.uniform3fv(c,d);else if(l.type==="vec4")e.gl.uniform4fv(c,d);else if(l.type==="int")e.gl.uniform1iv(c,d);else if(l.type==="ivec2")e.gl.uniform2iv(c,d);else if(l.type==="ivec3")e.gl.uniform3iv(c,d);else if(l.type==="ivec4")e.gl.uniform4iv(c,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function eX(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:u,uniformShape:c,keptDims:d}=F2(e.packedInputs,o.shape,l),h="",p="",f="";if(c.length===1&&e.packedInputs){let v=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];h=`${v[0]>1}_${v[1]>1}`}else if(c.length===2&&!e.packedInputs)p=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!e.packedInputs){let v=w.computeStrides(c);f=`${v[0]===l[1]}_${v[v.length-1]===l[1]}`}let m=o.shape.length,g=c.length===2&&w.arraysEqual(o.shape,l),A=w.sizeFromShape(o.shape)===1,y=D.getBroadcastDims(o.shape,n.shape),x=!e.packedInputs&&m===n.shape.length&&w.arraysEqual(l,n.texData.texShape),b=e.packedInputs||c.length>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${m}_${x}_${u?d:""}_${c.length}_${A}_${y}_${g}_${h}_${p}_${f}_${b}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${Q().getNumber("WEBGL_VERSION")}`,a}function bs(e){return Q().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var tX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=jc.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=kn();this.outputShape=e,this.enableShapeUniforms=bs(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?vf(["r","c","d"],e):ti(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},nX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=jc.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=kn();this.outputShape=e,this.enableShapeUniforms=bs(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?vf(["r","c","d"],e):ti(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},sX=class{constructor(e){this.variableNames=["A"],this.outTexUsage=ys.DOWNLOAD;let t=kn();this.outputShape=e,this.userCode=`
|
|
${m6}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},rX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=ys.DOWNLOAD;let t=kn();this.outputShape=e,this.userCode=`
|
|
${m6}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},aX=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=kn();this.outputShape=e,this.enableShapeUniforms=bs(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?$2():D2(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${n.output} = vec4(${s}, 0., 0., 0.);
|
|
}
|
|
`}},oX=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=kn();this.outputShape=e,this.enableShapeUniforms=bs(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;s+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${o};
|
|
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${a};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${i}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${i}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${i}] = values[2];
|
|
} else {
|
|
result[${i}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?$2():D2(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${s}
|
|
|
|
${n.output} = ${r};
|
|
}
|
|
`}},b6={};Pe(b6,{bindVertexProgramAttributeStreams:()=>E6,createBufferFromOutputTexture:()=>D6,createFloat16MatrixTexture:()=>S6,createFloat16PackedMatrixTexture:()=>N6,createFloat32MatrixTexture:()=>I6,createIndexBuffer:()=>k6,createPackedMatrixTexture:()=>T6,createUnsignedBytesMatrixTexture:()=>C6,createVertexBuffer:()=>w6,createVertexShader:()=>v6,downloadByteEncodedFloatMatrixFromOutputTexture:()=>F6,downloadFloat32MatrixFromBuffer:()=>$6,downloadMatrixFromPackedOutputTexture:()=>P6,downloadPackedMatrixFromBuffer:()=>O6,getInternalFormatForFloat16MatrixTexture:()=>P2,getInternalFormatForFloat16PackedMatrixTexture:()=>L2,getInternalFormatForFloat32MatrixTexture:()=>O2,getInternalFormatForPackedMatrixTexture:()=>z2,getInternalFormatForUnsignedBytesMatrixTexture:()=>M2,uploadDenseMatrixToTexture:()=>R6,uploadPixelDataToTexture:()=>_6});function v6(e){let t=kn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return qw(e,n)}function w6(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return Yw(e,t)}function k6(e){let t=new Uint16Array([0,1,2,2,1,3]);return Jw(e,t)}function Yc(e,t,n,s,r,a){e6(t,n);let o=Qw(e),i=e.TEXTURE_2D;return be(e,()=>e.bindTexture(i,o)),be(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),be(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),be(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),be(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),be(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null)),o}function O2(e){return e.internalFormatFloat}function I6(e,t,n,s){let[r,a]=qc(t,n);return Yc(e,r,a,O2(s),s.textureFormatFloat,e.FLOAT)}function P2(e){return e.internalFormatHalfFloat}function S6(e,t,n,s){let[r,a]=qc(t,n);return Yc(e,r,a,P2(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function M2(e){return e.downloadTextureFormat}function C6(e,t,n,s){let[r,a]=qc(t,n);return Yc(e,r,a,M2(s),e.RGBA,e.UNSIGNED_BYTE)}function z2(e){return e.internalFormatPackedFloat}function T6(e,t,n,s){let[r,a]=nu(t,n);return Yc(e,r,a,z2(s),e.RGBA,e.FLOAT)}function L2(e){return e.internalFormatPackedHalfFloat}function N6(e,t,n,s){let[r,a]=nu(t,n);return Yc(e,r,a,L2(s),e.RGBA,s.textureTypeHalfFloat)}function E6(e,t,n){let s=0,r=3*4,a=3*4+2*4;return be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),N2(e,t,"clipSpacePos",n,3,a,s)&&N2(e,t,"uv",n,2,a,r)}function R6(e,t,n,s,r,a){be(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),be(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function _6(e,t,n){be(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?be(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):be(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function D6(e,t,n,s){let r=e.createBuffer();be(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return be(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),be(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),be(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function $6(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function F6(e,t,n,s){let[r,a]=qc(t,n),o=4,i=new Uint8Array(tq(t*n,o));return be(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function O6(e,t,n,s,r,a,o,i){let l=e,u=new Float32Array(nq(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function P6(e,t,n){let s=new Float32Array(t*n*4);return be(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var wf=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Q().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,pf(t,e)):this.gl=dr(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(Q().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=Xc(this.gl,r),xs(this.gl,a))this.textureHalfFloatExtension=Xc(this.gl,a);else if(Q().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),xs(this.gl,s))this.colorBufferHalfFloatExtension=Xc(this.gl,s);else if(Q().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",xs(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(xs(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=w6(this.gl),this.indexBuffer=k6(this.gl),this.framebuffer=t6(this.gl),this.textureConfig=T2(this.gl,this.textureHalfFloatExtension)}get debug(){return Q().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;be(e,()=>e.finish()),be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),be(e,()=>e.deleteFramebuffer(this.framebuffer)),be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),be(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),be(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),I6(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),S6(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),C6(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),_6(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),R6(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),N6(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),T6(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(E2(this.gl,this.framebuffer),this.outputTexture=null),be(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>F6(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return O6(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return $6(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=D6(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(Q().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>P6(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=Xw(t,e);this.vertexShader==null&&(this.vertexShader=v6(t));let s=Kw(t);return be(t,()=>t.attachShader(s,this.vertexShader)),be(t,()=>t.attachShader(s,n)),Zw(t,s),this.debug&&mf(t,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=E6(t,this.program,this.vertexBuffer)),s}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&be(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&mf(this.gl,this.program),be(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?s6(this.gl,e,t):r6(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),be(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),a6(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=nu(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&mf(this.gl,this.program),Kc(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),be(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),be(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Xc(this.gl,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await w.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=iX(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&w.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),gf(this.gl,e,this.framebuffer),this.debug&&Kc(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(gf(this.gl,this.outputTexture,this.framebuffer),this.debug&&Kc(this.gl)):E2(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;gf(s,e,this.framebuffer),this.debug&&Kc(s),this.outputTexture=e,be(s,()=>s.viewport(0,0,t,n)),be(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),be(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function iX(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:lX,bincountImpl:M6,bincountReduceImpl:uX,ceilImpl:cX,concatImpl:dX,equalImpl:hX,expImpl:pX,expm1Impl:fX,floorImpl:mX,gatherNdImpl:gX,gatherV2Impl:AX,greaterImpl:yX,greaterEqualImpl:xX,lessImpl:bX,lessEqualImpl:vX,linSpaceImpl:wX,logImpl:kX,maxImpl:IX,maximumImpl:SX,minimumImpl:CX,multiplyImpl:TX,negImpl:NX,notEqualImpl:EX,prodImpl:RX,rangeImpl:_X,rsqrtImpl:DX,sigmoidImpl:$X,simpleAbsImpl:z6,sliceImpl:FX,sparseFillEmptyRowsImpl:OX,sparseReshapeImpl:PX,sparseSegmentReductionImpl:L6,sqrtImpl:MX,stridedSliceImpl:zX,stringNGramsImpl:LX,stringSplitImpl:BX,stringToHashBucketFastImpl:WX,subImpl:VX,tileImpl:UX,topKImpl:HX,transposeImpl:B2,uniqueImpl:GX}=d2;function B6(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function In(e,t){return t===1?[e]:B6(e,t)}function jX(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}var qX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=In("rc",t),s=ht(t),r=KX(t,e,n),a=ZX(t,e[e.length-1],e[e.length-2],n),o=YX(e,n);this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
|
|
if(${r}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${a}
|
|
|
|
setOutput(vec4(${o}));
|
|
}
|
|
}
|
|
`}}};function XX(e,t){let n=[];for(let s=0;s<=1;s++)for(let r=0;r<=1;r++){let a=`${s===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let o=2;o<e;o++)a=`${t[t.length-1-o]},`+a;n.push(a)}return n}function KX(e,t,n){if(e===1)return`rc > ${t[0]}`;let s="";for(let r=e-2;r<e;r++)s+=`${n[r]} >= ${t[r]}`,r<e-1&&(s+="||");return s}function ZX(e,t,n,s){if(e===1)return"";let r=s.slice(-2);return`
|
|
int r = ${r[0]};
|
|
int c = ${r[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function YX(e,t){let n=e.length,s=XX(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${s[0]}),
|
|
cEdge ? 0. : getA(${s[1]}),
|
|
rEdge ? 0. : getA(${s[2]}),
|
|
rEdge || cEdge ? 0. : getA(${s[3]})`}var W6=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=bs(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2==1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${s}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${s>0?"}":""}
|
|
`}this.userCode=`
|
|
${JX(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?$2():D2(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function JX(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?mq(["r","c","d"],"inputShape"):ti(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var QX=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=U6(t,n),r=H6(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=V6(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===on.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===on.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===on.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===on.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===on.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=U6(n,s),a=H6(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=V6(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=Q().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function eK(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function V6(e,t,n,s,r){let a=tK(t,s),o;if(r){let[l,u]=nu(e[0],e[1]);o=l*u}else{let[l,u]=qc(e[0],e[1]);o=l*u}let i=eK(n,a);return o*i}function tK(e,t){switch(e){case on.PACKED_2X2_FLOAT32:return z2(t);case on.PACKED_2X2_FLOAT16:return L2(t);case on.UNPACKED_FLOAT32:return O2(t);case on.UNPACKED_FLOAT16:return P2(t);case on.PACKED_4X1_UNSIGNED_BYTE:return M2(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function nK(e){return Q().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?on.PACKED_2X2_FLOAT32:on.UNPACKED_FLOAT32:e?on.PACKED_2X2_FLOAT16:on.UNPACKED_FLOAT16}function U6(e,t){if(e===ys.UPLOAD)return on.PACKED_2X2_FLOAT32;if(e===ys.RENDER||e==null)return nK(t);if(e===ys.DOWNLOAD||e===ys.PIXELS)return on.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function H6(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var ha=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=bs(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},js="if (isnan(x)) return x;",sK="return x;",G6="return abs(x);",rK="return (x >= 0.0) ? x : (exp(x) - 1.0);",aK=js+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,oK=js+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,kf="return x;",iK="return 1.0 / (1.0 + exp(-1.0 * x));",lK="return x;",uK=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,cK=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,dK=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,hK="return 1.0 / (1.0 + exp(-1.0 * x));",lu=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=bs(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},pK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=In("rc",t),s=ht(t),r=jX(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${o}));
|
|
}
|
|
`}},fK=rr.whereImpl,mK=1e-7,gK=1e-4,If={};function AK(e){return e in If||(If[e]={}),If[e]}var yK=Q().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),xK=600;function bK(){return Q().global.screen==null?1024:Q().global.screen.height*Q().global.screen.width*window.devicePixelRatio*xK/1024/1024}var uu=class extends $u{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!Q().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=dr(Q().getNumber("WEBGL_VERSION"));this.binaryCache=AK(Q().getNumber("WEBGL_VERSION")),this.gpgpu=new wf(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new QX(this.gpgpu),this.numMBBeforeWarning=bK(),this.texData=new Hd(this,wr())}nextDataId(){return uu.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((Q().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Q().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:ys.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(Q().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:ys.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let d;i?d=new lu(o,kf):d=new ha(o,kf);let h=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:s}],s),p=this.readSync(h.dataId);return this.disposeIntermediateTensorInfo(h),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,u;l&&(u=w.now());let c;if(s==="complex64"){let d=this.readSync(r.real.dataId),h=this.readSync(r.imag.dataId);c=D.mergeRealAndImagArrays(d,h)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=w.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(f=>p.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let p;i?p=new lu(s,kf):p=new ha(s,kf);let f=this.runWebGLProgram(p,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!Q().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Q().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(a!=="complex64"&&Q().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let p=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...ff(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(a==="complex64"){let p=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=p[0],m=p[1];c=D.mergeRealAndImagArrays(f,m)}else if(l==null)c=this.getValuesFromTexture(e);else{let p=w.sizeFromShape(s);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let p=this.gpgpu.gl;be(p,()=>p.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,c),h=this.pendingRead.get(e);return this.pendingRead.delete(e),h.forEach(p=>p(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&wr().removeDataId(e,this),this.pendingDeletes--),d}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>w.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!Gw(n))throw Q().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:s}=this.texData.get(e),r=w.sizeFromShape(t);if(Q().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),h=this.texData.get(d.dataId),p=this.gpgpu.downloadMatrixFromPackedTexture(h.texture,...ff(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),p}let a=Q().getBool("WEBGL_PACK")&&s===!0,o=a?Af(t):t,i=a?new rX(o):new sX(o),l=this.runWebGLProgram(i,[{shape:o,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),c=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),c}timerAvailable(){return Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=w.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=w.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=w.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:w.now(),endMs:null}}endTimer(e){return Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=w.now(),e)}async getQueryTime(e){if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=yK){return Q().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&w.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){D.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return fK(e.shape,t)}packedUnaryOp(e,t,n){let s=new lu(e.shape,t),r=this.compileAndRun(s,[e],n);return wr().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let s=z6(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(Q().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,G6,e.dtype);let t=new ha(e.shape,G6),n=this.compileAndRun(t,[e]);return wr().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(a=>w.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:s}=this.makeTensorInfo(e,t,n);return wr().makeTensorFromDataId(s,e,t,this)}unpackTensor(e){let t=new pK(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new qX(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Qo(e.shape),...ei(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[Qo(t),...ei(t)],a=new W6(r,n),o=!0,i=[n],l=this.runWebGLProgram(a,[s],e.dtype,i,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:s,dtype:r}=t,a=Af(s),o,i=ff(a);n?o=new nX(a):o=new tX(a);let l=!0,u=[i],c=this.runWebGLProgram(o,[{shape:a,dtype:r,dataId:e}],r,u,l);return{dtype:r,shape:s,dataId:c.dataId}}runWebGLProgram(e,t,n,s,r=!1){let a=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(a.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===jc.DENSE){let m=ff(e.outputShape);o.texShape=m.map(g=>g*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),w.sizeFromShape(a.shape)===0)return o.values=w.getTypedArrayFromDType(a.dtype,0),a;let i=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(m.dataId);if(g.texture==null){if(!e.packedInputs&&w.sizeFromShape(m.shape)<=Q().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=m.shape)}else if(!!g.isPacked!=!!e.packedInputs)m=g.isPacked?this.unpackTensor(m):this.packTensor(m),i.push(m),g=this.texData.get(m.dataId);else if(g.isPacked&&!Zc(g.shape,m.shape)){let A=m,y=m.shape;m.shape=g.shape,m=this.packedReshape(m,y),i.push(m),g=this.texData.get(m.dataId),A.shape=y}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:g,isUniform:!1}});this.uploadToGPU(a.dataId);let u={shape:a.shape,texData:o,isUniform:!1},c=eX(e,l,u),d=this.getAndSaveBinary(c,()=>Jq(this.gpgpu,e,l,u)),h=this.activeTimers!=null,p;h&&(p=this.startTimer()),Qq(this.gpgpu,d,l,u,s),i.forEach(m=>this.disposeIntermediateTensorInfo(m)),h&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)}));let f=Q().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=w.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!Q().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let m=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),m}return a}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Q().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=H(()=>{if(!Q().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Q().getBool("DEBUG");Q().set("DEBUG",!1);let t=this.abs(Ie(1e-8)).dataSync()[0];if(Q().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?mK:gK}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,u;l&&(u=w.now());let c=t.texShape;if(c==null&&(c=l6(n,i),t.texShape=c),r!=null){let d=Af(n),h,p=c[1],f=c[0],m=r instanceof Uint8Array;i?([p,f]=nu(c[0],c[1]),h=new oX(d,m)):h=new aX(d,m);let g=this.makeTensorInfo([f,p],s);m?this.texData.get(g.dataId).usage=ys.PIXELS:this.texData.get(g.dataId).usage=ys.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),p,f,r);let A=[[f,p]],y=!0,x=this.runWebGLProgram(h,[g],s,A,y),b=this.texData.get(x.dataId);t.texture=b.texture,t.texShape=b.texShape,t.isPacked=b.isPacked,t.usage=b.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(x.dataId),t.values=null,l&&(this.uploadWaitMs+=w.now()-u)}else{let d=this.acquireTexture(c,o,s,i);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=vK(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*w.bytesPerElement(t)}};uu.nextDataId=0;function vK(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}var wK="3.9.0";function j6(){Q().set("WEBGL_FORCE_F16_TEXTURES",!0)}ac.isBrowser()&&Dl("webgl",()=>new uu,2);var kK={forceHalfFloat:j6},q6=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,cu=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=D.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=bs(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},Sf=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,Jc=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=D.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=bs(r);let a="";if(s)if(r===0||w.sizeFromShape(this.outputShape)===1)a=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(a=`
|
|
${ht(r)} coords = getOutputCoords();
|
|
`,r===1)this.enableShapeUniforms?a+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:a+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=In("coords",r);this.enableShapeUniforms?a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= outShape[${r} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= outShape[${r} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${a}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Yn(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var IK={kernelName:qa,backendName:"webgl",kernelFunc:Yn};function pa(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=Yn({inputs:{x:s},backend:n}),l=Yn({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var SK={kernelName:Jd,backendName:"webgl",kernelFunc:pa},X6="return (a < 0.) ? b * a : a;",K6=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function CK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",w.createScalarValue(a,"float32")),i=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Jc(K6,r.shape,o.shape):new cu(X6,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],r.dtype);return n.disposeIntermediateTensorInfo(o),l}var TK={kernelName:Xa,backendName:"webgl",kernelFunc:CK},Z6="return (a < 0.) ? b * a : a;",Y6=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function NK(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Jc(Y6,s.shape,r.shape):new cu(Z6,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)}var EK={kernelName:io,backendName:"webgl",kernelFunc:NK},J6="if (isnan(x)) return x;",RK=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,_K=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function Je({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let d=i.texData.get(o.dataId),h=n(d.values,l);return i.makeTensorInfo(o.shape,l,h)}let u=Q().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new lu(o.shape,t):c=new ha(o.shape,e),i.runWebGLProgram(c,[o],l)}}function ln({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:u}=o,c=i;if(s&&l.dtype==="complex64"){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[g,A]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(x=>{let[b,v]=x,k={dataId:b.dataId,dtype:b.dtype,shape:l.shape},S={dataId:v.dataId,dtype:v.dtype,shape:u.shape},C=new cu(e,l.shape,u.shape);return c.runWebGLProgram(C,[k,S],Cs(b.dtype,v.dtype))}),y=pa({inputs:{real:g,imag:A},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(A),y}let d=a||Cs(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||c.shouldExecuteOnCPU([l,u]))&&r!=null){let f=c.texData.get(l.dataId).values,m=c.texData.get(u.dataId).values,g=l.dtype==="string"?D.fromUint8ToStringArray(f):f,A=l.dtype==="string"?D.fromUint8ToStringArray(m):m,[y,x]=r(l.shape,u.shape,g,A,d),b=c.makeTensorInfo(x,d),v=c.texData.get(b.dataId);return v.values=y,b}let h=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return h?p=new Jc(t,l.shape,u.shape,n):p=new cu(e,l.shape,u.shape),c.runWebGLProgram(p,[l,u],d)}}function Cf(e,t=!1){if(e==="linear")return t?lK:sK;if(e==="relu")return t?cK:aK;if(e==="elu")return t?uK:rK;if(e==="relu6")return t?dK:oK;if(e==="prelu")return t?Y6:Z6;if(e==="leakyrelu")return t?K6:X6;if(e==="sigmoid")return t?hK:iK;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var Q6=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=bs(this.outputShape.length);let u=s?e[1]:e[2],c=Math.ceil(u/2),d=s?"i * 2, rc.y":"rc.y, i * 2",h=r?"rc.z, i * 2":"i * 2, rc.z",p=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${o}
|
|
}`:l?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${o}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${o}
|
|
}`,g="result = activation(result);");let A=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let y="rc.x",x="rc.x";e[0]<t[0]?y=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${m}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${c}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${c}; i++) {
|
|
int batchA = ${y};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${d});
|
|
vec4 b = getMatrixB(batchB, ${h});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${p[0]} * ${f[0]});
|
|
result += (${p[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${A}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},e4={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},t4=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=D.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},n4="return a * b;";function W2(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=D.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),u=new t4(e4.REAL,s.shape,r.shape),c=new t4(e4.IMAG,s.shape,r.shape),d=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:s.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],h=n.runWebGLProgram(u,d,"float32"),p=n.runWebGLProgram(c,d,"float32"),f=pa({inputs:{real:h,imag:p},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),f}if(n.shouldExecuteOnCPU([s,r])){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),[u,c]=TX(s.shape,r.shape,i.values,l.values,a),d=n.makeTensorInfo(c,a),h=n.texData.get(d.dataId);return h.values=u,d}let o;return Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new Jc(n4,s.shape,r.shape):o=new cu(n4,s.shape,r.shape),n.runWebGLProgram(o,[s,r],a)}var DK={kernelName:so,backendName:"webgl",kernelFunc:W2};function $K(e,t,n){let s=[Qo(e.shape),...ei(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[Qo(t),...ei(t)],o=new W6(a,s),i=!0,l=[s],u=n.runWebGLProgram(o,[r],e.dtype,l,i);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function ye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=n,i=w.sizeFromShape(r.shape),l=w.inferFromImplicitShape(a,i),u=w.sizeFromShape(l);w.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=o.texData.get(r.dataId);return c.isPacked&&!Zc(r.shape,l)&&!(c.texture!==null&&Zc(c.shape,l))?$K(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var FK={kernelName:ul,backendName:"webgl",kernelFunc:ye},s4=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${w.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";r%n>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${o}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${o};
|
|
if (${i===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},OK=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,d=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,h="vec4";t==="all"?(o="1.0",d=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,h="bvec4"):t==="any"&&(o="0.0",d=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,h="bvec4");let p="";r%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${p}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${o});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${h} values = ${h}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
${h} values = ${h}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${c===2}) {
|
|
${h} values = ${h}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${c===3}) {
|
|
${h} values = ${h}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function PK(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=D.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function si(e,t,n,s){let r=PK(e.shape),a=e;for(let o=0;o<r.length;o++){let{inSize:i,windowSize:l,outSize:u}=r[o],c,d;n==="mean"?c=o===0?new s4({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u},i):new s4({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u}):c=new OK({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u},n),d=a,a=s.runWebGLProgram(c,[a],t),d.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(d)}return a}var MK=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let s=ht(this.rank),r=zK(t);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function zK(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r<e.length;r++)s[e[r]]=n[r];return s.join()}var LK=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=ht(this.rank),r=B6("rc",this.rank),a=new Array(this.rank);for(let u=0;u<t.length;u++)a[t[u]]=r[u];let o=`vec2(${a.slice(-2).join()})`,i=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${a.join()}), ${o})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${i}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${i}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Tf(e,t,n){let s=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new LK(e.shape,t):new MK(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function BK(e,t,n,s){let r=t,a=e.shape.length,o=w.parseAxisParam(r,e.shape),i=o,l=D.getAxesPermutation(i,a),u=l!=null,c=e;u&&(c=Tf(e,l,s),i=D.getInnerMostAxes(i.length,a)),D.assertAxesAreInnerMostDims("sum",i,a);let[d,h]=D.computeOutAndReduceShapes(c.shape,i),p=d;n&&(p=D.expandShapeToKeepDim(d,o));let f=w.sizeFromShape(h),g=w.sizeFromShape(e.shape)/f,A=ye({inputs:{x:c},attrs:{shape:[g,f]},backend:s}),y=Mh(e.dtype),x=si(A,y,"sum",s),b=ye({inputs:{x},attrs:{shape:p},backend:s});return s.disposeIntermediateTensorInfo(A),s.disposeIntermediateTensorInfo(x),u&&s.disposeIntermediateTensorInfo(c),b}function Nf(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return BK(r,a,o,n)}var WK={kernelName:yo,backendName:"webgl",kernelFunc:Nf};function Sn(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=r.shape[a[c]];let u;if(o.shouldExecuteOnCPU([r])){let d=o.texData.get(r.dataId).values,h=B2(d,r.shape,r.dtype,a,l);u=o.makeTensorInfo(l,r.dtype);let p=o.texData.get(u.dataId);p.values=h}else u=Tf(r,a,o);return u}var VK={kernelName:Io,backendName:"webgl",kernelFunc:Sn},r4=1e3;function Ef({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,d=n?e.shape[u-2]:e.shape[u-1],h=s?t.shape[c-1]:t.shape[c-2],p=n?e.shape[u-1]:e.shape[u-2],f=s?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),A=w.sizeFromShape(m),y=w.sizeFromShape(g),x=A===y||A===1||y===1;w.assert(u>=2&&c>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${g}).`);let v=(A>y?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,f]);w.assert(d===h,()=>`Error in matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let k=n?[A,d,p]:[A,p,d],S=s?[y,f,h]:[y,h,f],C=ye({inputs:{x:e},backend:r,attrs:{shape:k}}),_=ye({inputs:{x:t},backend:r,attrs:{shape:S}}),O=[C,_],E=Math.max(A,y),R=n?C.shape[1]:C.shape[2],T=a!=null,P=o!=null,V=l==="leakyrelu",j=l!=null?Cf(l,!0):null,q=T||P||V||j!=null,X;if((p===1||f===1)&&R>r4&&q===!1){let te=C,ne=_;n&&(te=Sn({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),O.push(te)),s&&(ne=Sn({inputs:{x:_},backend:r,attrs:{perm:[0,2,1]}}),O.push(ne));let se=f!==1,J=f===1,ie=te;se&&(ie=ye({inputs:{x:te},backend:r,attrs:{shape:[E,R,1]}}),O.push(ie));let le=f===1?2:1,he=ne;J&&(he=ye({inputs:{x:ne},backend:r,attrs:{shape:[E,1,R]}}),O.push(he));let Ae=W2({inputs:{a:ie,b:he},backend:r});X=Nf({inputs:{x:Ae},backend:r,attrs:{axis:le,keepDims:!0}}),O.push(Ae)}else{let te=Cs(e.dtype,t.dtype),ne=new Q6(k,S,[E,p,f],n,s,T,j,P,V),se=[C,_];if(a!=null&&se.push(a),P&&se.push(o),V){let J=r.makeTensorInfo([],"float32",w.createScalarValue(i,"float32"));se.push(J),O.push(J)}X=r.runWebGLProgram(ne,se,te)}let ee=ye({inputs:{x:X},backend:r,attrs:{shape:v}});O.push(X);for(let te of O)r.disposeIntermediateTensorInfo(te);return ee}function UK(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=s;return Ef({a:r,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:c})}var HK={kernelName:So,backendName:"webgl",kernelFunc:UK},a4="return abs(x);";function GK(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=z6(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return Q().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new lu(s.shape,a4):r=new ha(s.shape,a4),n.runWebGLProgram(r,[s],s.dtype)}var jK={kernelName:Ii,backendName:"webgl",kernelFunc:GK},qK=js+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,XK=Je({opSnippet:qK}),KK={kernelName:Si,backendName:"webgl",kernelFunc:XK},ZK=js+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,YK=Je({opSnippet:ZK}),JK={kernelName:Ci,backendName:"webgl",kernelFunc:YK},o4="return a + b;",QK=ln({opSnippet:o4,packedOpSnippet:o4,supportsComplex:!0,cpuKernelImpl:lX}),eZ={kernelName:Vr,backendName:"webgl",kernelFunc:QK},tZ=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}},nZ=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}};function Rf(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return Yn({inputs:{x:s[0]},backend:n});if(s.length>Q().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),u=Rf({inputs:s.slice(0,l),backend:n}),c=Rf({inputs:s.slice(l),backend:n});return Rf({inputs:[u,c],backend:n})}let r=s.map(l=>l.dtype).reduce((l,u)=>Cs(l,u)),a=s.map(l=>l.shape),i=Q().getBool("WEBGL_PACK")?new nZ(s[0].shape,a):new tZ(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var sZ={kernelName:Na,backendName:"webgl",kernelFunc:Rf};function rZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),u=l,c=D.getAxesPermutation(u,i),d=r;c!=null&&(d=Sn({inputs:{x:r},backend:n,attrs:{perm:c}}),u=D.getInnerMostAxes(u.length,i)),D.assertAxesAreInnerMostDims("all",u,i);let[h,p]=D.computeOutAndReduceShapes(d.shape,u),f=w.sizeFromShape(p),m=ye({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=si(m,m.dtype,"all",n),A;if(o){let y=D.expandShapeToKeepDim(h,l);A=ye({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=ye({inputs:{x:g},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(d),A}var aZ={kernelName:Ti,backendName:"webgl",kernelFunc:rZ};function oZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),u=l,c=D.getAxesPermutation(u,i),d=r;c!=null&&(d=Sn({inputs:{x:r},backend:n,attrs:{perm:c}}),u=D.getInnerMostAxes(u.length,i)),D.assertAxesAreInnerMostDims("any",u,i);let[h,p]=D.computeOutAndReduceShapes(d.shape,u),f=w.sizeFromShape(p),m=ye({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=si(m,m.dtype,"any",n),A;if(o){let y=D.expandShapeToKeepDim(h,l);A=ye({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=ye({inputs:{x:g},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(d),A}var iZ={kernelName:Ni,backendName:"webgl",kernelFunc:oZ},lZ=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${s};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
int inIdx = ${i};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${o} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},uZ=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,w.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=ht(i),u=In("coords",i),c,d;if(a===1){d=i+1;let S=ht(d);c=`
|
|
${S} sourceLocR = ${S}(${u.join()}, 0);
|
|
++${u[i-1]};
|
|
${S} sourceLocG = ${S}(${u.join()}, 0);
|
|
++${u[i-2]};
|
|
${S} sourceLocA = ${S}(${u.join()}, 0);
|
|
--${u[i-1]};
|
|
${S} sourceLocB = ${S}(${u.join()}, 0);
|
|
--${u[i-2]};`}else d=i,c=`
|
|
${l} sourceLocR = coords;
|
|
++${u[i-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[i-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[i-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[i-2]};`;let h=["x","y","z","w","u","v"].slice(0,d),p="."+h[d-1],f=h.map(S=>"int "+S),m=In("sourceLocR",d-1).concat("inIdx.r"),g=In("sourceLocG",d-1).concat("inIdx.g"),A=In("sourceLocB",d-1).concat("inIdx.b"),y=In("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",b=s?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${A.join()}),
|
|
getBestIndicesAChannel(${y.join()})));`,v=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${A.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,k=s?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${h.join()}),
|
|
vec2(${h.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${h.join()}),
|
|
vec2(${h.slice(-2).join()}));
|
|
}
|
|
${k}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[i-1]} < ${o[i-1]-1};
|
|
bool hasNextRow = ${u[i-2]} < ${o[i-2]-1};
|
|
${c}
|
|
ivec4 srcIdx = ivec4(sourceLocR${p}, sourceLocG${p},
|
|
sourceLocB${p}, sourceLocA${p}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${v};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${b}
|
|
vec4 candidate = ${v};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function i4(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=D.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new lZ(i,n,s==null),u=[t];s!=null&&u.push(s);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let d=i4(e,t,n,c);return e.disposeIntermediateTensorInfo(c),d}function l4(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=D.computeOptimalWindowSize(a),i=new uZ(r,o,n,s==null),l=s==null?[t]:[t,s],u=e.runWebGLProgram(i,l,"int32");if(u.shape.length===t.shape.length){let c=l4(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function u4(e,t,n,s){let r=[n];if(D.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!Q().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,l=t;i&&(l=e.unpackTensor(t),a.push(l));let[u,c]=D.computeOutAndReduceShapes(l.shape,r),d=w.sizeFromShape(c),h=ye({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});a.push(h);let p=i4(e,h,s);a.push(p);let f=ye({inputs:{x:p},backend:e,attrs:{shape:u}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return l4(e,t,s)}function cZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=w.parseAxisParam(a,r.shape),i=D.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=Sn({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=D.getInnerMostAxes(o.length,l.shape.length)),D.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let c=u4(n,l,o[0],"max");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),c}var dZ={kernelName:Ea,backendName:"webgl",kernelFunc:cZ};function hZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=w.parseAxisParam(a,r.shape),i=D.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=Sn({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=D.getInnerMostAxes(o.length,l.shape.length)),D.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=u4(n,l,o[0],"min");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),c}var pZ={kernelName:Pu,backendName:"webgl",kernelFunc:hZ},fZ=js+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,mZ=Je({opSnippet:fZ}),gZ={kernelName:Ei,backendName:"webgl",kernelFunc:mZ},AZ=js+"return log(x + sqrt(x * x + 1.0));",yZ=Je({opSnippet:AZ}),xZ={kernelName:Ri,backendName:"webgl",kernelFunc:yZ},bZ=js+`
|
|
return atan(x);
|
|
`,vZ=Je({opSnippet:bZ}),wZ={kernelName:_i,backendName:"webgl",kernelFunc:vZ},kZ=RK+`
|
|
return atan(a, b);
|
|
`,IZ=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+_K+`
|
|
return result;
|
|
`,SZ=ln({opSnippet:kZ,packedOpSnippet:IZ}),CZ={kernelName:$i,backendName:"webgl",kernelFunc:SZ},TZ=js+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,NZ=Je({opSnippet:TZ}),EZ={kernelName:Di,backendName:"webgl",kernelFunc:NZ},Qc=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,A="0.0";if(f||(A="-1.0 / 1e-20"),n){let S=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${h}, ${p});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${S} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?m:g:`wR * ${d} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let y="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let b=Math.floor(a/4)*4,v=a%4,k=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${y}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${h}, ${p});
|
|
const float initializationValue = ${A};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${A});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${b}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${k}
|
|
}
|
|
|
|
int xC = xCCorner + ${b};
|
|
if (${v===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
} else if (${v===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
} else if (${v===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},V2=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,d=e.dilationWidth,h=e.effectiveFilterDepth,p=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,A=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",x="0.0";if(y||(x="-1.0 / 1e-20"),n){let _=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${A});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${h};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${d}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${_} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${p} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",v=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(v="avgValue / count");let k=Math.floor(a/4)*4,S=a%4,C=`
|
|
if (${y}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${A});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${h};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${k}; wC += 4) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
|
|
);
|
|
|
|
${C}
|
|
}
|
|
|
|
int xC = xCCorner + ${k};
|
|
if (${S===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${C}
|
|
} else if (${S===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${C}
|
|
} else if (${S===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${C}
|
|
}
|
|
}
|
|
setOutput(${v});
|
|
}
|
|
}
|
|
`}};function RZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;su(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;w.assert(D.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=D.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))return Yn({inputs:{x:r},backend:n});let d=new Qc(c,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var _Z={kernelName:Ra,backendName:"webgl",kernelFunc:RZ};function DZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s,c=[1,1,1],d=D.computePool3DInfo(r.shape,a,o,c,i,l,u),h=new V2(d,"avg",!1);return n.runWebGLProgram(h,[r],"float32")}var $Z={kernelName:Mu,backendName:"webgl",kernelFunc:DZ},FZ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=i-1-e.padInfo.top,c=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${c});
|
|
const float avgMultiplier = float(${d});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${i};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},OZ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,d=e.effectiveFilterHeight,h=e.effectiveFilterWidth,p=c-1-e.padInfo.front,f=d-1-e.padInfo.top,m=h-1-e.padInfo.left,g=1/(t*n*s);this.userCode=`
|
|
const ivec3 pads = ivec3(${p}, ${f}, ${m});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${i}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${h};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function PZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,d=[1,1,1],h=D.computePool3DInfo(o.shape,i,l,d,u,c),p=new OZ(h);return n.runWebGLProgram(p,[r],o.dtype)}var MZ={kernelName:Zd,backendName:"webgl",kernelFunc:PZ};function zZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;su([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=D.computePool2DInfo(o.shape,i,l,1,u),d=new FZ(c);return n.runWebGLProgram(d,[r],o.dtype)}var LZ={kernelName:Kd,backendName:"webgl",kernelFunc:zZ};function BZ(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return Ef({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var WZ={kernelName:_a,backendName:"webgl",kernelFunc:BZ},VZ=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],D.assertAndGetBroadcastShape(e,t),D.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&(D.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&(D.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${o};
|
|
float scale = ${i};
|
|
float inv = scale * inversesqrt(variance + float(${a}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},UZ=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],D.assertAndGetBroadcastShape(e,t),D.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&(D.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&(D.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${o};
|
|
vec4 scale = ${i};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},HZ=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;w.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[s,r,a],c=null;o!=null&&(c=o.shape,u.push(o));let d=null;i!=null&&(d=i.shape,u.push(i));let h=Q().getBool("WEBGL_PACK_NORMALIZATION")?new UZ(s.shape,r.shape,a.shape,c,d,l):new VZ(s.shape,r.shape,a.shape,c,d,l);return t.runWebGLProgram(h,u,u[0].dtype)},GZ={kernelName:Ga,backendName:"webgl",kernelFunc:HZ},jZ=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ht(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=qZ(this.rank),s,r=e.map((a,o)=>`sourceLoc.${U2[o]} = start[${o}] + coords.${U2[o]};`);s=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${r.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${s}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},U2=["x","y","z","w","u","v"];function qZ(e){if(e===1)return"sourceLoc";if(e<=6)return U2.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var XZ=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=ht(this.rank),n=In("coords",this.rank),s=In("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=`
|
|
result.x = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.y = ${a};
|
|
--${s[this.rank-1]};
|
|
}
|
|
`,i=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${s[this.rank-2]};
|
|
result.z = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.w = ${a};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,c)=>`start[${c}]`).join()});`:e.map((u,c)=>`${s[c]} = ${n[c]} + start[${c}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${o}
|
|
${i}
|
|
setOutput(result);
|
|
}
|
|
`}};function KZ(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=xn.computeFlatOffset(t,w.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function du(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=xn.parseSliceParams(r,a,o);if(xn.assertParamsValid(r,i,l),w.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),h=FX(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,h)}let{isPacked:u}=n.texData.get(r.dataId),c=xn.isSliceContinous(r.shape,i,l);if(u||!c){let d=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new XZ(l):new jZ(l),h=[i];return n.runWebGLProgram(d,[r],r.dtype,h)}return n.uploadToGPU(r.dataId),KZ(r,i,l,n)}var ZZ={kernelName:pl,backendName:"webgl",kernelFunc:du},YZ=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;w.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=D.getReshaped(r.shape,a,i),u=D.getPermuted(l.length,a.length),c=D.getReshapedPermuted(r.shape,a,i),d=D.getSliceBeginCoords(o,a.length),h=D.getSliceSize(c,o,a.length),p=[],f=ye({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Sn({inputs:{x:f},backend:n,attrs:{perm:u}}),g=ye({inputs:{x:m},backend:n,attrs:{shape:c}}),A=du({inputs:{x:g},backend:n,attrs:{begin:d,size:h}});return p.push(f),p.push(m),p.push(g),p.forEach(y=>n.disposeIntermediateTensorInfo(y)),A},JZ={kernelName:Fi,backendName:"webgl",kernelFunc:YZ};function QZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),u=M6(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var eY={kernelName:Yd,backendName:"webgl",kernelFunc:QZ},tY="return float(a != b);",c4=ln({opSnippet:tY,cpuKernelImpl:EX,dtype:"bool"}),nY={kernelName:tl,backendName:"webgl",kernelFunc:c4};function ed(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Yn({inputs:{x:r.complexTensorInfos.real},backend:n})}var sY={kernelName:xh,backendName:"webgl",kernelFunc:ed},rY="return float(int(x));";function aY(e,t){let n=new ha(e.shape,rY),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function H2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Yn({inputs:{x:r},backend:n});let o=Pt(r.shape),i=H2({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=pa({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=ed({inputs:{input:r},backend:n}),i=H2({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!w.hasEncodingLoss(r.dtype,a)){let o=Yn({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return aY(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),l=c4({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var oY={kernelName:Da,backendName:"webgl",kernelFunc:H2},d4="return ceil(x);",iY=Je({opSnippet:d4,packedOpSnippet:d4,cpuKernelImpl:cX}),lY={kernelName:$a,backendName:"webgl",kernelFunc:iY},uY=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},cY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function dY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;Q().getBool("WEBGL_PACK_CLIP")?i=new cY(r.shape):i=new uY(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var hY={kernelName:Ur,backendName:"webgl",kernelFunc:dY},pY=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function h4(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function fY(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new pY(s.shape),o=[h4(s,r.complexTensorInfos.real),h4(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var mY={kernelName:zu,backendName:"webgl",kernelFunc:fY},gY=class{constructor(e){this.outputShape=[],this.outputShape=D.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let o=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${o}));`)}let s=t.length,r=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},AY=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=D.computeOutShape(e,t);let n=this.outputShape,s=n.length,r=ht(s),a=In("coords",s),o=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((f,m)=>`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f<i.length;f++)i[f]=i[f-1]+e[f][t];let l=o[t],u=o.slice(-2),c=o.join(),d=`if (${l} < ${i[0]}) {
|
|
return getChannel(
|
|
getT0(${c}), vec2(${u.join()}));
|
|
}`;for(let f=1;f<i.length;f++){let m=i[f-1];d+=`
|
|
if (${l} < ${i[f]} && ${l} >= ${i[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${_f(o,l,m)}),
|
|
vec2(${_f(u,l,m)}));
|
|
}`}let h=i.length,p=i[i.length-1];d+=`
|
|
return getChannel(
|
|
getT${h}(${_f(o,l,p)}),
|
|
vec2(${_f(u,l,p)}));`,this.userCode=`
|
|
float getValue(${o.map(f=>"int "+f)}) {
|
|
${d}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
|
|
|
|
${a[s-1]} = ${a[s-1]} + 1;
|
|
if (${a[s-1]} < ${n[s-1]}) {
|
|
result.g = getValue(${a});
|
|
}
|
|
|
|
${a[s-2]} = ${a[s-2]} + 1;
|
|
if (${a[s-2]} < ${n[s-2]}) {
|
|
result.a = getValue(${a});
|
|
}
|
|
|
|
${a[s-1]} = ${a[s-1]} - 1;
|
|
if (${a[s-2]} < ${n[s-2]} &&
|
|
${a[s-1]} < ${n[s-1]}) {
|
|
result.b = getValue(${a});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function _f(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function Df(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Yn({inputs:{x:r.complexTensorInfos.imag},backend:n})}var yY={kernelName:hh,backendName:"webgl",kernelFunc:Df};function hu(e,t,n){let s=e[0].dtype;if(s==="complex64"){let c=e.map(m=>ed({inputs:{input:m},backend:n})),d=e.map(m=>Df({inputs:{input:m},backend:n})),h=hu(c,t,n),p=hu(d,t,n),f=pa({inputs:{real:h,imag:p},backend:n});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),d.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let c=e.map(A=>{let y=w.sizeFromShape(A.shape.slice(t));return ye({inputs:{x:A},backend:n,attrs:{shape:[-1,y]}})}),d=c.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),h=D.computeOutShape(c.map(A=>A.shape),1),p=c[0].shape[0]===1,f=dX(d,h,s,p),m=D.computeOutShape(e.map(A=>A.shape),t),g=n.makeTensorInfo(m,s,f);return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),g}if(e.length>Q().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),d=hu(e.slice(0,c),t,n),h=hu(e.slice(c),t,n),p=hu([d,h],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),p}if(Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new AY(e.map(d=>d.shape),t);return n.runWebGLProgram(c,e,s)}let{tensors2D:a,outShape:o}=xY(e,t,n),i=new gY(a.map(c=>c.shape)),l=n.runWebGLProgram(i,a,s);a.forEach(c=>n.disposeIntermediateTensorInfo(c));let u=ye({inputs:{x:l},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(l),u}function xY(e,t,n){let s=D.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ye({inputs:{x:a},attrs:{shape:[-1,w.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function p4(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=w.parseAxisParam(r,t[0].shape)[0],o=D.computeOutShape(t.map(u=>u.shape),a);if(w.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>w.sizeFromShape(u.shape)>0);if(i.length===1)return Yn({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return D.assertParamsConsistent(l,a),hu(i,a,n)}var bY={kernelName:Oi,backendName:"webgl",kernelFunc:p4},f4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,d=e.filterHeight,h=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,A=m?2:3,y=m?3:1,x="",b="";n&&(s?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,b="result = activation(result);");let v=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${i}, ${l});
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${y}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${A}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${h}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${p}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${p}) *
|
|
getW(wR, wC, ${p}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${p}, xR, xC) *
|
|
getW(wR, wC, ${p}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${p}, d2),
|
|
getW(wR, wC, ${p} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${p}),
|
|
getX(batch, xR, xC, ${p} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${p}, xR, xC),
|
|
getX(batch, ${p} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${p}, d2),
|
|
getW(wR, wC, ${p} + 1, d2),
|
|
getW(wR, wC, ${p} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${p}),
|
|
getX(batch, xR, xC, ${p} + 1),
|
|
getX(batch, xR, xC, ${p} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${p}, xR, xC),
|
|
getX(batch, ${p} + 1, xR, xC),
|
|
getX(batch, ${p} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${v}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}},vY=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,d=e.filterHeight,h=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${a}, ${o});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${s});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${c}; wF++) {
|
|
int xF = xFCorner + wF * ${i};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${h}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${p}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${p}) *
|
|
getW(wF, wR, wC, ${p}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${p}),
|
|
getX(batch, xF, xR, xC, ${p} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${p}, d2),
|
|
getW(wF, wR, wC, ${p} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${p}),
|
|
getX(batch, xF, xR, xC, ${p} + 1),
|
|
getX(batch, xF, xR, xC, ${p} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${p}, d2),
|
|
getW(wF, wR, wC, ${p} + 1, d2),
|
|
getW(wF, wR, wC, ${p} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},wY=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=bs(this.outputShape.length);let{dataFormat:n}=t,s=kn(),r=n==="channelsLast",a=r?0:1,o=r?1:2,i=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let u=0;u<=1;u++)for(let c=0;c<=1;c++)l+=`
|
|
blockIndex = rc.y + ${c};
|
|
pos = rc.x + ${u};
|
|
|
|
${i}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${a}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${o}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${r}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${u*2+c}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${u*2+c}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${l}
|
|
|
|
${s.output} = result;
|
|
}
|
|
`}};function m4({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,u=s.texData.get(e.dataId),c=n.inChannels,d=l[0]*l[1]*l[2],h=n.outChannels,p=n.dataFormat==="channelsLast",f=!1,m=!1,g,A=[];if(!((d===1||h===1)&&c>r4)&&u.isPacked&&p&&u.texture!=null&&l[2]%2!=0&&w.arraysEqual(u.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),v={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},k=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,w.assert(Zc(u.shape,v.shape),()=>`packed reshape ${u.shape} to ${v.shape} isn't free`);let S=ye({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});A.push(S);let C=Ef({a:v,b:S,backend:s,transposeA:f,transposeB:m,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),_=s.texData.get(C.dataId);w.assert(_.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=k,_.shape=n.outShape,g=Yn({inputs:{x:C},backend:s}),g.shape=n.outShape,A.push(C)}else{let b=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],v=ye({inputs:{x:e},backend:s,attrs:{shape:[1,b,n.inChannels]}}),k=ye({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),S=Ef({a:v,b:k,transposeA:f,transposeB:m,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=ye({inputs:{x:S},backend:s,attrs:{shape:n.outShape}}),A.push(v),A.push(k),A.push(S)}for(let b of A)s.disposeIntermediateTensorInfo(b);return g}function g4({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:d,outHeight:h,dataFormat:p}=n,f=p==="channelsLast",m=l*u*c,g=h*d,A=[m,g],y=!0,x=!1,b=[],v=ye({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),k=ye({inputs:{x:t},backend:s,attrs:{shape:[1,m,w.sizeFromShape(t.shape)/m]}});b.push(v),b.push(k);let S=new wY(A,n),C=[v.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],_=s.runWebGLProgram(S,[v],"float32",C),O=ye({inputs:{x:_},backend:s,attrs:{shape:[1,A[0],A[1]]}});b.push(_),b.push(O);let E=r!=null,R=a!=null,T=i==="leakyrelu",P=i?Cf(i,!0):null,V=new Q6(O.shape,k.shape,[1,g,n.outChannels],y,x,E,P,R,T),j=[O,k];if(r&&j.push(r),R&&j.push(a),T){let te=s.makeTensorInfo([],"float32",w.createScalarValue(o,"float32"));j.push(te),b.push(te)}let q=s.runWebGLProgram(V,j,"float32"),X=f?[1,h,d,n.outChannels]:[1,n.outChannels,h,d],ee=ye({inputs:{x:q},backend:s,attrs:{shape:X}});b.push(q);for(let te of b)s.disposeIntermediateTensorInfo(te);return ee}function kY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s,d=D.convertConv2DDataFormat(l),h=D.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,d),p;if(h.filterHeight===1&&h.filterWidth===1&&h.dilationHeight===1&&h.dilationWidth===1&&h.strideHeight===1&&h.strideWidth===1&&(h.padInfo.type==="SAME"||h.padInfo.type==="VALID"))p=m4({x:r,filter:a,convInfo:h,backend:n});else if(Q().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)p=g4({x:r,filter:a,convInfo:h,backend:n});else{let m=new f4(h);p=n.runWebGLProgram(m,[r,a],"float32")}let f=ye({inputs:{x:p},backend:n,attrs:{shape:h.outShape}});return n.disposeIntermediateTensorInfo(p),f}var IY={kernelName:Fa,backendName:"webgl",kernelFunc:kY},SY=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${a}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},CY=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,u=a?2:3,c=a?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${c}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${a}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},TY=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${s} - ${o};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},NY=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=s-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${i}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${s} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function EY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s,d=D.convertConv2DDataFormat(l),h=D.computeConv2DInfo(r.shape,c,o,1,i,u,!1,d),p=new SY(h);return n.runWebGLProgram(p,[r,a],"float32")}var RY={kernelName:Qd,backendName:"webgl",kernelFunc:EY};function _Y(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s,d=D.convertConv2DDataFormat(u),h=D.computeConv2DInfo(o,a.shape,i,1,l,c,!1,d),p=new CY(h);return n.runWebGLProgram(p,[r,a],"float32")}var DY={kernelName:Oa,backendName:"webgl",kernelFunc:_Y};function $Y(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=D.computeConv3DInfo(r.shape,a.shape,o,l,i),c=new vY(u);return n.runWebGLProgram(c,[r,a],"float32")}var FY={kernelName:Lu,backendName:"webgl",kernelFunc:$Y};function OY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,u=D.computeConv3DInfo(r.shape,l,o,1,i),c=new TY(u);return n.runWebGLProgram(c,[r,a],"float32")}var PY={kernelName:eh,backendName:"webgl",kernelFunc:OY};function MY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,u=D.computeConv3DInfo(l,a.shape,i,1,o),c=new NY(u);return n.runWebGLProgram(c,[r,a],"float32")}var zY={kernelName:th,backendName:"webgl",kernelFunc:MY},LY=J6+`
|
|
return cos(x);
|
|
`,BY=Je({opSnippet:LY}),WY={kernelName:Pa,backendName:"webgl",kernelFunc:BY},VY=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,UY=Je({opSnippet:VY}),HY={kernelName:Ma,backendName:"webgl",kernelFunc:UY},GY=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[u]=t,[c,d]=n;this.outputShape=[u,c,d,l];let h=s==="bilinear"?1:0,[p,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,A]=c>1?[`${(o-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[y,x,b]=d>1?[`${(i-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${y});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${a}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${A};
|
|
if( in_y < 0.0 || in_y > ${p} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${b};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${h} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},jY=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,c=new GY(r.shape,a.shape,i,l,u);return n.runWebGLProgram(c,[r,a,o],"float32")},qY={kernelName:Pi,backendName:"webgl",kernelFunc:jY},A4=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let s=e.length,r=t?"0.0":`getX(${y4(s,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${ht(s)} coords = getOutputCoords();
|
|
int end = ${x4(s,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${o}) {
|
|
int idx = ${i};
|
|
${x4(s,"coords")} = idx;
|
|
val += getX(${y4(s,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function y4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function x4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function XY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length,u=D.getAxesPermutation([a],l),c=r;u!=null&&(c=Sn({inputs:{x:r},backend:n,attrs:{perm:u}}));let d=D.getInnerMostAxes(1,l)[0];if(d!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${a}`);let h=c.shape[d],p=Yn({inputs:{x:c},backend:n});for(let f=0;f<=Math.ceil(Math.log2(h))-1;f++){let m=new A4(c.shape,!1,i),g=[[f]],A=p;p=n.runWebGLProgram(m,[p],p.dtype,g),n.disposeIntermediateTensorInfo(A)}if(o){let f=new A4(c.shape,o,i),m=p;p=n.runWebGLProgram(f,[p],p.dtype),n.disposeIntermediateTensorInfo(m)}if(u!=null){let f=D.getUndoAxesPermutation(u),m=Sn({inputs:{x:p},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),m}return p}var KY={kernelName:za,backendName:"webgl",kernelFunc:XY};function ZY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=M6(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=uX(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var YY={kernelName:nh,backendName:"webgl",kernelFunc:ZY},JY=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function QY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;w.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,h=u*a,p=c/(a*a),f=o==="NHWC"?[i,d,h,p]:[i,p,d,h],m=new JY(f,a,o);return n.runWebGLProgram(m,[r],r.dtype)}var eJ={kernelName:Mi,backendName:"webgl",kernelFunc:QY},b4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=bs(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,l="",u="";n&&(s?l=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?l=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:l=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,u="result = activation(result);");let c=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${l}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${i};
|
|
int q = d2 - d1 * ${i};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${a}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${o}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${c}
|
|
${u}
|
|
setOutput(result);
|
|
}
|
|
`}},v4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=bs(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,c=e.filterWidth,d=c,h=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<c;g++)h+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;for(let g=0;g<u;g++){for(let A=0;A<c;A++)h+=`
|
|
xTexelC${A*2} = vec4(0.0);
|
|
xTexelC${A*2}Ready = 0;
|
|
xTexelC${A*2+1} = vec4(0.0);
|
|
xTexelC${A*2+1}Ready = 0;
|
|
xC${A} = vec4(0.0);`;h+=`
|
|
xR = xRCorner + ${g} * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let A=0;A<(d+1)/2;A++){let y=A*2;if(h+=`
|
|
xC = xCCorner + ${y*l};
|
|
`,i===1){if(y<c&&(o%2==1?(h+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
`,l===1&&y>0?h+=`
|
|
xC${y} = vec4(xTexelC${y-2}.zw, xTexelC${y}.xy);
|
|
`:h+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${y} = vec4(previous.zw, xTexelC${y}.xy);
|
|
} else {
|
|
xC${y} = vec4(0.0, 0.0, xTexelC${y}.xy);
|
|
}
|
|
`):h+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xC${y} = xTexelC${y};
|
|
`,y+1<c)){let x=o%2==0?w.nearestLargerEven(l):l;l%2==0&&o%2==1||l%2!=0&&o%2!=1?(h+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${x};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
`,l>1&&(h+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
`),h+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.xy);
|
|
`):x===1?h+=`
|
|
xC${y+1} = xTexelC${y};
|
|
`:h+=`
|
|
xCOffset = xC + ${x};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y+1} = xTexelC${y+1};
|
|
`}}else y<c&&(o%2==1?(h+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`,y+1<c&&(h+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${y+1} = vec4(xTexelC${y+1}.xy, final.xy);
|
|
`)):(h+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(
|
|
xTexelC${y}.xy, xTexelC${y+1}.xy);
|
|
`,y+1<c&&(h+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`)));y<c&&(h+=`
|
|
wTexel = getW(${g}, ${y}, d1, q);
|
|
dotProd += xC${y} * vec4(wTexel.xz, wTexel.xz);
|
|
`,y+1<c&&(h+=`
|
|
wTexel = getW(${g}, ${y+1}, d1, q);
|
|
dotProd += xC${y+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}h+=`
|
|
}
|
|
`}let p="",f="";n&&(s?p=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?p=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:p=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${p}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${a};
|
|
int q = d2 - d1 * ${a};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${h}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${m}
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};function tJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s,c=l;c==null&&(c=[1,1]),w.assert(D.eitherStridesOrDilationsAreOne(o,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let d=D.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!0),h;Q().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels==1?h=new v4(d):h=new b4(d);let p=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(h,[r,a],"float32",p)}var nJ={kernelName:La,backendName:"webgl",kernelFunc:tJ},sJ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${a} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},rJ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${i}; dm++) {
|
|
int d2 = d1 * ${i} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function aJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s,d=D.computeConv2DInfo(r.shape,c,o,i,l,u,!0),h=new sJ(d);return n.runWebGLProgram(h,[r,a],"float32")}var oJ={kernelName:sh,backendName:"webgl",kernelFunc:aJ};function iJ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s,d=D.computeConv2DInfo(c,a.shape,o,i,l,u,!0),h=new rJ(d);return n.runWebGLProgram(h,[r,a],"float32")}var lJ={kernelName:rh,backendName:"webgl",kernelFunc:iJ},uJ=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function cJ(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=w.sizeFromShape(s.shape),o=ye({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new uJ(a),l=n.runWebGLProgram(i,[o],o.dtype),u=ye({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var dJ={kernelName:ah,backendName:"webgl",kernelFunc:cJ},hJ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:u}=e,{top:c,left:d}=s;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${a});
|
|
const ivec2 pads = ivec2(${c}, ${d});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${o}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${i}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function pJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=D.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),c,d=new hJ(u);c=n.runWebGLProgram(d,[r,a],"float32");let h=ye({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),h}var fJ={kernelName:Bu,backendName:"webgl",kernelFunc:pJ};function mJ(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=D.decodeEinsumEquation(r,a.length);D.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=D.getEinsumComputePath(i,l),d=c.length,h=null,p=o.length,f=[];for(let m=0;m<d;++m){for(let g of c[m]){let{permutationIndices:A,expandDims:y}=D.getEinsumPermutation(p,l[g]),x;D.isIdentityPermutation(A)?x=a[g]:(x=Sn({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(x));let b=x.shape.slice();for(let v=0;v<y.length;++v)b.splice(y[v],0,1);w.arraysEqual(x.shape,b)||(x=ye({inputs:{x},backend:n,attrs:{shape:b}}),f.push(x)),h===null?h=x:(h=W2({inputs:{a:x,b:h},backend:n}),f.push(h))}m<d-1&&(u[m]>=0&&(h=Nf({inputs:{x:h},backend:n,attrs:{axis:u[m]-(o.length-p),keepDims:!1}}),f.push(h)),p--)}for(let m of f)m!==h&&n.disposeIntermediateTensorInfo(m);return h}var gJ={kernelName:lh,backendName:"webgl",kernelFunc:mJ},AJ="return (x >= 0.0) ? x : (exp(x) - 1.0);",yJ=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,xJ=Je({opSnippet:AJ,packedOpSnippet:yJ}),bJ={kernelName:Wa,backendName:"webgl",kernelFunc:xJ},vJ="return (b >= 1.0) ? a : a * (b + 1.0);",wJ=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,kJ=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Jc(wJ,s.shape,r.shape):new cu(vJ,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},IJ={kernelName:uh,backendName:"webgl",kernelFunc:kJ},SJ=`
|
|
return vec4(equal(a, b));
|
|
`,CJ="return float(a == b);",TJ=ln({opSnippet:CJ,packedOpSnippet:SJ,dtype:"bool",cpuKernelImpl:hX}),NJ={kernelName:Li,backendName:"webgl",kernelFunc:TJ},EJ=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${D.ERF_P};
|
|
float a1 = ${D.ERF_A1};
|
|
float a2 = ${D.ERF_A2};
|
|
float a3 = ${D.ERF_A3};
|
|
float a4 = ${D.ERF_A4};
|
|
float a5 = ${D.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,RJ=Je({opSnippet:EJ}),_J={kernelName:zi,backendName:"webgl",kernelFunc:RJ},w4="return exp(x);",k4=Je({opSnippet:w4,packedOpSnippet:w4,cpuKernelImpl:pX}),DJ={kernelName:Va,backendName:"webgl",kernelFunc:k4};function G2(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(w.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),ye({inputs:{x:a},backend:s,attrs:{shape:i}})}var $J={kernelName:Bi,backendName:"webgl",kernelFunc:G2},I4="return exp(x) - 1.0;",FJ=Je({opSnippet:I4,packedOpSnippet:I4,cpuKernelImpl:fX}),OJ={kernelName:Wi,backendName:"webgl",kernelFunc:FJ},S4=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${o}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${s});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${a};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function C4(e,t,n){let s=n.texData.get(e.dataId),r=w.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=ye({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,u=new S4("real",l,t),c=new S4("imag",l,t),d=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],h=n.runWebGLProgram(u,d,"float32"),p=n.runWebGLProgram(c,d,"float32"),f=pa({inputs:{real:h,imag:p},backend:n});n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p);let m=ye({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function PJ(e){let{inputs:t,backend:n}=e,{input:s}=t;return C4(s,!1,n)}var MJ={kernelName:ch,backendName:"webgl",kernelFunc:PJ},zJ=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function td(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||w.inferDtype(r),a==="string"){let o=w.getArrayFromDType(a,w.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new zJ(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var LJ={kernelName:Wu,backendName:"webgl",kernelFunc:td},BJ=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},WJ={kernelName:Vi,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new BJ(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},T4="return floor(x);",VJ=Je({opSnippet:T4,packedOpSnippet:T4,cpuKernelImpl:mX}),UJ={kernelName:Ua,backendName:"webgl",kernelFunc:VJ},HJ=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,GJ=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,jJ=ln({opSnippet:HJ,packedOpSnippet:GJ,dtype:"int32"}),qJ={kernelName:Ha,backendName:"webgl",kernelFunc:jJ},XJ=class{constructor(e){this.variableNames=["A"];let t=kn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},KJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=kn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},ZJ={kernelName:_h,backendName:"webgl",kernelFunc:YJ},pu;function YJ(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],c=[u,l],d=[u,l,a];(i||o)&&(pu==null&&(pu=document.createElement("canvas").getContext("2d")),pu.canvas.width=l,pu.canvas.height=u,pu.drawImage(r,0,0,l,u),r=pu.canvas);let h=n.makeTensorInfo(c,"int32");n.texData.get(h.dataId).usage=ys.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(h.dataId),r);let p=Q().getBool("WEBGL_PACK")?new KJ(d):new XJ(d),f=n.runWebGLProgram(p,[h],"int32");return n.disposeData(h.dataId),f}function JJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=s,m=D.convertConv2DDataFormat(c),g=D.computeConv2DInfo(r.shape,a.shape,l,d,u,h,!1,m),A,y=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))A=m4({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:p,preluActivationWeights:i,leakyreluAlpha:f});else if(Q().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)A=g4({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:p,preluActivationWeights:i,leakyreluAlpha:f});else{let b=o!=null,v=i!=null,k=p==="leakyrelu",S=p?Cf(p,!1):null,C=new f4(g,b,S,v,k),_=[r,a];if(o&&_.push(o),i&&_.push(i),k){let O=n.makeTensorInfo([],"float32",w.createScalarValue(f,"float32"));_.push(O),y.push(O)}A=n.runWebGLProgram(C,_,"float32")}let x=ye({inputs:{x:A},backend:n,attrs:{shape:g.outShape}});return y.push(A),y.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var QJ={kernelName:Co,backendName:"webgl",kernelFunc:JJ};function eQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:d,activation:h,leakyreluAlpha:p}=s,f=[],m=c;m==null&&(m=[1,1]),w.assert(D.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=D.computeConv2DInfo(r.shape,a.shape,l,m,u,d,!0),A=Q().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,y=h?Cf(h,A):null,x=[r,a],b=o!=null,v=i!=null,k=h==="leakyrelu";if(b&&x.push(o),v&&x.push(i),k){let O=n.makeTensorInfo([],"float32",w.createScalarValue(p,"float32"));x.push(O),f.push(O)}let S;A?S=new v4(g,b,y,v,k):S=new b4(g,b,y,v,k);let C=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],_=n.runWebGLProgram(S,x,"float32",C);return f.forEach(O=>n.disposeIntermediateTensorInfo(O)),_}var tQ={kernelName:To,backendName:"webgl",kernelFunc:eQ},nQ=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let s=ht(t.length),r=ht(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${s} strides = ${s}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${a};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function sQ(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=w.sizeFromShape(s.shape),[l,u,c,d]=D.prepareAndValidate(s,r),h=ye({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),p=ye({inputs:{x:s},backend:n,attrs:{shape:[w.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let A=n.readSync(r.dataId),y=n.bufferSync(s),x=gX(A,y,s.dtype,u,o,c,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,x.values)}let f=new nQ(o,d,[u,c]),m=n.runWebGLProgram(f,[p,h],p.dtype),g=ye({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),g}var rQ={kernelName:Hi,backendName:"webgl",kernelFunc:sQ},aQ=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=ht(this.rank),s=oQ(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${s}));
|
|
}
|
|
`}};function oQ(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push("int(getIndices(resRC.x, resRC.z))"):s.push(`${n[r]}`);return s.join()}function N4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=w.parseAxisParam(o,r.shape)[0],u=D.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=w.sizeFromShape(a.shape),d=[],h=ye({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),p=ye({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});d.push(h),d.push(p);let f=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let y=n.bufferSync(p),x=n.bufferSync(h),b=AX(x,y,f);return d.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.makeTensorInfo(u.outputShape,b.dtype,b.values)}let m=new aQ(h.shape,f),g=n.runWebGLProgram(m,[h,p],h.dtype);d.push(g);let A=ye({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return d.forEach(y=>n.disposeIntermediateTensorInfo(y)),A}var iQ={kernelName:Ui,backendName:"webgl",kernelFunc:N4},lQ="return float(a > b);",uQ=`
|
|
return vec4(greaterThan(a, b));
|
|
`,cQ=ln({opSnippet:lQ,packedOpSnippet:uQ,cpuKernelImpl:yX,dtype:"bool"}),dQ={kernelName:Gi,backendName:"webgl",kernelFunc:cQ},hQ="return float(a >= b);",pQ=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,fQ=ln({opSnippet:hQ,packedOpSnippet:pQ,dtype:"bool",cpuKernelImpl:xX}),mQ={kernelName:ja,backendName:"webgl",kernelFunc:fQ};function gQ(e){let{inputs:t,backend:n}=e,{input:s}=t;return C4(s,!0,n)}var AQ={kernelName:dh,backendName:"webgl",kernelFunc:gQ},yQ="return float(!isnan(x) && !isinf(x));",xQ=Je({opSnippet:yQ,dtype:"bool"}),bQ={kernelName:ji,backendName:"webgl",kernelFunc:xQ},vQ="return float(isinf(x));",wQ=Je({opSnippet:vQ,dtype:"bool"}),kQ={kernelName:qi,backendName:"webgl",kernelFunc:wQ},IQ="return float(isnan(x));",SQ=Je({opSnippet:IQ,dtype:"bool"}),CQ={kernelName:Xi,backendName:"webgl",kernelFunc:SQ},TQ="return float(a < b);",NQ=`
|
|
return vec4(lessThan(a, b));
|
|
`,EQ=ln({opSnippet:TQ,packedOpSnippet:NQ,cpuKernelImpl:bX,dtype:"bool"}),RQ={kernelName:Ki,backendName:"webgl",kernelFunc:EQ},_Q="return float(a <= b);",DQ=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,$Q=ln({opSnippet:_Q,packedOpSnippet:DQ,cpuKernelImpl:vX,dtype:"bool"}),FQ={kernelName:Zi,backendName:"webgl",kernelFunc:$Q};function OQ(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=wX(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var PQ={kernelName:ph,backendName:"webgl",kernelFunc:OQ},MQ=`if (x < 0.0) return NAN;
|
|
return log(x);`,zQ=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,LQ=Je({opSnippet:MQ,packedOpSnippet:zQ,cpuKernelImpl:kX}),BQ={kernelName:Ka,backendName:"webgl",kernelFunc:LQ},WQ="return log(1.0 + x);",VQ=Je({opSnippet:WQ}),UQ={kernelName:Yi,backendName:"webgl",kernelFunc:VQ},HQ="return float(a >= 1.0 && b >= 1.0);",GQ=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,jQ=ln({opSnippet:HQ,packedOpSnippet:GQ,dtype:"bool"}),qQ={kernelName:Ji,backendName:"webgl",kernelFunc:jQ},XQ="return float(!(x >= 1.0));",KQ=Je({opSnippet:XQ}),ZQ={kernelName:Vu,backendName:"webgl",kernelFunc:KQ},YQ="return float(a >= 1.0 || b >= 1.0);",JQ=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,QQ=ln({opSnippet:YQ,packedOpSnippet:JQ,dtype:"bool"}),eee={kernelName:Uu,backendName:"webgl",kernelFunc:QQ},tee=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${a}; j <= ${a}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${o}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${i};
|
|
setOutput(val);
|
|
}
|
|
`}},nee=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${a};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${a}; j <= ${a}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${i};
|
|
setOutput(result);
|
|
}
|
|
`}},see=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,u=Q().getBool("WEBGL_PACK_NORMALIZATION")?new nee(r.shape,a,o,i,l):new tee(r.shape,a,o,i,l);return n.runWebGLProgram(u,[r],r.dtype)},ree={kernelName:Hu,backendName:"webgl",kernelFunc:see},aee=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${s}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${s})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},oee=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s,d=new aee(r.shape,i,l,u,c);return n.runWebGLProgram(d,[r,a,o],r.dtype)},iee={kernelName:fh,backendName:"webgl",kernelFunc:oee};function lee(e,t,n,s){let r=w.sizeFromShape(t),o=w.sizeFromShape(e.shape)/r,i=ye({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=si(i,e.dtype,"max",s),u=ye({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}function E4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),u=l,c=D.getAxesPermutation(u,i),d=c!=null,h=n.shouldExecuteOnCPU([r]),p=r;if(d){if(h){let x=n.texData.get(p.dataId).values,b=new Array(i);for(let S=0;S<b.length;S++)b[S]=r.shape[c[S]];let v=B2(x,r.shape,r.dtype,c,b);p=n.makeTensorInfo(b,r.dtype);let k=n.texData.get(p.dataId);k.values=v}else p=Tf(r,c,n);u=D.getInnerMostAxes(u.length,i)}D.assertAxesAreInnerMostDims("max",u,i);let[f,m]=D.computeOutAndReduceShapes(p.shape,u),g=f;o&&(g=D.expandShapeToKeepDim(f,l));let A;if(h){let x=n.texData.get(p.dataId).values,b=IX(x,w.sizeFromShape(m),g,r.dtype);A=n.makeTensorInfo(g,r.dtype);let v=n.texData.get(A.dataId);v.values=b}else A=lee(p,m,g,n);return d&&n.disposeIntermediateTensorInfo(p),A}var uee={kernelName:Za,backendName:"webgl",kernelFunc:E4},cee=q6+`
|
|
return max(a, b);
|
|
`,dee=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Sf+`
|
|
return result;
|
|
`,hee=ln({opSnippet:cee,packedOpSnippet:dee,cpuKernelImpl:SX}),pee={kernelName:Ya,backendName:"webgl",kernelFunc:hee};function fee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;su(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;w.assert(D.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=D.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))return Yn({inputs:{x:r},backend:n});let d=new Qc(c,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var mee={kernelName:Ja,backendName:"webgl",kernelFunc:fee};function gee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:u}=s,c=[1,1,1],d=D.computePool3DInfo(r.shape,a,o,c,i,u,l),h=new V2(d,"max",!1);return n.runWebGLProgram(h,[r],r.dtype)}var Aee={kernelName:Gu,backendName:"webgl",kernelFunc:gee},yee=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${a} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},xee=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=i-1-e.padInfo.front,d=l-1-e.padInfo.top,h=u-1-e.padInfo.left,p=i*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${c}, ${d}, ${h});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${i};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${p} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function bee(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,d=[1,1,1],h=D.computePool3DInfo(o.shape,i,l,d,u,c),p=new V2(h,"max",!0),f=n.runWebGLProgram(p,[o],o.dtype),m=new xee(h),g=n.runWebGLProgram(m,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var vee={kernelName:gh,backendName:"webgl",kernelFunc:bee};function wee(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;su([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:d}=s,h=D.computePool2DInfo(i.shape,l,u,1,c,d),p=!0,f=new Qc(h,"max",p),m=n.runWebGLProgram(f,[i],i.dtype),g=new yee(h),A=n.runWebGLProgram(g,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),A}var kee={kernelName:mh,backendName:"webgl",kernelFunc:wee};function Iee(e,t,n,s){let r=new Qc(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new Qc(n,"max",!0,!0,t);let o=s.runWebGLProgram(r,[e],"float32");return[a,o]}var See={kernelName:Ah,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;w.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let u=[1,1];w.assert(D.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=D.computePool2DInfo(s.shape,r,a,u,o),[d,h]=Iee(s,i,c,l);return[d,h]}};function Cee(e,t,n,s){let r=w.sizeFromShape(t),o=w.sizeFromShape(e.shape)/r,i=ye({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=si(i,"float32","mean",s),u=ye({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}var Tee={kernelName:Qa,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=w.parseAxisParam(a,s.shape),u=l,c=D.getAxesPermutation(u,i),d=c!=null,h=o.shouldExecuteOnCPU([s]),p=[],f=s;if(d){if(h){let b=o.texData.get(f.dataId).values,v=new Array(i);for(let C=0;C<v.length;C++)v[C]=s.shape[c[C]];let k=B2(b,s.shape,s.dtype,c,v);f=o.makeTensorInfo(v,s.dtype);let S=o.texData.get(f.dataId);S.values=k}else f=Tf(s,c,o);p.push(f),u=D.getInnerMostAxes(u.length,i)}D.assertAxesAreInnerMostDims("sum",u,i);let[m,g]=D.computeOutAndReduceShapes(f.shape,u),A=m;r&&(A=D.expandShapeToKeepDim(m,l));let y=Cee(f,g,A,o);for(let x of p)o.disposeIntermediateTensorInfo(x);return y}};function Nee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),u=l,c=D.getAxesPermutation(u,i),d=r;c!=null&&(d=Sn({inputs:{x:r},backend:n,attrs:{perm:c}}),u=D.getInnerMostAxes(u.length,r.shape.length)),D.assertAxesAreInnerMostDims("min",u,i);let[h,p]=D.computeOutAndReduceShapes(d.shape,u),f=w.sizeFromShape(p),m=ye({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=si(m,m.dtype,"min",n),A;if(o){let y=D.expandShapeToKeepDim(h,l);A=ye({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=ye({inputs:{x:g},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(d),A}var Eee={kernelName:eo,backendName:"webgl",kernelFunc:Nee},Ree=q6+`
|
|
return min(a, b);
|
|
`,_ee=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Sf+`
|
|
return result;
|
|
`,Dee=ln({opSnippet:Ree,packedOpSnippet:_ee,cpuKernelImpl:CX}),$ee={kernelName:to,backendName:"webgl",kernelFunc:Dee},Fee=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let s=e.length,r=ht(s),a=t.map(u=>u[0]).join(","),o=t.map((u,c)=>u[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${s}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}},Oee=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,f)=>p[0]+e[f]+p[1]);let s=e.length,r=ht(s),a=t.map(p=>p[0]).join(","),o=t.map((p,f)=>p[0]+e[f]).join(","),i=In("rc",s),l=In("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,h="";if(s===1){let p=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${d};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${d};
|
|
}
|
|
source -= start;
|
|
`;h=`
|
|
${r} rc = outputLoc;
|
|
${p}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${i[s-1]} += 1;
|
|
if(${u}) {
|
|
${p}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`}else{let p=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${d}) +
|
|
gte * ((end - 1) * 2 - source + ${d});
|
|
source -= start;
|
|
`;h=`
|
|
${r} rc = outputLoc;
|
|
${p}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${i[s-1]} += 1;
|
|
if(${u}) {
|
|
${p}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {
|
|
${p}
|
|
result[2] = getChannel(getX(${l.join()}), ${c});
|
|
${i[s-1]} += 1;
|
|
if(${u}) {
|
|
${p}
|
|
result[3] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},Pee=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Oee(s.shape,r,a):new Fee(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},Mee={kernelName:no,backendName:"webgl",kernelFunc:Pee},zee=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,Lee=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+Sf+`
|
|
return result;
|
|
`,Bee=ln({opSnippet:zee,packedOpSnippet:Lee}),Wee={kernelName:Qi,backendName:"webgl",kernelFunc:Bee},Vee=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},Uee=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,Hee=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,R4=ln({opSnippet:Uee,packedOpSnippet:Hee,checkOutOfBounds:!0}),Gee={kernelName:Ba,backendName:"webgl",kernelFunc:R4},_4="return a - b;",D4=ln({opSnippet:_4,packedOpSnippet:_4,supportsComplex:!0,cpuKernelImpl:VX}),jee={kernelName:vo,backendName:"webgl",kernelFunc:D4};function $4(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=w.parseAxisParam([a],r.shape),i=E4({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=D.expandShapeToKeepDim(i.shape,o),u=ye({inputs:{x:i},backend:n,attrs:{shape:l}}),c=D4({inputs:{a:r,b:u},backend:n}),d=k4({inputs:{x:c},backend:n}),h=Nf({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),p=ye({inputs:{x:h},backend:n,attrs:{shape:l}}),f=R4({inputs:{a:d,b:p},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),f}var qee={kernelName:xo,backendName:"webgl",kernelFunc:$4};function Xee(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:$4({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],c=l.shape[1],d=new Vee(u,c,a),h=[[o]],p=n.runWebGLProgram(d,[l],"int32",h);return i||n.disposeIntermediateTensorInfo(l),p}var Kee={kernelName:yh,backendName:"webgl",kernelFunc:Xee},F4="return -x;";function Zee(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=NX(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return Q().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new lu(s.shape,F4):r=new ha(s.shape,F4),n.runWebGLProgram(r,[s],s.dtype)}var Yee={kernelName:el,backendName:"webgl",kernelFunc:Zee},Jee=rr.nonMaxSuppressionV3Impl;function Qee(e){D.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:d}=Jee(u,c,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var ete={kernelName:nl,backendName:"webgl",kernelFunc:Qee},tte=rr.nonMaxSuppressionV4Impl;function nte(e){D.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s,c=n.readSync(r.dataId),d=n.readSync(a.dataId),{selectedIndices:h,validOutputs:p}=tte(c,d,o,i,l,u);return[n.makeTensorInfo([h.length],"int32",new Int32Array(h)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var ste={kernelName:sl,backendName:"webgl",kernelFunc:nte},rte=rr.nonMaxSuppressionV5Impl;function ate(e){D.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s,c=n.readSync(r.dataId),d=n.readSync(a.dataId),h=o,p=i,f=l,m=u,{selectedIndices:g,selectedScores:A}=rte(c,d,h,p,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var ote={kernelName:rl,backendName:"webgl",kernelFunc:ate},ite=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${s}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},lte=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=w.sizeFromShape(r.shape),u=new ite(l,a,o,i),c=ye({inputs:{x:r},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(u,[c],r.dtype);n.disposeIntermediateTensorInfo(c);let h=[...r.shape,a],p=ye({inputs:{x:d},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(d),p},ute={kernelName:ro,backendName:"webgl",kernelFunc:lte};function $f(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=ed({inputs:{input:s},backend:n}),a=$f({inputs:{x:r},backend:n}),o=Df({inputs:{input:s},backend:n}),i=$f({inputs:{x:o},backend:n}),l=pa({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return td({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var cte={kernelName:kl,backendName:"webgl",kernelFunc:$f};function O4(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=ed({inputs:{input:s},backend:n}),a=O4({inputs:{x:r},backend:n}),o=Df({inputs:{input:s},backend:n}),i=$f({inputs:{x:o},backend:n}),l=pa({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return td({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var dte={kernelName:al,backendName:"webgl",kernelFunc:O4};function hte(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return G2({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=G2({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(d),d}),u=p4({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var pte={kernelName:ol,backendName:"webgl",kernelFunc:hte},fte=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let s=e.length,r=ht(s),a=t.map(l=>l[0]).join(","),o=t.map((l,u)=>l[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
}
|
|
`}},mte=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=ht(s),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=In("rc",s),l=In("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${i[s-1]} += 1;
|
|
if(${u}) {
|
|
`,s===1?"":`}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${i[s-1]} += 1;
|
|
if(${u}) {`],h=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",p="";for(let f=0,m=s===1?2:4;f<m;f++)p+=`
|
|
${d[f]}
|
|
if (${h}) {
|
|
result[${f}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${f}] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`;p+=s===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${p}
|
|
setOutput(result);
|
|
}
|
|
`}},P4=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(w.sizeFromShape(r.shape)===0){let u=a.map((c,d)=>c[0]+r.shape[d]+c[1]);return td({backend:n,attrs:{shape:u,value:o,dtype:r.dtype}})}let i=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new mte(r.shape,a,o):new fte(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},gte={kernelName:ao,backendName:"webgl",kernelFunc:P4},Ate=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,yte=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+Sf+`
|
|
return result;
|
|
`,xte=ln({opSnippet:Ate,packedOpSnippet:yte}),bte={kernelName:oo,backendName:"webgl",kernelFunc:xte};function vte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],u=w.parseAxisParam(a,r.shape),c=u,d=D.getAxesPermutation(c,i),h=r;d!=null&&(h=Sn({inputs:{x:r},backend:n,attrs:{perm:d}}),c=D.getInnerMostAxes(c.length,i),l.push(h)),D.assertAxesAreInnerMostDims("prod",c,i);let p;if(n.shouldExecuteOnCPU([h])){let f=n.texData.get(h.dataId).values,{outVals:m,outShape:g,outDtype:A}=RX(h.shape,h.dtype,f,c);p=n.makeTensorInfo(g,A,m)}else{let[f,m]=D.computeOutAndReduceShapes(h.shape,c),g=w.sizeFromShape(m),A=ye({inputs:{x:h},backend:n,attrs:{shape:[-1,g]}}),y=Mh(r.dtype),x=si(A,y,"prod",n);p=ye({inputs:{x},backend:n,attrs:{shape:f}}),l.push(A),l.push(x)}if(o){l.push(p);let f=D.expandShapeToKeepDim(p.shape,u);p=ye({inputs:{x:p},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var wte={kernelName:il,backendName:"webgl",kernelFunc:vte},M4=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=_X(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},kte={kernelName:ju,backendName:"webgl",kernelFunc:M4},Ite="return 1.0 / x;",Ste=Je({opSnippet:Ite}),Cte={kernelName:ll,backendName:"webgl",kernelFunc:Ste},Tte=js+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,Nte=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Ete=Je({opSnippet:Tte,packedOpSnippet:Nte}),Rte={kernelName:lo,backendName:"webgl",kernelFunc:Ete},_te=js+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Dte=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,$te=Je({opSnippet:_te,packedOpSnippet:Dte}),Fte={kernelName:co,backendName:"webgl",kernelFunc:$te},Ote=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Pte=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]},
|
|
${u[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Mte(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=Q().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Pte(r.shape,l,u,a,o):new Ote(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],"float32")}var zte={kernelName:uo,backendName:"webgl",kernelFunc:Mte},Lte=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],d=1/u,h=1/c,p=Math.ceil(d)*2+2,f=Math.ceil(h)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${h});
|
|
|
|
const int winHeight = int(${p});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Bte(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Lte(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Wte={kernelName:vh,backendName:"webgl",kernelFunc:Bte},Vte=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",h;r?h="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Ute=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",h;r?h="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]},
|
|
${u[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Hte(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=Q().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Ute(r.shape,l,u,a,o):new Vte(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],r.dtype)}var Gte={kernelName:qu,backendName:"webgl",kernelFunc:Hte},jte=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],d=1/u,h=1/c,p=Math.ceil(d)*2+2,f=Math.ceil(h)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${h});
|
|
|
|
const int winHeight = int(${p});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${i[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${i[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${s}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function qte(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new jte(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Xte={kernelName:bh,backendName:"webgl",kernelFunc:qte},Kte=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let s=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,r=e.map((o,i)=>s(i)).join(","),a=ht(n);this.userCode=`
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},Zte=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=In("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=ht(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${i(s.slice())};
|
|
if(${r}){
|
|
result.g = ${l(s.slice())};
|
|
}
|
|
if(${a}) {
|
|
result.b = ${u(s.slice())};
|
|
if(${r}) {
|
|
result.a = ${c(s.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function i(p){return d(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",d(p)}function u(p){return p[n-2]="("+p[n-2]+" + 1)",d(p)}function c(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",d(p)}function d(p){let f=e.map((A,y)=>h(y,p)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function h(p,f){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${f[p]} - 1`:`${f[p]}`}}};function Yte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=w.parseAxisParam(a,r.shape);if(o===0)return Yn({inputs:{x:r},backend:n});let l=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Zte(r.shape,i):new Kte(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var Jte={kernelName:ho,backendName:"webgl",kernelFunc:Yte},Qte=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},ene={kernelName:Il,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new Qte(s.shape,a),[u,c]=D.getImageCenter(o,s.shape[1],s.shape[2]),d=[[u,c,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,d)}},tne=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,nne=Je({opSnippet:tne}),sne={kernelName:po,backendName:"webgl",kernelFunc:nne},rne="return inversesqrt(x);",ane=Je({opSnippet:rne,cpuKernelImpl:DX}),one={kernelName:fo,backendName:"webgl",kernelFunc:ane},z4=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=ht(r.length),l=ht(a.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,d="";s===1?d="i":s===2&&(d="i, coords[1]");let h=`getUpdates(${d})`,p=t>1?"strides[j]":"strides";this.userCode=`
|
|
${i} strides = ${i}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${c});
|
|
flattenedIndex += index * ${p};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${h};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function ine(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:d}=D.calculateShapes(a,r,o),h=[d/u,u];if(d===0)return n.makeTensorInfo(o,r.dtype);let p=ye({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=ye({inputs:{x:a},backend:n,attrs:{shape:[l,u]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new z4(l,i,p.shape.length,f.shape.length,c,h),A=n.runWebGLProgram(g,[f,p,m],f.dtype),y=ye({inputs:{x:A},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(m),y}var lne={kernelName:cl,backendName:"webgl",kernelFunc:ine},une=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let u=0;u<t.length;u++)l.push(`${o[u]}`),u<e&&i.push(`${o[u]}`);s=i.join(),r=l.join()}let a=ht(n);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
float cVal = getC(${s});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function cne(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new une(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(o,[s,r,a],Cs(r.dtype,a.dtype))}var dne={kernelName:dl,backendName:"webgl",kernelFunc:cne},hne=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${D.SELU_SCALEALPHA};
|
|
float scale = ${D.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,pne=Je({opSnippet:hne}),fne={kernelName:hl,backendName:"webgl",kernelFunc:pne},L4="return 1.0 / (1.0 + exp(-1.0 * x));",mne=Je({opSnippet:L4,packedOpSnippet:L4,cpuKernelImpl:$X}),gne={kernelName:go,backendName:"webgl",kernelFunc:mne},Ane=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,yne=Je({opSnippet:Ane}),xne={kernelName:ml,backendName:"webgl",kernelFunc:yne},bne=J6+`
|
|
return sin(x);
|
|
`,vne=Je({opSnippet:bne}),wne={kernelName:mo,backendName:"webgl",kernelFunc:vne},kne=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,Ine=Je({opSnippet:kne}),Sne={kernelName:fl,backendName:"webgl",kernelFunc:Ine},Cne=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,Tne=Je({opSnippet:Cne}),Nne={kernelName:gl,backendName:"webgl",kernelFunc:Tne},Ene=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;w.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((A,y)=>A*y),l=[[0,0]];l.push(...o);for(let A=1+a.length;A<r.shape.length;++A)l.push([0,0]);let u=[],c=P4({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=D.getReshaped(c.shape,a,i,!1),h=D.getPermuted(d.length,a.length,!1),p=D.getReshapedPermuted(c.shape,a,i,!1),f=ye({inputs:{x:c},backend:n,attrs:{shape:d}}),m=Sn({inputs:{x:f},backend:n,attrs:{perm:h}}),g=ye({inputs:{x:m},backend:n,attrs:{shape:p}});return u.push(c),u.push(f),u.push(m),u.forEach(A=>n.disposeIntermediateTensorInfo(A)),g},Rne={kernelName:Al,backendName:"webgl",kernelFunc:Ene};function _ne(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=n.readSync(o.dataId)[0],[d,h,p,f,m]=OX(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(h,s.dtype,d),n.makeTensorInfo([h[0]],r.dtype,p),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var Dne={kernelName:wh,backendName:"webgl",kernelFunc:_ne};function $ne(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[u,c,d]=PX(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var Fne={kernelName:kh,backendName:"webgl",kernelFunc:$ne};function One(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=L6(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var Pne={kernelName:Ih,backendName:"webgl",kernelFunc:One};function Mne(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=L6(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var zne={kernelName:Sh,backendName:"webgl",kernelFunc:Mne};function Lne(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,strides:c,outputSize:d}=D.calculateShapes(a,r,i),h=!1,p=new z4(u,l,r.shape.length,a.shape.length,c,[d,1],h),f=n.runWebGLProgram(p,[a,r,o],a.dtype),m=ye({inputs:{x:f},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(f),m}var Bne={kernelName:Ch,backendName:"webgl",kernelFunc:Lne};function Wne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=w.parseAxisParam(o,r.shape)[0],l=D.prepareSplitSize(r,a,i),u=r.shape.length,c=new Array(u).fill(0),d=r.shape.slice();return l.map(h=>{let p=[...d];p[i]=h;let f=du({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});return c[i]+=h,f})}var Vne={kernelName:yl,backendName:"webgl",kernelFunc:Wne},B4="return sqrt(x);",Une=Je({opSnippet:B4,packedOpSnippet:B4,cpuKernelImpl:MX}),Hne={kernelName:Ao,backendName:"webgl",kernelFunc:Une},Gne="return x * x;",jne=Je({opSnippet:Gne}),qne={kernelName:Xu,backendName:"webgl",kernelFunc:jne},W4="return (a - b) * (a - b);",Xne=ln({opSnippet:W4,packedOpSnippet:W4}),Kne={kernelName:bo,backendName:"webgl",kernelFunc:Xne};function Zne({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=js+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,a=new ha(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var Yne={kernelName:Gr,backendName:"webgl",kernelFunc:Zne},Jne=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=ht(n.length),a=ht(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,u)=>(i++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${i-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}};function Qne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:h}=s,{nonStrided:p,$begin:f,$strides:m,size:g,newShape:A,outShape:y}=xn.sliceInfo(r.shape,a,o,i,l,u,c,d,h),x=ye({inputs:{x:r},backend:n,attrs:{shape:A}}),b;if(p){let k=du({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=ye({inputs:{x:k},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(k)}else if(y.some(k=>k===0))b=n.makeTensorInfo(y,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let C=n.texData.get(x.dataId).values,_=We(x.shape,x.dtype,C),O=zX(y,_,m,f);b=n.makeTensorInfo(y,x.dtype,O.values)}else{let S=new Jne(f,m,y);b=n.runWebGLProgram(S,[x],x.dtype)}let v=ye({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var ese={kernelName:xl,backendName:"webgl",kernelFunc:Qne};function tse(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:d}=t,h=n.readSync(c.dataId),p=n.readSync(d.dataId),[f,m]=LX(h,p,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var nse={kernelName:Th,backendName:"webgl",kernelFunc:tse};function sse(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[u,c,d]=BX(i,l,r),h=c.length;return[n.makeTensorInfo([h,2],"int32",u),n.makeTensorInfo([h],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var rse={kernelName:Nh,backendName:"webgl",kernelFunc:sse};function ase(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=WX(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var ose={kernelName:Eh,backendName:"webgl",kernelFunc:ase},ise="return tan(x);",lse=Je({opSnippet:ise}),use={kernelName:wo,backendName:"webgl",kernelFunc:lse},cse=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,dse=Je({opSnippet:cse}),hse={kernelName:ko,backendName:"webgl",kernelFunc:dse},pse=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let s=ht(this.rank),r=fse(e);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function fse(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r<e.length;r++)s.push(`imod(${n[r]}, ${e[r]})`);return s.join()}function V4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(r.dtype==="string"||r.shape.length>5){let l=n.readSync(r.dataId),u=r.dtype==="string"?l.map(h=>w.decodeString(h)):l,c=We(r.shape,r.dtype,u),d=UX(c,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new pse(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var mse={kernelName:Hr,backendName:"webgl",kernelFunc:V4},gse=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},Ase=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function ri(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function U4(e){let t=1;for(;t<e;)t*=2;return t}function yse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=Q().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=Q().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,c=u[u.length-1];if(n.shouldExecuteOnCPU([r])||c<i||a>l){let O=n.readSync(r.dataId),[E,R]=HX(O,u,r.dtype,a,o);return[n.makeTensorInfo(E.shape,E.dtype,E.values),n.makeTensorInfo(R.shape,R.dtype,R.values)]}if(a===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(c===1)return[r,td({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),h=d!==null&&d.isPacked,p=h?n.unpackTensor(r):r,m=w.sizeFromShape(u)/c,g=ye({inputs:{x:p},attrs:{shape:[m,c]},backend:n});h&&ri(n,p);let A=U4(a),y=U4(c),x=null,b=()=>x===null?[g,g]:[g,x],v=(O,E,R)=>{let T=b(),P=new gse(R),j=[[c],[x===null?1:0],[Number.NEGATIVE_INFINITY],[O],[E]],q=x;x=n.runWebGLProgram(P,T,"int32",j),ri(n,q)};for(let O=1;O<A;O*=2){let E=O*2;for(let R=O;R>=1;R/=2)v(E,R,[m,y])}for(let O=y;O>A;O/=2){let E=b(),R=new Ase([m,O/2]),P=[[c],[x===null?1:0],[A]],V=x;x=n.runWebGLProgram(R,E,"int32",P),ri(n,V);let j=A/2,q=j*2;for(let X=j;X>=1;X/=2)v(q,X,x.shape)}let k=x;x=du({inputs:{x},backend:n,attrs:{begin:0,size:[m,a]}}),ri(n,k);let S=N4({inputs:{x:g,indices:x},backend:n,attrs:{axis:1,batchDims:1}});ri(n,g);let C=u.slice(0,-1);C.push(a),k=x,x=ye({inputs:{x},attrs:{shape:C},backend:n}),ri(n,k);let _=S;return S=ye({inputs:{x:S},attrs:{shape:C},backend:n}),ri(n,_),[S,x]}var xse={kernelName:bl,backendName:"webgl",kernelFunc:yse},bse=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${i} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${o} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function vse(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,d,h,p]=r.shape,[f,m]=u!=null?u:[d,h],g=[c,f,m,p],A=new bse(d,h,o,i,l,g);return n.runWebGLProgram(A,[r,a],"float32")}var wse={kernelName:vl,backendName:"webgl",kernelFunc:vse};function kse(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;su(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:u}=GX(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var Ise={kernelName:Rh,backendName:"webgl",kernelFunc:kse};function Sse(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],u=new Array(i-1),c=0;for(let m=0;m<i;m++)m!==a&&(u[c++]=o.shape[m]);let d=[],h=new Array(i).fill(0),p=o.shape.slice();p[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){h[a]=m;let g=du({inputs:{x:o},backend:n,attrs:{begin:h,size:p}}),A=ye({inputs:{x:g},backend:n,attrs:{shape:u}});f[m]=A,d.push(g)}return d.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var Cse={kernelName:wl,backendName:"webgl",kernelFunc:Sse},Tse=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,d=`
|
|
sumValue += dot(values, segFilter);
|
|
`,h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let p="";r%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${p}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${a})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${a})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${c===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${c===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function Nse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s,i=r.shape.length,l=[],u=0,c=D.getAxesPermutation([u],i),d=r;c!=null&&(d=Sn({inputs:{x:r},backend:n,attrs:{perm:c}}),l.push(d),u=D.getInnerMostAxes(1,i)[0]);let h=D.segment_util.computeOutShape(d.shape,u,o),p=w.sizeFromShape([d.shape[u]]),f=ye({inputs:{x:d},backend:n,attrs:{shape:[-1,p]}});l.push(f);let m=Mh(r.dtype),g=(b,v,k,S,C)=>{let _=b.shape[0],O=b.shape[1],E=D.segment_util.segOpComputeOptimalWindowSize(O,C),R={windowSize:E,inSize:O,batchSize:_,numSegments:C},T=new Tse(R,v),P=n.compileAndRun(T,[b,k],S);if(l.push(P),P.shape[1]===C)return P;let V=M4({backend:n,attrs:{start:0,stop:C,step:1,dtype:"float32"}}),j=V4({inputs:{x:V},backend:n,attrs:{reps:[O/E]}});return l.push(V),l.push(j),g(P,v,j,S,C)},A=g(f,"unsortedSegmentSum",a,m,o),y=ye({inputs:{x:A},backend:n,attrs:{shape:h}}),x=y;if(c!=null){l.push(y);let b=D.getUndoAxesPermutation(c);x=Sn({inputs:{x},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var Ese={kernelName:Ku,backendName:"webgl",kernelFunc:Nse},Rse=[ree,iee,HK,jK,KK,JK,eZ,sZ,aZ,iZ,dZ,pZ,gZ,xZ,CZ,wZ,EZ,$Z,_Z,MZ,LZ,WZ,GZ,JZ,eY,oY,lY,hY,mY,SK,bY,RY,DY,IY,PY,zY,FY,WY,HY,qY,KY,YY,eJ,oJ,lJ,nJ,dJ,fJ,gJ,bJ,IJ,NJ,_J,DJ,$J,OJ,MJ,LJ,WJ,UJ,qJ,ZJ,QJ,tQ,rQ,iQ,dQ,mQ,IK,AQ,yY,bQ,kQ,CQ,TK,RQ,FQ,PQ,UQ,BQ,qQ,ZQ,eee,uee,Aee,mee,vee,kee,See,pee,Tee,Eee,$ee,Mee,Wee,Kee,DK,Yee,ete,ste,ote,nY,ute,dte,pte,gte,bte,EK,wte,kte,sY,Gee,Cte,Fte,Rte,FK,zte,Wte,Gte,Xte,Jte,ene,sne,one,lne,dne,fne,gne,xne,wne,Sne,ZZ,qee,Nne,Rne,Dne,Fne,Pne,zne,Bne,Vne,Hne,qne,Kne,Yne,ese,nse,rse,ose,jee,WK,use,hse,mse,xse,wse,VK,Ise,Cse,Ese,cte];for(let e of Rse)No(e);var Pn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Pn||(Pn={}));var nd;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(nd||(nd={}));var H4;function _se(e){H4=e.wasm.cwrap(So,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Dse(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=s,h=n.dataIdMap.get(r.dataId).id,p=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let C=n.dataIdMap.get(o.dataId);if(C.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${C.shape.length}.`);f=C.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=nd[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let A=l?r.shape[2]:r.shape[1],y=u?a.shape[1]:a.shape[2],x=r.shape[0],b=n.makeOutput([x,A,y],r.dtype),v=n.dataIdMap.get(b.dataId).id,k=new Uint8Array(new Int32Array(r.shape).buffer),S=new Uint8Array(new Int32Array(a.shape).buffer);return H4(h,k,r.shape.length,p,S,a.shape.length,l,u,g,f,m,d||0,v),b}var $se={kernelName:So,backendName:"wasm",setupFunc:_se,kernelFunc:Dse};function un(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function s(r){let{backend:a,inputs:{x:o}}=r,i=a.dataIdMap.get(o.dataId).id,l=a.makeOutput(o.shape,o.dtype),u=a.dataIdMap.get(l.dataId).id;return w.sizeFromShape(l.shape)===0||t(i,u),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:s}}var Fse=un(Ii);function Cn(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:u,b:c}=l,d=i.dataIdMap.get(u.dataId).id,h=i.dataIdMap.get(c.dataId).id,p=n!=null?n:u.dtype,f=D.assertAndGetBroadcastShape(u.shape,c.shape),m=i.makeOutput(f,p);if(w.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(u.shape).buffer),A=new Uint8Array(new Int32Array(c.shape).buffer),y=i.dataIdMap.get(m.dataId).id,x=()=>s(d,g,u.shape.length,h,A,c.shape.length,Pn[u.dtype],y);if(t&&u.dtype==="float32")return x(),m;let b=D.getBroadcastDims(u.shape,f),v=D.getBroadcastDims(c.shape,f),k=b.every((C,_)=>C===_),S=v.every((C,_)=>C===_);if(k&&S)return x(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var Ose=!0,Pse=Cn(Vr,Ose),G4;function Mse(e){G4=e.wasm.cwrap(Na,null,["array","number","number","number"])}function zse(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return G4(a,r.length,Pn[s.dtype],o),s}var Lse={kernelName:Na,backendName:"wasm",setupFunc:Mse,kernelFunc:zse};function Ff(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var Bse={kernelName:qa,backendName:"wasm",kernelFunc:Ff},j4;function Wse(e){j4=e.wasm.cwrap(Io,null,["number","array","number","number","number","array","number"])}function fu(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=Use(t.x.shape,s.perm),o=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(o=!1);let i=Vse(t.x.shape,s.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(o){let f=Ff({inputs:t,backend:n});return f.shape=i,f}let u=n.makeOutput(i,l.dtype),c=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(u.dataId).id,h=new Uint8Array(new Int32Array(a).buffer),p=new Uint8Array(new Int32Array(l.shape).buffer);return j4(c,p,l.shape.length,Pn[l.dtype],d,h,a.length),u}function Vse(e,t){let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];return n}function Use(e,t){let n=[],s=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&s.push(t[r]);for(let r=0;r<s.length;++r){let a=-1;for(let o=0;o<s.length;++o)s[o]>=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var Hse={kernelName:Io,backendName:"wasm",kernelFunc:fu,setupFunc:Wse};function fa(e,t,n){let s=e.shape,r=e.shape.length,a=w.parseAxisParam(t,s),o=a,i=D.getAxesPermutation(o,r),l=null,u=!1;if(i!=null){let c=new Array(r);for(let p=0;p<c.length;p++)c[p]=s[i[p]];o=D.getInnerMostAxes(o.length,r),l=fu({inputs:{x:e},attrs:{perm:i},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(u=!0)}return{transposed:l,originalAxes:a,axes:o,inputWasTransposed:u}}var q4;function Gse(e){q4=e.wasm.cwrap(Ti,null,["number, number, number"])}function jse(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=fa(o,r,t);if(p){let x=t.dataIdMap.get(c.dataId).id;u=c,l=x}let f=u.shape.length;D.assertAxesAreInnerMostDims("all",d,f);let[m,g]=D.computeOutAndReduceShapes(u.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;q4(l,A,x)}if(p&&t.disposeData(c.dataId),a){let x=D.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var qse={kernelName:Ti,backendName:"wasm",setupFunc:Gse,kernelFunc:jse},X4;function Xse(e){X4=e.wasm.cwrap(Ni,null,["number, number, number"])}function Kse(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=fa(o,r,t);if(p){let x=t.dataIdMap.get(c.dataId).id;u=c,l=x}let f=u.shape.length;D.assertAxesAreInnerMostDims("any",d,f);let[m,g]=D.computeOutAndReduceShapes(u.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;X4(l,A,x)}if(p&&t.disposeData(c.dataId),a){let x=D.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var Zse={kernelName:Ni,backendName:"wasm",setupFunc:Xse,kernelFunc:Kse},K4;function Yse(e){K4=e.wasm.cwrap(Ea,null,["number","number","number","number","number"])}function Jse(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=o,l=a,{transposed:u,axes:c,inputWasTransposed:d}=fa(a,r,t);if(d){let A=t.dataIdMap.get(u.dataId).id;A!==o&&(l=u,i=A)}let h=l.shape.slice(0,-1),p=t.makeOutput(h,"int32"),f=t.dataIdMap.get(p.dataId).id,m=w.sizeFromShape(p.shape),g=l.shape[c[0]];return K4(i,Pn[l.dtype],m,g,f),d&&t.disposeData(u.dataId),p}var Qse={kernelName:Ea,backendName:"wasm",kernelFunc:Jse,setupFunc:Yse},Z4;function ere(e){Z4=e.wasm.cwrap(Ra,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function tre(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=D.computePool2DInfo(r.shape,o,i,1,l,u),d=c.filterHeight,h=c.filterWidth,p=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,A=c.strideHeight,y=c.strideWidth,x=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let b=s.makeOutput(c.outShape,"float32"),v=s.dataIdMap.get(b.dataId).id;return Z4(a,r.shape[0],r.shape[1],r.shape[2],d,h,p,f,m,g,A,y,x,v),b}var nre={kernelName:Ra,backendName:"wasm",setupFunc:ere,kernelFunc:tre};function Mn(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=w.sizeFromShape(s.shape),o=w.inferFromImplicitShape(r,a);return w.assert(a===w.sizeFromShape(o),()=>`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var sre={kernelName:ul,backendName:"wasm",kernelFunc:Mn},Y4;function rre(e){Y4=e.wasm.cwrap(_a,null,["number","array","number","number","array","number","number","number","number"])}function are(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[u-1]:a.shape[u-2],h=o?r.shape[l-1]:r.shape[l-2],p=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),A=w.sizeFromShape(m),y=g===A||g===1||A===1;w.assert(l>=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>A?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([h,p]);w.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[g,c,h]:[g,h,c],k=i?[A,p,d]:[A,d,p],S=Mn({inputs:{x:r},backend:n,attrs:{shape:v}}),C=Mn({inputs:{x:a},backend:n,attrs:{shape:k}}),_=n.dataIdMap.get(S.dataId).id,O=n.dataIdMap.get(C.dataId).id,E=o?S.shape[2]:S.shape[1],R=i?C.shape[1]:C.shape[2],T=Math.max(g,A),P=n.makeOutput([T,E,R],S.dtype),V=n.dataIdMap.get(P.dataId).id,j=new Uint8Array(new Int32Array(S.shape).buffer),q=new Uint8Array(new Int32Array(C.shape).buffer);return Y4(_,j,S.shape.length,O,q,C.shape.length,o,i,V),n.disposeData(S.dataId),n.disposeData(C.dataId),P.shape=b,P}var ore={kernelName:_a,backendName:"wasm",setupFunc:rre,kernelFunc:are};function sd(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=xn.parseSliceParams(t,n,s),i=xn.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),u=r.makeOutput(o,t.dtype),c=w.computeStrides(t.shape),d=r.dataIdMap.get(u.dataId);if(i){let f=xn.computeFlatOffset(a,c);return t.dtype==="string"?d.stringBytes=l.slice(f,f+w.sizeFromShape(o)):r.typedArrayFromHeap(u).set(l.subarray(f,f+w.sizeFromShape(o))),u}if(t.dtype==="string"){let f=cf(l,a,o,t.shape,t.dtype);return d.stringBytes=f,u}let h=r.typedArrayFromHeap(u),p=t.shape.length;if(p===2)ire(l,c[0],h,a,o);else if(p===3)lre(l,c[0],c[1],h,a,o);else if(p===4)ure(l,c[0],c[1],c[2],h,a,o);else{let f=cf(l,a,o,t.shape,t.dtype);h.set(f)}return u}function ire(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let u=o;u<l;u++){let c=u*t+i;n.set(e.subarray(c,c+r[1]),a),a+=r[1]}}function lre(e,t,n,s,r,a){let o=0,i=r[0],l=r[1],u=r[2],c=i+a[0],d=l+a[1];for(let h=i;h<c;h++)for(let p=l;p<d;p++){let f=h*t+p*n+u;s.set(e.subarray(f,f+a[2]),o),o+=a[2]}}function ure(e,t,n,s,r,a,o){let i=0,l=a[0],u=a[1],c=a[2],d=l+o[0],h=u+o[1],p=c+o[2],f=a[3];for(let m=l;m<d;m++)for(let g=u;g<h;g++)for(let A=c;A<p;A++){let y=m*t+g*n+A*s+f;r.set(e.subarray(y,y+o[3]),i),i+=o[3]}}var cre={kernelName:pl,backendName:"wasm",kernelFunc:sd};function dre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s,i=a.reduce((A,y)=>A*y),l=D.getReshaped(r.shape,a,i),u=D.getPermuted(l.length,a.length),c=D.getReshapedPermuted(r.shape,a,i),d=D.getSliceBeginCoords(o,a.length),h=D.getSliceSize(c,o,a.length),p=Mn({inputs:{x:r},backend:n,attrs:{shape:l}}),f=fu({inputs:{x:p},backend:n,attrs:{perm:u}}),m=Mn({inputs:{x:f},backend:n,attrs:{shape:c}}),g=sd({inputs:{x:m},backend:n,attrs:{begin:d,size:h}});return n.disposeData(p.dataId),n.disposeData(f.dataId),n.disposeData(p.dataId),g}var hre={kernelName:Fi,backendName:"wasm",kernelFunc:dre};function Of(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var pre={kernelName:Da,backendName:"wasm",kernelFunc:Of},fre=un($a),J4;function mre(e){J4=e.wasm.cwrap(Ur,null,["number","number","number","number"])}function gre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return J4(i,a,o,u),l}var Are={kernelName:Ur,backendName:"wasm",setupFunc:mre,kernelFunc:gre};function Q4(e){let{inputs:t,backend:n}=e,s=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=D.computeOutShape(t.map(p=>p.shape),s),a=t.filter(p=>w.sizeFromShape(p.shape)>0);if(a.length===1)return Ff({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(w.sizeFromShape(r)===0)return o;let i=a.map(p=>p.shape);if(D.assertParamsConsistent(i,s),a[0].dtype==="string"){let p=a.map(x=>{let b=w.sizeFromShape(x.shape.slice(s));return Mn({inputs:{x},backend:n,attrs:{shape:[-1,b]}})}),f=p.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=D.computeOutShape(p.map(x=>x.shape),1);let m=p[0].shape[0]===1,g=f2(f,r,t[0].dtype,m),A=D.computeOutShape(a.map(x=>x.shape),s);o.shape=A;let y=n.dataIdMap.get(o.dataId);return y.stringBytes=D.fromStringArrayToUint8(g),p.forEach(x=>n.disposeData(x.dataId)),o}let l=w.sizeFromShape(a[0].shape.slice(0,s)),u=0,c=a.map(p=>{let f=w.sizeFromShape(p.shape.slice(s));return u+=f,f}),d=a.map(p=>n.typedArrayFromHeap(p)),h=n.typedArrayFromHeap(o);for(let p=0;p<l;p++){let f=p*u;for(let m=0;m<d.length;m++){let g=c[m],A=p*g,y=d[m].subarray(A,A+g);h.set(y,f),f+=g}}return o}var yre={kernelName:Oi,backendName:"wasm",kernelFunc:Q4},ek;function xre(e){ek=e.wasm.cwrap(Fa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function bre(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:d,dataFormat:h}=n,p=D.convertConv2DDataFormat(h),f=D.computeConv2DInfo(r.shape,a.shape,l,u,c,d,!1,p),m=f.filterHeight,g=f.filterWidth,A=f.padInfo.top,y=f.padInfo.right,x=f.padInfo.bottom,b=f.padInfo.left,v=f.dilationHeight,k=f.dilationWidth,S=f.strideHeight,C=f.strideWidth,_=f.inChannels,O=f.outChannels,E=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let R=s.makeOutput(f.outShape,"float32"),T=s.dataIdMap.get(R.dataId).id;return ek(o,r.shape[0],r.shape[1],r.shape[2],i,m,g,A,y,x,b,E,v,k,S,C,_,O,T),R}var vre={kernelName:Fa,backendName:"wasm",setupFunc:xre,kernelFunc:bre},tk;function wre(e){tk=e.wasm.cwrap(Oa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function kre(e){let{backend:t,inputs:n,attrs:s}=e,{dy:r,filter:a}=n,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,inputShape:c}=s,d=1,h=D.convertConv2DDataFormat(l),p=D.computeConv2DInfo(c,a.shape,o,d,i,u,!1,h),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:A,inHeight:y,inWidth:x,outChannels:b,outHeight:v,outWidth:k,strideHeight:S,strideWidth:C}=p,_=m-1-p.padInfo.top,O=g-1-p.padInfo.left,E=p.dataFormat==="channelsLast",R=w.computeStrides(p.inShape),T=w.computeStrides(r.shape),[P,V,j]=w.computeStrides(a.shape),q=R[0],X=E?R[1]:R[2],ee=E?R[2]:1,te=E?1:R[1],ne=T[0],se=E?T[1]:T[2],J=E?T[2]:1,ie=E?1:T[1],le=t.makeOutput(p.inShape,"float32"),he=t.dataIdMap.get(le.dataId).id,Ae=t.dataIdMap.get(r.dataId).id,Ce=t.dataIdMap.get(a.dataId).id;return tk(Ae,Ce,f,m,g,y,x,A,v,k,b,S,C,_,O,P,V,j,q,X,ee,te,ne,se,J,ie,he),le}var Ire={kernelName:Oa,backendName:"wasm",setupFunc:wre,kernelFunc:kre},Sre=un(Pa),Cre=un(Ma),j2;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(j2||(j2={}));var nk;function Tre(e){nk=e.wasm.cwrap(Pi,null,["number","number","number","number","array","number","number","number","number","number"])}function Nre(e){let{backend:t,inputs:n,attrs:s}=e,{method:r,extrapolationValue:a,cropSize:o}=s,{image:i,boxes:l,boxInd:u}=n,c=l.shape[0],[d,h]=o,p=[c,d,h,i.shape[3]],f=t.dataIdMap.get(i.dataId),m;i.dtype!=="float32"&&(m=Of({backend:t,inputs:{x:i},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,A=t.dataIdMap.get(l.dataId).id,y=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(p,"float32"),b=t.dataIdMap.get(x.dataId).id,v=new Uint8Array(new Int32Array(i.shape).buffer);return nk(g,A,y,c,v,d,h,j2[r],a,b),m!=null&&t.disposeData(m.dataId),x}var Ere={kernelName:Pi,backendName:"wasm",setupFunc:Tre,kernelFunc:Nre},sk;function Rre(e){sk=e.wasm.cwrap(za,null,["number","number","number","number","number","number"])}function _re(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=D.getAxesPermutation([a],l),c=r;u!==null&&(c=fu({inputs:{x:r},attrs:{perm:u},backend:n}));let d=D.getInnerMostAxes(1,l)[0];D.assertAxesAreInnerMostDims("cumsum",[d],l);let h=n.makeOutput(c.shape,c.dtype),p=c.shape[d],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(h.dataId).id;sk(f,o?1:0,i?1:0,p,m,Pn[r.dtype]);let g=h;if(u!==null){let A=D.getUndoAxesPermutation(u);g=fu({inputs:{x:h},attrs:{perm:A},backend:n}),n.disposeData(c.dataId),n.disposeData(h.dataId)}return g}var Dre={kernelName:za,backendName:"wasm",setupFunc:Rre,kernelFunc:_re},rk;function $re(e){rk=e.wasm.cwrap(Mi,null,["number","number","number","array","number","array","array","number","number"])}function Fre(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s;w.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,h=u*a,p=c/(a*a),f=o==="NHWC"?[i,d,h,p]:[i,p,d,h],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),x=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(w.computeStrides(f)).buffer),v=t.dataIdMap.get(m.dataId).id;return rk(A,a,o==="NHWC"?1:0,y,r.shape.length-1,x,b,f.length,v),m}var Ore={kernelName:Mi,backendName:"wasm",setupFunc:$re,kernelFunc:Fre},ak;function Pre(e){ak=e.wasm.cwrap(La,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Mre(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:d}=n,h=u==null?[1,1]:u,p=D.computeConv2DInfo(r.shape,a.shape,l,h,c,d,!0),f=p.filterHeight,m=p.filterWidth,g=p.padInfo.top,A=p.padInfo.right,y=p.padInfo.bottom,x=p.padInfo.left,b=p.dilationHeight,v=p.dilationWidth,k=p.strideHeight,S=p.strideWidth,C=p.inChannels,_=p.outChannels,O=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let E=s.makeOutput(p.outShape,"float32"),R=s.dataIdMap.get(E.dataId).id;return ak(o,r.shape[0],r.shape[1],r.shape[2],i,f,m,g,A,y,x,O,b,v,k,S,C,_,R),E}var zre={kernelName:La,backendName:"wasm",setupFunc:Pre,kernelFunc:Mre},Lre=un(Wa),Bre=!1,Wre=Cn(Li,Bre,"bool"),Vre=un(Va);function q2(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(w.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),Mn({inputs:{x:r},backend:s,attrs:{shape:i}})}var Ure={kernelName:Bi,backendName:"wasm",kernelFunc:q2};function ok(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var Hre={kernelName:Wu,backendName:"wasm",kernelFunc:ok},ik;function Gre(e){ik=e.wasm.cwrap(Vi,null,["number","number","number","number","number","number"])}function jre(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,u,c]=s.shape;return ik(a,i,l,u,c,o),r}var qre={kernelName:Vi,backendName:"wasm",kernelFunc:jre,setupFunc:Gre},Xre=un(Ua),Kre=!1,Zre=Cn(Ha,Kre),lk;function Yre(e){lk=e.wasm.cwrap(Ga,null,["number","number","number","number","number","number","number"])}function Jre(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:u}=n,c=t.dataIdMap.get(a.dataId).id,d=t.dataIdMap.get(o.dataId).id,h=t.dataIdMap.get(i.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(w.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return lk(c,d,h,p,f,r,g),m}var Qre={kernelName:Ga,backendName:"wasm",setupFunc:Yre,kernelFunc:Jre},uk;function eae(e){uk=e.wasm.cwrap(Co,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function tae(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=n,m=D.computeConv2DInfo(r.shape,a.shape,l,c,u,h),g=nd[p];if(g==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let J=s.dataIdMap.get(o.dataId);if(J.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${J.shape}) does not match the number of output channels (${x})`);b=J.id}let v=m.filterHeight,k=m.filterWidth,S=m.padInfo.top,C=m.padInfo.right,_=m.padInfo.bottom,O=m.padInfo.left,E=m.dilationHeight,R=m.dilationWidth,T=m.strideHeight,P=m.strideWidth,V=m.inChannels,j=m.padInfo.type==="SAME"?1:0,q=m.batchSize,X=m.inHeight,ee=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let te=s.makeOutput(m.outShape,"float32"),ne=s.dataIdMap.get(te.dataId).id,se=i==null?0:s.dataIdMap.get(i.dataId).id;return uk(A,q,X,ee,y,v,k,b,S,C,_,O,j,E,R,T,P,V,x,g,se,f||0,ne),te}var nae={kernelName:Co,backendName:"wasm",setupFunc:eae,kernelFunc:tae},ck;function sae(e){ck=e.wasm.cwrap(To,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function rae(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=n,m=D.computeConv2DInfo(r.shape,a.shape,l,c,u,h,!0),g=nd[p];if(g==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let J=s.dataIdMap.get(o.dataId);if(J.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${J.shape}) does not match the number of output channels (${x})`);b=J.id}let v=m.filterHeight,k=m.filterWidth,S=m.padInfo.top,C=m.padInfo.right,_=m.padInfo.bottom,O=m.padInfo.left,E=m.dilationHeight,R=m.dilationWidth,T=m.strideHeight,P=m.strideWidth,V=m.inChannels,j=m.padInfo.type==="SAME"?1:0,q=m.batchSize,X=m.inHeight,ee=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let te=s.makeOutput(m.outShape,"float32"),ne=s.dataIdMap.get(te.dataId).id,se=i==null?0:s.dataIdMap.get(i.dataId).id;return ck(A,q,X,ee,y,v,k,b,S,C,_,O,j,E,R,T,P,V,x,g,se,f||0,ne),te}var aae={kernelName:To,backendName:"wasm",setupFunc:sae,kernelFunc:rae},dk;function oae(e){dk=e.wasm.cwrap(Hi,null,["number","number","number","number","number","number","array","number"])}function iae(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=dg.prepareAndValidate(s,r),u=t.makeOutput(a,s.dtype);if(o===0)return u;let c=r.shape,d=c[c.length-1],p=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),A=t.dataIdMap.get(u.dataId).id;return dk(p,Pn[s.dtype],m,o,d,i,g,A),u}var lae={kernelName:Hi,backendName:"wasm",setupFunc:oae,kernelFunc:iae},hk;function uae(e){hk=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function cae(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=w.parseAxisParam(o,r.shape)[0],u=D.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=Mn({inputs:{x:r},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),d=w.sizeFromShape(a.shape),h=Mn({inputs:{x:a},attrs:{shape:[u.batchSize,d/u.batchSize]},backend:t}),p=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize],f=t.makeOutput(p,r.dtype);if(w.sizeFromShape(r.shape)===0)return f;let m=c.shape.length-1,A=t.dataIdMap.get(c.dataId).id,x=t.dataIdMap.get(h.dataId).id,b=t.dataIdMap.get(f.dataId).id,v=new Uint8Array(new Int32Array(w.computeStrides(c.shape)).buffer),k=new Uint8Array(new Int32Array(w.computeStrides(p)).buffer);return hk(A,Pn[r.dtype],v,m,x,u.batchSize,k,b),t.disposeData(c.dataId),t.disposeData(h.dataId),f.shape=u.outputShape,f}var dae={kernelName:Ui,backendName:"wasm",setupFunc:uae,kernelFunc:cae},hae=!1,pae=Cn(Gi,hae,"bool"),fae=!1,mae=Cn(ja,fae,"bool"),pk;function gae(e){pk=e.wasm.cwrap(Xa,null,["number","number","number"])}function Aae(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,t.dtype);if(w.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;pk(r,n,o)}return a}var yae={kernelName:Xa,backendName:"wasm",setupFunc:gae,kernelFunc:Aae},xae=!1,bae=Cn(Ki,xae,"bool"),vae=!1,wae=Cn(Zi,vae,"bool"),kae=un(Ka),Iae=!1,Sae=Cn(Ji,Iae,"bool"),fk;function Cae(e){fk=e.wasm.cwrap(Za,null,["number, number, number"])}function Tae(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=fa(o,r,t);if(p){let x=t.dataIdMap.get(c.dataId).id;u=c,l=x}let f=u.shape.length;D.assertAxesAreInnerMostDims("max",d,f);let[m,g]=D.computeOutAndReduceShapes(u.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;fk(l,A,x)}if(p&&t.disposeData(c.dataId),a){let x=D.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var Nae={kernelName:Za,backendName:"wasm",setupFunc:Cae,kernelFunc:Tae},Eae=!1,Rae=Cn(Ya,Eae),mk;function _ae(e){mk=e.wasm.cwrap(Ja,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Dae(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=D.computePool2DInfo(r.shape,o,i,1,l,u),d=c.filterHeight,h=c.filterWidth,p=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,A=c.dilationHeight,y=c.dilationWidth,x=c.strideHeight,b=c.strideWidth,v=c.inChannels,k=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let S=s.makeOutput(c.outShape,"float32"),C=s.dataIdMap.get(S.dataId).id;return mk(a,r.shape[0],r.shape[1],r.shape[2],d,h,p,f,m,g,A,y,x,b,v,k,C),S}var $ae={kernelName:Ja,backendName:"wasm",setupFunc:_ae,kernelFunc:Dae},gk;function Fae(e){gk=e.wasm.cwrap(Qa,null,["number, number, number"])}function Oae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=fa(o,r,t),f=d;if(p){let b=t.dataIdMap.get(c.dataId).id;b!==i&&(u=c,l=b,f=D.getInnerMostAxes(f.length,u.shape.length))}D.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,g]=D.computeOutAndReduceShapes(u.shape,f),A=w.sizeFromShape(g),y=u;u.dtype!=="float32"&&(y=Of({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(y.dataId).id);let x=t.makeOutput(m,"float32");if(w.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(x.dataId).id;gk(l,A,b)}if(p&&t.disposeData(c.dataId),a){let b=D.expandShapeToKeepDim(x.shape,h);x.shape=b}return u.dtype!=="float32"&&t.disposeData(y.dataId),x}var Pae={kernelName:Qa,backendName:"wasm",setupFunc:Fae,kernelFunc:Oae},Ak;function Mae(e){Ak=e.wasm.cwrap(eo,null,["number, number, number"])}function zae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=fa(o,r,t);if(p){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x)}let f=u.shape.length;D.assertAxesAreInnerMostDims("min",d,f);let[m,g]=D.computeOutAndReduceShapes(u.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(m,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;Ak(l,A,x)}if(p&&t.disposeData(c.dataId),a){let x=D.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var Lae={kernelName:eo,backendName:"wasm",setupFunc:Mae,kernelFunc:zae},Bae=!1,Wae=Cn(to,Bae),X2;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(X2||(X2={}));var yk;function Vae(e){yk=e.wasm.cwrap(no,null,["number","array","number","number","array","array","number","number"])}function Uae(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=s.map(f=>f[0]),d=s.map(f=>f[1]),h=new Uint8Array(new Int32Array(c).buffer),p=new Uint8Array(new Int32Array(d).buffer);return yk(o,u,t.shape.length,Pn[t.dtype],h,p,X2[r],l),i}var Hae={kernelName:no,backendName:"wasm",kernelFunc:Uae,setupFunc:Vae},Gae=!0,jae=Cn(so,Gae),qae=un(el);function K2(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var xk;function Xae(e){xk=e.wasm.cwrap(nl,"number",["number","number","number","number","number"])}function Kae(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,u=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(l.dataId).id,d=xk(u,c,a,r,o),{pSelectedIndices:h,selectedSize:p,pSelectedScores:f,pValidOutputs:m}=K2(t,d);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([p],"int32",h)}var Zae={kernelName:nl,backendName:"wasm",setupFunc:Xae,kernelFunc:Kae},bk;function Yae(e){bk=e.wasm.cwrap(sl,"number",["number","number","number","number","number","bool"])}function Jae(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,h=bk(c,d,a,r,o,i),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=K2(t,h);t.wasm._free(m);let A=t.makeOutput([f],"int32",p),y=t.makeOutput([],"int32",g);return[A,y]}var Qae={kernelName:sl,backendName:"wasm",setupFunc:Yae,kernelFunc:Jae},vk;function eoe(e){vk=e.wasm.cwrap(rl,"number",["number","number","number","number","number","number"])}function toe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,h=vk(c,d,a,r,o,i),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=K2(t,h);t.wasm._free(g);let A=t.makeOutput([f],"int32",p),y=t.makeOutput([f],"float32",m);return[A,y]}var noe={kernelName:rl,backendName:"wasm",setupFunc:eoe,kernelFunc:toe},soe=!1,roe=Cn(tl,soe,"bool"),wk;function aoe(e){wk=e.wasm.cwrap(ro,null,["number","number","number","number","number"])}function ooe(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=n.makeOutput([...r.shape,a],"int32"),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(r.dataId).id;return wk(d,a,o,i,u),l}var ioe={kernelName:ro,backendName:"wasm",setupFunc:aoe,kernelFunc:ooe};function loe(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var uoe={kernelName:al,backendName:"wasm",kernelFunc:loe};function coe(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return q2({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=q2({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(d),d}),u=Q4({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeData(c.dataId)),u}var doe={kernelName:ol,backendName:"wasm",kernelFunc:coe},kk;function hoe(e){kk=e.wasm.cwrap(ao,null,["number","array","number","number","array","array","number","number"])}function poe(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,g)=>m[0]+t.shape[g]+m[1]);if(w.sizeFromShape(t.shape)===0)return ok({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),d=s.map(m=>m[0]),h=s.map(m=>m[1]),p=new Uint8Array(new Int32Array(d).buffer),f=new Uint8Array(new Int32Array(h).buffer);return kk(o,c,t.shape.length,Pn[t.dtype],p,f,r,u),i}var Ik={kernelName:ao,backendName:"wasm",kernelFunc:poe,setupFunc:hoe},foe=!1,moe=Cn(oo,foe),Sk;function goe(e){Sk=e.wasm.cwrap(io,null,["number","number","number"])}function Aoe(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=n.makeOutput(s.shape,"float32"),l=n.dataIdMap.get(i.dataId).id;return Sk(a,o,l),i}var yoe={kernelName:io,backendName:"wasm",setupFunc:goe,kernelFunc:Aoe},Ck;function xoe(e){Ck=e.wasm.cwrap(il,null,["number","number","number","number"])}function boe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=fa(o,r,t),f=d;if(p){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x,f=D.getInnerMostAxes(f.length,u.shape.length))}D.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,g]=D.computeOutAndReduceShapes(u.shape,f),A=w.sizeFromShape(g),y=t.makeOutput(m,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;Ck(l,A,Pn[y.dtype],x)}if(p&&t.disposeData(c.dataId),a){let x=D.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var voe={kernelName:il,backendName:"wasm",setupFunc:xoe,kernelFunc:boe},woe=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=A2(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},koe={kernelName:ju,backendName:"wasm",kernelFunc:woe},Ioe=!0,Soe=Cn(Ba,Ioe),Coe=un(lo),Toe=un(co),Tk;function Noe(e){Tk=e.wasm.cwrap(uo,null,["number","number","number","number","number","number","number","number","number","number"])}function Eoe(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,[c,d,h,p]=r.shape,f=[c,l,u,p],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=Of({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let A=m.id,y=t.makeOutput(f,"float32");if(w.sizeFromShape(r.shape)===0)return y;let x=t.dataIdMap.get(y.dataId).id;return Tk(A,c,d,h,p,l,u,a?1:0,o?1:0,x),g!=null&&t.disposeData(g.dataId),y}var Roe={kernelName:uo,backendName:"wasm",setupFunc:Noe,kernelFunc:Eoe},Nk;function _oe(e){Nk=e.wasm.cwrap(ho,null,["number","array","number","array","number","number"])}function Doe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=w.parseAxisParam(a,r.shape);if(r.shape.length===0)return Ff({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(o).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);Nk(l,c,o.length,d,r.shape.length,u);let h=Mn({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),h}var $oe={kernelName:ho,backendName:"wasm",kernelFunc:Doe,setupFunc:_oe},Ek;function Foe(e){Ek=e.wasm.cwrap(Il,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Ooe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(l.dataId).id,[d,h,p,f]=r.shape,[m,g]=D.getImageCenter(i,h,p),A=o===0,y=255,x=typeof o=="number"?[o,o,o,A?0:y]:[...o,y],b=new Uint8Array(new Int32Array(x).buffer);return Ek(u,d,h,p,f,a,m,g,b,x.length,c),l}var Poe={kernelName:Il,backendName:"wasm",kernelFunc:Ooe,setupFunc:Foe},Moe=un(po),zoe=un(fo),Rk;function Loe(e){Rk=e.wasm.cwrap(cl,null,["number","number","number","number","number","number","array","number","number"])}function Boe(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(w.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:d,outputSize:h}=hg.calculateShapes(a,r,o),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,A=new Uint8Array(new Int32Array(d).buffer),y=t.dataIdMap.get(i.dataId).id;return Rk(f,g,Pn[a.dtype],l,u,c,A,h,y),i}var Woe={kernelName:cl,backendName:"wasm",setupFunc:Loe,kernelFunc:Boe},_k;function Voe(e){_k=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Uoe(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,u=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(u.dataId).id,d=s.shape.length,h=r.shape.length,p=d===0||d>1||h===1?1:w.sizeFromShape(r.shape.slice(1));return _k(o,i,l,p,c),u}var Hoe={kernelName:dl,backendName:"wasm",kernelFunc:Uoe,setupFunc:Voe},Dk;function Goe(e){Dk=e.wasm.cwrap(go,null,["number","number"])}function joe(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return w.sizeFromShape(r.shape)===0||Dk(s,a),r}var qoe={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Goe,kernelFunc:joe},Xoe=un(mo),$k;function Koe(e){$k=e.wasm.cwrap(xo,null,["number","number","number","number"])}function Zoe(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=w.sizeFromShape(n.shape)/i;return w.sizeFromShape(a.shape)===0||$k(r,o,i,l),a}var Yoe={kernelName:xo,backendName:"wasm",setupFunc:Koe,kernelFunc:Zoe};function Joe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=w.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let u=Ik.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),c=D.getReshaped(u.shape,a,i,!1),d=D.getPermuted(c.length,a.length,!1),h=D.getReshapedPermuted(u.shape,a,i,!1),m=Mn({inputs:{x:u},backend:n,attrs:{shape:c}}),y=fu({inputs:{x:m},backend:n,attrs:{perm:d}}),v=Mn({inputs:{x:y},backend:n,attrs:{shape:h}});return n.disposeData(u.dataId),n.disposeData(m.dataId),n.disposeData(y.dataId),v}var Qoe={kernelName:Al,backendName:"wasm",kernelFunc:Joe};function eie(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=n,i=w.parseAxisParam(o,r.shape)[0],l=D.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(d=>{let h=[...c];h[i]=d;let p=sd({inputs:{x:r},attrs:{begin:u,size:h},backend:s});return u[i]+=d,p})}var tie={kernelName:yl,backendName:"wasm",kernelFunc:eie},nie=un(Ao),sie=un(Xu),rie=!0,aie=Cn(bo,rie),Fk;function oie(e){Fk=e.wasm.cwrap(Gr,null,["number","number","number"])}function iie(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return Fk(o,r,l),i}var lie={kernelName:Gr,backendName:"wasm",setupFunc:oie,kernelFunc:iie},Ok;function uie(e){Ok=e.wasm.cwrap(xl,null,["number","array","number","array","array","array","array","array","number","number"])}function cie(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i}=s;i==null&&(i=new Array(a.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:h}=s,p=D.slice_util.maskToAxes(c);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&d!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&h!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=r.shape.length-a.length,m=D.slice_util.maskToAxes(d),g=r.shape.slice();m.forEach(E=>{a[E]=0,o[E]=1,g.splice(E,0,1)});let A=Mn({inputs:{x:r},attrs:{shape:g},backend:t}),{begin:y,end:x,strides:b}=D.slice_util.getNormalizedAxes(A.shape,p,f,a,o,i,l,u,c);a=y,o=x,i=b;let v=D.slice_util.maskToAxes(h);v.forEach(E=>{o[E]=a[E]+1,i[E]=1});let k=D.slice_util.computeOutShape(a,o,i),S=k.filter((E,R)=>v.indexOf(R)===-1);if(i.every(E=>E===1)){let E=sd({inputs:{x:A},attrs:{begin:a,size:k},backend:t});t.disposeData(A.dataId);let R=Mn({inputs:{x:E},attrs:{shape:S},backend:t});return t.disposeData(E.dataId),R}let _=t.makeOutput(S,"float32");if(!S.some(E=>E===0)){let E=t.dataIdMap.get(A.dataId).id,R=new Uint8Array(new Int32Array(w.computeStrides(A.shape)).buffer),T=new Uint8Array(new Int32Array(a).buffer),P=new Uint8Array(new Int32Array(o).buffer),V=new Uint8Array(new Int32Array(i).buffer),j=new Uint8Array(new Int32Array(S).buffer),q=new Uint8Array(new Int32Array(w.computeStrides(S)).buffer),X=t.dataIdMap.get(_.dataId).id;Ok(E,R,A.shape.length,T,P,V,j,q,S.length,X)}t.disposeData(A.dataId);let O=Mn({inputs:{x:_},attrs:{shape:S},backend:t});return t.disposeData(_.dataId),O}var die={kernelName:xl,backendName:"wasm",setupFunc:uie,kernelFunc:cie},hie=!0,pie=Cn(vo,hie),Pk;function fie(e){Pk=e.wasm.cwrap(yo,null,["number, number, number"])}function mie(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=fa(o,r,t),f=d;if(p){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x,f=D.getInnerMostAxes(f.length,u.shape.length))}D.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,g]=D.computeOutAndReduceShapes(u.shape,f),A=w.sizeFromShape(g),y=t.makeOutput(m,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;Pk(l,A,x)}if(p&&t.disposeData(c.dataId),a){let x=D.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var gie={kernelName:yo,backendName:"wasm",setupFunc:fie,kernelFunc:mie},Aie=un(wo),yie=un(ko),Mk;function xie(e){Mk=e.wasm.cwrap(Hr,null,["number","array","number","array","number","number"])}function bie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let h=0;h<i.length;h++)i[h]=r.shape[h]*o[h];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(i).buffer),c=n.makeOutput(i,r.dtype),d=n.dataIdMap.get(c.dataId).id;return Mk(a,l,r.shape.length,u,i.length,Pn[c.dtype],d),c}var vie={kernelName:Hr,backendName:"wasm",setupFunc:xie,kernelFunc:bie},zk;function wie(e){zk=e.wasm.cwrap(bl,null,["number","array","number","number","number","bool","number","number"])}var kie=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,s.dtype),c=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),h=t.dataIdMap.get(d.dataId).id;return zk(o,i,s.shape.length,Pn[s.dtype],r,a,c,h),[u,d]},Iie={kernelName:bl,backendName:"wasm",setupFunc:wie,kernelFunc:kie},Lk;function Sie(e){Lk=e.wasm.cwrap(vl,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function Cie(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,d,h,p]=r.shape,[f,m]=u!=null?u:[d,h],g=[c,f,m,p],A=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),y=t.makeOutput(g,r.dtype),x=t.dataIdMap.get(y.dataId).id,v=t.dataIdMap.get(r.dataId).id,S=t.dataIdMap.get(a.dataId).id,C=o==="nearest"?1:2,_;switch(i){case"constant":_=1;break;case"reflect":_=2;break;case"wrap":_=3;break;case"nearest":_=4;break;default:_=1;break}return Lk(v,S,a.shape[0]>1,c,f,m,p,h,d,A,r.shape.length-1,C,_,l,x),y}var Tie={kernelName:vl,backendName:"wasm",setupFunc:Sie,kernelFunc:Cie};function Nie(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),u=0;for(let p=0;p<i;p++)p!==a&&(l[u++]=r.shape[p]);let c=new Array(o),d=new Array(i).fill(0),h=r.shape.slice();h[a]=1;for(let p=0;p<c.length;p++)d[a]=p,c[p]=sd({inputs:{x:r},attrs:{begin:d,size:h},backend:n});return c.map(({dataId:p,dtype:f})=>({dataId:p,dtype:f,shape:l}))}var Eie={kernelName:wl,backendName:"wasm",kernelFunc:Nie};function Rie(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var _ie={kernelName:kl,backendName:"wasm",kernelFunc:Rie},Die=[Fse,Pse,Lse,qse,Zse,Qse,nre,ore,hre,pre,fre,Are,yre,vre,Ire,Sre,Cre,Ere,Dre,Ore,zre,Lre,Wre,Vre,Ure,Hre,qre,Xre,Zre,$se,Qre,nae,aae,lae,dae,pae,mae,Bse,yae,bae,wae,kae,Sae,Nae,Rae,$ae,Pae,Lae,Wae,Hae,jae,qae,Zae,Qae,noe,roe,ioe,uoe,doe,Ik,moe,yoe,voe,koe,Soe,Coe,Toe,sre,Roe,$oe,Poe,zoe,Moe,Woe,Hoe,qoe,Xoe,cre,Yoe,Qoe,tie,nie,sie,aie,lie,die,pie,gie,Aie,yie,vie,Iie,Tie,Hse,Eie,_ie];for(let e of Die)No(e);var Z2=Q();Z2.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Z2.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Z2.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var Bk=Sa(hS()),$ie='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',Fie=Sa(pS()),Wk=class extends $u{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Hd(this,wr())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let u=t;this.dataIdMap.set(e,{id:a,stringBytes:u,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=w.sizeFromShape(n),i=o*w.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:s,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let a=this.wasm.HEAPU8.slice(t,t+w.sizeFromShape(s)*w.bytesPerElement(n));return Mie(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function Oie(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function Vk(e,t,n){if(Pf!=null)return Pf;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),ad!=null&&ad[s]!=null?ad[s]:n+s}async function Pie(){let[e,t]=await Promise.all([Q().getAsync("WASM_HAS_SIMD_SUPPORT"),Q().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let u=$ie,c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?Vk(e,t,rd!=null?rd:l):l+i},Y2&&(r.instantiateWasm=Oie(Vk(e,t,rd!=null?rd:"")));let a=!1;r.onAbort=()=>{if(a||od)return;od=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&Pf==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+Bk.default.toString()],{type:"text/javascript"}),o=(0,Bk.default)(r)):o=(0,Fie.default)(r),o.then(i=>{a=!0,od=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})})})}function Mie(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var zie=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Pf=null,rd=null,ad={},od=!1,Y2=!1;function Lie(e,t=!1){if(yg("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),od)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Pf=e,Y2=t}function Bie(e,t=!1){if(od)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")rd=e;else{ad=e;let n=zie.filter(s=>ad[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Y2=t}var Wie="3.9.0",Vie=2;Dl("wasm",async()=>{let{wasm:e}=await Pie();return new Wk(e)},Vie);var Uie={tfjs:fS,"tfjs-core":mS,"tfjs-data":gS,"tfjs-layers":AS,"tfjs-converter":yS,"tfjs-backend-cpu":xS,"tfjs-backend-webgl":bS,"tfjs-backend-wasm":vS};var zn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Hie(){let e=zn.gl;!e||(zn.extensions=e.getSupportedExtensions())}function Uk(){if(!xg(zn.name)){try{zn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(zn.width,zn.height):document.createElement("canvas")}catch(e){ue("error: cannot create canvas:",e);return}try{zn.gl=zn.canvas.getContext("webgl2",zn.webGLattr)}catch(e){ue("error: cannot get WebGL2 context:",e);return}try{pf(2,zn.gl)}catch(e){ue("error: cannot set WebGL2 context:",e);return}try{let e=new wf(zn.gl);Dl(zn.name,()=>new uu(e),zn.priority)}catch(e){ue("error: cannot register WebGL backend:",e);return}try{Cl("webgl").forEach(t=>{let n={...t,backendName:zn.name};No(n)})}catch(e){ue("error: cannot update WebGL backend registration:",e);return}try{os.set("WEBGL_VERSION",2)}catch(e){ue("error: cannot set WebGL backend flags:",e);return}Hie(),ue("backend registered:",zn.name)}}function Hk(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s}}function ld(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function ud(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function cd(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return _e.cropAndResize(t,a,[0],n)}function Mf(e,t=1.5){let n=ud(e),s=ld(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,landmarks:e.landmarks}}function zf(e){let t=ud(e),n=ld(e),r=Math.max(...n)/2,a=[Math.round(t[0]-r),Math.round(t[1]-r)],o=[Math.round(t[0]+r),Math.round(t[1]+r)];return{startPoint:a,endPoint:o,landmarks:e.landmarks}}function J2(e){let t=e.map(a=>a[0]),n=e.map(a=>a[1]),s=[Math.min(...t),Math.min(...n)],r=[Math.max(...t),Math.max(...n)];return{startPoint:s,endPoint:r,landmarks:e}}var Gk=e=>({startPoint:Re(e,[0,0],[-1,2]),endPoint:Re(e,[0,2],[-1,2])});var Lf=[[1,0,0],[0,1,0],[0,0,1]];function Gie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function jk(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Gie(n)}function qk(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function ma(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function jie(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function Xk(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(ma(e[r],jie(t,a)))}return n}function Q2(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=qk(t[0],t[1]),o=Xk(a,r),i=qk(-t[0],-t[1]);return Xk(o,i)}function Kk(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-ma(t[0],n),-ma(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function Zk(e,t){return[ma(e,t[0]),ma(e,t[1])]}function Yk(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let s=0;s<t.strides.length;s++){let r=t.strides[s],a=Math.floor((e+r-1)/r),o=Math.floor((e+r-1)/r),i=t.anchors[s];for(let l=0;l<a;l++){let u=r*(l+.5);for(let c=0;c<o;c++){let d=r*(c+.5);for(let h=0;h<i;h++)n.push([d,u])}}}return n}var Jk=6;function qie(e,t,n){let s=Re(e,[0,1],[-1,2]),r=ae(s,t),a=Re(e,[0,3],[-1,2]),o=de(a,n),i=de(r,n),l=de(o,2),u=ge(i,l),c=ae(i,l),d=L(u,n),h=L(c,n);return Pl([d,h],1)}var Qk=class{constructor(t,n){this.model=t,this.anchorsData=Yk(t.inputs[0].shape[1]),this.anchors=Ms(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=n}async getBoundingBoxes(t,n){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[s,r,a]=H(()=>{let c=_e.resizeBilinear(t,[this.inputSize,this.inputSize]),d=ge(de(c,127.5),.5),h=this.model.execute(d),p;if(Array.isArray(h)){let A=h.sort((v,k)=>v.size-k.size),y=ft([A[0],A[2]],2),x=ft([A[1],A[3]],2),b=ft([x,y],1);p=lt(b,0)}else p=lt(h);let f=qie(p,this.anchors,[this.inputSize,this.inputSize]),m=Re(p,[0,0],[-1,1]),g=lt(Hn(m));return[p,f,g]});this.config=gn(this.config,n);let o=await _e.nonMaxSuppressionAsync(r,a,this.config.face.detector.maxDetected,this.config.face.detector.iouThreshold,this.config.face.detector.minConfidence),i=await o.array();K(o);let l=[],u=await a.data();for(let c=0;c<i.length;c++){let d=u[i[c]];if(d>this.config.face.detector.minConfidence){let h=Re(r,[i[c],0],[1,-1]),p=Gk(h);K(h);let f=this.anchorsData[i[c]],m=H(()=>U(lt(Re(s,[i[c],Jk-1],[1,-1])),[Jk,-1]));l.push({box:p,landmarks:m,anchor:f,confidence:d})}}return K(s),K(r),K(a),{boxes:l,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function e8(e){let t=await mt(gt(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new Qk(t,e);return!t||!t.modelUrl?ue("load model failed:",e.face.detector.modelPath):e.debug&&ue("load model:",t.modelUrl),n}var hr={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},ey=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],dd=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],ai=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var Xie=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Kie=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Zie=[33,133,362,263,1,78,308],qle=Xie.map(e=>dd[e]),Xle=Kie.map(e=>dd[e]),Kle=Zie.map(e=>dd[e]);var ty=hr.leftEyeLower0,ny=hr.rightEyeLower0,mu={leftBounds:[ty[0],ty[ty.length-1]],rightBounds:[ny[0],ny[ny.length-1]]},t8={count:468,mouth:13,symmetryLine:[13,hr.midwayBetweenEyes[0]]},Yie={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},gu={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function Bf(e,t,n,s){for(let r=0;r<ey.length;r++){let{key:a,indices:o}=ey[r],i=hr[`${n}${a}`];if(!s||s.includes(a))for(let l=0;l<o.length;l++){let u=o[l];e[i[l]]=[t[u][0],t[u][1],(t[u][2]+e[i[l]][2])/2]}}}var sy=class{constructor(t,n,s){var r,a;this.storedBoxes=[],this.boundingBoxDetector=t,this.meshDetector=n,this.irisModel=s,this.boxSize=((r=t==null?void 0:t.model)==null?void 0:r.inputs[0].shape[2])||0,this.meshSize=(n==null?void 0:n.inputs[0].shape[2])||((a=t==null?void 0:t.model)==null?void 0:a.inputs[0].shape[2]),this.irisSize=(s==null?void 0:s.inputs[0].shape[1])||0,this.irisEnlarge=2.3,this.skipped=0,this.detectedFaces=0}transformRawCoords(t,n,s,r){let a=ld({startPoint:n.startPoint,endPoint:n.endPoint}),o=t.map(d=>[a[0]/this.meshSize*(d[0]-this.meshSize/2),a[1]/this.meshSize*(d[1]-this.meshSize/2),d[2]]),i=s!==0?Q2(s,[0,0]):Lf,l=s!==0?o.map(d=>[...Zk(d,i),d[2]]):o,u=s!==0?Kk(r):Lf,c=[...ud({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(d=>[Math.round(d[0]+ma(c,u[0])),Math.round(d[1]+ma(c,u[1])),Math.round(d[2])])}getLeftToRightEyeDepthDifference(t){let n=t[mu.leftBounds[0]][2],s=t[mu.rightBounds[0]][2];return n-s}getEyeBox(t,n,s,r,a=!1){let o=zf(Mf(J2([t[s],t[r]]),this.irisEnlarge)),i=ld(o),l=_e.cropAndResize(n,[[o.startPoint[1]/this.meshSize,o.startPoint[0]/this.meshSize,o.endPoint[1]/this.meshSize,o.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);if(a&&os.flags.IS_BROWSER){let u=_e.flipLeftRight(l);K(l),l=u}return{box:o,boxSize:i,crop:l}}getEyeCoords(t,n,s,r=!1){let a=[];for(let o=0;o<gu.numCoordinates;o++){let i=t[o*3],l=t[o*3+1],u=t[o*3+2];a.push([(r?1-i/this.irisSize:i/this.irisSize)*s[0]+n.startPoint[0],l/this.irisSize*s[1]+n.startPoint[1],u])}return{rawCoords:a,iris:a.slice(gu.index)}}getAdjustedIrisCoords(t,n,s){let r=t[hr[`${s}EyeUpper0`][gu.upperCenter]][2],a=t[hr[`${s}EyeLower0`][gu.lowerCenter]][2],o=(r+a)/2;return n.map((i,l)=>{let u=o;return l===2?u=r:l===4&&(u=a),[i[0],i[1],u]})}correctFaceRotation(t,n,s){let[r,a]=n.landmarks.length>=t8.count?t8.symmetryLine:Yie.symmetryLine,o=jk(n.landmarks[r],n.landmarks[a]),i=ud({startPoint:n.startPoint,endPoint:n.endPoint}),l=[i[0]/s.shape[2],i[1]/s.shape[1]],u=_e.rotateWithOffset(s,o,0,l),c=Q2(-o,i),d=t.face.mesh.enabled?cd({startPoint:n.startPoint,endPoint:n.endPoint},u,[this.meshSize,this.meshSize]):cd({startPoint:n.startPoint,endPoint:n.endPoint},u,[this.boxSize,this.boxSize]),h=de(d,255);return K(d),K(u),[o,c,h]}async augmentIris(t,n){let{box:s,boxSize:r,crop:a}=this.getEyeBox(t,n,mu.leftBounds[0],mu.leftBounds[1],!0),{box:o,boxSize:i,crop:l}=this.getEyeBox(t,n,mu.rightBounds[0],mu.rightBounds[1]),u=ft([a,l]);K(a),K(l);let c=this.irisModel.predict(u);K(u);let d=await c.data();K(c);let h=d.slice(0,gu.numCoordinates*3),{rawCoords:p,iris:f}=this.getEyeCoords(h,s,r,!0),m=d.slice(gu.numCoordinates*3),{rawCoords:g,iris:A}=this.getEyeCoords(m,o,i),y=this.getLeftToRightEyeDepthDifference(t);Math.abs(y)<30?(Bf(t,p,"left",null),Bf(t,g,"right",null)):y<1?Bf(t,p,"left",["EyeUpper0","EyeLower0"]):Bf(t,g,"right",["EyeUpper0","EyeLower0"]);let x=this.getAdjustedIrisCoords(t,f,"left"),b=this.getAdjustedIrisCoords(t,A,"right");return t.concat(x).concat(b)}async predict(t,n){let s=!1,r;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.skipFrame)&&(r=await this.boundingBoxDetector.getBoundingBoxes(t,n),this.skipped=0),n.skipFrame&&this.skipped++,!n.skipFrame||r&&r.boxes&&(!n.face.mesh.enabled||r.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxDetected)){this.storedBoxes=[],this.detectedFaces=0;for(let i of r.boxes){let l=await i.box.startPoint.data(),u=await i.box.endPoint.data(),c=await i.landmarks.array();this.storedBoxes.push({startPoint:l,endPoint:u,landmarks:c,confidence:i.confidence})}this.storedBoxes.length>0&&(s=!0)}if(s){if(!r||!r.boxes||r.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i<this.storedBoxes.length;i++){let l=Hk({startPoint:this.storedBoxes[i].startPoint,endPoint:this.storedBoxes[i].endPoint},r.scaleFactor),u=Mf(l),c=zf(u),d=this.storedBoxes[i].landmarks,h=this.storedBoxes[i].confidence;this.storedBoxes[i]={...c,confidence:h,landmarks:d}}}r&&r.boxes&&r.boxes.forEach(i=>{K(i.box.startPoint),K(i.box.endPoint),K(i.landmarks)});let a=[],o=[];for(let i of this.storedBoxes){let l,u=0,c;if(n.face.detector.rotation&&n.face.mesh.enabled&&os.flags.IS_BROWSER)[u,c,l]=this.correctFaceRotation(n,i,t);else{c=Lf;let d=t.clone(),h=n.face.mesh.enabled?cd({startPoint:i.startPoint,endPoint:i.endPoint},d,[this.meshSize,this.meshSize]):cd({startPoint:i.startPoint,endPoint:i.endPoint},d,[this.boxSize,this.boxSize]);l=de(h,255),K(h),K(d)}if(!n.face.mesh.enabled)a.push({mesh:[],box:i,faceConfidence:null,boxConfidence:i.confidence,confidence:i.confidence,image:l});else{let[d,h,p]=this.meshDetector.execute(l);K(d);let f=(await h.data())[0];K(h);let m=U(p,[-1,3]),g=await m.array();if(K(p),K(m),f<n.face.detector.minConfidence)i.confidence=f,K(l);else{n.face.iris.enabled&&(g=await this.augmentIris(g,l));let A=this.transformRawCoords(g,i,u,c);i={...Mf(J2(A),1.5),confidence:i.confidence},n.face.detector.rotation&&n.face.mesh.enabled&&n.face.description.enabled&&os.flags.IS_BROWSER&&([u,c,l]=this.correctFaceRotation(n,i,t)),a.push({mesh:A,box:i,faceConfidence:f,boxConfidence:i.confidence,confidence:f,image:l}),i={...zf(i),confidence:i.confidence,faceConfidence:f}}}o.push(i)}return n.face.mesh.enabled&&(this.storedBoxes=o.filter(i=>i.confidence>n.face.detector.minConfidence)),this.detectedFaces=a.length,a}};var Dt=[null,null,null],ry;async function n8(e,t){let n=await ry.predict(e,t),s=[],r=0;for(let a of n||[]){if(!a||a.isDisposedInternal)continue;let o=a.mesh.map(c=>[c[0]/(e.shape[2]||0),c[1]/(e.shape[1]||0),c[2]/ry.meshSize]),i={};if(a.mesh&&a.mesh.length>0)for(let c of Object.keys(hr))i[c]=hr[c].map(d=>a.mesh[d]);let l=a.box?[Math.trunc(Math.max(0,a.box.startPoint[0])),Math.trunc(Math.max(0,a.box.startPoint[1])),Math.trunc(Math.min(e.shape[2]||0,a.box.endPoint[0])-Math.max(0,a.box.startPoint[0])),Math.trunc(Math.min(e.shape[1]||0,a.box.endPoint[1])-Math.max(0,a.box.startPoint[1]))]:[0,0,0,0],u=a.box?[a.box.startPoint[0]/(e.shape[2]||0),a.box.startPoint[1]/(e.shape[1]||0),(a.box.endPoint[0]-a.box.startPoint[0])/(e.shape[2]||0),(a.box.endPoint[1]-a.box.startPoint[1])/(e.shape[1]||0)]:[0,0,0,0];s.push({id:r++,score:Math.round(100*a.faceConfidence||100*a.boxConfidence||0)/100,boxScore:Math.round(100*a.boxConfidence)/100,faceScore:Math.round(100*a.faceConfidence)/100,box:l,boxRaw:u,mesh:a.mesh,meshRaw:o,annotations:i,tensor:a.image}),a.coords&&K(a.coords)}return s}async function ay(e){return!Dt[0]&&e.face.enabled||!Dt[1]&&e.face.mesh.enabled||!Dt[2]&&e.face.iris.enabled?(Dt=await Promise.all([!Dt[0]&&e.face.enabled?e8(e):null,!Dt[1]&&e.face.mesh.enabled?mt(gt(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Dt[2]&&e.face.iris.enabled?mt(gt(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!Dt[1]||!Dt[1].modelUrl?ue("load model failed:",e.face.mesh.modelPath):e.debug&&ue("load model:",Dt[1].modelUrl)),e.face.iris.enabled&&(!Dt[2]||!Dt[2].modelUrl?ue("load model failed:",e.face.iris.modelPath):e.debug&&ue("load model:",Dt[2].modelUrl))):e.debug&&(Dt[0]&&ue("cached model:",Dt[0].model.modelUrl),Dt[1]&&ue("cached model:",Dt[1].modelUrl),Dt[2]&&ue("cached model:",Dt[2].modelUrl)),ry=new sy(Dt[0],Dt[1],Dt[2]),Dt}var s8=ai,r8=dd;var qs,Wf=[],a8=0,oy=Number.MAX_SAFE_INTEGER;async function iy(e){let t=gt(e.modelBasePath,e.face.description.modelPath);return qs?e.debug&&ue("cached model:",t):(qs=await mt(t),qs?e.debug&&ue("load model:",t):ue("load model failed:",e.face.description.modelPath)),qs}function ly(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let s=5*e.map((a,o)=>Math.abs(e[o]-t[o])**n).reduce((a,o)=>a+o,0)**(1/n);return Math.max(0,100-s)/100}function o8(e,t,n=0){let s={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return s;for(let r of t)if(r.embedding&&r.name){let a=ly(e,r.embedding);a>n&&a>s.similarity&&(s={...r,similarity:a})}return s}function uy(e){return H(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Ge))return null;let s=[[.05,.15,.85,.85]];if(!qs.inputs[0].shape)return null;let r=n.shape.length===3?_e.cropAndResize(Ot(n,0),s,[0],[qs.inputs[0].shape[2],qs.inputs[0].shape[1]]):_e.cropAndResize(n,s,[0],[qs.inputs[0].shape[2],qs.inputs[0].shape[1]]);return L(r,255)})}async function cy(e,t,n,s){var r,a;return qs?oy<t.face.description.skipFrames&&t.skipFrame&&a8===s&&((r=Wf[n])==null?void 0:r.age)&&((a=Wf[n])==null?void 0:a.age)>0?(oy++,Wf[n]):(oy=0,new Promise(async o=>{let i=uy(e),l,u={age:0,gender:"unknown",genderScore:0,descriptor:[]};if(t.face.description.enabled&&(l=await qs.predict(i)),K(i),l){let c=await l.find(A=>A.shape[1]===1).data(),d=Math.trunc(200*Math.abs(c[0]-.5))/100;d>t.face.description.minConfidence&&(u.gender=c[0]<=.5?"female":"male",u.genderScore=Math.min(.99,d));let p=(await er(l.find(A=>A.shape[1]===100),1).data())[0],f=await l.find(A=>A.shape[1]===100).data();u.age=Math.round(f[p-1]>f[p+1]?10*p-100*f[p-1]:10*p+100*f[p+1])/10;let g=await l.find(A=>A.shape[1]===1024).data();u.descriptor=[...g],l.forEach(A=>K(A))}Wf[n]=u,a8=s,o(u)})):null}var Jie=["angry","disgust","fear","happy","sad","surprise","neutral"],Xs,Vf=[],i8=0,dy=Number.MAX_SAFE_INTEGER,hy=[.2989,.587,.114];async function py(e){return Xs?e.debug&&ue("cached model:",Xs.modelUrl):(Xs=await mt(gt(e.modelBasePath,e.face.emotion.modelPath)),!Xs||!Xs.modelUrl?ue("load model failed:",e.face.emotion.modelPath):e.debug&&ue("load model:",Xs.modelUrl)),Xs}async function fy(e,t,n,s){return Xs?dy<t.face.emotion.skipFrames&&t.skipFrame&&i8===s&&Vf[n]&&Vf[n].length>0?(dy++,Vf[n]):(dy=0,new Promise(async r=>{let a=_e.resizeBilinear(e,[Xs.inputs[0].shape[2],Xs.inputs[0].shape[1]],!1),[o,i,l]=an(a,3,3);K(a);let u=L(o,hy[0]),c=L(i,hy[1]),d=L(l,hy[2]);K(o),K(i),K(l);let h=Uh([u,c,d]);K(u),K(c),K(d);let p=H(()=>L(ge(h,.5),2));K(h);let f=[];if(t.face.emotion.enabled){let m=await Xs.predict(p),g=await m.data();K(m);for(let A=0;A<g.length;A++)g[A]>t.face.emotion.minConfidence&&f.push({score:Math.min(.99,Math.trunc(100*g[A])/100),emotion:Jie[A]});f.sort((A,y)=>y.score-A.score)}K(p),Vf[n]=f,i8=s,r(f)})):null}var hd=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],l8=hd.length,pd=hd.reduce((e,t,n)=>(e[t]=n,e),{}),Qie=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],ele=Qie.map(([e,t])=>[pd[e],pd[t]]),u8=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function c8(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function d8(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(u,c)=>({id:c,score:u.score,boxRaw:[u.box[0]/r,u.box[1]/s,u.box[2]/r,u.box[3]/s],box:[Math.trunc(u.box[0]*o),Math.trunc(u.box[1]*a),Math.trunc(u.box[2]*o),Math.trunc(u.box[3]*a)],keypoints:u.keypoints.map(({score:d,part:h,position:p})=>({score:d,part:h,position:[Math.trunc(p.x*o),Math.trunc(p.y*a)],positionRaw:[p.x/s,p.y/s]}))});return e.map((u,c)=>i(u,c))}var my=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let s=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=s}};function gy(e,t,n,s){return{y:s.get(e,t,n),x:s.get(e,t,n+l8)}}function Ay(e,t,n){let{heatmapY:s,heatmapX:r,id:a}=e,{y:o,x:i}=gy(s,r,a,n);return{x:e.heatmapX*t+i,y:e.heatmapY*t+o}}function yy(e,t,n){return e<t?t:e>n?n:e}function h8(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function xy(e,t){return{x:e.x+t.x,y:e.y+t.y}}var Uf=1,Au=16,tle=50**2;function p8(e,t,n,s,r,a,o=2){let i=A=>({y:a.get(A.y,A.x,e),x:a.get(A.y,A.x,a.shape[2]/2+e)}),l=(A,y,x)=>({y:yy(Math.round(A.y/Au),0,y-1),x:yy(Math.round(A.x/Au),0,x-1)}),[u,c]=s.shape,d=l(t.position,u,c),h=i(d),f=xy(t.position,h);for(let A=0;A<o;A++){let y=l(f,u,c),x=gy(y.y,y.x,n,r);f=xy({x:y.x*Au,y:y.y*Au},{x:x.x,y:x.y})}let m=l(f,u,c),g=s.get(m.y,m.x,n);return{position:f,part:hd[n],score:g}}function nle(e,t,n,s,r){let a=u8.map(([h,p])=>[pd[h],pd[p]]),o=a.map(([,h])=>h),i=a.map(([h])=>h),l=t.shape[2],u=o.length,c=new Array(l),d=Ay(e.part,Au,n);c[e.part.id]={score:e.score,part:hd[e.part.id],position:d};for(let h=u-1;h>=0;--h){let p=o[h],f=i[h];c[p]&&!c[f]&&(c[f]=p8(h,c[p],f,t,n,r))}for(let h=0;h<u;++h){let p=i[h],f=o[h];c[p]&&!c[f]&&(c[f]=p8(h,c[p],f,t,n,s))}return c}function sle(e,t,n,s,r){let[a,o]=r.shape,i=!0,l=Math.max(n-Uf,0),u=Math.min(n+Uf+1,a);for(let c=l;c<u;++c){let d=Math.max(s-Uf,0),h=Math.min(s+Uf+1,o);for(let p=d;p<h;++p)if(r.get(c,p,e)>t){i=!1;break}if(!i)break}return i}function rle(e,t){let[n,s,r]=t.shape,a=new my(n*s*r,({score:o})=>o);for(let o=0;o<n;++o)for(let i=0;i<s;++i)for(let l=0;l<r;++l){let u=t.get(o,i,l);u<e||sle(l,u,o,i,t)&&a.enqueue({score:u,part:{heatmapY:o,heatmapX:i,id:l}})}return a}function f8(e,{x:t,y:n},s){return e.some(({keypoints:r})=>{var o;let a=(o=r[s])==null?void 0:o.position;return a?h8(n,t,a.y,a.x)<=tle:!1})}function ale(e,t){return t.reduce((s,{position:r,score:a},o)=>(f8(e,r,o)||(s+=a),s),0)/t.length}function m8(e,t,n,s,r,a){let o=[],i=rle(a,t);for(;o.length<r&&!i.empty();){let l=i.dequeue(),u=Ay(l.part,Au,e);if(f8(o,u,l.part.id))continue;let c=nle(l,t,e,n,s);c=c.filter(p=>p.score>a);let d=ale(o,c),h=c8(c);d>a&&o.push({keypoints:c,box:h,score:Math.round(100*d)/100})}return o}var Jn,ole=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function by(e,t){let n=H(()=>{if(!Jn.inputs[0].shape)return[];let o=_e.resizeBilinear(e,[Jn.inputs[0].shape[2],Jn.inputs[0].shape[1]]),i=ge(de(ce(o,"float32"),127.5),1),u=Jn.execute(i,ole).map(c=>lt(c,[0]));return u[1]=u[1].sigmoid(),u}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)K(o);let r=await m8(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return Jn.inputs[0].shape?d8(r,[e.shape[1],e.shape[2]],[Jn.inputs[0].shape[2],Jn.inputs[0].shape[1]]):[]}async function vy(e){return Jn?e.debug&&ue("cached model:",Jn.modelUrl):(Jn=await mt(gt(e.modelBasePath,e.body.modelPath)),!Jn||!Jn.modelUrl?ue("load model failed:",e.body.modelPath):e.debug&&ue("load model:",Jn.modelUrl)),Jn}function Hf(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function fd(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function g8(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return _e.cropAndResize(t,a,[0],n)}function A8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function Gf(e,t=1.5){let n=fd(e),s=Hf(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function jf(e){let t=fd(e),n=Hf(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}var y8=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var wy=class{constructor(t){this.model=t,this.anchors=y8.map(n=>[n.x,n.y]),this.anchorsTensor=Ms(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=Mt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Mt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return H(()=>{let n=Re(t,[0,0],[-1,2]),s=Re(t,[0,2],[-1,2]),r=ae(de(n,this.inputSizeTensor),this.anchorsTensor),a=de(s,this.doubleInputSizeTensor),o=L(ge(r,a),this.inputSizeTensor),i=L(ae(r,a),this.inputSizeTensor);return Pl([o,i],1)})}normalizeLandmarks(t,n){return H(()=>{let s=ae(de(U(t,[-1,7,2]),this.inputSizeTensor),this.anchors[n]);return L(s,this.inputSizeTensor)})}async getBoxes(t,n){let s=this.model.predict(t),r=lt(s);K(s);let a=H(()=>lt(Hn(Re(r,[0,0],[-1,1])))),o=await a.data(),i=Re(r,[0,1],[-1,4]),l=this.normalizeBoxes(i);K(i);let u=await _e.nonMaxSuppressionAsync(l,o,n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence),c=await u.array();K(a),K(u);let d=[];for(let h of c)if(o[h]>=n.hand.minConfidence){let p=Re(l,[h,0],[1,-1]),f=Re(r,[h,5],[1,14]),m=H(()=>U(this.normalizeLandmarks(f,h),[-1,2]));K(f),d.push({box:p,palmLandmarks:m,confidence:o[h]})}return K(r),K(l),d}async estimateHandBounds(t,n){let s=t.shape[1],r=t.shape[2],a=H(()=>ge(de(_e.resizeBilinear(t,[this.inputSize,this.inputSize]),127.5),1)),o=await this.getBoxes(a,n);K(a);let i=[];if(!o||o.length===0)return i;for(let l of o){let u=await l.box.data(),c=u.slice(0,2),d=u.slice(2,4),h=await l.palmLandmarks.array();K(l.box),K(l.palmLandmarks),i.push(A8({startPoint:c,endPoint:d,palmLandmarks:h,confidence:l.confidence},[r/this.inputSize,s/this.inputSize]))}return i}};function ile(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function x8(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return ile(n)}var b8=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function ga(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function lle(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function v8(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(ga(e[r],lle(t,a)))}return n}function ky(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=b8(t[0],t[1]),o=v8(a,r),i=b8(-t[0],-t[1]);return v8(o,i)}function w8(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-ga(t[0],n),-ga(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function Iy(e,t){return[ga(e,t[0]),ga(e,t[1])]}var ule=5,k8=1.65,I8=[0,5,9,13,17,1,2],cle=0,dle=2,Sy=class{constructor(t,n){var s;this.handDetector=t,this.handPoseModel=n,this.inputSize=(s=this.handPoseModel)==null?void 0:s.inputs[0].shape[2],this.storedBoxes=[],this.skipped=0,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(o=>o[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>Iy([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return Gf(jf(r),ule)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=Gf(jf(n),k8);s.palmLandmarks=[];for(let r=0;r<I8.length;r++)s.palmLandmarks.push(t[I8[r]].slice(0,2));return s}transformRawCoords(t,n,s,r){let a=Hf(n),o=[a[0]/this.inputSize,a[1]/this.inputSize,(a[0]+a[1])/this.inputSize/2],i=t.map(p=>[o[0]*(p[0]-this.inputSize/2),o[1]*(p[1]-this.inputSize/2),o[2]*p[2]]),l=ky(s,[0,0]),u=i.map(p=>[...Iy(p,l),p[2]]),c=w8(r),d=[...fd(n),1],h=[ga(d,c[0]),ga(d,c[1])];return u.map(p=>[Math.trunc(p[0]+h[0]),Math.trunc(p[1]+h[1]),Math.trunc(p[2])])}async estimateHands(t,n){let s=!1,r;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.skipFrame)&&(r=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.skipFrame&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let a=[];for(let o=0;o<this.storedBoxes.length;o++){let i=this.storedBoxes[o];if(!!i)if(n.hand.landmarks){let l=n.hand.rotation?x8(i.palmLandmarks[cle],i.palmLandmarks[dle]):0,u=fd(i),c=[u[0]/t.shape[2],u[1]/t.shape[1]],d=n.hand.rotation&&os.flags.IS_BROWSER?_e.rotateWithOffset(t,l,0,c):t.clone(),h=ky(-l,u),p=s?this.getBoxForPalmLandmarks(i.palmLandmarks,h):i,f=g8(p,d,[this.inputSize,this.inputSize]),m=de(f,255);K(f),K(d);let[g,A]=await this.handPoseModel.predict(m);K(m);let y=(await g.data())[0];if(K(g),y>=n.hand.minConfidence){let x=U(A,[-1,3]),b=await x.array();K(A),K(x);let v=this.transformRawCoords(b,p,l,h),k=this.getBoxForHandLandmarks(v);this.storedBoxes[o]={...k,confidence:y};let S={landmarks:v,confidence:y,box:{topLeft:k.startPoint,bottomRight:k.endPoint}};a.push(S)}else this.storedBoxes[o]=null;K(A)}else{let l=Gf(jf(i),k8),u={confidence:i.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};a.push(u)}}return this.storedBoxes=this.storedBoxes.filter(o=>o!==null),this.detectedHands=a.length,a}};var Ue={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>Ue.nameMapping[e],getPoints:e=>Ue.pointsMapping[e]},Tn={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>Tn.nameMapping[e]},Be={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>Be.nameMapping[e]};var oi={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function S8(e,t,n,s){let r=(t-s)/(e-n),a=Math.atan(r)*180/Math.PI;return a<=0?a=-a:a>0&&(a=180-a),a}function C8(e,t){let n=S8(e[0],e[1],t[0],t[1]);if(e.length===2)return n;let s=S8(e[1],e[2],t[1],t[2]);return[n,s]}function T8(e,t=1){let n=0,s=0,r=0;return e>=75&&e<=105?n=1*t:e>=25&&e<=155?s=1*t:r=1*t,[n,s,r]}function hle(e,t,n){let s=e[0]-t[0],r=e[0]-n[0],a=t[0]-n[0],o=e[1]-t[1],i=e[1]-n[1],l=t[1]-n[1],u=e[2]-t[2],c=e[2]-n[2],d=t[2]-n[2],h=Math.sqrt(s*s+o*o+u*u),p=Math.sqrt(r*r+i*i+c*c),f=Math.sqrt(a*a+l*l+d*d),m=(f*f+h*h-p*p)/(2*f*h);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let A;return g>oi.NO_CURL_START_LIMIT?A=Tn.none:g>oi.HALF_CURL_START_LIMIT?A=Tn.half:A=Tn.full,A}function N8(e,t,n,s){let r;return s===Math.abs(e)?e>0?r=Be.horizontalLeft:r=Be.horizontalRight:s===Math.abs(t)?t>0?r=Be.horizontalLeft:r=Be.horizontalRight:n>0?r=Be.horizontalLeft:r=Be.horizontalRight,r}function E8(e,t,n,s){let r;return s===Math.abs(e)?e<0?r=Be.verticalDown:r=Be.verticalUp:s===Math.abs(t)?t<0?r=Be.verticalDown:r=Be.verticalUp:n<0?r=Be.verticalDown:r=Be.verticalUp,r}function ple(e,t,n,s,r,a,o,i){let l,u=E8(e,t,n,s),c=N8(r,a,o,i);return u===Be.verticalUp?c===Be.horizontalLeft?l=Be.diagonalUpLeft:l=Be.diagonalUpRight:c===Be.horizontalLeft?l=Be.diagonalDownLeft:l=Be.diagonalDownRight,l}function fle(e,t,n,s){let r=e[0]-t[0],a=e[0]-n[0],o=t[0]-n[0],i=e[1]-t[1],l=e[1]-n[1],u=t[1]-n[1],c=Math.max(Math.abs(r),Math.abs(a),Math.abs(o)),d=Math.max(Math.abs(i),Math.abs(l),Math.abs(u)),h=0,p=0,f=0,m=d/(c+1e-5);m>1.5?h+=oi.DISTANCE_VOTE_POWER:m>.66?p+=oi.DISTANCE_VOTE_POWER:f+=oi.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+i*i),A=Math.sqrt(a*a+l*l),y=Math.sqrt(o*o+u*u),x=Math.max(g,A,y),b=e[0],v=e[1],k=n[0],S=n[1];x===g?(k=n[0],S=n[1]):x===y&&(b=t[0],v=t[1]);let O=C8([b,v],[k,S]),E=T8(O,oi.TOTAL_ANGLE_VOTE_POWER);h+=E[0],p+=E[1],f+=E[2];for(let T of s){let P=T8(T,oi.SINGLE_ANGLE_VOTE_POWER);h+=P[0],p+=P[1],f+=P[2]}let R;return h===Math.max(h,p,f)?R=E8(l,i,u,d):f===Math.max(p,f)?R=N8(a,r,o,c):R=ple(l,i,u,d,a,r,o,c),R}function Cy(e){let t=[],n=[];for(let a of Ue.all){let o=Ue.getPoints(a),i=[],l=[];for(let u of o){let c=e[u[0]],d=e[u[1]],h=C8(c,d),p=h[0],f=h[1];i.push(p),l.push(f)}t.push(i),n.push(l)}let s=[],r=[];for(let a of Ue.all){let o=a===Ue.thumb?1:0,i=Ue.getPoints(a),l=e[i[o][0]],u=e[i[o+1][1]],c=e[i[3][1]],d=hle(l,u,c),h=fle(l,u,c,t[a].slice(o));s[a]=d,r[a]=h}return{curls:s,directions:r}}var md=class{constructor(t){this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}addCurl(t,n,s){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([n,s])}addDirection(t,n,s){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([n,s])}setWeight(t,n){this.weights[t]=n;let s=this.weights.reduce((r,a)=>r+a,0);this.weightsRelative=this.weights.map(r=>r*5/s)}matchAgainst(t,n){let s=0;for(let r in t){let a=t[r],o=this.curls[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}for(let r in n){let a=n[r],o=this.directions[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}return s/10}};var Aa=new md("thumbs up");Aa.addCurl(Ue.thumb,Tn.none,1);Aa.addDirection(Ue.thumb,Be.verticalUp,1);Aa.addDirection(Ue.thumb,Be.diagonalUpLeft,.25);Aa.addDirection(Ue.thumb,Be.diagonalUpRight,.25);for(let e of[Ue.index,Ue.middle,Ue.ring,Ue.pinky])Aa.addCurl(e,Tn.full,1),Aa.addDirection(e,Be.horizontalLeft,1),Aa.addDirection(e,Be.horizontalRight,1);var Bt=new md("victory");Bt.addCurl(Ue.thumb,Tn.half,.5);Bt.addCurl(Ue.thumb,Tn.none,.5);Bt.addDirection(Ue.thumb,Be.verticalUp,1);Bt.addDirection(Ue.thumb,Be.diagonalUpLeft,1);Bt.addCurl(Ue.index,Tn.none,1);Bt.addDirection(Ue.index,Be.verticalUp,.75);Bt.addDirection(Ue.index,Be.diagonalUpLeft,1);Bt.addCurl(Ue.middle,Tn.none,1);Bt.addDirection(Ue.middle,Be.verticalUp,1);Bt.addDirection(Ue.middle,Be.diagonalUpLeft,.75);Bt.addCurl(Ue.ring,Tn.full,1);Bt.addDirection(Ue.ring,Be.verticalUp,.2);Bt.addDirection(Ue.ring,Be.diagonalUpLeft,1);Bt.addDirection(Ue.ring,Be.horizontalLeft,.2);Bt.addCurl(Ue.pinky,Tn.full,1);Bt.addDirection(Ue.pinky,Be.verticalUp,.2);Bt.addDirection(Ue.pinky,Be.diagonalUpLeft,1);Bt.addDirection(Ue.pinky,Be.horizontalLeft,.2);Bt.setWeight(Ue.index,2);Bt.setWeight(Ue.middle,2);var R8=[Aa,Bt];var mle=.7;function _8(e){let t=Cy(e),n={};for(let s of Ue.all)n[Ue.getName(s)]={curl:Tn.getName(t.curls[s]),direction:Be.getName(t.directions[s])};return n}function D8(e){let t=Cy(e),n=[];for(let s of R8){let r=s.matchAgainst(t.curls,t.directions);r>=mle&&n.push({name:s.name,confidence:r})}return n}var $8={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},ya,xa,F8;async function Ty(e,t){let n=await F8.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;r<n.length;r++){let a={};if(n[r].landmarks)for(let c of Object.keys($8))a[c]=$8[c].map(d=>n[r].landmarks[d]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let c of o)c[0]<i[0]&&(i[0]=c[0]),c[1]<i[1]&&(i[1]=c[1]),c[0]>i[2]&&(i[2]=c[0]),c[1]>i[3]&&(i[3]=c[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];let u=_8(o);s.push({id:r,score:Math.round(100*n[r].confidence)/100,box:i,boxRaw:l,keypoints:o,annotations:a,landmarks:u})}return s}async function Ny(e){!ya||!xa?([ya,xa]=await Promise.all([e.hand.enabled?mt(gt(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?mt(gt(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!ya||!ya.modelUrl?ue("load model failed:",e.hand.detector.modelPath):e.debug&&ue("load model:",ya.modelUrl),!xa||!xa.modelUrl?ue("load model failed:",e.hand.skeleton.modelPath):e.debug&&ue("load model:",xa.modelUrl))):(e.debug&&ue("cached model:",ya.modelUrl),e.debug&&ue("cached model:",xa.modelUrl));let t=new wy(ya);return F8=new Sy(t,xa),[ya,xa]}var O8=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],P8=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var Ln;async function qf(e){return Ln?e.debug&&ue("cached model:",Ln.modelUrl):(Ln=await mt(gt(e.modelBasePath,e.body.modelPath)),Ln.width=parseInt(Ln.signature.inputs["input_1:0"].tensorShape.dim[2].size),Ln.height=parseInt(Ln.signature.inputs["input_1:0"].tensorShape.dim[1].size),!Ln||!Ln.modelUrl?ue("load model failed:",e.body.modelPath):e.debug&&ue("load model:",Ln.modelUrl)),Ln}async function Ey(e,t){if(!Ln)return[];if(!t.body.enabled)return[];let n={width:e.shape[2]||0,height:e.shape[1]||0},s=_e.resizeBilinear(e,[Ln.width,Ln.height],!1),r=de(s,[255]);K(s);let a=await Ln.predict(r),o=a.find(g=>g.size===195||g.size===155),i=await(o==null?void 0:o.data())||[];a.forEach(g=>K(g)),K(r);let l=[],u=(i==null?void 0:i.length)===195?O8:P8,c=5;for(let g=0;g<i.length/c;g++)l.push({id:g,part:u[g],position:[Math.trunc(n.width*i[c*g+0]/255),Math.trunc(n.height*i[c*g+1]/255),Math.trunc(i[c*g+2])+0],positionRaw:[i[c*g+0]/255,i[c*g+1]/255,i[c*g+2]+0],score:(100-Math.trunc(100/(1+Math.exp(i[c*g+3]))))/100,presence:(100-Math.trunc(100/(1+Math.exp(i[c*g+4]))))/100});let d=l.map(g=>g.position[0]),h=l.map(g=>g.position[1]),p=[Math.min(...d),Math.min(...h),Math.max(...d)-Math.min(...d),Math.max(...h)-Math.min(...d)],f=[0,0,0,0],m=l.reduce((g,A)=>A.score>g?A.score:g,0);return[{id:0,score:m,box:p,boxRaw:f,keypoints:l}]}var Bn,pr=[],Ry=[0,0,0,0],_y=[0,0,0,0],Xf=0,Dy=Number.MAX_SAFE_INTEGER,gle=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function M8(e){return Bn?e.debug&&ue("cached model:",Bn.modelUrl):(Bn=await mt(gt(e.modelBasePath,e.body.modelPath)),!Bn||!Bn.modelUrl?ue("load model failed:",e.body.modelPath):e.debug&&ue("load model:",Bn.modelUrl)),Bn}function Ale(e,t){let[n,s]=e.shape;return H(()=>{let r=(i,l)=>ge(i,L(de(i,Ie(l,"int32")),Ie(l,"int32"))),a=U(e,[s*n]),o=hs(a,0).dataSync()[0];if(o>t){let i=er(a,0),l=r(i,n).dataSync()[0],u=de(i,Ie(n,"int32")).dataSync()[0];return[l,u,o]}return[0,0,o]})}async function $y(e,t){return Dy<t.body.skipFrames&&t.skipFrame&&Object.keys(pr).length>0?(Dy++,[{id:0,score:Xf,box:Ry,boxRaw:_y,keypoints:pr}]):(Dy=0,new Promise(async n=>{let s=H(()=>{if(!Bn.inputs[0].shape)return null;let u=_e.resizeBilinear(e,[Bn.inputs[0].shape[2],Bn.inputs[0].shape[1]],!1);return L(u,2).sub(1)}),r;if(t.body.enabled&&(r=await Bn.predict(s)),K(s),r){pr.length=0;let u=r.squeeze();K(r);let c=u.unstack(2);K(u);for(let d=0;d<c.length;d++){let[h,p,f]=Ale(c[d],t.body.minConfidence);Xf>t.body.minConfidence&&pr.push({score:Math.round(100*f)/100,part:gle[d],positionRaw:[h/Bn.inputs[0].shape[2],p/Bn.inputs[0].shape[1]],position:[Math.round(e.shape[2]*h/Bn.inputs[0].shape[2]),Math.round(e.shape[1]*p/Bn.inputs[0].shape[1])]})}c.forEach(d=>K(d))}Xf=pr.reduce((u,c)=>c.score>u?c.score:u,0);let a=pr.map(u=>u.position[0]),o=pr.map(u=>u.position[1]);Ry=[Math.min(...a),Math.min(...o),Math.max(...a)-Math.min(...a),Math.max(...o)-Math.min(...o)];let i=pr.map(u=>u.positionRaw[0]),l=pr.map(u=>u.positionRaw[1]);_y=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)],n([{id:0,score:Xf,box:Ry,boxRaw:_y,keypoints:pr}])}))}var fr,vs=[],Fy=[0,0,0,0],Dr=[0,0,0,0],$r=0,Oy=Number.MAX_SAFE_INTEGER,z8=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"];async function Py(e){return fr?e.debug&&ue("cached model:",fr.modelUrl):(fr=await mt(gt(e.modelBasePath,e.body.modelPath)),!fr||!fr.modelUrl?ue("load model failed:",e.body.modelPath):e.debug&&ue("load model:",fr.modelUrl)),fr}async function yle(e,t,n){vs.length=0;let s=e[0][0];for(let u=0;u<s.length;u++)$r=s[u][2],$r>t.body.minConfidence&&vs.push({score:Math.round(100*$r)/100,part:z8[u],positionRaw:[s[u][1],s[u][0]],position:[Math.round((n.shape[2]||0)*s[u][1]),Math.round((n.shape[1]||0)*s[u][0])]});$r=vs.reduce((u,c)=>c.score>u?c.score:u,0);let r=vs.map(u=>u.position[0]),a=vs.map(u=>u.position[1]);Fy=[Math.min(...r),Math.min(...a),Math.max(...r)-Math.min(...r),Math.max(...a)-Math.min(...a)];let o=vs.map(u=>u.positionRaw[0]),i=vs.map(u=>u.positionRaw[1]);Dr=[Math.min(...o),Math.min(...i),Math.max(...o)-Math.min(...o),Math.max(...i)-Math.min(...i)];let l=[];return l.push({id:0,score:$r,box:Fy,boxRaw:Dr,keypoints:vs}),l}async function xle(e,t,n){let s=[];for(let r=0;r<e[0].length;r++){let a=e[0][r];if($r=Math.round(100*a[51+4])/100,!($r<t.body.minConfidence)){vs.length=0;for(let o=0;o<17;o++){let i=Math.round(100*a[3*o+2])/100;i>t.body.minConfidence&&vs.push({part:z8[o],score:i,positionRaw:[a[3*o+1],a[3*o+0]],position:[Math.trunc(a[3*o+1]*(n.shape[2]||0)),Math.trunc(a[3*o+0]*(n.shape[1]||0))]})}Dr=[a[51+1],a[51+0],a[51+3]-a[51+1],a[51+2]-a[51+0]],s.push({id:r,score:$r,boxRaw:Dr,box:[Math.trunc(Dr[0]*(n.shape[2]||0)),Math.trunc(Dr[1]*(n.shape[1]||0)),Math.trunc(Dr[2]*(n.shape[2]||0)),Math.trunc(Dr[3]*(n.shape[1]||0))],keypoints:vs})}}return s}async function My(e,t){return Oy<t.body.skipFrames&&t.skipFrame&&Object.keys(vs).length>0?(Oy++,[{id:0,score:$r,box:Fy,boxRaw:Dr,keypoints:vs}]):(Oy=0,new Promise(async n=>{let s=H(()=>{if(!fr.inputs[0].shape)return null;let i=fr.inputs[0].shape[2];i===-1&&(i=256);let l=_e.resizeBilinear(e,[i,i],!1);return ce(l,"int32")}),r;t.body.enabled&&(r=await fr.predict(s)),K(s),r||n([]);let a=await r.array(),o;r.shape[2]===17?o=await yle(a,t,e):r.shape[2]===56&&(o=await xle(a,t,e)),K(r),n(o)}))}var yu=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Qn,zy=[],Ly=Number.MAX_SAFE_INTEGER,Kf=2.5;async function By(e){if(Qn)e.debug&&ue("cached model:",Qn.modelUrl);else{Qn=await mt(gt(e.modelBasePath,e.object.modelPath));let t=Object.values(Qn.modelSignature.inputs);if(Qn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!Qn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!Qn||!Qn.modelUrl?ue("load model failed:",e.object.modelPath):e.debug&&ue("load model:",Qn.modelUrl)}return Qn}async function ble(e,t,n,s){let r=0,a=[];for(let u of[1,2,4])H(async()=>{var g,A;let c=u*13,d=(g=e.find(y=>y.shape[1]===c**2&&y.shape[2]===yu.length))==null?void 0:g.squeeze(),h=(A=e.find(y=>y.shape[1]===c**2&&y.shape[2]<yu.length))==null?void 0:A.squeeze(),f=await h.reshape([-1,4,h.shape[1]/4]).argMax(2).array(),m=await d.array();for(let y=0;y<d.shape[0];y++)for(let x=0;x<d.shape[1];x++){let b=m[y][x];if(b>s.object.minConfidence&&x!==61){let v=(.5+Math.trunc(y%c))/c,k=(.5+Math.trunc(y/c))/c,S=f[y].map(V=>V*(c/u/t)),[C,_]=[v-Kf/u*S[0],k-Kf/u*S[1]],[O,E]=[v+Kf/u*S[2]-C,k+Kf/u*S[3]-_],R=[C,_,O,E];R=R.map(V=>Math.max(0,Math.min(V,1)));let T=[R[0]*n[0],R[1]*n[1],R[2]*n[0],R[3]*n[1]],P={id:r++,score:Math.round(100*b)/100,class:x+1,label:yu[x].label,box:T.map(V=>Math.trunc(V)),boxRaw:R};a.push(P)}}});e.forEach(u=>K(u));let o=a.map(u=>[u.boxRaw[1],u.boxRaw[0],u.boxRaw[3],u.boxRaw[2]]),i=a.map(u=>u.score),l=[];if(o&&o.length>0){let u=await _e.nonMaxSuppressionAsync(o,i,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);l=await u.data(),K(u)}return a=a.filter((u,c)=>l.includes(c)).sort((u,c)=>c.score-u.score),a}async function Wy(e,t){return Ly<t.object.skipFrames&&t.skipFrame&&zy.length>0?(Ly++,zy):(Ly=0,new Promise(async n=>{let s=[e.shape[2],e.shape[1]],r=_e.resizeBilinear(e,[Qn.inputSize,Qn.inputSize],!1),a=de(r,255),o=a.transpose([0,3,1,2]);K(a),K(r);let i;t.object.enabled&&(i=await Qn.predict(o)),K(o);let l=await ble(i,Qn.inputSize,s,t);zy=l,n(l)}))}var es,Vy=[],Uy=Number.MAX_SAFE_INTEGER;async function Hy(e){if(es)e.debug&&ue("cached model:",es.modelUrl);else{es=await mt(gt(e.modelBasePath,e.object.modelPath));let t=Object.values(es.modelSignature.inputs);if(es.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!es.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!es||!es.modelUrl?ue("load model failed:",e.object.modelPath):e.debug&&ue("load model:",es.modelUrl)}return es}async function vle(e,t,n,s){if(!e)return[];let r=[],a=await e.array(),o=lt(e);K(e);let i=an(o,6,1);K(o);let l=Dn([i[1],i[0],i[3],i[2]],1),u=lt(l),c=lt(i[4]),d=lt(i[5]);i.forEach(m=>K(m));let h=await _e.nonMaxSuppressionAsync(u,c,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);K(u),K(c),K(d);let p=await h.data();K(h);let f=0;for(let m of p){let g=Math.trunc(100*a[0][m][4])/100,A=a[0][m][5],y=yu[A].label,[x,b]=[a[0][m][0]/t,a[0][m][1]/t],v=[x,b,a[0][m][2]/t-x,a[0][m][3]/t-b],k=[Math.trunc(v[0]*n[0]),Math.trunc(v[1]*n[1]),Math.trunc(v[2]*n[0]),Math.trunc(v[3]*n[1])];r.push({id:f++,score:g,class:A,label:y,box:k,boxRaw:v})}return r}async function Gy(e,t){return Uy<t.object.skipFrames&&t.skipFrame&&Vy.length>0?(Uy++,Vy):(Uy=0,new Promise(async n=>{let s=[e.shape[2],e.shape[1]],r=_e.resizeBilinear(e,[es.inputSize,es.inputSize]),a=t.object.enabled?es.execute(r,["tower_0/detections"]):null;K(r);let o=await vle(a,es.inputSize,s,t);Vy=o,n(o)}))}function wle(e,t,n){let s=function(i,l,u){let c=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");i.replace(c,(d,h)=>(u[h]=0,d))},r=function(i,l){let u=e.createShader(l);if(e.shaderSource(u,i),e.compileShader(u),!e.getShaderParameter(u,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(u));return u};this.uniform={},this.attribute={};let a=r(t,e.VERTEX_SHADER),o=r(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,a),e.attachShader(this.id,o),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),s(t,"attribute",this.attribute);for(let i in this.attribute)this.attribute[i]=e.getAttribLocation(this.id,i);s(t,"uniform",this.uniform),s(n,"uniform",this.uniform);for(let i in this.uniform)this.uniform[i]=e.getUniformLocation(this.id,i)}function L8(e){e||(e={});let t=0,n=null,s=!1,r=-1,a=[null,null],o=[],i=-1,l=-1,u=null,c=null,d={},h=e.canvas||document.createElement("canvas"),p={},f={INTERMEDIATE:1},m=h.getContext("webgl");if(!m)throw new Error("Filter: getContext() failed");this.addFilter=function(v){let k=Array.prototype.slice.call(arguments,1),S=d[v];o.push({func:S,args:k})},this.reset=function(){o=[]};let g=function(v,k){if(!(v===i&&k===l)){if(h.width=v,i=v,h.height=k,l=k,!u){let S=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);u=m.createBuffer(),m.bindBuffer(m.ARRAY_BUFFER,u),m.bufferData(m.ARRAY_BUFFER,S,m.STATIC_DRAW),m.pixelStorei(m.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}m.viewport(0,0,i,l),a=[null,null]}},A=function(v,k){let S=m.createFramebuffer();m.bindFramebuffer(m.FRAMEBUFFER,S);let C=m.createRenderbuffer();m.bindRenderbuffer(m.RENDERBUFFER,C);let _=m.createTexture();return m.bindTexture(m.TEXTURE_2D,_),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,v,k,0,m.RGBA,m.UNSIGNED_BYTE,null),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.framebufferTexture2D(m.FRAMEBUFFER,m.COLOR_ATTACHMENT0,m.TEXTURE_2D,_,0),m.bindTexture(m.TEXTURE_2D,null),m.bindFramebuffer(m.FRAMEBUFFER,null),{fbo:S,texture:_}},y=function(v){return a[v]=a[v]||A(i,l),a[v]},x=function(v=null){var _,O;let k=null,S=null,C=!1;t===0?k=n:k=(_=y(r))==null?void 0:_.texture,t++,s&&!(v&f.INTERMEDIATE)?(S=null,C=t%2==0):(r=(r+1)%2,S=(O=y(r))==null?void 0:O.fbo),m.bindTexture(m.TEXTURE_2D,k),m.bindFramebuffer(m.FRAMEBUFFER,S),m.uniform1f(c.uniform.flipY,C?-1:1),m.drawArrays(m.TRIANGLES,0,6)};this.apply=function(v){if(g(v.width,v.height),t=0,n||(n=m.createTexture()),m.bindTexture(m.TEXTURE_2D,n),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.NEAREST),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.NEAREST),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,m.RGBA,m.UNSIGNED_BYTE,v),o.length===0)return x(),h;for(let k=0;k<o.length;k++){s=k===o.length-1;let S=o[k];S.func.apply(this,S.args||[])}return h};let b=function(v){if(p[v])return c=p[v],m.useProgram(c.id),c;let k={};k.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
|
|
`),k.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
|
|
`),c=new wle(m,k.VERTEX_IDENTITY,v);let S=Float32Array.BYTES_PER_ELEMENT,C=4*S;return m.enableVertexAttribArray(c.attribute.pos),m.vertexAttribPointer(c.attribute.pos,2,m.FLOAT,!1,C,0*S),m.enableVertexAttribArray(c.attribute.uv),m.vertexAttribPointer(c.attribute.uv,2,m.FLOAT,!1,C,2*S),p[v]=c,c};d.colorMatrix=function(v){let k=new Float32Array(v);k[4]/=255,k[9]/=255,k[14]/=255,k[19]/=255;let S=k[18]===1&&k[3]===0&&k[8]===0&&k[13]===0&&k[15]===0&&k[16]===0&&k[17]===0&&k[19]===0?d.colorMatrix.SHADER.WITHOUT_ALPHA:d.colorMatrix.SHADER.WITH_ALPHA,C=b(S);m.uniform1fv(C.uniform.m,k),x()},d.colorMatrix.SHADER={},d.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
|
|
`),d.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
|
|
`),d.brightness=function(v){let k=(v||0)+1;d.colorMatrix([k,0,0,0,0,0,k,0,0,0,0,0,k,0,0,0,0,0,1,0])},d.saturation=function(v){let k=(v||0)*2/3+1,S=(k-1)*-.5;d.colorMatrix([k,S,S,0,0,S,k,S,0,0,S,S,k,0,0,0,0,0,1,0])},d.desaturate=function(){d.saturation(-1)},d.contrast=function(v){let k=(v||0)+1,S=-128*(k-1);d.colorMatrix([k,0,0,0,S,0,k,0,0,S,0,0,k,0,S,0,0,0,1,0])},d.negative=function(){d.contrast(-2)},d.hue=function(v){v=(v||0)/180*Math.PI;let k=Math.cos(v),S=Math.sin(v),C=.213,_=.715,O=.072;d.colorMatrix([C+k*(1-C)+S*-C,_+k*-_+S*-_,O+k*-O+S*(1-O),0,0,C+k*-C+S*.143,_+k*(1-_)+S*.14,O+k*-O+S*-.283,0,0,C+k*-C+S*-(1-C),_+k*-_+S*_,O+k*(1-O)+S*O,0,0,0,0,0,1,0])},d.desaturateLuminance=function(){d.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},d.sepia=function(){d.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},d.brownie=function(){d.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},d.vintagePinhole=function(){d.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},d.kodachrome=function(){d.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},d.technicolor=function(){d.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},d.polaroid=function(){d.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},d.shiftToBGR=function(){d.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},d.convolution=function(v){let k=new Float32Array(v),S=1/i,C=1/l,_=b(d.convolution.SHADER);m.uniform1fv(_.uniform.m,k),m.uniform2f(_.uniform.px,S,C),x()},d.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
|
|
`),d.detectEdges=function(){d.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},d.sobelX=function(){d.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},d.sobelY=function(){d.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},d.sharpen=function(v){let k=v||1;d.convolution.call(this,[0,-1*k,0,-1*k,1+4*k,-1*k,0,-1*k,0])},d.emboss=function(v){let k=v||1;d.convolution.call(this,[-2*k,-1*k,0,-1*k,1,1*k,0,1*k,2*k])},d.blur=function(v){let k=v/7/i,S=v/7/l,C=b(d.blur.SHADER);m.uniform2f(C.uniform.px,0,S),x(f.INTERMEDIATE),m.uniform2f(C.uniform.px,k,0),x()},d.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
|
|
`),d.pixelate=function(v){let k=v/i,S=v/l,C=b(d.pixelate.SHADER);m.uniform2f(C.uniform.size,k,S),x()},d.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
|
|
`)}var Zf=2048,Ee,It,Wt;function ii(e,t){let n;if(!e)throw new Error("Human: Input is missing");if(!(e instanceof Ge)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("Human: Input type is not recognized");if(e instanceof Ge)if(e.shape&&e.shape.length===4&&e.shape[0]===1&&e.shape[3]===3)n=Os(e);else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);else{let r=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,a=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!r||!a)return{tensor:null,canvas:Ee};let o=r,i=a;if(o>Zf&&(o=Zf,i=o*a/r),i>Zf&&(i=Zf,o=i*r/a),t.filter.width>0?o=t.filter.width:t.filter.height>0&&(o=r*(t.filter.height/a)),t.filter.height>0?i=t.filter.height:t.filter.width>0&&(i=a*(t.filter.width/r)),!o||!i)throw new Error("Human: Input cannot determine dimension");(!Ee||(Ee==null?void 0:Ee.width)!==o||(Ee==null?void 0:Ee.height)!==i)&&(Ee=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(o,i):document.createElement("canvas"),(Ee==null?void 0:Ee.width)!==o&&(Ee.width=o),(Ee==null?void 0:Ee.height)!==i&&(Ee.height=i));let l=Ee.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):t.filter.flip&&typeof l.translate!="undefined"?(l.translate(r,0),l.scale(-1,1),l.drawImage(e,0,0,r,a,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),l.setTransform(1,0,0,1,0,0)):l.drawImage(e,0,0,r,a,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),t.filter.enabled){if((!Wt||!It||Ee.width!==It.width||(Ee==null?void 0:Ee.height)!==(It==null?void 0:It.height))&&(It=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height):document.createElement("canvas"),(It==null?void 0:It.width)!==(Ee==null?void 0:Ee.width)&&(It.width=Ee==null?void 0:Ee.width),(It==null?void 0:It.height)!==(Ee==null?void 0:Ee.height)&&(It.height=Ee==null?void 0:Ee.height),Wt=os.flags.IS_BROWSER?new L8({canvas:It}):null),!Wt)return{tensor:null,canvas:Ee};Wt.reset(),Wt.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&Wt.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&Wt.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&Wt.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&Wt.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&Wt.addFilter("hue",t.filter.hue),t.filter.negative&&Wt.addFilter("negative"),t.filter.sepia&&Wt.addFilter("sepia"),t.filter.vintage&&Wt.addFilter("brownie"),t.filter.sepia&&Wt.addFilter("sepia"),t.filter.kodachrome&&Wt.addFilter("kodachrome"),t.filter.technicolor&&Wt.addFilter("technicolor"),t.filter.polaroid&&Wt.addFilter("polaroid"),t.filter.pixelate!==0&&Wt.addFilter("pixelate",t.filter.pixelate),Wt.apply(Ee)}else It=Ee,Wt&&(Wt=null);if(!n){let u;if(It.data){let c=[It.height,It.width,3];u=Bh(It.data,c,"int32")}else if(It instanceof ImageData)u=ls?ls.fromPixels(It):null;else if(t.backend==="webgl"||t.backend==="humangl"){let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(o,i):document.createElement("canvas");c.width=o,c.height=i;let d=c.getContext("2d");d==null||d.drawImage(It,0,0),u=ls?ls.fromPixels(c):null}else{let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(o,i):document.createElement("canvas");c.width=o,c.height=i;let d=c.getContext("2d");d==null||d.drawImage(It,0,0);let h=d==null?void 0:d.getImageData(0,0,o,i);u=ls?ls.fromPixels(h):null}if(u){let c=ce(u,"float32");n=Ot(c,0),K(u),K(c)}}}let s=t.filter.return?It:null;return{tensor:n,canvas:s}}var ws,jy=!1;async function Yf(e){return ws?e.debug&&ue("cached model:",ws.modelUrl):(ws=await mt(gt(e.modelBasePath,e.segmentation.modelPath)),!ws||!ws.modelUrl?ue("load model failed:",e.segmentation.modelPath):e.debug&&ue("load model:",ws.modelUrl)),ws}async function qy(e){var f,m;let t=((f=e.tensor)==null?void 0:f.shape[1])||0,n=((m=e.tensor)==null?void 0:m.shape[2])||0;if(!e.tensor||!ws||!ws.inputs[0].shape)return null;let s=_e.resizeBilinear(e.tensor,[ws.inputs[0].shape[1],ws.inputs[0].shape[2]],!1),r=de(s,255),a=ws.predict(r);K(s),K(r);let o=lt(a,0),i;if(o.shape[2]===2){let g=o.softmax(),[A,y]=ms(g,2),x=Ot(y,2),b=Ot(x,0);K(g),K(A),K(y);let v=_e.cropAndResize(b,[[0,0,.5,.5]],[0],[t,n]);i=lt(v,0),K(v),K(x),K(b)}else i=_e.resizeBilinear(o,[t,n]);if(typeof document=="undefined")return i.data();let l=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");l.width=t,l.height=n,ls&&await ls.toPixels(i,l),K(i),K(o),K(a);let u=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");u.width=t,u.height=n;let c=u.getContext("2d");c.filter="blur(8px",await c.drawImage(l,0,0);let d=c.getImageData(0,0,t,n).data,h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");h.width=t,h.height=n;let p=h.getContext("2d");return e.canvas&&await p.drawImage(e.canvas,0,0),p.globalCompositeOperation="darken",p.filter="blur(8px)",await p.drawImage(l,0,0),p.globalCompositeOperation="source-over",p.filter="none",e.canvas=h,d}async function B8(e,t,n){var a;if(jy)return null;jy=!0,ws||await Yf(n);let s=ii(e,n),r=await qy(s);if(K(s.tensor),t&&r){let o=ii(t,n),i=o.canvas;K(o.tensor);let l=s.canvas,u=(a=l.getContext("2d"))==null?void 0:a.getImageData(0,0,l.width,l.height).data,c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(l.width,l.height):document.createElement("canvas");c.width=l.width,c.height=l.height;let d=c.getContext("2d");d.globalCompositeOperation="copy",d.drawImage(i,0,0,c.width,c.height);let h=d.getImageData(0,0,c.width,c.height);for(let p=0;p<c.width*c.height;p++)h.data[4*p+0]=(255-r[4*p+0])/255*h.data[4*p+0]+r[4*p+0]/255*u[4*p+0],h.data[4*p+1]=(255-r[4*p+1])/255*h.data[4*p+1]+r[4*p+1]/255*u[4*p+1],h.data[4*p+2]=(255-r[4*p+2])/255*h.data[4*p+2]+r[4*p+2]/255*u[4*p+2],h.data[4*p+3]=(255-r[4*p+3])/255*h.data[4*p+3]+r[4*p+3]/255*u[4*p+3];d.putImageData(h,0,0),s.canvas=c}return jy=!1,s.canvas}async function W8(e){e.config.async?[e.models.face,e.models.emotion,e.models.handpose,e.models.posenet,e.models.blazepose,e.models.efficientpose,e.models.movenet,e.models.nanodet,e.models.centernet,e.models.faceres,e.models.segmentation]=await Promise.all([e.models.face||(e.config.face.enabled?ay(e.config):null),e.models.emotion||(e.config.face.enabled&&e.config.face.emotion.enabled?py(e.config):null),e.models.handpose||(e.config.hand.enabled?Ny(e.config):null),e.models.posenet||(e.config.body.enabled&&e.config.body.modelPath.includes("posenet")?vy(e.config):null),e.models.blazepose||(e.config.body.enabled&&e.config.body.modelPath.includes("blazepose")?qf(e.config):null),e.models.efficientpose||(e.config.body.enabled&&e.config.body.modelPath.includes("efficientpose")?M8(e.config):null),e.models.movenet||(e.config.body.enabled&&e.config.body.modelPath.includes("movenet")?Py(e.config):null),e.models.nanodet||(e.config.object.enabled&&e.config.object.modelPath.includes("nanodet")?By(e.config):null),e.models.centernet||(e.config.object.enabled&&e.config.object.modelPath.includes("centernet")?Hy(e.config):null),e.models.faceres||(e.config.face.enabled&&e.config.face.description.enabled?iy(e.config):null),e.models.segmentation||(e.config.segmentation.enabled?Yf(e.config):null)]):(e.config.face.enabled&&!e.models.face&&(e.models.face=await ay(e.config)),e.config.face.enabled&&e.config.face.emotion.enabled&&!e.models.emotion&&(e.models.emotion=await py(e.config)),e.config.hand.enabled&&!e.models.handpose&&(e.models.handpose=await Ny(e.config)),e.config.body.enabled&&!e.models.posenet&&e.config.body.modelPath.includes("posenet")&&(e.models.posenet=await vy(e.config)),e.config.body.enabled&&!e.models.blazepose&&e.config.body.modelPath.includes("blazepose")&&(e.models.blazepose=await qf(e.config)),e.config.body.enabled&&!e.models.efficientpose&&e.config.body.modelPath.includes("efficientpose")&&(e.models.efficientpose=await qf(e.config)),e.config.body.enabled&&!e.models.movenet&&e.config.body.modelPath.includes("movenet")&&(e.models.movenet=await Py(e.config)),e.config.object.enabled&&!e.models.nanodet&&e.config.object.modelPath.includes("nanodet")&&(e.models.nanodet=await By(e.config)),e.config.object.enabled&&!e.models.centernet&&e.config.object.modelPath.includes("centernet")&&(e.models.centernet=await Hy(e.config)),e.config.face.enabled&&e.config.face.description.enabled&&!e.models.faceres&&(e.models.faceres=await iy(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=await Yf(e.config)))}var kle=e=>{let t=(d,h)=>Math.atan2(d[1]-h[1],d[0]-h[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=e.mesh[33][2]>e.mesh[263][2],a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],u=Math.sqrt(l[0]**2+l[1]**2);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},Ile=(e,t)=>{let n=g=>{let A=Math.sqrt(g[0]*g[0]+g[1]*g[1]+g[2]*g[2]);return g[0]/=A,g[1]/=A,g[2]/=A,g},s=(g,A)=>{let y=g[0]-A[0],x=g[1]-A[1],b=g[2]-A[2];return[y,x,b]},r=(g,A)=>{let y=g[1]*A[2]-g[2]*A[1],x=g[2]*A[0]-g[0]*A[2],b=g[0]*A[1]-g[1]*A[0];return[y,x,b]},a=g=>{let[A,y,x,b,v,k,S,C,_]=g,O,E,R;return b<1?b>-1?(R=Math.asin(b),E=Math.atan2(-S,A),O=Math.atan2(-k,v)):(R=-Math.PI/2,E=-Math.atan2(C,_),O=0):(R=Math.PI/2,E=Math.atan2(C,_),O=0),isNaN(O)&&(O=0),isNaN(E)&&(E=0),isNaN(R)&&(R=0),{pitch:2*-O,yaw:2*-E,roll:2*-R}},o=g=>{let A=(x,b,v,k)=>Math.atan2(k-b,v-x);return{pitch:A(g[10][1],g[10][2],g[152][1],g[152][2]),yaw:A(g[33][0],g[33][2],g[263][0],g[263][2]),roll:A(g[33][0],g[33][1],g[263][0],g[263][1])}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let l=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,u=[i[10],i[152],i[234],i[454]].map(g=>[g[0]*t[0]/l,g[1]*t[1]/l,g[2]]),c=n(s(u[1],u[0])),d=n(s(u[3],u[2])),h=n(r(d,c));d=r(c,h);let p=[d[0],d[1],d[2],c[0],c[1],c[2],h[0],h[1],h[2]],f=a(p),m=i.length===478?kle(e):{bearing:0,strength:0};return{angle:f,matrix:p,gaze:m}},Xy=async(e,t)=>{var d,h,p,f,m,g;let n,s,r,a,o,i,l,u=[];e.state="run:face",n=Ye();let c=await n8(t,e.config);if(e.performance.face=Math.trunc(Ye()-n),!t.shape||t.shape.length!==4)return[];if(!c)return[];for(let A=0;A<c.length;A++){if(e.analyze("Get Face"),!c[A].tensor||c[A].tensor.isDisposedInternal){ue("Face object is disposed:",c[A].tensor);continue}let y=Ile(c[A],[t.shape[2],t.shape[1]]);e.analyze("Start Emotion:"),e.config.async?o=e.config.face.emotion.enabled?fy(c[A].tensor||dn([]),e.config,A,c.length):{}:(e.state="run:emotion",n=Ye(),o=e.config.face.emotion.enabled?await fy(c[A].tensor||dn([]),e.config,A,c.length):{},e.performance.emotion=Math.trunc(Ye()-n)),e.analyze("End Emotion:"),e.analyze("Start Description:"),e.config.async?l=e.config.face.description.enabled?cy(c[A].tensor||dn([]),e.config,A,c.length):[]:(e.state="run:description",n=Ye(),l=e.config.face.description.enabled?await cy(c[A].tensor||dn([]),e.config,A,c.length):[],e.performance.embedding=Math.trunc(Ye()-n)),e.analyze("End Description:"),e.config.async&&([s,a,o,i,l,r]=await Promise.all([s,a,o,i,l,r])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((h=(d=c[A])==null?void 0:d.annotations)==null?void 0:h.leftEyeIris)&&((f=(p=c[A])==null?void 0:p.annotations)==null?void 0:f.rightEyeIris)&&(delete c[A].annotations.leftEyeIris,delete c[A].annotations.rightEyeIris);let x=((m=c[A].annotations)==null?void 0:m.leftEyeIris)&&((g=c[A].annotations)==null?void 0:g.rightEyeIris)?Math.max(Math.abs(c[A].annotations.leftEyeIris[3][0]-c[A].annotations.leftEyeIris[1][0]),Math.abs(c[A].annotations.rightEyeIris[4][1]-c[A].annotations.rightEyeIris[2][1]))/t.shape[2]:0,b=e.config.face.detector.return?lt(c[A].tensor):null;K(c[A].tensor),c[A].tensor&&delete c[A].tensor,u.push({...c[A],id:A,age:l.age,gender:l.gender,genderScore:l.genderScore,embedding:l.descriptor,emotion:o,iris:x!==0?Math.trunc(500/x/11.7)/100:0,rotation:y,tensor:b}),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),u};var V8=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position.y<a.position.y&&r.position.y<a.position.y?t.push({body:n,gesture:"i give up"}):a&&s&&s.position.y<a.position.y?t.push({body:n,gesture:"raise left hand"}):a&&r&&r.position.y<a.position.y&&t.push({body:n,gesture:"raise right hand"});let o=e[n].keypoints.find(l=>l.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&t.push({body:n,gesture:`leaning ${o.position.y>i.position.y?"left":"right"}`})}return t},U8=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>0){let s=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(s)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));o>10&&t.push({face:n,gesture:`mouth ${Math.trunc(o)}% open`});let i=e[n].mesh[152][2];Math.abs(i)>10&&t.push({face:n,gesture:`head ${i<0?"up":"down"}`})}return t},H8=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.rightEyeIris)continue;let s=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],a=Math.abs(s*r),o=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],i=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(o*i),u=!1;Math.abs(a-l)/Math.max(a,l)<.25&&(u=!0,t.push({iris:n,gesture:"facing center"}));let d=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].box[2],h=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].box[2];(h>.06||d>.06)&&(u=!1),h>.06&&t.push({iris:n,gesture:"looking right"}),d>.06&&t.push({iris:n,gesture:"looking left"});let p=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],f=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(f<.01||p<.01||f>.022||p>.022)&&(u=!1),(f<.01||p<.01)&&t.push({iris:n,gesture:"looking down"}),(f>.022||p>.022)&&t.push({iris:n,gesture:"looking up"}),u&&t.push({iris:n,gesture:"looking center"})}return t},G8=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=[];for(let[a,o]of Object.entries(e[n].annotations))a!=="palmBase"&&Array.isArray(o)&&s.push({name:a.toLowerCase(),position:o[0]});if(s&&s.length>0){let a=s.reduce((i,l)=>i.position[2]<l.position[2]?i:l);t.push({hand:n,gesture:`${a.name} forward`});let o=s.reduce((i,l)=>i.position[1]<l.position[1]?i:l);t.push({hand:n,gesture:`${o.name} up`})}let r=D8(e[n].keypoints);for(let a of r)t.push({hand:n,gesture:a.name})}return t};var Yy={};h5(Yy,{all:()=>Tle,body:()=>X8,canvas:()=>Cle,face:()=>q8,gesture:()=>j8,hand:()=>K8,object:()=>Z8,options:()=>ba,person:()=>Sle});var ba={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!0},va=e=>{if(e&&e.getContext)return e.getContext("2d");throw new Error("Human: Invalid Canvas")},Jf=e=>Math.round(e*180/Math.PI);function Ky(e,t,n,s=0,r){e.fillStyle=r.useDepth&&s?`rgba(${127.5+2*s}, ${127.5-2*s}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function gd(e,t,n,s,r,a){if(e.beginPath(),a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.lineWidth=a.lineWidth,e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function Zy(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t){let r=s[2]||0;e.strokeStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(s[0],Math.round(s[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function Ad(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){Zy(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s<t.length-2;s++){let r=(t[s][0]+t[s+1][0])/2,a=(t[s][1]+t[s+1][1])/2;e.quadraticCurveTo(t[s][0],t[s][1],r,a)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}async function j8(e,t,n){let s=gn(ba,n);if(!t||!e)return;let r=va(e);r.font=s.font,r.fillStyle=s.color;let a=1;for(let o=0;o<t.length;o++){let i=[],l=[];if([i,l]=Object.entries(t[o]),l.length>1&&l[1].length>0){let u=i[1]>0?`#${i[1]}`:"",c=`${i[0]} ${u}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(c,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(c,6,0+a*s.lineHeight),a+=1}}}async function q8(e,t,n){var a,o,i,l;let s=gn(ba,n);if(!t||!e)return;let r=va(e);for(let u of t){r.font=s.font,r.strokeStyle=s.color,r.fillStyle=s.color,s.drawBoxes&&gd(r,u.box[0],u.box[1],u.box[2],u.box[3],s);let c=[];if(c.push(`face: ${Math.trunc(100*u.score)}%`),u.genderScore&&c.push(`${u.gender||""} ${Math.trunc(100*u.genderScore)}%`),u.age&&c.push(`age: ${u.age||""}`),u.iris&&c.push(`distance: ${u.iris}`),u.emotion&&u.emotion.length>0){let d=u.emotion.map(h=>`${Math.trunc(100*h.score)}% ${h.emotion}`);d.length>3&&(d.length=3),c.push(d.join(" "))}u.rotation&&u.rotation.angle&&u.rotation.gaze&&(u.rotation.angle.roll&&c.push(`roll: ${Jf(u.rotation.angle.roll)}\xB0 yaw:${Jf(u.rotation.angle.yaw)}\xB0 pitch:${Jf(u.rotation.angle.pitch)}\xB0`),u.rotation.gaze.bearing&&c.push(`gaze: ${Jf(u.rotation.gaze.bearing)}\xB0`)),c.length===0&&c.push("face"),r.fillStyle=s.color;for(let d=c.length-1;d>=0;d--){let h=Math.max(u.box[0],0),p=d*s.lineHeight+u.box[1];s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(c[d],h+5,p+16)),r.fillStyle=s.labelColor,r.fillText(c[d],h+4,p+15)}if(r.lineWidth=1,u.mesh&&u.mesh.length>0){if(s.drawPoints)for(let d of u.mesh)Ky(r,d[0],d[1],d[2],s);if(s.drawPolygons){r.lineWidth=1;for(let d=0;d<ai.length/3;d++){let h=[ai[d*3+0],ai[d*3+1],ai[d*3+2]].map(p=>u.mesh[p]);Zy(r,h,s)}if(u.annotations&&u.annotations.leftEyeIris){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0])/2,h=Math.abs(u.annotations.leftEyeIris[4][1]-u.annotations.leftEyeIris[2][1])/2;r.ellipse(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1],d,h,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(u.annotations&&u.annotations.rightEyeIris){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.rightEyeIris[3][0]-u.annotations.rightEyeIris[1][0])/2,h=Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])/2;r.ellipse(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1],d,h,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(s.drawGaze&&((o=(a=u.rotation)==null?void 0:a.gaze)==null?void 0:o.strength)&&((l=(i=u.rotation)==null?void 0:i.gaze)==null?void 0:l.bearing)&&u.annotations.leftEyeIris&&u.annotations.rightEyeIris&&u.annotations.leftEyeIris[0]&&u.annotations.rightEyeIris[0]){r.strokeStyle="pink",r.beginPath();let d=[u.annotations.leftEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.leftEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];r.moveTo(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1]),r.lineTo(d[0],d[1]);let h=[u.annotations.rightEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.rightEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];r.moveTo(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1]),r.lineTo(h[0],h[1]),r.stroke()}}}}}async function X8(e,t,n){var a;let s=gn(ba,n);if(!t||!e)return;let r=va(e);r.lineJoin="round";for(let o=0;o<t.length;o++){if(r.strokeStyle=s.color,r.fillStyle=s.color,r.lineWidth=s.lineWidth,r.font=s.font,s.drawBoxes&&t[o].box&&((a=t[o].box)==null?void 0:a.length)===4&&(gd(r,t[o].box[0],t[o].box[1],t[o].box[2],t[o].box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+3,1+t[o].box[1]+s.lineHeight,t[o].box[2])),r.fillStyle=s.labelColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+2,0+t[o].box[1]+s.lineHeight,t[o].box[2]))),s.drawPoints)for(let i=0;i<t[o].keypoints.length;i++)r.fillStyle=s.useDepth&&t[o].keypoints[i].position[2]?`rgba(${127.5+2*(t[o].keypoints[i].position[2]||0)}, ${127.5-2*(t[o].keypoints[i].position[2]||0)}, 255, 0.5)`:s.color,Ky(r,t[o].keypoints[i].position[0],t[o].keypoints[i].position[1],0,s);if(s.drawLabels&&(r.font=s.font,t[o].keypoints))for(let i of t[o].keypoints)r.fillStyle=s.useDepth&&i.position[2]?`rgba(${127.5+2*i.position[2]}, ${127.5-2*i.position[2]}, 255, 0.5)`:s.color,r.fillText(`${i.part} ${Math.trunc(100*i.score)}%`,i.position[0]+4,i.position[1]+4);if(s.drawPolygons&&t[o].keypoints){let i,l=[];l.length=0,i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),Ad(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),l.length===4&&Zy(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="leftHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftKnee"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftAnkle"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftHeel"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftFoot"),i&&l.push([i.position[0],i.position[1]]),Ad(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightKnee"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightAnkle"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightHeel"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightFoot"),i&&l.push([i.position[0],i.position[1]]),Ad(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftElbow"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftWrist"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftPalm"),i&&l.push([i.position[0],i.position[1]]),Ad(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightElbow"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightWrist"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightPalm"),i&&l.push([i.position[0],i.position[1]]),Ad(r,l,s)}}}async function K8(e,t,n){let s=gn(ba,n);if(!t||!e)return;let r=va(e);r.lineJoin="round",r.font=s.font;for(let a of t){if(s.drawBoxes&&(r.strokeStyle=s.color,r.fillStyle=s.color,gd(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText("hand",a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText("hand",a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])),r.stroke()),s.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)r.fillStyle=s.useDepth?`rgba(${127.5+2*o[2]}, ${127.5-2*o[2]}, 255, 0.5)`:s.color,Ky(r,o[0],o[1],0,s);if(s.drawLabels){let o=(i,l)=>{r.fillStyle=s.useDepth?`rgba(${127.5+2*i[i.length-1][2]}, ${127.5-2*i[i.length-1][2]}, 255, 0.5)`:s.color,r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4)};r.font=s.font,o(a.annotations.index,"index"),o(a.annotations.middle,"middle"),o(a.annotations.ring,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palm,"palm")}if(s.drawPolygons){let o=i=>{if(!!i)for(let l=0;l<i.length;l++)r.beginPath(),r.strokeStyle=s.useDepth?`rgba(${127.5+2*i[l][2]}, ${127.5-2*i[l][2]}, 255, 0.5)`:s.color,r.moveTo(i[l>0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()};r.lineWidth=s.lineWidth,o(a.annotations.index),o(a.annotations.middle),o(a.annotations.ring),o(a.annotations.pinky),o(a.annotations.thumb)}}}async function Z8(e,t,n){let s=gn(ba,n);if(!t||!e)return;let r=va(e);r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,gd(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}async function Sle(e,t,n){let s=gn(ba,n);if(!t||!e)return;let r=va(e);r.lineJoin="round",r.font=s.font;for(let a=0;a<t.length;a++)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,gd(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels){let o=`person #${a}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(o,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2])}r.stroke()}}async function Cle(e,t){if(!e||!t)return;va(t),va(e).drawImage(e,0,0)}async function Tle(e,t,n){let s=Ye(),r=gn(ba,n);if(!t||!e)return null;let a=Promise.all([q8(e,t.face,r),X8(e,t.body,r),K8(e,t.hand,r),Z8(e,t.object,r),j8(e,t.gesture,r)]);return t.performance.draw=Math.trunc(Ye()-s),a}function Y8(e,t,n,s,r){var i,l,u,c,d,h,p,f,m,g,A,y,x,b,v,k;let a=0,o=[];for(let S of e){let C={id:a++,face:S,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let P of t)S.box[0]>P.box[0]&&S.box[0]<P.box[0]+P.box[2]&&S.box[1]+S.box[3]>P.box[1]&&S.box[1]+S.box[3]<P.box[1]+P.box[3]&&(C.body=P);if(C.body)for(let P of n)P.box[0]+P.box[2]>C.body.box[0]&&P.box[0]+P.box[2]<C.body.box[0]+C.body.box[2]&&P.box[1]+P.box[3]>C.body.box[1]&&P.box[1]+P.box[3]<C.body.box[1]+C.body.box[3]&&C.hands&&(C.hands.left=P),P.box[0]<C.body.box[0]+C.body.box[2]&&P.box[0]>C.body.box[0]&&P.box[1]+P.box[3]>C.body.box[1]&&P.box[1]+P.box[3]<C.body.box[1]+C.body.box[3]&&C.hands&&(C.hands.right=P);for(let P of s)P.face!==void 0&&P.face===S.id?(i=C.gestures)==null||i.push(P):P.iris!==void 0&&P.iris===S.id?(l=C.gestures)==null||l.push(P):P.body!==void 0&&P.body===((u=C.body)==null?void 0:u.id)?(c=C.gestures)==null||c.push(P):P.hand!==void 0&&P.hand===((h=(d=C.hands)==null?void 0:d.left)==null?void 0:h.id)?(p=C.gestures)==null||p.push(P):P.hand!==void 0&&P.hand===((m=(f=C.hands)==null?void 0:f.right)==null?void 0:m.id)&&((g=C.gestures)==null||g.push(P));let _=[],O=[],E=P=>{P&&P.length===4&&(_.push(P[0],P[0]+P[2]),O.push(P[1],P[1]+P[3]))};E((A=C.face)==null?void 0:A.box),E((y=C.body)==null?void 0:y.box),E((b=(x=C.hands)==null?void 0:x.left)==null?void 0:b.box),E((k=(v=C.hands)==null?void 0:v.right)==null?void 0:k.box);let R=Math.min(..._),T=Math.min(...O);C.box=[R,T,Math.max(..._)-R,Math.max(...O)-T],r&&r[1]&&r[2]&&(C.boxRaw=[C.box[0]/r[2],C.box[1]/r[1],C.box[2]/r[2],C.box[3]/r[1]]),o.push(C)}return o}var $e={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};function J8(e){var s,r,a,o,i,l,u,c,d,h,p,f,m,g,A,y,x,b,v,k,S;if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};let t=Date.now()-e.timestamp,n=t<1e3?8-Math.log(t+1):1;if($e.canvas=e.canvas,!$e.body||e.body.length!==$e.body.length)$e.body=JSON.parse(JSON.stringify(e.body));else for(let C=0;C<e.body.length;C++){let _=e.body[C].box.map((R,T)=>((n-1)*$e.body[C].box[T]+R)/n),O=e.body[C].boxRaw.map((R,T)=>((n-1)*$e.body[C].boxRaw[T]+R)/n),E=e.body[C].keypoints.map((R,T)=>({score:R.score,part:R.part,position:[$e.body[C].keypoints[T]?((n-1)*$e.body[C].keypoints[T].position[0]+R.position[0])/n:R.position[0],$e.body[C].keypoints[T]?((n-1)*$e.body[C].keypoints[T].position[1]+R.position[1])/n:R.position[1]],positionRaw:[$e.body[C].keypoints[T]?((n-1)*$e.body[C].keypoints[T].positionRaw[0]+R.positionRaw[0])/n:R.position[0],$e.body[C].keypoints[T]?((n-1)*$e.body[C].keypoints[T].positionRaw[1]+R.positionRaw[1])/n:R.position[1]]}));$e.body[C]={...e.body[C],box:_,boxRaw:O,keypoints:E}}if(!$e.hand||e.hand.length!==$e.hand.length)$e.hand=JSON.parse(JSON.stringify(e.hand));else for(let C=0;C<e.hand.length;C++){let _=e.hand[C].box.map((P,V)=>((n-1)*$e.hand[C].box[V]+P)/n),O=e.hand[C].boxRaw.map((P,V)=>((n-1)*$e.hand[C].boxRaw[V]+P)/n),E=e.hand[C].keypoints.map((P,V)=>P.map((j,q)=>((n-1)*$e.hand[C].keypoints[V][q]+j)/n)),R=Object.keys(e.hand[C].annotations),T={};for(let P of R)T[P]=e.hand[C].annotations[P].map((V,j)=>V.map((q,X)=>((n-1)*$e.hand[C].annotations[P][j][X]+q)/n));$e.hand[C]={...e.hand[C],box:_,boxRaw:O,keypoints:E,annotations:T}}if(!$e.face||e.face.length!==$e.face.length)$e.face=JSON.parse(JSON.stringify(e.face));else for(let C=0;C<e.face.length;C++){let _=e.face[C].box.map((R,T)=>((n-1)*$e.face[C].box[T]+R)/n),O=e.face[C].boxRaw.map((R,T)=>((n-1)*$e.face[C].boxRaw[T]+R)/n),E={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};E.matrix=(s=e.face[C].rotation)==null?void 0:s.matrix,E.angle={roll:((n-1)*(((a=(r=$e.face[C].rotation)==null?void 0:r.angle)==null?void 0:a.roll)||0)+(((i=(o=e.face[C].rotation)==null?void 0:o.angle)==null?void 0:i.roll)||0))/n,yaw:((n-1)*(((u=(l=$e.face[C].rotation)==null?void 0:l.angle)==null?void 0:u.yaw)||0)+(((d=(c=e.face[C].rotation)==null?void 0:c.angle)==null?void 0:d.yaw)||0))/n,pitch:((n-1)*(((p=(h=$e.face[C].rotation)==null?void 0:h.angle)==null?void 0:p.pitch)||0)+(((m=(f=e.face[C].rotation)==null?void 0:f.angle)==null?void 0:m.pitch)||0))/n},E.gaze={bearing:((n-1)*(((A=(g=$e.face[C].rotation)==null?void 0:g.gaze)==null?void 0:A.bearing)||0)+(((x=(y=e.face[C].rotation)==null?void 0:y.gaze)==null?void 0:x.bearing)||0))/n,strength:((n-1)*(((v=(b=$e.face[C].rotation)==null?void 0:b.gaze)==null?void 0:v.strength)||0)+(((S=(k=e.face[C].rotation)==null?void 0:k.gaze)==null?void 0:S.strength)||0))/n},$e.face[C]={...e.face[C],rotation:E,box:_,boxRaw:O}}if(!$e.object||e.object.length!==$e.object.length)$e.object=JSON.parse(JSON.stringify(e.object));else for(let C=0;C<e.object.length;C++){let _=e.object[C].box.map((E,R)=>((n-1)*$e.object[C].box[R]+E)/n),O=e.object[C].boxRaw.map((E,R)=>((n-1)*$e.object[C].boxRaw[R]+E)/n);$e.object[C]={...e.object[C],box:_,boxRaw:O}}if(e.persons){let C=e.persons;if(!$e.persons||C.length!==$e.persons.length)$e.persons=JSON.parse(JSON.stringify(C));else for(let _=0;_<C.length;_++)$e.persons[_].box=C[_].box.map((O,E)=>((n-1)*$e.persons[_].box[E]+O)/n)}return e.gesture&&($e.gesture=e.gesture),e.performance&&($e.performance=e.performance),$e}var Qf=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,e0=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;var Jy="2.1.5";var xu,yd,xd,li,ui,bu,t0,bd,n0,s0,r0,a0,o0=class{constructor(t){as(this,xu,void 0);as(this,yd,void 0);as(this,xd,void 0);as(this,li,void 0);as(this,ui,void 0);as(this,bu,void 0);this.analyze=(...t)=>{if(!mn(this,yd))return;let n=this.tf.engine().state.numTensors,s=mn(this,xu);Ds(this,xu,n);let r=n-s;r!==0&&ue(...t,r)};as(this,t0,t=>{if(!mn(this,xd))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof Ge))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});as(this,bd,async(t=!1)=>{var n;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let s=Ye();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&this.config.debug&&ue("running inside web worker"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(ue("override: backend set to tensorflow while running in browser"),this.config.backend="humangl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(ue("override: backend set to webgl while running in nodejs"),this.config.backend="tensorflow"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")ue("override: backend set to webgpu but browser does not support webgpu"),this.config.backend="humangl";else{let a=await navigator.gpu.requestAdapter();this.config.debug&&ue("enumerated webgpu adapter:",a)}this.config.backend==="humangl"&&Uk();let r=Object.keys(this.tf.engine().registryFactory);if(this.config.debug&&ue("available backends:",r),r.includes(this.config.backend)||(ue(`error: backend ${this.config.backend} not found in registry`),this.config.backend=this.tf.ENV.flags.IS_NODE?"tensorflow":"humangl",ue(`override: using backend ${this.config.backend} instead`)),this.config.debug&&ue("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&ue("wasm path:",this.config.wasmPath),typeof((n=this.tf)==null?void 0:n.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let a=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),o=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&ue(`wasm execution: ${a?"SIMD":"no SIMD"} ${o?"multithreaded":"singlethreaded"}`),this.config.debug&&!a&&ue("warning: wasm simd support is not enabled")}try{await this.tf.setBackend(this.config.backend)}catch(a){ue("error: cannot set backend:",this.config.backend,a)}}if(this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_CPU_FORWARD",!0),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),this.tf.ENV.set("WEBGL_USE_SHAPES_UNIFORMS",!0),typeof this.config.deallocate!="undefined"&&this.config.deallocate&&(ue("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0));let r=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&ue(`gl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`)}this.tf.enableProdMode(),await this.tf.ready(),this.performance.backend=Math.trunc(Ye()-s)}});this.next=t=>J8(t||this.result);as(this,n0,async t=>{if(this.config.cacheSensitivity===0)return!1;let n=32;if(!t.shape[1]||!t.shape[2])return!1;let s=_e.resizeBilinear(t,[Math.trunc(t.shape[1]/n),Math.trunc(t.shape[2]/n)]),r=await s.data(),a=0;for(let l=0;l<r.length/3;l++)a+=r[3*l+2];s.dispose();let o=100*(Math.max(a,mn(this,ui))/Math.min(a,mn(this,ui))-1);Ds(this,ui,a);let i=o<Math.max(this.config.cacheSensitivity,mn(this,bu));return Ds(this,bu,o>10*this.config.cacheSensitivity?0:o),i});as(this,s0,async()=>{let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(this.config.warmup){case"face":n=await t(Qf);break;case"full":n=await t(e0);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await this.detect(r,this.config),r.close()}return s});as(this,r0,async()=>new Promise(t=>{let n,s=0;switch(this.config.warmup){case"face":s=256,n="data:image/jpeg;base64,"+Qf;break;case"full":case"body":s=1200,n="data:image/jpeg;base64,"+e0;break;default:n=null}let r=new Image;r.onload=async()=>{let a=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(s,s):document.createElement("canvas");a.width=r.naturalWidth,a.height=r.naturalHeight;let o=a.getContext("2d");o==null||o.drawImage(r,0,0);let i=await this.detect(a,this.config);t(i)},n?r.src=n:t(null)}));as(this,a0,async()=>{let t=r=>Buffer.from(r,"base64"),n;if(this.config.warmup==="face"&&(n=t(Qf)),(this.config.warmup==="body"||this.config.warmup==="full")&&(n=t(e0)),!n)return null;let s;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),a=r.expandDims(0);this.tf.dispose(r),s=await this.detect(a,this.config),this.tf.dispose(a)}else this.config.debug&&ue("Warmup tfjs-node not loaded");return s});o0.version=Jy,Object.defineProperty(this,"version",{value:Jy}),Fm.wasmPath=`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${Dx}/dist/`,this.config=gn(Fm,t||{}),this.tf=id,this.draw=Yy,this.state="idle",Ds(this,xu,0),Ds(this,yd,!1),Ds(this,xd,!1),Ds(this,li,!0),Ds(this,bu,0),this.performance={backend:0,load:0,image:0,frames:0,cached:0,changed:0,total:0,draw:0},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,movenet:null,handpose:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,centernet:null,faceres:null,segmentation:null},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[]},this.image=n=>ii(n,this.config),this.faceTriangulation=s8,this.faceUVMap=r8,this.sysinfo=f5(),Ds(this,ui,1)}similarity(t,n){return ly(t,n)}segmentation(t,n){return B8(t,n,this.config)}enhance(t){return uy(t)}match(t,n,s=0){return o8(t,n,s)}async load(t){this.state="load";let n=Ye();t&&(this.config=gn(this.config,t)),mn(this,li)&&(this.config.debug&&ue(`version: ${o0.version}`),this.config.debug&&ue(`tfjs version: ${this.tf.version_core}`),this.config.debug&&ue("platform:",this.sysinfo.platform),this.config.debug&&ue("agent:",this.sysinfo.agent),await mn(this,bd).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&ue("configuration:",this.config),this.config.debug&&ue("tf flags:",this.tf.ENV.flags))),await W8(this),mn(this,li)&&(this.config.debug&&ue("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),Ds(this,li,!1));let s=Math.trunc(Ye()-n);s>(this.performance.load||0)&&(this.performance.load=s)}async detect(t,n){return new Promise(async s=>{this.state="config";let r,a;this.config=gn(this.config,n),this.state="check";let o=mn(this,t0).call(this,t);o&&(ue(o,t),s({error:o}));let i=Ye();await mn(this,bd).call(this),await this.load(),r=Ye();let l=ii(t,this.config);if(this.performance.image=Math.trunc(Ye()-r),this.analyze("Get Image:"),this.config.segmentation.enabled&&l&&l.tensor&&(this.analyze("Start Segmentation:"),this.state="run:segmentation",r=Ye(),await qy(l),a=Math.trunc(Ye()-r),a>0&&(this.performance.segmentation=a),l.canvas&&(K(l.tensor),l=ii(l.canvas,this.config)),this.analyze("End Segmentation:")),!l||!l.tensor){ue("could not convert input to tensor"),s({error:"could not convert input to tensor"});return}r=Ye(),this.config.skipFrame=await mn(this,n0).call(this,l.tensor),this.performance.frames||(this.performance.frames=0),this.performance.cached||(this.performance.cached=0),this.performance.frames++,this.config.skipFrame&&this.performance.cached++,this.performance.changed=Math.trunc(Ye()-r),this.analyze("Check Changed:");let u=[],c=[],d=[],h=[];this.config.async?(u=this.config.face.enabled?Xy(this,l.tensor):[],this.performance.face&&delete this.performance.face):(this.state="run:face",r=Ye(),u=this.config.face.enabled?await Xy(this,l.tensor):[],a=Math.trunc(Ye()-r),a>0&&(this.performance.face=a)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?by(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?Ey(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?c=this.config.body.enabled?$y(l.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(c=this.config.body.enabled?My(l.tensor,this.config):[]),this.performance.body&&delete this.performance.body):(this.state="run:body",r=Ye(),this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?await by(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?await Ey(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?c=this.config.body.enabled?await $y(l.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(c=this.config.body.enabled?await My(l.tensor,this.config):[]),a=Math.trunc(Ye()-r),a>0&&(this.performance.body=a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(d=this.config.hand.enabled?Ty(l.tensor,this.config):[],this.performance.hand&&delete this.performance.hand):(this.state="run:hand",r=Ye(),d=this.config.hand.enabled?await Ty(l.tensor,this.config):[],a=Math.trunc(Ye()-r),a>0&&(this.performance.hand=a)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(this.config.object.modelPath.includes("nanodet")?h=this.config.object.enabled?Wy(l.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(h=this.config.object.enabled?Gy(l.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(this.state="run:object",r=Ye(),this.config.object.modelPath.includes("nanodet")?h=this.config.object.enabled?await Wy(l.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(h=this.config.object.enabled?await Gy(l.tensor,this.config):[]),a=Math.trunc(Ye()-r),a>0&&(this.performance.object=a)),this.analyze("End Object:"),this.config.async&&([u,c,d,h]=await Promise.all([u,c,d,h]));let p=[];this.config.gesture.enabled&&(r=Ye(),p=[...U8(u),...V8(c),...G8(d),...H8(u)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=Math.trunc(Ye()-r)),this.performance.total=Math.trunc(Ye()-i),this.state="idle",this.result={face:u,body:c,hand:d,gesture:p,object:h,performance:this.performance,canvas:l.canvas,timestamp:Date.now(),get persons(){var f;return Y8(u,c,d,p,(f=l==null?void 0:l.tensor)==null?void 0:f.shape)}},K(l.tensor),s(this.result)})}async warmup(t){let n=Ye();if(t&&(this.config=gn(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let s;typeof createImageBitmap=="function"?s=await mn(this,s0).call(this):typeof Image!="undefined"?s=await mn(this,r0).call(this):s=await mn(this,a0).call(this);let r=Ye();return this.config.debug&&ue("Warmup",this.config.warmup,Math.round(r-n),"ms",s),s}},Ele=o0;xu=new WeakMap,yd=new WeakMap,xd=new WeakMap,li=new WeakMap,ui=new WeakMap,bu=new WeakMap,t0=new WeakMap,bd=new WeakMap,n0=new WeakMap,s0=new WeakMap,r0=new WeakMap,a0=new WeakMap;export{Ele as Human,Ele as default};
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|
|
//# sourceMappingURL=human.esm.js.map
|