mirror of https://github.com/vladmandic/human
5169 lines
1.3 MiB
5169 lines
1.3 MiB
|
|
/*
|
|
Human library
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var Y9=Object.defineProperty;var hm=e=>{if(typeof require!="undefined")return require(e);throw new Error('Dynamic require of "'+e+'" is not supported')};var Da=(e,t)=>{for(var n in t)Y9(e,n,{get:t[n],enumerable:!0})};var Xg=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var sn=(e,t,n)=>(Xg(e,t,"read from private field"),n?n.call(e):t.get(e)),Xn=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},Aa=(e,t,n,a)=>(Xg(e,t,"write to private field"),a?a.call(e,n):t.set(e,n),n);function Ot(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${r} Expecting JSON file`);return r}function ce(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var nt=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Kn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,a)=>(Object.keys(a||{}).forEach(r=>{let s=n[r],i=a[r];Array.isArray(s)&&Array.isArray(i)?n[r]=s.concat(...i):t(s)&&t(i)?n[r]=Kn(s,i):n[r]=i}),n),{})}var Kg={backend:"webgl",modelBasePath:"../models/",wasmPath:"../node_modules/@tensorflow/tfjs-backend-wasm/dist//",debug:!0,async:!0,warmup:"full",cacheSensitivity:.01,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!1,maxDetected:10,skipFrames:21,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:31,minConfidence:.1},emotion:{enabled:!0,minConfidence:.1,skipFrames:32,modelPath:"emotion.json"}},body:{enabled:!0,modelPath:"posenet.json",maxDetected:1,minConfidence:.1},hand:{enabled:!0,rotation:!1,skipFrames:32,minConfidence:.1,iouThreshold:.1,maxDetected:2,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:41}};function Zg(){let e,t;if(typeof navigator!="undefined"){let n=navigator.userAgent.match(/\(([^()]+)\)/g);if(n&&n[0]){let a=n[0].match(/\(([^()]+)\)/g);e=a?a[0].replace(/\(|\)/g,""):"",t=navigator.userAgent.replace(n[0],""),e[1]&&(t=t.replace(n[1],"")),t=t.replace(/ /g," ")}}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var Yd={};Da(Yd,{Abs:()=>ao,Acos:()=>ro,Acosh:()=>so,AdadeltaOptimizer:()=>th,AdagradOptimizer:()=>nh,AdamOptimizer:()=>ah,AdamaxOptimizer:()=>rh,Add:()=>Tr,AddN:()=>ls,All:()=>io,Any:()=>oo,ArgMax:()=>us,ArgMin:()=>vu,Asin:()=>lo,Asinh:()=>uo,Atan:()=>po,Atan2:()=>ho,Atanh:()=>co,AvgPool:()=>ds,AvgPool3D:()=>wu,AvgPool3DGrad:()=>zp,AvgPoolGrad:()=>Dp,BackendWasm:()=>w6,BatchMatMul:()=>ps,BatchToSpaceND:()=>ku,Bincount:()=>Op,BroadcastTo:()=>Vx,Callback:()=>f8,CallbackList:()=>i4,Cast:()=>cs,Ceil:()=>hs,ClipByValue:()=>Er,Complex:()=>_p,ComplexAbs:()=>Iu,Concat:()=>fo,Conv2D:()=>fs,Conv2DBackpropFilter:()=>Pp,Conv2DBackpropInput:()=>ms,Conv3D:()=>Su,Conv3DBackpropFilterV2:()=>Lp,Conv3DBackpropInputV2:()=>Wp,Cos:()=>As,Cosh:()=>mo,CropAndResize:()=>Ao,Cumsum:()=>ys,CustomCallback:()=>l4,DataStorage:()=>Rp,DenseBincount:()=>Bp,DepthToSpace:()=>yo,DepthwiseConv2dNative:()=>gs,DepthwiseConv2dNativeBackpropFilter:()=>Vp,DepthwiseConv2dNativeBackpropInput:()=>jp,Diag:()=>Up,Dilation2D:()=>Nu,Dilation2DBackpropFilter:()=>Gp,Dilation2DBackpropInput:()=>Hp,ENV:()=>oa,EarlyStopping:()=>A8,Einsum:()=>qp,Elu:()=>go,EluGrad:()=>Xp,Environment:()=>Wx,Equal:()=>bo,Erf:()=>xo,Exp:()=>bs,ExpandDims:()=>vo,Expm1:()=>wo,FFT:()=>Kp,Fill:()=>Tu,FlipLeftRight:()=>ko,Floor:()=>vs,FloorDiv:()=>ws,FromPixels:()=>pc,FusedBatchNorm:()=>ks,FusedConv2D:()=>ai,FusedDepthwiseConv2D:()=>ri,GPGPUContext:()=>vh,GatherNd:()=>So,GatherV2:()=>Io,GraphModel:()=>G8,Greater:()=>No,GreaterEqual:()=>Is,History:()=>o4,IFFT:()=>Zp,Identity:()=>Ss,Imag:()=>Yp,InputSpec:()=>Ft,IsFinite:()=>To,IsInf:()=>Eo,IsNan:()=>Co,KernelBackend:()=>gu,LRN:()=>Ru,LRNGrad:()=>Qp,LayerVariable:()=>t4,LayersModel:()=>mr,LeakyRelu:()=>Ns,Less:()=>Ro,LessEqual:()=>Mo,LinSpace:()=>Jp,Log:()=>Ts,Log1p:()=>Fo,LogSoftmax:()=>jx,LogicalAnd:()=>$o,LogicalNot:()=>Eu,LogicalOr:()=>Cu,MathBackendCPU:()=>lh,MathBackendWebGL:()=>Ll,Max:()=>Es,MaxPool:()=>Rs,MaxPool3D:()=>Mu,MaxPool3DGrad:()=>tc,MaxPoolGrad:()=>ec,MaxPoolWithArgmax:()=>nc,Maximum:()=>Cs,Mean:()=>Ms,Min:()=>Fs,Minimum:()=>$s,MirrorPad:()=>Ds,Mod:()=>Do,MomentumOptimizer:()=>sh,Multinomial:()=>ac,Multiply:()=>zs,Neg:()=>zo,NonMaxSuppressionV3:()=>_o,NonMaxSuppressionV4:()=>Po,NonMaxSuppressionV5:()=>Lo,NotEqual:()=>Oo,OP_SCOPE_SUFFIX:()=>eb,OneHot:()=>Os,OnesLike:()=>Wo,Optimizer:()=>pr,Pack:()=>Bo,PadV2:()=>_s,Pool:()=>JI,Pow:()=>Ps,Prelu:()=>Ls,Prod:()=>Vo,RMSPropOptimizer:()=>ih,RNN:()=>Za,Range:()=>Fu,Rank:()=>Em,Real:()=>rc,RealDiv:()=>xs,Reciprocal:()=>jo,Reduction:()=>pn,Relu:()=>Ws,Relu6:()=>Vs,Reshape:()=>Uo,ResizeBilinear:()=>Bs,ResizeBilinearGrad:()=>ic,ResizeNearestNeighbor:()=>$u,ResizeNearestNeighborGrad:()=>sc,Reverse:()=>js,RotateWithOffset:()=>rl,Round:()=>Us,Rsqrt:()=>Hs,SGDOptimizer:()=>dd,ScatterNd:()=>Ho,Select:()=>Go,Selu:()=>qo,Sequential:()=>Xl,Sigmoid:()=>qs,Sign:()=>Zo,Sin:()=>Gs,Sinh:()=>Ko,Slice:()=>Xo,Softmax:()=>Zs,Softplus:()=>Yo,SpaceToBatchND:()=>Du,SparseFillEmptyRows:()=>oc,SparseReshape:()=>lc,SparseToDense:()=>uc,SplitV:()=>Jo,Sqrt:()=>Xs,Square:()=>zu,SquaredDifference:()=>Ys,Step:()=>Rr,StridedSlice:()=>Qo,Sub:()=>Js,Sum:()=>Ks,SymbolicTensor:()=>Na,Tan:()=>Qs,Tanh:()=>ei,Tensor:()=>Le,TensorBuffer:()=>_t,Tile:()=>Cr,TopK:()=>el,Transform:()=>tl,Transpose:()=>ti,Unique:()=>dc,Unpack:()=>nl,UnsortedSegmentSum:()=>Ou,Variable:()=>ju,ZerosLike:()=>al,_FusedMatMul:()=>ni,abs:()=>Pt,acos:()=>tA,acosh:()=>nA,add:()=>se,addN:()=>kc,all:()=>Ic,any:()=>Xu,argMax:()=>Ku,argMin:()=>aA,asin:()=>rA,asinh:()=>sA,atan:()=>iA,atan2:()=>oA,atanh:()=>lA,avgPool:()=>Yu,avgPool3d:()=>pA,backend:()=>zb,backend_util:()=>C,basicLSTMCell:()=>MT,batchNorm:()=>hi,batchNorm2d:()=>Lb,batchNorm3d:()=>Wb,batchNorm4d:()=>Bb,batchToSpaceND:()=>Ju,bincount:()=>cA,booleanMaskAsync:()=>_R,broadcastTo:()=>ml,browser:()=>ui,buffer:()=>We,callbacks:()=>Xre,cast:()=>fe,ceil:()=>hA,clipByValue:()=>Sn,clone:()=>_a,complex:()=>Mr,concat:()=>ot,concat1d:()=>Vb,concat2d:()=>Al,concat3d:()=>jb,concat4d:()=>Ub,constraints:()=>$6,conv1d:()=>Nc,conv2d:()=>or,conv2dTranspose:()=>Tc,conv3d:()=>mA,conv3dTranspose:()=>Gb,copyRegisteredKernels:()=>tS,cos:()=>Qu,cosh:()=>Ec,cosineWindow:()=>VA,cumsum:()=>Cc,customGrad:()=>La,data:()=>q8,denseBincount:()=>qb,deprecationWarn:()=>Qm,depthToSpace:()=>AA,depthwiseConv2d:()=>yl,deregisterOp:()=>Zre,device_util:()=>Hu,diag:()=>iE,dilation2d:()=>yA,disableDeprecationWarnings:()=>UN,dispose:()=>Ee,disposeVariables:()=>HN,div:()=>me,divNoNan:()=>gA,dot:()=>Xb,dropout:()=>m3,einsum:()=>Kb,elu:()=>gl,enableDebugMode:()=>jN,enableProdMode:()=>VN,enclosingPowerOfTwo:()=>A3,engine:()=>ir,env:()=>J,equal:()=>Or,erf:()=>xA,exp:()=>Yn,expandDims:()=>un,expm1:()=>bA,eye:()=>vA,fft:()=>ld,fill:()=>xl,findBackend:()=>eA,findBackendFactory:()=>JN,floor:()=>bl,floorDiv:()=>wc,forceHalfFloat:()=>$v,fused:()=>Wr,gather:()=>fi,gatherND:()=>f3,gather_util:()=>Gm,getBackend:()=>ZN,getGradient:()=>Sm,getKernel:()=>cc,getKernelsForBackend:()=>il,gpgpu_util:()=>av,grad:()=>OE,grads:()=>_E,greater:()=>Fn,greaterEqual:()=>Pr,ifft:()=>Sl,imag:()=>Rc,image:()=>Ge,inTopKAsync:()=>XR,initializers:()=>W6,input:()=>M4,io:()=>kn,irfft:()=>Gc,isFinite:()=>Zb,isInf:()=>Yb,isNaN:()=>wA,keep:()=>Ht,kernel_impls:()=>ja,layers:()=>J6,leakyRelu:()=>ed,less:()=>Mc,lessEqual:()=>Lr,linalg:()=>E3,linspace:()=>Jb,loadGraphModel:()=>$t,loadLayersModel:()=>rae,localResponseNormalization:()=>kA,log:()=>$n,log1p:()=>Fc,logSigmoid:()=>e3,logSoftmax:()=>Dc,logSumExp:()=>NA,logicalAnd:()=>da,logicalNot:()=>td,logicalOr:()=>zc,logicalXor:()=>r3,losses:()=>gF,matMul:()=>Be,math:()=>Ab,max:()=>Jn,maxPool:()=>nd,maxPool3d:()=>TA,maxPoolWithArgmax:()=>s3,maximum:()=>Wa,mean:()=>wt,memory:()=>vc,meshgrid:()=>sC,metrics:()=>p8,min:()=>vl,minimum:()=>wl,mirrorPad:()=>EA,mod:()=>CA,model:()=>nae,models:()=>c8,moments:()=>Oc,movingAverage:()=>WR,mul:()=>P,multiRNNCell:()=>hC,multinomial:()=>i3,neg:()=>vt,nextFrame:()=>oh,norm:()=>Zc,notEqual:()=>yi,oneHot:()=>pl,ones:()=>Dn,onesLike:()=>zn,op:()=>z,outerProduct:()=>gC,pad:()=>lr,pad1d:()=>vC,pad2d:()=>kC,pad3d:()=>SC,pad4d:()=>TC,pool:()=>o3,pow:()=>ur,prelu:()=>rd,print:()=>db,prod:()=>_c,profile:()=>GN,rand:()=>OC,randomGamma:()=>WC,randomNormal:()=>l3,randomUniform:()=>kl,range:()=>Il,ready:()=>KN,real:()=>sd,reciprocal:()=>FA,registerBackend:()=>hl,registerCallbackConstructor:()=>sae,registerGradient:()=>Ux,registerKernel:()=>si,registerOp:()=>Kre,regularizers:()=>h8,relu:()=>Ba,relu6:()=>Pc,removeBackend:()=>YN,reshape:()=>H,reverse:()=>On,reverse1d:()=>KC,reverse2d:()=>YC,reverse3d:()=>QC,reverse4d:()=>tR,rfft:()=>ud,round:()=>Lc,rsqrt:()=>Wc,scalar:()=>Se,scatterND:()=>h3,scatter_util:()=>qm,selu:()=>Bc,separableConv2d:()=>$A,sequential:()=>aae,serialization:()=>ae,setBackend:()=>XN,setPlatform:()=>QN,setWasmPath:()=>lQ,setWasmPaths:()=>uQ,setWebGLContext:()=>fh,setdiff1dAsync:()=>u3,shared:()=>qA,sigmoid:()=>In,sign:()=>DA,signal:()=>yF,sin:()=>Vc,sinh:()=>jc,slice:()=>Re,slice1d:()=>Uc,slice2d:()=>zA,slice3d:()=>Hc,slice4d:()=>id,slice_util:()=>ln,softmax:()=>od,softplus:()=>mi,spaceToBatchND:()=>ad,sparse:()=>C3,sparseToDense:()=>BA,spectral:()=>AF,split:()=>Gt,sqrt:()=>Qt,square:()=>it,squaredDifference:()=>qc,squeeze:()=>Va,stack:()=>dn,step:()=>Nl,stridedSlice:()=>OA,sub:()=>ge,sum:()=>ke,sumOutType:()=>Ac,tan:()=>_A,tanh:()=>ci,tensor:()=>ua,tensor1d:()=>Et,tensor2d:()=>xa,tensor3d:()=>xc,tensor4d:()=>TR,tensor5d:()=>ER,tensor6d:()=>CR,tensor_util:()=>ya,test_util:()=>Fb,tidy:()=>W,tile:()=>_r,time:()=>qN,topk:()=>PA,train:()=>xi,transpose:()=>Ye,truncatedNormal:()=>Xc,unique:()=>Kc,unregisterGradient:()=>eS,unregisterKernel:()=>QI,unsortedSegmentSum:()=>LA,unstack:()=>pa,upcastType:()=>la,util:()=>k,valueAndGrad:()=>PE,valueAndGrads:()=>LE,variable:()=>d3,variableGrads:()=>Qb,version:()=>Oie,version_converter:()=>Zse,version_core:()=>BN,version_cpu:()=>u7,version_layers:()=>uy,version_wasm:()=>I6,version_webgl:()=>Fv,webgl:()=>sB,webgl_util:()=>M7,where:()=>an,whereAsync:()=>WA,zeros:()=>Rt,zerosLike:()=>Ue});var J9=Object.create,Cp=Object.defineProperty,Q9=Object.getOwnPropertyDescriptor,eI=Object.getOwnPropertyNames,tI=Object.getPrototypeOf,nI=Object.prototype.hasOwnProperty,aI=e=>Cp(e,"__esModule",{value:!0}),Qi=e=>{if(typeof hm!="undefined")return hm(e);throw new Error('Dynamic require of "'+e+'" is not supported')},xt=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Fe=(e,t)=>{for(var n in t)Cp(e,n,{get:t[n],enumerable:!0})},rI=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of eI(t))!nI.call(e,a)&&a!=="default"&&Cp(e,a,{get:()=>t[a],enumerable:!(n=Q9(t,a))||n.enumerable});return e},eo=e=>rI(aI(Cp(e!=null?J9(tI(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),sI=xt(()=>{}),iI=xt((e,t)=>{(function(n,a,r){function s(u){var d=this,p=l();d.next=function(){var c=2091639*d.s0+d.c*23283064365386963e-26;return d.s0=d.s1,d.s1=d.s2,d.s2=c-(d.c=c|0)},d.c=1,d.s0=p(" "),d.s1=p(" "),d.s2=p(" "),d.s0-=p(u),d.s0<0&&(d.s0+=1),d.s1-=p(u),d.s1<0&&(d.s1+=1),d.s2-=p(u),d.s2<0&&(d.s2+=1),p=null}function i(u,d){return d.c=u.c,d.s0=u.s0,d.s1=u.s1,d.s2=u.s2,d}function o(u,d){var p=new s(u),c=d&&d.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,p),h.state=function(){return i(p,{})}),h}function l(){var u=4022871197,d=function(p){p=p.toString();for(var c=0;c<p.length;c++){u+=p.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),oI=xt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:d+=l;for(var p=0;p<d.length+64;p++)u.x^=d.charCodeAt(p)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),lI=xt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:d+=l;for(var p=0;p<d.length+64;p++)u.x^=d.charCodeAt(p)|0,p==d.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),uI=xt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.x,c=u.i,h,m,f;return h=p[c],h^=h>>>7,m=h^h<<24,h=p[c+1&7],m^=h^h>>>10,h=p[c+3&7],m^=h^h>>>3,h=p[c+4&7],m^=h^h<<7,h=p[c+7&7],h=h^h<<13,m^=h^h<<9,p[c]=m,u.i=c+1&7,m};function d(p,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}d(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(p.x&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),dI=xt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.w,c=u.X,h=u.i,m,f;return u.w=p=p+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(p^p>>>16)|0};function d(p,c){var h,m,f,A,y,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,A=-32;A<x;++A)c&&(m^=c.charCodeAt((A+32)%c.length)),A===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,A>=0&&(y=y+1640531527|0,h=g[A&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,A=4*128;A>0;--A)m=g[f+34&127],h=g[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,g[f]=m^h;p.w=y,p.X=g,p.i=f}d(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(p.X&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),pI=xt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):d+=l;for(var p=0;p<d.length+20;p++)u.b^=d.charCodeAt(p)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Yg=xt(()=>{}),cI=xt((e,t)=>{(function(n,a){var r=this,s=256,i=6,o=52,l="random",u=a.pow(s,i),d=a.pow(2,o),p=d*2,c=s-1,h;function m(b,v,N){var T=[];v=v==!0?{entropy:!0}:v||{};var R=g(y(v.entropy?[b,w(n)]:b==null?x():b,3),T),$=new f(T),O=function(){for(var _=$.g(i),V=u,U=0;_<d;)_=(_+U)*s,V*=s,U=$.g(1);for(;_>=p;)_/=2,V/=2,U>>>=1;return(_+U)/V};return O.int32=function(){return $.g(4)|0},O.quick=function(){return $.g(4)/4294967296},O.double=O,g(w($.S),n),(v.pass||N||function(_,V,U,j){return j&&(j.S&&A(j,$),_.state=function(){return A($,{})}),U?(a[l]=_,V):_})(O,R,"global"in v?v.global:this==a,v.state)}a["seed"+l]=m;function f(b){var v,N=b.length,T=this,R=0,$=T.i=T.j=0,O=T.S=[];for(N||(b=[N++]);R<s;)O[R]=R++;for(R=0;R<s;R++)O[R]=O[$=c&$+b[R%N]+(v=O[R])],O[$]=v;(T.g=function(_){for(var V,U=0,j=T.i,X=T.j,G=T.S;_--;)V=G[j=c&j+1],U=U*s+G[c&(G[j]=G[X=c&X+V])+(G[X]=V)];return T.i=j,T.j=X,U})(s)}function A(b,v){return v.i=b.i,v.j=b.j,v.S=b.S.slice(),v}function y(b,v){var N=[],T=typeof b,R;if(v&&T=="object")for(R in b)try{N.push(y(b[R],v-1))}catch($){}return N.length?N:T=="string"?b:b+"\0"}function g(b,v){for(var N=b+"",T,R=0;R<N.length;)v[c&R]=c&(T^=v[c&R]*19)+N.charCodeAt(R++);return w(v)}function x(){try{var b;return h&&(b=h.randomBytes)?b=b(s):(b=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(b)),w(b)}catch(T){var v=r.navigator,N=v&&v.plugins;return[+new Date,r,N,r.screen,w(n)]}}function w(b){return String.fromCharCode.apply(0,b)}if(g(a.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{h=Yg()}catch(b){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),Jg=xt((e,t)=>{var n=iI(),a=oI(),r=lI(),s=uI(),i=dI(),o=pI(),l=cI();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),yu=xt(()=>{}),hI=xt(()=>{}),fI=xt(()=>{}),mI=xt((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return Q.buffer!=Ve&&Yt(Q.buffer),gn}function i(){return Q.buffer!=Ve&&Yt(Q.buffer),gt}function o(){return Q.buffer!=Ve&&Yt(Q.buffer),xn}function l(){return Q.buffer!=Ve&&Yt(Q.buffer),Gn}function u(){return Q.buffer!=Ve&&Yt(Q.buffer),rn}var d=typeof r!="undefined"?r:{},p,c;d.ready=new Promise(function(S,E){p=S,c=E});var h={},m;for(m in d)d.hasOwnProperty(m)&&(h[m]=d[m]);var f=[],A="./this.program",y=function(S,E){throw E},g=!1,x=!1,w=!1,b=!1;g=typeof window=="object",x=typeof importScripts=="function",w=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",b=!g&&!w&&!x;var v=d.ENVIRONMENT_IS_PTHREAD||!1;v&&(Ve=d.buffer);var N="";function T(S){return d.locateFile?d.locateFile(S,N):N+S}var R,$,O,_,V,U;if(w){x?N=yu().dirname(N)+"/":N=__dirname+"/",R=function(S,E){return V||(V=Qi("fs")),U||(U=yu()),S=U.normalize(S),V.readFileSync(S,E?null:"utf8")},O=function(S){var E=R(S,!0);return E.buffer||(E=new Uint8Array(E)),he(E.buffer),E},process.argv.length>1&&(A=process.argv[1].replace(/\\/g,"/")),f=process.argv.slice(2),process.on("uncaughtException",function(S){if(!(S instanceof Au))throw S}),process.on("unhandledRejection",tr),y=function(S){process.exit(S)},d.inspect=function(){return"[Emscripten Module object]"};var j;try{j=hI()}catch(S){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),S}global.Worker=j.Worker}else b?(typeof read!="undefined"&&(R=function(S){return read(S)}),O=function(S){var E;return typeof readbuffer=="function"?new Uint8Array(readbuffer(S)):(E=read(S,"binary"),he(typeof E=="object"),E)},typeof scriptArgs!="undefined"?f=scriptArgs:typeof arguments!="undefined"&&(f=arguments),typeof quit=="function"&&(y=function(S){quit(S)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(g||x)&&(x?N=self.location.href:typeof document!="undefined"&&document.currentScript&&(N=document.currentScript.src),typeof a!="undefined"&&a&&(N=a),N.indexOf("blob:")!==0?N=N.substr(0,N.lastIndexOf("/")+1):N="",w?(R=function(S,E){return V||(V=Qi("fs")),U||(U=yu()),S=U.normalize(S),V.readFileSync(S,E?null:"utf8")},O=function(S){var E=R(S,!0);return E.buffer||(E=new Uint8Array(E)),he(E.buffer),E}):(R=function(S){var E=new XMLHttpRequest;return E.open("GET",S,!1),E.send(null),E.responseText},x&&(O=function(S){var E=new XMLHttpRequest;return E.open("GET",S,!1),E.responseType="arraybuffer",E.send(null),new Uint8Array(E.response)}),$=function(S,E,L){var q=new XMLHttpRequest;q.open("GET",S,!0),q.responseType="arraybuffer",q.onload=function(){if(q.status==200||q.status==0&&q.response){E(q.response);return}L()},q.onerror=L,q.send(null)}),_=function(S){document.title=S});w&&typeof performance=="undefined"&&(global.performance=fI().performance);var X=d.print||console.log.bind(console),G=d.printErr||console.warn.bind(console);for(m in h)h.hasOwnProperty(m)&&(d[m]=h[m]);h=null,d.arguments&&(f=d.arguments),d.thisProgram&&(A=d.thisProgram),d.quit&&(y=d.quit);var ee=Atomics.load,Y=Atomics.store,re=Atomics.compareExchange,ne;d.wasmBinary&&(ne=d.wasmBinary);var ie=d.noExitRuntime||!0;typeof WebAssembly!="object"&&tr("no native wasm support detected");var Q,de,oe=!1,ye;function he(S,E){S||tr("Assertion failed: "+E)}function Ie(S){var E=d["_"+S];return he(E,"Cannot call unknown function "+S+", make sure it is exported"),E}function Ne(S,E,L,q,pe){var le={string:function(wn){var Ji=0;if(wn!=null&&wn!==0){var qg=(wn.length<<2)+1;Ji=Ki(qg),et(wn,Ji,qg)}return Ji},array:function(wn){var Ji=Ki(wn.length);return Ke(wn,Ji),Ji}};function ue(wn){return E==="string"?De(wn):E==="boolean"?Boolean(wn):wn}var be=Ie(S),tt=[],jt=0;if(q)for(var zt=0;zt<q.length;zt++){var Ir=le[L[zt]];Ir?(jt===0&&(jt=mu()),tt[zt]=Ir(q[zt])):tt[zt]=q[zt]}var Yi=be.apply(null,tt);return Yi=ue(Yi),jt!==0&&Xi(jt),Yi}function $e(S,E,L,q){L=L||[];var pe=L.every(function(ue){return ue==="number"}),le=E!=="string";return le&&pe&&!q?Ie(S):function(){return Ne(S,E,L,arguments,q)}}function Oe(S,E,L){for(var q=E+L,pe="";!(E>=q);){var le=S[E++];if(!le)return pe;if(!(le&128)){pe+=String.fromCharCode(le);continue}var ue=S[E++]&63;if((le&224)==192){pe+=String.fromCharCode((le&31)<<6|ue);continue}var be=S[E++]&63;if((le&240)==224?le=(le&15)<<12|ue<<6|be:le=(le&7)<<18|ue<<12|be<<6|S[E++]&63,le<65536)pe+=String.fromCharCode(le);else{var tt=le-65536;pe+=String.fromCharCode(55296|tt>>10,56320|tt&1023)}}return pe}function De(S,E){return S?Oe(i(),S,E):""}function Qe(S,E,L,q){if(!(q>0))return 0;for(var pe=L,le=L+q-1,ue=0;ue<S.length;++ue){var be=S.charCodeAt(ue);if(be>=55296&&be<=57343){var tt=S.charCodeAt(++ue);be=65536+((be&1023)<<10)|tt&1023}if(be<=127){if(L>=le)break;E[L++]=be}else if(be<=2047){if(L+1>=le)break;E[L++]=192|be>>6,E[L++]=128|be&63}else if(be<=65535){if(L+2>=le)break;E[L++]=224|be>>12,E[L++]=128|be>>6&63,E[L++]=128|be&63}else{if(L+3>=le)break;E[L++]=240|be>>18,E[L++]=128|be>>12&63,E[L++]=128|be>>6&63,E[L++]=128|be&63}}return E[L]=0,L-pe}function et(S,E,L){return Qe(S,i(),E,L)}function st(S){for(var E=0,L=0;L<S.length;++L){var q=S.charCodeAt(L);q>=55296&&q<=57343&&(q=65536+((q&1023)<<10)|S.charCodeAt(++L)&1023),q<=127?++E:q<=2047?E+=2:q<=65535?E+=3:E+=4}return E}function Ke(S,E){s().set(S,E)}function dt(S,E){return S%E>0&&(S+=E-S%E),S}var Ve,gn,gt,Hn,Zt,xn,Gn,Mn,rn;function Yt(S){Ve=S,d.HEAP8=gn=new Int8Array(S),d.HEAP16=Hn=new Int16Array(S),d.HEAP32=xn=new Int32Array(S),d.HEAPU8=gt=new Uint8Array(S),d.HEAPU16=Zt=new Uint16Array(S),d.HEAPU32=Gn=new Uint32Array(S),d.HEAPF32=Mn=new Float32Array(S),d.HEAPF64=rn=new Float64Array(S)}var Fa=d.INITIAL_MEMORY||16777216;if(v)Q=d.wasmMemory,Ve=d.buffer;else if(d.wasmMemory)Q=d.wasmMemory;else if(Q=new WebAssembly.Memory({initial:Fa/65536,maximum:2147483648/65536,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw G("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),w&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(Ve=Q.buffer),Fa=Ve.byteLength,Yt(Ve);var aa,ra=[],gr=[],Qa=[],xr=[],Vi=[],$a=!1,op=!1;v||gr.push({func:function(){wp()}});function V0(){if(!v){if(d.preRun)for(typeof d.preRun=="function"&&(d.preRun=[d.preRun]);d.preRun.length;)up(d.preRun.shift());Ui(ra)}}function iu(){$a=!0,!v&&Ui(gr)}function j0(){v||Ui(Qa)}function lp(){v||(op=!0)}function bn(){if(!v){if(d.postRun)for(typeof d.postRun=="function"&&(d.postRun=[d.postRun]);d.postRun.length;)U0(d.postRun.shift());Ui(Vi)}}function up(S){ra.unshift(S)}function U0(S){Vi.unshift(S)}var er=0,br=null,as=null;function H0(S){he(!v,"addRunDependency cannot be used in a pthread worker"),er++,d.monitorRunDependencies&&d.monitorRunDependencies(er)}function G0(S){if(er--,d.monitorRunDependencies&&d.monitorRunDependencies(er),er==0&&(br!==null&&(clearInterval(br),br=null),as)){var E=as;as=null,E()}}d.preloadedImages={},d.preloadedAudios={};function tr(S){d.onAbort&&d.onAbort(S),v&&console.error("Pthread aborting at "+new Error().stack),S+="",G(S),oe=!0,ye=1,S="abort("+S+"). Build with -s ASSERTIONS=1 for more info.";var E=new WebAssembly.RuntimeError(S);throw c(E),E}function dp(S,E){return String.prototype.startsWith?S.startsWith(E):S.indexOf(E)===0}var ji="data:application/octet-stream;base64,";function pp(S){return dp(S,ji)}var q0="file://";function cp(S){return dp(S,q0)}var vn="tfjs-backend-wasm-threaded-simd.wasm";pp(vn)||(vn=T(vn));function hp(S){try{if(S==vn&&ne)return new Uint8Array(ne);if(O)return O(S);throw"both async and sync fetching of the wasm failed"}catch(E){tr(E)}}function X0(){if(!ne&&(g||x)){if(typeof fetch=="function"&&!cp(vn))return fetch(vn,{credentials:"same-origin"}).then(function(S){if(!S.ok)throw"failed to load wasm binary file at '"+vn+"'";return S.arrayBuffer()}).catch(function(){return hp(vn)});if($)return new Promise(function(S,E){$(vn,function(L){S(new Uint8Array(L))},E)})}return Promise.resolve().then(function(){return hp(vn)})}function K0(){var S={a:Wf};function E(ue,be){var tt=ue.exports;if(d.asm=tt,aa=d.asm.F,de=be,!v){var jt=we.unusedWorkers.length;we.unusedWorkers.forEach(function(zt){we.loadWasmModuleToWorker(zt,function(){--jt||G0("wasm-instantiate")})})}}v||H0("wasm-instantiate");function L(ue){E(ue.instance,ue.module)}function q(ue){return X0().then(function(be){return WebAssembly.instantiate(be,S)}).then(ue,function(be){G("failed to asynchronously prepare wasm: "+be),tr(be)})}function pe(){return!ne&&typeof WebAssembly.instantiateStreaming=="function"&&!pp(vn)&&!cp(vn)&&typeof fetch=="function"?fetch(vn,{credentials:"same-origin"}).then(function(ue){var be=WebAssembly.instantiateStreaming(ue,S);return be.then(L,function(tt){return G("wasm streaming compile failed: "+tt),G("falling back to ArrayBuffer instantiation"),q(L)})}):q(L)}if(d.instantiateWasm)try{var le=d.instantiateWasm(S,E);return le}catch(ue){return G("Module.instantiateWasm callback failed with error: "+ue),!1}return pe().catch(c),{}}var Z0={9816:function(){throw"Canceled!"},9834:function(S,E){setTimeout(function(){Bg(S,E)},0)}};function fp(){we.initRuntime()}function Ui(S){for(;S.length>0;){var E=S.shift();if(typeof E=="function"){E(d);continue}var L=E.func;typeof L=="number"?E.arg===void 0?aa.get(L)():aa.get(L)(E.arg):L(E.arg===void 0?null:E.arg)}}function ou(S,E){if(S<=0||S>s().length||S&!0||E<0)return-28;if(E==0)return 0;E>=2147483647&&(E=Infinity);var L=Atomics.load(o(),Zi>>2),q=0;if(L==S){var pe=Atomics.compareExchange(o(),Zi>>2,L,0);if(pe==L&&(--E,q=1,E<=0))return 1}var le=Atomics.notify(o(),S>>2,E);if(le>=0)return le+q;throw"Atomics.notify returned an unexpected value "+le}d._emscripten_futex_wake=ou;function Y0(S){if(v)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in killThread!";o()[S+12>>2]=0;var E=we.pthreads[S];E.worker.terminate(),we.freeThreadData(E),we.runningWorkers.splice(we.runningWorkers.indexOf(E.worker),1),E.worker.pthread=void 0}function J0(S){if(v)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cancelThread!";var E=we.pthreads[S];E.worker.postMessage({cmd:"cancel"})}function Q0(S){if(v)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cleanupThread!";var E=we.pthreads[S];if(E){o()[S+12>>2]=0;var L=E.worker;we.returnWorkerToPool(L)}}var we={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var S=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),E=0;E<S;++E)we.allocateUnusedWorker()},initRuntime:function(){for(var S=ss(228),E=0;E<228/4;++E)l()[S/4+E]=0;o()[S+12>>2]=S;var L=S+152;o()[L>>2]=L;for(var q=ss(512),E=0;E<128;++E)l()[q/4+E]=0;Atomics.store(l(),S+100>>2,q),Atomics.store(l(),S+40>>2,S),pm(S,!x,1),Wg(S)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;we.threadExitHandlers.length>0;)we.threadExitHandlers.pop()();v&&qi()&&Lg()},runExitHandlersAndDeinitThread:function(S,E){Atomics.store(l(),S+56>>2,1),Atomics.store(l(),S+60>>2,0),we.runExitHandlers(),Atomics.store(l(),S+4>>2,E),Atomics.store(l(),S+0>>2,1),ou(S+0,2147483647),pm(0,0,0)},threadExit:function(S){var E=qi();E&&(we.runExitHandlersAndDeinitThread(E,S),v&&postMessage({cmd:"exit"}))},threadCancel:function(){we.runExitHandlersAndDeinitThread(qi(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var S in we.pthreads){var E=we.pthreads[S];E&&E.worker&&we.returnWorkerToPool(E.worker)}we.pthreads={};for(var L=0;L<we.unusedWorkers.length;++L){var q=we.unusedWorkers[L];q.terminate()}we.unusedWorkers=[];for(var L=0;L<we.runningWorkers.length;++L){var q=we.runningWorkers[L],E=q.pthread;we.freeThreadData(E),q.terminate()}we.runningWorkers=[]},freeThreadData:function(S){if(S){if(S.threadInfoStruct){var E=o()[S.threadInfoStruct+100>>2];o()[S.threadInfoStruct+100>>2]=0,fu(E),fu(S.threadInfoStruct)}S.threadInfoStruct=0,S.allocatedOwnStack&&S.stackBase&&fu(S.stackBase),S.stackBase=0,S.worker&&(S.worker.pthread=null)}},returnWorkerToPool:function(S){we.runWithoutMainThreadQueuedCalls(function(){delete we.pthreads[S.pthread.threadInfoStruct],we.unusedWorkers.push(S),we.runningWorkers.splice(we.runningWorkers.indexOf(S),1),we.freeThreadData(S.pthread),S.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(S){o()[Gg>>2]=0;try{S()}finally{o()[Gg>>2]=1}},receiveObjectTransfer:function(S){},loadWasmModuleToWorker:function(S,E){S.onmessage=function(L){var q=L.data,pe=q.cmd;if(S.pthread&&(we.currentProxiedOperationCallerThread=S.pthread.threadInfoStruct),q.targetThread&&q.targetThread!=qi()){var le=we.pthreads[q.targetThread];le?le.worker.postMessage(L.data,q.transferList):console.error('Internal error! Worker sent a message "'+pe+'" to target pthread '+q.targetThread+", but that thread no longer exists!"),we.currentProxiedOperationCallerThread=void 0;return}if(pe==="processQueuedMainThreadWork")um();else if(pe==="spawnThread")bp(L.data);else if(pe==="cleanupThread")Q0(q.thread);else if(pe==="killThread")Y0(q.thread);else if(pe==="cancelThread")J0(q.thread);else if(pe==="loaded")S.loaded=!0,E&&E(S),S.runPthread&&(S.runPthread(),delete S.runPthread);else if(pe==="print")X("Thread "+q.threadId+": "+q.text);else if(pe==="printErr")G("Thread "+q.threadId+": "+q.text);else if(pe==="alert")alert("Thread "+q.threadId+": "+q.text);else if(pe==="exit"){var ue=S.pthread&&Atomics.load(l(),S.pthread.threadInfoStruct+64>>2);ue&&we.returnWorkerToPool(S)}else if(pe==="exitProcess")try{Z9(q.returnCode)}catch(be){if(be instanceof Au)return;throw be}else pe==="cancelDone"?we.returnWorkerToPool(S):pe==="objectTransfer"?we.receiveObjectTransfer(L.data):L.data.target==="setimmediate"?S.postMessage(L.data):G("worker sent an unknown command "+pe);we.currentProxiedOperationCallerThread=void 0},S.onerror=function(L){G("pthread sent an error! "+L.filename+":"+L.lineno+": "+L.message)},w&&(S.on("message",function(L){S.onmessage({data:L})}),S.on("error",function(L){S.onerror(L)}),S.on("exit",function(L){})),S.postMessage({cmd:"load",urlOrBlob:d.mainScriptUrlOrBlob||a,wasmMemory:Q,wasmModule:de})},allocateUnusedWorker:function(){var S=T("tfjs-backend-wasm-threaded-simd.worker.js");we.unusedWorkers.push(new Worker(S))},getNewWorker:function(){return we.unusedWorkers.length==0&&(we.allocateUnusedWorker(),we.loadWasmModuleToWorker(we.unusedWorkers[0])),we.unusedWorkers.length>0?we.unusedWorkers.pop():null},busySpinWait:function(S){for(var E=performance.now()+S;performance.now()<E;);}};function ef(S,E){Ug(S,E),Xi(S)}d.establishStackSpace=ef;function tf(){return ie}d.getNoExitRuntime=tf;function nf(S,E){return aa.get(S)(E)}d.invokeEntryPoint=nf;function af(S,E,L,q){tr("Assertion failed: "+De(S)+", at: "+[E?De(E):"unknown filename",L,q?De(q):"unknown function"])}function rf(S,E){var L=_main(S,E)}var rs;w?rs=function(){var S=process.hrtime();return S[0]*1e3+S[1]/1e6}:v?rs=function(){return performance.now()-d.__performance_now_clock_drift}:typeof dateNow!="undefined"?rs=dateNow:rs=function(){return performance.now()};function sf(S){return o()[_g()>>2]=S,S}function of(S,E){if(v)return vr(1,1,S,E)}function lf(S,E){if(S==E)postMessage({cmd:"processQueuedMainThreadWork"});else if(v)postMessage({targetThread:S,cmd:"processThreadQueue"});else{var L=we.pthreads[S],q=L&&L.worker;if(!q)return;q.postMessage({cmd:"processThreadQueue"})}return 1}function uf(){tr()}function df(S,E,L){var q=mf(E,L);return Z0[S].apply(null,q)}function pf(S,E){}function cf(S,E,L){if(S<=0||S>s().length||S&!0)return-28;if(g){if(Atomics.load(o(),S>>2)!=E)return-6;for(var q=performance.now(),pe=q+L,le=Atomics.exchange(o(),Zi>>2,S);;){if(q=performance.now(),q>pe)return le=Atomics.exchange(o(),Zi>>2,0),-73;if(le=Atomics.exchange(o(),Zi>>2,0),le==0)break;if(um(),Atomics.load(o(),S>>2)!=E)return-6;le=Atomics.exchange(o(),Zi>>2,S)}return 0}else{var ue=Atomics.wait(o(),S>>2,E,L);if(ue==="timed-out")return-73;if(ue==="not-equal")return-6;if(ue==="ok")return 0;throw"Atomics.wait returned an unexpected value "+ue}}function hf(S,E,L){i().copyWithin(S,E,E+L)}function ff(){return w?Qi("os").cpus().length:navigator.hardwareConcurrency}function vr(S,E){for(var L=arguments.length-2,q=mu(),pe=L,le=Ki(pe*8),ue=le>>3,be=0;be<L;be++){var tt=arguments[2+be];u()[ue+be]=tt}var jt=jg(S,pe,le,E);return Xi(q),jt}var lu=[],uu=[];function mf(S,E){uu.length=0;var L;for(E>>=2;L=i()[S++];){var q=L<105;q&&E&1&&E++,uu.push(q?u()[E++>>1]:o()[E]),++E}return uu}function Af(S,E,L){lu.length=E;for(var q=L>>3,pe=0;pe<E;pe++)lu[pe]=u()[q+pe];var le=S<0,ue=le?Z0[-S-1]:Lf[S];return ue.apply(null,lu)}function yf(){return i().length}function gf(S){try{return Q.grow(S-Ve.byteLength+65535>>>16),Yt(Q.buffer),1}catch(E){}}function xf(S){var E=yf();if(S<=E)return!1;var L=2147483648;if(S>L)return!1;for(var q=1;q<=4;q*=2){var pe=E*(1+.2/q);pe=Math.min(pe,S+100663296);var le=Math.min(L,dt(Math.max(S,pe),65536)),ue=gf(le);if(ue)return!0}return!1}var Pe={inEventHandler:0,removeAllEventListeners:function(){for(var S=Pe.eventHandlers.length-1;S>=0;--S)Pe._removeHandler(S);Pe.eventHandlers=[],Pe.deferredCalls=[]},registerRemoveEventListeners:function(){Pe.removeEventListenersRegistered||(xr.push(Pe.removeAllEventListeners),Pe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(S,E,L){function q(ue,be){if(ue.length!=be.length)return!1;for(var tt in ue)if(ue[tt]!=be[tt])return!1;return!0}for(var pe in Pe.deferredCalls){var le=Pe.deferredCalls[pe];if(le.targetFunction==S&&q(le.argsList,L))return}Pe.deferredCalls.push({targetFunction:S,precedence:E,argsList:L}),Pe.deferredCalls.sort(function(ue,be){return ue.precedence<be.precedence})},removeDeferredCalls:function(S){for(var E=0;E<Pe.deferredCalls.length;++E)Pe.deferredCalls[E].targetFunction==S&&(Pe.deferredCalls.splice(E,1),--E)},canPerformEventHandlerRequests:function(){return Pe.inEventHandler&&Pe.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Pe.canPerformEventHandlerRequests())for(var S=0;S<Pe.deferredCalls.length;++S){var E=Pe.deferredCalls[S];Pe.deferredCalls.splice(S,1),--S,E.targetFunction.apply(null,E.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(S,E){for(var L=0;L<Pe.eventHandlers.length;++L)Pe.eventHandlers[L].target==S&&(!E||E==Pe.eventHandlers[L].eventTypeString)&&Pe._removeHandler(L--)},_removeHandler:function(S){var E=Pe.eventHandlers[S];E.target.removeEventListener(E.eventTypeString,E.eventListenerFunc,E.useCapture),Pe.eventHandlers.splice(S,1)},registerOrRemoveHandler:function(S){var E=function(q){++Pe.inEventHandler,Pe.currentEventHandler=S,Pe.runDeferredCalls(),S.handlerFunc(q),Pe.runDeferredCalls(),--Pe.inEventHandler};if(S.callbackfunc)S.eventListenerFunc=E,S.target.addEventListener(S.eventTypeString,E,S.useCapture),Pe.eventHandlers.push(S),Pe.registerRemoveEventListeners();else for(var L=0;L<Pe.eventHandlers.length;++L)Pe.eventHandlers[L].target==S.target&&Pe.eventHandlers[L].eventTypeString==S.eventTypeString&&Pe._removeHandler(L--)},queueEventHandlerOnThread_iiii:function(S,E,L,q,pe){var le=mu(),ue=Ki(12);o()[ue>>2]=L,o()[ue+4>>2]=q,o()[ue+8>>2]=pe,dm(0,S,637534208,E,q,ue),Xi(le)},getTargetThreadForEventCallback:function(S){switch(S){case 1:return 0;case 2:return we.currentProxiedOperationCallerThread;default:return S}},getNodeNameForTarget:function(S){return S?S==window?"#window":S==screen?"#screen":S&&S.nodeName?S.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function bf(S){var E=st(S)+1,L=ss(E);return et(S,L,E),L}function vf(S,E,L,q){var pe=mu(),le=Ki(12),ue=0;E&&(ue=bf(E)),o()[le>>2]=ue,o()[le+4>>2]=L,o()[le+8>>2]=q,dm(0,S,657457152,0,ue,le),Xi(pe)}function wf(S,E,L,q){E=E?De(E):"",vf(S,E,L,q)}function kf(S){return S>2?De(S):S}var If=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function Sf(S){S=kf(S);var E=If[S]||(typeof document!="undefined"?document.querySelector(S):void 0);return E}function du(S){return Sf(S)}function mp(S,E,L){var q=du(S);if(!q)return-4;if(q.canvasSharedPtr&&(o()[q.canvasSharedPtr>>2]=E,o()[q.canvasSharedPtr+4>>2]=L),q.offscreenCanvas||!q.controlTransferredOffscreen){q.offscreenCanvas&&(q=q.offscreenCanvas);var pe=!1;if(q.GLctxObject&&q.GLctxObject.GLctx){var le=q.GLctxObject.GLctx.getParameter(2978);pe=le[0]===0&&le[1]===0&&le[2]===q.width&&le[3]===q.height}q.width=E,q.height=L,pe&&q.GLctxObject.GLctx.viewport(0,0,E,L)}else if(q.canvasSharedPtr){var ue=o()[q.canvasSharedPtr+8>>2];return wf(ue,S,E,L),1}else return-4;return 0}function Ap(S,E,L){return v?vr(2,1,S,E,L):mp(S,E,L)}function Nf(S,E,L){var q=du(S);return q?mp(S,E,L):Ap(S,E,L)}function Tf(S){}function Ef(S,E){}function Cf(S){var E=S.getExtension("ANGLE_instanced_arrays");if(E)return S.vertexAttribDivisor=function(L,q){E.vertexAttribDivisorANGLE(L,q)},S.drawArraysInstanced=function(L,q,pe,le){E.drawArraysInstancedANGLE(L,q,pe,le)},S.drawElementsInstanced=function(L,q,pe,le,ue){E.drawElementsInstancedANGLE(L,q,pe,le,ue)},1}function Rf(S){var E=S.getExtension("OES_vertex_array_object");if(E)return S.createVertexArray=function(){return E.createVertexArrayOES()},S.deleteVertexArray=function(L){E.deleteVertexArrayOES(L)},S.bindVertexArray=function(L){E.bindVertexArrayOES(L)},S.isVertexArray=function(L){return E.isVertexArrayOES(L)},1}function Mf(S){var E=S.getExtension("WEBGL_draw_buffers");if(E)return S.drawBuffers=function(L,q){E.drawBuffersWEBGL(L,q)},1}function Ff(S){return!!(S.multiDrawWebgl=S.getExtension("WEBGL_multi_draw"))}var Je={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(S){Je.lastError||(Je.lastError=S)},getNewId:function(S){for(var E=Je.counter++,L=S.length;L<E;L++)S[L]=null;return E},getSource:function(S,E,L,q){for(var pe="",le=0;le<E;++le){var ue=q?o()[q+le*4>>2]:-1;pe+=De(o()[L+le*4>>2],ue<0?void 0:ue)}return pe},createContext:function(S,E){var L=S.getContext("webgl",E);if(!L)return 0;var q=Je.registerContext(L,E);return q},registerContext:function(S,E){var L=ss(8);o()[L+4>>2]=qi();var q={handle:L,attributes:E,version:E.majorVersion,GLctx:S};return S.canvas&&(S.canvas.GLctxObject=q),Je.contexts[L]=q,(typeof E.enableExtensionsByDefault=="undefined"||E.enableExtensionsByDefault)&&Je.initExtensions(q),L},makeContextCurrent:function(S){return Je.currentContext=Je.contexts[S],d.ctx=wr=Je.currentContext&&Je.currentContext.GLctx,!(S&&!wr)},getContext:function(S){return Je.contexts[S]},deleteContext:function(S){Je.currentContext===Je.contexts[S]&&(Je.currentContext=null),typeof Pe=="object"&&Pe.removeAllHandlersOnTarget(Je.contexts[S].GLctx.canvas),Je.contexts[S]&&Je.contexts[S].GLctx.canvas&&(Je.contexts[S].GLctx.canvas.GLctxObject=void 0),fu(Je.contexts[S].handle),Je.contexts[S]=null},initExtensions:function(S){if(S||(S=Je.currentContext),!S.initExtensionsDone){S.initExtensionsDone=!0;var E=S.GLctx;Cf(E),Rf(E),Mf(E),E.disjointTimerQueryExt=E.getExtension("EXT_disjoint_timer_query"),Ff(E);var L=E.getSupportedExtensions()||[];L.forEach(function(q){q.indexOf("lose_context")<0&&q.indexOf("debug")<0&&E.getExtension(q)})}},populateUniformTable:function(S){for(var E=Je.programs[S],L=Je.programInfos[S]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},q=L.uniforms,pe=wr.getProgramParameter(E,35718),le=0;le<pe;++le){var ue=wr.getActiveUniform(E,le),be=ue.name;L.maxUniformLength=Math.max(L.maxUniformLength,be.length+1),be.slice(-1)=="]"&&(be=be.slice(0,be.lastIndexOf("[")));var tt=wr.getUniformLocation(E,be);if(tt){var jt=Je.getNewId(Je.uniforms);q[be]=[ue.size,jt],Je.uniforms[jt]=tt;for(var zt=1;zt<ue.size;++zt){var Ir=be+"["+zt+"]";tt=wr.getUniformLocation(E,Ir),jt=Je.getNewId(Je.uniforms),Je.uniforms[jt]=tt}}}}},$f=["default","low-power","high-performance"];function Df(S,E){var L=E>>2,q=o()[L+(24>>2)],pe={alpha:!!o()[L+(0>>2)],depth:!!o()[L+(4>>2)],stencil:!!o()[L+(8>>2)],antialias:!!o()[L+(12>>2)],premultipliedAlpha:!!o()[L+(16>>2)],preserveDrawingBuffer:!!o()[L+(20>>2)],powerPreference:$f[q],failIfMajorPerformanceCaveat:!!o()[L+(28>>2)],majorVersion:o()[L+(32>>2)],minorVersion:o()[L+(36>>2)],enableExtensionsByDefault:o()[L+(40>>2)],explicitSwapControl:o()[L+(44>>2)],proxyContextToMainThread:o()[L+(48>>2)],renderViaOffscreenBackBuffer:o()[L+(52>>2)]},le=du(S);if(!le||pe.explicitSwapControl)return 0;var ue=Je.createContext(le,pe);return ue}function zf(S,E){return Df(S,E)}var Hi={mappings:{},buffers:[null,[],[]],printChar:function(S,E){var L=Hi.buffers[S];E===0||E===10?((S===1?X:G)(Oe(L,0)),L.length=0):L.push(E)},varargs:void 0,get:function(){Hi.varargs+=4;var S=o()[Hi.varargs-4>>2];return S},getStr:function(S){var E=De(S);return E},get64:function(S,E){return S}};function yp(S){return v?vr(3,1,S):0}function gp(S,E,L,q,pe){if(v)return vr(4,1,S,E,L,q,pe)}function xp(S,E,L,q){if(v)return vr(5,1,S,E,L,q);for(var pe=0,le=0;le<L;le++){for(var ue=o()[E+le*8>>2],be=o()[E+(le*8+4)>>2],tt=0;tt<be;tt++)Hi.printChar(S,i()[ue+tt]);pe+=be}return o()[q>>2]=pe,0}function Of(S){var E=we.threadExitHandlers.pop();S&&E()}function _f(S,E){we.threadExitHandlers.push(function(){aa.get(S)(E)})}function bp(S){if(v)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var E=we.getNewWorker();if(E.pthread!==void 0)throw"Internal error!";if(!S.pthread_ptr)throw"Internal error, no pthread ptr!";we.runningWorkers.push(E);for(var L=ss(128*4),q=0;q<128;++q)o()[L+q*4>>2]=0;var pe=S.stackBase+S.stackSize,le=we.pthreads[S.pthread_ptr]={worker:E,stackBase:S.stackBase,stackSize:S.stackSize,allocatedOwnStack:S.allocatedOwnStack,threadInfoStruct:S.pthread_ptr},ue=le.threadInfoStruct>>2;Atomics.store(l(),ue+(64>>2),S.detached),Atomics.store(l(),ue+(100>>2),L),Atomics.store(l(),ue+(40>>2),le.threadInfoStruct),Atomics.store(l(),ue+(80>>2),S.stackSize),Atomics.store(l(),ue+(76>>2),pe),Atomics.store(l(),ue+(104>>2),S.stackSize),Atomics.store(l(),ue+(104+8>>2),pe),Atomics.store(l(),ue+(104+12>>2),S.detached);var be=Pg(),tt=be+40;Atomics.store(l(),ue+(172>>2),tt),E.pthread=le;var jt={cmd:"run",start_routine:S.startRoutine,arg:S.arg,threadInfoStruct:S.pthread_ptr,stackBase:S.stackBase,stackSize:S.stackSize};E.runPthread=function(){jt.time=performance.now(),E.postMessage(jt,S.transferList)},E.loaded&&(E.runPthread(),delete E.runPthread)}function Pf(S,E,L,q){if(typeof SharedArrayBuffer=="undefined")return G("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!S)return G("pthread_create called with a null thread pointer!"),28;var pe=[],le=0;if(v&&(pe.length===0||le))return Vg(687865856,S,E,L,q);if(le)return le;var ue=0,be=0,tt=0;E&&E!=-1?(ue=o()[E>>2],ue+=81920,be=o()[E+8>>2],tt=o()[E+12>>2]!==0):ue=2097152;var jt=be==0;jt?be=Hg(16,ue):(be-=ue,he(be>0));for(var zt=ss(228),Ir=0;Ir<228>>2;++Ir)l()[(zt>>2)+Ir]=0;o()[S>>2]=zt,o()[zt+12>>2]=zt;var Yi=zt+152;o()[Yi>>2]=Yi;var wn={stackBase:be,stackSize:ue,allocatedOwnStack:jt,detached:tt,startRoutine:L,pthread_ptr:zt,arg:q,transferList:pe};return v?(wn.cmd="spawnThread",postMessage(wn,pe)):bp(wn),0}function vp(S){if(v)return vr(6,1,S);switch(S){case 30:return 16384;case 85:var E=2147483648;return E/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return sf(28),-1}v||we.initMainThreadBlock();var wr,Lf=[null,of,Ap,yp,gp,xp,vp],Wf={e:af,r:rf,x:lf,b:uf,y:df,j:pf,c:cf,d:ou,f:rs,p:hf,z:ff,u:Af,q:xf,v:Nf,i:Tf,t:Ef,w:zf,m:yp,n:gp,g:xp,o:fp,a:Q||d.wasmMemory,k:Of,l:_f,h:Pf,s:vp},Og=K0(),wp=d.___wasm_call_ctors=function(){return(wp=d.___wasm_call_ctors=d.asm.A).apply(null,arguments)},Bf=d._init=function(){return(Bf=d._init=d.asm.B).apply(null,arguments)},Vf=d._register_tensor=function(){return(Vf=d._register_tensor=d.asm.C).apply(null,arguments)},jf=d._dispose_data=function(){return(jf=d._dispose_data=d.asm.D).apply(null,arguments)},Uf=d._dispose=function(){return(Uf=d._dispose=d.asm.E).apply(null,arguments)},Hf=d._Abs=function(){return(Hf=d._Abs=d.asm.G).apply(null,arguments)},Gf=d._Add=function(){return(Gf=d._Add=d.asm.H).apply(null,arguments)},qf=d._AddN=function(){return(qf=d._AddN=d.asm.I).apply(null,arguments)},Xf=d._All=function(){return(Xf=d._All=d.asm.J).apply(null,arguments)},Kf=d._Any=function(){return(Kf=d._Any=d.asm.K).apply(null,arguments)},Zf=d._ArgMax=function(){return(Zf=d._ArgMax=d.asm.L).apply(null,arguments)},Yf=d._AvgPool=function(){return(Yf=d._AvgPool=d.asm.M).apply(null,arguments)},Jf=d._BatchMatMul=function(){return(Jf=d._BatchMatMul=d.asm.N).apply(null,arguments)},Qf=d._Ceil=function(){return(Qf=d._Ceil=d.asm.O).apply(null,arguments)},em=d._ClipByValue=function(){return(em=d._ClipByValue=d.asm.P).apply(null,arguments)},tm=d._Conv2D=function(){return(tm=d._Conv2D=d.asm.Q).apply(null,arguments)},nm=d._Conv2DBackpropInput=function(){return(nm=d._Conv2DBackpropInput=d.asm.R).apply(null,arguments)},am=d._Cos=function(){return(am=d._Cos=d.asm.S).apply(null,arguments)},rm=d._CropAndResize=function(){return(rm=d._CropAndResize=d.asm.T).apply(null,arguments)},sm=d._Cumsum=function(){return(sm=d._Cumsum=d.asm.U).apply(null,arguments)},im=d._DepthToSpace=function(){return(im=d._DepthToSpace=d.asm.V).apply(null,arguments)},om=d._DepthwiseConv2dNative=function(){return(om=d._DepthwiseConv2dNative=d.asm.W).apply(null,arguments)},kp=d._Equal=function(){return(kp=d._Equal=d.asm.X).apply(null,arguments)},Ip=d._Exp=function(){return(Ip=d._Exp=d.asm.Y).apply(null,arguments)},Sp=d._FlipLeftRight=function(){return(Sp=d._FlipLeftRight=d.asm.Z).apply(null,arguments)},pu=d._Floor=function(){return(pu=d._Floor=d.asm._).apply(null,arguments)},Gi=d._FloorDiv=function(){return(Gi=d._FloorDiv=d.asm.$).apply(null,arguments)},lm=d._FusedBatchNorm=function(){return(lm=d._FusedBatchNorm=d.asm.aa).apply(null,arguments)},cu=d._FusedConv2D=function(){return(cu=d._FusedConv2D=d.asm.ba).apply(null,arguments)},K=d._FusedDepthwiseConv2D=function(){return(K=d._FusedDepthwiseConv2D=d.asm.ca).apply(null,arguments)},te=d._Gather=function(){return(te=d._Gather=d.asm.da).apply(null,arguments)},Te=d._GatherNd=function(){return(Te=d._GatherNd=d.asm.ea).apply(null,arguments)},Ze=d._Greater=function(){return(Ze=d._Greater=d.asm.fa).apply(null,arguments)},It=d._GreaterEqual=function(){return(It=d._GreaterEqual=d.asm.ga).apply(null,arguments)},ft=d._LeakyRelu=function(){return(ft=d._LeakyRelu=d.asm.ha).apply(null,arguments)},je=d._Less=function(){return(je=d._Less=d.asm.ia).apply(null,arguments)},He=d._LessEqual=function(){return(He=d._LessEqual=d.asm.ja).apply(null,arguments)},Jt=d._Log=function(){return(Jt=d._Log=d.asm.ka).apply(null,arguments)},nr=d._LogicalAnd=function(){return(nr=d._LogicalAnd=d.asm.la).apply(null,arguments)},ar=d._Max=function(){return(ar=d._Max=d.asm.ma).apply(null,arguments)},Np=d._MaxPool=function(){return(Np=d._MaxPool=d.asm.na).apply(null,arguments)},hu=d._Maximum=function(){return(hu=d._Maximum=d.asm.oa).apply(null,arguments)},qn=d._Mean=function(){return(qn=d._Mean=d.asm.pa).apply(null,arguments)},kr=d._Min=function(){return(kr=d._Min=d.asm.qa).apply(null,arguments)},Tp=d._Minimum=function(){return(Tp=d._Minimum=d.asm.ra).apply(null,arguments)},u9=d._MirrorPad=function(){return(u9=d._MirrorPad=d.asm.sa).apply(null,arguments)},d9=d._Multiply=function(){return(d9=d._Multiply=d.asm.ta).apply(null,arguments)},p9=d._Neg=function(){return(p9=d._Neg=d.asm.ua).apply(null,arguments)},c9=d._NonMaxSuppressionV3=function(){return(c9=d._NonMaxSuppressionV3=d.asm.va).apply(null,arguments)},h9=d._NonMaxSuppressionV4=function(){return(h9=d._NonMaxSuppressionV4=d.asm.wa).apply(null,arguments)},f9=d._NonMaxSuppressionV5=function(){return(f9=d._NonMaxSuppressionV5=d.asm.xa).apply(null,arguments)},m9=d._NotEqual=function(){return(m9=d._NotEqual=d.asm.ya).apply(null,arguments)},A9=d._OneHot=function(){return(A9=d._OneHot=d.asm.za).apply(null,arguments)},y9=d._PadV2=function(){return(y9=d._PadV2=d.asm.Aa).apply(null,arguments)},g9=d._Pow=function(){return(g9=d._Pow=d.asm.Ba).apply(null,arguments)},x9=d._Prelu=function(){return(x9=d._Prelu=d.asm.Ca).apply(null,arguments)},b9=d._Prod=function(){return(b9=d._Prod=d.asm.Da).apply(null,arguments)},v9=d._RealDiv=function(){return(v9=d._RealDiv=d.asm.Ea).apply(null,arguments)},w9=d._Relu=function(){return(w9=d._Relu=d.asm.Fa).apply(null,arguments)},k9=d._Relu6=function(){return(k9=d._Relu6=d.asm.Ga).apply(null,arguments)},I9=d._ResizeBilinear=function(){return(I9=d._ResizeBilinear=d.asm.Ha).apply(null,arguments)},S9=d._Reverse=function(){return(S9=d._Reverse=d.asm.Ia).apply(null,arguments)},N9=d._RotateWithOffset=function(){return(N9=d._RotateWithOffset=d.asm.Ja).apply(null,arguments)},T9=d._Round=function(){return(T9=d._Round=d.asm.Ka).apply(null,arguments)},E9=d._Rsqrt=function(){return(E9=d._Rsqrt=d.asm.La).apply(null,arguments)},C9=d._ScatterNd=function(){return(C9=d._ScatterNd=d.asm.Ma).apply(null,arguments)},R9=d._SelectV2=function(){return(R9=d._SelectV2=d.asm.Na).apply(null,arguments)},M9=d._Sigmoid=function(){return(M9=d._Sigmoid=d.asm.Oa).apply(null,arguments)},F9=d._Sin=function(){return(F9=d._Sin=d.asm.Pa).apply(null,arguments)},$9=d._Softmax=function(){return($9=d._Softmax=d.asm.Qa).apply(null,arguments)},D9=d._Sqrt=function(){return(D9=d._Sqrt=d.asm.Ra).apply(null,arguments)},z9=d._Square=function(){return(z9=d._Square=d.asm.Sa).apply(null,arguments)},O9=d._SquaredDifference=function(){return(O9=d._SquaredDifference=d.asm.Ta).apply(null,arguments)},_9=d._Step=function(){return(_9=d._Step=d.asm.Ua).apply(null,arguments)},P9=d._StridedSlice=function(){return(P9=d._StridedSlice=d.asm.Va).apply(null,arguments)},L9=d._Sub=function(){return(L9=d._Sub=d.asm.Wa).apply(null,arguments)},W9=d._Sum=function(){return(W9=d._Sum=d.asm.Xa).apply(null,arguments)},B9=d._Tan=function(){return(B9=d._Tan=d.asm.Ya).apply(null,arguments)},V9=d._Tanh=function(){return(V9=d._Tanh=d.asm.Za).apply(null,arguments)},j9=d._Tile=function(){return(j9=d._Tile=d.asm._a).apply(null,arguments)},U9=d._TopK=function(){return(U9=d._TopK=d.asm.$a).apply(null,arguments)},H9=d._Transform=function(){return(H9=d._Transform=d.asm.ab).apply(null,arguments)},G9=d._Transpose=function(){return(G9=d._Transpose=d.asm.bb).apply(null,arguments)},q9=d.__FusedMatMul=function(){return(q9=d.__FusedMatMul=d.asm.cb).apply(null,arguments)},ss=d._malloc=function(){return(ss=d._malloc=d.asm.db).apply(null,arguments)},fu=d._free=function(){return(fu=d._free=d.asm.eb).apply(null,arguments)},_g=d.___errno_location=function(){return(_g=d.___errno_location=d.asm.fb).apply(null,arguments)},Pg=d._emscripten_get_global_libc=function(){return(Pg=d._emscripten_get_global_libc=d.asm.gb).apply(null,arguments)},qi=d._pthread_self=function(){return(qi=d._pthread_self=d.asm.hb).apply(null,arguments)},Lg=d.___pthread_tsd_run_dtors=function(){return(Lg=d.___pthread_tsd_run_dtors=d.asm.ib).apply(null,arguments)},um=d._emscripten_main_thread_process_queued_calls=function(){return(um=d._emscripten_main_thread_process_queued_calls=d.asm.jb).apply(null,arguments)},X9=d._emscripten_current_thread_process_queued_calls=function(){return(X9=d._emscripten_current_thread_process_queued_calls=d.asm.kb).apply(null,arguments)},Wg=d._emscripten_register_main_browser_thread_id=function(){return(Wg=d._emscripten_register_main_browser_thread_id=d.asm.lb).apply(null,arguments)},Bg=d.__emscripten_do_dispatch_to_thread=function(){return(Bg=d.__emscripten_do_dispatch_to_thread=d.asm.mb).apply(null,arguments)},Vg=d._emscripten_sync_run_in_main_thread_4=function(){return(Vg=d._emscripten_sync_run_in_main_thread_4=d.asm.nb).apply(null,arguments)},jg=d._emscripten_run_in_main_runtime_thread_js=function(){return(jg=d._emscripten_run_in_main_runtime_thread_js=d.asm.ob).apply(null,arguments)},dm=d.__emscripten_call_on_thread=function(){return(dm=d.__emscripten_call_on_thread=d.asm.pb).apply(null,arguments)},K9=d._emscripten_tls_init=function(){return(K9=d._emscripten_tls_init=d.asm.qb).apply(null,arguments)},pm=d.__emscripten_thread_init=function(){return(pm=d.__emscripten_thread_init=d.asm.rb).apply(null,arguments)},mu=d.stackSave=function(){return(mu=d.stackSave=d.asm.sb).apply(null,arguments)},Xi=d.stackRestore=function(){return(Xi=d.stackRestore=d.asm.tb).apply(null,arguments)},Ki=d.stackAlloc=function(){return(Ki=d.stackAlloc=d.asm.ub).apply(null,arguments)},Ug=d._emscripten_stack_set_limits=function(){return(Ug=d._emscripten_stack_set_limits=d.asm.vb).apply(null,arguments)},Hg=d._memalign=function(){return(Hg=d._memalign=d.asm.wb).apply(null,arguments)},Gg=d.__emscripten_allow_main_runtime_queued_calls=9808,Zi=d.__emscripten_main_thread_futex=11432;d.cwrap=$e,d.PThread=we,d.PThread=we,d.wasmMemory=Q,d.ExitStatus=Au;var Ep;function Au(S){this.name="ExitStatus",this.message="Program terminated with exit("+S+")",this.status=S}as=function S(){Ep||cm(),Ep||(as=S)};function cm(S){if(S=S||f,er>0)return;if(v){p(d),iu(),postMessage({cmd:"loaded"});return}if(V0(),er>0)return;function E(){Ep||(Ep=!0,d.calledRun=!0,!oe&&(iu(),j0(),p(d),d.onRuntimeInitialized&&d.onRuntimeInitialized(),bn()))}d.setStatus?(d.setStatus("Running..."),setTimeout(function(){setTimeout(function(){d.setStatus("")},1),E()},1)):E()}d.run=cm;function Z9(S,E){if(!(E&&ie&&S===0)){if(!E&&v)throw postMessage({cmd:"exitProcess",returnCode:S}),new Au(S);ie||(we.terminateAllThreads(),ye=S,lp(),d.onExit&&d.onExit(S),oe=!0),y(S,new Au(S))}}if(d.preInit)for(typeof d.preInit=="function"&&(d.preInit=[d.preInit]);d.preInit.length>0;)d.preInit.pop()();return v&&(ie=!1,we.initWorker()),cm(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),AI=xt((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(K,te){i=K,o=te});var l={},u;for(u in s)s.hasOwnProperty(u)&&(l[u]=s[u]);var d=[],p="./this.program",c=function(K,te){throw te},h=!1,m=!1,f=!1,A=!1;h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",A=!h&&!f&&!m;var y="";function g(K){return s.locateFile?s.locateFile(K,y):y+K}var x,w,b,v,N,T;f?(m?y=yu().dirname(y)+"/":y=__dirname+"/",x=function(K,te){return N||(N=Qi("fs")),T||(T=yu()),K=T.normalize(K),N.readFileSync(K,te?null:"utf8")},b=function(K){var te=x(K,!0);return te.buffer||(te=new Uint8Array(te)),X(te.buffer),te},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),d=process.argv.slice(2),process.on("uncaughtException",function(K){if(!(K instanceof lm))throw K}),process.on("unhandledRejection",$a),c=function(K){process.exit(K)},s.inspect=function(){return"[Emscripten Module object]"}):A?(typeof read!="undefined"&&(x=function(K){return read(K)}),b=function(K){var te;return typeof readbuffer=="function"?new Uint8Array(readbuffer(K)):(te=read(K,"binary"),X(typeof te=="object"),te)},typeof scriptArgs!="undefined"?d=scriptArgs:typeof arguments!="undefined"&&(d=arguments),typeof quit=="function"&&(c=function(K){quit(K)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||m)&&(m?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),a&&(y=a),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",x=function(K){var te=new XMLHttpRequest;return te.open("GET",K,!1),te.send(null),te.responseText},m&&(b=function(K){var te=new XMLHttpRequest;return te.open("GET",K,!1),te.responseType="arraybuffer",te.send(null),new Uint8Array(te.response)}),w=function(K,te,Te){var Ze=new XMLHttpRequest;Ze.open("GET",K,!0),Ze.responseType="arraybuffer",Ze.onload=function(){if(Ze.status==200||Ze.status==0&&Ze.response){te(Ze.response);return}Te()},Ze.onerror=Te,Ze.send(null)},v=function(K){document.title=K});var R=s.print||console.log.bind(console),$=s.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(s[u]=l[u]);l=null,s.arguments&&(d=s.arguments),s.thisProgram&&(p=s.thisProgram),s.quit&&(c=s.quit);var O;s.wasmBinary&&(O=s.wasmBinary);var _=s.noExitRuntime||!0;typeof WebAssembly!="object"&&$a("no native wasm support detected");var V,U=!1,j;function X(K,te){K||$a("Assertion failed: "+te)}function G(K){var te=s["_"+K];return X(te,"Cannot call unknown function "+K+", make sure it is exported"),te}function ee(K,te,Te,Ze,It){var ft={string:function(qn){var kr=0;if(qn!=null&&qn!==0){var Tp=(qn.length<<2)+1;kr=pu(Tp),de(qn,kr,Tp)}return kr},array:function(qn){var kr=pu(qn.length);return oe(qn,kr),kr}};function je(qn){return te==="string"?ie(qn):te==="boolean"?Boolean(qn):qn}var He=G(K),Jt=[],nr=0;if(Ze)for(var ar=0;ar<Ze.length;ar++){var Np=ft[Te[ar]];Np?(nr===0&&(nr=Ip()),Jt[ar]=Np(Ze[ar])):Jt[ar]=Ze[ar]}var hu=He.apply(null,Jt);return hu=je(hu),nr!==0&&Sp(nr),hu}function Y(K,te,Te,Ze){Te=Te||[];var It=Te.every(function(je){return je==="number"}),ft=te!=="string";return ft&&It&&!Ze?G(K):function(){return ee(K,te,Te,arguments,Ze)}}var re=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ne(K,te,Te){for(var Ze=te+Te,It=te;K[It]&&!(It>=Ze);)++It;if(It-te>16&&K.subarray&&re)return re.decode(K.subarray(te,It));for(var ft="";te<It;){var je=K[te++];if(!(je&128)){ft+=String.fromCharCode(je);continue}var He=K[te++]&63;if((je&224)==192){ft+=String.fromCharCode((je&31)<<6|He);continue}var Jt=K[te++]&63;if((je&240)==224?je=(je&15)<<12|He<<6|Jt:je=(je&7)<<18|He<<12|Jt<<6|K[te++]&63,je<65536)ft+=String.fromCharCode(je);else{var nr=je-65536;ft+=String.fromCharCode(55296|nr>>10,56320|nr&1023)}}return ft}function ie(K,te){return K?ne(Ne,K,te):""}function Q(K,te,Te,Ze){if(!(Ze>0))return 0;for(var It=Te,ft=Te+Ze-1,je=0;je<K.length;++je){var He=K.charCodeAt(je);if(He>=55296&&He<=57343){var Jt=K.charCodeAt(++je);He=65536+((He&1023)<<10)|Jt&1023}if(He<=127){if(Te>=ft)break;te[Te++]=He}else if(He<=2047){if(Te+1>=ft)break;te[Te++]=192|He>>6,te[Te++]=128|He&63}else if(He<=65535){if(Te+2>=ft)break;te[Te++]=224|He>>12,te[Te++]=128|He>>6&63,te[Te++]=128|He&63}else{if(Te+3>=ft)break;te[Te++]=240|He>>18,te[Te++]=128|He>>12&63,te[Te++]=128|He>>6&63,te[Te++]=128|He&63}}return te[Te]=0,Te-It}function de(K,te,Te){return Q(K,Ne,te,Te)}function oe(K,te){Ie.set(K,te)}function ye(K,te){return K%te>0&&(K+=te-K%te),K}var he,Ie,Ne,$e,Oe,De,Qe,et,st;function Ke(K){he=K,s.HEAP8=Ie=new Int8Array(K),s.HEAP16=$e=new Int16Array(K),s.HEAP32=De=new Int32Array(K),s.HEAPU8=Ne=new Uint8Array(K),s.HEAPU16=Oe=new Uint16Array(K),s.HEAPU32=Qe=new Uint32Array(K),s.HEAPF32=et=new Float32Array(K),s.HEAPF64=st=new Float64Array(K)}var dt=s.INITIAL_MEMORY||16777216,Ve,gn=[],gt=[],Hn=[],Zt=[],xn=!1;gt.push({func:function(){fp()}});function Gn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Fa(s.preRun.shift());br(gn)}function Mn(){xn=!0,br(gt)}function rn(){br(Hn)}function Yt(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)aa(s.postRun.shift());br(Zt)}function Fa(K){gn.unshift(K)}function aa(K){Zt.unshift(K)}var ra=0,gr=null,Qa=null;function xr(K){ra++,s.monitorRunDependencies&&s.monitorRunDependencies(ra)}function Vi(K){if(ra--,s.monitorRunDependencies&&s.monitorRunDependencies(ra),ra==0&&(gr!==null&&(clearInterval(gr),gr=null),Qa)){var te=Qa;Qa=null,te()}}s.preloadedImages={},s.preloadedAudios={};function $a(K){s.onAbort&&s.onAbort(K),K+="",$(K),U=!0,j=1,K="abort("+K+"). Build with -s ASSERTIONS=1 for more info.";var te=new WebAssembly.RuntimeError(K);throw o(te),te}function op(K,te){return String.prototype.startsWith?K.startsWith(te):K.indexOf(te)===0}var V0="data:application/octet-stream;base64,";function iu(K){return op(K,V0)}var j0="file://";function lp(K){return op(K,j0)}var bn="tfjs-backend-wasm.wasm";iu(bn)||(bn=g(bn));function up(K){try{if(K==bn&&O)return new Uint8Array(O);if(b)return b(K);throw"both async and sync fetching of the wasm failed"}catch(te){$a(te)}}function U0(){if(!O&&(h||m)){if(typeof fetch=="function"&&!lp(bn))return fetch(bn,{credentials:"same-origin"}).then(function(K){if(!K.ok)throw"failed to load wasm binary file at '"+bn+"'";return K.arrayBuffer()}).catch(function(){return up(bn)});if(w)return new Promise(function(K,te){w(bn,function(Te){K(new Uint8Array(Te))},te)})}return Promise.resolve().then(function(){return up(bn)})}function er(){var K={a:K0};function te(je,He){var Jt=je.exports;s.asm=Jt,V=s.asm.i,Ke(V.buffer),Ve=s.asm.o,Vi("wasm-instantiate")}xr("wasm-instantiate");function Te(je){te(je.instance)}function Ze(je){return U0().then(function(He){return WebAssembly.instantiate(He,K)}).then(je,function(He){$("failed to asynchronously prepare wasm: "+He),$a(He)})}function It(){return!O&&typeof WebAssembly.instantiateStreaming=="function"&&!iu(bn)&&!lp(bn)&&typeof fetch=="function"?fetch(bn,{credentials:"same-origin"}).then(function(je){var He=WebAssembly.instantiateStreaming(je,K);return He.then(Te,function(Jt){return $("wasm streaming compile failed: "+Jt),$("falling back to ArrayBuffer instantiation"),Ze(Te)})}):Ze(Te)}if(s.instantiateWasm)try{var ft=s.instantiateWasm(K,te);return ft}catch(je){return $("Module.instantiateWasm callback failed with error: "+je),!1}return It().catch(o),{}}function br(K){for(;K.length>0;){var te=K.shift();if(typeof te=="function"){te(s);continue}var Te=te.func;typeof Te=="number"?te.arg===void 0?Ve.get(Te)():Ve.get(Te)(te.arg):Te(te.arg===void 0?null:te.arg)}}function as(){$a()}function H0(K,te,Te){Ne.copyWithin(K,te,te+Te)}function G0(){return Ne.length}function tr(K){try{return V.grow(K-he.byteLength+65535>>>16),Ke(V.buffer),1}catch(te){}}function dp(K){var te=G0(),Te=2147483648;if(K>Te)return!1;for(var Ze=1;Ze<=4;Ze*=2){var It=te*(1+.2/Ze);It=Math.min(It,K+100663296);var ft=Math.min(Te,ye(Math.max(K,It),65536)),je=tr(ft);if(je)return!0}return!1}var ji={mappings:{},buffers:[null,[],[]],printChar:function(K,te){var Te=ji.buffers[K];te===0||te===10?((K===1?R:$)(ne(Te,0)),Te.length=0):Te.push(te)},varargs:void 0,get:function(){ji.varargs+=4;var K=De[ji.varargs-4>>2];return K},getStr:function(K){var te=ie(K);return te},get64:function(K,te){return K}};function pp(K){return 0}function q0(K,te,Te,Ze,It){}function cp(K,te,Te,Ze){for(var It=0,ft=0;ft<Te;ft++){for(var je=De[te+ft*8>>2],He=De[te+(ft*8+4)>>2],Jt=0;Jt<He;Jt++)ji.printChar(K,Ne[je+Jt]);It+=He}return De[Ze>>2]=It,0}function vn(){return 6}function hp(K){return De[kp()>>2]=K,K}function X0(K){switch(K){case 30:return 16384;case 85:var te=2147483648;return te/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return hp(28),-1}var K0={a:as,d:H0,e:dp,f:pp,c:q0,b:cp,g:vn,h:X0},Z0=er(),fp=s.___wasm_call_ctors=function(){return(fp=s.___wasm_call_ctors=s.asm.j).apply(null,arguments)},Ui=s._init=function(){return(Ui=s._init=s.asm.k).apply(null,arguments)},ou=s._register_tensor=function(){return(ou=s._register_tensor=s.asm.l).apply(null,arguments)},Y0=s._dispose_data=function(){return(Y0=s._dispose_data=s.asm.m).apply(null,arguments)},J0=s._dispose=function(){return(J0=s._dispose=s.asm.n).apply(null,arguments)},Q0=s._Abs=function(){return(Q0=s._Abs=s.asm.p).apply(null,arguments)},we=s._Add=function(){return(we=s._Add=s.asm.q).apply(null,arguments)},ef=s._AddN=function(){return(ef=s._AddN=s.asm.r).apply(null,arguments)},tf=s._All=function(){return(tf=s._All=s.asm.s).apply(null,arguments)},nf=s._Any=function(){return(nf=s._Any=s.asm.t).apply(null,arguments)},af=s._ArgMax=function(){return(af=s._ArgMax=s.asm.u).apply(null,arguments)},rf=s._AvgPool=function(){return(rf=s._AvgPool=s.asm.v).apply(null,arguments)},rs=s._BatchMatMul=function(){return(rs=s._BatchMatMul=s.asm.w).apply(null,arguments)},sf=s._Ceil=function(){return(sf=s._Ceil=s.asm.x).apply(null,arguments)},of=s._ClipByValue=function(){return(of=s._ClipByValue=s.asm.y).apply(null,arguments)},lf=s._Conv2D=function(){return(lf=s._Conv2D=s.asm.z).apply(null,arguments)},uf=s._Conv2DBackpropInput=function(){return(uf=s._Conv2DBackpropInput=s.asm.A).apply(null,arguments)},df=s._Cos=function(){return(df=s._Cos=s.asm.B).apply(null,arguments)},pf=s._CropAndResize=function(){return(pf=s._CropAndResize=s.asm.C).apply(null,arguments)},cf=s._Cumsum=function(){return(cf=s._Cumsum=s.asm.D).apply(null,arguments)},hf=s._DepthToSpace=function(){return(hf=s._DepthToSpace=s.asm.E).apply(null,arguments)},ff=s._DepthwiseConv2dNative=function(){return(ff=s._DepthwiseConv2dNative=s.asm.F).apply(null,arguments)},vr=s._Equal=function(){return(vr=s._Equal=s.asm.G).apply(null,arguments)},lu=s._Exp=function(){return(lu=s._Exp=s.asm.H).apply(null,arguments)},uu=s._FlipLeftRight=function(){return(uu=s._FlipLeftRight=s.asm.I).apply(null,arguments)},mf=s._Floor=function(){return(mf=s._Floor=s.asm.J).apply(null,arguments)},Af=s._FloorDiv=function(){return(Af=s._FloorDiv=s.asm.K).apply(null,arguments)},yf=s._FusedBatchNorm=function(){return(yf=s._FusedBatchNorm=s.asm.L).apply(null,arguments)},gf=s._FusedConv2D=function(){return(gf=s._FusedConv2D=s.asm.M).apply(null,arguments)},xf=s._FusedDepthwiseConv2D=function(){return(xf=s._FusedDepthwiseConv2D=s.asm.N).apply(null,arguments)},Pe=s._Gather=function(){return(Pe=s._Gather=s.asm.O).apply(null,arguments)},bf=s._GatherNd=function(){return(bf=s._GatherNd=s.asm.P).apply(null,arguments)},vf=s._Greater=function(){return(vf=s._Greater=s.asm.Q).apply(null,arguments)},wf=s._GreaterEqual=function(){return(wf=s._GreaterEqual=s.asm.R).apply(null,arguments)},kf=s._LeakyRelu=function(){return(kf=s._LeakyRelu=s.asm.S).apply(null,arguments)},If=s._Less=function(){return(If=s._Less=s.asm.T).apply(null,arguments)},Sf=s._LessEqual=function(){return(Sf=s._LessEqual=s.asm.U).apply(null,arguments)},du=s._Log=function(){return(du=s._Log=s.asm.V).apply(null,arguments)},mp=s._LogicalAnd=function(){return(mp=s._LogicalAnd=s.asm.W).apply(null,arguments)},Ap=s._Max=function(){return(Ap=s._Max=s.asm.X).apply(null,arguments)},Nf=s._MaxPool=function(){return(Nf=s._MaxPool=s.asm.Y).apply(null,arguments)},Tf=s._Maximum=function(){return(Tf=s._Maximum=s.asm.Z).apply(null,arguments)},Ef=s._Mean=function(){return(Ef=s._Mean=s.asm._).apply(null,arguments)},Cf=s._Min=function(){return(Cf=s._Min=s.asm.$).apply(null,arguments)},Rf=s._Minimum=function(){return(Rf=s._Minimum=s.asm.aa).apply(null,arguments)},Mf=s._MirrorPad=function(){return(Mf=s._MirrorPad=s.asm.ba).apply(null,arguments)},Ff=s._Multiply=function(){return(Ff=s._Multiply=s.asm.ca).apply(null,arguments)},Je=s._Neg=function(){return(Je=s._Neg=s.asm.da).apply(null,arguments)},$f=s._NonMaxSuppressionV3=function(){return($f=s._NonMaxSuppressionV3=s.asm.ea).apply(null,arguments)},Df=s._NonMaxSuppressionV4=function(){return(Df=s._NonMaxSuppressionV4=s.asm.fa).apply(null,arguments)},zf=s._NonMaxSuppressionV5=function(){return(zf=s._NonMaxSuppressionV5=s.asm.ga).apply(null,arguments)},Hi=s._NotEqual=function(){return(Hi=s._NotEqual=s.asm.ha).apply(null,arguments)},yp=s._OneHot=function(){return(yp=s._OneHot=s.asm.ia).apply(null,arguments)},gp=s._PadV2=function(){return(gp=s._PadV2=s.asm.ja).apply(null,arguments)},xp=s._Pow=function(){return(xp=s._Pow=s.asm.ka).apply(null,arguments)},Of=s._Prelu=function(){return(Of=s._Prelu=s.asm.la).apply(null,arguments)},_f=s._Prod=function(){return(_f=s._Prod=s.asm.ma).apply(null,arguments)},bp=s._RealDiv=function(){return(bp=s._RealDiv=s.asm.na).apply(null,arguments)},Pf=s._Relu=function(){return(Pf=s._Relu=s.asm.oa).apply(null,arguments)},vp=s._Relu6=function(){return(vp=s._Relu6=s.asm.pa).apply(null,arguments)},wr=s._ResizeBilinear=function(){return(wr=s._ResizeBilinear=s.asm.qa).apply(null,arguments)},Lf=s._Reverse=function(){return(Lf=s._Reverse=s.asm.ra).apply(null,arguments)},Wf=s._RotateWithOffset=function(){return(Wf=s._RotateWithOffset=s.asm.sa).apply(null,arguments)},Og=s._Round=function(){return(Og=s._Round=s.asm.ta).apply(null,arguments)},wp=s._Rsqrt=function(){return(wp=s._Rsqrt=s.asm.ua).apply(null,arguments)},Bf=s._ScatterNd=function(){return(Bf=s._ScatterNd=s.asm.va).apply(null,arguments)},Vf=s._SelectV2=function(){return(Vf=s._SelectV2=s.asm.wa).apply(null,arguments)},jf=s._Sigmoid=function(){return(jf=s._Sigmoid=s.asm.xa).apply(null,arguments)},Uf=s._Sin=function(){return(Uf=s._Sin=s.asm.ya).apply(null,arguments)},Hf=s._Softmax=function(){return(Hf=s._Softmax=s.asm.za).apply(null,arguments)},Gf=s._Sqrt=function(){return(Gf=s._Sqrt=s.asm.Aa).apply(null,arguments)},qf=s._Square=function(){return(qf=s._Square=s.asm.Ba).apply(null,arguments)},Xf=s._SquaredDifference=function(){return(Xf=s._SquaredDifference=s.asm.Ca).apply(null,arguments)},Kf=s._Step=function(){return(Kf=s._Step=s.asm.Da).apply(null,arguments)},Zf=s._StridedSlice=function(){return(Zf=s._StridedSlice=s.asm.Ea).apply(null,arguments)},Yf=s._Sub=function(){return(Yf=s._Sub=s.asm.Fa).apply(null,arguments)},Jf=s._Sum=function(){return(Jf=s._Sum=s.asm.Ga).apply(null,arguments)},Qf=s._Tan=function(){return(Qf=s._Tan=s.asm.Ha).apply(null,arguments)},em=s._Tanh=function(){return(em=s._Tanh=s.asm.Ia).apply(null,arguments)},tm=s._Tile=function(){return(tm=s._Tile=s.asm.Ja).apply(null,arguments)},nm=s._TopK=function(){return(nm=s._TopK=s.asm.Ka).apply(null,arguments)},am=s._Transform=function(){return(am=s._Transform=s.asm.La).apply(null,arguments)},rm=s._Transpose=function(){return(rm=s._Transpose=s.asm.Ma).apply(null,arguments)},sm=s.__FusedMatMul=function(){return(sm=s.__FusedMatMul=s.asm.Na).apply(null,arguments)},im=s._malloc=function(){return(im=s._malloc=s.asm.Oa).apply(null,arguments)},om=s._free=function(){return(om=s._free=s.asm.Pa).apply(null,arguments)},kp=s.___errno_location=function(){return(kp=s.___errno_location=s.asm.Qa).apply(null,arguments)},Ip=s.stackSave=function(){return(Ip=s.stackSave=s.asm.Ra).apply(null,arguments)},Sp=s.stackRestore=function(){return(Sp=s.stackRestore=s.asm.Sa).apply(null,arguments)},pu=s.stackAlloc=function(){return(pu=s.stackAlloc=s.asm.Ta).apply(null,arguments)};s.cwrap=Y;var Gi;function lm(K){this.name="ExitStatus",this.message="Program terminated with exit("+K+")",this.status=K}Qa=function K(){Gi||cu(),Gi||(Qa=K)};function cu(K){if(K=K||d,ra>0||(Gn(),ra>0))return;function te(){Gi||(Gi=!0,s.calledRun=!0,!U&&(Mn(),rn(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),Yt()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),te()},1)):te()}if(s.run=cu,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return cu(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),yI=xt((e,t)=>{(function(n,a,r){function s(u){var d=this,p=l();d.next=function(){var c=2091639*d.s0+d.c*23283064365386963e-26;return d.s0=d.s1,d.s1=d.s2,d.s2=c-(d.c=c|0)},d.c=1,d.s0=p(" "),d.s1=p(" "),d.s2=p(" "),d.s0-=p(u),d.s0<0&&(d.s0+=1),d.s1-=p(u),d.s1<0&&(d.s1+=1),d.s2-=p(u),d.s2<0&&(d.s2+=1),p=null}function i(u,d){return d.c=u.c,d.s0=u.s0,d.s1=u.s1,d.s2=u.s2,d}function o(u,d){var p=new s(u),c=d&&d.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,p),h.state=function(){return i(p,{})}),h}function l(){var u=4022871197,d=function(p){p=String(p);for(var c=0;c<p.length;c++){u+=p.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),gI=xt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:d+=l;for(var p=0;p<d.length+64;p++)u.x^=d.charCodeAt(p)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),xI=xt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:d+=l;for(var p=0;p<d.length+64;p++)u.x^=d.charCodeAt(p)|0,p==d.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),bI=xt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.x,c=u.i,h,m,f;return h=p[c],h^=h>>>7,m=h^h<<24,h=p[c+1&7],m^=h^h>>>10,h=p[c+3&7],m^=h^h>>>3,h=p[c+4&7],m^=h^h<<7,h=p[c+7&7],h=h^h<<13,m^=h^h<<9,p[c]=m,u.i=c+1&7,m};function d(p,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}d(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(p.x&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),vI=xt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.w,c=u.X,h=u.i,m,f;return u.w=p=p+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(p^p>>>16)|0};function d(p,c){var h,m,f,A,y,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,A=-32;A<x;++A)c&&(m^=c.charCodeAt((A+32)%c.length)),A===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,A>=0&&(y=y+1640531527|0,h=g[A&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,A=4*128;A>0;--A)m=g[f+34&127],h=g[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,g[f]=m^h;p.w=y,p.X=g,p.i=f}d(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(p.X&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),wI=xt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):d+=l;for(var p=0;p<d.length+20;p++)u.b^=d.charCodeAt(p)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),kI=xt((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",u=r.pow(s,i),d=r.pow(2,o),p=d*2,c=s-1,h;function m(b,v,N){var T=[];v=v==!0?{entropy:!0}:v||{};var R=g(y(v.entropy?[b,w(a)]:b==null?x():b,3),T),$=new f(T),O=function(){for(var _=$.g(i),V=u,U=0;_<d;)_=(_+U)*s,V*=s,U=$.g(1);for(;_>=p;)_/=2,V/=2,U>>>=1;return(_+U)/V};return O.int32=function(){return $.g(4)|0},O.quick=function(){return $.g(4)/4294967296},O.double=O,g(w($.S),a),(v.pass||N||function(_,V,U,j){return j&&(j.S&&A(j,$),_.state=function(){return A($,{})}),U?(r[l]=_,V):_})(O,R,"global"in v?v.global:this==r,v.state)}function f(b){var v,N=b.length,T=this,R=0,$=T.i=T.j=0,O=T.S=[];for(N||(b=[N++]);R<s;)O[R]=R++;for(R=0;R<s;R++)O[R]=O[$=c&$+b[R%N]+(v=O[R])],O[$]=v;(T.g=function(_){for(var V,U=0,j=T.i,X=T.j,G=T.S;_--;)V=G[j=c&j+1],U=U*s+G[c&(G[j]=G[X=c&X+V])+(G[X]=V)];return T.i=j,T.j=X,U})(s)}function A(b,v){return v.i=b.i,v.j=b.j,v.S=b.S.slice(),v}function y(b,v){var N=[],T=typeof b,R;if(v&&T=="object")for(R in b)try{N.push(y(b[R],v-1))}catch($){}return N.length?N:T=="string"?b:b+"\0"}function g(b,v){for(var N=b+"",T,R=0;R<N.length;)v[c&R]=c&(T^=v[c&R]*19)+N.charCodeAt(R++);return w(v)}function x(){try{var b;return h&&(b=h.randomBytes)?b=b(s):(b=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(b)),w(b)}catch(T){var v=n.navigator,N=v&&v.plugins;return[+new Date,n,N,n.screen,w(a)]}}function w(b){return String.fromCharCode.apply(0,b)}if(g(r.random(),a),typeof t=="object"&&t.exports){t.exports=m;try{h=Yg()}catch(b){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),Qg=xt((e,t)=>{var n=yI(),a=gI(),r=xI(),s=bI(),i=vI(),o=wI(),l=kI();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),II=xt(()=>{}),fm={};Fe(fm,{bin:()=>d5,browser:()=>A5,default:()=>SI,dependencies:()=>m5,description:()=>n5,devDependencies:()=>h5,jsdelivr:()=>i5,license:()=>c5,main:()=>r5,miniprogram:()=>u5,module:()=>s5,name:()=>e5,private:()=>a5,repository:()=>p5,scripts:()=>f5,types:()=>l5,unpkg:()=>o5,version:()=>t5});var e5="@tensorflow/tfjs",t5="3.6.0",n5="An open-source machine learning framework.",a5=!1,r5="dist/tf.node.js",s5="dist/index.js",i5="dist/tf.min.js",o5="dist/tf.min.js",l5="dist/index.d.ts",u5="dist/miniprogram",d5={"tfjs-custom-module":"dist/tools/custom_module/cli.js"},p5={type:"git",url:"https://github.com/tensorflow/tfjs.git"},c5="Apache-2.0",h5={"@babel/core":"^7.9.0","@babel/polyfill":"^7.10.4","@babel/preset-env":"^7.9.5","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@types/argparse":"^1.0.38","@types/jasmine":"2.8.7","@types/node":"~10.17.50","@types/shelljs":"^0.8.4","@types/yargs":"^15.0.7","clang-format":"~1.2.2",commander:"~2.14.1",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.2","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.5.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-babel":"^4.4.0","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~4.2.2",shelljs:"~0.8.1","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"1.0.0-pre.50"},f5={build:"tsc && yarn build-cli && yarn bundle","build-ci":"tsc && yarn build-cli && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-converter":"cd ../tfjs-converter && yarn && yarn build","build-converter-ci":"cd ../tfjs-converter && yarn && yarn build-ci","build-data":"cd ../tfjs-data && yarn && yarn build","build-data-ci":"cd ../tfjs-data && yarn && yarn build-ci","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-converter && yarn build-data && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-converter-ci && yarn build-data-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-cli":"tsc --project ./tools/custom_module/tsconfig.json && chmod +x ./dist/tools/custom_module/cli.js","run-custom-build":"ts-node -s ./tools/custom_module/cli.ts","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && yarn build && karma start","test-dev":"karma start","test-tools":"ts-node --project ./tools/custom_module/tsconfig.json run_tools_tests.ts","test-ci":"./scripts/test-ci.sh"},m5={"@tensorflow/tfjs-backend-cpu":"3.6.0","@tensorflow/tfjs-backend-webgl":"3.6.0","@tensorflow/tfjs-converter":"3.6.0","@tensorflow/tfjs-core":"3.6.0","@tensorflow/tfjs-data":"3.6.0","@tensorflow/tfjs-layers":"3.6.0",argparse:"^1.0.10",chalk:"^4.1.0","core-js":"3","regenerator-runtime":"^0.13.5",yargs:"^16.0.3"},A5={"node-fetch":!1,util:!1,crypto:!1},SI={name:e5,version:t5,description:n5,private:a5,main:r5,module:s5,jsdelivr:i5,unpkg:o5,types:l5,miniprogram:u5,bin:d5,repository:p5,license:c5,devDependencies:h5,scripts:f5,dependencies:m5,browser:A5},mm={};Fe(mm,{browser:()=>D5,default:()=>NI,dependencies:()=>$5,description:()=>x5,devDependencies:()=>M5,engines:()=>E5,jsdelivr:()=>w5,"jsnext:main":()=>S5,license:()=>R5,main:()=>v5,miniprogram:()=>T5,module:()=>N5,name:()=>y5,private:()=>b5,repository:()=>C5,scripts:()=>F5,sideEffects:()=>z5,types:()=>I5,unpkg:()=>k5,version:()=>g5});var y5="@tensorflow/tfjs-core",g5="3.6.0",x5="Hardware-accelerated JavaScript library for machine intelligence",b5=!1,v5="dist/tf-core.node.js",w5="dist/tf-core.min.js",k5="dist/tf-core.min.js",I5="dist/index.d.ts",S5="dist/index.js",N5="dist/index.js",T5="dist/miniprogram",E5={yarn:">= 1.3.2"},C5={type:"git",url:"https://github.com/tensorflow/tfjs-core.git"},R5="Apache-2.0",M5={"@bazel/bazelisk":"^1.3.0","@bazel/typescript":"^0.27.8","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"link:../tfjs-backend-cpu","@types/jasmine":"~3.0.0","@types/node":"~9.6.0","@types/node-fetch":"~2.1.2","clang-format":"~1.2.4",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"6.3.2","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~3.1.0","karma-jasmine":"~4.0.1","karma-typescript":"~5.5.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~5.3.0","rollup-plugin-visualizer":"~3.3.2",shelljs:"~0.8.3","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"~1.0.0-pre.21",yargs:"~13.2.2"},F5={"build-ci":"./scripts/enumerate-tests.js --ci && tsc && yarn bundle-ci && yarn build-test-snippets",build:"node ./scripts/enumerate-tests.js && tsc && yarn bundle",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-npm":"./scripts/build-npm.sh","build-deps":"yarn build && yarn build-cpu-backend","build-cpu-backend":"cd ../tfjs-backend-cpu && yarn && yarn build","build-cpu-backend-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build:bazel":"bazelisk build //...","build-test-snippets":"yarn tsc --project ./scripts/test_snippets/tsconfig.json","format-all":"clang-format -i -style=Google --glob=src/**/*.ts","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build && rollup -c && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-webworker":"karma start --worker","run-browserstack":"karma start --browserstack","test-bundle-size":"./scripts/test-bundle-size.js","test-node":"rimraf dist/ && yarn build-deps && yarn build && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-dev":"tsc && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_node.js","test-async-backends":"rimraf dist/ && yarn build && ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-async-backends-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-snippets":"yarn build && yarn build-cpu-backend && ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts","test-snippets-ci":"ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts"},$5={"@types/offscreencanvas":"~2019.3.0","@types/seedrandom":"2.4.27","@types/webgl-ext":"0.0.30","node-fetch":"~2.6.1",seedrandom:"2.4.3"},D5={"node-fetch":!1,util:!1,crypto:!1,worker_threads:!1},z5=["./dist/index.js","./dist/engine.js","./dist/tensor.js","./dist/base_side_effects.js","./dist/flags.js","./dist/platforms/*.js","./dist/register_all_gradients.js","./dist/public/chained_ops/*.js","./dist/io/*.js"],NI={name:y5,version:g5,description:x5,private:b5,main:v5,jsdelivr:w5,unpkg:k5,types:I5,"jsnext:main":S5,module:N5,miniprogram:T5,engines:E5,repository:C5,license:R5,devDependencies:M5,scripts:F5,dependencies:$5,browser:D5,sideEffects:z5},Am={};Fe(Am,{browser:()=>J5,default:()=>TI,dependencies:()=>Y5,description:()=>P5,devDependencies:()=>X5,jsdelivr:()=>B5,"jsnext:main":()=>U5,license:()=>q5,main:()=>W5,miniprogram:()=>G5,module:()=>H5,name:()=>O5,peerDependencies:()=>Z5,private:()=>L5,scripts:()=>K5,types:()=>j5,unpkg:()=>V5,version:()=>_5});var O5="@tensorflow/tfjs-data",_5="3.6.0",P5="TensorFlow Data API in JavaScript",L5=!1,W5="dist/tf-data.node.js",B5="dist/tf-data.min.js",V5="dist/tf-data.min.js",j5="dist/index.d.ts",U5="dist/index.js",H5="dist/index.js",G5="dist/miniprogram",q5="Apache-2.0",X5={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.6.0","@tensorflow/tfjs-core":"3.6.0","@tensorflow/tfjs-layers":"3.6.0","@types/jasmine":"~2.5.53","@types/seedrandom":"^2.4.27","@types/utf8":"~2.1.6","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",nyc:"^15.1.0",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~7.0.0",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"^1.0.0-pre.50"},K5={build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-backend-cpu-ci","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-dev":"tsc && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-browsers":"karma start --browsers='Chrome,Firefox'","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/test_node.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts",coverage:"yarn nyc yarn ts-node --transpile-only -P tsconfig.test.json src/test_node.ts",lint:"tslint -p . -t verbose"},Z5={"@tensorflow/tfjs-core":"3.6.0",seedrandom:"~2.4.3"},Y5={"@types/node-fetch":"^2.1.2","node-fetch":"~2.6.1"},J5={fs:!1,"node-fetch":!1,string_decoder:!1,crypto:!1},TI={name:O5,version:_5,description:P5,private:L5,main:W5,jsdelivr:B5,unpkg:V5,types:j5,"jsnext:main":U5,module:H5,miniprogram:G5,license:q5,devDependencies:X5,scripts:K5,peerDependencies:Z5,dependencies:Y5,browser:J5},ym={};Fe(ym,{default:()=>EI,description:()=>tx,devDependencies:()=>px,jsdelivr:()=>lx,"jsnext:main":()=>ix,license:()=>nx,main:()=>rx,miniprogram:()=>dx,module:()=>ox,name:()=>Q5,peerDependencies:()=>hx,private:()=>ax,scripts:()=>cx,types:()=>sx,unpkg:()=>ux,version:()=>ex});var Q5="@tensorflow/tfjs-layers",ex="3.6.0",tx="TensorFlow layers API in JavaScript",nx="Apache-2.0 AND MIT",ax=!1,rx="dist/tf-layers.node.js",sx="dist/index.d.ts",ix="dist/index.js",ox="dist/index.js",lx="dist/tf-layers.min.js",ux="dist/tf-layers.min.js",dx="dist/miniprogram",px={"@babel/polyfill":"^7.8.7","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.6.0","@tensorflow/tfjs-backend-webgl":"3.6.0","@tensorflow/tfjs-core":"3.6.0","@types/jasmine":"~2.5.53","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},cx={prep:"yarn install && yarn build-ci",build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-npm":"./scripts/build-npm.sh",format:"./tools/clang_format_ts.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts","run-browserstack":"karma start --browsers='bs_chrome_mac' --singleRun --reporters='dots,karma-typescript'",lint:"tslint -p . -t verbose"},hx={"@tensorflow/tfjs-core":"3.6.0"},EI={name:Q5,version:ex,description:tx,license:nx,private:ax,main:rx,types:sx,"jsnext:main":ix,module:ox,jsdelivr:lx,unpkg:ux,miniprogram:dx,devDependencies:px,scripts:cx,peerDependencies:hx},gm={};Fe(gm,{default:()=>CI,description:()=>Ax,devDependencies:()=>Tx,jsdelivr:()=>wx,"jsnext:main":()=>gx,license:()=>Sx,main:()=>yx,miniprogram:()=>kx,module:()=>xx,name:()=>fx,peerDependencies:()=>Nx,repository:()=>Ix,scripts:()=>Ex,types:()=>bx,unpkg:()=>vx,version:()=>mx});var fx="@tensorflow/tfjs-converter",mx="3.6.0",Ax="Tensorflow model converter for javascript",yx="dist/tf-converter.node.js",gx="dist/index.js",xx="dist/index.js",bx="dist/index.d.ts",vx="dist/tf-converter.min.js",wx="dist/tf-converter.min.js",kx="dist/miniprogram",Ix={type:"git",url:"https://github.com/tensorflow/tfjs-converter.git"},Sx="Apache-2.0",Nx={"@tensorflow/tfjs-core":"3.6.0"},Tx={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-replace":"^2.3.3","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.6.0","@tensorflow/tfjs-core":"3.6.0","@types/argparse":"^1.0.38","@types/deep-equal":"^1.0.1","@types/jasmine":"~2.8.6","@types/long":"~3.0.32","@types/node-fetch":"1.6.9",ajv:"~6.3.0",argparse:"^1.0.10","babel-core":"~6.26.3","babel-plugin-external-helpers":"~6.22.0","babel-preset-env":"~1.7.0","clang-format":"~1.2.2",copyfiles:"~1.2.0","deep-equal":"^1.0.1","jasmine-core":"~3.5.0","node-fetch":"~2.6.1",opn:"~5.1.0",protobufjs:"~6.8.6",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-morph":"^7.1.3","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"~0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},Ex={build:"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle","build-ci":"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && yarn gen-json --test && yarn gen-kernel2ops && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/run_tests.ts","test-dev":"tsc && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts",lint:"tslint -p . -t verbose","make-version":"sh -c ./scripts/make-version","gen-doc":"ts-node -s ./scripts/gen_doc.ts","gen-json":"ts-node -s ./scripts/gen_json.ts","model-summary":"ts-node -s ./tools/model_summary.ts",pb2json:"ts-node -s ./tools/pb2json_converter.ts","build-pip-package":"yarn gen-json --test && cd python && ./build-pip-package.sh --test /tmp/tfjs-pips","run-python-tests":"yarn gen-json --test && cd python && ./run-python-tests.sh","gen-kernel2ops":"ts-node -s scripts/kernels_to_ops.ts --out metadata/kernel2op.json"},CI={name:fx,version:mx,description:Ax,main:yx,"jsnext:main":gx,module:xx,types:bx,unpkg:vx,jsdelivr:wx,miniprogram:kx,repository:Ix,license:Sx,peerDependencies:Nx,devDependencies:Tx,scripts:Ex},RI=1e-7,MI=1e-4,Rp=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},gu=class{refCount(e){return sa("refCount")}incRef(e){return sa("incRef")}timerAvailable(){return!0}time(e){return sa("time")}read(e){return sa("read")}readSync(e){return sa("readSync")}numDataIds(){return sa("numDataIds")}disposeData(e,t){return sa("disposeData")}write(e,t,n){return sa("write")}move(e,t,n,a,r){return sa("move")}memory(){return sa("memory")}floatPrecision(){return sa("floatPrecision")}epsilon(){return this.floatPrecision()===32?RI:MI}dispose(){return sa("dispose")}};function sa(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function Cx(e){let t=e.length,n=0,a=0;for(;t>0;)a=Math.random()*t|0,t--,n=e[t],e[t]=e[a],e[a]=n}function FI(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a,r,s=0;for(;n>0;)s=Math.random()*n|0,n--,a=e[n],r=t[n],e[n]=e[s],t[n]=t[s],e[s]=a,t[s]=r}function xu(e,t,n){return Math.max(e,Math.min(t,n))}function $I(e){return e%2==0?e:e+1}function DI(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function zI(e,t){let n=Math.random();return t*n+(1-n)*e}function OI(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function F(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function on(e,t,n=""){F(rr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function is(e){F(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function os(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||nn(e)&&!n)for(let a=0;a<e.length;++a)os(e[a],t,n);else t.push(e);return t}function Tt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function _I(e){return e.length===0}function rr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Ut(e){return e%1==0}function PI(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function LI(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function WI(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return Cx(t),t}function bu(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function BI(e,t=a=>0,n){return new Promise((a,r)=>{let s=0,i=()=>{if(e()){a();return}s++;let o=t(s);if(n!=null&&s>=n){r();return}setTimeout(i,o)};i()})}function VI(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function ia(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),F(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),F(e.every(a=>Ut(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function Rx(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:ia(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function Mx(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Fx(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function $x(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function Dx(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function jI(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function nn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function xm(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function zx(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Sr(e){return typeof e=="string"||e instanceof String}function Ox(e){return typeof e=="boolean"}function _x(e){return typeof e=="number"}function Mp(e){return Array.isArray(e)?Mp(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":_x(e)?"float32":Sr(e)?"string":Ox(e)?"bool":"float32"}function Nr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Fp(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function to(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function Px(e,t,n,a=!1){let r=new Array;if(t.length===1){let s=t[0]*(a?2:1);for(let i=0;i<s;i++)r[i]=n[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(a?2:1);for(let l=0;l<s;l++)r[l]=Px(e+l*o,i,n,a)}return r}function no(e,t,n=!1){if(e.length===0)return t[0];let a=e.reduce((r,s)=>r*s)*(n?2:1);if(a===0)return[];if(a!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return Px(0,e,t,n)}function bm(e,t){let n=$p(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function $p(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function UI(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return no(e,new Float32Array(n));if(t==="int32")return no(e,new Int32Array(n));if(t==="bool")return no(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function vm(e){e.forEach(t=>{F(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function HI(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function GI(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function wm(e){return e&&e.then&&typeof e.then=="function"}var Lx="tfjsflags",Wx=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=qI,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(wm(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);Lx in e&&e[Lx].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=KI(n,a)})}};function qI(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(XI(t,a[0],a[1]),a.join("="))),t}function XI(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function KI(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function J(){return oa}var oa=null;function ZI(e){oa=e}var km;function Bx(){if(km==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");km=e}return km}function YI(){let e=Bx();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Im(e,t){let n=YI();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var ao="Abs",ro="Acos",so="Acosh",Tr="Add",ls="AddN",io="All",oo="Any",us="ArgMax",vu="ArgMin",lo="Asin",uo="Asinh",po="Atan",co="Atanh",ho="Atan2",ds="AvgPool",Dp="AvgPoolGrad",wu="AvgPool3D",zp="AvgPool3DGrad",ps="BatchMatMul",ku="BatchToSpaceND",Op="Bincount",Vx="BroadcastTo",cs="Cast",hs="Ceil",Er="ClipByValue",_p="Complex",Iu="ComplexAbs",fo="Concat",fs="Conv2D",Pp="Conv2DBackpropFilter",ms="Conv2DBackpropInput",Su="Conv3D",Lp="Conv3DBackpropFilterV2",Wp="Conv3DBackpropInputV2",As="Cos",mo="Cosh",ys="Cumsum",Ao="CropAndResize",Bp="DenseBincount",yo="DepthToSpace",gs="DepthwiseConv2dNative",Vp="DepthwiseConv2dNativeBackpropFilter",jp="DepthwiseConv2dNativeBackpropInput",Up="Diag",Nu="Dilation2D",Hp="Dilation2DBackpropInput",Gp="Dilation2DBackpropFilter",xs="RealDiv",qp="Einsum",go="Elu",Xp="EluGrad",xo="Erf",bo="Equal",bs="Exp",vo="ExpandDims",wo="Expm1",Kp="FFT",Tu="Fill",ko="FlipLeftRight",vs="Floor",ws="FloorDiv",ks="FusedBatchNorm",Io="GatherV2",So="GatherNd",No="Greater",Is="GreaterEqual",Ss="Identity",Zp="IFFT",Yp="Imag",To="IsFinite",Eo="IsInf",Co="IsNan",Ns="LeakyRelu",Ro="Less",Mo="LessEqual",Jp="LinSpace",Ts="Log",Fo="Log1p",$o="LogicalAnd",Eu="LogicalNot",Cu="LogicalOr",jx="LogSoftmax",Ru="LRN",Qp="LRNGrad",Es="Max",Cs="Maximum",Rs="MaxPool",ec="MaxPoolGrad",Mu="MaxPool3D",tc="MaxPool3DGrad",nc="MaxPoolWithArgmax",Ms="Mean",Fs="Min",$s="Minimum",Ds="MirrorPad",Do="Mod",ac="Multinomial",zs="Multiply",zo="Neg",Oo="NotEqual",_o="NonMaxSuppressionV3",Po="NonMaxSuppressionV4",Lo="NonMaxSuppressionV5",Wo="OnesLike",Os="OneHot",Bo="Pack",_s="PadV2",JI="Pool",Ps="Pow",Ls="Prelu",Vo="Prod",Fu="Range",rc="Real",jo="Reciprocal",Ws="Relu",Uo="Reshape",$u="ResizeNearestNeighbor",sc="ResizeNearestNeighborGrad",Bs="ResizeBilinear",ic="ResizeBilinearGrad",Vs="Relu6",js="Reverse",Us="Round",Hs="Rsqrt",Ho="ScatterNd",Go="Select",qo="Selu",Xo="Slice",Gs="Sin",Ko="Sinh",Zo="Sign",qs="Sigmoid",Yo="Softplus",Xs="Sqrt",Ks="Sum",Du="SpaceToBatchND",Jo="SplitV",Zs="Softmax",oc="SparseFillEmptyRows",lc="SparseReshape",uc="SparseToDense",Ys="SquaredDifference",zu="Square",Qo="StridedSlice",Js="Sub",Qs="Tan",ei="Tanh",Cr="Tile",el="TopK",tl="Transform",ti="Transpose",dc="Unique",nl="Unpack",Ou="UnsortedSegmentSum",al="ZerosLike",Rr="Step",pc="FromPixels",rl="RotateWithOffset",ni="_FusedMatMul",ai="FusedConv2D",ri="FusedDepthwiseConv2D",sl=Im("kernelRegistry",()=>new Map),_u=Im("gradRegistry",()=>new Map);function cc(e,t){let n=Nm(e,t);return sl.get(n)}function Sm(e){return _u.get(e)}function il(e){let t=sl.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function si(e){let{kernelName:t,backendName:n}=e,a=Nm(t,n);sl.has(a)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),sl.set(a,e)}function Ux(e){let{kernelName:t}=e;_u.has(t)&&J().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),_u.set(t,e)}function QI(e,t){let n=Nm(e,t);if(!sl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);sl.delete(n)}function eS(e){if(!_u.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);_u.delete(e)}function tS(e,t){il(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});si(a)})}function Nm(e,t){return`${t}_${e}`}var k={};Fe(k,{arraysEqual:()=>rr,assert:()=>F,assertNonNegativeIntegerDimensions:()=>vm,assertNonNull:()=>is,assertShapesMatch:()=>on,bytesFromStringArray:()=>zx,bytesPerElement:()=>xm,checkConversionForErrors:()=>$x,clamp:()=>xu,computeStrides:()=>to,createScalarValue:()=>nS,createShuffledIndices:()=>WI,decodeString:()=>fc,distSquared:()=>OI,encodeString:()=>Lu,fetch:()=>rS,flatten:()=>os,getArrayFromDType:()=>Fx,getTypedArrayFromDType:()=>Mx,hasEncodingLoss:()=>jI,indexToLoc:()=>GI,inferDtype:()=>Mp,inferFromImplicitShape:()=>VI,isBoolean:()=>Ox,isFunction:()=>Nr,isInt:()=>Ut,isNumber:()=>_x,isPromise:()=>wm,isScalarShape:()=>_I,isString:()=>Sr,isTypedArray:()=>nn,isValidDtype:()=>Dx,locToIndex:()=>HI,makeOnesTypedArray:()=>bm,makeZerosNestedTypedArray:()=>UI,makeZerosTypedArray:()=>$p,nearestDivisor:()=>Fp,nearestLargerEven:()=>$I,now:()=>Pu,parseAxisParam:()=>ia,randUniform:()=>zI,repeatedTry:()=>BI,rightPad:()=>bu,shuffle:()=>Cx,shuffleCombo:()=>FI,sizeFromShape:()=>Tt,sizeToSquarishShape:()=>LI,squeezeShape:()=>Rx,sum:()=>DI,tanh:()=>PI,toNestedArray:()=>no,toTypedArray:()=>hc});function nS(e,t){return t==="string"?Lu(e):hc([e],t)}function aS(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function hc(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=os(e)),J().getBool("DEBUG")&&$x(e,t),aS(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Pu(){return J().platform.now()}function rS(e,t){return J().platform.fetch(e,t)}function Lu(e,t="utf-8"){return t=t||"utf-8",J().platform.encode(e,t)}function fc(e,t="utf-8"){return t=t||"utf-8",J().platform.decode(e,t)}var sS=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new oS)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=Pu();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:Pu()-i})}if(J().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(u=>{iS(u,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function iS(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var oS=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?bu(`${a}ms`,9):a.error,o=bu(e,25),l=t.rank,u=t.size,d=bu(t.shape.toString(),14),p="";for(let c in r){let h=r[c];if(h!=null){let m=h.shape||t.shape,f=m.length;p+=`${c}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${d} %c${u} %c${p} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function lS(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],d=u.inputs;for(let p in d){let c=d[p],h=!1;for(let m=0;m<t.length;m++)if(a[c.id]){u.outputs.forEach(f=>a[f.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],d=u.inputs;for(let p=0;p<u.outputs.length;p++)if(s[u.outputs[p].id]){for(let c in d)s[d[c].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&i[u.id]){let d={};for(let c in u.inputs){let h=u.inputs[c];a[h.id]&&(d[c]=h)}let p=Object.assign({},u);p.inputs=d,p.outputs=u.outputs,o.push(p)}}return o}function uS(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let d=s.inputs[l];if(!rr(u.shape,d.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${d.shape}'`);if(e[d.id]==null)e[d.id]=u;else{let p=e[d.id];e[d.id]=a(p,u),p.dispose()}}}}var Hx=20,Wu=3,Tm=7;function dS(e,t,n,a){let r=to(t),s=pS(e,t,n,r),i=t.length,o=mc(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function pS(e,t,n,a){let r=Tt(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Vu(e):e;if(o>1)for(let u=0;u<r/s;u++){let d=u*s;for(let p=0;p<s;p++)i[p]=Math.max(i[p],Bu(l[d+p],0,n).length)}return i}function Bu(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(Tm))} + ${parseFloat(e[1].toFixed(Tm))}j`:Sr(e)?a=`'${e}'`:n==="bool"?a=Gx(e):a=parseFloat(e.toFixed(Tm)).toString(),bu(a,t)}function Gx(e){return e===0?"false":"true"}function mc(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=Vu(e);return[Bu(f[0],0,n)]}return n==="bool"?[Gx(e[0])]:[e[0].toString()]}if(l===1){if(o>Hx){let A=Wu*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-Wu)*i,o*i));return n==="complex64"&&(y=Vu(y),g=Vu(g)),["["+y.map((x,w)=>Bu(x,r[w],n)).join(", ")+", ..., "+g.map((x,w)=>Bu(x,r[o-Wu+w],n)).join(", ")+"]"]}let f=n==="complex64"?Vu(e):Array.from(e);return["["+f.map((A,y)=>Bu(A,r[y],n)).join(", ")+"]"]}let u=t.slice(1),d=a.slice(1),p=a[0]*i,c=[];if(o>Hx){for(let f=0;f<Wu;f++){let A=f*p,y=A+p;c.push(...mc(e.slice(A,y),u,n,d,r,!1))}c.push("...");for(let f=o-Wu;f<o;f++){let A=f*p,y=A+p;c.push(...mc(e.slice(A,y),u,n,d,r,f===o-1))}}else for(let f=0;f<o;f++){let A=f*p,y=A+p;c.push(...mc(e.slice(A,y),u,n,d,r,f===o-1))}let h=l===2?",":"";c[0]="["+c[0]+h;for(let f=1;f<c.length-1;f++)c[f]=" "+c[f]+h;let m=`,
|
|
`;for(let f=2;f<l;f++)m+=`
|
|
`;return c[c.length-1]=" "+c[c.length-1]+"]"+(s?"":m),c}function Vu(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var _t=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Tt(e),n!=null){let a=n.length;F(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||Fx(t,this.size),this.strides=to(e)}set(e,...t){t.length===0&&(t=[0]),F(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return za().makeTensor(this.values,this.shape,this.dtype)}},za=null,ol=null,cS=null;function hS(e){za=e}function fS(e){ol=e}function mS(e){cS=e}var Le=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Tt(e),this.strides=to(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return ol.buffer(this.shape,this.dtype,e)}bufferSync(){return ol.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return no(this.shape,e,this.dtype==="complex64")}arraySync(){return no(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=za().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>fc(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=za().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>fc(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await za().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(za().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return ol.print(this,e)}clone(){return this.throwIfDisposed(),ol.clone(this)}toString(e=!1){let t=this.dataSync();return dS(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),ol.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),za().makeVariable(this,e,t,n)}};Object.defineProperty(Le,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Z(){return Im("Tensor",()=>Le)}Z();var ju=class extends Le{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!rr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);za().disposeTensor(this),this.dataId=e.dataId,za().incRef(this,null)}dispose(){za().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(ju,Symbol.hasInstance,{value:e=>e instanceof Le&&e.assign!=null&&e.assign instanceof Function});var ya={};Fe(ya,{assertTypesMatch:()=>qx,getTensorsInContainer:()=>$m,isTensorInList:()=>yS,makeTypesMatch:()=>bt});var Em;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Em||(Em={}));var Cm;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Cm||(Cm={}));var Rm;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Rm||(Rm={}));var Mm;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Mm||(Mm={}));var Fm;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Fm||(Fm={}));var AS={float32:Mm,int32:Cm,bool:Rm,complex64:Fm};function la(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return AS[e][t]}function Ac(e){return la(e,"int32")}function bt(e,t){if(e.dtype===t.dtype)return[e,t];let n=la(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function qx(e,t){F(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function yS(e,t){return t.some(n=>n.id===e.id)}function $m(e){let t=[],n=new Set;return Xx(e,t,n),t}function Xx(e,t,n){if(e==null)return;if(e instanceof Le){t.push(e);return}if(!gS(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),Xx(s,t,n))}}function gS(e){return Array.isArray(e)||typeof e=="object"}function Dm(e){return e.kernelName!=null}var Kx=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Uu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Kx}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new sS(this.backendInstance),!0}setupRegisteredKernels(){il(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){il(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof gu)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return Uu.nextTensorId++}nextVariableId(){return Uu.nextVariableId++}clone(e){let t=D.runKernel(Ss,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return D.runKernel(cs,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(cc(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Dm(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Dm(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let A=cc(h,this.backendName);F(A!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=A.kernelFunc({inputs:m,attrs:f,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,g);let x=g.map(w=>{if(w.rank!=null)return w;let{dataId:b,shape:v,dtype:N}=w;return this.makeTensorFromDataId(b,v,N)});if(a){let w=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(w)}return x}}else{let{forwardFunc:h}=e,m=f=>{!a||(n=f.map(A=>this.keep(this.clone(A))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,A),A}}let{inputs:u,attrs:d}=e,p=Dm(e)?null:e.backwardsFunc,c;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(c=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(c),t=c.outputs)}),a&&this.addTapeNode(l,u,t,p,n,d),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:c.timeMs,extraInfo:c.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=Sm(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?(F(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&Sr(e[0])&&(r=e.map(o=>Lu(o)));let s=a.write(r,t,n),i=new Le(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=zx(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r=new Le(t,n,e,this.nextTensorId());return this.trackTensor(r,a),r}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new ju(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*xm(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof ju||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*xm(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=Sm(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((u,d)=>{if(u==null){let p=n[d],c=$p(p.size,p.dtype);return this.makeTensor(c,p.shape,p.dtype)}return u}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=$m(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if(F(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));F(r instanceof Le,()=>"The result y returned by f() must be a tensor.");let s=lS(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?xS(r.shape):n,uS(i,s,l=>this.tidy(l),bS);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return F(Nr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{F(t.every(i=>i instanceof Le),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),F(n.value instanceof Le,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),F(Nr(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];F(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),F(u.every(p=>p instanceof Le),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let d={};return u.forEach((p,c)=>{d[c]=()=>p}),d};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Pu(),n=await this.backend.time(e);return n.wallMs=Pu()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Kx;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Uu.nextTensorId=0;Uu.nextVariableId=0;function xS(e){let t=bm(Tt(e),"float32");return D.makeTensor(t,e,"float32")}function Zx(){let e=Bx();if(e._tfengine==null){let t=new Wx(e);e._tfengine=new Uu(t)}return ZI(e._tfengine.ENV),hS(()=>e._tfengine),e._tfengine}var D=Zx();function bS(e,t){let n={a:e,b:t};return D.runKernel(Tr,n)}var Hu={};Fe(Hu,{isBrowser:()=>Yx,isMobile:()=>wS});function vS(){return typeof navigator!="undefined"&&navigator!=null}function wS(e){if(e||vS()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function Yx(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var ga=J();ga.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});ga.registerFlag("IS_BROWSER",()=>Yx());ga.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");ga.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));ga.registerFlag("PROD",()=>!1);ga.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>ga.getBool("DEBUG"));ga.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);ga.registerFlag("IS_TEST",()=>!1);ga.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);ga.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Oa(e,t){let n=e;if(nn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||nn(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&J().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&Jx(e,a,[]),a}function Jx(e,t,n){if(n=n||[],!Array.isArray(e)&&!nn(e)){F(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}F(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),F(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)Jx(e[r],a,n.concat(r))}function Qx(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function M(e,t,n,a="numeric"){if(e instanceof Le)return Qx(a,e.dtype,t,n),e;let r=Mp(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),Qx(a,r,t,n),e==null||!nn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Oa(e,r);!nn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?hc(e,r):os(e,[],!0);return D.makeTensor(i,s,r)}function Gu(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>M(r,`${t}[${s}]`,n,a))}var eb="__op";function z(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+eb;let r=(...s)=>{D.startScope(n);try{let i=a(...s);return wm(i)&&console.error("Cannot return a Promise inside of tidy."),D.endScope(i),i}catch(i){throw D.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function kS(e,t){let n=M(e,"real","complex"),a=M(t,"imag","complex");on(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return D.runKernel(_p,r)}var Mr=z({complex_:kS});function Fr(e,t,n,a){if(a==null&&(a=Mp(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!nn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){vm(t);let r=Tt(t),s=Tt(n);F(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==Tt(t.slice(i)):!0;F(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!nn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?hc(e,a):os(e,[],!0),D.makeTensor(e,t,a)}function ua(e,t,n){let a=Oa(e,n);return Fr(e,t,a,n)}var zm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},yc=4;async function IS(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let d=new Promise(async p=>{let c=await l.bytes(),h=c.reduce((A,y)=>A+y.length,0)+yc*c.length,m=new Uint8Array(h),f=0;for(let A=0;A<c.length;A++){let y=c[A],g=new Uint8Array(new Uint32Array([y.length]).buffer);m.set(g,f),f+=yc,m.set(y,f),f+=y.length}p(m)});a.push(d)}else a.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(a);return{data:SS(s),specs:n}}function tb(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=Tt(l),d;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let c=zm[p.dtype],h=e.slice(r,r+u*c),m=p.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){d=new Float32Array(m.length);for(let f=0;f<m.length;f++){let A=m[f];d[f]=A*p.scale+p.min}}else if(p.dtype==="float16")a===void 0&&(a=MS()),d=a(m);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(o==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);d=new Int32Array(m.length);for(let f=0;f<m.length;f++){let A=m[f];d[f]=Math.round(A*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*c}else if(o==="string"){let p=Tt(s.shape);d=[];for(let c=0;c<p;c++){let h=new Uint32Array(e.slice(r,r+yc))[0];r+=yc;let m=new Uint8Array(e.slice(r,r+h));d.push(m),r+=h}}else{let p=zm[o],c=e.slice(r,r+u*p);if(o==="float32")d=new Float32Array(c);else if(o==="int32")d=new Int32Array(c);else if(o==="bool")d=new Uint8Array(c);else if(o==="complex64"){d=new Float32Array(c);let h=new Float32Array(d.length/2),m=new Float32Array(d.length/2);for(let y=0;y<h.length;y++)h[y]=d[y*2],m[y]=d[y*2+1];let f=ua(h,l,"float32"),A=ua(m,l,"float32");n[i]=Mr(f,A),f.dispose(),A.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*p}o!=="complex64"&&(n[i]=ua(d,l,o))}return n}function SS(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var Om=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function nb(e){return Om?Buffer.byteLength(e):new Blob([e]).size}function NS(e){if(Om)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function TS(e){if(Om){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function _m(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function ab(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function qu(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:nb(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:nb(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function ES(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)==0;)r-=8388608,a<<=1;return a&=~8388608,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function CS(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function RS(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function MS(){let e=ES(),t=CS(),n=RS();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var St=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return St.instance==null&&(St.instance=new St),St.instance}static registerSaveRouter(e){St.getInstance().saveRouters.push(e)}static registerLoadRouter(e){St.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return St.getHandlers(e,"save")}static getLoadHandlers(e,t){return St.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?St.getInstance().loadRouters:St.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},FS=e=>St.registerSaveRouter(e),$S=e=>St.registerLoadRouter(e),DS=e=>St.getSaveHandlers(e),zS=(e,t)=>St.getLoadHandlers(e,t),Pm="tensorflowjs",Lm=1,ii="models_store",$r="model_info_store";function rb(){if(!J().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Wm(e){let t=e.result;t.createObjectStore(ii,{keyPath:"modelPath"}),t.createObjectStore($r,{keyPath:"modelPath"})}var oi=class{constructor(e){if(this.indexedDB=rb(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(Pm,Lm);r.onupgradeneeded=()=>Wm(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(ii,"readonly"),o=i.objectStore(ii).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=qu(t),o=s.transaction($r,"readwrite"),l=o.objectStore($r),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),d;u.onsuccess=()=>{d=s.transaction(ii,"readwrite");let p=d.objectStore(ii).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});p.onsuccess=()=>n({modelArtifactsInfo:i}),p.onerror=c=>{l=o.objectStore($r);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),a(p.error)),h.onerror=m=>(s.close(),a(p.error))}},u.onerror=p=>(s.close(),a(u.error)),o.oncomplete=()=>{d==null?s.close():d.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};oi.URL_SCHEME="indexeddb://";var sb=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(oi.URL_SCHEME)?OS(e.slice(oi.URL_SCHEME.length)):null;St.registerSaveRouter(sb);St.registerLoadRouter(sb);function OS(e){return new oi(e)}function _S(e){return e.startsWith(oi.URL_SCHEME)?e.slice(oi.URL_SCHEME.length):e}var PS=class{constructor(){this.indexedDB=rb()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Pm,Lm);n.onupgradeneeded=()=>Wm(n),n.onsuccess=()=>{let a=n.result,r=a.transaction($r,"readonly"),s=r.objectStore($r).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=_S(e),new Promise((t,n)=>{let a=this.indexedDB.open(Pm,Lm);a.onupgradeneeded=()=>Wm(a),a.onsuccess=()=>{let r=a.result,s=r.transaction($r,"readwrite"),i=s.objectStore($r),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),d=()=>{l=r.transaction(ii,"readwrite");let p=l.objectStore(ii).delete(e);p.onsuccess=()=>t(o.result.modelArtifactsInfo),p.onerror=c=>n(o.error)};u.onsuccess=d,u.onerror=p=>(d(),r.close(),n(o.error))}},o.onerror=u=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},sr="/",ll="tensorflowjs_models",ib="info",LS="model_topology",WS="weight_specs",BS="weight_data",VS="model_metadata";function ob(e){return{info:[ll,e,ib].join(sr),topology:[ll,e,LS].join(sr),weightSpecs:[ll,e,WS].join(sr),weightData:[ll,e,BS].join(sr),modelMetadata:[ll,e,VS].join(sr)}}function jS(e){let t=e.split(sr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(sr)}function US(e){return e.startsWith(li.URL_SCHEME)?e.slice(li.URL_SCHEME.length):e}var li=class{constructor(e){if(!J().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=ob(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=qu(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,NS(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=TS(s),t}};li.URL_SCHEME="localstorage://";var lb=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(li.URL_SCHEME)?HS(e.slice(li.URL_SCHEME.length)):null;St.registerSaveRouter(lb);St.registerLoadRouter(lb);function HS(e){return new li(e)}var GS=class{constructor(){F(J().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),F(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=ll+sr,n=sr+ib;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=jS(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=US(e);let t=ob(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},ul="://",Zn=class{constructor(){this.managers={}}static getInstance(){return Zn.instance==null&&(Zn.instance=new Zn),Zn.instance}static registerManager(e,t){F(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(ul)&&(e=e.slice(0,e.indexOf(ul))),F(e.length>0,()=>"scheme must not be an empty string.");let n=Zn.getInstance();F(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function gc(e){if(e.indexOf(ul)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Zn.getSchemes().join(",")}`);return{scheme:e.split(ul)[0],path:e.split(ul)[1]}}async function ub(e,t,n=!1){F(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=St.getLoadHandlers(e);F(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),F(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=St.getSaveHandlers(t);F(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),F(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=gc(e).scheme,l=gc(e).path,u=o===gc(e).scheme,d=await r.load();n&&u&&await Zn.getManager(o).removeModel(l);let p=await i.save(d);return n&&!u&&await Zn.getManager(o).removeModel(l),p.modelArtifactsInfo}async function qS(){let e=Zn.getSchemes(),t={};for(let n of e){let a=await Zn.getManager(n).listModels();for(let r in a){let s=n+ul+r;t[s]=a[r]}}return t}async function XS(e){let t=gc(e);return Zn.getManager(t.scheme).removeModel(t.path)}async function KS(e,t){return ub(e,t,!1)}async function ZS(e,t){return ub(e,t,!0)}var YS=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(J().get("IS_BROWSER")){J().setPlatform("browser",new YS);try{Zn.registerManager(li.URL_SCHEME,new GS)}catch(e){}try{Zn.registerManager(oi.URL_SCHEME,new PS)}catch(e){}}var JS={importFetch:()=>sI()},Bm,QS=class{constructor(){this.util=Qi("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return J().global.fetch!=null?J().global.fetch(e,t):(Bm==null&&(Bm=JS.importFetch()),Bm(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};J().get("IS_NODE")&&J().setPlatform("node",new QS);function We(e,t="float32",n){return t=t||"float32",vm(e),new _t(e,t,n)}function eN(e,t){let n=M(e,"x","cast");if(!Dx(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return D.runKernel(cs,a,r)}var fe=z({cast_:eN});function tN(e){let t={x:M(e,"x","clone","string_or_numeric")};return D.runKernel(Ss,t)}var _a=z({clone_:tN});function db(e,t=!1){console.log(e.toString(t))}Zx();var nN={buffer:We,cast:fe,clone:_a,print:db};fS(nN);var kn={};Fe(kn,{browserFiles:()=>uN,browserHTTPRequest:()=>fN,concatenateArrayBuffers:()=>_m,copyModel:()=>KS,decodeWeights:()=>tb,encodeWeights:()=>IS,fromMemory:()=>AN,getLoadHandlers:()=>zS,getModelArtifactsInfoForJSON:()=>qu,getSaveHandlers:()=>DS,http:()=>Um,isHTTPScheme:()=>jm,listModels:()=>qS,loadWeights:()=>dN,moveModel:()=>ZS,registerLoadRouter:()=>$S,registerSaveRouter:()=>FS,removeModel:()=>XS,weightsLoaderFactory:()=>fb,withSaveHandler:()=>yN});var aN="model",rN=".json",sN=".weights.bin";function pb(e){return new Promise(t=>setTimeout(t)).then(e)}var dl=class{constructor(e){if(!J().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(dl.URL_SCHEME)&&(e=e.slice(dl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=aN),this.modelTopologyFileName=e+rN,this.weightDataFileName=e+sN}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer);let r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=r,await pb(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await pb(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:qu(e)}}}};dl.URL_SCHEME="downloads://";var iN=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){a(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){a(new Error(`weightManifest field is missing from file ${e.name}`));return}let u;try{u=this.checkManifestAndWeightFiles(l,t)}catch(h){a(h);return}let d=[],p=[],c=[];l.forEach(h=>{h.paths.forEach(m=>{p.push(m),c.push(null)}),d.push(...h.weights)}),l.forEach(h=>{h.paths.forEach(m=>{let f=new FileReader;f.onload=A=>{let y=A.target.result,g=p.indexOf(m);if(c[g]=y,c.indexOf(null)===-1){let x={modelTopology:o,weightSpecs:d,weightData:_m(c),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(x.signature=i.signature),i.userDefinedMetadata!=null&&(x.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(x.modelInitializer=i.modelInitializer),n(x)}},f.onerror=A=>a(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(u[m])})})},r.onerror=s=>a(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),r.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],a=t.map(s=>ab(s.name)),r={};for(let s of e)s.paths.forEach(i=>{let o=ab(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),a.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);r[i]=t[a.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return r}},oN=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(dl.URL_SCHEME)?lN(e.slice(dl.URL_SCHEME.length)):null;St.registerSaveRouter(oN);function lN(e="model"){return new dl(e)}function uN(e){return new iN(e)}function cb(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(u=>{let d=n+ ++r/e.length*(a-n);return t(d),u}),l);function i(l){F(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){F(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),F(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),F(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function hb(e,t){t==null&&(t={});let n=t.fetchFunc==null?J().platform.fetch:t.fetchFunc,a=e.map(u=>n(u,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await cb(a,t.onProgress,r,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await cb(i,t.onProgress,o,l)}async function dN(e,t="",n,a){return fb(r=>hb(r,{requestInit:a}))(e,t,n)}function fb(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=zm[y]*Tt(A.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:A,groupOffset:f,sizeBytes:g})};a!=null?a.forEach((w,b)=>{w===A.name&&(x(),i[b]=!0)}):x(),o.push(A.name),f+=g})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let d=await e(u),p={},c=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let x=0;x<m;x++)f+=d[c+x].byteLength;let A=new ArrayBuffer(f),y=new Uint8Array(A),g=0;for(let x=0;x<m;x++){let w=new Uint8Array(d[c+x]);y.set(w,g),g+=w.byteLength}s[h].forEach(x=>{let w=A.slice(x.groupOffset,x.groupOffset+x.sizeBytes),b=tb(w,[x.manifestEntry]);for(let v in b)p[v]=b[v]}),c+=m}),p}}var pN="application/octet-stream",cN="application/json",Vm=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(F(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=J().platform.fetch,F(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&F(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(a)],{type:cN}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:pN}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:qu(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(h){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,a=t.weightsManifest,r=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let u,d;a!=null&&([u,d]=await this.loadWeights(a));let p={modelTopology:n,weightSpecs:u,weightData:d,generatedBy:r,convertedBy:s,format:i};o!=null&&(p.signature=o),l!=null&&(p.userDefinedMetadata=l);let c=t.modelInitializer;return c&&(p.modelInitializer=c),p}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=hN(t),r=this.weightPathPrefix||n,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let d of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(d)):i.push(r+d+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await hb(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,_m(l)]}};Vm.URL_SCHEME_REGEX=/^https?:\/\//;function hN(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function jm(e){return e.match(Vm.URL_SCHEME_REGEX)!=null}var mb=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>jm(a)):n=jm(e),n)return Um(e,t)}return null};St.registerSaveRouter(mb);St.registerLoadRouter(mb);function Um(e,t){return new Vm(e,t)}function fN(e,t){return Um(e,t)}var Hm=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},mN=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function AN(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Hm(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Hm({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Hm({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function yN(e){return new mN(e)}var Ab={};Fe(Ab,{confusionMatrix:()=>wN});function gN(e,t,n=!1,a=!1){let r=M(e,"a","matMul"),s=M(t,"b","matMul");[r,s]=bt(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return D.runKernel(ps,i,o)}var Be=z({matMul_:gN});function xN(e,t,n=1,a=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let r={indices:M(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:a};return D.runKernel(Os,r,s)}var pl=z({oneHot_:xN});function bN(e,t){let n=M(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{F(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let a={x:n},r={perm:t};return D.runKernel(ti,a,r)}var Ye=z({transpose_:bN});function vN(e,t,n){let a=M(e,"labels","confusionMatrix"),r=M(t,"predictions","confusionMatrix");F(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),F(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),F(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),F(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),F(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=pl(fe(a,"int32"),n),i=pl(fe(r,"int32"),n),o=Ye(s),l=Be(o,i);return fe(l,"int32")}var wN=z({confusionMatrix_:vN}),ui={};Fe(ui,{fromPixels:()=>CN,fromPixelsAsync:()=>TN,toPixels:()=>EN});function xc(e,t,n){if(is(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=Oa(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Fr(e,t,a,n)}var cl;function yb(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let c=2;if(r&&e.readyState<c)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(cc(pc,D.backendName)!=null){let c={pixels:e},h={numChannels:t};return D.runKernel(pc,c,h)}let[l,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;i?d=e.getContext("2d").getImageData(0,0,l,u).data:a||n?d=e.data:(s||r||o)&&(cl==null&&(cl=document.createElement("canvas").getContext("2d")),cl.canvas.width=l,cl.canvas.height=u,cl.drawImage(e,0,0,l,u),d=cl.getImageData(0,0,l,u).data);let p;if(t===4)p=new Int32Array(d);else{let c=l*u;p=new Int32Array(c*t);for(let h=0;h<c;h++)for(let m=0;m<t;++m)p[h*t+m]=d[h*4+m]}return xc(p,[u,l,t],"int32")}function kN(e){return e!=null&&e.data instanceof Uint8Array}function IN(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function SN(e){return e!=null&&e.width!==0&&e.height!==0}function NN(e){return IN()&&!(e instanceof ImageBitmap)&&SN(e)&&!kN(e)}async function TN(e,t=3){let n=null;if(J().getBool("WRAP_TO_IMAGEBITMAP")&&NN(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return yb(n,t)}async function EN(e,t){let n=M(e,"img","toPixels");if(!(e instanceof Le)){let u=n;n=fe(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let u=0;u<a*r;++u){let d=[0,0,0,255];for(let c=0;c<s;c++){let h=i[u*s+c];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(d[0]=h*o,d[1]=h*o,d[2]=h*o):d[c]=h*o}let p=u*4;l[p+0]=Math.round(d[0]),l[p+1]=Math.round(d[1]),l[p+2]=Math.round(d[2]),l[p+3]=Math.round(d[3])}if(t!=null){t.width=r,t.height=a;let u=t.getContext("2d"),d=new ImageData(l,r,a);u.putImageData(d,0,0)}return n!==e&&n.dispose(),l}var CN=z({fromPixels_:yb}),Gm={};Fe(Gm,{prepareAndValidate:()=>gb});function gb(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(Tt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let p=0;p<r.length-1;++p)i*=r[p];let o=e.shape,l=r.slice();l.pop();let u=1;for(let p=s;p<n;++p)u*=o[p],l.push(o[p]);let d=[...to(e.shape).map(p=>p/u),1].slice(0,s);return[l,i,u,d]}var qm={};Fe(qm,{calculateShapes:()=>xb,validateInput:()=>Km,validateUpdateShape:()=>Xm});function Xm(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function Km(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Xm(n,t,e)}function xb(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let p=r;p<s;++p)i*=n[p];let o=r<1?1:r,l=Tt(t.shape)/o,u=[...to(n.slice(0,r)),1],d=Tt(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:u,outputSize:d}}var ln={};Fe(ln,{assertParamsValid:()=>RN,computeFlatOffset:()=>FN,computeOutShape:()=>bb,getNormalizedAxes:()=>Ib,isSliceContinous:()=>MN,maskToAxes:()=>bc,parseSliceParams:()=>Rb,sliceInfo:()=>$N,startForAxis:()=>Eb,startIndicesWithElidedDims:()=>Sb,stopForAxis:()=>Cb,stopIndicesWithElidedDims:()=>Nb,stridesForAxis:()=>Tb,stridesWithElidedDims:()=>vb});function RN(e,t,n){let a=e.shape.length;F(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),F(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)F(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function bc(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function bb(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function vb(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function wb(e,t,n){return n<=e?n:n-(t-1)}function kb(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function Ib(e,t,n,a,r,s,i,o,l){let u=e.length,d=new Array(u),p=new Array(u),c=new Array(u);if(t.length&&n>0){let h=t[0],m=n+1;d=Sb(i,h,m,a,e),p=Nb(o,h,m,r,e),c=vb(s,h,m,e)}else for(let h=0;h<u;h++)d[h]=Eb(i,a,s,e,h,l),p[h]=Cb(o,r,s,e,h,l),c[h]=Tb(s,h,l);return{begin:d,end:p,strides:c}}function Sb(e,t,n,a,r){let s=[...r],i=kb(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=wb(t,n,o),u=a[l];e&1<<l&&(u=0),s[o]=u}return s}function Nb(e,t,n,a,r){let s=[...r],i=kb(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=wb(t,n,o),u=a[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=xu(0,s[o],r[o])}return s}function Tb(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function Eb(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=xu(0,i,l-1),i}function Cb(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=xu(0,i,l):i=xu(-1,i,l-1),i}function MN(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function FN(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function Rb(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{F(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(F(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function $N(e,t,n,a,r,s,i,o,l){let u=t.slice(),d=n.slice(),p=a;a==null&&(p=new Array(u.length));let c=bc(i);if(c.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let h=e.length-u.length,m=bc(o),f=e.slice();m.forEach(v=>{u[v]=0,d[v]=1,f.splice(v,0,1)});let{begin:A,end:y,strides:g}=Ib(f,c,h,u,d,p,r,s,i);u=A,d=y,p=g;let x=bc(l);x.forEach(v=>{d[v]=u[v]+1,p[v]=1});let w=bb(u,d,p),b=w.filter((v,N)=>x.indexOf(N)===-1);return{nonStrided:p.every(v=>v===1),$begin:u,$end:d,$strides:p,size:w,newShape:f,outShape:b}}var ae={};Fe(ae,{Serializable:()=>Mb,SerializationMap:()=>di,registerClass:()=>Dr});var Mb=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},di=class{constructor(){this.classNameMap={}}static getMap(){return di.instance==null&&(di.instance=new di),di.instance}static register(e){di.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Dr(e){F(e.className!=null,()=>"Class being registered does not have the static className property defined."),F(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),F(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),di.register(e)}var Fb={};Fe(Fb,{TEST_EPSILON_FLOAT16:()=>$b,encodeStrings:()=>Db,expectArrayBuffersEqual:()=>WN,expectArraysClose:()=>zN,expectArraysEqual:()=>_N,expectNumbersClose:()=>PN,expectPromiseToFail:()=>ON,expectValuesInRange:()=>LN,testEpsilon:()=>Zm});var DN=.001,$b=.1;function zN(e,t,n){return n==null&&(n=Zm()),Ym(e,t,(a,r)=>Jm(a,r,n))}function Zm(){return D.backend.floatPrecision()===32?DN:$b}function Ym(e,t,n){let a=!0;if((nn(e)||nn(t))&&(a=!1),nn(e)&&nn(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Oa(e),o=Oa(t);if(!rr(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=nn(e)?e:os(e),s=nn(t)?t:os(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`)}}function ON(e,t){e().then(()=>t.fail(),()=>t())}function _N(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Sr(e)||Sr(e[0])||Sr(t)||Sr(t[0])?Ym(e,n,(a,r)=>a==r):Ym(e,t,(a,r)=>Jm(a,r,0))}function PN(e,t,n){if(n==null&&(n=Zm()),!Jm(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Jm(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function LN(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function WN(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function Db(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?Db(n):e[t]=Lu(n)}return e}var BN="3.6.0";function VN(){J().set("PROD",!0)}function jN(){J().set("DEBUG",!0)}function UN(){J().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Qm(e){J().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}mS(Qm);function HN(){D.disposeVariables()}function ir(){return D}function vc(){return D.memory()}function GN(e){return D.profile(e)}function W(e,t){return D.tidy(e,t)}function Ee(e){$m(e).forEach(t=>t.dispose())}function Ht(e){return D.keep(e)}function qN(e){return D.time(e)}function XN(e){return D.setBackend(e)}function KN(){return D.ready()}function ZN(){return D.backendName}function YN(e){D.removeBackend(e)}function eA(e){return D.findBackend(e)}function JN(e){return D.findBackendFactory(e)}function hl(e,t,n=1){return D.registerBackend(e,t,n)}function zb(){return D.backend}function QN(e,t){J().setPlatform(e,t)}function eT(e,t){let n=M(e,"a","add"),a=M(t,"b","add");[n,a]=bt(n,a);let r={a:n,b:a};return D.runKernel(Tr,r)}var se=z({add_:eT});function tT(e,t){let n=M(e,"a","floorDiv"),a=M(t,"b","floorDiv");[n,a]=bt(n,a);let r={a:n,b:a};return D.runKernel(ws,r)}var wc=z({floorDiv_:tT});function nT(e,t){let n=M(e,"a","div"),a=M(t,"b","div");if([n,a]=bt(n,a),n.dtype==="int32"&&a.dtype==="int32")return wc(n,a);let r={a:n,b:a},s={};return D.runKernel(xs,r,s)}var me=z({div_:nT});function aT(e,t){let n=M(e,"a","mul"),a=M(t,"b","mul");[n,a]=bt(n,a);let r={a:n,b:a};return D.runKernel(zs,r)}var P=z({mul_:aT});function rT(e){let t=M(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return D.runKernel(Iu,n)}else{let n={x:t};return D.runKernel(ao,n)}}var Pt=z({abs_:rT});function sT(e){let t={x:M(e,"x","acos")};return D.runKernel(ro,t)}var tA=z({acos_:sT});function iT(e){let t={x:M(e,"x","acosh")};return D.runKernel(so,t)}var nA=z({acosh_:iT});function oT(e){F(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),F(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>M(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!rr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return D.runKernel(ls,a)}var kc=z({addN_:oT});function lT(e,t=null,n=!1){let a={x:M(e,"x","all","bool")},r={axis:t,keepDims:n};return D.runKernel(io,a,r)}var Ic=z({all_:lT});function uT(e,t=null,n=!1){let a={x:M(e,"x","any","bool")},r={axis:t,keepDims:n};return D.runKernel(oo,a,r)}var Xu=z({any_:uT});function dT(e,t=0){let n={x:M(e,"x","argMax")},a={axis:t};return D.runKernel(us,n,a)}var Ku=z({argMax_:dT});function pT(e,t=0){let n={x:M(e,"x","argMin")},a={axis:t};return D.runKernel(vu,n,a)}var aA=z({argMin_:pT});function cT(e){let t={x:M(e,"x","asin")};return D.runKernel(lo,t)}var rA=z({asin_:cT});function hT(e){let t={x:M(e,"x","asinh")};return D.runKernel(uo,t)}var sA=z({asinh_:hT});function fT(e){let t={x:M(e,"x","atan")};return D.runKernel(po,t)}var iA=z({atan_:fT});function mT(e,t){let n=M(e,"a","atan2"),a=M(t,"b","atan2");[n,a]=bt(n,a);let r={a:n,b:a};return D.runKernel(ho,r)}var oA=z({atan2_:mT});function AT(e){let t={x:M(e,"x","atanh")};return D.runKernel(co,t)}var lA=z({atanh_:AT});function yT(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=Pb(r);return Zu(e,o,n,s,a,null,null,l)}function Ob(e,t,n,a,r,s,i="channelsLast"){let[o,l]=Sc(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Zu(e,u,n,a,r,s,!1,i)}function gT(e,t,n,a,r,s,i="NDHWC"){let[o,l,u]=dA(t),d,p;if(i==="NDHWC")p="channelsLast",d=[o,l,u,e[4],e[4]];else if(i==="NCDHW")p="channelsFirst",d=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return _b(e,d,n,a,r,!1,p,s)}function Zu(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,u,d,p]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,d,p]=e;else if(o==="channelsFirst")[l,p,u,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[c,h,,m]=t,[f,A]=Sc(n),[y,g]=Sc(a),x=fl(c,y),w=fl(h,g),{padInfo:b,outHeight:v,outWidth:N}=vT(r,u,d,f,A,x,w,s,o),T=i?m*p:m,R;return o==="channelsFirst"?R=[l,T,v,N]:o==="channelsLast"&&(R=[l,v,N,T]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:d,inChannels:p,outHeight:v,outWidth:N,outChannels:T,padInfo:b,strideHeight:f,strideWidth:A,filterHeight:c,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:w,dilationHeight:y,dilationWidth:g,inShape:e,outShape:R,filterShape:t}}function _b(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,u,d,p,c]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,d,p,c]=e;else if(i==="channelsFirst")[l,c,u,d,p]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,A]=t,[y,g,x]=dA(n),[w,b,v]=dA(a),N=fl(h,w),T=fl(m,b),R=fl(f,v),{padInfo:$,outDepth:O,outHeight:_,outWidth:V}=wT(r,u,d,p,y,g,x,N,T,R,o),U=s?A*c:A,j;return i==="channelsFirst"?j=[l,U,O,_,V]:i==="channelsLast"&&(j=[l,O,_,V,U]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:d,inWidth:p,inChannels:c,outDepth:O,outHeight:_,outWidth:V,outChannels:U,padInfo:$,strideDepth:y,strideHeight:g,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:N,effectiveFilterHeight:T,effectiveFilterWidth:R,dilationDepth:w,dilationHeight:b,dilationWidth:v,inShape:e,outShape:j,filterShape:t}}function xT(e,t,n,a,r){a==null&&(a=uA(e,t,n));let s=e[0],i=e[1],o=pi((s-t+2*a)/n+1,r),l=pi((i-t+2*a)/n+1,r);return[o,l]}function bT(e,t,n,a,r,s){r==null&&(r=uA(e,t,a));let i=e[0],o=e[1],l=e[2],u=pi((i-t+2*r)/a+1,s),d=pi((o-t+2*r)/a+1,s),p=pi((l-t+2*r)/a+1,s);return[u,d,p,n]}function uA(e,t,n,a=1){let r=fl(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function Sc(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function dA(e){return typeof e=="number"?[e,e,e]:e}function fl(e,t){return t<=1?e:e+(e-1)*(t-1)}function vT(e,t,n,a,r,s,i,o,l){let u,d,p;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let c=xT([t,n],s,a,e,o);d=c[0],p=c[1]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/r);let c=Math.max(0,(d-1)*a+s-t),h=Math.max(0,(p-1)*r+i-n),m=Math.floor(c/2),f=c-m,A=Math.floor(h/2),y=h-A;u={top:m,bottom:f,left:A,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},d=Math.ceil((t-s+1)/a),p=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let c=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:c,bottom:h,left:m,right:f,type:c===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},d=pi((t-s+c+h)/a+1,o),p=pi((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:d,outWidth:p}}function wT(e,t,n,a,r,s,i,o,l,u,d){let p,c,h,m;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=bT([t,n,a,1],o,1,r,e,d);c=f[0],h=f[1],m=f[2]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(c-1)*r+o-t,A=(h-1)*s+l-n,y=(m-1)*i+u-a,g=Math.floor(f/2),x=f-g,w=Math.floor(A/2),b=A-w,v=Math.floor(y/2),N=y-v;p={top:w,bottom:b,left:v,right:N,front:g,back:x,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},c=Math.ceil((t-o+1)/r),h=Math.ceil((n-l+1)/s),m=Math.ceil((a-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:c,outHeight:h,outWidth:m}}function pi(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function zr(e){let[t,n,a]=Sc(e);return t===1&&n===1&&a===1}function Pa(e,t){return zr(e)||zr(t)}function Pb(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function kT(e,t){let n={x:M(e,"x","reshape","string_or_numeric")},a={shape:t};return D.runKernel(Uo,n,a)}var H=z({reshape_:kT});function IT(e,t,n,a,r){let s=M(e,"x","avgPool","float32"),i=1;F(Pa(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),r!=null&&F(Ut(a),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=D.runKernel(ds,u,d);return p=fe(p,s.dtype),l?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Yu=z({avgPool_:IT});function ST(e,t,n,a,r,s="NDHWC"){let i=M(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&F(Ut(a),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=D.runKernel(wu,u,d);return p=fe(p,o.dtype),l?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var pA=z({avgPool3d_:ST});function NT(e,t=0){F(e.length>=1,()=>"Pass at least one tensor to concat");let n=Gu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),n.length===1)return _a(n[0]);let a=n,r={axis:t};return D.runKernel(fo,a,r)}var ot=z({concat_:NT});function TT(e){let t={x:M(e,"x","sigmoid")};return D.runKernel(qs,t)}var In=z({sigmoid_:TT});function ET(e,t,n){let a=M(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return D.runKernel(Xo,r,s)}var Re=z({slice_:ET});function CT(e){let t={x:M(e,"x","tanh")};return D.runKernel(ei,t)}var ci=z({tanh_:CT});function RT(e,t,n,a,r,s){let i=M(e,"forgetBias","basicLSTMCell"),o=M(t,"lstmKernel","basicLSTMCell"),l=M(n,"lstmBias","basicLSTMCell"),u=M(a,"data","basicLSTMCell"),d=M(r,"c","basicLSTMCell"),p=M(s,"h","basicLSTMCell"),c=ot([u,p],1),h=Be(c,o),m=se(h,l),f=m.shape[0],A=m.shape[1]/4,y=[f,A],g=Re(m,[0,0],y),x=Re(m,[0,A],y),w=Re(m,[0,A*2],y),b=Re(m,[0,A*3],y),v=se(P(In(g),ci(x)),P(d,In(se(i,w)))),N=P(ci(v),In(b));return[v,N]}var MT=z({basicLSTMCell_:RT});function FT(e,t,n){let a=M(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);F(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),F(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),F(a.shape[0]%r==0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return D.runKernel(ku,s,i)}var Ju=z({batchToSpaceND_:FT});function $T(e){let t;return e.rank===0||e.rank===1?t=H(e,[1,1,1,e.size]):e.rank===2?t=H(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function DT(e,t,n,a,r,s){s==null&&(s=.001);let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),u;r!=null&&(u=M(r,"scale","batchNorm"));let d;a!=null&&(d=M(a,"offset","batchNorm")),F(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),F(d==null||o.rank===d.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),F(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:$T(i),scale:u,offset:d,mean:o,variance:l},c={varianceEpsilon:s},h=D.runKernel(ks,p,c);return H(h,i.shape)}var hi=z({batchNorm_:DT});function zT(e,t,n,a,r,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),u;r!=null&&(u=M(r,"scale","batchNorm"));let d;return a!=null&&(d=M(a,"offset","batchNorm")),F(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),F(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),F(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),d!=null&&F(d.rank===2||d.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${d.rank}.`),hi(i,o,l,d,u,s)}var Lb=z({batchNorm2d_:zT});function OT(e,t,n,a,r,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),u;r!=null&&(u=M(r,"scale","batchNorm"));let d;return a!=null&&(d=M(a,"offset","batchNorm")),F(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),F(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),F(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),d!=null&&F(d.rank===3||d.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${d.rank}.`),hi(i,o,l,d,u,s)}var Wb=z({batchNorm3d_:OT});function _T(e,t,n,a,r,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),u;r!=null&&(u=M(r,"scale","batchNorm"));let d;return a!=null&&(d=M(a,"offset","batchNorm")),F(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),F(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),F(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),d!=null&&F(d.rank===4||d.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${d.rank}.`),hi(i,o,l,d,u,s)}var Bb=z({batchNorm4d_:_T});function PT(e,t,n){let a=M(e,"x","bincount"),r=M(t,"weights","bincount");F(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return D.runKernel(Op,s,i)}var cA=z({bincount_:PT});function LT(e,t){let n=M(e,"broadcastTo","x"),a=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=H(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return _a(n);let i={x:n},o={reps:s};return D.runKernel(Cr,i,o)}var ml=z({broadcastTo_:LT});function WT(e){let t={x:M(e,"x","ceil")};return D.runKernel(hs,t)}var hA=z({ceil_:WT});function BT(e,t,n){let a=M(e,"x","clipByValue");F(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:a},s={clipValueMin:t,clipValueMax:n};return D.runKernel(Er,r,s)}var Sn=z({clipByValue_:BT});function VT(e){return ot(e,0)}var Vb=z({concat1d_:VT});function jT(e,t){return ot(e,t)}var Al=z({concat2d_:jT});function UT(e,t){return ot(e,t)}var jb=z({concat3d_:UT});function HT(e,t){return ot(e,t)}var Ub=z({concat4d_:HT});function GT(e,t,n,a,r="NHWC",s=[1,1],i){let o=M(e,"x","conv2d"),l=M(t,"filter","conv2d"),u=o,d=!1;o.rank===3&&(d=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&F(Ut(a),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p=r==="NHWC"?u.shape[3]:u.shape[1];F(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),F(Pa(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=D.runKernel(fs,c,h);return d?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var or=z({conv2d_:GT});function qT(e,t,n,a,r="NWC",s=1,i){let o=M(e,"x","conv1d"),l=M(t,"filter","conv1d"),u=o,d=!1;o.rank===2&&(d=!0,u=H(o,[1,o.shape[0],o.shape[1]])),F(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),F(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&F(Ut(a),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),F(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),F(Pa(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),F(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=H(l,[1,l.shape[0],l.shape[1],l.shape[2]]),c=H(u,[u.shape[0],1,u.shape[1],u.shape[2]]),h=or(c,p,[1,n],a,"NHWC",[1,s],i);return d?H(h,[h.shape[2],h.shape[3]]):H(h,[h.shape[0],h.shape[2],h.shape[3]])}var Nc=z({conv1d_:qT});function XT(e,t,n,a,r,s="NHWC",i){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),F(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),F(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),F(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let d=s==="NHWC"?o[3]:o[1],p=s==="NHWC"?l.shape[3]:l.shape[1];F(d===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${d}) must match input depth for filter ${n.shape[2]}.`),F(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),i!=null&&F(Ut(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let c={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=D.runKernel(ms,c,h);return u?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var fA=z({conv2DBackpropInput_:XT});function KT(e,t,n,a,r,s){let i=M(e,"x","conv2dTranspose"),o=M(t,"filter","conv2dTranspose");return fA(n,i,o,a,r,"NHWC",s)}var Tc=z({conv2dTranspose_:KT});function ZT(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=M(e,"x","conv3d"),o=M(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),F(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),F(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),F(Pa(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let d={x:l,filter:o},p={strides:n,pad:a,dataFormat:r,dilations:s},c=D.runKernel(Su,d,p);return u?H(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var mA=z({conv3d_:ZT});function YT(e,t,n,a,r){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];F(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),F(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),F(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),F(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),F(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let d={dy:i,filter:n},p={pad:r,strides:a,inputShape:s},c=D.runKernel(Wp,d,p);return o?H(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var Hb=z({conv3DBackpropInput_:YT});function JT(e,t,n,a,r){let s=M(e,"x","conv3dTranspose"),i=M(t,"filter","conv3dTranspose");return Hb(n,s,i,a,r)}var Gb=z({conv3dTranspose_:JT});function QT(e){let t={x:M(e,"x","cos")};return D.runKernel(As,t)}var Qu=z({cos_:QT});function eE(e){let t={x:M(e,"x","cosh")};return D.runKernel(mo,t)}var Ec=z({cosh_:eE});function tE(e,t=0,n=!1,a=!1){let r={x:M(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return D.runKernel(ys,r,s)}var Cc=z({cumsum_:tE});function nE(e,t,n,a=!1){let r=M(e,"x","denseBincount"),s=M(t,"weights","denseBincount");F(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),F(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return D.runKernel(Bp,i,o)}var qb=z({denseBincount_:nE});function aE(e,t,n="NHWC"){let a=M(e,"x","depthToSpace"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];F(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),F(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),F(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return D.runKernel(yo,o,l)}var AA=z({depthToSpace_:aE});function rE(e,t,n,a,r="NHWC",s=[1,1],i){let o=M(e,"x","depthwiseConv2d"),l=M(t,"filter","depthwiseConv2d"),u=o,d=!1;o.rank===3&&(d=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&F(Ut(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p={x:u,filter:l},c={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},h=D.runKernel(gs,p,c);return d?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var yl=z({depthwiseConv2d_:rE});function sE(e){let t={x:M(e,"x","diag")};return D.runKernel(Up,t)}var iE=z({diag_:sE});function oE(e,t,n,a,r=[1,1],s="NHWC"){let i=M(e,"x","dilation2d"),o=M(t,"filter","dilation2d");F(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),F(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),F(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let d={x:l,filter:o},p={strides:n,pad:a,dilations:r},c=D.runKernel(Nu,d,p);return u?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var yA=z({dilation2d_:oE});function lE(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function Lt(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function pt(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r<a;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function uE(e,t){let n=M(e,"a","equal"),a=M(t,"b","equal");[n,a]=bt(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(bo,r)}var Or=z({equal_:uE});function dE(e,t,n){let a=M(t,"a","where"),r=M(n,"b","where"),s=M(e,"condition","where","bool"),i=pt(pt(s.shape,a.shape),r.shape),o=ml(s,i),l=ml(a,i),u=ml(r,i),d={condition:o,t:l,e:u};return D.runKernel(Go,d)}var an=z({where_:dE});function pE(e){let t={x:M(e,"x","zerosLike")};return D.runKernel(al,t)}var Ue=z({zerosLike_:pE});function cE(e,t){let n=M(e,"a","div"),a=M(t,"b","div");[n,a]=bt(n,a);let r=me(n,a),s=Ue(r),i=Or(a,s);return an(i,s,r)}var gA=z({divNoNan_:cE});function hE(e,t){let n=M(e,"t1","dot"),a=M(t,"t2","dot");F((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if(F(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=H(n,[1,-1]),o=H(a,[-1,1]),l=Be(i,o);return H(l,[])}else if(n.rank===1&&a.rank===2){let i=H(n,[1,-1]),o=H(a,[a.shape[0],a.shape[1]]),l=Be(i,o);return H(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=H(a,[-1,1]),o=Be(n,i);return H(o,[o.size])}else{let i=H(a,[a.shape[0],a.shape[1]]);return Be(n,i)}}var Xb=z({dot_:hE});function fE(e,...t){let n=t.map((r,s)=>M(r,`tensors${s}`,"einsum")),a={equation:e};return D.runKernel(qp,n,a)}var Kb=z({einsum_:fE});function mE(e){let t={x:M(e,"x","elu")};return D.runKernel(go,t)}var gl=z({elu_:mE});function AE(e){let t=M(e,"x","erf");F(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=fe(t,"float32"));let n={x:t};return D.runKernel(xo,n)}var xA=z({erf_:AE});function yE(e){let t={x:M(e,"x","exp")};return D.runKernel(bs,t)}var Yn=z({exp_:yE});function gE(e,t=0){let n=M(e,"x","expandDims","string_or_numeric");F(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return D.runKernel(vo,a,r)}var un=z({expandDims_:gE});function xE(e){let t={x:M(e,"x","expm1")};return D.runKernel(wo,t)}var bA=z({expm1_:xE});function bE(e,t){let n=M(e,"x","tile","string_or_numeric");F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return D.runKernel(Cr,a,r)}var _r=z({tile_:bE});function vE(e,t,n,a="float32"){t==null&&(t=e);let r=We([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=H(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return _r(un(i,0),[n[0],1,1]);if(n.length===2)return _r(un(un(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return _r(un(un(un(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var vA=z({eye_:vE});function xl(e,t,n){let a={shape:e,value:t,dtype:n};return D.runKernel(Tu,{},a)}function wE(e){let t={x:M(e,"x","floor")};return D.runKernel(vs,t)}var bl=z({floor_:wE});function kE(e,t,n=0,a=0){let r=M(e,"x","gather"),s=M(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return D.runKernel(Io,i,o)}var fi=z({gather_:kE});function IE(e,t){let n=M(e,"a","greater"),a=M(t,"b","greater");[n,a]=bt(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(No,r)}var Fn=z({greater_:IE});function SE(e,t){let n=M(e,"a","greaterEqual"),a=M(t,"b","greaterEqual");[n,a]=bt(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(Is,r)}var Pr=z({greaterEqual_:SE});function NE(e){let t={input:M(e,"input","imag")};return D.runKernel(Yp,t)}var Rc=z({imag_:NE});function TE(e){let t={x:M(e,"x","isFinite")};return D.runKernel(To,t)}var Zb=z({isFinite_:TE});function EE(e){let t={x:M(e,"x","isInf")};return D.runKernel(Eo,t)}var Yb=z({isInf_:EE});function CE(e){let t={x:M(e,"x","isNaN")};return D.runKernel(Co,t)}var wA=z({isNaN_:CE});function RE(e,t=.2){let n={x:M(e,"x","leakyRelu")},a={alpha:t};return D.runKernel(Ns,n,a)}var ed=z({leakyRelu_:RE});function ME(e,t){let n=M(e,"a","less"),a=M(t,"b","less");[n,a]=bt(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(Ro,r)}var Mc=z({less_:ME});function FE(e,t){let n=M(e,"a","lessEqual"),a=M(t,"b","lessEqual");[n,a]=bt(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(Mo,r)}var Lr=z({lessEqual_:FE});function Jb(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return D.runKernel(Jp,{},a)}function $E(e,t=5,n=1,a=1,r=.5){let s=M(e,"x","localResponseNormalization");F(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),F(Ut(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=H(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:a,beta:r},d=D.runKernel(Ru,l,u);return o?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var kA=z({localResponseNormalization_:$E});function DE(e){let t={x:M(e,"x","log")};return D.runKernel(Ts,t)}var $n=z({log_:DE});function zE(e){let t={x:M(e,"x","log1p")};return D.runKernel(Fo,t)}var Fc=z({log1p_:zE});function OE(e){return F(Nr(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=M(t,"x","tf.grad","string_or_numeric"),r=n!=null?M(n,"dy","tf.grad"):null;return D.tidy(()=>{let{value:s,grads:i}=D.gradients(()=>e(a),[a],r);return r!=null&&on(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),$c(i),i[0]})}}function _E(e){return F(Nr(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{F(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=Gu(t,"args","tf.grads","string_or_numeric"),r=n!=null?M(n,"dy","tf.grads"):null;return D.tidy(()=>{let{value:s,grads:i}=D.gradients(()=>e(...a),a,r);return r!=null&&on(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),$c(i),i})}}function PE(e){return F(Nr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{F(t instanceof Le,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),F(n==null||n instanceof Le,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=D.gradients(()=>e(t),[t],n);return $c(a),{grad:a[0],value:r}}}function LE(e){return F(Nr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{F(Array.isArray(t)&&t.every(r=>r instanceof Le),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),F(n==null||n instanceof Le,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=D.gradients(()=>e(...t),t,n);return n!=null&&on(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),$c(a.grads),a}}function Qb(e,t){F(Nr(e),()=>"The f passed in variableGrads(f) must be a function"),F(t==null||Array.isArray(t)&&t.every(u=>u instanceof ju),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in D.registeredVariables)t.push(D.registeredVariables[u])}let a=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),F(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=D.gradients(e,t,null,s);F(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),F(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,d)=>{o[d]!=null&&(l[u.name]=o[d])}),a!=null&&a.forEach(u=>l[u.name]=null),{value:i,grads:l}}function La(e){return D.customGrad(e)}function $c(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function WE(e){let t={x:M(e,"x","neg")};return D.runKernel(zo,t)}var vt=z({neg_:WE});function BE(e){let t={x:M(e,"x","softplus")};return D.runKernel(Yo,t)}var mi=z({softplus_:BE});function VE(e){let t=M(e,"x","logSigmoid");return La(n=>({value:vt(mi(vt(n))),gradFunc:a=>P(a,In(vt(n)))}))(t)}var e3=z({logSigmoid_:VE});function jE(e,t=null,n=!1){let a={x:M(e,"x","max")},r={reductionIndices:t,keepDims:n};return D.runKernel(Es,a,r)}var Jn=z({max_:jE});function UE(e,t){let n=M(e,"a","sub"),a=M(t,"b","sub");[n,a]=bt(n,a);let r={a:n,b:a};return D.runKernel(Js,r)}var ge=z({sub_:UE});function HE(e,t=null,n=!1){let a=M(e,"x","sum");a.dtype==="bool"&&(a=fe(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return D.runKernel(Ks,r,s)}var ke=z({sum_:HE});function GE(e,t=-1){let n=M(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return La((a,r)=>{let s=!0,i=Jn(a,t,!0),o=ge(a,i),l=ge(fe(o,"float32"),$n(ke(Yn(o),t,s)));return r([l]),{value:l,gradFunc:(u,d)=>{let[p]=d,c=!0,h=Yn(p);return ge(u,P(ke(u,t,c),h))}}})(n)}var Dc=z({logSoftmax_:GE});function IA(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function t3(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function n3(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function Ai(e,t){let n=t.map(a=>1);return t3(e,n,t)}function qE(e,t,n){F(IA(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function a3(e,t){if(IA(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function SA(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function XE(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function KE(e,t=null,n=!1){let a=M(e,"x","logSumExp"),r=ia(t,a.shape),s=Jn(a,r,!0),i=ge(a,s),o=Yn(i),l=ke(o,r),u=$n(l),d=se(H(s,u.shape),u);if(n){let p=Ai(d.shape,r);return H(d,p)}return d}var NA=z({logSumExp_:KE});function ZE(e,t){let n=M(e,"a","logicalAnd","bool"),a=M(t,"b","logicalAnd","bool");pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel($o,r)}var da=z({logicalAnd_:ZE});function YE(e){let t={x:M(e,"x","logicalNot","bool")};return D.runKernel(Eu,t)}var td=z({logicalNot_:YE});function JE(e,t){let n=M(e,"a","logicalOr","bool"),a=M(t,"b","logicalOr","bool");pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(Cu,r)}var zc=z({logicalOr_:JE});function QE(e,t){let n=M(e,"a","logicalXor","bool"),a=M(t,"b","logicalXor","bool");return pt(n.shape,a.shape),da(zc(e,t),td(da(e,t)))}var r3=z({logicalXor_:QE});function eC(e,t,n,a,r){let s=M(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),F(Pa(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),r!=null&&F(Ut(a),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=D.runKernel(Rs,u,d);return l?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var nd=z({maxPool_:eC});function tC(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=M(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&F(Ut(a),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=D.runKernel(Mu,u,d);return l?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var TA=z({maxPool3d_:tC});function nC(e,t,n,a,r=!1){let s={x:M(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=D.runKernel(nc,s,i);return{result:o[0],indexes:o[1]}}var s3=z({maxPoolWithArgmax_:nC});function aC(e,t){let n=M(e,"a","maximum"),a=M(t,"b","maximum");[n,a]=bt(n,a),n.dtype==="bool"&&(n=fe(n,"int32"),a=fe(a,"int32")),pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(Cs,r)}var Wa=z({maximum_:aC});function rC(e,t=null,n=!1){let a={x:M(e,"x","mean")},r={axis:t,keepDims:n};return D.runKernel(Ms,a,r)}var wt=z({mean_:rC});function Rt(e,t="float32"){if(t==="complex64"){let a=Rt(e,"float32"),r=Rt(e,"float32");return Mr(a,r)}let n=$p(Tt(e),t);return D.makeTensor(n,e,t)}function Dn(e,t="float32"){if(t==="complex64"){let a=Dn(e,"float32"),r=Rt(e,"float32");return Mr(a,r)}let n=bm(Tt(e),t);return D.makeTensor(n,e,t)}function sC(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let a=M(e,"x","meshgrid",e instanceof Le?e.dtype:"float32");if(t===void 0)return[a];let r=M(t,"y","meshgrid",t instanceof Le?t.dtype:"float32"),s=Tt(a.shape),i=Tt(r.shape);return n==="xy"?(a=H(a,[1,-1]),r=H(r,[-1,1]),[Be(Dn([i,1],a.dtype),a),Be(r,Dn([1,s],r.dtype))]):(a=H(a,[-1,1]),r=H(r,[1,-1]),[Be(a,Dn([1,i],a.dtype)),Be(Dn([s,1],r.dtype),r)])}function iC(e,t=null,n=!1){let a={x:M(e,"x","min")},r={axis:t,keepDims:n};return D.runKernel(Fs,a,r)}var vl=z({min_:iC});function oC(e,t){let n=M(e,"a","minimum"),a=M(t,"b","minimum");[n,a]=bt(n,a),n.dtype==="bool"&&(n=fe(n,"int32"),a=fe(a,"int32")),pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel($s,r)}var wl=z({minimum_:oC});function lC(e,t,n){F(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=M(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");F(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)F(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),F(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return D.runKernel(Ds,i,s)}var EA=z({mirrorPad_:lC});function uC(e,t){let n=M(e,"a","mod"),a=M(t,"b","mod");[n,a]=bt(n,a);let r={a:n,b:a};return D.runKernel(Do,r)}var CA=z({mod_:uC});function dC(e){let t=M(e,"x","square"),n={};return D.runKernel("Square",{x:t},n)}var it=z({square_:dC});function pC(e,t=null,n=!1){e=M(e,"x","moments");let a=ia(t,e.shape),r=wt(e,a,n),s=r.shape;n||(s=Ai(r.shape,a));let i=it(ge(fe(e,"float32"),H(r,s))),o=wt(i,a,n);return{mean:r,variance:o}}var Oc=z({moments_:pC});function cC(e,t,n,a){let r=M(t,"data","multiRNNCell"),s=Gu(n,"c","multiRNNCell"),i=Gu(a,"h","multiRNNCell"),o=r,l=[];for(let p=0;p<e.length;p++){let c=e[p](o,s[p],i[p]);l.push(c[0]),l.push(c[1]),o=c[1]}let u=[],d=[];for(let p=0;p<l.length;p+=2)u.push(l[p]),d.push(l[p+1]);return[u,d]}var hC=z({multiRNNCell_:cC});function fC(e,t,n,a=!1){let r=M(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?H(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},u=D.runKernel(ac,o,l);return i===1?H(u,[u.size]):u}var i3=z({multinomial_:fC});function mC(e,t){let n=M(e,"a","notEqual"),a=M(t,"b","notEqual");[n,a]=bt(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(Oo,r)}var yi=z({notEqual_:mC});function AC(e){let t={x:M(e,"x","onesLike")};return D.runKernel(Wo,t)}var zn=z({onesLike_:AC});function yC(e,t){let n=M(e,"v1","outerProduct"),a=M(t,"v2","outerProduct");F(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=H(n,[-1,1]),s=H(a,[1,-1]);return Be(r,s)}var gC=z({outerProduct_:yC});function xC(e,t,n=0){let a=M(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return D.runKernel(_s,s,r)}var lr=z({pad_:xC});function bC(e,t,n=0){return F(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),lr(e,[t],n)}var vC=z({pad1d_:bC});function wC(e,t,n=0){return F(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),lr(e,t,n)}var kC=z({pad2d_:wC});function IC(e,t,n=0){return F(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),lr(e,t,n)}var SC=z({pad3d_:IC});function NC(e,t,n=0){return F(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),lr(e,t,n)}var TC=z({pad4d_:NC});function EC(e,t,n){let a=M(e,"x","spaceToBatchND");F(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),F(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),F(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return D.runKernel(Du,r,s)}var ad=z({spaceToBatchND_:EC});function CC(e,t,n,a,r,s){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let i=M(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),F(Pa(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let u=Ob(o.shape,t,s,r,a),d=[u.dilationHeight,u.dilationWidth],p;a==="same"?p=MC([u.filterHeight,u.filterWidth],d):p=[[0,0],[0,0]];let c=d[0]===1&&d[1]===1,[h,m]=RC([u.inHeight,u.inWidth],d,p),f=c?a:"valid",A=c?o:ad(o,d,h),y=(n==="avg"?()=>Yu(A,t,s,f):()=>nd(A,t,s,f))(),g=c?y:Ju(y,d,m);return l?H(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function RC(e,t,n){let a=n.map(d=>d[0]),r=n.map(d=>d[1]),s=e.concat(a,r),i=t.map((d,p)=>(d-s[p]%d)%d),o=r.map((d,p)=>d+i[p]),l=t.map((d,p)=>[a[p],o[p]]),u=t.map((d,p)=>[0,i[p]]);return[l,u]}function MC(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var o3=z({pool_:CC});function FC(e,t){let n=M(e,"base","pow"),a=M(t,"exp","pow");[n,a]=bt(n,a);let r={a:n,b:a};return D.runKernel(Ps,r)}var ur=z({pow_:FC});function $C(e,t){let n=M(e,"x","prelu"),a=M(t,"alpha","prelu"),r={x:n,alpha:a};return D.runKernel(Ls,r)}var rd=z({prelu_:$C});function DC(e,t=null,n=!1){let a=M(e,"x","prod");a.dtype==="bool"&&(a=fe(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return D.runKernel(Vo,r,s)}var _c=z({prod_:DC});function zC(e,t,n){let a=Tt(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return D.makeTensor(r,e,n)}var OC=z({rand_:zC}),RA=eo(Jg()),MA=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=RA.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},_C=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=RA.alea(r.toString()),this.randn=new MA(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},PC=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=RA.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function LC(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new _C(t,n,a,r),i=We(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var WC=z({randomGamma_:LC});function BC(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new MA(t,n,a,!1,r),i=We(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var l3=z({randomNormal_:BC});function VC(e,t=0,n=1,a="float32",r){let s=We(e,a),i=new PC(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var kl=z({randomUniform_:VC});function Il(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return D.runKernel(Fu,{},r)}function jC(e){let t={input:M(e,"input","real")};return D.runKernel(rc,t)}var sd=z({real_:jC});function UC(e){let t={x:M(e,"x","reciprocal")};return D.runKernel(jo,t)}var FA=z({reciprocal_:UC});function HC(e){let t={x:M(e,"x","relu")};return D.runKernel(Ws,t)}var Ba=z({relu_:HC});function GC(e){let t={x:M(e,"x","relu6")};return D.runKernel(Vs,t)}var Pc=z({relu6_:GC});function qC(e,t){let n={x:M(e,"x","reverse")},a={dims:t};return D.runKernel(js,n,a)}var On=z({reverse_:qC});function XC(e){let t=M(e,"x","reverse");return F(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),On(t,0)}var KC=z({reverse1d_:XC});function ZC(e,t){let n=M(e,"x","reverse");return F(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),On(n,t)}var YC=z({reverse2d_:ZC});function JC(e,t){let n=M(e,"x","reverse");return F(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),On(n,t)}var QC=z({reverse3d_:JC});function eR(e,t){let n=M(e,"x","reverse");return F(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),On(n,t)}var tR=z({reverse4d_:eR});function nR(e){let t={x:M(e,"x","round")};return D.runKernel(Us,t)}var Lc=z({round_:nR});function aR(e){let t={x:M(e,"x","rsqrt")};return D.runKernel(Hs,t)}var Wc=z({rsqrt_:aR});function Se(e,t){if((nn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&nn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Fr(e,[],[],t)}function rR(e){let t={x:M(e,"x","selu")};return D.runKernel(qo,t)}var Bc=z({selu_:rR});function sR(e,t,n,a,r,s=[1,1],i="NHWC"){let o=M(e,"x","separableConv2d"),l=M(t,"depthwiseFilter","separableConv2d"),u=M(n,"pointwiseFilter","separableConv2d"),d=o,p=!1;if(o.rank===3&&(p=!0,d=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");F(d.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${d.rank}.`),F(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),F(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let c=l.shape[2],h=l.shape[3];F(u.shape[2]===c*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${c*h}, but got ${u.shape[2]}.`);let m=yl(d,l,a,r,i,s),f=or(m,u,1,"valid",i);return p?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var $A=z({separableConv2d_:sR});async function iR(e,t){let n=M(e,"x","setdiff1d"),a=M(t,"y","setdiff1d");F(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),F(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),F(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let d=0;d<r.length;d++)i.has(r[d])||o++;let l=new _t([o],n.dtype),u=new _t([o],"int32");for(let d=0,p=0;d<r.length;d++)i.has(r[d])||(l.values[p]=r[d],u.values[p]=d,p++);return[l.toTensor(),u.toTensor()]}var u3=iR;function oR(e){let t={x:M(e,"x","sign")};return D.runKernel(Zo,t)}var DA=z({sign_:oR});function lR(e){let t={x:M(e,"x","sin")};return D.runKernel(Gs,t)}var Vc=z({sin_:lR});function uR(e){let t={x:M(e,"x","sinh")};return D.runKernel(Ko,t)}var jc=z({sinh_:uR});function dR(e,t,n){let a=M(e,"x","slice1d");return F(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),Re(a,[t],[n])}var Uc=z({slice1d_:dR});function pR(e,t,n){let a=M(e,"x","slice2d");return F(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),Re(a,t,n)}var zA=z({slice2d_:pR});function cR(e,t,n){let a=M(e,"x","slice3d");return F(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),Re(a,t,n)}var Hc=z({slice3d_:cR});function hR(e,t,n){let a=M(e,"x","slice4d");return F(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),Re(a,t,n)}var id=z({slice4d_:hR});function fR(e,t=-1){let n=M(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return D.runKernel(Zs,a,r)}var od=z({softmax_:fR});function mR(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return D.runKernel(Kp,t)}var ld=z({fft_:mR});function AR(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return D.runKernel(Zp,t)}var Sl=z({ifft_:AR});function yR(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=H(e,[n,t]);a=Sl(r)}else{let r=[n,2*(t-1)],s=H(sd(e),[n,t]),i=H(Rc(e),[n,t]),o=On(Re(s,[0,1],[n,t-2]),1),l=P(On(Re(i,[0,1],[n,t-2]),1),Se(-1)),u=ot([s,o],1),d=ot([i,l],1),p=H(Mr(u,d),[r[0],r[1]]);a=Sl(p)}if(a=sd(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=H(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var Gc=z({irfft_:yR});function gR(e,t,n=0){let a={x:M(e,"x","split")},r={numOrSizeSplits:t,axis:n};return D.runKernel(Jo,a,r)}var Gt=z({split_:gR});function xR(e,t){F(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(A=>0),f=e.shape.map(A=>A);f[e.shape.length-1]=t,r=Re(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=ot([e,Rt(m)],e.shape.length-1),n=t}else r=e;let s=Ue(r),i=H(Mr(r,s),[a,n]),o=ld(i),l=Math.floor(n/2)+1,u=sd(o),d=Rc(o),p=Gt(u,[l,n-l],u.shape.length-1),c=Gt(d,[l,n-l],d.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,H(Mr(p[0],c[0]),h)}var ud=z({rfft_:xR});function bR(e){let t={x:M(e,"x","sqrt")};return D.runKernel(Xs,t)}var Qt=z({sqrt_:bR});function vR(e,t){let n=M(e,"a","squaredDifference"),a=M(t,"b","squaredDifference");[n,a]=bt(n,a),pt(n.shape,a.shape);let r={a:n,b:a},s={};return D.runKernel(Ys,r,s)}var qc=z({squaredDifference_:vR});function wR(e,t){let n=M(e,"x","squeeze");return H(n,Rx(n.shape,t).newShape)}var Va=z({squeeze_:wR});function kR(e,t=0){let n=Gu(e,"tensors","stack","string_or_numeric");F(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&F(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return D.runKernel(Bo,a,r)}var dn=z({stack_:kR});function IR(e,t=0){let n={x:M(e,"x","step")},a={alpha:t};return D.runKernel(Rr,n,a)}var Nl=z({step_:IR});function SR(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let u={x:M(e,"x","stridedSlice")},d={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return D.runKernel(Qo,u,d)}var OA=z({stridedSlice_:SR});function NR(e){let t={x:M(e,"x","tan")};return D.runKernel(Qs,t)}var _A=z({tan_:NR});function Et(e,t){is(e);let n=Oa(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Fr(e,null,n,t)}function xa(e,t,n){if(is(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=Oa(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Fr(e,t,a,n)}function TR(e,t,n){if(is(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=Oa(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Fr(e,t,a,n)}function ER(e,t,n){if(is(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=Oa(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Fr(e,t,a,n)}function CR(e,t,n){if(is(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=Oa(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,Fr(e,t,a,n)}function RR(e,t=1,n=!0){let a=M(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=D.runKernel(el,s,i);return{values:o,indices:l}}var PA=z({topk_:RR});function MR(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new MA(t,n,a,!0,r),i=We(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Xc=z({truncatedNormal_:MR});function FR(e,t=0){let n=M(e,"x","unique","string_or_numeric");F(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=D.runKernel(dc,a,r);return{values:s,indices:i}}var Kc=z({unique_:FR});function $R(e,t,n){let a=M(e,"x","unsortedSegmentSum"),r=M(t,"segmentIds","unsortedSegmentSum","int32");F(Ut(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return D.runKernel(Ou,s,i)}var LA=z({unsortedSegmentSum_:$R});function DR(e,t=0){let n=M(e,"x","unstack","string_or_numeric");F(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return D.runKernel(nl,a,r)}var pa=z({unstack_:DR});function d3(e,t=!0,n,a){return D.makeVariable(e,t,n,a)}function p3(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=We(e,"int32"),r=We([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function zR(e){let t=M(e,"condition","whereAsync","bool"),n=await t.data(),a=p3(t.shape,n);return e!==t&&t.dispose(),a}var WA=zR;async function OR(e,t,n){let a=M(e,"tensor","boolMask"),r=M(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;F(i>0,()=>"mask cannot be scalar"),on(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let u=o.slice(0,s).concat([l],o.slice(s+i)),d=H(a,u),p=H(r,[-1]),c=await WA(p),h=Va(c,[1]),m=fi(d,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),d.dispose(),p.dispose(),c.dispose(),m}var _R=OR;function PR(e,t="euclidean",n=null,a=!1){e=M(e,"x","norm");let r=c3(e,t,n),s=r.shape;if(a){let i=ia(n,e.shape);s=Ai(r.shape,i)}return H(r,s)}function c3(e,t,n=null){if(e.rank===0)return Pt(e);if(e.rank!==1&&n===null)return c3(H(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return ke(Pt(e),n);if(t===Infinity)return Jn(Pt(e),n);if(t===-Infinity)return vl(Pt(e),n);if(t==="euclidean"||t===2)return Qt(ke(ur(Pt(e),Se(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Jn(ke(Pt(e),n[0]),n[1]-1);if(t===Infinity)return Jn(ke(Pt(e),n[1]),n[0]);if(t===-Infinity)return vl(ke(Pt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return Qt(ke(it(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Zc=z({norm_:PR});function LR(e,t,n,a,r=!0){let s=M(e,"v","movingAverage"),i=M(t,"x","movingAverage"),o=M(n,"decay","movingAverage");qx(s,i),F(rr(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=Se(1),u=ge(l,o),d=P(ge(i,s),u);if(r){F(a!=null,()=>"When using zeroDebias: true, step is required.");let p=M(a,"step","movingAverage");d=me(d,ge(l,ur(o,p)))}return se(s,d)}var WR=z({movingAverage_:LR});function BR(e,t,n){let a=M(e,"indices","scatterND","int32"),r=M(t,"updates","scatterND");Km(r,a,n);let s={indices:a,updates:r},i={shape:n};return D.runKernel(Ho,s,i)}var h3=z({scatterND_:BR});function VR(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function jR(e,t,n,a=0){let r=M(e,"sparseIndices","sparseToDense","int32"),s=M(t,"sparseValues","sparseToDense"),i=M(a,"defaultValue","sparseToDense",s.dtype);VR(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return D.runKernel(uc,o,l)}var BA=z({sparseToDense_:jR});function UR(e,t){let n=M(t,"indices","gatherND","int32"),a={params:M(e,"x","gatherND"),indices:n};return D.runKernel(So,a)}var f3=z({gatherND_:UR});function HR(e,t){if(t==null)return e.shape.slice();if(rr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function GR(e,t,n,a){let r=M(e,"x","dropout");if(F(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),F(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Le?r.clone():r;let s=HR(r,n),i=1-t,o=me(bl(se(kl(s,0,1,"float32",a),i)),i);return P(r,o)}var m3=z({dropout_:GR});function A3(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function VA(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return Et(r,"float32")}async function qR(e,t,n=1){let a=M(e,"predictions","inTopK"),r=M(t,"targets","inTopK");F(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),F(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),on(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];F(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,u]=[i.length/s,s],d=Mx("bool",l);for(let p=0;p<l;p++){let c=p*u,h=i.subarray(c,c+u),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,A)=>A.value-f.value),d[p]=0;for(let f=0;f<n;f++)if(m[f].index===o[p]){d[p]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),ua(d,r.shape,"bool")}var XR=qR,Wr={};Fe(Wr,{conv2d:()=>YR,depthwiseConv2d:()=>tM,matMul:()=>aM});function KR(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]])),F(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),F(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),F(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],d=s==="NHWC"?l.shape[3]:l.shape[1];F(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),F(d===n[3],()=>`Error in conv2dDerFilter: depth of dy (${d}) must match output depth for filter (${n[3]}).`),i!=null&&F(Ut(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let p={x:o,dy:l},c={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return D.runKernel(Pp,p,c)}var jA=z({conv2DBackpropFilter_:KR});function Yc(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return P(e,Nl(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Jc(e,t){let n=t,a=Lt(e.shape,t.shape);return a.length>0&&(n=ke(n,a)),H(n,e.shape)}function Qc(e,t,n,a){if(t==="linear")return e;if(t==="relu")return Ba(e);if(t==="elu")return gl(e);if(t==="relu6")return Pc(e);if(t==="prelu")return rd(e,n);if(t==="leakyrelu")return ed(e,a);if(t==="sigmoid")return In(e);throw new Error(`Unknown fused activation ${t}.`)}var eh=(e,t)=>!(e>0)||t==="linear";function ZR({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:d}){if(l=l||"linear",eh(D.state.gradientDepth,l)===!1){let b=or(e,t,n,a,r,s,i);return o!=null&&(b=se(b,o)),Qc(b,l,u,d)}let p=M(e,"x","conv2d"),c=M(t,"filter","conv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=H(p,[1,p.shape[0],p.shape[1],p.shape[2]])),F(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),F(c.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${c.rank}.`),i!=null&&F(Ut(a),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),F(h.shape[3]===c.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${c.shape[2]}.`),F(Pa(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let f=Zu(h.shape,c.shape,n,s,a,i),A;o!=null&&(A=M(o,"bias","fused conv2d"),[A]=bt(A,p),pt(f.outShape,A.shape));let y;u!=null&&(y=M(u,"prelu weights","fused conv2d"));let g=(b,v)=>{let[N,T,R,$]=v,O=Yc(b,R,l);F(zr(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let _=fA(T.shape,O,N,n,a),V=jA(T,O,N.shape,n,a),U=[_,V];if($!=null){let j=Jc($,O);U.push(j)}return U},x={x:h,filter:c,bias:A,preluActivationWeights:y},w={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:d};return o==null?La((b,v,N)=>{let T=D.runKernel(ai,x,w);return N([v,b,T]),m&&(T=H(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(h,c):La((b,v,N,T)=>{let R=D.runKernel(ai,x,w);return T([v,b,R,N]),m&&(R=H(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:g}})(h,c,A)}var YR=z({fusedConv2d_:ZR});function JR(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},d={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return D.runKernel(Vp,u,d)}var y3=z({depthwiseConv2dNativeBackpropFilter_:JR});function QR(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},d={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},p=D.runKernel(jp,u,d);return l?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var g3=z({depthwiseConv2dNativeBackpropInput_:QR});function eM({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:d}){if(eh(D.state.gradientDepth,l)===!1){let b=yl(e,t,n,a,r,s,i);return o!=null&&(b=se(b,o)),Qc(b,l,u,d)}let p=M(e,"x","depthwiseConv2d"),c=M(t,"filter","depthwiseConv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=H(p,[1,p.shape[0],p.shape[1],p.shape[2]])),F(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),F(c.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${c.rank}.`),F(h.shape[3]===c.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),s==null&&(s=[1,1]),F(Pa(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&F(Ut(a),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${a}.`);let f=Zu(h.shape,c.shape,n,s,a,i,!0),A;o!=null&&(A=M(o,"bias","fused conv2d"),[A]=bt(A,p),pt(f.outShape,A.shape));let y;u!=null&&(y=M(u,"prelu weights","fused depthwiseConv2d"));let g=(b,v)=>{F(zr(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[N,T,R,$]=v,O=Yc(b,R,l),_=g3(T.shape,O,N,n,a,s,i),V=y3(T,O,N.shape,n,a,s,i);if($!=null){let U=Jc(A,O);return[_,V,U]}return[_,V]},x={x:h,filter:c,bias:A,preluActivationWeights:y},w={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:d};return o==null?La((b,v,N)=>{let T=D.runKernel(ri,x,w);return N([v,b,T]),m&&(T=H(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(h,c):La((b,v,N,T)=>{let R=D.runKernel(ri,x,w);return T([v,b,R,N]),m&&(R=H(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:g}})(h,c,A)}var tM=z({fusedDepthwiseConv2d_:eM});function nM({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(eh(D.state.gradientDepth,s)===!1){let $=Be(e,t,n,a);return r!=null&&($=se($,r)),Qc($,s,i,o)}let l=M(e,"a","fused matMul"),u=M(t,"b","fused matMul");[l,u]=bt(l,u);let d=n?l.shape[l.rank-2]:l.shape[l.rank-1],p=a?u.shape[u.rank-1]:u.shape[u.rank-2],c=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),A=Tt(m),y=Tt(f);F(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),F(rr(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),F(d===p,()=>`Error in fused matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${a} must match.`);let g=l.shape.slice(0,-2).concat([c,h]),x=n?H(l,[A,d,c]):H(l,[A,c,d]),w=a?H(u,[y,h,p]):H(u,[y,p,h]),b;r!=null&&(b=M(r,"bias","fused matMul"),[b]=bt(b,l),pt(g,b.shape));let v;i!=null&&(v=M(i,"prelu weights","fused matMul"));let N=($,O)=>{let[_,V,U,j]=O,X=Yc(H($,U.shape),U,s),G,ee;if(!n&&!a?(G=Be(X,V,!1,!0),ee=Be(_,X,!0,!1)):!n&&a?(G=Be(X,V,!1,!1),ee=Be(X,_,!0,!1)):n&&!a?(G=Be(V,X,!1,!0),ee=Be(_,X,!1,!1)):(G=Be(V,X,!0,!0),ee=Be(X,_,!0,!0)),r!=null){let Y=Jc(j,X);return[G,ee,Y]}else return[G,ee]},T={a:x,b:w,bias:b,preluActivationWeights:v},R={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?La(($,O,_)=>{let V=D.runKernel(ni,T,R);return _([$,O,V]),{value:H(V,g),gradFunc:N}})(x,w):La(($,O,_,V)=>{let U=D.runKernel(ni,T,R);return V([$,O,U,_]),{value:H(U,g),gradFunc:N}})(x,w,b)}var aM=z({fusedMatMul_:nM});function rM(e){return VA(e,.54,.46)}var sM=z({hammingWindow_:rM});function iM(e){return VA(e,.5,.5)}var x3=z({hannWindow_:iM});function oM(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Re(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=ot([Re(e,s,t-o),xl([o],r)]);i.push(l),s+=n}return i.length===0?xa([],[0,t]):H(ot(i),[i.length,t])}var b3=z({frame_:oM});function lM(e,t,n,a,r=x3){a==null&&(a=A3(t));let s=b3(e,t,n),i=P(s,r(t));return ud(i,a)}var uM=z({stft_:lM});function dM(e,t,n,a,r="bilinear",s=0){let i=M(e,"image","cropAndResize"),o=M(t,"boxes","cropAndResize","float32"),l=M(n,"boxInd","cropAndResize","int32"),u=o.shape[0];F(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),F(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),F(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),F(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),F(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let d={image:i,boxes:o,boxInd:l},p={method:r,extrapolationValue:s,cropSize:a};return D.runKernel(Ao,d,p)}var pM=z({cropAndResize_:dM});function cM(e){let t=M(e,"image","flipLeftRight","float32");F(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return D.runKernel(ko,n,{})}var hM=z({flipLeftRight_:cM});function fM(e,t,n=0,a=.5){let r=M(e,"image","rotateWithOffset","float32");F(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return D.runKernel(rl,s,i)}var mM=z({rotateWithOffset_:fM});function Tl(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),F(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),F(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),F(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),F(t.rank===1,()=>"scores must be a 1D tensor"),F(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),F(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function AM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=M(e,"boxes","nonMaxSuppression"),i=M(t,"scores","nonMaxSuppression"),o=Tl(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return D.runKernel(_o,{boxes:s,scores:i},l)}var yM=z({nonMaxSuppression_:AM});function gM(e,t,n){let a=xM(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function xM(e,t,n){return vM(e,t,n||bM)}function bM(e,t){return e>t?1:e<t?-1:0}function vM(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function v3(e,t,n,a,r){return UA(e,t,n,a,r,0)}function w3(e,t,n,a,r,s){return UA(e,t,n,a,r,0,!1,s,!0)}function k3(e,t,n,a,r,s){return UA(e,t,n,a,r,s,!0)}function UA(e,t,n,a,r,s,i=!1,o=!1,l=!1){let u=[];for(let A=0;A<t.length;A++)t[A]>r&&u.push({score:t[A],boxIndex:A,suppressBeginIndex:0});u.sort(I3);let d=s>0?-.5/s:0,p=[],c=[];for(;p.length<n&&u.length>0;){let A=u.pop(),{score:y,boxIndex:g,suppressBeginIndex:x}=A;if(y<r)break;let w=!1;for(let b=p.length-1;b>=x;--b){let v=wM(e,g,p[b]);if(v>=a){w=!0;break}if(A.score=A.score*kM(a,d,v),A.score<=r)break}A.suppressBeginIndex=p.length,w||(A.score===y?(p.push(g),c.push(A.score)):A.score>r&&gM(u,A,I3))}let h=p.length,m=n-h;o&&m>0&&(p.push(...new Array(m).fill(0)),c.push(...new Array(m).fill(0)));let f={selectedIndices:p};return i&&(f.selectedScores=c),l&&(f.validOutputs=h),f}function wM(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),u=Math.min(r[0],r[2]),d=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),c=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(p-u)*(c-d);if(h<=0||m<=0)return 0;let f=Math.max(s,u),A=Math.max(i,d),y=Math.min(o,p),g=Math.min(l,c),x=Math.max(y-f,0)*Math.max(g-A,0);return x/(h+m-x)}function kM(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function I3(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function IM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=M(e,"boxes","nonMaxSuppressionAsync"),i=M(t,"scores","nonMaxSuppressionAsync"),o=Tl(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],d=l[1],{selectedIndices:p}=v3(u,d,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),Et(p,"int32")}var SM=IM;function NM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=M(e,"boxes","nonMaxSuppression"),o=M(t,"scores","nonMaxSuppression"),l=Tl(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},d={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},p=D.runKernel(Lo,u,d);return{selectedIndices:p[0],selectedScores:p[1]}}var TM=z({nonMaxSuppressionWithScore_:NM});async function EM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=M(e,"boxes","nonMaxSuppressionAsync"),o=M(t,"scores","nonMaxSuppressionAsync"),l=Tl(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),d=u[0],p=u[1],{selectedIndices:c,selectedScores:h}=k3(d,p,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Et(c,"int32"),selectedScores:Et(h)}}var CM=EM;function RM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=M(e,"boxes","nonMaxSuppression"),o=M(t,"scores","nonMaxSuppression"),l=Tl(i,o,n,a,r,null),u=l.maxOutputSize,d=l.iouThreshold,p=l.scoreThreshold,c={boxes:i,scores:o},h={maxOutputSize:u,iouThreshold:d,scoreThreshold:p,padToMaxOutputSize:s},m=D.runKernel(Po,c,h);return{selectedIndices:m[0],validOutputs:m[1]}}var MM=z({nonMaxSuppressionPadded_:RM});async function FM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=M(e,"boxes","nonMaxSuppressionAsync"),o=M(t,"scores","nonMaxSuppressionAsync"),l=Tl(i,o,n,a,r,null),u=l.maxOutputSize,d=l.iouThreshold,p=l.scoreThreshold,[c,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=w3(c,h,u,d,p,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Et(m,"int32"),validOutputs:Se(f,"int32")}}var $M=FM;function DM(e,t,n=!1,a=!1){let r=M(e,"images","resizeBilinear");F(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),F(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),F(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=H(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=D.runKernel(Bs,o,l);return i?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var S3=z({resizeBilinear_:DM});function zM(e,t,n=!1,a=!1){let r=M(e,"images","resizeNearestNeighbor");F(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),F(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),F(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),F(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=H(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=D.runKernel($u,o,l);return i?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var N3=z({resizeNearestNeighbor_:zM});function OM(e,t="binary",n=!1,a=.5){let r=M(e,"image","threshold"),s=.2989,i=.587,o=.114,l=r.shape[0]*r.shape[1],u=P(Et([a]),255),d,p,c,h;if(F(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),F(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),F(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),F(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[d,p,c]=Gt(r,[1,1,1],-1);let f=P(d,s),A=P(p,i),y=P(c,o);h=se(se(f,A),y)}else h=e;if(t==="otsu"){let f=cA(fe(Lc(h),"int32"),ua([]),256);u=_M(f,l)}let m=n?Lr(h,u):Fn(h,u);return fe(P(m,255),"int32")}function _M(e,t){let n=Et([-1]),a=Et([0]),r=Et([0]),s,i,o,l,u,d;for(let p=0;p<e.size-1;p++){s=Re(e,0,p+1),i=Re(e,p+1),u=me(ke(s),t),d=me(ke(i),t);let c=ke(P(s,Il(0,s.size)));o=me(c,ke(s));let h=xl(i.shape,s.size),m=se(Il(0,i.size),h),f=P(i,m);l=me(ke(f),ke(i));let A=ge(o,l),y=ge(o,l),g=P(u,d);r=P(P(g,A),y);let x=Fn(r,a);a=an(x,r,a),n=an(x,Et([p]),n)}return n}var PM=z({threshold_:OM});function LM(e,t,n="nearest",a="constant",r=0,s){let i=M(e,"image","transform","float32"),o=M(t,"transforms","transform","float32");F(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),F(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return D.runKernel(tl,l,u)}var WM=z({transform_:LM});function BM(e,t,n){F(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),F(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=M(e,"a","bandPart");F(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=H(Il(0,s,1,"int32"),[-1,1]),l=Il(0,i,1,"int32"),u=ge(o,l),d=da(Lr(u,Se(+t,"int32")),Pr(u,Se(-n,"int32"))),p=Rt([s,i],a.dtype);return H(dn(pa(H(a,[-1,s,i])).map(c=>an(d,c,p))),r)}var VM=z({bandPart_:BM});function jM(e){let t;if(Array.isArray(e)){t=!1,F(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)F(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=Gt(e,e.shape[0],0).map(r=>Va(r,[0]));F(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(D.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=P(ke(P(n[i],s)),n[i]);s=ge(s,o)}return me(s,Zc(s,"euclidean"))}));return t?dn(n,0):n}var UM=z({gramSchmidt_:jM});function HM(e,t=!1){if(F(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return T3(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),a=pa(H(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[u,d]=T3(l,t);r.push(u),s.push(d)});let i=H(dn(r,0),e.shape),o=H(dn(s,0),e.shape);return[i,o]}}function T3(e,t=!1){return D.tidy(()=>{F(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=vA(n),s=_a(e),i=xa([[1]],[1,1]),o=_a(i),l=n>=a?a:n;for(let u=0;u<l;++u){let d=s,p=o,c=r;[o,s,r]=D.tidy(()=>{let h=Re(s,[u,u],[n-u,1]),m=Zc(h),f=Re(s,[u,u],[1,1]),A=an(Fn(f,0),xa([[-1]]),xa([[1]])),y=ge(f,P(A,m)),g=me(h,y);g.shape[0]===1?o=_a(i):o=ot([i,Re(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let x=vt(me(Be(A,y),m)),w=Re(s,[u,0],[n-u,a]),b=P(x,o),v=Ye(o);if(u===0)s=ge(w,Be(b,Be(v,w)));else{let R=ge(w,Be(b,Be(v,w)));s=ot([Re(s,[0,0],[u,a]),R],0)}let N=Ye(b),T=Re(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=ge(T,Be(Be(T,o),N));else{let R=ge(T,Be(Be(T,o),N));r=ot([Re(r,[0,0],[n,u]),R],1)}return[o,s,r]}),Ee([d,p,c])}return!t&&n>a&&(r=Re(r,[0,0],[n,a]),s=Re(s,[0,0],[a,a])),[r,s]})}var GM=z({qr_:HM}),pn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(pn||(pn={}));function qM(e,t,n=pn.SUM_BY_NONZERO_WEIGHTS){let a=M(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=M(t,"weights","computeWeightedLoss"));let s=r==null?a:P(a,r);if(n===pn.NONE)return s;if(n===pn.SUM)return ke(s);if(n===pn.MEAN){if(r==null)return wt(s);{let i=a.size/r.size,o=me(ke(s),ke(r));return i>1?me(o,Se(i)):o}}if(n===pn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return me(ke(s),Se(a.size));{let i=P(r,Dn(a.shape)),o=fe(ke(yi(i,Se(0))),"float32");return me(ke(s),o)}}throw Error(`Unknown reduction: ${n}`)}var dr=z({computeWeightedLoss_:qM});function XM(e,t,n,a=pn.SUM_BY_NONZERO_WEIGHTS){let r=M(e,"labels","absoluteDifference"),s=M(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=M(n,"weights","absoluteDifference")),on(r.shape,s.shape,"Error in absoluteDifference: ");let o=Pt(ge(r,s));return dr(o,i,a)}var KM=z({absoluteDifference_:XM});function ZM(e,t,n,a,r=pn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","cosineDistance"),i=M(t,"predictions","cosineDistance"),o=null;a!=null&&(o=M(a,"weights","cosineDistance")),on(s.shape,i.shape,"Error in cosineDistance: ");let l=Se(1),u=ge(l,ke(P(s,i),n,!0));return dr(u,o,r)}var YM=z({cosineDistance_:ZM});function JM(e,t,n,a=pn.SUM_BY_NONZERO_WEIGHTS){let r=M(e,"labels","hingeLoss"),s=M(t,"predictions","hingeLoss"),i=null;n!=null&&(i=M(n,"weights","hingeLoss")),on(r.shape,s.shape,"Error in hingeLoss: ");let o=Se(1);r=ge(P(Se(2),r),o);let l=Ba(ge(o,P(r,s)));return dr(l,i,a)}var QM=z({hingeLoss_:JM});function eF(e,t,n,a=1,r=pn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","huberLoss"),i=M(t,"predictions","huberLoss"),o=null;n!=null&&(o=M(n,"weights","huberLoss")),on(s.shape,i.shape,"Error in huberLoss: ");let l=Se(a),u=Pt(ge(i,s)),d=wl(u,l),p=ge(u,d),c=se(P(Se(.5),it(d)),P(l,p));return dr(c,o,r)}var tF=z({huberLoss_:eF});function nF(e,t,n,a=1e-7,r=pn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","logLoss"),i=M(t,"predictions","logLoss"),o=null;n!=null&&(o=M(n,"weights","logLoss")),on(s.shape,i.shape,"Error in logLoss: ");let l=Se(1),u=Se(a),d=vt(P(s,$n(se(i,u)))),p=P(ge(l,s),$n(se(ge(l,i),u))),c=ge(d,p);return dr(c,o,r)}var aF=z({logLoss_:nF});function rF(e,t,n,a=pn.SUM_BY_NONZERO_WEIGHTS){let r=M(e,"labels","meanSquaredError"),s=M(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=M(n,"weights","meanSquaredError")),on(r.shape,s.shape,"Error in meanSquaredError: ");let o=qc(r,s);return dr(o,i,a)}var sF=z({meanSquaredError_:rF});function iF(e,t){let n=M(e,"labels","sigmoidCrossEntropyWithLogits"),a=M(t,"logits","sigmoidCrossEntropyWithLogits");on(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Ba(a),s=P(a,n),i=Fc(Yn(vt(Pt(a))));return se(ge(r,s),i)}function oF(e,t,n,a=0,r=pn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"multiClassLabels","sigmoidCrossEntropy"),i=M(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=M(n,"weights","sigmoidCrossEntropy")),on(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let u=Se(a),d=Se(1),p=Se(.5);s=se(P(s,ge(d,u)),P(p,u))}let l=iF(s,i);return dr(l,o,r)}var lF=z({sigmoidCrossEntropy_:oF});function uF(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return La((a,r,s)=>{let i=NA(r,[n],!0),o=ge(fe(r,"float32"),i);s([a,o]);let l=vt(P(o,a));return{value:ke(l,[n]),gradFunc:(u,d)=>{let[p,c]=d,h=Ai(u.shape,[n]);return[P(H(u,h),ge(fe(p,"float32"),Yn(c))),P(H(u,h),ge(Yn(c),fe(p,"float32")))]}}})(e,t)}function dF(e,t,n,a=0,r=pn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"onehotLabels","softmaxCrossEntropy"),i=M(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=M(n,"weights","softmaxCrossEntropy")),on(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let u=Se(a),d=Se(1),p=Se(s.shape[1]);s=se(P(s,ge(d,u)),me(u,p))}let l=uF(s,i);return dr(l,o,r)}var pF=z({softmaxCrossEntropy_:dF});function cF(e,t,n,a){let r=M(e,"indices","sparseFillEmptyRows"),s=M(t,"values","sparseFillEmptyRows"),i=M(n,"denseShape","sparseFillEmptyRows"),o=M(a,"defaultValue","sparseFillEmptyRows",s.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:r,values:s,denseShape:i,defaultValue:o},u=D.runKernel(oc,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var hF=z({sparseFillEmptyRows_:cF});function fF(e,t,n){let a=M(e,"inputIndices","sparseReshape"),r=M(t,"inputShape","sparseReshape"),s=M(n,"newShape","sparseReshape");if(a.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${a.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:a,inputShape:r,newShape:s},o=D.runKernel(lc,i);return{outputIndices:o[0],outputShape:o[1]}}var mF=z({sparseReshape_:fF}),AF={fft:ld,ifft:Sl,rfft:ud,irfft:Gc},yF={hammingWindow:sM,hannWindow:x3,frame:b3,stft:uM},Ge={flipLeftRight:hM,resizeNearestNeighbor:N3,resizeBilinear:S3,rotateWithOffset:mM,cropAndResize:pM,nonMaxSuppression:yM,nonMaxSuppressionAsync:SM,nonMaxSuppressionWithScore:TM,nonMaxSuppressionWithScoreAsync:CM,nonMaxSuppressionPadded:MM,nonMaxSuppressionPaddedAsync:$M,threshold:PM,transform:WM},E3={bandPart:VM,gramSchmidt:UM,qr:GM},gF={absoluteDifference:KM,computeWeightedLoss:dr,cosineDistance:YM,hingeLoss:QM,huberLoss:tF,logLoss:aF,meanSquaredError:sF,sigmoidCrossEntropy:lF,softmaxCrossEntropy:pF},C3={sparseFillEmptyRows:hF,sparseReshape:mF},pr=class extends Mb{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return Ee(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Qb(e,t)}dispose(){this.iterations_!=null&&Ee(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Se(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(pr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var th=class extends pr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=D.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:W(()=>Ue(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:W(()=>Ue(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;W(()=>{let l=se(P(i,this.rho),P(it(s),1-this.rho)),u=P(me(Qt(se(o,this.epsilon)),Qt(se(i,this.epsilon))),s),d=se(P(o,this.rho),P(it(u),1-this.rho));i.assign(l),o.assign(d);let p=se(P(u,-this.learningRate),a);a.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ee(this.accumulatedGrads.map(e=>e.variable)),Ee(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};th.className="Adadelta";Dr(th);var nh=class extends pr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=D.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:W(()=>xl(a.shape,this.initialAccumulatorValue).variable(i))}}let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;W(()=>{let i=se(s,it(r));s.assign(i);let o=se(P(me(r,Qt(se(i,D.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ee(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};nh.className="Adagrad";Dr(nh);var ah=class extends pr{constructor(e,t,n,a=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],W(()=>{this.accBeta1=Se(t).variable(),this.accBeta2=Se(n).variable()}),a==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);W(()=>{let n=ge(1,this.accBeta1),a=ge(1,this.accBeta2);t.forEach((r,s)=>{let i=D.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:W(()=>Ue(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:W(()=>Ue(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,d=this.accumulatedSecondMoment[s].variable,p=se(P(u,this.beta1),P(l,1-this.beta1)),c=se(P(d,this.beta2),P(it(l),1-this.beta2)),h=me(p,n),m=me(c,a);u.assign(p),d.assign(c);let f=se(P(me(h,se(Qt(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(P(this.accBeta1,this.beta1)),this.accBeta2.assign(P(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ee(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),W(()=>{this.accBeta1.assign(ur(this.beta1,this.iterations_+1)),this.accBeta2.assign(ur(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};ah.className="Adam";Dr(ah);var rh=class extends pr{constructor(e,t,n,a=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],W(()=>{this.iteration=Se(0).variable(),this.accBeta1=Se(t).variable()}),a==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);W(()=>{let n=ge(1,this.accBeta1),a=me(-this.learningRate,se(P(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=D.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:Ue(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:Ue(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,d=this.accumulatedWeightedInfNorm[s].variable,p=se(P(u,this.beta1),P(l,1-this.beta1)),c=P(d,this.beta2),h=Pt(l),m=Wa(c,h);u.assign(p),d.assign(m);let f=se(P(me(a,n),me(p,se(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(se(this.iteration,1)),this.accBeta1.assign(P(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ee(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};rh.className="Adamax";Dr(rh);var dd=class extends pr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=D.registeredVariables[t];W(()=>{let s=se(P(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Ht(Se(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};dd.className="SGD";Dr(dd);var sh=class extends dd{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Se(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=D.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:W(()=>Ue(a).variable(i))}}let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&W(()=>{let i,o=se(P(this.m,r),s);this.useNesterov?i=se(P(this.c,se(s,P(o,this.m))),a):i=se(P(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ee(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};sh.className="Momentum";Dr(sh);var ih=class extends pr{constructor(e,t=.9,n=0,a=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=D.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=D.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:W(()=>Ue(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:W(()=>Ue(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:W(()=>Ue(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;W(()=>{let l=se(P(i,this.decay),P(it(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,d=se(P(u,this.decay),P(s,1-this.decay)),p=me(P(s,this.learningRate),Qt(ge(l,se(it(d),this.epsilon)))),c=se(P(o,this.momentum),p);i.assign(l),u.assign(d),o.assign(c);let h=ge(a,c);a.assign(h)}else{let u=se(P(i,this.decay),P(it(s),1-this.decay)),d=se(P(o,this.momentum),me(P(s,this.learningRate),Qt(se(u,this.epsilon))));i.assign(u),o.assign(d);let p=ge(a,d);a.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ee(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ee(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ee(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};ih.className="RMSProp";Dr(ih);var gi=class{static sgd(e){return new dd(e)}static momentum(e,t,n=!1){return new sh(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new ih(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new ah(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new th(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new rh(e,t,n,a,r)}static adagrad(e,t=.1){return new nh(e,t)}},xi={sgd:gi.sgd,momentum:gi.momentum,adadelta:gi.adadelta,adagrad:gi.adagrad,rmsprop:gi.rmsprop,adamax:gi.adamax,adam:gi.adam},xF=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function oh(){return new Promise(e=>xF(()=>e()))}var C={};Fe(C,{ERF_A1:()=>RF,ERF_A2:()=>MF,ERF_A3:()=>FF,ERF_A4:()=>$F,ERF_A5:()=>DF,ERF_P:()=>CF,PARALLELIZE_THRESHOLD:()=>HA,SELU_SCALE:()=>M3,SELU_SCALEALPHA:()=>R3,applyActivation:()=>Qc,assertAndGetBroadcastShape:()=>pt,assertAxesAreInnerMostDims:()=>qE,assertParamsConsistent:()=>bF,assignToTypedArray:()=>VF,axesAreInnerMostDims:()=>IA,calculateShapes:()=>xb,checkEinsumDimSizes:()=>XF,combineLocations:()=>t3,complexWithEvenIndex:()=>LF,complexWithOddIndex:()=>WF,computeConv2DInfo:()=>Zu,computeConv3DInfo:()=>_b,computeDefaultPad:()=>uA,computeDilation2DInfo:()=>yT,computeOptimalWindowSize:()=>wF,computeOutAndReduceShapes:()=>n3,computeOutShape:()=>vF,computePool2DInfo:()=>Ob,computePool3DInfo:()=>gT,convertConv2DDataFormat:()=>Pb,decodeEinsumEquation:()=>GF,eitherStridesOrDilationsAreOne:()=>Pa,expandShapeToKeepDim:()=>Ai,exponent:()=>UF,exponents:()=>jF,fromStringArrayToUint8:()=>a$,fromUint8ToStringArray:()=>n$,getAxesPermutation:()=>a3,getBroadcastDims:()=>lE,getComplexWithIndex:()=>BF,getEinsumComputePath:()=>KF,getEinsumPermutation:()=>qF,getFusedBiasGradient:()=>Jc,getFusedDyActivation:()=>Yc,getImageCenter:()=>kF,getInnerMostAxes:()=>XE,getPermuted:()=>SF,getReductionAxes:()=>Lt,getReshaped:()=>IF,getReshapedPermuted:()=>NF,getSliceBeginCoords:()=>TF,getSliceSize:()=>EF,getUndoAxesPermutation:()=>SA,isIdentityPermutation:()=>ZF,log:()=>OF,mergeRealAndImagArrays:()=>_F,prepareAndValidate:()=>gb,prepareSplitSize:()=>JF,segment_util:()=>D3,shouldFuse:()=>eh,slice_util:()=>ln,splitRealAndImagArrays:()=>PF,tupleValuesAreOne:()=>zr,upcastType:()=>la,validateInput:()=>Km,validateUpdateShape:()=>Xm,warn:()=>zF});function bF(e,t){let n=e[0].length;e.forEach((r,s)=>{F(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),F(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)F(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function vF(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var HA=30;function wF(e){return e<=HA?e:Fp(e,Math.floor(Math.sqrt(e)))}function kF(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function IF(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function SF(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function NF(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function TF(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function EF(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var R3=1.7580993408473768,M3=1.0507009873554805,CF=.3275911,RF=.254829592,MF=-.284496736,FF=1.421413741,$F=-1.453152027,DF=1.061405429;function zF(...e){J().getBool("IS_TEST")||console.warn(...e)}function OF(...e){J().getBool("IS_TEST")||console.log(...e)}function _F(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function PF(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function LF(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function WF(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function BF(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function VF(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function jF(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function UF(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}var GA="->",HF=/->/g,F3=",",$3="...";function GF(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(HF,"").length)/GA.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${GA}").`);let[a,r]=e.split(GA);F(a.indexOf($3)===-1,()=>`The ellipsis notation ("${$3}") is not supported yet.`);let s=a.split(F3),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let c=0;c<r.length;++c){let h=r[c];if(!s.some(m=>m.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let c=0;c<a.length;++c){let h=a[c];o.indexOf(h)===-1&&h!==F3&&o.push(h)}let l=new Array(s.length);for(let c=0;c<i;++c){if(new Set(s[c].split("")).size!==s[c].length)throw new Error(`Found duplicate axes in input component ${s[c]}. Support for duplicate axes in input is not implemented yet.`);l[c]=[];for(let h=0;h<s[c].length;++h)l[c].push(o.indexOf(s[c][h]))}let u=o.length,d=r.length,p=[];for(let c=d;c<u;++c)p.push(c);return{allDims:o,summedDims:p,idDims:l}}function qF(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let a=[];for(let r=0;r<e;++r)n[r]===-1&&a.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:a}}function XF(e,t,n){let a=new Array(e);for(let r=0;r<n.length;++r){let s=n[r].shape;for(let i=0;i<t[r].length;++i)a[t[r][i]]===void 0?a[t[r][i]]=s[i]:F(a[t[r][i]]===s[i],()=>`Expected dimension ${a[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function KF(e,t){let n=e,a=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;i<r;++i)a.push([]);let s=[];for(let i=0;i<n.length;++i){let o=n[i],l=YF(t,o);for(let u of l)s.indexOf(u)===-1&&(a[i].push(u),s.push(u))}return{path:n,steps:a}}function ZF(e){return e.every((t,n)=>t===n)}function YF(e,t){let n=[];for(let a=0;a<e.length;++a)(e[a].length===0||e[a].indexOf(t)!==-1||t===-1)&&n.push(a);return n}function JF(e,t,n=0){let a=[];if(typeof t=="number")F(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);F(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}F(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}var D3={};Fe(D3,{collectGatherOpShapeInfo:()=>t$,computeOutShape:()=>e$,segOpComputeOptimalWindowSize:()=>QF});function QF(e,t){let n=!1,a;for(e<=HA?(a=e,n=!0):a=Fp(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=Fp(e,a+1);return a}function e$(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function t$(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
|
|
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let p=0;p<a;++p)if(e.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${e.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let i=e.shape[n],o=[],l=1,u=1,d=1;for(let p=0;p<a;++p)o.push(e.shape[p]),l*=e.shape[p];for(let p=a;p<n;p++)o.push(e.shape[p]),u*=e.shape[p];for(let p=a;p<r;p++)o.push(t.shape[p]);for(let p=n+1;p<s;p++)o.push(e.shape[p]),d*=e.shape[p];return{batchSize:l,sliceSize:d,outerSize:u,dimSize:i,outputShape:o}}function n$(e){try{return e.map(t=>fc(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function a$(e){return e.map(t=>Lu(t))}var ja={};Fe(ja,{nonMaxSuppressionV3Impl:()=>v3,nonMaxSuppressionV4Impl:()=>w3,nonMaxSuppressionV5Impl:()=>k3,whereImpl:()=>p3});function ve(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var r$=ja.whereImpl,lh=class extends gu{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Rp(this,ir())}nextDataId(){return lh.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,J().get("IS_NODE")&&C.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let r=n.map(s=>k.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return C.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>k.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}makeOutput(e,t,n){let a=this.write(e,t,n);return ir().makeTensorFromDataId(a,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ve([e],"where");let t=this.readSync(e.dataId);return r$(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};lh.nextDataId=0;var qA={};Fe(qA,{addImpl:()=>O3,bincountImpl:()=>KA,bincountReduceImpl:()=>_3,ceilImpl:()=>P3,concatImpl:()=>ZA,expImpl:()=>L3,expm1Impl:()=>B3,floorImpl:()=>V3,gatherV2Impl:()=>j3,greaterImpl:()=>U3,lessImpl:()=>H3,linSpaceImpl:()=>G3,logImpl:()=>q3,maxImpl:()=>X3,maximumImpl:()=>K3,minimumImpl:()=>Z3,multiplyImpl:()=>YA,negImpl:()=>Y3,notEqualImpl:()=>J3,prodImpl:()=>Q3,rangeImpl:()=>QA,rsqrtImpl:()=>e7,simpleAbsImpl:()=>z3,sliceImpl:()=>ph,sparseFillEmptyRowsImpl:()=>t7,sparseReshapeImpl:()=>n7,squaredDifferenceImpl:()=>a7,stridedSliceImpl:()=>r7,subImpl:()=>s7,tileImpl:()=>i7,topKImpl:()=>o7,transposeImpl:()=>JA,uniqueImpl:()=>l7});function z3(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var s$=e=>{let{x:t}=e.inputs,n=e.backend;ve(t,"abs");let a=new Float32Array(k.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=z3(r),n.makeOutput(a,t.shape,"float32")},i$={kernelName:ao,backendName:"cpu",kernelFunc:s$};function Mt(e){return(t,n,a,r,s)=>{let i=C.assertAndGetBroadcastShape(t,n),o=i.length,l=k.computeStrides(i),u=k.sizeFromShape(i),d=k.getTypedArrayFromDType(s,u),p=t.length,c=n.length,h=k.computeStrides(t),m=k.computeStrides(n),f=C.getBroadcastDims(t,i),A=C.getBroadcastDims(n,i);if(f.length+A.length===0)for(let y=0;y<d.length;++y)d[y]=e(a[y%a.length],r[y%r.length]);else for(let y=0;y<d.length;++y){let g=k.indexToLoc(y,o,l),x=g.slice(-p);f.forEach(N=>x[N]=0);let w=k.locToIndex(x,p,h),b=g.slice(-c);A.forEach(N=>b[N]=0);let v=k.locToIndex(b,c,m);d[y]=e(a[w],r[v])}return[d,i]}}function _n(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var o$={kernelName:_p,backendName:"cpu",kernelFunc:_n};function uh(e,t,n="float32"){if(n==="complex64"){let r=uh(e,t,"float32"),s=uh(e,t,"float32");return _n({inputs:{real:r,imag:s},backend:e})}let a=k.makeZerosTypedArray(k.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function Ua(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var l$={kernelName:Ss,backendName:"cpu",kernelFunc:Ua};function bi(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var u$={kernelName:rc,backendName:"cpu",kernelFunc:bi};function Br(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return Ua({inputs:{x:r},backend:n});let i=uh(n,r.shape,r.dtype),o=Br({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=_n({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=bi({inputs:{input:r},backend:n}),o=Br({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(r.dtype,s)){let i=Ua({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(r.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(r.shape,"int32",o)}if(s==="bool"){let i=n.data.get(r.dataId).values,o=k.toTypedArray([0],r.dtype),[l,u]=Mt((d,p)=>d!==p?1:0)(r.shape,[],i,o,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var d$={kernelName:cs,backendName:"cpu",kernelFunc:Br};function qt(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;ve([i,o],e);let u=l.data.get(i.dataId).values,d=l.data.get(o.dataId).values,p=a||i.dtype,[c,h]=t(i.shape,o.shape,u,d,p);return l.makeTensorInfo(h,p,c)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=Br({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),d=l.data.get(u.dataId),p=d.complexTensorInfos.real,c=d.complexTensorInfos.imag,h=l.data.get(p.dataId).values,m=l.data.get(c.dataId).values,f=Br({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(f.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,x=l.data.get(y.dataId).values,w=l.data.get(g.dataId).values,[b,v,N]=n(i.shape,o.shape,h,m,x,w),T=l.makeTensorInfo(N,"float32",b),R=l.makeTensorInfo(N,"float32",v),$=_n({inputs:{real:T,imag:R},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(T),l.disposeIntermediateTensorInfo(R),$}else{let u=l.data.get(i.dataId).values,d=l.data.get(o.dataId).values,p=a||i.dtype,[c,h]=t(i.shape,o.shape,u,d,p);return l.makeTensorInfo(h,p,c)}}}function XA(e){return(t,n,a,r,s,i)=>{let o=C.assertAndGetBroadcastShape(t,n),l=k.sizeFromShape(o),u=o.length,d=k.computeStrides(o),p=k.getTypedArrayFromDType("float32",l),c=k.getTypedArrayFromDType("float32",l),h=C.getBroadcastDims(t,o),m=C.getBroadcastDims(n,o),f=C.mergeRealAndImagArrays(a,r),A=C.mergeRealAndImagArrays(s,i),y=t.length,g=k.computeStrides(t),x=n.length,w=k.computeStrides(n);if(h.length+m.length===0)for(let b=0;b<p.length;b++){let v=b%f.length,N=b%A.length,T=e(f[v*2],f[v*2+1],A[N*2],A[N*2+1]);p[b]=T.real,c[b]=T.imag}else for(let b=0;b<p.length;b++){let v=k.indexToLoc(b,u,d),N=v.slice(-y);h.forEach(_=>N[_]=0);let T=k.locToIndex(N,y,g),R=v.slice(-x);m.forEach(_=>R[_]=0);let $=k.locToIndex(R,x,w),O=e(f[T*2],f[T*2+1],A[$*2],A[$*2+1]);p[b]=O.real,c[b]=O.imag}return[p,c,o]}}var O3=Mt((e,t)=>e+t),p$=XA((e,t,n,a)=>({real:e+n,imag:t+a})),pd=qt(Tr,O3,p$),c$={kernelName:Tr,backendName:"cpu",kernelFunc:pd};function KA(e,t,n,a,r){let s=k.sizeFromShape(a),i=k.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function _3(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=We([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(a?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function El(e){return(t,n,a)=>{let r=k.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function at(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=k.sizeFromShape(i.shape),d=n||i.dtype,p=k.getArrayFromDType(d,u);for(let c=0;c<u;++c)p[c]=t(l[c],r);return o.makeTensorInfo(i.shape,d,p)}}function Cl(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,d=t(l,u,r);return o.makeTensorInfo(i.shape,u,d)}}var P3=El(e=>Math.ceil(e)),h$=Cl(hs,P3),f$={kernelName:hs,backendName:"cpu",kernelFunc:h$};function ZA(e,t,n,a){let r=k.getArrayFromDType(n,k.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=k.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?C.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let d=u*t[1]+s;for(let p=0;p<i.shape[1];++p)r[d+p]=o[l++]}s+=i.shape[1]})}return r}var L3=El(e=>Math.exp(e)),W3=Cl(bs,L3),m$={kernelName:bs,backendName:"cpu",kernelFunc:W3},B3=El(e=>Math.expm1(e)),A$=Cl(wo,B3),y$={kernelName:wo,backendName:"cpu",kernelFunc:A$},V3=El(e=>Math.floor(e)),g$=Cl(vs,V3),x$={kernelName:vs,backendName:"cpu",kernelFunc:g$};function j3(e,t,n){let a=We(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);a.values[r]=e.values[u]}return a}var U3=Mt((e,t)=>e>t?1:0),b$=qt(No,U3,null,"bool"),v$={kernelName:No,backendName:"cpu",kernelFunc:b$},H3=Mt((e,t)=>e<t?1:0),w$=qt(Ro,H3,null,"bool"),k$={kernelName:Ro,backendName:"cpu",kernelFunc:w$};function G3(e,t,n){let a=(t-e)/(n-1),r=k.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var q3=El(e=>Math.log(e)),I$=Cl(Ts,q3),S$={kernelName:Ts,backendName:"cpu",kernelFunc:I$};function X3(e,t,n,a){let r=k.getTypedArrayFromDType(a,k.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];u>o&&(o=u)}r[s]=o}return r}var K3=Mt((e,t)=>Math.max(e,t)),N$=qt(Cs,K3),T$={kernelName:Cs,backendName:"cpu",kernelFunc:N$},Z3=Mt((e,t)=>Math.min(e,t)),E$=qt($s,Z3),C$={kernelName:$s,backendName:"cpu",kernelFunc:E$},YA=Mt((e,t)=>e*t),R$=XA((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),dh=qt(zs,YA,R$),M$={kernelName:zs,backendName:"cpu",kernelFunc:dh};function Y3(e,t,n){let a=k.createScalarValue(-1,n);return YA([],t,a,e,n)}function F$(e){let{inputs:t,backend:n}=e,{x:a}=t;ve(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=Y3(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var $$={kernelName:zo,backendName:"cpu",kernelFunc:F$},J3=Mt((e,t)=>e!==t?1:0),D$=qt(Oo,J3,null,"bool"),z$={kernelName:Oo,backendName:"cpu",kernelFunc:D$};function JA(e,t,n,a,r){let s=t.length,i=k.sizeFromShape(t),o=k.computeStrides(t),l=k.computeStrides(r),u=k.getTypedArrayFromDType(n,k.sizeFromShape(r));for(let d=0;d<i;++d){let p=k.indexToLoc(d,s,o),c=new Array(p.length);for(let m=0;m<c.length;m++)c[m]=p[a[m]];let h=k.locToIndex(c,s,l);u[h]=e[d]}return u}function Qn(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;ve(r,"transpose");let i=r.shape.length,o=new Array(i);for(let d=0;d<o.length;d++)o[d]=r.shape[s[d]];let l=a.data.get(r.dataId).values,u=JA(l,r.shape,r.dtype,s,o);return{dataId:a.write(u,o,r.dtype),shape:o,dtype:r.dtype}}var O$={kernelName:ti,backendName:"cpu",kernelFunc:Qn};function Q3(e,t,n,a){let[r,s]=C.computeOutAndReduceShapes(e,a),i=la(t,"int32"),o=k.makeZerosTypedArray(k.sizeFromShape(r),i),l=k.sizeFromShape(s);for(let u=0;u<o.length;++u){let d=u*l,p=1;for(let c=0;c<l;++c)p*=n[d+c];o[u]=p}return{outVals:o,outShape:r,outDtype:i}}function _$(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"prod");let o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=C.getAxesPermutation(l,o),d=l,p=r,c=[];u!=null&&(p=Qn({inputs:{x:r},backend:n,attrs:{perm:u}}),c.push(p),d=C.getInnerMostAxes(d.length,o));let h=n.data.get(p.dataId).values,{outVals:m,outShape:f,outDtype:A}=Q3(p.shape,p.dtype,h,d),y=f;return i&&(y=C.expandShapeToKeepDim(f,l)),c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,m)}var P$={kernelName:Vo,backendName:"cpu",kernelFunc:_$};function QA(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return k.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=k.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var e7=El(e=>1/Math.sqrt(e)),L$=Cl(Hs,e7),W$={kernelName:Hs,backendName:"cpu",kernelFunc:L$};function ph(e,t,n,a,r){let s=ln.isSliceContinous(a,t,n),i=k.sizeFromShape(n),o=k.computeStrides(a);if(s){let p=ln.computeFlatOffset(t,o);return r==="string"?e.slice(p,p+i):e.subarray(p,p+i)}let l=r==="string"?C.fromUint8ToStringArray(e):e,u=We(a,r,l),d=We(n,r);for(let p=0;p<d.size;++p){let c=d.indexToLoc(p),h=c.map((m,f)=>m+t[f]);d.set(u.get(...h),...c)}return r==="string"?C.fromStringArrayToUint8(d.values):d.values}function vi(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;ve(r,"slice");let[o,l]=ln.parseSliceParams(r,s,i);ln.assertParamsValid(r,o,l);let u=n.data.get(r.dataId).values,d=ph(u,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}var B$={kernelName:Xo,backendName:"cpu",kernelFunc:vi};function t7(e,t,n,a,r,s,i){let o=t[0],l=s[0],u=new Array(l),d=new Array(o),p=t[1];if(l===0){if(o!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${o}`);let A=k.getArrayFromDType(n,0),y=k.getArrayFromDType(r,0);return[A,[0,p],y,u,d]}let c=!0,h=0,m=new Array(l).fill(0);for(let A=0;A<o;++A){let y=e[A*p];if(y<0)throw new Error(`indices(${A}, 0) is invalid: ${y} < 0`);if(y>=l)throw new Error(`indices(${A}, 0) is invalid: ${y} >= ${l}`);++m[y],c=c&&y>=h,h=y}let f=!0;for(let A=0;A<l;++A){let y=m[A]===0;u[A]=y,f=f&&!y,m[A]=Math.max(m[A],1),A>0&&(m[A]+=m[A-1])}if(f&&c){let A=e,y=a;for(let g=0;g<o;++g)d[g]=g;return[A,[o,p],y,u,d]}else{let A=m[l-1],y=k.getArrayFromDType(n,A*p),g=k.getArrayFromDType(r,A),x=new Array(l).fill(0);for(let w=0;w<o;++w){let b=e[w*p],v=x[b],N=(b===0?0:m[b-1])+v;x[b]++;for(let T=0;T<p;++T)y[N*p+T]=e[w*p+T];g[N]=a[w],d[w]=N}for(let w=0;w<l;++w)if(x[w]===0){let b=w===0?0:m[w-1];y[b*p+0]=w;for(let v=1;v<p;++v)y[b*p+v]=0;g[b]=i}return[y,[o,p],g,u,d]}}function n7(e,t,n,a,r){let s=k.sizeFromShape(a),i=t[0],o=r.length,l=[],u=1,d=-1;for(let A=0;A<o;++A){let y=r[A];if(y===-1){if(d!==-1)throw new Error(`only one output dimension may be -1, not both ${d} and ${A}`);d=A,l.push(1)}else{if(y<0)throw new Error(`size ${A} must be non-negative, not ${y}`);u*=y,l.push(y)}}if(d!==-1){if(u<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let A=Math.trunc(s/u);if(u*A!==s)throw new Error(`Input to reshape is a SparseTensor with ${s}
|
|
dense values, but the requested shape requires a multiple of ${u}. inputShape=${a} outputShape= ${l}`);l[d]=A}let p=k.sizeFromShape(l);if(p!==s)throw new Error(`Input to reshape is a tensor with ${s} dense values, but the requested shape has ${p}. inputShape=${a} outputShape=${l}`);let c=a.length,h=[];if(c>0){h[c-1]=1;for(let A=c-2;A>=0;--A)h[A]=h[A+1]*a[A+1]}let m=[];if(o>0){m[o-1]=1;for(let A=o-2;A>=0;--A)m[A]=m[A+1]*l[A+1]}let f=k.getArrayFromDType(n,i*o);for(let A=0;A<i;++A){let y=0;for(let g=0;g<c;++g)y+=e[A*c+g]*h[g];for(let g=0;g<o;++g)f[A*o+g]=Math.trunc(y/m[g]),y%=m[g]}return[f,[i,o],l]}var a7=Mt((e,t)=>{let n=e-t;return n*n}),V$=qt(Ys,a7),j$={kernelName:Ys,backendName:"cpu",kernelFunc:V$};function r7(e,t,n,a){let r=We(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var s7=Mt((e,t)=>e-t),U$=XA((e,t,n,a)=>({real:e-n,imag:t-a})),e1=qt(Js,s7,U$),H$={kernelName:Js,backendName:"cpu",kernelFunc:e1};function i7(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=We(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}function o7(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=k.getTypedArrayFromDType(n,i*a),u=k.getTypedArrayFromDType("int32",i*a);for(let p=0;p<i;p++){let c=p*o,h=e.subarray(c,c+o),m=[];for(let g=0;g<h.length;g++)m.push({value:h[g],index:g});m.sort((g,x)=>x.value-g.value);let f=p*a,A=l.subarray(f,f+a),y=u.subarray(f,f+a);for(let g=0;g<a;g++)A[g]=m[g].value,y[g]=m[g].index}let d=t.slice();return d[d.length-1]=a,[We(d,n,l),We(d,"int32",u)]}function l7(e,t,n,a){let r=k.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[r]),l=new _t(s,a,e),u=[],d=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(d)f=e[m].toString();else{let A=[];for(let y=0;y<s[0];y++)for(let g=0;g<s[2];g++)A.push(l.get(y,m,g));f=A.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let A=Object.keys(i).length;i[f]=A,o[m]=A,u.push(m)}}let p=s.slice();p[1]=Object.keys(i).length;let c=new _t(p,a);u.forEach((m,f)=>{for(let A=0;A<s[0];A++)for(let y=0;y<s[2];y++)c.set(l.get(A,m,y),A,f,y)});let h=n.slice();return h[r]=p[1],{outputValues:c.values,outputShape:h,indices:o}}var u7="3.6.0";hl("cpu",()=>new lh,1);var d7=at(go,e=>e>=0?e:Math.exp(e)-1),G$={kernelName:go,backendName:"cpu",kernelFunc:d7};function p7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;ve([r],"leakyRelu");let i=k.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=k.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(r.shape,"float32",l)}var q$={kernelName:Ns,backendName:"cpu",kernelFunc:p7},X$=Mt((e,t)=>e<0?t*e:e);function c7(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;ve([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=X$(a.shape,r.shape,s,i,a.dtype);return n.makeTensorInfo(l,a.dtype,o)}var K$={kernelName:Ls,backendName:"cpu",kernelFunc:c7},h7=at(Ws,e=>Math.max(0,e)),Z$={kernelName:Ws,backendName:"cpu",kernelFunc:h7},f7=at(Vs,e=>Math.min(Math.max(0,e),6)),Y$={kernelName:Vs,backendName:"cpu",kernelFunc:f7},m7=at(qs,e=>1/(1+Math.exp(-e))),J$={kernelName:qs,backendName:"cpu",kernelFunc:m7};function t1(e,t,n,a,r){if(n==="linear")return Ua({inputs:{x:t},backend:e});if(n==="relu")return h7({inputs:{x:t},backend:e});if(n==="elu")return d7({inputs:{x:t},backend:e});if(n==="relu6")return f7({inputs:{x:t},backend:e});if(n==="prelu")return c7({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return p7({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return m7({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function ct(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=k.sizeFromShape(r.shape),o=k.inferFromImplicitShape(s,i),l=k.sizeFromShape(o);k.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let d=u.complexTensorInfos.real,p=u.complexTensorInfos.imag;d.shape=o,p.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var Q$={kernelName:Uo,backendName:"cpu",kernelFunc:ct};function A7(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;ve([r,s],"matMul");let l=r.shape.length,u=s.shape.length,d=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),A=k.sizeFromShape(m),y=k.sizeFromShape(f),g=A===y||A===1||y===1;k.assert(l>=2&&u>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(A>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([c,h]);k.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let w=i?[A,d,c]:[A,c,d],b=o?[y,h,p]:[y,p,h],v=ct({inputs:{x:r},backend:n,attrs:{shape:w}}),N=ct({inputs:{x:s},backend:n,attrs:{shape:b}}),T=i?v.shape[1]:v.shape[2],R=i?v.shape[2]:v.shape[1],$=o?N.shape[1]:N.shape[2],O=Math.max(A,y),_=n.data.get(v.dataId).values,V=n.data.get(N.dataId).values,U=k.computeStrides(v.shape),j=k.computeStrides(N.shape),[X,G,ee]=i?[U[0],1,U[1]]:[U[0],U[1],1],[Y,re,ne]=o?[1,j[1],j[0]]:[j[1],1,j[0]],ie=R*$,Q=We([O,R,$],v.dtype),de=Q.values,oe=n.blockSize;for(let ye=0;ye<O;ye++)for(let he=0;he<R;he+=oe)for(let Ie=0;Ie<$;Ie+=oe)for(let Ne=0;Ne<T;Ne+=oe){let $e=Math.min(he+oe,R),Oe=Math.min(Ie+oe,$),De=Math.min(Ne+oe,T);for(let Qe=he;Qe<$e;Qe++)for(let et=Ie;et<Oe;et++){let st=0;for(let Ke=Ne;Ke<De;Ke++){let dt=Math.min(ye,A-1)*X,Ve=Math.min(ye,y-1)*ne,gn=_[dt+Qe*G+Ke*ee],gt=V[Ke*Y+et*re+Ve];st+=gn*gt}de[ye*ie+(Qe*$+et)]+=st}}return n.disposeIntermediateTensorInfo(v),n.disposeIntermediateTensorInfo(N),n.makeTensorInfo(x,Q.dtype,Q.values)}var eD={kernelName:ps,backendName:"cpu",kernelFunc:A7};function tD(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:p}=a,c,h,m,f=[];c=A7({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(h=pd({inputs:{a:c,b:i},backend:n}),f.push(c),c=h),d&&(m=t1(n,c,d,o,p),f.push(c),c=m);for(let A of f)n.disposeIntermediateTensorInfo(A);return c}var nD={kernelName:ni,backendName:"cpu",kernelFunc:tD},aD=at(ro,e=>Math.acos(e)),rD={kernelName:ro,backendName:"cpu",kernelFunc:aD},sD=at(so,e=>Math.acosh(e)),iD={kernelName:so,backendName:"cpu",kernelFunc:sD};function oD(e){let{inputs:t,backend:n}=e,a=t;ve(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=We(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var lD={kernelName:ls,backendName:"cpu",kernelFunc:oD};function uD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"all");let o=k.parseAxisParam(s,r.shape),l=o,u=C.getAxesPermutation(l,r.shape.length),d=r;u!=null&&(d=Qn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("all",l,d.shape.length);let[p,c]=C.computeOutAndReduceShapes(d.shape,l),h=k.sizeFromShape(c),m=k.makeZerosTypedArray(k.sizeFromShape(p),d.dtype),f=n.data.get(d.dataId).values;for(let y=0;y<m.length;++y){let g=y*h,x=f[g];for(let w=0;w<h;++w){let b=f[g+w];x=x&&b}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(d);let A=n.makeTensorInfo(p,d.dtype,m);if(i){let y=C.expandShapeToKeepDim(p,o),g=ct({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var dD={kernelName:io,backendName:"cpu",kernelFunc:uD};function pD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"any");let o=k.parseAxisParam(s,r.shape),l=o,u=C.getAxesPermutation(l,r.shape.length),d=r;u!=null&&(d=Qn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("any",l,d.shape.length);let[p,c]=C.computeOutAndReduceShapes(d.shape,l),h=k.sizeFromShape(c),m=k.makeZerosTypedArray(k.sizeFromShape(p),d.dtype),f=n.data.get(d.dataId).values;for(let y=0;y<m.length;++y){let g=y*h,x=f[g];for(let w=0;w<h;++w){let b=f[g+w];x=x||b}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(d);let A=n.makeTensorInfo(p,d.dtype,m);if(i){let y=C.expandShapeToKeepDim(p,o),g=ct({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var cD={kernelName:oo,backendName:"cpu",kernelFunc:pD};function hD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ve(r,"argMax");let i=k.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Qn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[d,p]=C.computeOutAndReduceShapes(l.shape,i),c=k.sizeFromShape(d),h=k.makeZerosTypedArray(c,"int32"),m=k.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let A=0;A<h.length;++A){let y=A*m,g=f[y],x=0;for(let w=0;w<m;++w){let b=f[y+w];b>g&&(g=b,x=w)}h[A]=x}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(d,"int32",h)}var fD={kernelName:us,backendName:"cpu",kernelFunc:hD};function mD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ve(r,"argMin");let i=k.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Qn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[d,p]=C.computeOutAndReduceShapes(l.shape,i),c=k.sizeFromShape(d),h=k.makeZerosTypedArray(c,"int32"),m=k.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let A=0;A<h.length;++A){let y=A*m,g=f[y],x=0;for(let w=0;w<m;++w){let b=f[y+w];b<g&&(g=b,x=w)}h[A]=x}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(d,"int32",h)}var AD={kernelName:vu,backendName:"cpu",kernelFunc:mD},yD=at(lo,e=>Math.asin(e)),gD={kernelName:lo,backendName:"cpu",kernelFunc:yD},xD=at(uo,e=>Math.asinh(e)),bD={kernelName:uo,backendName:"cpu",kernelFunc:xD},vD=at(po,e=>Math.atan(e)),wD={kernelName:po,backendName:"cpu",kernelFunc:vD},kD=Mt((e,t)=>Math.atan2(e,t)),ID=qt(ho,kD),SD={kernelName:ho,backendName:"cpu",kernelFunc:ID},ND=at(co,e=>Math.atanh(e)),TD={kernelName:co,backendName:"cpu",kernelFunc:ND};function n1(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,d=r.effectiveFilterHeight,p=r.effectiveFilterWidth,c=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=We(r.outShape,n),A=f.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],g=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let w=0;w<r.batchSize;++w){let b=w*y,v=w*a[0];for(let N=0;N<r.inChannels;++N)for(let T=0;T<r.outHeight;++T){let R=T*i-c,$=Math.max(0,R),O=Math.min(r.inHeight,d+R),_=b+T*g;for(let V=0;V<r.outWidth;++V){let U=V*o-h,j=Math.max(0,U),X=Math.min(r.inWidth,p+U),G=m,ee=0,Y=0;for(let ne=$;ne<O;ne+=l){let ie=v+ne*a[1];for(let Q=j;Q<X;Q+=u){let de=ie+Q*a[2],oe=e[de+N];s==="max"&&oe>G?G=oe:s==="avg"&&(ee+=oe,Y++)}if(isNaN(G))break}let re=_+V*x+N;A[re]=s==="avg"?ee/Y:G}}}return f}function y7(e,t,n,a,r=!1,s=!1){let i=We(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,u=a.dilationHeight,d=a.dilationWidth,p=a.effectiveFilterHeight,c=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=We(t,n,e);for(let A=0;A<a.batchSize;++A)for(let y=0;y<a.inChannels;++y)for(let g=0;g<a.outHeight;++g){let x=g*o-h,w=x;for(;w<0;)w+=u;let b=Math.min(a.inHeight,p+x);for(let v=0;v<a.outWidth;++v){let N=v*l-m,T=N;for(;T<0;)T+=d;let R=Math.min(a.inWidth,c+N),$=Number.NEGATIVE_INFINITY,O=-1;for(let _=w;_<b;_+=u){let V=_-x;for(let U=T;U<R;U+=d){let j=U-N,X=f.get(A,_,U,y);X>$&&($=X,r?O=s?((A*a.inHeight+_)*a.inWidth+U)*a.inChannels+y:(_*a.inWidth+U)*a.inChannels+y:O=V*c+j)}}i.set(O,A,g,v,y)}}return i}function g7(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,d=r.dilationHeight,p=r.dilationWidth,c=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,A=r.padInfo.top,y=r.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=We(r.outShape,n),w=x.values,b=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],v=r.outShape[2]*r.outShape[3]*r.outShape[4],N=r.outShape[3]*r.outShape[4],T=r.outShape[4];for(let R=0;R<r.batchSize;++R){let $=R*b,O=R*a[0];for(let _=0;_<r.inChannels;++_)for(let V=0;V<r.outDepth;++V){let U=V*i-f,j=U;for(;j<0;)j+=u;let X=Math.min(r.inDepth,c+U),G=$+V*v;for(let ee=0;ee<r.outHeight;++ee){let Y=ee*o-A,re=Y;for(;re<0;)re+=d;let ne=Math.min(r.inHeight,h+Y),ie=G+ee*N;for(let Q=0;Q<r.outWidth;++Q){let de=Q*l-y,oe=de;for(;oe<0;)oe+=p;let ye=Math.min(r.inWidth,m+de),he=ie+Q*T,Ie=g,Ne=0,$e=0;for(let De=j;De<X;De+=u){let Qe=O+De*a[1];for(let et=re;et<ne;et+=d){let st=Qe+et*a[2];for(let Ke=oe;Ke<ye;Ke+=p){let dt=st+Ke*a[3],Ve=e[dt+_];if(s==="max"&&Ve>Ie?Ie=Ve:s==="avg"&&(Ne+=Ve,$e++),isNaN(Ie))break}if(isNaN(Ie))break}if(isNaN(Ie))break}let Oe=he+_;w[Oe]=s==="avg"?Ne/$e:Ie}}}}return x}function ED(e,t){let n=We(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,d=t.effectiveFilterHeight,p=t.effectiveFilterWidth,c=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let A=0;A<t.inChannels;++A)for(let y=0;y<t.outDepth;++y){let g=y*a-c,x=g;for(;x<0;)x+=i;let w=Math.min(t.inDepth,u+g);for(let b=0;b<t.outHeight;++b){let v=b*r-h,N=v;for(;N<0;)N+=o;let T=Math.min(t.inHeight,d+v);for(let R=0;R<t.outWidth;++R){let $=R*s-m,O=$;for(;O<0;)O+=l;let _=Math.min(t.inWidth,p+$),V=Number.NEGATIVE_INFINITY,U=-1;for(let j=x;j<w;j+=i){let X=j-g;for(let G=N;G<T;G+=o){let ee=G-v;for(let Y=O;Y<_;Y+=l){let re=Y-$,ne=e.get(f,j,G,Y,A);ne>=V&&(V=ne,U=X*d*p+ee*d+re)}}}n.set(U,f,y,b,R,A)}}}return n}function CD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ve(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=C.computePool2DInfo(r.shape,s,i,u,o,l),p;if(d.filterWidth===1&&d.filterHeight===1&&k.arraysEqual(d.inShape,d.outShape))p=Ua({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=k.computeStrides(r.shape),m=n1(c,r.shape,r.dtype,h,d,"avg");p=n.makeTensorInfo(d.outShape,r.dtype,m.values)}return p}var RD={kernelName:ds,backendName:"cpu",kernelFunc:CD};function MD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;ve(r,"avgPool3d");let d=C.computePool3DInfo(r.shape,s,i,1,o,l,u),p=n.data.get(r.dataId).values,c=g7(p,r.shape,r.dtype,k.computeStrides(r.shape),d,"avg");return n.makeTensorInfo(c.shape,"float32",c.values)}var FD={kernelName:wu,backendName:"cpu",kernelFunc:MD};function $D(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;ve([r,s],"avgPool3DGrad");let d=C.computePool3DInfo(s.shape,i,o,1,l,u),p=d.strideDepth,c=d.strideHeight,h=d.strideWidth,m=d.filterDepth,f=d.filterHeight,A=d.filterWidth,y=d.dilationDepth,g=d.dilationHeight,x=d.dilationWidth,w=d.effectiveFilterDepth,b=d.effectiveFilterHeight,v=d.effectiveFilterWidth,N=w-1-d.padInfo.front,T=v-1-d.padInfo.left,R=b-1-d.padInfo.top,$=We(s.shape,"float32"),O=1/(m*f*A),_=n.bufferSync(r);for(let V=0;V<d.batchSize;++V)for(let U=0;U<d.inChannels;++U)for(let j=0;j<d.inDepth;++j)for(let X=0;X<d.inHeight;++X)for(let G=0;G<d.inWidth;++G){let ee=j-N,Y=X-R,re=G-T,ne=0;for(let ie=0;ie<w;ie+=y){let Q=(ee+ie)/p;if(!(Q<0||Q>=d.outDepth||Math.floor(Q)!==Q))for(let de=0;de<b;de+=g){let oe=(Y+de)/c;if(!(oe<0||oe>=d.outHeight||Math.floor(oe)!==oe))for(let ye=0;ye<v;ye+=x){let he=(re+ye)/h;he<0||he>=d.outWidth||Math.floor(he)!==he||(ne+=_.get(V,Q,oe,he,U))}}}$.set(ne*O,V,j,X,G,U)}return n.makeTensorInfo($.shape,$.dtype,$.values)}var DD={kernelName:zp,backendName:"cpu",kernelFunc:$D};function zD(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;ve([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,d=C.computePool2DInfo(i.shape,o,l,1,u),p=d.strideHeight,c=d.strideWidth,h=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,A=d.dilationWidth,y=d.effectiveFilterHeight,g=d.effectiveFilterWidth,x=g-1-d.padInfo.left,w=y-1-d.padInfo.top,b=We(i.shape,"float32"),v=1/(h*m),N=n.data.get(r.dataId).values,T=We(r.shape,"float32",N);for(let R=0;R<d.batchSize;++R)for(let $=0;$<d.inChannels;++$)for(let O=0;O<d.inHeight;++O)for(let _=0;_<d.inWidth;++_){let V=O-w,U=_-x,j=0;for(let X=0;X<y;X+=f){let G=(V+X)/p;if(!(G<0||G>=d.outHeight||Math.floor(G)!==G))for(let ee=0;ee<g;ee+=A){let Y=(U+ee)/c;Y<0||Y>=d.outWidth||Math.floor(Y)!==Y||(j+=T.get(R,G,Y,$))}}b.set(j*v,R,O,_,$)}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var OD={kernelName:Dp,backendName:"cpu",kernelFunc:zD};function _D(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;k.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ve([r,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=a;u==null&&(u=.001);let d=n.data.get(r.dataId).values,p=n.data.get(o.dataId).values,c=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(d.length),A=m.length,y=h.length,g=c.length,x=p.length,w=0,b=0,v=0,N=0;for(let T=0;T<d.length;++T)f[T]=m[w++]+(d[T]-p[b++])*h[v++]/Math.sqrt(c[N++]+u),w>=A&&(w=0),b>=x&&(b=0),v>=y&&(v=0),N>=g&&(N=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var PD={kernelName:ks,backendName:"cpu",kernelFunc:_D};function LD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;ve([r],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=C.getReshaped(r.shape,s,o),u=C.getPermuted(l.length,s.length),d=C.getReshapedPermuted(r.shape,s,o),p=C.getSliceBeginCoords(i,s.length),c=C.getSliceSize(d,i,s.length),h=ct({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Qn({inputs:{x:h},backend:n,attrs:{perm:u}}),f=ct({inputs:{x:m},backend:n,attrs:{shape:d}}),A=vi({inputs:{x:f},backend:n,attrs:{begin:p,size:c}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var WD={kernelName:ku,backendName:"cpu",kernelFunc:LD};function BD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=KA(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var VD={kernelName:Op,backendName:"cpu",kernelFunc:BD},jD=at(Er,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),UD={kernelName:Er,backendName:"cpu",kernelFunc:jD},HD=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(k.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let d=o[u],p=l[u];a[u]=Math.hypot(d,p)}return n.makeOutput(a,t.shape,"float32")},GD={kernelName:Iu,backendName:"cpu",kernelFunc:HD};function Rl(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var qD={kernelName:Yp,backendName:"cpu",kernelFunc:Rl};function Ml(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=k.parseAxisParam(r,t[0].shape)[0],i=C.computeOutShape(t.map(f=>f.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>k.sizeFromShape(f.shape)>0);if(o.length===1)return Ua({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(C.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(w=>bi({inputs:{input:w},backend:n})),A=o.map(w=>Rl({inputs:{input:w},backend:n})),y=Ml({inputs:f,backend:n,attrs:{axis:s}}),g=Ml({inputs:A,backend:n,attrs:{axis:s}}),x=_n({inputs:{real:y,imag:g},backend:n});return f.forEach(w=>n.disposeIntermediateTensorInfo(w)),A.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),x}let u=o.map(f=>{let A=k.sizeFromShape(f.shape.slice(s));return ct({inputs:{x:f},backend:n,attrs:{shape:[-1,A]}})}),d=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=C.computeOutShape(u.map(f=>f.shape),1);let p=u[0].shape[0]===1,c=ZA(d,i,t[0].dtype,p),h=C.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,c);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var XD={kernelName:fo,backendName:"cpu",kernelFunc:Ml};function x7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=a;ve([r,s],"conv2d");let p=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,s.shape,i,u,o,d,!1,p),h=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,A=c.dilationWidth,y=c.padInfo.left,g=c.padInfo.top,x=c.dataFormat==="channelsLast",w=new _t(c.outShape,r.dtype),b=k.computeStrides(r.shape),v=k.computeStrides(s.shape),N=b[0],T=x?b[1]:b[2],R=x?b[2]:1,$=x?1:b[1],O=w.strides[0],_=x?w.strides[1]:w.strides[2],V=x?w.strides[2]:1,U=x?1:w.strides[1],j=n.data.get(r.dataId).values,X=n.data.get(s.dataId).values,G=w.values;for(let ee=0;ee<c.batchSize;++ee){let Y=ee*N,re=ee*O;for(let ne=0;ne<c.outHeight;++ne){let ie=re+ne*_,Q=ne*c.strideHeight-g;for(let de=0;de<h;++de){let oe=Q+de*f;if(oe<0||oe>=c.inHeight)continue;let ye=de*v[0],he=Y+oe*T;for(let Ie=0;Ie<c.outWidth;++Ie){let Ne=ie+Ie*V,$e=Ie*c.strideWidth-y;for(let Oe=0;Oe<m;++Oe){let De=$e+Oe*A;if(De<0||De>=c.inWidth)continue;let Qe=ye+Oe*v[1],et=he+De*R,st=Qe;for(let Ke=0;Ke<c.inChannels;++Ke){let dt=j[et+Ke*$];for(let Ve=0;Ve<c.outChannels;++Ve)G[Ne+Ve*U]+=dt*X[st+Ve];st+=c.outChannels}}}}}}return n.makeTensorInfo(w.shape,w.dtype,G)}var KD={kernelName:fs,backendName:"cpu",kernelFunc:x7};function ZD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:d}=a;ve([r,s],"conv2dBackpropFilter");let p=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,d,i,1,o,u,!1,p),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:A}=c,y=c.dataFormat==="channelsLast",g=new _t(c.filterShape,"float32"),x=c.padInfo.left,w=c.padInfo.top,b=n.data.get(r.dataId).values,v=n.data.get(s.dataId).values,N=new _t(r.shape,r.dtype,b),T=new _t(s.shape,s.dtype,v);for(let R=0;R<f;++R){let $=Math.max(0,Math.ceil((w-R)/h)),O=Math.min(c.outHeight,(c.inHeight+w-R)/h);for(let _=0;_<A;++_){let V=Math.max(0,Math.ceil((x-_)/m)),U=Math.min(c.outWidth,(c.inWidth+x-_)/m);for(let j=0;j<c.inChannels;++j)for(let X=0;X<c.outChannels;++X){let G=0;for(let ee=0;ee<c.batchSize;++ee)for(let Y=$;Y<O;++Y){let re=R+Y*h-w;for(let ne=V;ne<U;++ne){let ie=_+ne*m-x;y?G+=N.get(ee,re,ie,j)*T.get(ee,Y,ne,X):G+=N.get(ee,j,re,ie)*T.get(ee,X,Y,ne)}}g.set(G,R,_,j,X)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var YD={kernelName:Pp,backendName:"cpu",kernelFunc:ZD};function JD(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=a;ve([r,s],"conv2dBackpropInput");let p=k.computeStrides(s.shape),c=k.computeStrides(r.shape),h=C.convertConv2DDataFormat(u),m=C.computeConv2DInfo(i,s.shape,o,1,l,d,!1,h),f=new _t(m.inShape,"float32"),A=f.values,y=n.data.get(r.dataId).values,g=n.data.get(s.dataId).values,[x,w,b]=p,{batchSize:v,filterHeight:N,filterWidth:T,inChannels:R,inHeight:$,inWidth:O,outChannels:_,outHeight:V,outWidth:U,strideHeight:j,strideWidth:X}=m;h=m.dataFormat;let G=N-1-m.padInfo.top,ee=T-1-m.padInfo.left,Y=h==="channelsLast",re=f.strides[0],ne=Y?f.strides[1]:f.strides[2],ie=Y?f.strides[2]:1,Q=Y?1:f.strides[1],de=c[0],oe=Y?c[1]:c[2],ye=Y?c[2]:1,he=Y?1:c[1];for(let Ie=0;Ie<v;++Ie)for(let Ne=0;Ne<R;++Ne)for(let $e=0;$e<$;++$e){let Oe=$e-G,De=Math.max(0,Math.ceil(Oe/j)),Qe=Math.min(V,(N+Oe)/j);for(let et=0;et<O;++et){let st=et-ee,Ke=Math.max(0,Math.ceil(st/X)),dt=Math.min(U,(T+st)/X),Ve=0;for(let gt=De;gt<Qe;++gt){let Hn=gt*j-Oe;for(let Zt=Ke;Zt<dt;++Zt){let xn=Zt*X-st,Gn=de*Ie+oe*gt+ye*Zt,Mn=x*(N-1-Hn)+w*(T-1-xn)+b*Ne;for(let rn=0;rn<_;++rn){let Yt=y[Gn+he*rn],Fa=g[Mn+rn];Ve+=Yt*Fa}}}let gn=re*Ie+ne*$e+ie*et+Q*Ne;A[gn]=Ve}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var QD={kernelName:ms,backendName:"cpu",kernelFunc:JD};function ez(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;ve([r,s],"conv3d");let u=C.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:d,filterHeight:p,filterWidth:c,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:A}=u,y=A.front,g=A.left,x=A.top,w=new _t(u.outShape,r.dtype),b=n.data.get(r.dataId).values,v=n.data.get(s.dataId).values,N=w.values,T=k.computeStrides(r.shape),R=k.computeStrides(s.shape);for(let $=0;$<u.batchSize;++$){let O=$*T[0],_=$*w.strides[0];for(let V=0;V<u.outDepth;++V){let U=_+V*w.strides[1],j=V*u.strideDepth-y;for(let X=0;X<d;++X){let G=j+X*h;if(G<0||G>=u.inDepth)continue;let ee=X*R[0],Y=O+G*T[1];for(let re=0;re<u.outHeight;++re){let ne=U+re*w.strides[2],ie=re*u.strideHeight-x;for(let Q=0;Q<p;++Q){let de=ie+Q*m;if(de<0||de>=u.inHeight)continue;let oe=ee+Q*R[1],ye=Y+de*T[2];for(let he=0;he<u.outWidth;++he){let Ie=ne+he*u.outChannels,Ne=he*u.strideWidth-g;for(let $e=0;$e<c;++$e){let Oe=Ne+$e*f;if(Oe<0||Oe>=u.inWidth)continue;let De=oe+$e*R[2],Qe=ye+Oe*u.inChannels,et=De;for(let st=0;st<u.inChannels;++st){let Ke=b[Qe+st];for(let dt=0;dt<u.outChannels;++dt)N[Ie+dt]+=Ke*v[et+dt];et+=u.outChannels}}}}}}}}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var tz={kernelName:Su,backendName:"cpu",kernelFunc:ez};function nz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;ve([r,s],"conv3dBackpropFilterV2");let u=k.computeStrides(r.shape),d=k.computeStrides(s.shape),p=C.computeConv3DInfo(r.shape,l,i,1,o),c=p.strideDepth,h=p.strideHeight,m=p.strideWidth,f=p.filterDepth,A=p.filterHeight,y=p.filterWidth,g=new _t(p.filterShape,"float32"),x=g.values,[w,b,v,N]=g.strides,T=n.data.get(s.dataId).values,[R,$,O,_]=d,V=n.data.get(r.dataId).values,[U,j,X,G]=u,ee=p.padInfo.front,Y=p.padInfo.left,re=p.padInfo.top;for(let ne=0;ne<f;++ne){let ie=Math.max(0,Math.ceil((ee-ne)/c)),Q=Math.min(p.outDepth,(p.inDepth+ee-ne)/c),de=ne*w;for(let oe=0;oe<A;++oe){let ye=Math.max(0,Math.ceil((re-oe)/h)),he=Math.min(p.outHeight,(p.inHeight+re-oe)/h),Ie=oe*b+de;for(let Ne=0;Ne<y;++Ne){let $e=Math.max(0,Math.ceil((Y-Ne)/m)),Oe=Math.min(p.outWidth,(p.inWidth+Y-Ne)/m),De=Ne*v+Ie;for(let Qe=0;Qe<p.inChannels;++Qe){let et=Qe*N+De;for(let st=0;st<p.outChannels;++st){let Ke=0;for(let dt=0;dt<p.batchSize;++dt){let Ve=dt*U,gn=dt*R;for(let gt=ie;gt<Q;++gt){let Hn=(ne+gt*c-ee)*j+Ve,Zt=gt*$+gn;for(let xn=ye;xn<he;++xn){let Gn=(oe+xn*h-re)*X+Hn,Mn=xn*O+Zt;for(let rn=$e;rn<Oe;++rn){let Yt=(Ne+rn*m-Y)*G+Gn,Fa=rn*_+Mn;Ke+=V[Yt+Qe]*T[Fa+st]}}}}x[et+st]=Ke}}}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var az={kernelName:Lp,backendName:"cpu",kernelFunc:nz};function rz(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;ve([r],"conv3dBackpropInputV2");let u=k.computeStrides(r.shape),d=k.computeStrides(s.shape),p=C.computeConv3DInfo(l,s.shape,o,1,i),c=new _t(p.inShape,"float32"),h=c.values,[m,f,A,y]=c.strides,g=n.data.get(r.dataId).values,[x,w,b,v]=u,N=n.data.get(s.dataId).values,[T,R,$,O]=d,{batchSize:_,filterDepth:V,filterHeight:U,filterWidth:j,inChannels:X,inDepth:G,inHeight:ee,inWidth:Y,outChannels:re,outDepth:ne,outHeight:ie,outWidth:Q,strideDepth:de,strideHeight:oe,strideWidth:ye}=p,he=V-1-p.padInfo.front,Ie=U-1-p.padInfo.top,Ne=j-1-p.padInfo.left;for(let $e=0;$e<_;++$e)for(let Oe=0;Oe<X;++Oe)for(let De=0;De<G;++De){let Qe=De-he,et=Math.max(0,Math.ceil(Qe/de)),st=Math.min(ne,(V+Qe)/de);for(let Ke=0;Ke<ee;++Ke){let dt=Ke-Ie,Ve=Math.max(0,Math.ceil(dt/oe)),gn=Math.min(ie,(U+dt)/oe);for(let gt=0;gt<Y;++gt){let Hn=gt-Ne,Zt=Math.max(0,Math.ceil(Hn/ye)),xn=Math.min(Q,(j+Hn)/ye),Gn=0;for(let Mn=et;Mn<st;++Mn){let rn=Mn*de-Qe;for(let Yt=Ve;Yt<gn;++Yt){let Fa=Yt*oe-dt;for(let aa=Zt;aa<xn;++aa){let ra=aa*ye-Hn,gr=x*$e+w*Mn+b*Yt+v*aa,Qa=T*(V-1-rn)+R*(U-1-Fa)+$*(j-1-ra)+O*Oe;for(let xr=0;xr<re;++xr){let Vi=g[gr+xr],$a=N[Qa+xr];Gn+=Vi*$a}}}}h[m*$e+f*De+A*Ke+y*gt+Oe]=Gn}}}return n.makeTensorInfo(c.shape,c.dtype,c.values)}var sz={kernelName:Wp,backendName:"cpu",kernelFunc:rz},iz=at(As,e=>Math.cos(e)),oz={kernelName:As,backendName:"cpu",kernelFunc:iz},lz=at(mo,e=>Math.cosh(e)),uz={kernelName:mo,backendName:"cpu",kernelFunc:lz};function dz(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,[d,p,c,h]=r.shape,m=s.shape[0],[f,A]=o,y=We([m,f,A,h],"float32"),g=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,w=n.data.get(r.dataId).values,b=k.computeStrides(r.shape),v=k.computeStrides(y.shape);for(let N=0;N<m;N++){let T=N*4,R=g[T],$=g[T+1],O=g[T+2],_=g[T+3],V=x[N];if(V>=d)continue;let U=f>1?(O-R)*(p-1)/(f-1):0,j=A>1?(_-$)*(c-1)/(A-1):0;for(let X=0;X<f;X++){let G=f>1?R*(p-1)+X*U:.5*(R+O)*(p-1);if(G<0||G>p-1){for(let ee=0;ee<A;ee++)for(let Y=0;Y<h;Y++){let re=Y+ee*v[2]+X*v[1]+N*v[0];y.values[re]=u}continue}if(l==="bilinear"){let ee=Math.floor(G),Y=Math.ceil(G),re=G-ee;for(let ne=0;ne<A;ne++){let ie=A>1?$*(c-1)+ne*j:.5*($+_)*(c-1);if(ie<0||ie>c-1){for(let ye=0;ye<h;ye++){let he=ye+ne*v[2]+X*v[1]+N*v[0];y.values[he]=u}continue}let Q=Math.floor(ie),de=Math.ceil(ie),oe=ie-Q;for(let ye=0;ye<h;ye++){let he=ye+Q*b[2]+ee*b[1]+V*b[0],Ie=w[he];he=ye+de*b[2]+ee*b[1]+V*b[0];let Ne=w[he];he=ye+Q*b[2]+Y*b[1]+V*b[0];let $e=w[he];he=ye+de*b[2]+Y*b[1]+V*b[0];let Oe=w[he],De=Ie+(Ne-Ie)*oe,Qe=$e+(Oe-$e)*oe;he=ye+ne*v[2]+X*v[1]+N*v[0],y.values[he]=De+(Qe-De)*re}}}else for(let ee=0;ee<A;++ee){let Y=A>1?$*(c-1)+ee*j:.5*($+_)*(c-1);if(Y<0||Y>c-1){for(let ie=0;ie<h;ie++){let Q=ie+ee*v[2]+X*v[1]+N*v[0];y.values[Q]=u}continue}let re=Math.round(Y),ne=Math.round(G);for(let ie=0;ie<h;ie++){let Q=ie+re*b[2]+ne*b[1]+V*b[0],de=ie+ee*v[2]+X*v[1]+N*v[0];y.values[de]=w[Q]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var pz={kernelName:Ao,backendName:"cpu",kernelFunc:dz};function cz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;ve(r,"cumsum");let l=C.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=Qn({inputs:{x:r},backend:n,attrs:{perm:l}}));let d=C.getInnerMostAxes(1,r.shape.length)[0];if(d!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${d}`);let p=la(u.dtype,"int32"),c=k.makeZerosTypedArray(k.sizeFromShape(u.shape),p),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(y,g)=>y+m-g-1:(y,g)=>y+g;for(let y=0;y<h.length;y+=m)for(let g=0;g<m;g++){let x=f(y,g);if(g===0)c[x]=i?0:h[x];else{let w=f(y,g-1);c[x]=i?h[w]+c[w]:h[x]+c[w]}}let A=n.makeTensorInfo(u.shape,p,c);if(l!=null){let y=C.getUndoAxesPermutation(l),g=Qn({inputs:{x:A},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(u),g}return A}var hz={kernelName:ys,backendName:"cpu",kernelFunc:cz};function fz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,d=KA(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,d)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),d=_3(l,u,i,o);return n.makeTensorInfo(d.shape,s.dtype,d.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var mz={kernelName:Bp,backendName:"cpu",kernelFunc:fz};function Az(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;k.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=r.shape[1],u=r.shape[2],d=r.shape[3],p=l*s,c=u*s,h=d/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*p*c*h),A=0;for(let y=0;y<o;++y)for(let g=0;g<p;++g){let x=Math.floor(g/s),w=g%s;for(let b=0;b<c;++b){let v=Math.floor(b/s),N=b%s,T=(w*s+N)*h;for(let R=0;R<h;++R){let $=R+T+d*(v+u*(x+l*y));f[A++]=m[$]}}}return n.makeTensorInfo([o,p,c,h],r.dtype,f)}var yz={kernelName:yo,backendName:"cpu",kernelFunc:Az};function b7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a;ve([r,s],"depthwiseConv2DNative");let d=k.computeStrides(r.shape),p=k.computeStrides(s.shape),c=l;c==null&&(c=[1,1]),k.assert(C.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=C.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:A,dilationWidth:y,padInfo:g}=h,x=g.left,w=g.top,b=h.outChannels/h.inChannels,v=new _t(h.outShape,r.dtype),N=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,R=v.values;for(let $=0;$<h.batchSize;++$){let O=$*d[0],_=$*v.strides[0];for(let V=0;V<h.outHeight;++V){let U=_+V*v.strides[1],j=V*h.strideHeight-w;for(let X=0;X<m;++X){let G=j+X*A;if(G<0||G>=h.inHeight)continue;let ee=X*p[0],Y=O+G*d[1];for(let re=0;re<h.outWidth;++re){let ne=U+re*v.strides[2],ie=re*h.strideWidth-x;for(let Q=0;Q<f;++Q){let de=ie+Q*y;if(de<0||de>=h.inWidth)continue;let oe=ee+Q*p[1],ye=Y+de*h.inChannels,he=ne,Ie=oe;for(let Ne=0;Ne<h.inChannels;++Ne){let $e=N[ye+Ne];for(let Oe=0;Oe<b;++Oe)R[he+Oe]+=$e*T[Ie+Oe];he+=b,Ie+=b}}}}}}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var gz={kernelName:gs,backendName:"cpu",kernelFunc:b7};function xz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:d}=a;ve([r,s],"depthwiseConv2dNativeBackpropFilter");let p=C.computeConv2DInfo(r.shape,d,i,o,l,u,!0),{strideHeight:c,strideWidth:h,filterHeight:m,filterWidth:f}=p,A=new _t(p.filterShape,"float32"),y=p.padInfo.left,g=p.padInfo.top,x=p.outChannels/p.inChannels,w=n.data.get(r.dataId).values,b=new _t(r.shape,r.dtype,w),v=n.data.get(s.dataId).values,N=new _t(s.shape,s.dtype,v);for(let T=0;T<m;++T){let R=Math.max(0,Math.ceil((g-T)/c)),$=Math.min(p.outHeight,(p.inHeight+g-T)/c);for(let O=0;O<f;++O){let _=Math.max(0,Math.ceil((y-O)/h)),V=Math.min(p.outWidth,(p.inWidth+y-O)/h);for(let U=0;U<p.outChannels;++U){let j=Math.trunc(U/x),X=U%x,G=0;for(let ee=0;ee<p.batchSize;++ee)for(let Y=R;Y<$;++Y){let re=T+Y*c-g;for(let ne=_;ne<V;++ne){let ie=O+ne*h-y;G+=b.get(ee,re,ie,j)*N.get(ee,Y,ne,U)}}A.set(G,T,O,j,X)}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var bz={kernelName:Vp,backendName:"cpu",kernelFunc:xz};function vz(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:d}=a;ve([r,s],"depthwiseConv2DNativeBackpropInput");let p=k.computeStrides(r.shape),c=k.computeStrides(s.shape),h=C.computeConv2DInfo(d,s.shape,i,o,l,u,!0),m=new _t(h.inShape,"float32"),f=m.values,[A,y,g]=m.strides,x=n.data.get(r.dataId).values,[w,b,v]=p,N=n.data.get(s.dataId).values,[T,R,$]=c,{batchSize:O,filterHeight:_,filterWidth:V,inChannels:U,inHeight:j,inWidth:X,outChannels:G,outHeight:ee,outWidth:Y,strideHeight:re,strideWidth:ne}=h,ie=_-1-h.padInfo.top,Q=V-1-h.padInfo.left,de=G/U;for(let oe=0;oe<O;++oe)for(let ye=0;ye<U;++ye)for(let he=0;he<j;++he){let Ie=he-ie,Ne=Math.max(0,Math.ceil(Ie/re)),$e=Math.min(ee,(_+Ie)/re);for(let Oe=0;Oe<X;++Oe){let De=Oe-Q,Qe=Math.max(0,Math.ceil(De/ne)),et=Math.min(Y,(V+De)/ne),st=0;for(let Ke=Ne;Ke<$e;++Ke){let dt=Ke*re-Ie;for(let Ve=Qe;Ve<et;++Ve){let gn=Ve*ne-De,gt=w*oe+b*Ke+v*Ve,Hn=T*(_-1-dt)+R*(V-1-gn)+$*ye;for(let Zt=0;Zt<de;++Zt){let xn=ye*de+Zt,Gn=x[gt+xn],Mn=N[Hn+Zt];st+=Gn*Mn}}}f[A*oe+y*he+g*Oe+ye]=st}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var wz={kernelName:jp,backendName:"cpu",kernelFunc:vz};function kz(e){let{inputs:t,backend:n}=e,{x:a}=t,r=k.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=We([r,r],a.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*r+u]=s[u];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var Iz={kernelName:Up,backendName:"cpu",kernelFunc:kz},Sz={kernelName:Nu,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(a.dataId).values,d=a.shape.length,p=l.data.get(r.dataId).values,c=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:A,outHeight:y,outWidth:g,padInfo:x,strideHeight:w,strideWidth:b,filterHeight:v,filterWidth:N,dilationHeight:T,dilationWidth:R,outShape:$}=C.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),O=k.sizeFromShape($),_=$.length,V=k.getArrayFromDType(a.dtype,O);for(let U=0;U<h;++U)for(let j=0;j<y;++j){let X=j*w-x.top;for(let G=0;G<g;++G){let ee=G*b-x.left;for(let Y=0;Y<A;++Y){let re=Number.MIN_SAFE_INTEGER;for(let ie=0;ie<v;++ie){let Q=X+ie*T;if(Q>=0&&Q<m)for(let de=0;de<N;++de){let oe=ee+de*R;if(oe>=0&&oe<f){let ye=k.locToIndex([U,Q,oe,Y],d,k.computeStrides(a.shape)),he=k.locToIndex([ie,de,Y],c,k.computeStrides(r.shape)),Ie=u[ye]+p[he];Ie>re&&(re=Ie)}}}let ne=k.locToIndex([U,j,G,Y],_,k.computeStrides($));V[ne]=re}}}return{dataId:l.write(k.toTypedArray(V,a.dtype),$,a.dtype),shape:$,dtype:a.dtype}}},Nz={kernelName:Gp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,d=k.toNestedArray(a.shape,u.data.get(a.dataId).values),p=k.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:w,filterHeight:b,filterWidth:v,dilationHeight:N,dilationWidth:T,outShape:R}=C.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);k.assert(s.rank===R.length,()=>`Error in ${Gp}, dy must have the same rank as output ${R.length}, but got ${s.rank}`);let $=k.toNestedArray(R,u.data.get(s.dataId).values),O=k.makeZerosNestedTypedArray(r.shape,r.dtype);for(let _=0;_<c;++_)for(let V=0;V<A;++V){let U=V*x-g.top;for(let j=0;j<y;++j){let X=j*w-g.left;for(let G=0;G<f;++G){let ee=Number.MIN_SAFE_INTEGER,Y=0,re=0;for(let ne=0;ne<b;++ne){let ie=U+ne*N;if(ie>=0&&ie<h)for(let Q=0;Q<v;++Q){let de=X+Q*T;if(de>=0&&de<m){let oe=d[_][ie][de][G]+p[ne][Q][G];oe>ee&&(ee=oe,Y=ne,re=Q)}}}O[Y][re][G]+=$[_][V][j][G]}}}return{dataId:u.write(k.toTypedArray(O,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},Tz={kernelName:Hp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,d=k.toNestedArray(a.shape,u.data.get(a.dataId).values),p=k.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:w,filterHeight:b,filterWidth:v,dilationHeight:N,dilationWidth:T,outShape:R}=C.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);k.assert(s.rank===R.length,()=>`Error in ${Hp}, dy must have the same rank as output ${R.length}, but got ${s.rank}`);let $=k.toNestedArray(R,u.data.get(s.dataId).values),O=k.makeZerosNestedTypedArray(a.shape,a.dtype);for(let _=0;_<c;++_)for(let V=0;V<A;++V){let U=V*x-g.top;for(let j=0;j<y;++j){let X=j*w-g.left;for(let G=0;G<f;++G){let ee=Number.MIN_SAFE_INTEGER,Y=U<0?0:U,re=X<0?0:X;for(let ne=0;ne<b;++ne){let ie=U+ne*N;if(ie>=0&&ie<h)for(let Q=0;Q<v;++Q){let de=X+Q*T;if(de>=0&&de<m){let oe=d[_][ie][de][G]+p[ne][Q][G];oe>ee&&(ee=oe,Y=ie,re=de)}}}O[_][Y][re][G]+=$[_][V][j][G]}}}return{dataId:u.write(k.toTypedArray(O,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function cd(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"sum");let o;r.dtype==="bool"?o=Br({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=Ua({inputs:{x:r},backend:n});let l=o.shape.length,u=k.parseAxisParam(s,o.shape),d=C.getAxesPermutation(u,l),p=u,c=o;d!=null&&(c=Qn({inputs:{x:o},backend:n,attrs:{perm:d}}),p=C.getInnerMostAxes(p.length,l)),C.assertAxesAreInnerMostDims("sum",p,c.shape.length);let[h,m]=C.computeOutAndReduceShapes(c.shape,p),f=C.upcastType(c.dtype,"int32"),A=uh(n,h,f),y=k.sizeFromShape(m),g=n.data.get(A.dataId).values,x=n.data.get(c.dataId).values;for(let w=0;w<g.length;++w){let b=w*y,v=0;for(let N=0;N<y;++N)v+=x[b+N];g[w]=v}if(i){let w=C.expandShapeToKeepDim(A.shape,u),b=A;A=ct({inputs:{x:A},backend:n,attrs:{shape:w}}),n.disposeIntermediateTensorInfo(b)}return n.disposeIntermediateTensorInfo(o),d!=null&&n.disposeIntermediateTensorInfo(c),A}var Ez={kernelName:Ks,backendName:"cpu",kernelFunc:cd};function Cz(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=C.decodeEinsumEquation(r,s.length);C.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=C.getEinsumComputePath(o,l),p=d.length,c=null,h=i.length,m=[];for(let f=0;f<p;++f){for(let A of d[f]){let{permutationIndices:y,expandDims:g}=C.getEinsumPermutation(h,l[A]),x;C.isIdentityPermutation(y)?x=s[A]:(x=Qn({inputs:{x:s[A]},backend:n,attrs:{perm:y}}),m.push(x));let w=x.shape.slice();for(let b=0;b<g.length;++b)w.splice(g[b],0,1);k.arraysEqual(x.shape,w)||(x=ct({inputs:{x},backend:n,attrs:{shape:w}}),m.push(x)),c===null?c=x:(c=dh({inputs:{a:x,b:c},backend:n}),m.push(c))}f<p-1&&(u[f]>=0&&(c=cd({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var Rz={kernelName:qp,backendName:"cpu",kernelFunc:Cz};function Mz(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;ve([a,r],"eluGrad");let s=new Float32Array(k.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",s)}var Fz={kernelName:Xp,backendName:"cpu",kernelFunc:Mz},$z=Mt((e,t)=>e===t?1:0),v7=qt(bo,$z,null,"bool"),Dz={kernelName:bo,backendName:"cpu",kernelFunc:v7},zz=C.ERF_P,Oz=C.ERF_A1,_z=C.ERF_A2,Pz=C.ERF_A3,Lz=C.ERF_A4,Wz=C.ERF_A5,Bz=at(xo,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+zz*n);return t*(1-((((Wz*a+Lz)*a+Pz)*a+_z)*a+Oz)*a*Math.exp(-n*n))}),Vz={kernelName:xo,backendName:"cpu",kernelFunc:Bz};function ch(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),ct({inputs:{x:r},backend:n,attrs:{shape:o}})}var jz={kernelName:vo,backendName:"cpu",kernelFunc:ch},Uz=Mt((e,t)=>e/t),a1=qt(xs,Uz),r1={kernelName:xs,backendName:"cpu",kernelFunc:a1};function w7(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[r,s],d=k.sizeFromShape(u),p=k.getTypedArrayFromDType("float32",d),c=k.getTypedArrayFromDType("float32",d);for(let A=0;A<r;A++){let y=vi({inputs:{x:o},backend:n,attrs:{begin:[A,0],size:[1,s]}}),g=vi({inputs:{x:l},backend:n,attrs:{begin:[A,0],size:[1,s]}}),x=_n({inputs:{real:y,imag:g},backend:n}),{real:w,imag:b}=Hz(x,t,n),v=C.mergeRealAndImagArrays(w,b);for(let N=0;N<s;N++){let T=C.getComplexWithIndex(v,N);p[A*s+N]=T.real,c[A*s+N]=T.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(u,"float32",p),m=n.makeTensorInfo(u,"float32",c),f=_n({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function Hz(e,t,n){let a=k.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(Gz(a)){let o=s1(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),d=n.makeTensorInfo(l,"float32",o.imag),p=n.makeTensorInfo([],"float32",k.createScalarValue(a,"float32")),c=Ua({inputs:{x:p},backend:n}),h=r1.kernelFunc({inputs:{a:u,b:p},backend:n}),m=r1.kernelFunc({inputs:{a:d,b:c},backend:n}),f=n.data.get(h.dataId).values,A=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:A}}return o}else{let o=C.mergeRealAndImagArrays(s,i),l=qz(o,a,t);return C.splitRealAndImagArrays(l)}}function Gz(e){return(e&e-1)==0}function s1(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=C.mergeRealAndImagArrays(e,t),i=n/2,o=C.complexWithEvenIndex(s),l=o.real,u=o.imag,d=[l.length],p=r.makeTensorInfo(d,"float32",l),c=r.makeTensorInfo(d,"float32",u),h=_n({inputs:{real:p,imag:c},backend:r}),m=C.complexWithOddIndex(s),f=m.real,A=m.imag,y=[f.length],g=r.makeTensorInfo(y,"float32",f),x=r.makeTensorInfo(y,"float32",A),w=_n({inputs:{real:g,imag:x},backend:r}),b=s1(l,u,i,a,r),v=b.real,N=b.imag,T=[v.length],R=r.makeTensorInfo(T,"float32",v),$=r.makeTensorInfo(T,"float32",N),O=_n({inputs:{real:R,imag:$},backend:r}),_=s1(f,A,i,a,r),V=_.real,U=_.imag,j=[V.length],X=r.makeTensorInfo(j,"float32",V),G=r.makeTensorInfo(j,"float32",U),ee=_n({inputs:{real:X,imag:G},backend:r}),Y=C.exponents(n,a),re=[Y.real.length],ne=r.makeTensorInfo(re,"float32",Y.real),ie=r.makeTensorInfo(re,"float32",Y.imag),Q=_n({inputs:{real:ne,imag:ie},backend:r}),de=dh({inputs:{a:Q,b:ee},backend:r}),oe=pd({inputs:{a:O,b:de},backend:r}),ye=e1({inputs:{a:O,b:de},backend:r}),he=bi({inputs:{input:oe},backend:r}),Ie=bi({inputs:{input:ye},backend:r}),Ne=Rl({inputs:{input:oe},backend:r}),$e=Rl({inputs:{input:ye},backend:r}),Oe=Ml({inputs:[he,Ie],backend:r,attrs:{axis:0}}),De=Ml({inputs:[Ne,$e],backend:r,attrs:{axis:0}}),Qe=r.data.get(Oe.dataId).values,et=r.data.get(De.dataId).values;return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(g),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(w),r.disposeIntermediateTensorInfo(R),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(O),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(G),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(ne),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(Q),r.disposeIntermediateTensorInfo(de),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(ye),r.disposeIntermediateTensorInfo(he),r.disposeIntermediateTensorInfo(Ne),r.disposeIntermediateTensorInfo(Ie),r.disposeIntermediateTensorInfo($e),r.disposeIntermediateTensorInfo(Oe),r.disposeIntermediateTensorInfo(De),{real:Qe,imag:et}}function qz(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=C.exponent(r*o,t,n),u=C.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),C.assignToTypedArray(a,s,i,r)}return a}function Xz(e){let{inputs:t,backend:n}=e,{input:a}=t,r=k.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=ct({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=w7(o,!1,n),u=ct({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var Kz={kernelName:Kp,backendName:"cpu",kernelFunc:Xz};function i1(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||k.inferDtype(r),o=k.getArrayFromDType(i,k.sizeFromShape(a));return Yz(o,r,i),t.makeTensorInfo(a,i,o)}var Zz={kernelName:Tu,backendName:"cpu",kernelFunc:i1};function Yz(e,t,n){e.fill(t)}var Jz={kernelName:ko,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=k.getTypedArrayFromDType(a.dtype,k.sizeFromShape(a.shape)),[i,o,l,u]=a.shape,d=r.data.get(a.dataId).values;for(let p=0;p<i;p++){let c=p*l*o*u;for(let h=0;h<o;h++){let m=h*(l*u);for(let f=0;f<l;f++){let A=f*u;for(let y=0;y<u;y++){let g=[i,h,f,y][2],x=Math.round(l-g),w=c+m+A+y,b=d[w];if(x>=0&&x<l){let v=x*u,N=c+m+v+y;b=d[N]}s[w]=b}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},Qz=Mt((e,t)=>Math.floor(e/t)),eO=qt(ws,Qz,null,"int32"),tO={kernelName:ws,backendName:"cpu",kernelFunc:eO};function nO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=x7({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:d,dilations:p,dimRoundingMode:c}});if(i){let A=f;f=pd({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(h){let A=f;f=t1(n,f,h,o,m),n.disposeIntermediateTensorInfo(A)}return f}var aO={kernelName:ai,backendName:"cpu",kernelFunc:nO};function rO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=b7({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:d,dilations:p,dimRoundingMode:c}});if(i){let A=f;f=pd({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(h){let A=f;f=t1(n,f,h,o,m),n.disposeIntermediateTensorInfo(A)}return f}var sO={kernelName:ri,backendName:"cpu",kernelFunc:rO};function iO(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=k.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,u,d,p]=C.prepareAndValidate(a,r);if(u===0)return n.makeTensorInfo(l,a.dtype,[]);let c=We([u,d],a.dtype),h=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values;for(let f=0;f<u;f++){let A=[],y=0;for(let g=0;g<o;g++){let x=h[f*o+g];y+=x*p[g],A.push(x)}if(y<0||y>=s/d)throw new Error(`Invalid indices: ${A} does not index into ${a.shape}`);for(let g=0;g<d;g++)c.values[f*d+g]=m[y*d+g]}return n.makeTensorInfo(l,c.dtype,c.values)}var oO={kernelName:So,backendName:"cpu",kernelFunc:iO};function lO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;ve([r,s],"gatherV2");let l=o;o==null&&(l=0);let u=k.sizeFromShape(s.shape),d=k.parseAxisParam(i,r.shape)[0],p=C.segment_util.collectGatherOpShapeInfo(r,s,d,l),c=ct({inputs:{x:r},backend:n,attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]}}),h=ct({inputs:{x:s},backend:n,attrs:{shape:[p.batchSize,u/p.batchSize]}}),m=[p.batchSize,p.outerSize,u/p.batchSize,p.sliceSize],f=n.bufferSync(h),A=n.bufferSync(c),y=j3(A,f,m);return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.makeTensorInfo(p.outputShape,y.dtype,y.values)}var uO={kernelName:Io,backendName:"cpu",kernelFunc:lO},dO=Mt((e,t)=>e>=t?1:0),pO=qt(Is,dO,null,"bool"),cO={kernelName:Is,backendName:"cpu",kernelFunc:pO};function hO(e){let{inputs:t,backend:n}=e,{input:a}=t,r=k.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=ct({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=w7(o,!0,n),u=ct({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var fO={kernelName:Zp,backendName:"cpu",kernelFunc:hO},mO=at(To,e=>Number.isFinite(e)?1:0,"bool"),AO={kernelName:To,backendName:"cpu",kernelFunc:mO},yO=at(Eo,e=>Math.abs(e)===Infinity?1:0,"bool"),gO={kernelName:Eo,backendName:"cpu",kernelFunc:yO},xO=at(Co,e=>Number.isNaN(e)?1:0,"bool"),bO={kernelName:Co,backendName:"cpu",kernelFunc:xO},vO=Mt((e,t)=>e<=t?1:0),wO=qt(Mo,vO,null,"bool"),kO={kernelName:Mo,backendName:"cpu",kernelFunc:wO};function IO(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=G3(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var SO={kernelName:Jp,backendName:"cpu",kernelFunc:IO},NO=at(Fo,e=>Math.log1p(e)),TO={kernelName:Fo,backendName:"cpu",kernelFunc:NO},EO=Mt((e,t)=>e&&t),CO=qt($o,EO,null,"bool"),RO={kernelName:$o,backendName:"cpu",kernelFunc:CO},MO=at(Eu,e=>e?0:1,"bool"),FO={kernelName:Eu,backendName:"cpu",kernelFunc:MO},$O=Mt((e,t)=>e||t),DO=qt(Cu,$O,null,"bool"),zO={kernelName:Cu,backendName:"cpu",kernelFunc:DO};function OO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;ve(r,"LRN");let u=r.shape[3],d=u-1,p=n.data.get(r.dataId).values,c=k.sizeFromShape(r.shape),h=new Float32Array(c);function m(f){let A=f%u,y=f-A+Math.max(0,A-s),g=f-A+Math.min(A+s,d),x=0;for(;y<=g;y++){let w=p[y];x+=w*w}return x}for(let f=0;f<c;f++){let A=m(f),y=p[f]*Math.pow(i+o*A,-l);h[f]=y}return n.makeTensorInfo(r.shape,r.dtype,h)}var _O={kernelName:Ru,backendName:"cpu",kernelFunc:OO};function PO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:d}=a;ve(i,"LRNGrad");let p=k.sizeFromShape(i.shape),c=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,A=new Float32Array(p),y=p;for(let g=0;g<y;g++){let x=g%c,w=g-x+Math.max(0,x-o),b=g-x+Math.min(c,x+o+1),v=0;for(let N=w;N<b;N++)v+=Math.pow(m[N],2);v=u*v+l;for(let N=w;N<b;N++){let T=-2*u*d*m[N]*f[g]/v;g===N&&(T+=Math.pow(v,-d)),T*=h[g],A[N]+=T}}return n.makeTensorInfo(i.shape,r.dtype,A)}var LO={kernelName:Qp,backendName:"cpu",kernelFunc:PO};function k7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,u=l.length,d=k.parseAxisParam(s,l),p=d,c=C.getAxesPermutation(p,u),h=o.data.get(r.dataId).values;if(c!=null){let w=new Array(u);for(let b=0;b<w.length;b++)w[b]=l[c[b]];h=JA(h,l,r.dtype,c,w),p=C.getInnerMostAxes(p.length,u),l=w}ve(r,"max"),C.assertAxesAreInnerMostDims("max",p,u);let[m,f]=C.computeOutAndReduceShapes(l,p),A=k.sizeFromShape(f),y=X3(h,A,m,r.dtype),g=o.write(y,m,r.dtype),x=m;return i&&(x=C.expandShapeToKeepDim(m,d)),{dataId:g,shape:x,dtype:r.dtype}}var WO={kernelName:Es,backendName:"cpu",kernelFunc:k7};function BO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ve(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=C.computePool2DInfo(r.shape,s,i,u,o,l),p;if(d.filterWidth===1&&d.filterHeight===1&&k.arraysEqual(d.inShape,d.outShape))p=Ua({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=k.computeStrides(r.shape),m=n1(c,r.shape,r.dtype,h,d,"max");p=n.makeTensorInfo(d.outShape,r.dtype,m.values)}return p}var VO={kernelName:Rs,backendName:"cpu",kernelFunc:BO};function jO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;ve(r,"maxPool3d");let d=C.computePool3DInfo(r.shape,s,i,1,o,l,u),p=n.data.get(r.dataId).values,c=g7(p,r.shape,r.dtype,k.computeStrides(r.shape),d,"max");return n.makeTensorInfo(c.shape,"float32",c.values)}var UO={kernelName:Mu,backendName:"cpu",kernelFunc:jO};function HO(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;ve([r,s],"maxPool3DGrad");let d=C.computePool3DInfo(s.shape,i,o,1,l,u),p=n.bufferSync(s),c=ED(p,d),h=d.strideDepth,m=d.strideHeight,f=d.strideWidth,A=d.dilationDepth,y=d.dilationHeight,g=d.dilationWidth,x=d.effectiveFilterDepth,w=d.effectiveFilterHeight,b=d.effectiveFilterWidth,v=x-1-d.padInfo.front,N=b-1-d.padInfo.left,T=w-1-d.padInfo.top,R=We(s.shape,"float32"),$=n.bufferSync(r);for(let O=0;O<d.batchSize;++O)for(let _=0;_<d.inChannels;++_)for(let V=0;V<d.inDepth;++V)for(let U=0;U<d.inHeight;++U)for(let j=0;j<d.inWidth;++j){let X=V-v,G=U-T,ee=j-N,Y=0;for(let re=0;re<x;re+=A){let ne=(X+re)/h;if(!(ne<0||ne>=d.outDepth||Math.floor(ne)!==ne))for(let ie=0;ie<w;ie+=y){let Q=(G+ie)/m;if(!(Q<0||Q>=d.outHeight||Math.floor(Q)!==Q))for(let de=0;de<b;de+=g){let oe=(ee+de)/f;if(oe<0||oe>=d.outWidth||Math.floor(oe)!==oe)continue;let ye=x*w*b-1-c.get(O,ne,Q,oe,_),he=re*w*b+ie*b+de,Ie=ye===he?1:0;Ie!==0&&(Y+=$.get(O,ne,Q,oe,_)*Ie)}}}R.set(Y,O,V,U,j,_)}return n.makeTensorInfo(R.shape,R.dtype,R.values)}var GO={kernelName:tc,backendName:"cpu",kernelFunc:HO};function qO(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;ve([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:d,dimRoundingMode:p}=a,c=C.computePool2DInfo(o.shape,l,u,1,d,p),h=n.data.get(o.dataId).values,m=We(c.outShape,o.dtype,y7(h,o.shape,o.dtype,c).values),f=c.strideHeight,A=c.strideWidth,y=c.dilationHeight,g=c.dilationWidth,x=c.effectiveFilterHeight,w=c.effectiveFilterWidth,b=w-1-c.padInfo.left,v=x-1-c.padInfo.top,N=We(o.shape,"float32"),T=n.data.get(r.dataId).values,R=We(r.shape,"float32",T);for(let $=0;$<c.batchSize;++$)for(let O=0;O<c.inChannels;++O)for(let _=0;_<c.inHeight;++_)for(let V=0;V<c.inWidth;++V){let U=_-v,j=V-b,X=0;for(let G=0;G<x;G+=y){let ee=(U+G)/f;if(!(ee<0||ee>=c.outHeight||Math.floor(ee)!==ee))for(let Y=0;Y<w;Y+=g){let re=(j+Y)/A;if(re<0||re>=c.outWidth||Math.floor(re)!==re)continue;let ne=x*w-1-m.get($,ee,re,O),ie=G*w+Y,Q=ne===ie?1:0;Q!==0&&(X+=R.get($,ee,re,O)*Q)}}N.set(X,$,_,V,O)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var XO={kernelName:ec,backendName:"cpu",kernelFunc:qO};function KO(e,t,n,a,r){let s=k.computeStrides(t),i=n1(e,t,n,s,r,"max"),o=y7(e,t,n,r,!0,a);return[i.values,o.values]}var ZO={kernelName:nc,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;ve(a,"MaxPoolWithArgmax");let u=l.data.get(a.dataId).values,d=C.computePool2DInfo(a.shape,r,s,[1,1],i),[p,c]=KO(u,a.shape,a.dtype,o,d),h=l.write(p,d.outShape,a.dtype),m=l.write(c,d.outShape,a.dtype);return[{dataId:h,shape:d.outShape,dtype:a.dtype},{dataId:m,shape:d.outShape,dtype:"int32"}]}};function YO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=k.parseAxisParam(s,r.shape),l=C.computeOutAndReduceShapes(r.shape,o)[1],u=k.sizeFromShape(l),d=[],p=n.makeTensorInfo([],"float32",new Float32Array([u]));d.push(p);let c=Br({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(c);let h=a1({inputs:{a:c,b:p},backend:n});d.push(h);let m=cd({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var JO={kernelName:Ms,backendName:"cpu",kernelFunc:YO};function QO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"min");let o=k.parseAxisParam(s,r.shape),l=o,u=C.getAxesPermutation(l,r.shape.length),d=r;u!=null&&(d=Qn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("min",l,d.shape.length);let[p,c]=C.computeOutAndReduceShapes(d.shape,l),h=k.sizeFromShape(c),m=k.makeZerosTypedArray(k.sizeFromShape(p),d.dtype),f=n.data.get(d.dataId).values;for(let y=0;y<m.length;++y){let g=y*h,x=f[g];for(let w=0;w<h;++w){let b=f[g+w];b<x&&(x=b)}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(d);let A=n.makeTensorInfo(p,d.dtype,m);if(i){let y=C.expandShapeToKeepDim(p,o),g=ct({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var e_={kernelName:Fs,backendName:"cpu",kernelFunc:QO};function t_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;ve(r,"mirrorPad");let o=s.map((g,x)=>g[0]+r.shape[x]+g[1]),l=s.map(g=>g[0]),u=s.map((g,x)=>g[0]+r.shape[x]),d=i==="reflect"?0:1,p=n.data.get(r.dataId).values,c=r.shape.length,h=k.computeStrides(r.shape),m=k.sizeFromShape(o),f=o.length,A=k.computeStrides(o),y=k.getTypedArrayFromDType(r.dtype,m);for(let g=0;g<m;g++){let x=k.indexToLoc(g,f,A);for(let b=0;b<f;b++)x[b]<l[b]?x[b]=l[b]*2-x[b]-d:x[b]>=u[b]&&(x[b]=(u[b]-1)*2-x[b]+d);x=x.map((b,v)=>b-l[v]);let w=k.locToIndex(x,c,h);y[g]=p[w]}return{dataId:n.write(y,o,r.dtype),shape:o,dtype:r.dtype}}var n_={kernelName:Ds,backendName:"cpu",kernelFunc:t_},a_=Mt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),r_=qt(Do,a_),s_={kernelName:Do,backendName:"cpu",kernelFunc:r_},i_=eo(Jg());function I7(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=k.parseAxisParam([o],r.shape),u=k7({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),d=C.expandShapeToKeepDim(u.shape,l),p=ct({inputs:{x:u},backend:n,attrs:{shape:d}}),c=e1({inputs:{a:r,b:p},backend:n}),h=W3({inputs:{x:c},backend:n}),m=cd({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=ct({inputs:{x:m},backend:n,attrs:{shape:d}}),A=a1({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var o_={kernelName:Zs,backendName:"cpu",kernelFunc:I7};function l_(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;ve(r,"multinomial");let l=o?r:I7({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],d=l.shape[1],p=n.data.get(l.dataId).values,c=[u,s],h=k.makeZerosTypedArray(k.sizeFromShape(c),"int32");for(let m=0;m<u;++m){let f=m*d,A=new Float32Array(d-1);A[0]=p[f];for(let x=1;x<A.length;++x)A[x]=A[x-1]+p[f+x];let y=i_.alea(i.toString()),g=m*s;for(let x=0;x<s;++x){let w=y();h[g+x]=A.length;for(let b=0;b<A.length;b++)if(w<A[b]){h[g+x]=b;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(c,"int32",h)}var u_={kernelName:ac,backendName:"cpu",kernelFunc:l_},d_=ja.nonMaxSuppressionV3Impl;function p_(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;ve(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,{selectedIndices:p}=d_(u,d,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var c_={kernelName:_o,backendName:"cpu",kernelFunc:p_},h_=ja.nonMaxSuppressionV4Impl;function f_(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a;ve(r,"NonMaxSuppressionPadded");let d=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:c,validOutputs:h}=h_(d,p,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var m_={kernelName:Po,backendName:"cpu",kernelFunc:f_},A_=ja.nonMaxSuppressionV5Impl;function y_(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a;ve(r,"NonMaxSuppressionWithScore");let d=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,c=i,h=o,m=l,f=u,{selectedIndices:A,selectedScores:y}=A_(d,p,c,h,m,f);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var g_={kernelName:Lo,backendName:"cpu",kernelFunc:y_};function x_(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a;ve(r,"oneHot");let l=k.sizeFromShape(r.shape),u=new Float32Array(l*s);u.fill(o);let d=n.data.get(r.dataId).values;for(let p=0;p<l;++p)d[p]>=0&&d[p]<s&&(u[p*s+d[p]]=i);return n.makeTensorInfo([...r.shape,s],"int32",u)}var b_={kernelName:Os,backendName:"cpu",kernelFunc:x_};function hh(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=bi({inputs:{input:a},backend:n}),s=hh({inputs:{x:r},backend:n}),i=Rl({inputs:{input:a},backend:n}),o=hh({inputs:{x:i},backend:n}),l=_n({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return i1({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var v_={kernelName:al,backendName:"cpu",kernelFunc:hh};function S7(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=bi({inputs:{input:a},backend:n}),s=S7({inputs:{x:r},backend:n}),i=Rl({inputs:{input:a},backend:n}),o=hh({inputs:{x:i},backend:n}),l=_n({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return i1({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var w_={kernelName:Wo,backendName:"cpu",kernelFunc:S7};function N7(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return ch({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{k.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let p=ch({inputs:{input:d},backend:n,attrs:{dim:r}});return o.push(p),p}),u=Ml({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var k_={kernelName:Bo,backendName:"cpu",kernelFunc:N7};function I_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;ve(r,"pad");let o=s.map((y,g)=>y[0]+r.shape[g]+y[1]),l=s.map(y=>y[0]),u=n.data.get(r.dataId).values,d=k.sizeFromShape(r.shape),p=r.shape.length,c=k.computeStrides(r.shape),h=k.sizeFromShape(o),m=o.length,f=k.computeStrides(o),A=k.getTypedArrayFromDType(r.dtype,h);i!==0&&A.fill(i);for(let y=0;y<d;y++){let g=k.indexToLoc(y,p,c).map((w,b)=>w+l[b]),x=k.locToIndex(g,m,f);A[x]=u[y]}return{dataId:n.write(A,o,r.dtype),shape:o,dtype:r.dtype}}var T7={kernelName:_s,backendName:"cpu",kernelFunc:I_},S_=Mt((e,t)=>Math.pow(e,t)),N_=qt(Ps,S_),T_={kernelName:Ps,backendName:"cpu",kernelFunc:N_};function E_(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=QA(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var C_={kernelName:Fu,backendName:"cpu",kernelFunc:E_},R_=at(jo,e=>1/e),M_={kernelName:jo,backendName:"cpu",kernelFunc:R_};function F_(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ve(r,"resizeBilinear");let l=k.computeStrides(r.shape),[u,d]=o,[p,c,h,m]=r.shape,f=n.data.get(r.dataId).values,A=new Float32Array(k.sizeFromShape([p,u,d,m])),y=[s&&u>1?c-1:c,s&&d>1?h-1:h],g=[s&&u>1?u-1:u,s&&d>1?d-1:d],x=0,w=y[0]/g[0],b=y[1]/g[1];for(let v=0;v<p;v++)for(let N=0;N<u;N++){let T;i?T=w*(N+.5)-.5:T=w*N;let R=Math.max(0,Math.floor(T)),$=T-R,O=Math.min(c-1,Math.ceil(T)),_=v*l[0]+R*l[1],V=v*l[0]+O*l[1];for(let U=0;U<d;U++){let j;i?j=b*(U+.5)-.5:j=b*U;let X=Math.max(0,Math.floor(j)),G=j-X,ee=Math.min(h-1,Math.ceil(j)),Y=_+X*l[2],re=V+X*l[2],ne=_+ee*l[2],ie=V+ee*l[2];for(let Q=0;Q<m;Q++){let de=f[Y+Q],oe=f[re+Q],ye=f[ne+Q],he=f[ie+Q],Ie=de+(ye-de)*G,Ne=oe+(he-oe)*G,$e=Ie+(Ne-Ie)*$;A[x++]=$e}}}return n.makeTensorInfo([p,u,d,m],"float32",A)}var $_={kernelName:Bs,backendName:"cpu",kernelFunc:F_};function D_(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ve([s,r],"resizeBilinearGrad");let o=k.computeStrides(r.shape),[l,u,d,p]=r.shape,[,c,h]=s.shape,m=new Float32Array(l*u*d*p),f=[i&&c>1?u-1:u,i&&h>1?d-1:d],A=[i&&c>1?c-1:c,i&&h>1?h-1:h],y=f[0]/A[0],g=f[1]/A[1],x=n.data.get(s.dataId).values,w=0;for(let b=0;b<l;b++){let v=b*o[0];for(let N=0;N<c;N++){let T=N*y,R=Math.floor(T),$=Math.min(Math.ceil(T),u-1),O=v+R*o[1],_=v+$*o[1],V=T-R,U=1-V;for(let j=0;j<h;j++){let X=j*g,G=Math.floor(X),ee=Math.min(Math.ceil(X),d-1),Y=X-G,re=1-Y,ne=O+G*o[2],ie=O+ee*o[2],Q=_+G*o[2],de=_+ee*o[2],oe=U*re,ye=U*Y,he=V*re,Ie=V*Y;for(let Ne=0;Ne<p;Ne++){let $e=x[w++];m[ne+Ne]+=$e*oe,m[ie+Ne]+=$e*ye,m[Q+Ne]+=$e*he,m[de+Ne]+=$e*Ie}}}}return n.makeTensorInfo([l,d,u,p],"float32",m)}var z_={kernelName:ic,backendName:"cpu",kernelFunc:D_};function O_(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ve(r,"resizeNearestNeighbor");let l=k.computeStrides(r.shape),[u,d]=o,[p,c,h,m]=r.shape,f=n.data.get(r.dataId).values,A=new Float32Array(p*u*d*m),y=[s&&u>1?c-1:c,s&&d>1?h-1:h],g=[s&&u>1?u-1:u,s&&d>1?d-1:d],x=y[0]/g[0],w=y[1]/g[1],b=0;for(let v=0;v<p;v++){let N=v*l[0];for(let T=0;T<u;T++){let R=i?x*(T+.5):x*T,$=Math.min(c-1,s?Math.round(R):Math.floor(R));i&&($=Math.max(0,$));let O=N+$*l[1];for(let _=0;_<d;_++){let V=i?w*(_+.5):w*_,U=Math.min(h-1,s?Math.round(V):Math.floor(V));i&&(U=Math.max(0,U));let j=O+U*l[2];for(let X=0;X<m;X++){let G=f[j+X];A[b++]=G}}}}return n.makeTensorInfo([p,u,d,m],r.dtype,A)}var __={kernelName:$u,backendName:"cpu",kernelFunc:O_};function P_(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ve([s,r],"resizeNearestNeighborGrad");let o=k.computeStrides(r.shape),l=k.computeStrides(s.shape),[u,d,p,c]=r.shape,[,h,m]=s.shape,f=new Float32Array(u*d*p*c),A=n.data.get(s.dataId).values,y=[i&&h>1?d-1:d,i&&m>1?p-1:p],g=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=y[0]/g[0],w=y[1]/g[1],b=1/x,v=1/w,N=Math.ceil(b)*2+2,T=Math.ceil(v)*2+2;for(let R=0;R<u;R++){let $=R*o[0];for(let O=0;O<d;O++){let _=$+O*o[1],V=Math.floor(O*b),U=Math.floor(V-N/2);for(let j=0;j<p;j++){let X=_+j*o[2],G=Math.floor(j*v),ee=Math.floor(G-T/2);for(let Y=0;Y<c;Y++){let re=0;for(let ne=0;ne<N;ne++){let ie=ne+U;if(ie<0||ie>=h)continue;let Q=$+ie*l[1],de=ie*x,oe=Math.min(d-1,i?Math.round(de):Math.floor(de));if(O===oe)for(let ye=0;ye<T;ye++){let he=ye+ee;if(he<0||he>=m)continue;let Ie=Q+he*l[2],Ne=he*w,$e=Math.min(p-1,i?Math.round(Ne):Math.floor(Ne));j===$e&&(re+=A[Ie+Y])}}f[X+Y]=re}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var L_={kernelName:sc,backendName:"cpu",kernelFunc:P_};function W_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;ve(r,"reverse");let i=r.shape.length,o=k.parseAxisParam(s,r.shape);if(i===0)return Ua({inputs:{x:r},backend:n});let l=new _t(r.shape,r.dtype),u=n.bufferSync(r);for(let d=0;d<l.size;d++){let p=l.indexToLoc(d),c=p.slice();o.forEach(h=>c[h]=r.shape[h]-1-c[h]),l.set(u.get(...c),...p)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var B_={kernelName:js,backendName:"cpu",kernelFunc:W_},V_={kernelName:rl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=k.getTypedArrayFromDType(a.dtype,k.sizeFromShape(a.shape)),[u,d,p,c]=a.shape,[h,m]=C.getImageCenter(i,d,p),f=255,A=Math.sin(r),y=Math.cos(r),g=o.data.get(a.dataId).values;for(let x=0;x<u;x++){let w=x*p*d*c;for(let b=0;b<d;b++){let v=b*(p*c);for(let N=0;N<p;N++){let T=N*c;for(let R=0;R<c;R++){let $=[u,b,N,R],O=$[2],_=$[1],V=(O-h)*y-(_-m)*A,U=(O-h)*A+(_-m)*y;V=Math.round(V+h),U=Math.round(U+m);let j=s;if(typeof s!="number"&&(R===3?j=f:j=s[R]),V>=0&&V<p&&U>=0&&U<d){let G=U*(p*c),ee=V*c,Y=w+G+ee+R;j=g[Y]}let X=w+v+T+R;l[X]=j}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},j_=at(Us,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),U_={kernelName:Us,backendName:"cpu",kernelFunc:j_};function E7(e,t,n,a,r,s,i,o,l,u){let d=[a/r,r],p=e.values,c=t.values;if(a===0)return We(n,t.dtype);let h=We(d,t.dtype);h.values.fill(l);for(let m=0;m<s;m++){let f=[],A=0;for(let y=0;y<i;y++){let g=p[m*i+y];f.push(g),A+=g*o[y]}if(A<0||A>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y<r;y++)u?h.values[A*r+y]+=c[m*r+y]:h.values[A*r+y]=t.rank===0?c[0]:c[m*r+y]}return h}function H_(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:p}=C.calculateShapes(s,r,i),c=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=E7(h,m,i,p,u,l,o,d,0,c);return n.makeTensorInfo(i,f.dtype,f.values)}var G_={kernelName:Ho,backendName:"cpu",kernelFunc:H_};function q_(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;ve([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,d=la(r.dtype,s.dtype),p=k.makeZerosTypedArray(k.sizeFromShape(r.shape),d),c=0,h=i===0||i>1||r.shape.length===1?1:k.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?p[c++]=l[m]:p[c++]=u[m];return n.makeTensorInfo(r.shape,d,p)}var X_={kernelName:Go,backendName:"cpu",kernelFunc:q_},K_=C.SELU_SCALEALPHA,Z_=C.SELU_SCALE,Y_=at(qo,e=>e>=0?Z_*e:K_*(Math.exp(e)-1)),J_={kernelName:qo,backendName:"cpu",kernelFunc:Y_},Q_=at(Zo,e=>e<0?-1:e>0?1:0),eP={kernelName:Zo,backendName:"cpu",kernelFunc:Q_},tP=at(Gs,e=>Math.sin(e)),nP={kernelName:Gs,backendName:"cpu",kernelFunc:tP},aP=at(Ko,e=>Math.sinh(e)),rP={kernelName:Ko,backendName:"cpu",kernelFunc:aP},sP=11920928955078125e-23,C7=Math.log(sP)+2,iP=at(Yo,e=>{let t=e>-C7,n=e<C7,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),oP={kernelName:Yo,backendName:"cpu",kernelFunc:iP};function lP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;ve([r],"spaceToBatchND");let o=k.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let A=1+s.length;A<r.shape.length;++A)l.push([0,0]);let u=T7.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=C.getReshaped(u.shape,s,o,!1),p=C.getPermuted(d.length,s.length,!1),c=C.getReshapedPermuted(u.shape,s,o,!1),h=ct({inputs:{x:u},backend:n,attrs:{shape:d}}),m=Qn({inputs:{x:h},backend:n,attrs:{perm:p}}),f=ct({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var uP={kernelName:Du,backendName:"cpu",kernelFunc:lP};function dP(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values[0],[p,c,h,m,f]=t7(o,a.shape,a.dtype,l,r.dtype,u,d);return[n.makeTensorInfo(c,a.dtype,p),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(A=>Number(A)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var pP={kernelName:oc,backendName:"cpu",kernelFunc:dP};function cP(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(r.dataId).values),o=n.data.get(a.dataId).values,l=Array.from(n.data.get(s.dataId).values),[u,d,p]=n7(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(d,a.dtype,u),n.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var hP={kernelName:lc,backendName:"cpu",kernelFunc:cP};function fP(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:d,strides:p,outputSize:c}=C.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f=n.bufferSync(s),A=n.data.get(i.dataId).values[0],y=E7(m,f,o,c,d,u,l,p,A,h);return n.makeTensorInfo(o,y.dtype,y.values)}var mP={kernelName:uc,backendName:"cpu",kernelFunc:fP};function AP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=k.parseAxisParam(i,r.shape)[0],l=C.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),d=r.shape.slice();return l.map(p=>{let c=[...d];c[o]=p;let h=vi({inputs:{x:r},backend:n,attrs:{begin:u,size:c}});return u[o]+=p,h})}var yP={kernelName:Jo,backendName:"cpu",kernelFunc:AP},gP=at(Xs,e=>Math.sqrt(e)),xP={kernelName:Xs,backendName:"cpu",kernelFunc:gP},bP={kernelName:zu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;ve(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},vP=at(Rr,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),wP={kernelName:Rr,backendName:"cpu",kernelFunc:vP};function kP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:p,shrinkAxisMask:c}=a;ve(r,"stridedSlice");let{nonStrided:h,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=ln.sliceInfo(r.shape,s,i,o,l,u,d,p,c),x=ct({inputs:{x:r},backend:n,attrs:{shape:y}}),w;if(h){let v=vi({inputs:{x},backend:n,attrs:{begin:m,size:A}});w=ct({inputs:{x:v},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(v)}else if(g.some(v=>v===0))w=n.makeTensorInfo(g,r.dtype,[]);else{let v=n.bufferSync(x),N=r7(g,v,f,m);w=n.makeTensorInfo(N.shape,N.dtype,N.values)}let b=ct({inputs:{x:w},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(w),b}var IP={kernelName:Qo,backendName:"cpu",kernelFunc:kP},SP=at(Qs,e=>Math.tan(e)),NP={kernelName:Qs,backendName:"cpu",kernelFunc:SP},TP=at(ei,e=>Math.tanh(e)),EP={kernelName:ei,backendName:"cpu",kernelFunc:TP};function CP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;ve(r,"tile");let i=i7(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var RP={kernelName:Cr,backendName:"cpu",kernelFunc:CP};function MP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;ve(r,"topk");let o=n.data.get(r.dataId).values,[l,u]=o7(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var FP={kernelName:el,backendName:"cpu",kernelFunc:MP};function $P(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[d,p,c,h]=r.shape,[m,f]=u!=null?u:[p,c],A=[d,m,f,h],y=k.computeStrides(r.shape),g=y[0],x=y[1],w=y[2],b=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(A));b.fill(l);let v=a.data.get(r.dataId).values,N=a.data.get(s.dataId).values;for(let T=0;T<d;++T){let R=s.shape[0]===1?N:N.subarray(T*8,T*8+8);for(let $=0;$<m;++$)for(let O=0;O<f;++O)for(let _=0;_<h;++_){let V,U=R[6]*O+R[7]*$+1;if(U===0)continue;let j=(R[0]*O+R[1]*$+R[2])/U,X=(R[3]*O+R[4]*$+R[5])/U,G=R7(j,c,o),ee=R7(X,p,o);switch(i){case"nearest":V=LP(v,p,c,g,x,w,T,ee,G,_,l);break;case"bilinear":V=WP(v,p,c,g,x,w,T,ee,G,_,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let Y=T*g+$*x+O*w+_;b[Y]=V}return a.makeTensorInfo(A,r.dtype,b)}return{dataId:a.write(b,A,r.dtype),shape:r.shape,dtype:r.dtype}}var DP={kernelName:tl,backendName:"cpu",kernelFunc:$P};function R7(e,t,n){switch(n){case"reflect":return zP(e,t);case"wrap":return OP(e,t);case"nearest":return PP(e,t);case"constant":default:return _P(e,t)}}function zP(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=2*t;n<a&&(n=a*Math.trunc(-n/a)+n),n=n<-t?n+a:-n-1}else if(n>t-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return k.clamp(0,n,t-1)}function OP(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return k.clamp(0,n,t-1)}function _P(e,t){return e}function PP(e,t){return k.clamp(0,e,t-1)}function hd(e,t,n,a,r,s,i,o,l,u,d){let p=i*a+o*r+l*s+u;return 0<=o&&o<t&&0<=l&&l<n?e[p]:d}function LP(e,t,n,a,r,s,i,o,l,u,d){let p=Math.round(o),c=Math.round(l);return hd(e,t,n,a,r,s,i,p,c,u,d)}function WP(e,t,n,a,r,s,i,o,l,u,d){let p=Math.floor(o),c=Math.floor(l),h=p+1,m=c+1,f=(m-l)*hd(e,t,n,a,r,s,i,p,c,u,d)+(l-c)*hd(e,t,n,a,r,s,i,p,m,u,d),A=(m-l)*hd(e,t,n,a,r,s,i,h,c,u,d)+(l-c)*hd(e,t,n,a,r,s,i,h,m,u,d);return(h-o)*f+(o-p)*A}function BP(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;ve(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=l7(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var VP={kernelName:dc,backendName:"cpu",kernelFunc:BP};function jP(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==s&&(l[u++]=r.shape[h]);let d=new Array(i).fill(0),p=r.shape.slice();p[s]=1;let c=new Array(o);for(let h=0;h<c.length;h++){d[s]=h;let m=vi({inputs:{x:r},backend:n,attrs:{begin:d,size:p}});c[h]=ct({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return c}var UP={kernelName:nl,backendName:"cpu",kernelFunc:jP};function HP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;ve(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,u=[],d=[],p=o-l,c=s;for(let m=0;m<p;++m){let f=ch({inputs:{input:c},backend:n,attrs:{dim:m+1}});c=f,d.push(f)}for(let m=0;m<i;++m){let f=k.createScalarValue(m,"int32"),A=n.makeTensorInfo([],"int32",f),y=v7({inputs:{a:A,b:c},backend:n}),g=Br({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),x=dh({inputs:{a:g,b:r},backend:n}),w=cd({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});u.push(w),d.push(A),d.push(y),d.push(g),d.push(x),d.push(w)}let h=N7({inputs:u,backend:n,attrs:{axis:0}});return d.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var GP={kernelName:Ou,backendName:"cpu",kernelFunc:HP},qP=[nD,i$,rD,iD,c$,lD,dD,cD,fD,AD,gD,bD,wD,SD,TD,RD,FD,DD,OD,eD,PD,WD,VD,d$,f$,UD,o$,GD,XD,YD,QD,KD,az,sz,tz,oz,uz,pz,hz,mz,yz,gz,bz,wz,Iz,Sz,Tz,Nz,r1,Rz,G$,Fz,Dz,Vz,m$,jz,y$,Kz,Zz,Jz,x$,tO,aO,sO,oO,uO,v$,cO,l$,fO,qD,AO,gO,bO,q$,k$,kO,SO,S$,TO,RO,FO,zO,_O,LO,T$,VO,UO,GO,XO,ZO,WO,JO,e_,C$,n_,s_,u_,M$,$$,c_,m_,g_,z$,b_,w_,k_,T7,T_,K$,P$,C_,u$,M_,Z$,Y$,Q$,$_,z_,__,L_,B_,V_,U_,W$,G_,X_,J_,J$,eP,nP,rP,B$,o_,oP,uP,pP,hP,mP,yP,xP,bP,j$,wP,IP,H$,Ez,NP,EP,RP,FP,O$,DP,VP,UP,GP,v_];for(let e of qP)si(e);var M7={};Fe(M7,{assertNotComplex:()=>$l,bindCanvasToFramebuffer:()=>sL,bindColorTextureToFramebuffer:()=>Ah,bindTextureToProgramUniformSampler:()=>G7,bindTextureUnit:()=>j7,bindVertexBufferToProgramAttribute:()=>u1,callAndCheck:()=>xe,canBeRepresented:()=>F7,createFragmentShader:()=>z7,createFramebuffer:()=>V7,createProgram:()=>O7,createStaticIndexBuffer:()=>L7,createStaticVertexBuffer:()=>P7,createTexture:()=>W7,createVertexShader:()=>D7,getBatchDim:()=>ki,getExtensionOrThrow:()=>yd,getFramebufferErrorMessage:()=>q7,getMaxTexturesInShader:()=>Y7,getNumChannels:()=>aL,getProgramUniformLocation:()=>H7,getProgramUniformLocationOrThrow:()=>U7,getRowsCols:()=>Ii,getShapeAs3D:()=>yh,getTextureShapeFromLogicalShape:()=>K7,getWebGLDisjointQueryTimerVersion:()=>J7,getWebGLErrorMessage:()=>$7,getWebGLMaxTextureSize:()=>Z7,hasExtension:()=>ta,isCapableOfRenderingToFloatTexture:()=>Q7,isDownloadFloatTextureEnabled:()=>ev,isReshapeFree:()=>xd,isWebGLFenceEnabled:()=>tv,isWebGLVersionEnabled:()=>p1,linkProgram:()=>_7,resetMaxTextureSize:()=>iL,resetMaxTexturesInShader:()=>oL,unbindColorTextureFromFramebuffer:()=>d1,unbindTextureUnit:()=>rL,validateFramebuffer:()=>gd,validateProgram:()=>mh,validateTextureSize:()=>B7});var wi={},o1={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function fh(e,t){wi[e]=t}function Ha(e){if(!(e in wi)){let n=KP(e);if(n!==null)wi[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=wi[e];return t.isContextLost()?(delete wi[e],Ha(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),wi[e])}function XP(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function KP(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=XP(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete wi[e]},!1),e===1?t.getContext("webgl",o1)||t.getContext("experimental-webgl",o1):t.getContext("webgl2",o1)}var fd;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(fd||(fd={}));var ea;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(ea||(ea={}));var en;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(en||(en={}));function md(e,t){return[t,e]}function ZP(e,t){return e*t}function Ad(e){let t=k.sizeFromShape(e),n=Math.ceil(t/4);return k.sizeToSquarishShape(n)}function Fl(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function YP(e,t){let[n,a]=Fl(e,t);return n*a*4}function l1(e,t){let n=e,a,r,s,i,o,l,u,d,p,c;return J().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,d=1,p=n.HALF_FLOAT,c=n.FLOAT):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,d=4,p=t!=null?t.HALF_FLOAT_OES:null,c=e.FLOAT),l=e.RGBA,{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:d,textureTypeHalfFloat:p,textureTypeFloat:c}}function xe(e,t){let n=t();return J().getBool("DEBUG")&&JP(e),n}function JP(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+$7(e,t))}var QP=596e-10,eL=65504;function F7(e){return!!(J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||QP<Math.abs(e)&&Math.abs(e)<eL)}function $7(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function yd(e,t){return cr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function D7(e,t){let n=cr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function z7(e,t){let n=cr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw nL(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var tL=/ERROR: [0-9]+:([0-9]+):/g;function nL(e,t){let n=tL.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
|
|
`),s=r.length.toString().length+2,i=r.map((p,c)=>k.rightPad((c+1).toString(),s)+p),o=0;for(let p=0;p<i.length;p++)o=Math.max(i[p].length,o);let l=i.slice(0,a-1),u=i.slice(a-1,a),d=i.slice(a);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${k.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(d.join(`
|
|
`))}function O7(e){return cr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function _7(e,t){if(xe(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function mh(e,t){if(xe(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function P7(e,t){let n=cr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function L7(e,t){let n=cr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function aL(){return J().getNumber("WEBGL_VERSION")===2?1:4}function W7(e){return cr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function B7(e,t){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function V7(e){return cr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function u1(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),xe(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),xe(e,()=>e.enableVertexAttribArray(o)),!0)}function j7(e,t,n){X7(e,n),xe(e,()=>e.activeTexture(e.TEXTURE0+n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function rL(e,t){X7(e,t),xe(e,()=>e.activeTexture(e.TEXTURE0+t)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function U7(e,t,n){return cr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function H7(e,t,n){return e.getUniformLocation(t,n)}function G7(e,t,n,a){xe(e,()=>j7(e,t,a)),xe(e,()=>e.uniform1i(n,a))}function sL(e){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),xe(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function Ah(e,t,n){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function d1(e,t){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function gd(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+q7(e,t))}function q7(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function cr(e,t,n){let a=xe(e,()=>t());if(a==null)throw new Error(n);return a}function X7(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function ki(e,t=2){return k.sizeFromShape(e.slice(0,e.length-t))}function Ii(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function yh(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[ki(e),...Ii(e)]),t}function K7(e,t=!1){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,s)=>s>=e.length-2?k.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=k.squeezeShape(e).newShape);let a=k.sizeFromShape(e);if(e.length<=1&&a<=n)return[1,a];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=ki(e),s=2,i=2;return e.length&&([s,i]=Ii(e)),a=r*(s/2)*(i/2),k.sizeToSquarishShape(a).map(o=>o*2)}return k.sizeToSquarishShape(a)}function gh(e){return e%2==0}function xd(e,t){if(e=e.slice(-2),t=t.slice(-2),k.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||gh(n)&&gh(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&gh(e[0])&&gh(t[0])}var xh,bh;function Z7(e){if(xh==null){let t=Ha(e);xh=t.getParameter(t.MAX_TEXTURE_SIZE)}return xh}function iL(){xh=null}function oL(){bh=null}function Y7(e){if(bh==null){let t=Ha(e);bh=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,bh)}function J7(e){if(e===0)return 0;let t,n=Ha(e);return ta(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:ta(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function ta(e,t){return e.getExtension(t)!=null}function p1(e){try{if(Ha(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function Q7(e){if(e===0)return!1;let t=Ha(e);if(e===1){if(!ta(t,"OES_texture_float"))return!1}else if(!ta(t,"EXT_color_buffer_float"))return!1;return c1(t)}function ev(e){if(e===0)return!1;let t=Ha(e);if(e===1){if(!ta(t,"OES_texture_float")||!ta(t,"WEBGL_color_buffer_float"))return!1}else{if(ta(t,"EXT_color_buffer_float"))return c1(t);let n="EXT_color_buffer_half_float";if(ta(t,n)){let a=t.getExtension(n);return lL(t,a)}return!1}return c1(t)}function c1(e){let t=l1(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function lL(e,t){let n=l1(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function tv(e){return e!==2?!1:Ha(e).fenceSync!=null}function $l(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Me=J();Me.registerFlag("HAS_WEBGL",()=>Me.getNumber("WEBGL_VERSION")>0);Me.registerFlag("WEBGL_VERSION",()=>p1(2)?2:p1(1)?1:0);Me.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Me.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Me.get("WEBGL_VERSION")===2);Me.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Me.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Me.registerFlag("WEBGL_PACK",()=>Me.getBool("HAS_WEBGL"));Me.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_CLIP",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_REDUCE",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_LAZILY_UNPACK",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_CONV_IM2COL",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>Z7(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>Y7(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Me.getNumber("WEBGL_VERSION");return e===0?0:J7(e)});Me.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Me.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Hu.isMobile());Me.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>Q7(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Me.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Me.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Me.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>ev(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_FENCE_API_ENABLED",()=>tv(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Me.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Me.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Me.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Hu.isMobile()&&Me.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function cn(){let e,t,n,a,r,s,i,o,l,u;return J().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function Si(e,t,n="index"){let a=k.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function h1(e){let t=k.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}var nv=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,uL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=fd.DENSE;let t=Ad(e),n=cn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Si(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},dL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=fd.DENSE;let t=Ad(e),n=cn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Si(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},pL=class{constructor(e){this.variableNames=["A"],this.outTexUsage=ea.DOWNLOAD;let t=cn();this.outputShape=e,this.userCode=`
|
|
${nv}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},cL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=ea.DOWNLOAD;let t=cn();this.outputShape=e,this.userCode=`
|
|
${nv}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},hL=class{constructor(e,t,n=!1){this.variableNames=["A"];let a=cn(),[r,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${h1(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / ${s};
|
|
int c = imod(flatIndex, ${s});
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
|
|
vec4 values = ${a.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${a.output} = vec4(${i}, 0., 0., 0.);
|
|
}
|
|
`}},fL=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let a=cn(),[r,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let u=0;u<=1;u++){let d=l*2+u;i+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${u} < ${e[2]}) {
|
|
localCoords[2] += ${u};
|
|
if(localCoords[1] + ${l} < ${e[1]}) {
|
|
localCoords[1] += ${l};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
r = flatIndex / ${s};
|
|
c = imod(flatIndex, ${s});
|
|
uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
|
|
values = ${a.texture2D}(A, uv);
|
|
|
|
if(offset == 0) {
|
|
result[${d}] = values[0];
|
|
} else if(offset == 1) {
|
|
result[${d}] = values[1];
|
|
} else if(offset == 2) {
|
|
result[${d}] = values[2];
|
|
} else {
|
|
result[${d}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${h1(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${i}
|
|
|
|
${a.output} = ${o};
|
|
}
|
|
`}},av={};Fe(av,{bindVertexProgramAttributeStreams:()=>cv,createBufferFromOutputTexture:()=>mv,createFloat16MatrixTexture:()=>lv,createFloat16PackedMatrixTexture:()=>pv,createFloat32MatrixTexture:()=>ov,createIndexBuffer:()=>iv,createPackedMatrixTexture:()=>dv,createUnsignedBytesMatrixTexture:()=>uv,createVertexBuffer:()=>sv,createVertexShader:()=>rv,downloadByteEncodedFloatMatrixFromOutputTexture:()=>yv,downloadFloat32MatrixFromBuffer:()=>Av,downloadMatrixFromPackedOutputTexture:()=>xv,downloadPackedMatrixFromBuffer:()=>gv,getInternalFormatForFloat16MatrixTexture:()=>m1,getInternalFormatForFloat16PackedMatrixTexture:()=>g1,getInternalFormatForFloat32MatrixTexture:()=>f1,getInternalFormatForPackedMatrixTexture:()=>y1,getInternalFormatForUnsignedBytesMatrixTexture:()=>A1,uploadDenseMatrixToTexture:()=>hv,uploadPixelDataToTexture:()=>fv});function rv(e){let t=cn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return D7(e,n)}function sv(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return P7(e,t)}function iv(e){let t=new Uint16Array([0,1,2,2,1,3]);return L7(e,t)}function bd(e,t,n,a,r,s){B7(t,n);let i=W7(e),o=e.TEXTURE_2D;return xe(e,()=>e.bindTexture(o,i)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),xe(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function f1(e){return e.internalFormatFloat}function ov(e,t,n,a){let[r,s]=md(t,n);return bd(e,r,s,f1(a),a.textureFormatFloat,e.FLOAT)}function m1(e){return e.internalFormatHalfFloat}function lv(e,t,n,a){let[r,s]=md(t,n);return bd(e,r,s,m1(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function A1(e){return e.downloadTextureFormat}function uv(e,t,n,a){let[r,s]=md(t,n);return bd(e,r,s,A1(a),e.RGBA,e.UNSIGNED_BYTE)}function y1(e){return e.internalFormatPackedFloat}function dv(e,t,n,a){let[r,s]=Fl(t,n);return bd(e,r,s,y1(a),e.RGBA,e.FLOAT)}function g1(e){return e.internalFormatPackedHalfFloat}function pv(e,t,n,a){let[r,s]=Fl(t,n);return bd(e,r,s,g1(a),e.RGBA,a.textureTypeHalfFloat)}function cv(e,t,n){let a=0,r=3*4,s=3*4+2*4;return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),u1(e,t,"clipSpacePos",n,3,s,a)&&u1(e,t,"uv",n,2,s,r)}function hv(e,t,n,a,r,s){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function fv(e,t,n){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function mv(e,t,n,a){let r=e.createBuffer();xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return xe(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function Av(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function yv(e,t,n,a){let[r,s]=md(t,n),i=4,o=new Uint8Array(ZP(t*n,i));return xe(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function gv(e,t,n,a,r,s,i,o){let l=e,u=new Float32Array(YP(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function xv(e,t,n){let a=new Float32Array(t*n*4);return xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var vh=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=J().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,fh(t,e)):this.gl=Ha(t);let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(J().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=yd(this.gl,r),ta(this.gl,s))this.textureHalfFloatExtension=yd(this.gl,s);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),ta(this.gl,a))this.colorBufferHalfFloatExtension=yd(this.gl,a);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",ta(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(ta(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=sv(this.gl),this.indexBuffer=iv(this.gl),this.framebuffer=V7(this.gl),this.textureConfig=l1(this.gl,this.textureHalfFloatExtension)}get debug(){return J().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;xe(e,()=>e.finish()),xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.deleteFramebuffer(this.framebuffer)),xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),xe(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),ov(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),lv(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),uv(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),fv(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),hv(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),pv(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),dv(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(d1(this.gl,this.framebuffer),this.outputTexture=null),xe(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>yv(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return gv(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return Av(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=mv(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(J().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>xv(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=z7(t,e);this.vertexShader==null&&(this.vertexShader=rv(t));let a=O7(t);return xe(t,()=>t.attachShader(a,this.vertexShader)),xe(t,()=>t.attachShader(a,n)),_7(t,a),this.debug&&mh(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=cv(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&xe(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&mh(this.gl,this.program),xe(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?U7(this.gl,e,t):H7(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),xe(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),G7(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=Fl(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&mh(this.gl,this.program),gd(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),xe(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),xe(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=yd(this.gl,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await k.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=mL(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&k.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Ah(this.gl,e,this.framebuffer),this.debug&&gd(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Ah(this.gl,this.outputTexture,this.framebuffer),this.debug&&gd(this.gl)):d1(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;Ah(a,e,this.framebuffer),this.debug&&gd(a),this.outputTexture=e,xe(a,()=>a.viewport(0,0,t,n)),xe(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),xe(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function mL(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:bv}=C;function AL(e,t,n,a){let r=[];e.forEach(h=>{let m=k.sizeFromShape(h.shapeInfo.logicalShape);h.shapeInfo.isUniform?r.push(`uniform float ${h.name}${m>1?`[${m}]`:""};`):(r.push(`uniform sampler2D ${h.name};`),r.push(`uniform int offset${h.name};`))});let s=r.join(`
|
|
`),i=e.map(h=>yL(h,t,a)).join(`
|
|
`),o=t.texShape,l=cn(),u=bL(l),d,p,c=kL(l);return t.isPacked?(d=gL(t.logicalShape,o),p=wL(l)):(d=xL(t.logicalShape,o),p=vL(l)),a&&(c+=TL),[c,u,p,s,d,i,n].join(`
|
|
`)}function Dl(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return LL(e);case 1:return BL(e);case 2:return jL(e);case 3:return HL(e);case 4:return qL(e);case 5:return XL(e);case 6:return KL(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function vv(e){switch(e.shapeInfo.logicalShape.length){case 0:return PL(e);case 1:return WL(e);case 2:return VL(e);case 3:return UL(e);default:return GL(e)}}function yL(e,t,n=!1){let a="";n?a+=vv(e):a+=Dl(e);let r=e.shapeInfo.logicalShape,s=t.logicalShape;return r.length<=s.length&&(n?a+=ZL(e,t):a+=YL(e,t)),a}function gL(e,t){switch(e.length){case 0:return wv();case 1:return EL(e,t);case 2:return OL(e,t);case 3:return RL(e,t);default:return FL(e,t)}}function xL(e,t){switch(e.length){case 0:return wv();case 1:return CL(e,t);case 2:return _L(e,t);case 3:return ML(e,t);case 4:return $L(e,t);case 5:return DL(e,t);case 6:return zL(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function bL(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function vL(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function wL(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function kL(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${IL}
|
|
${SL}
|
|
${NL}
|
|
`}var IL=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,SL=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,NL=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,TL=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function wv(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function EL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${n[1]}.0);
|
|
}
|
|
`:n[1]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${n[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
|
|
}
|
|
`}function CL(e,t){return t[0]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function RL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[2]/2),r=a*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
int b = index / ${r};
|
|
index -= b * ${r};
|
|
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function ML(e,t){let n=Si(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function FL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[e.length-1]/2),r=a*Math.ceil(e[e.length-2]/2),s=r,i="",o="b, r, c";for(let l=2;l<e.length-1;l++)s*=e[e.length-l-1],i=`
|
|
int b${l} = index / ${s};
|
|
index -= b${l} * ${s};
|
|
`+i,o=`b${l}, `+o;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${r};
|
|
index -= b * ${r};
|
|
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec${e.length}(${o});
|
|
}
|
|
`}function $L(e,t){let n=Si(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function DL(e,t){let n=Si(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function zL(e,t){let n=Si(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function OL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(k.arraysEqual(e,t))return`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
|
|
}
|
|
`;let a=Math.ceil(e[1]/2);return`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function _L(e,t){return k.arraysEqual(e,t)?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Ni(e){return`offset${e}`}function PL(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=cn();return`
|
|
vec4 ${n}() {
|
|
return ${a.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function LL(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;let[a,r]=e.shapeInfo.texShape;if(a===1&&r===1)return`
|
|
float ${n}() {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let[s,i]=e.shapeInfo.texShape,o=Ni(t);return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, ${o});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function WL(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=e.shapeInfo.texShape,r=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],s=cn();return`
|
|
vec4 ${n}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${r[0]}, ${r[1]}, index);
|
|
return ${s.texture2D}(${t}, uv);
|
|
}
|
|
`}function BL(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int index) {
|
|
${zl(e)}
|
|
}
|
|
`;let a=e.shapeInfo.texShape,r=a[0],s=a[1];if(s===1&&r===1)return`
|
|
float ${n}(int index) {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let i=Ni(t);return s===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${r}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:r===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${s}.0, 0.5);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${r}, ${s}, index + ${i});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function VL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=r[0],i=r[1],o=cn();if(r!=null&&k.arraysEqual(t,r))return`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${s}.0);
|
|
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`;let l=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],u=Math.ceil(t[1]/2);return`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${u}, ${l[0]}, ${l[1]}, row, col);
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`}function jL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape;if(r!=null&&k.arraysEqual(t,r)){let p=r[0],c=r[1];return`
|
|
float ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}let{newShape:s,keptDims:i}=k.squeezeShape(t),o=s;if(o.length<t.length){let p=Ol(e,o),c=["row","col"];return`
|
|
${Dl(p)}
|
|
float ${a}(int row, int col) {
|
|
return ${a}(${_l(c,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
|
|
${zl(e)}
|
|
}
|
|
`;let l=r[0],u=r[1],d=Ni(n);return u===1?`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:l===1?`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${t[1]} + col + ${d};
|
|
vec2 uv = uvFromFlat(${l}, ${u}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function UL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];if(t[0]===1){let p=t.slice(1),c=[1,2],h=Ol(e,p),m=["b","row","col"];return`
|
|
${vv(h)}
|
|
vec4 ${a}(int b, int row, int col) {
|
|
return ${a}(${_l(m,c)});
|
|
}
|
|
`}let i=s[0],o=s[1],l=Math.ceil(t[2]/2),u=l*Math.ceil(t[1]/2),d=cn();return`
|
|
vec4 ${a}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${i}, ${o}, ${u}, ${l}, b, row, col);
|
|
return ${d.texture2D}(${n}, uv);
|
|
}
|
|
`}function HL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[1]*t[2],s=t[2],{newShape:i,keptDims:o}=k.squeezeShape(t),l=i;if(l.length<t.length){let m=Ol(e,l),f=["row","col","depth"];return`
|
|
${Dl(m)}
|
|
float ${a}(int row, int col, int depth) {
|
|
return ${a}(${_l(f,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${r}, ${s}, 1)));
|
|
${zl(e)}
|
|
}
|
|
`;let u=e.shapeInfo.texShape,d=u[0],p=u[1],c=e.shapeInfo.flatOffset;if(p===r&&c==null)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(p===s&&c==null)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let h=Ni(n);return`
|
|
float ${a}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${r} + col * ${s} + depth + ${h};
|
|
vec2 uv = uvFromFlat(${d}, ${p}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function GL(e){let t=e.shapeInfo.logicalShape,n=t.length,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=i[0],l=i[1],u=Math.ceil(t[n-1]/2),d=u*Math.ceil(t[n-2]/2),p="int b, int row, int col",c=`b * ${d} + (row / 2) * ${u} + (col / 2)`;for(let m=2;m<n-1;m++)p=`int b${m}, `+p,d*=t[n-m-1],c=`b${m} * ${d} + `+c;let h=cn();return`
|
|
vec4 ${r}(${p}) {
|
|
int index = ${c};
|
|
int texR = index / ${l};
|
|
int texC = index - texR * ${l};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${o});
|
|
return ${h.texture2D}(${a}, uv);
|
|
}
|
|
`}function qL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[3],s=t[2]*r,i=t[1]*s,{newShape:o,keptDims:l}=k.squeezeShape(t);if(o.length<t.length){let m=Ol(e,o),f=["row","col","depth","depth2"];return`
|
|
${Dl(m)}
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
return ${a}(${_l(f,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${s}, ${r}, 1)));
|
|
${zl(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],c=d[1];if(c===i&&u==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${s}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(c===r&&u==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${t[1]*t[2]}, ${t[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let h=Ni(n);return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${s} +
|
|
depth * ${r} + depth2;
|
|
vec2 uv = uvFromFlat(${p}, ${c}, index + ${h});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function XL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=k.squeezeShape(t);if(l.length<t.length){let f=Ol(e,l),A=["row","col","depth","depth2","depth3"];return`
|
|
${Dl(f)}
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${a}(${_l(A,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, ${r})) +
|
|
depth3;
|
|
${zl(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,c=p[0],h=p[1];if(h===o&&d==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&d==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=Ni(n);return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${s} +
|
|
depth2 * ${r} + depth3 + ${m};
|
|
vec2 uv = uvFromFlat(${c}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function KL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=k.squeezeShape(t);if(r.length<t.length){let A=Ol(e,r),y=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${Dl(A)}
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${a}(${_l(y,s)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,d=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${d}, ${u}, ${l}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${zl(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],m=c[1];if(m===d&&p==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(m===i&&p==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=Ni(n);return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${d} + col * ${u} + depth * ${l} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
|
|
vec2 uv = uvFromFlat(${h}, ${m}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function zl(e){let t=e.name,n=k.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function ZL(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=bv(e.shapeInfo.logicalShape,t.logicalShape),l=lt(i),u=i-s,d,p=["x","y","z","w","u","v"];s===0?d="":i<2&&o.length>=1?d="coords = 0;":d=o.map(A=>`coords.${p[A+u]} = 0;`).join(`
|
|
`);let c="";i<2&&s>0?c="coords":c=e.shapeInfo.logicalShape.map((A,y)=>`coords.${p[y+u]}`).join(", ");let h="return outputValue;",m=k.sizeFromShape(e.shapeInfo.logicalShape)===1,f=k.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!f)i===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let A=s-2,y=s-1;o.indexOf(A)>-1&&o.indexOf(y)>-1?h="return vec4(outputValue.x);":o.indexOf(A)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${d}
|
|
vec4 outputValue = get${a}(${c});
|
|
${h}
|
|
}
|
|
`}function YL(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&k.arraysEqual(i,s))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let u=lt(l),d=bv(e.shapeInfo.logicalShape,t.logicalShape),p=l-o,c,h=["x","y","z","w","u","v"];o===0?c="":l<2&&d.length>=1?c="coords = 0;":c=d.map(f=>`coords.${h[f+p]} = 0;`).join(`
|
|
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,A)=>`coords.${h[A+p]}`).join(", "),`
|
|
float ${r}() {
|
|
${u} coords = getOutputCoords();
|
|
${c}
|
|
return get${a}(${m});
|
|
}
|
|
`}function lt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Ol(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function _l(e,t){return t.map(n=>e[n]).join(", ")}function JL(e,t,n,a){let r=t.userCode,s=n.map((h,m)=>{let f={logicalShape:h.shape,texShape:h.isUniform?null:h.texData.texShape,isUniform:h.isUniform,isPacked:h.isUniform?!1:h.texData.isPacked,flatOffset:null};return h.texData!=null&&h.texData.slice!=null&&h.texData.slice.flatOffset>0&&(f.flatOffset=h.texData.slice.flatOffset),{name:t.variableNames[m],shapeInfo:f}}),i=s.map(h=>h.shapeInfo),o={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},l=AL(s,o,r,t.packedInputs),u=e.createProgram(l),d=null,p=e.getUniformLocation(u,"NAN",!1);J().getNumber("WEBGL_VERSION")===1&&(d=e.getUniformLocation(u,"INFINITY",!1));let c={};for(let h=0;h<t.variableNames.length;h++){let m=t.variableNames[h],f=!1;c[m]=e.getUniformLocation(u,m,f),c[`offset${m}`]=e.getUniformLocation(u,`offset${m}`,f)}return{program:t,source:l,webGLProgram:u,uniformLocations:c,inShapeInfos:i,outShapeInfo:o,infLoc:d,nanLoc:p}}function kv(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!k.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!k.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function QL(e,t,n,a,r){kv(t.inShapeInfos,n),kv([t.outShapeInfo],[a]);let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),J().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let u=t.program.variableNames[l],d=t.uniformLocations[u],p=t.uniformLocations[`offset${u}`];if(d!=null){if(o.isUniform){if(k.sizeFromShape(o.shape)<2)e.gl.uniform1f(d,o.uniformValues[0]);else{let c=o.uniformValues;c instanceof Float32Array||(c=new Float32Array(c)),e.gl.uniform1fv(d,c)}return}o.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,d,l)}}),r!=null&&r(e,t.webGLProgram),e.executeProgram()}function eW(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r,s}var{addImpl:tW,bincountImpl:Iv,bincountReduceImpl:nW,ceilImpl:aW,concatImpl:rW,expImpl:sW,expm1Impl:iW,floorImpl:oW,gatherV2Impl:lW,greaterImpl:uW,lessImpl:dW,linSpaceImpl:pW,logImpl:cW,maxImpl:hW,maximumImpl:fW,minimumImpl:mW,multiplyImpl:AW,negImpl:yW,prodImpl:gW,rangeImpl:xW,rsqrtImpl:bW,simpleAbsImpl:Sv,sliceImpl:vW,sparseFillEmptyRowsImpl:wW,sparseReshapeImpl:kW,stridedSliceImpl:IW,subImpl:SW,tileImpl:NW,topKImpl:TW,transposeImpl:x1,uniqueImpl:EW}=qA;function Nv(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function hn(e,t){return t===1?[e]:Nv(e,t)}function CW(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var RW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=hn("rc",t),a=lt(t),r=FW(t,e,n),s=$W(t,e[e.length-1],e[e.length-2],n),i=DW(e,n);this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
|
|
if(${r}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${s}
|
|
|
|
setOutput(vec4(${i}));
|
|
}
|
|
}
|
|
`}}};function MW(e,t){let n=[];for(let a=0;a<=1;a++)for(let r=0;r<=1;r++){let s=`${a===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function FW(e,t,n){if(e===1)return`rc > ${t[0]}`;let a="";for(let r=e-2;r<e;r++)a+=`${n[r]} >= ${t[r]}`,r<e-1&&(a+="||");return a}function $W(e,t,n,a){if(e===1)return"";let r=a.slice(-2);return`
|
|
int r = ${r[0]};
|
|
int c = ${r[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function DW(e,t){let n=e.length,a=MW(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${a[0]}),
|
|
cEdge ? 0. : getA(${a[1]}),
|
|
rEdge ? 0. : getA(${a[2]}),
|
|
rEdge || cEdge ? 0. : getA(${a[3]})`}var Tv=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2==1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${a}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${a>0?"}":""}
|
|
`}this.userCode=`
|
|
${zW(t)}
|
|
${h1(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${e[1]};
|
|
int cols = ${e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function zW(e){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${Si(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var OW=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=Cv(t,n),r=Rv(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=Ev(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===en.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===en.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===en.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===en.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===en.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=Cv(n,a),s=Rv(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=Ev(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=J().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function _W(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function Ev(e,t,n,a,r){let s=PW(t,a),i;if(r){let[l,u]=Fl(e[0],e[1]);i=l*u}else{let[l,u]=md(e[0],e[1]);i=l*u}let o=_W(n,s);return i*o}function PW(e,t){switch(e){case en.PACKED_2X2_FLOAT32:return y1(t);case en.PACKED_2X2_FLOAT16:return g1(t);case en.UNPACKED_FLOAT32:return f1(t);case en.UNPACKED_FLOAT16:return m1(t);case en.PACKED_4X1_UNSIGNED_BYTE:return A1(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function LW(e){return J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?en.PACKED_2X2_FLOAT32:en.UNPACKED_FLOAT32:e?en.PACKED_2X2_FLOAT16:en.UNPACKED_FLOAT16}function Cv(e,t){if(e===ea.UPLOAD)return en.PACKED_2X2_FLOAT32;if(e===ea.RENDER||e==null)return LW(t);if(e===ea.DOWNLOAD||e===ea.PIXELS)return en.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function Rv(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Vr=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},ba="if (isnan(x)) return x;",WW="return x;",Mv="return abs(x);",BW="return (x >= 0.0) ? x : (exp(x) - 1.0);",VW=ba+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,jW=ba+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,wh="return x;",UW="return 1.0 / (1.0 + exp(-1.0 * x));",HW="return x;",GW=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,qW=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,XW=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,KW="return 1.0 / (1.0 + exp(-1.0 * x));",Pl=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},ZW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=hn("rc",t),a=lt(t),r=CW(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},YW=ja.whereImpl,JW=1e-7,QW=1e-4,b1={};function eB(e){return e in b1||(b1[e]={}),b1[e]}var tB=128,nB=600;function aB(){return J().global.screen==null?1024:J().global.screen.height*J().global.screen.width*window.devicePixelRatio*nB/1024/1024}var Ll=class extends gu{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!J().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Ha(J().getNumber("WEBGL_VERSION"));this.binaryCache=eB(J().getNumber("WEBGL_VERSION")),this.gpgpu=new vh(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new OW(this.gpgpu),this.numMBBeforeWarning=aB(),this.texData=new Rp(this,ir())}nextDataId(){return Ll.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((J().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||J().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:ea.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(J().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:ea.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let p;o?p=new Pl(i,wh):p=new Vr(i,wh);let c=this.runWebGLProgram(p,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(c.dataId);return this.disposeIntermediateTensorInfo(c),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,u;l&&(u=k.now());let d;if(a==="complex64"){let p=this.readSync(r.real.dataId),c=this.readSync(r.imag.dataId);d=C.mergeRealAndImagArrays(p,c)}else d=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=k.now()-u),this.convertAndCacheOnCPU(e,d)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new Pl(a,wh):h=new Vr(a,wh);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&J().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&J().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...Ad(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let d;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];d=C.mergeRealAndImagArrays(m,f)}else if(l==null)d=this.getValuesFromTexture(e);else{let h=k.sizeFromShape(a);d=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}u!=null&&this.disposeIntermediateTensorInfo(u);let p=this.convertAndCacheOnCPU(e,d),c=this.pendingRead.get(e);return this.pendingRead.delete(e),c.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&ir().removeDataId(e,this),this.pendingDeletes--),p}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>k.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!F7(n))throw J().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=k.sizeFromShape(t);if(J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let p=this.decode(e),c=this.texData.get(p.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(c.texture,...Ad(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(p),h}let s=J().getBool("WEBGL_PACK")&&a===!0,i=s?yh(t):t,o=s?new cL(i):new pL(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),d=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),d}timerAvailable(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=k.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=k.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=k.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:k.now(),endMs:null}}endTimer(e){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=k.now(),e)}async getQueryTime(e){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=tB){return J().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&k.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){C.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return YW(e.shape,t)}packedUnaryOp(e,t,n){let a=new Pl(e.shape,t),r=this.compileAndRun(a,[e],n);return ir().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=Sv(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(J().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Mv,e.dtype);let t=new Vr(e.shape,Mv),n=this.compileAndRun(t,[e]);return ir().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let r=n.map(s=>k.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:a}=this.makeTensorInfo(e,t,n);return ir().makeTensorFromDataId(a,e,t,this)}unpackTensor(e){let t=new ZW(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new RW(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[ki(e.shape),...Ii(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[ki(t),...Ii(t)],s=new Tv(r,n),i=!0,o=this.runWebGLProgram(s,[a],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:a,dtype:r}=t,s=yh(a),i;n?i=new dL(s):i=new uL(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:r,dataId:e}],r,null,o);return{dtype:r,shape:a,dataId:l.dataId}}runWebGLProgram(e,t,n,a,r=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===fd.DENSE){let f=Ad(e.outputShape);i.texShape=f.map(A=>A*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),k.sizeFromShape(s.shape)===0)return i.values=k.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let A=this.texData.get(f.dataId);if(A.texture==null){if(!e.packedInputs&&k.sizeFromShape(f.shape)<=J().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:A.values};e.packedInputs&&(A.isPacked=!0,A.shape=f.shape)}else if(!!A.isPacked!=!!e.packedInputs)f=A.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),A=this.texData.get(f.dataId);else if(A.isPacked&&!xd(A.shape,f.shape)){let y=f,g=f.shape;f.shape=A.shape,f=this.packedReshape(f,g),o.push(f),A=this.texData.get(f.dataId),y.shape=g}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:A,isUniform:!1}});this.uploadToGPU(s.dataId);let u={shape:s.shape,texData:i,isUniform:!1},d=eW(e,l,u),p=this.getAndSaveBinary(d,()=>JL(this.gpgpu,e,l,u)),c=this.activeTimers!=null,h;c&&(h=this.startTimer()),QL(this.gpgpu,p,l,u,a),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),c&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let m=J().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let f=k.now();f-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=f)}if(!J().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&r===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(J().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=W(()=>{if(!J().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=J().getBool("DEBUG");J().set("DEBUG",!1);let t=this.abs(Se(1e-8)).dataSync()[0];if(J().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?JW:QW}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=k.now());let d=t.texShape;if(d==null&&(d=K7(n,o),t.texShape=d),r!=null){let p=yh(n),c,h=d[1],m=d[0],f=r instanceof Uint8Array;o?([h,m]=Fl(d[0],d[1]),c=new fL(p,[m,h],f)):c=new hL(p,[m,h],f);let A=this.makeTensorInfo([m,h],a);f?this.texData.get(A.dataId).usage=ea.PIXELS:this.texData.get(A.dataId).usage=ea.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),h,m,r);let y=!0,g=this.runWebGLProgram(c,[A],a,null,y),x=this.texData.get(g.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(g.dataId),t.values=null,l&&(this.uploadWaitMs+=k.now()-u)}else{let p=this.acquireTexture(d,i,a,o);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return this.releaseGPUData(e),t!=null&&(n.values=rB(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*k.bytesPerElement(t)}};Ll.nextDataId=0;function rB(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var Fv="3.6.0";function $v(){J().set("WEBGL_FORCE_F16_TEXTURES",!0)}Hu.isBrowser()&&hl("webgl",()=>new Ll,2);var sB={forceHalfFloat:$v},Dv=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Wl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},kh=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,vd=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length,s="";if(a)if(r===0||k.sizeFromShape(this.outputShape)===1)s=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(s=`
|
|
${lt(r)} coords = getOutputCoords();
|
|
`,r===1)s+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=hn("coords",r);s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${s}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Pn(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var iB={kernelName:Ss,backendName:"webgl",kernelFunc:Pn};function jr(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=Pn({inputs:{x:a},backend:n}),l=Pn({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var oB={kernelName:_p,backendName:"webgl",kernelFunc:jr},zv="return (a < 0.) ? b * a : a;",Ov=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function lB(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",k.createScalarValue(s,"float32")),o=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new vd(Ov,r.shape,i.shape):new Wl(zv,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],r.dtype);return n.disposeIntermediateTensorInfo(i),l}var uB={kernelName:Ns,backendName:"webgl",kernelFunc:lB},_v="return (a < 0.) ? b * a : a;",Pv=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function dB(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new vd(Pv,a.shape,r.shape):new Wl(_v,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)}var pB={kernelName:Ls,backendName:"webgl",kernelFunc:dB},Lv="if (isnan(x)) return x;",cB=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,hB=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function Xe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let p=o.texData.get(i.dataId),c=n(p.values,l);return o.makeTensorInfo(i.shape,l,c)}let u=J().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,d;return u?d=new Pl(i.shape,t):d=new Vr(i.shape,e),o.runWebGLProgram(d,[i],l)}}function tn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,d=o;if(a&&l.dtype==="complex64"){let m=d.texData.get(l.dataId),f=d.texData.get(u.dataId),[A,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[w,b]=x,v={dataId:w.dataId,dtype:w.dtype,shape:l.shape},N={dataId:b.dataId,dtype:b.dtype,shape:u.shape},T=new Wl(e,l.shape,u.shape);return d.runWebGLProgram(T,[v,N],la(w.dtype,b.dtype))}),g=jr({inputs:{real:A,imag:y},backend:d});return d.disposeIntermediateTensorInfo(A),d.disposeIntermediateTensorInfo(y),g}let p=s||la(l.dtype,u.dtype);if(d.shouldExecuteOnCPU([l,u])&&r!=null){let m=d.texData.get(l.dataId),f=d.texData.get(u.dataId),[A,y]=r(l.shape,u.shape,m.values,f.values,p),g=d.makeTensorInfo(y,p),x=d.texData.get(g.dataId);return x.values=A,g}let c=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return c?h=new vd(t,l.shape,u.shape,n):h=new Wl(e,l.shape,u.shape),d.runWebGLProgram(h,[l,u],p)}}function Ih(e,t=!1){if(e==="linear")return t?HW:WW;if(e==="relu")return t?qW:VW;if(e==="elu")return t?GW:BW;if(e==="relu6")return t?XW:jW;if(e==="prelu")return t?Pv:_v;if(e==="leakyrelu")return t?Ov:zv;if(e==="sigmoid")return t?KW:UW;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var Wv=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let u=a?e[1]:e[2],d=Math.ceil(u/2),p=a?"i * 2, rc.y":"rc.y, i * 2",c=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",A="";i&&(o?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:l?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:f=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,A="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let g="rc.x",x="rc.x";e[0]<t[0]?g=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${f}
|
|
|
|
const float sharedDimension = ${d}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${d}; i++) {
|
|
int batchA = ${g};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${p});
|
|
vec4 b = getMatrixB(batchB, ${c});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${m[0]});
|
|
result += (${h[1]} * ${m[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${y}
|
|
|
|
${A}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},Bv={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},Vv=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},jv="return a * b;";function v1(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=C.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),u=new Vv(Bv.REAL,a.shape,r.shape),d=new Vv(Bv.IMAG,a.shape,r.shape),p=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],c=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(d,p,"float32"),m=jr({inputs:{real:c,imag:h},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[u,d]=AW(a.shape,r.shape,o.values,l.values,s),p=n.makeTensorInfo(d,s),c=n.texData.get(p.dataId);return c.values=u,p}let i;return J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new vd(jv,a.shape,r.shape):i=new Wl(jv,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var fB={kernelName:zs,backendName:"webgl",kernelFunc:v1};function mB(e,t,n){let a=[ki(e.shape),...Ii(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[ki(t),...Ii(t)],i=new Tv(s,a),o=!0,l=n.runWebGLProgram(i,[r],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function Ae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=k.sizeFromShape(r.shape),l=k.inferFromImplicitShape(s,o),u=k.sizeFromShape(l);k.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let d=i.texData.get(r.dataId);return d.isPacked&&!xd(r.shape,l)&&!(d.texture!==null&&xd(d.shape,l))?mB(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var AB={kernelName:Uo,backendName:"webgl",kernelFunc:Ae},Uv=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let d=1/t;l=`sumValue += dot(values * ${k.isInt(d)?d.toPrecision(2):d}, ones);`}let u="";r%n>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},yB=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,d=n%4,p=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
}
|
|
`,c="vec4";t==="all"?(i="1.0",p=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,c="bvec4"):t==="any"&&(i="0.0",p=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,c="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${d===1}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${d===2}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${d===3}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function gB(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=C.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function Ti(e,t,n,a){let r=gB(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:u}=r[i],d,p;n==="mean"?d=i===0?new Uv({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new Uv({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):d=new yB({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),p=s,s=a.runWebGLProgram(d,[s],t),p.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(p)}return s}var xB=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=lt(this.rank),r=bB(t);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function bB(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var vB=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=lt(this.rank),r=Nv("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=r[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${o}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${o}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Sh(e,t,n){let a=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new vB(e.shape,t):new xB(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function wB(e,t,n,a){let r=t,s=e.shape.length,i=k.parseAxisParam(r,e.shape),o=i,l=C.getAxesPermutation(o,s),u=l!=null,d=e;u&&(d=Sh(e,l,a),o=C.getInnerMostAxes(o.length,s)),C.assertAxesAreInnerMostDims("sum",o,s);let[p,c]=C.computeOutAndReduceShapes(d.shape,o),h=p;n&&(h=C.expandShapeToKeepDim(p,i));let m=k.sizeFromShape(c),f=k.sizeFromShape(e.shape)/m,A=Ae({inputs:{x:d},attrs:{shape:[f,m]},backend:a}),y=Ac(e.dtype),g=Ti(A,y,"sum",a),x=Ae({inputs:{x:g},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(A),a.disposeIntermediateTensorInfo(g),u&&a.disposeIntermediateTensorInfo(d),x}function Nh(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return wB(r,s,i,n)}var kB={kernelName:Ks,backendName:"webgl",kernelFunc:Nh};function fn(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let d=0;d<l.length;d++)l[d]=r.shape[s[d]];let u;if(i.shouldExecuteOnCPU([r])){let d=i.texData.get(r.dataId).values,p=x1(d,r.shape,r.dtype,s,l);u=i.makeTensorInfo(l,r.dtype);let c=i.texData.get(u.dataId);c.values=p}else u=Sh(r,s,i);return u}var IB={kernelName:ti,backendName:"webgl",kernelFunc:fn},Hv=1e3;function Th({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,d=t.shape.length,p=n?e.shape[u-2]:e.shape[u-1],c=a?t.shape[d-1]:t.shape[d-2],h=n?e.shape[u-1]:e.shape[u-2],m=a?t.shape[d-2]:t.shape[d-1],f=e.shape.slice(0,-2),A=t.shape.slice(0,-2),y=k.sizeFromShape(f),g=k.sizeFromShape(A),x=y===g||y===1||g===1;k.assert(u>=2&&d>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${A}).`);let w=(y>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,m]);k.assert(p===c,()=>`Error in matMul: inner shapes (${p}) and (${c}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let b=n?[y,p,h]:[y,h,p],v=a?[g,m,c]:[g,c,m],N=Ae({inputs:{x:e},backend:r,attrs:{shape:b}}),T=Ae({inputs:{x:t},backend:r,attrs:{shape:v}}),R=[N,T],$=Math.max(y,g),O=n?N.shape[1]:N.shape[2],_=s!=null,V=i!=null,U=l==="leakyrelu",j=l!=null?Ih(l,!0):null,X=_||V||U||j!=null,G;if((h===1||m===1)&&O>Hv&&X===!1){let Y=N,re=T;n&&(Y=fn({inputs:{x:N},backend:r,attrs:{perm:[0,2,1]}}),R.push(Y)),a&&(re=fn({inputs:{x:T},backend:r,attrs:{perm:[0,2,1]}}),R.push(re));let ne=m!==1,ie=m===1,Q=Y;ne&&(Q=Ae({inputs:{x:Y},backend:r,attrs:{shape:[$,O,1]}}),R.push(Q));let de=m===1?2:1,oe=re;ie&&(oe=Ae({inputs:{x:re},backend:r,attrs:{shape:[$,1,O]}}),R.push(oe));let ye=v1({inputs:{a:Q,b:oe},backend:r});G=Nh({inputs:{x:ye},backend:r,attrs:{axis:de,keepDims:!0}}),R.push(ye)}else{let Y=la(e.dtype,t.dtype),re=new Wv(b,v,[$,h,m],n,a,_,j,V,U),ne=[N,T];if(s!=null&&ne.push(s),V&&ne.push(i),U){let ie=r.makeTensorInfo([],"float32",k.createScalarValue(o,"float32"));ne.push(ie),R.push(ie)}G=r.runWebGLProgram(re,ne,Y)}let ee=Ae({inputs:{x:G},backend:r,attrs:{shape:w}});R.push(G);for(let Y of R)r.disposeIntermediateTensorInfo(Y);return ee}function SB(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:p}=a;return Th({a:r,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:p,activation:d})}var NB={kernelName:ni,backendName:"webgl",kernelFunc:SB},Gv="return abs(x);";function TB(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=Sv(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Pl(a.shape,Gv):r=new Vr(a.shape,Gv),n.runWebGLProgram(r,[a],a.dtype)}var EB={kernelName:ao,backendName:"webgl",kernelFunc:TB},CB=ba+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,RB=Xe({opSnippet:CB}),MB={kernelName:ro,backendName:"webgl",kernelFunc:RB},FB=ba+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,$B=Xe({opSnippet:FB}),DB={kernelName:so,backendName:"webgl",kernelFunc:$B},qv="return a + b;",zB=tn({opSnippet:qv,packedOpSnippet:qv,supportsComplex:!0,cpuKernelImpl:tW}),OB={kernelName:Tr,backendName:"webgl",kernelFunc:zB},_B=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}},PB=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}};function Eh(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return Pn({inputs:{x:a[0]},backend:n});if(a.length>J().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=Eh({inputs:a.slice(0,o),backend:n}),u=Eh({inputs:a.slice(o),backend:n});return Eh({inputs:[l,u],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>la(o,l)),s=a.map(o=>o.shape),i=J().getBool("WEBGL_PACK")?new PB(a[0].shape,s):new _B(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var LB={kernelName:ls,backendName:"webgl",kernelFunc:Eh};function WB(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,d=C.getAxesPermutation(u,o),p=r;d!=null&&(p=fn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=C.getInnerMostAxes(u.length,o)),C.assertAxesAreInnerMostDims("all",u,o);let[c,h]=C.computeOutAndReduceShapes(p.shape,u),m=k.sizeFromShape(h),f=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),A=Ti(f,f.dtype,"all",n),y;if(i){let g=C.expandShapeToKeepDim(c,l);y=Ae({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=Ae({inputs:{x:A},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),d!=null&&n.disposeIntermediateTensorInfo(p),y}var BB={kernelName:io,backendName:"webgl",kernelFunc:WB};function VB(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,d=C.getAxesPermutation(u,o),p=r;d!=null&&(p=fn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=C.getInnerMostAxes(u.length,o)),C.assertAxesAreInnerMostDims("any",u,o);let[c,h]=C.computeOutAndReduceShapes(p.shape,u),m=k.sizeFromShape(h),f=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),A=Ti(f,f.dtype,"any",n),y;if(i){let g=C.expandShapeToKeepDim(c,l);y=Ae({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=Ae({inputs:{x:A},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),d!=null&&n.disposeIntermediateTensorInfo(p),y}var jB={kernelName:oo,backendName:"webgl",kernelFunc:VB},UB=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${a};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},HB=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,k.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=lt(o),u=hn("coords",o),d,p;if(s===1){p=o+1;let N=lt(p);d=`
|
|
${N} sourceLocR = ${N}(${u.join()}, 0);
|
|
++${u[o-1]};
|
|
${N} sourceLocG = ${N}(${u.join()}, 0);
|
|
++${u[o-2]};
|
|
${N} sourceLocA = ${N}(${u.join()}, 0);
|
|
--${u[o-1]};
|
|
${N} sourceLocB = ${N}(${u.join()}, 0);
|
|
--${u[o-2]};`}else p=o,d=`
|
|
${l} sourceLocR = coords;
|
|
++${u[o-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[o-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[o-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[o-2]};`;let c=["x","y","z","w","u","v"].slice(0,p),h="."+c[p-1],m=c.map(N=>"int "+N),f=hn("sourceLocR",p-1).concat("inIdx.r"),A=hn("sourceLocG",p-1).concat("inIdx.g"),y=hn("sourceLocB",p-1).concat("inIdx.b"),g=hn("sourceLocA",p-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",w=a?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
|
|
getBestIndicesAChannel(${A.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${g.join()})));`,b=`vec4(
|
|
getAChannel(${f.join()}),
|
|
hasNextCol ? getAChannel(${A.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,v=a?"":`
|
|
float getBestIndicesAChannel(${m.join()}) {
|
|
return getChannel(getBestIndicesA(${c.join()}),
|
|
vec2(${c.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${m.join()}) {
|
|
return getChannel(getA(${c.join()}),
|
|
vec2(${c.slice(-2).join()}));
|
|
}
|
|
${v}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
|
|
${d}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${b};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${w}
|
|
vec4 candidate = ${b};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function Xv(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=C.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new UB(o,n,a==null),u=[t];a!=null&&u.push(a);let d=e.runWebGLProgram(l,u,"int32");if(d.shape[1]===1)return d;let p=Xv(e,t,n,d);return e.disposeIntermediateTensorInfo(d),p}function Kv(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=C.computeOptimalWindowSize(s),o=new HB(r,i,n,a==null),l=a==null?[t]:[t,a],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let d=Kv(e,t,n,u);return e.disposeIntermediateTensorInfo(u),d}return u}function Zv(e,t,n,a){let r=[n];if(C.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!J().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=C.computeOutAndReduceShapes(t.shape,r),l=k.sizeFromShape(o),u=Ae({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(u);let d=Xv(e,u,a);s.push(d);let p=Ae({inputs:{x:d},backend:e,attrs:{shape:i}});return s.forEach(c=>e.disposeIntermediateTensorInfo(c)),p}return Kv(e,t,a)}function GB(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=k.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=fn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let d=Zv(n,l,i[0],"max");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),d}var qB={kernelName:us,backendName:"webgl",kernelFunc:GB};function XB(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=k.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=fn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let d=Zv(n,l,i[0],"min");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),d}var KB={kernelName:vu,backendName:"webgl",kernelFunc:XB},ZB=ba+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,YB=Xe({opSnippet:ZB}),JB={kernelName:lo,backendName:"webgl",kernelFunc:YB},QB=ba+"return log(x + sqrt(x * x + 1.0));",eV=Xe({opSnippet:QB}),tV={kernelName:uo,backendName:"webgl",kernelFunc:eV},nV=ba+`
|
|
return atan(x);
|
|
`,aV=Xe({opSnippet:nV}),rV={kernelName:po,backendName:"webgl",kernelFunc:aV},sV=cB+`
|
|
return atan(a, b);
|
|
`,iV=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+hB+`
|
|
return result;
|
|
`,oV=tn({opSnippet:sV,packedOpSnippet:iV}),lV={kernelName:ho,backendName:"webgl",kernelFunc:oV},uV=ba+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,dV=Xe({opSnippet:uV}),pV={kernelName:co,backendName:"webgl",kernelFunc:dV},wd=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,d=e.effectiveFilterHeight,p=e.effectiveFilterWidth,c=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let N=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${N} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?f:A:`wR * ${p} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let g="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let w=Math.floor(s/4)*4,b=s%4,v=`
|
|
if (${m}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${g}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
const float initializationValue = ${y};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${y});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${w}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${v}
|
|
}
|
|
|
|
int xC = xCCorner + ${w};
|
|
if (${b===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${v}
|
|
} else if (${b===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${v}
|
|
} else if (${b===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${v}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},w1=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,d=e.dilationHeight,p=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,A=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",x="0.0";if(g||(x="-1.0 / 1e-20"),n){let R=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${A}, ${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${d}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m};
|
|
wC += ${p}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${R} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
|
|
wR * ${m} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let w="max",b=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(b="avgValue / count");let v=Math.floor(s/4)*4,N=s%4,T=`
|
|
if (${g}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${w}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${A}, ${y});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${d}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${v}; wC += 4) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${p}, ch)
|
|
);
|
|
|
|
${T}
|
|
}
|
|
|
|
int xC = xCCorner + ${v};
|
|
if (${N===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${N===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${N===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
}
|
|
}
|
|
setOutput(${b});
|
|
}
|
|
}
|
|
`}};function cV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;$l(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=C.computePool2DInfo(r.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&k.arraysEqual(d.inShape,d.outShape))return Pn({inputs:{x:r},backend:n});let p=new wd(d,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var hV={kernelName:ds,backendName:"webgl",kernelFunc:cV};function fV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,d=[1,1,1],p=C.computePool3DInfo(r.shape,s,i,d,o,l,u),c=new w1(p,"avg",!1);return n.runWebGLProgram(c,[r],"float32")}var mV={kernelName:wu,backendName:"webgl",kernelFunc:fV},AV=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,d=l-1-e.padInfo.left,p=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${d});
|
|
const float avgMultiplier = float(${p});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},yV=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,c=e.effectiveFilterWidth,h=d-1-e.padInfo.front,m=p-1-e.padInfo.top,f=c-1-e.padInfo.left,A=1/(t*n*a);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${m}, ${f});
|
|
const float avgMultiplier = float(${A});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function gV(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:d}=a,p=[1,1,1],c=C.computePool3DInfo(i.shape,o,l,p,u,d),h=new yV(c);return n.runWebGLProgram(h,[r],i.dtype)}var xV={kernelName:zp,backendName:"webgl",kernelFunc:gV};function bV(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;$l([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,d=C.computePool2DInfo(i.shape,o,l,1,u),p=new AV(d);return n.runWebGLProgram(p,[r],i.dtype)}var vV={kernelName:Dp,backendName:"webgl",kernelFunc:bV};function wV(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return Th({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var kV={kernelName:ps,backendName:"webgl",kernelFunc:wV},IV=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${s}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},SV=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},NV=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;k.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[a,r,s],d=null;i!=null&&(d=i.shape,u.push(i));let p=null;o!=null&&(p=o.shape,u.push(o));let c=J().getBool("WEBGL_PACK_NORMALIZATION")?new SV(a.shape,r.shape,s.shape,d,p,l):new IV(a.shape,r.shape,s.shape,d,p,l);return t.runWebGLProgram(c,u,u[0].dtype)},TV={kernelName:ks,backendName:"webgl",kernelFunc:NV},EV=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=`uniform int start[${this.rank}];`,a=CV(this.rank),r,s=e.map((i,o)=>`sourceLoc.${k1[o]} = start[${o}] + coords.${k1[o]};`);r=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${s.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
${n}
|
|
void main() {
|
|
${r}
|
|
setOutput(getSource(${a}));
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},k1=["x","y","z","w","u","v"];function CV(e){if(e===1)return"sourceLoc";if(e<=6)return k1.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var RV=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=hn("coords",this.rank),a=hn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
|
|
result.x = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.y = ${s};
|
|
--${a[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${a[this.rank-2]};
|
|
result.z = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.w = ${s};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,d)=>`start[${d}]`).join()});`:e.map((u,d)=>`${a[d]} = ${n[d]} + start[${d}];`).join(`
|
|
`);this.userCode=`
|
|
uniform int start[${this.rank}];
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function MV(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=ln.computeFlatOffset(t,k.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function kd(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=ln.parseSliceParams(r,s,i);if(ln.assertParamsValid(r,o,l),k.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),c=vW(p.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}let{isPacked:u}=n.texData.get(r.dataId),d=ln.isSliceContinous(r.shape,o,l);if(u||!d){let p=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new RV(l):new EV(l),c=p.getCustomSetupFunc(o);return n.runWebGLProgram(p,[r],r.dtype,c)}return n.uploadToGPU(r.dataId),MV(r,o,l,n)}var FV={kernelName:Xo,backendName:"webgl",kernelFunc:kd},$V=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;k.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,x)=>g*x),l=C.getReshaped(r.shape,s,o),u=C.getPermuted(l.length,s.length),d=C.getReshapedPermuted(r.shape,s,o),p=C.getSliceBeginCoords(i,s.length),c=C.getSliceSize(d,i,s.length),h=[],m=Ae({inputs:{x:r},backend:n,attrs:{shape:l}}),f=fn({inputs:{x:m},backend:n,attrs:{perm:u}}),A=Ae({inputs:{x:f},backend:n,attrs:{shape:d}}),y=kd({inputs:{x:A},backend:n,attrs:{begin:p,size:c}});return h.push(m),h.push(f),h.push(A),h.forEach(g=>n.disposeIntermediateTensorInfo(g)),y},DV={kernelName:ku,backendName:"webgl",kernelFunc:$V};function zV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),u=Iv(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var OV={kernelName:Op,backendName:"webgl",kernelFunc:zV},_V="return float(a != b);",Yv=tn({opSnippet:_V,dtype:"bool"}),PV={kernelName:Oo,backendName:"webgl",kernelFunc:Yv};function Id(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Pn({inputs:{x:r.complexTensorInfos.real},backend:n})}var LV={kernelName:rc,backendName:"webgl",kernelFunc:Id},WV="return float(int(x));";function BV(e,t){let n=new Vr(e.shape,WV),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function I1(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return Pn({inputs:{x:r},backend:n});let i=Rt(r.shape),o=I1({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=jr({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=Id({inputs:{input:r},backend:n}),o=I1({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(r.dtype,s)){let i=Pn({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return BV(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",k.getTypedArrayFromDType("bool",1)),o=Yv({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var VV={kernelName:cs,backendName:"webgl",kernelFunc:I1},Jv="return ceil(x);",jV=Xe({opSnippet:Jv,packedOpSnippet:Jv,cpuKernelImpl:aW}),UV={kernelName:hs,backendName:"webgl",kernelFunc:jV},HV=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},GV=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function qV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;J().getBool("WEBGL_PACK_CLIP")?o=new GV(r.shape):o=new HV(r.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[r],r.dtype,l)}var XV={kernelName:Er,backendName:"webgl",kernelFunc:qV},KV=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function Qv(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function ZV(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new KV(a.shape),i=[Qv(a,r.complexTensorInfos.real),Qv(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var YV={kernelName:Iu,backendName:"webgl",kernelFunc:ZV},JV=class{constructor(e){this.outputShape=[],this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},QV=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=C.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=lt(a),s=hn("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],u=i.slice(-2),d=i.join(),p=`if (${l} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${d}), vec2(${u.join()}));
|
|
}`;for(let m=1;m<o.length;m++){let f=o[m-1];p+=`
|
|
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
|
|
return getChannel(
|
|
getT${m}(${Ch(i,l,f)}),
|
|
vec2(${Ch(u,l,f)}));
|
|
}`}let c=o.length,h=o[o.length-1];p+=`
|
|
return getChannel(
|
|
getT${c}(${Ch(i,l,h)}),
|
|
vec2(${Ch(u,l,h)}));`,this.userCode=`
|
|
float getValue(${i.map(m=>"int "+m)}) {
|
|
${p}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
|
|
|
|
${s[a-1]} = ${s[a-1]} + 1;
|
|
if (${s[a-1]} < ${n[a-1]}) {
|
|
result.g = getValue(${s});
|
|
}
|
|
|
|
${s[a-2]} = ${s[a-2]} + 1;
|
|
if (${s[a-2]} < ${n[a-2]}) {
|
|
result.a = getValue(${s});
|
|
}
|
|
|
|
${s[a-1]} = ${s[a-1]} - 1;
|
|
if (${s[a-2]} < ${n[a-2]} &&
|
|
${s[a-1]} < ${n[a-1]}) {
|
|
result.b = getValue(${s});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Ch(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function Rh(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Pn({inputs:{x:r.complexTensorInfos.imag},backend:n})}var ej={kernelName:Yp,backendName:"webgl",kernelFunc:Rh};function Bl(e,t,n){let a=e[0].dtype;if(a==="complex64"){let d=e.map(f=>Id({inputs:{input:f},backend:n})),p=e.map(f=>Rh({inputs:{input:f},backend:n})),c=Bl(d,t,n),h=Bl(p,t,n),m=jr({inputs:{real:c,imag:h},backend:n});return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),p.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}let r=n.shouldExecuteOnCPU(e);if(a==="string"&&(r=!0),r){let d=e.map(y=>{let g=k.sizeFromShape(y.shape.slice(t));return Ae({inputs:{x:y},backend:n,attrs:{shape:[-1,g]}})}),p=d.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),c=C.computeOutShape(d.map(y=>y.shape),1),h=d[0].shape[0]===1,m=rW(p,c,a,h),f=C.computeOutShape(e.map(y=>y.shape),t),A=n.makeTensorInfo(f,a,m);return d.forEach(y=>n.disposeIntermediateTensorInfo(y)),A}if(e.length>J().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let d=Math.floor(e.length/2),p=Bl(e.slice(0,d),t,n),c=Bl(e.slice(d),t,n),h=Bl([p,c],t,n);return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),h}if(J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let d=new QV(e.map(p=>p.shape),t);return n.runWebGLProgram(d,e,a)}let{tensors2D:s,outShape:i}=tj(e,t,n),o=new JV(s.map(d=>d.shape)),l=n.runWebGLProgram(o,s,a);s.forEach(d=>n.disposeIntermediateTensorInfo(d));let u=Ae({inputs:{x:l},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(l),u}function tj(e,t,n){let a=C.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>Ae({inputs:{x:r},attrs:{shape:[-1,k.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function ew(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=k.parseAxisParam(r,t[0].shape)[0],i=C.computeOutShape(t.map(u=>u.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>k.sizeFromShape(u.shape)>0);if(o.length===1)return Pn({inputs:{x:o[0]},backend:n});let l=o.map(u=>u.shape);return C.assertParamsConsistent(l,s),Bl(o,s,n)}var nj={kernelName:fo,backendName:"webgl",kernelFunc:ew},tw=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",A=f?1:2,y=f?2:3,g=f?3:1,x="",w="";n&&(a?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,w="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${l});
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${g}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${A}], coords[${y}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${c}; wC++) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${m===1}) {
|
|
|
|
if (${f}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${m===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${m===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${b}
|
|
${w}
|
|
setOutput(result);
|
|
}
|
|
`}},aj=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,d=e.filterDepth,p=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${s}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${a});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${d}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${c}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${m===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${m===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${m===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},rj=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:a,inChannels:r,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:u,dilationHeight:d,dataFormat:p}=n,{left:c,top:h}=o,m=r*a,f=cn(),A=p==="channelsLast",y=A?0:1,g=A?1:2,x="";for(let w=0;w<=1;w++)for(let b=0;b<=1;b++)x+=`
|
|
blockIndex = rc.y + ${b};
|
|
pos = rc.x + ${w};
|
|
|
|
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
|
|
offsetY = int(blockIndex / (${l})) * ${i} - ${h};
|
|
d0 = offsetY + ${d} * (pos / ${m});
|
|
|
|
if(d0 < ${t[y]} && d0 >= 0) {
|
|
|
|
offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${c}.);
|
|
d1 = offsetX + ${u} * (int(mod(float(pos), ${m}.) / ${r}.));
|
|
|
|
if(d1 < ${t[g]} && d1 >= 0) {
|
|
|
|
ch = int(mod(float(pos), ${r}.));
|
|
|
|
if (${A}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${w*2+b}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${w*2+b}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${x}
|
|
|
|
${f.output} = result;
|
|
}
|
|
`}};function nw({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=a.texData.get(e.dataId),d=n.inChannels,p=l[0]*l[1]*l[2],c=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,A,y=[],g=(p===1||c===1)&&d>Hv,x=l[2]%2!=0&&!!u.isPacked;if(g||!J().getBool("WEBGL_LAZILY_UNPACK")||!J().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let w=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],b=Ae({inputs:{x:e},backend:a,attrs:{shape:[1,w,n.inChannels]}}),v=Ae({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),N=Th({a:b,b:v,transposeA:m,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=Ae({inputs:{x:N},backend:a,attrs:{shape:n.outShape}}),y.push(b),y.push(v),y.push(N)}else{let w=h?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),b={dataId:e.dataId,shape:[1,w,n.inChannels],dtype:e.dtype},v=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,k.assert(xd(u.shape,b.shape),()=>`packed reshape ${u.shape} to ${b.shape} isn't free`);let N=Ae({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(N);let T=Th({a:b,b:N,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),R=a.texData.get(T.dataId);k.assert(R.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=v,R.shape=n.outShape,A=Pn({inputs:{x:T},backend:a}),A.shape=n.outShape,y.push(T)}for(let w of y)a.disposeIntermediateTensorInfo(w);return A}function aw({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:d,outWidth:p,outHeight:c,dataFormat:h}=n,m=h==="channelsLast",f=l*u*d,A=c*p,y=[f,A],g=!0,x=!1,w=[],b=Ae({inputs:{x:e},backend:a,attrs:{shape:e.shape.slice(1)}}),v=Ae({inputs:{x:t},backend:a,attrs:{shape:[1,f,k.sizeFromShape(t.shape)/f]}});w.push(b),w.push(v);let N=new rj(y,b.shape,n),T=a.runWebGLProgram(N,[b],"float32"),R=Ae({inputs:{x:T},backend:a,attrs:{shape:[1,y[0],y[1]]}});w.push(T),w.push(R);let $=r!=null,O=s!=null,_=o==="leakyrelu",V=o?Ih(o,!0):null,U=new Wv(R.shape,v.shape,[1,A,n.outChannels],g,x,$,V,O,_),j=[R,v];if(r&&j.push(r),O&&j.push(s),_){let Y=a.makeTensorInfo([],"float32",k.createScalarValue(i,"float32"));j.push(Y),w.push(Y)}let X=a.runWebGLProgram(U,j,"float32"),G=m?[1,c,p,n.outChannels]:[1,n.outChannels,c,p],ee=Ae({inputs:{x:X},backend:a,attrs:{shape:G}});w.push(X);for(let Y of w)a.disposeIntermediateTensorInfo(Y);return ee}function sj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=a,p=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,s.shape,i,u,o,d,!1,p),h;if(c.filterHeight===1&&c.filterWidth===1&&c.dilationHeight===1&&c.dilationWidth===1&&c.strideHeight===1&&c.strideWidth===1&&(c.padInfo.type==="SAME"||c.padInfo.type==="VALID"))h=nw({x:r,filter:s,convInfo:c,backend:n});else if(J().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=aw({x:r,filter:s,convInfo:c,backend:n});else{let f=new tw(c);h=n.runWebGLProgram(f,[r,s],"float32")}let m=Ae({inputs:{x:h},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(h),m}var ij={kernelName:fs,backendName:"webgl",kernelFunc:sj},oj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${s}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},lj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,d=s?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${d}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${s}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},uj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${a} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},dj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=a-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${a} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function pj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:d}=a,p=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,d,i,1,o,u,!1,p),h=new oj(c);return n.runWebGLProgram(h,[r,s],"float32")}var cj={kernelName:Pp,backendName:"webgl",kernelFunc:pj};function hj(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=a,p=C.convertConv2DDataFormat(u),c=C.computeConv2DInfo(i,s.shape,o,1,l,d,!1,p),h=new lj(c);return n.runWebGLProgram(h,[r,s],"float32")}var fj={kernelName:ms,backendName:"webgl",kernelFunc:hj};function mj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=C.computeConv3DInfo(r.shape,s.shape,i,l,o),d=new aj(u);return n.runWebGLProgram(d,[r,s],"float32")}var Aj={kernelName:Su,backendName:"webgl",kernelFunc:mj};function yj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,u=C.computeConv3DInfo(r.shape,l,i,1,o),d=new uj(u);return n.runWebGLProgram(d,[r,s],"float32")}var gj={kernelName:Lp,backendName:"webgl",kernelFunc:yj};function xj(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,u=C.computeConv3DInfo(l,s.shape,o,1,i),d=new dj(u);return n.runWebGLProgram(d,[r,s],"float32")}var bj={kernelName:Wp,backendName:"webgl",kernelFunc:xj},vj=Lv+`
|
|
return cos(x);
|
|
`,wj=Xe({opSnippet:vj}),kj={kernelName:As,backendName:"webgl",kernelFunc:wj},Ij=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,Sj=Xe({opSnippet:Ij}),Nj={kernelName:mo,backendName:"webgl",kernelFunc:Sj},Tj=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[d,p]=n;this.outputShape=[u,d,p,l];let c=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,A,y]=d>1?[`${(i-1)/(d-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[g,x,w]=p>1?[`${(o-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
|
|
const float height_ratio = float(${f});
|
|
const float width_ratio = float(${g});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${s}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${A};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${y};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${w};
|
|
if( in_x < 0.0 || in_x > ${m} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${c} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},Ej=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,d=new Tj(r.shape,s.shape,o,l,u);return n.runWebGLProgram(d,[r,s,i],"float32")},Cj={kernelName:Ao,backendName:"webgl",kernelFunc:Ej},rw=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let a=e.length,r=t?"0.0":`getX(${sw(a,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
uniform float index;
|
|
void main() {
|
|
${lt(a)} coords = getOutputCoords();
|
|
int end = ${iw(a,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${iw(a,"coords")} = idx;
|
|
val += getX(${sw(a,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function sw(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function iw(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Rj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length,u=C.getAxesPermutation([s],l),d=r;u!=null&&(d=fn({inputs:{x:r},backend:n,attrs:{perm:u}}));let p=C.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${s}`);let c=d.shape[p],h=Pn({inputs:{x:d},backend:n});for(let m=0;m<=Math.ceil(Math.log2(c))-1;m++){let f=new rw(d.shape,!1,o),A=f.getCustomSetupFunc(m),y=h;h=n.runWebGLProgram(f,[h],h.dtype,A),n.disposeIntermediateTensorInfo(y)}if(i){let m=new rw(d.shape,i,o),f=h;h=n.runWebGLProgram(m,[h],h.dtype),n.disposeIntermediateTensorInfo(f)}if(u!=null){let m=C.getUndoAxesPermutation(u),f=fn({inputs:{x:h},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),f}return h}var Mj={kernelName:ys,backendName:"webgl",kernelFunc:Rj};function Fj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(s.dataId),d=Iv(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,d)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),d=nW(l,u,i,o);return n.makeTensorInfo(d.shape,s.dtype,d.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var $j={kernelName:Bp,backendName:"webgl",kernelFunc:Fj},Dj=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function zj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],d=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,c=u*s,h=d/(s*s),m=i==="NHWC"?[o,p,c,h]:[o,h,p,c],f=new Dj(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var Oj={kernelName:yo,backendName:"webgl",kernelFunc:zj},ow=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,d=e.strideWidth,p=e.dilationHeight,c=e.dilationWidth,h=e.filterHeight,m=e.filterWidth,f=e.outChannels/e.inChannels,A="",y="";n&&(a?A=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?A=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:A=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,y="result = activation(result);");let g=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${A}
|
|
|
|
const ivec2 strides = ivec2(${u}, ${d});
|
|
const ivec2 pads = ivec2(${o}, ${l});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${f};
|
|
int q = d2 - d1 * ${f};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${p};
|
|
|
|
if (xR < 0 || xR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${g}
|
|
${y}
|
|
setOutput(result);
|
|
}
|
|
`}},lw=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.outChannels/e.inChannels,i=e.inHeight,o=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,d=e.strideHeight,p=e.strideWidth,c=e.dilationHeight,h=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,A=f,y=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let b=0;b<f;b++)y+=`
|
|
vec4 xTexelC${b*2};
|
|
int xTexelC${b*2}Ready;
|
|
vec4 xC${b};`;for(let b=0;b<m;b++){for(let v=0;v<f;v++)y+=`
|
|
xTexelC${v*2} = vec4(0.0);
|
|
xTexelC${v*2}Ready = 0;
|
|
xC${v} = vec4(0.0);`;y+=`
|
|
xR = xRCorner + ${b*c};
|
|
if (xR >=0 && xR < ${i}) {
|
|
`;for(let v=0;v<(A+1)/2;v++){let N=v*2,T=N*h;if(y+=`
|
|
xC = xCCorner + ${T};
|
|
`,p===1){if(N<f&&(u%2==1?(y+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${T}Ready == 0) {
|
|
xTexelC${T} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${T}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T}Ready = 1;
|
|
}
|
|
`,h===1&&T>0?y+=`
|
|
xC${N} = vec4(xTexelC${T-2}.zw, xTexelC${T}.xy);
|
|
`:y+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${o}) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${N} = vec4(previous.zw, xTexelC${T}.xy);
|
|
} else {
|
|
xC${N} = vec4(0.0, 0.0, xTexelC${T}.xy);
|
|
}
|
|
`):y+=`
|
|
if (xC >= 0 && xC < ${o} && xTexelC${T}Ready == 0) {
|
|
xTexelC${T} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= ${o}) {
|
|
xTexelC${T}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T}Ready = 1;
|
|
}
|
|
|
|
xC${N} = xTexelC${T};
|
|
`,T+1<f)){let R=u%2==0?k.nearestLargerEven(h):h;h%2==0&&u%2==1||h%2!=0&&u%2!=1?(y+=`
|
|
xCOffset = xC + ${u%2} + ${R};
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${T+2}Ready == 0) {
|
|
xTexelC${T+2} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${T+2}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T+2}Ready = 1;
|
|
}
|
|
`,h>1&&(y+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${T}Ready == 0) {
|
|
xTexelC${T} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${T}Ready = 1;
|
|
}
|
|
`),y+=`
|
|
xC${N+1} = vec4(xTexelC${T}.zw, xTexelC${T+2}.xy);
|
|
`):R===1?y+=`
|
|
xC${N+1} = xTexelC${T};
|
|
`:y+=`
|
|
xCOffset = xC + ${R};
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${T+2}Ready == 0) {
|
|
xTexelC${T+2} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${T+2}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T+2}Ready = 1;
|
|
}
|
|
|
|
xC${N+1} = xTexelC${T+2};
|
|
`}}else T<f&&(u%2==1?(y+=`
|
|
xCOffset = xC + 1 - ${p};
|
|
if(xCOffset >= 0 && xCOffset < ${o} && xTexelC${T}Ready == 0) {
|
|
xTexelC${T} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${T}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < ${o} && xTexelC${T+2}Ready == 0) {
|
|
xTexelC${T+2} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= ${o}) {
|
|
xTexelC${T+2}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T+2}Ready = 1;
|
|
}
|
|
|
|
xC${N} = vec4(xTexelC${T}.zw, xTexelC${T+2}.zw);
|
|
`,T+1<f&&(y+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + ${p};
|
|
if(xCOffset >= 0 && xCOffset < ${o}) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${N+1} = vec4(xTexelC${T+2}.xy, final.xy);
|
|
`)):(y+=`
|
|
if(xC >= 0 && xC < ${o} && xTexelC${T}Ready == 0) {
|
|
xTexelC${T} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= ${o}) {
|
|
xTexelC${T}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + ${p};
|
|
if(xCOffset >= 0 && xCOffset < ${o} && xTexelC${T+2}Ready == 0) {
|
|
xTexelC${T+2} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${T+2}.zw = vec2(0.);
|
|
}
|
|
xTexelC${T+2}Ready = 1;
|
|
}
|
|
|
|
xC${N} = vec4(
|
|
xTexelC${T}.xy, xTexelC${T+2}.xy);
|
|
`,T+1<f&&(y+=`
|
|
xC${N+1} = vec4(xTexelC${T}.zw, xTexelC${T+2}.zw);
|
|
`)));N<f&&(y+=`
|
|
wTexel = getW(${b}, ${T}, d1, q);
|
|
dotProd += xC${N} * vec4(wTexel.xz, wTexel.xz);
|
|
`,T+1<f&&(y+=`
|
|
wTexel = getW(${b}, ${T+1}, d1, q);
|
|
dotProd += xC${N+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}y+=`
|
|
}
|
|
`}let g="",x="";n&&(a?g=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?g=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:g=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,x="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${g}
|
|
|
|
const ivec2 strides = ivec2(${d}, ${p});
|
|
const ivec2 pads = ivec2(${l}, ${u});
|
|
|
|
void main() {
|
|
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${s};
|
|
int q = d2 - d1 * ${s};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${y}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${w}
|
|
${x}
|
|
setOutput(result);
|
|
}
|
|
`}};function _j(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a,d=l;d==null&&(d=[1,1]),k.assert(C.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=C.computeConv2DInfo(r.shape,s.shape,i,d,o,u,!0),c;return J().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels==1?c=new lw(p):c=new ow(p),n.runWebGLProgram(c,[r,s],"float32")}var Pj={kernelName:gs,backendName:"webgl",kernelFunc:_j},Lj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${s} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Wj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Bj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:d}=a,p=C.computeConv2DInfo(r.shape,d,i,o,l,u,!0),c=new Lj(p);return n.runWebGLProgram(c,[r,s],"float32")}var Vj={kernelName:Vp,backendName:"webgl",kernelFunc:Bj};function jj(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:d}=a,p=C.computeConv2DInfo(d,s.shape,i,o,l,u,!0),c=new Wj(p);return n.runWebGLProgram(c,[r,s],"float32")}var Uj={kernelName:jp,backendName:"webgl",kernelFunc:jj},Hj=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function Gj(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=k.sizeFromShape(a.shape),i=Ae({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new Hj(s),l=n.runWebGLProgram(o,[i],i.dtype),u=Ae({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var qj={kernelName:Up,backendName:"webgl",kernelFunc:Gj},Xj=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:d,left:p}=a;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${s});
|
|
const ivec2 pads = ivec2(${d}, ${p});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function Kj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=C.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),d,p=new Xj(u);d=n.runWebGLProgram(p,[r,s],"float32");let c=Ae({inputs:{x:d},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(d),c}var Zj={kernelName:Nu,backendName:"webgl",kernelFunc:Kj};function Yj(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=C.decodeEinsumEquation(r,s.length);C.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=C.getEinsumComputePath(o,l),p=d.length,c=null,h=i.length,m=[];for(let f=0;f<p;++f){for(let A of d[f]){let{permutationIndices:y,expandDims:g}=C.getEinsumPermutation(h,l[A]),x;C.isIdentityPermutation(y)?x=s[A]:(x=fn({inputs:{x:s[A]},backend:n,attrs:{perm:y}}),m.push(x));let w=x.shape.slice();for(let b=0;b<g.length;++b)w.splice(g[b],0,1);k.arraysEqual(x.shape,w)||(x=Ae({inputs:{x},backend:n,attrs:{shape:w}}),m.push(x)),c===null?c=x:(c=v1({inputs:{a:x,b:c},backend:n}),m.push(c))}f<p-1&&(u[f]>=0&&(c=Nh({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var Jj={kernelName:qp,backendName:"webgl",kernelFunc:Yj},Qj="return (x >= 0.0) ? x : (exp(x) - 1.0);",eU=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,tU=Xe({opSnippet:Qj,packedOpSnippet:eU}),nU={kernelName:go,backendName:"webgl",kernelFunc:tU},aU="return (b >= 1.0) ? a : a * (b + 1.0);",rU=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,sU=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new vd(rU,a.shape,r.shape):new Wl(aU,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},iU={kernelName:Xp,backendName:"webgl",kernelFunc:sU},oU=`
|
|
return vec4(equal(a, b));
|
|
`,lU="return float(a == b);",uU=tn({opSnippet:lU,packedOpSnippet:oU,dtype:"bool"}),dU={kernelName:bo,backendName:"webgl",kernelFunc:uU},pU=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${C.ERF_P};
|
|
float a1 = ${C.ERF_A1};
|
|
float a2 = ${C.ERF_A2};
|
|
float a3 = ${C.ERF_A3};
|
|
float a4 = ${C.ERF_A4};
|
|
float a5 = ${C.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,cU=Xe({opSnippet:pU}),hU={kernelName:xo,backendName:"webgl",kernelFunc:cU},uw="return exp(x);",dw=Xe({opSnippet:uw,packedOpSnippet:uw,cpuKernelImpl:sW}),fU={kernelName:bs,backendName:"webgl",kernelFunc:dw};function S1(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(k.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),Ae({inputs:{x:s},backend:a,attrs:{shape:o}})}var mU={kernelName:vo,backendName:"webgl",kernelFunc:S1},pw="return exp(x) - 1.0;",AU=Xe({opSnippet:pw,packedOpSnippet:pw,cpuKernelImpl:iW}),yU={kernelName:wo,backendName:"webgl",kernelFunc:AU},cw=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${a});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${s};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function hw(e,t,n){let a=n.texData.get(e.dataId),r=k.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=Ae({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new cw("real",l,t),d=new cw("imag",l,t),p=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],c=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(d,p,"float32"),m=jr({inputs:{real:c,imag:h},backend:n});n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h);let f=Ae({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function gU(e){let{inputs:t,backend:n}=e,{input:a}=t;return hw(a,!1,n)}var xU={kernelName:Kp,backendName:"webgl",kernelFunc:gU},bU=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
uniform float value;
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function N1(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||k.inferDtype(r),s==="string"){let i=k.getArrayFromDType(s,k.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new bU(a,r),o=i.getCustomSetupFunc(r);return t.runWebGLProgram(i,[],s,o)}}var vU={kernelName:Tu,backendName:"webgl",kernelFunc:N1},wU=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},kU={kernelName:ko,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new wU(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},fw="return floor(x);",IU=Xe({opSnippet:fw,packedOpSnippet:fw,cpuKernelImpl:oW}),SU={kernelName:vs,backendName:"webgl",kernelFunc:IU},NU=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,TU=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,EU=tn({opSnippet:NU,packedOpSnippet:TU,dtype:"int32"}),CU={kernelName:ws,backendName:"webgl",kernelFunc:EU},RU=class{constructor(e){this.variableNames=["A"];let t=cn(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},MU=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=cn(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},FU={kernelName:pc,backendName:"webgl",kernelFunc:$U},Vl;function $U(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],d=[u,l],p=[u,l,s];(o||i)&&(Vl==null&&(Vl=document.createElement("canvas").getContext("2d")),Vl.canvas.width=l,Vl.canvas.height=u,Vl.drawImage(r,0,0,l,u),r=Vl.canvas);let c=n.makeTensorInfo(d,"int32");n.texData.get(c.dataId).usage=ea.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(c.dataId),r);let h=J().getBool("WEBGL_PACK")?new MU(p):new RU(p),m=n.runWebGLProgram(h,[c],"int32");return n.disposeData(c.dataId),m}function DU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=C.convertConv2DDataFormat(d),A=C.computeConv2DInfo(r.shape,s.shape,l,p,u,c,!1,f),y,g=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))y=nw({x:r,filter:s,convInfo:A,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(J().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)y=aw({x:r,filter:s,convInfo:A,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let w=i!=null,b=o!=null,v=h==="leakyrelu",N=h?Ih(h,!1):null,T=new tw(A,w,N,b,v),R=[r,s];if(i&&R.push(i),o&&R.push(o),v){let $=n.makeTensorInfo([],"float32",k.createScalarValue(m,"float32"));R.push($),g.push($)}y=n.runWebGLProgram(T,R,"float32")}let x=Ae({inputs:{x:y},backend:n,attrs:{shape:A.outShape}});return g.push(y),g.forEach(w=>n.disposeIntermediateTensorInfo(w)),x}var zU={kernelName:ai,backendName:"webgl",kernelFunc:DU};function OU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dimRoundingMode:p,activation:c,leakyreluAlpha:h}=a,m=[],f=d;f==null&&(f=[1,1]),k.assert(C.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let A=C.computeConv2DInfo(r.shape,s.shape,l,f,u,p,!0),y=J().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,g=c?Ih(c,y):null,x=[r,s],w=i!=null,b=o!=null,v=c==="leakyrelu";if(w&&x.push(i),b&&x.push(o),v){let R=n.makeTensorInfo([],"float32",k.createScalarValue(h,"float32"));x.push(R),m.push(R)}let N;y?N=new lw(A,w,g,b,v):N=new ow(A,w,g,b,v);let T=n.runWebGLProgram(N,x,"float32");return m.forEach(R=>n.disposeIntermediateTensorInfo(R)),T}var _U={kernelName:ri,backendName:"webgl",kernelFunc:OU},PU=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let a=lt(t.length),r=lt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${a} strides = ${a}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${s};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function LU(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],[o,l,u,d]=C.prepareAndValidate(a,r),p=Ae({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),c=Ae({inputs:{x:a},backend:n,attrs:{shape:[k.sizeFromShape(a.shape)/u,u]}}),h=new PU(i,d,[l,u]),m=n.runWebGLProgram(h,[c,p],c.dtype),f=Ae({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(m),f}var WU={kernelName:So,backendName:"webgl",kernelFunc:LU},BU=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=lt(this.rank),a=VU(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function VU(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("int(getIndices(resRC.x, resRC.z))"):a.push(`${n[r]}`);return a.join()}function jU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=k.parseAxisParam(i,r.shape)[0],u=C.segment_util.collectGatherOpShapeInfo(r,s,l,o),d=k.sizeFromShape(s.shape),p=[],c=Ae({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=Ae({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,d/u.batchSize]}});p.push(c),p.push(h);let m=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let g=n.bufferSync(h),x=n.bufferSync(c),w=lW(x,g,m);return p.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(u.outputShape,w.dtype,w.values)}let f=new BU(c.shape,m),A=n.runWebGLProgram(f,[c,h],c.dtype);p.push(A);let y=Ae({inputs:{x:A},backend:n,attrs:{shape:u.outputShape}});return p.forEach(g=>n.disposeIntermediateTensorInfo(g)),y}var UU={kernelName:Io,backendName:"webgl",kernelFunc:jU},HU="return float(a > b);",GU=`
|
|
return vec4(greaterThan(a, b));
|
|
`,qU=tn({opSnippet:HU,packedOpSnippet:GU,cpuKernelImpl:uW,dtype:"bool"}),XU={kernelName:No,backendName:"webgl",kernelFunc:qU},KU="return float(a >= b);",ZU=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,YU=tn({opSnippet:KU,packedOpSnippet:ZU,dtype:"bool"}),JU={kernelName:Is,backendName:"webgl",kernelFunc:YU};function QU(e){let{inputs:t,backend:n}=e,{input:a}=t;return hw(a,!0,n)}var eH={kernelName:Zp,backendName:"webgl",kernelFunc:QU},tH="return float(!isnan(x) && !isinf(x));",nH=Xe({opSnippet:tH,dtype:"bool"}),aH={kernelName:To,backendName:"webgl",kernelFunc:nH},rH="return float(isinf(x));",sH=Xe({opSnippet:rH,dtype:"bool"}),iH={kernelName:Eo,backendName:"webgl",kernelFunc:sH},oH="return float(isnan(x));",lH=Xe({opSnippet:oH,dtype:"bool"}),uH={kernelName:Co,backendName:"webgl",kernelFunc:lH},dH="return float(a < b);",pH=`
|
|
return vec4(lessThan(a, b));
|
|
`,cH=tn({opSnippet:dH,packedOpSnippet:pH,cpuKernelImpl:dW,dtype:"bool"}),hH={kernelName:Ro,backendName:"webgl",kernelFunc:cH},fH="return float(a <= b);",mH=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,AH=tn({opSnippet:fH,packedOpSnippet:mH,dtype:"bool"}),yH={kernelName:Mo,backendName:"webgl",kernelFunc:AH};function gH(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=pW(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var xH={kernelName:Jp,backendName:"webgl",kernelFunc:gH},bH=`if (x < 0.0) return NAN;
|
|
return log(x);`,vH=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,wH=Xe({opSnippet:bH,packedOpSnippet:vH,cpuKernelImpl:cW}),kH={kernelName:Ts,backendName:"webgl",kernelFunc:wH},IH="return log(1.0 + x);",SH=Xe({opSnippet:IH}),NH={kernelName:Fo,backendName:"webgl",kernelFunc:SH},TH="return float(a >= 1.0 && b >= 1.0);",EH=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,CH=tn({opSnippet:TH,packedOpSnippet:EH,dtype:"bool"}),RH={kernelName:$o,backendName:"webgl",kernelFunc:CH},MH="return float(!(x >= 1.0));",FH=Xe({opSnippet:MH}),$H={kernelName:Eu,backendName:"webgl",kernelFunc:FH},DH="return float(a >= 1.0 || b >= 1.0);",zH=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,OH=tn({opSnippet:DH,packedOpSnippet:zH,dtype:"bool"}),_H={kernelName:Cu,backendName:"webgl",kernelFunc:OH},PH=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${s}; j <= ${s}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},LH=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${s};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${s}; j <= ${s}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},WH=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,u=J().getBool("WEBGL_PACK_NORMALIZATION")?new LH(r.shape,s,i,o,l):new PH(r.shape,s,i,o,l);return n.runWebGLProgram(u,[r],r.dtype)},BH={kernelName:Ru,backendName:"webgl",kernelFunc:WH},VH=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${a}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${a})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},jH=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:d}=a,p=new VH(r.shape,o,l,u,d);return n.runWebGLProgram(p,[r,s,i],r.dtype)},UH={kernelName:Qp,backendName:"webgl",kernelFunc:jH};function HH(e,t,n,a){let r=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/r,i=Ae({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Ti(i,e.dtype,"max",a),l=Ae({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function mw(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,d=C.getAxesPermutation(u,o),p=d!=null,c=n.shouldExecuteOnCPU([r]),h=r;if(p){if(c){let g=n.texData.get(h.dataId).values,x=new Array(o);for(let v=0;v<x.length;v++)x[v]=r.shape[d[v]];let w=x1(g,r.shape,r.dtype,d,x);h=n.makeTensorInfo(x,r.dtype);let b=n.texData.get(h.dataId);b.values=w}else h=Sh(r,d,n);u=C.getInnerMostAxes(u.length,o)}C.assertAxesAreInnerMostDims("max",u,o);let[m,f]=C.computeOutAndReduceShapes(h.shape,u),A=m;i&&(A=C.expandShapeToKeepDim(m,l));let y;if(c){let g=n.texData.get(h.dataId).values,x=hW(g,k.sizeFromShape(f),A,r.dtype);y=n.makeTensorInfo(A,r.dtype);let w=n.texData.get(y.dataId);w.values=x}else y=HH(h,f,A,n);return p&&n.disposeIntermediateTensorInfo(h),y}var GH={kernelName:Es,backendName:"webgl",kernelFunc:mw},qH=Dv+`
|
|
return max(a, b);
|
|
`,XH=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+kh+`
|
|
return result;
|
|
`,KH=tn({opSnippet:qH,packedOpSnippet:XH,cpuKernelImpl:fW}),ZH={kernelName:Cs,backendName:"webgl",kernelFunc:KH};function YH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;$l(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=C.computePool2DInfo(r.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&k.arraysEqual(d.inShape,d.outShape))return Pn({inputs:{x:r},backend:n});let p=new wd(d,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var JH={kernelName:Rs,backendName:"webgl",kernelFunc:YH};function QH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=a,d=[1,1,1],p=C.computePool3DInfo(r.shape,s,i,d,o,u,l),c=new w1(p,"max",!1);return n.runWebGLProgram(c,[r],r.dtype)}var eG={kernelName:Mu,backendName:"webgl",kernelFunc:QH},tG=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${s} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},nG=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,d=o-1-e.padInfo.front,p=l-1-e.padInfo.top,c=u-1-e.padInfo.left,h=o*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${d}, ${p}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function aG(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:d}=a,p=[1,1,1],c=C.computePool3DInfo(i.shape,o,l,p,u,d),h=new w1(c,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new nG(c),A=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),A}var rG={kernelName:tc,backendName:"webgl",kernelFunc:aG};function sG(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;$l([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:d,dimRoundingMode:p}=a,c=C.computePool2DInfo(o.shape,l,u,1,d,p),h=!0,m=new wd(c,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),A=new tG(c),y=n.runWebGLProgram(A,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),y}var iG={kernelName:ec,backendName:"webgl",kernelFunc:sG};function oG(e,t,n,a){let r=new wd(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new wd(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var lG={kernelName:nc,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;k.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let u=[1,1];k.assert(C.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let d=C.computePool2DInfo(a.shape,r,s,u,i),[p,c]=oG(a,o,d,l);return[p,c]}};function uG(e,t,n,a){let r=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/r,i=Ae({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Ti(i,"float32","mean",a),l=Ae({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var dG={kernelName:Ms,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=k.parseAxisParam(s,a.shape),u=l,d=C.getAxesPermutation(u,o),p=d!=null,c=i.shouldExecuteOnCPU([a]),h=[],m=a;if(p){if(c){let x=i.texData.get(m.dataId).values,w=new Array(o);for(let N=0;N<w.length;N++)w[N]=a.shape[d[N]];let b=x1(x,a.shape,a.dtype,d,w);m=i.makeTensorInfo(w,a.dtype);let v=i.texData.get(m.dataId);v.values=b}else m=Sh(a,d,i);h.push(m),u=C.getInnerMostAxes(u.length,o)}C.assertAxesAreInnerMostDims("sum",u,o);let[f,A]=C.computeOutAndReduceShapes(m.shape,u),y=f;r&&(y=C.expandShapeToKeepDim(f,l));let g=uG(m,A,y,i);for(let x of h)i.disposeIntermediateTensorInfo(x);return g}};function pG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,d=C.getAxesPermutation(u,o),p=r;d!=null&&(p=fn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=C.getInnerMostAxes(u.length,r.shape.length)),C.assertAxesAreInnerMostDims("min",u,o);let[c,h]=C.computeOutAndReduceShapes(p.shape,u),m=k.sizeFromShape(h),f=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),A=Ti(f,f.dtype,"min",n),y;if(i){let g=C.expandShapeToKeepDim(c,l);y=Ae({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=Ae({inputs:{x:A},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),d!=null&&n.disposeIntermediateTensorInfo(p),y}var cG={kernelName:Fs,backendName:"webgl",kernelFunc:pG},hG=Dv+`
|
|
return min(a, b);
|
|
`,fG=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+kh+`
|
|
return result;
|
|
`,mG=tn({opSnippet:hG,packedOpSnippet:fG,cpuKernelImpl:mW}),AG={kernelName:$s,backendName:"webgl",kernelFunc:mG},yG=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,d)=>u[0]+e[d]+u[1]);let a=e.length,r=lt(a),s=t.map(u=>u[0]).join(","),i=t.map((u,d)=>u[0]+e[d]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${a}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},gG=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=lt(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=hn("rc",a),l=hn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,d=a===1?"source":`vec2(${l.slice(-2).join()})`,p=n==="reflect"?0:1,c="";if(a===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${p};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${p};
|
|
}
|
|
source -= start;
|
|
`;c=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${d});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${p}) +
|
|
gte * ((end - 1) * 2 - source + ${p});
|
|
source -= start;
|
|
`;c=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${d});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${d});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}},xG=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new gG(a.shape,r,s):new yG(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},bG={kernelName:Ds,backendName:"webgl",kernelFunc:xG},vG=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,wG=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+kh+`
|
|
return result;
|
|
`,kG=tn({opSnippet:vG,packedOpSnippet:wG}),IG={kernelName:Do,backendName:"webgl",kernelFunc:kG},SG=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
|
|
uniform float seed;
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},NG=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,TG=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,Aw=tn({opSnippet:NG,packedOpSnippet:TG,checkOutOfBounds:!0}),EG={kernelName:xs,backendName:"webgl",kernelFunc:Aw},yw="return a - b;",gw=tn({opSnippet:yw,packedOpSnippet:yw,supportsComplex:!0,cpuKernelImpl:SW}),CG={kernelName:Js,backendName:"webgl",kernelFunc:gw};function xw(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=k.parseAxisParam([s],r.shape),o=mw({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=C.expandShapeToKeepDim(o.shape,i),u=Ae({inputs:{x:o},backend:n,attrs:{shape:l}}),d=gw({inputs:{a:r,b:u},backend:n}),p=dw({inputs:{x:d},backend:n}),c=Nh({inputs:{x:p},backend:n,attrs:{axis:i,keepDims:!1}}),h=Ae({inputs:{x:c},backend:n,attrs:{shape:l}}),m=Aw({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}var RG={kernelName:Zs,backendName:"webgl",kernelFunc:xw};function MG(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:xw({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],d=l.shape[1],p=new SG(u,d,s),c=p.getCustomSetupFunc(i),h=n.runWebGLProgram(p,[l],"int32",c);return o||n.disposeIntermediateTensorInfo(l),h}var FG={kernelName:ac,backendName:"webgl",kernelFunc:MG},bw="return -x;";function $G(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=yW(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Pl(a.shape,bw):r=new Vr(a.shape,bw),n.runWebGLProgram(r,[a],a.dtype)}var DG={kernelName:zo,backendName:"webgl",kernelFunc:$G},zG=ja.nonMaxSuppressionV3Impl;function OG(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,u=n.readSync(r.dataId),d=n.readSync(s.dataId),{selectedIndices:p}=zG(u,d,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var _G={kernelName:_o,backendName:"webgl",kernelFunc:OG},PG=ja.nonMaxSuppressionV4Impl;function LG(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a,d=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:c,validOutputs:h}=PG(d,p,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var WG={kernelName:Po,backendName:"webgl",kernelFunc:LG},BG=ja.nonMaxSuppressionV5Impl;function VG(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a,d=n.readSync(r.dataId),p=n.readSync(s.dataId),c=i,h=o,m=l,f=u,{selectedIndices:A,selectedScores:y}=BG(d,p,c,h,m,f);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var jG={kernelName:Lo,backendName:"webgl",kernelFunc:VG},UG=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${a}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},HG=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=k.sizeFromShape(r.shape),u=new UG(l,s,i,o),d=Ae({inputs:{x:r},backend:n,attrs:{shape:[l]}}),p=n.runWebGLProgram(u,[d],r.dtype);n.disposeIntermediateTensorInfo(d);let c=[...r.shape,s],h=Ae({inputs:{x:p},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(p),h},GG={kernelName:Os,backendName:"webgl",kernelFunc:HG};function Mh(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=Id({inputs:{input:a},backend:n}),s=Mh({inputs:{x:r},backend:n}),i=Rh({inputs:{input:a},backend:n}),o=Mh({inputs:{x:i},backend:n}),l=jr({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return N1({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var qG={kernelName:al,backendName:"webgl",kernelFunc:Mh};function vw(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=Id({inputs:{input:a},backend:n}),s=vw({inputs:{x:r},backend:n}),i=Rh({inputs:{input:a},backend:n}),o=Mh({inputs:{x:i},backend:n}),l=jr({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return N1({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var XG={kernelName:Wo,backendName:"webgl",kernelFunc:vw};function KG(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return S1({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{k.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let p=S1({inputs:{input:d},backend:n,attrs:{dim:r}});return o.push(p),p}),u=ew({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var ZG={kernelName:Bo,backendName:"webgl",kernelFunc:KG},YG=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let a=e.length,r=lt(a),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
uniform float value;
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
uniform float value;
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},JG=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=lt(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=hn("rc",a),l=hn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,d=a===1?"source":`vec2(${l.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
|
|
if(${u}) {
|
|
`,a===1?"":`}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
|
|
if(${u}) {`],c=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
|
|
${p[m]}
|
|
if (${c}) {
|
|
result[${m}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${m}] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
`;h+=a===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
uniform float value;
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},ww=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a,o=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new JG(r.shape,s,i):new YG(r.shape,s,i),l=o.getCustomSetupFunc(i);return n.runWebGLProgram(o,[r],r.dtype,l)},QG={kernelName:_s,backendName:"webgl",kernelFunc:ww},eq=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,tq=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+kh+`
|
|
return result;
|
|
`,nq=tn({opSnippet:eq,packedOpSnippet:tq}),aq={kernelName:Ps,backendName:"webgl",kernelFunc:nq};function rq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],u=k.parseAxisParam(s,r.shape),d=u,p=C.getAxesPermutation(d,o),c=r;p!=null&&(c=fn({inputs:{x:r},backend:n,attrs:{perm:p}}),d=C.getInnerMostAxes(d.length,o),l.push(c)),C.assertAxesAreInnerMostDims("prod",d,o);let h;if(n.shouldExecuteOnCPU([c])){let m=n.texData.get(c.dataId).values,{outVals:f,outShape:A,outDtype:y}=gW(c.shape,c.dtype,m,d);h=n.makeTensorInfo(A,y,f)}else{let[m,f]=C.computeOutAndReduceShapes(c.shape,d),A=k.sizeFromShape(f),y=Ae({inputs:{x:c},backend:n,attrs:{shape:[-1,A]}}),g=Ac(r.dtype),x=Ti(y,g,"prod",n);h=Ae({inputs:{x},backend:n,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(h);let m=C.expandShapeToKeepDim(h.shape,u);h=Ae({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var sq={kernelName:Vo,backendName:"webgl",kernelFunc:rq},kw=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=xW(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},iq={kernelName:Fu,backendName:"webgl",kernelFunc:kw},oq="return 1.0 / x;",lq=Xe({opSnippet:oq}),uq={kernelName:jo,backendName:"webgl",kernelFunc:lq},dq=ba+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,pq=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,cq=Xe({opSnippet:dq,packedOpSnippet:pq}),hq={kernelName:Ws,backendName:"webgl",kernelFunc:cq},fq=ba+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,mq=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Aq=Xe({opSnippet:fq,packedOpSnippet:mq}),yq={kernelName:Vs,backendName:"webgl",kernelFunc:Aq},gq=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},xq=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]},
|
|
${u[1]/d[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function bq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,d=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new xq(r.shape,l,u,s,i):new gq(r.shape,l,u,s,i);return n.runWebGLProgram(d,[r],"float32")}var vq={kernelName:Bs,backendName:"webgl",kernelFunc:bq},wq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],d=o[1]/l[1],p=1/u,c=1/d,h=Math.ceil(p)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${d});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${c});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function kq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new wq(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Iq={kernelName:ic,backendName:"webgl",kernelFunc:kq},Sq=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],p=a?"0.5":"0.0",c;r?c="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":c="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${c};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Nq=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],p=a?"0.5":"0.0",c;r?c="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":c="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]},
|
|
${u[1]/d[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${c};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Tq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,d=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Nq(r.shape,l,u,s,i):new Sq(r.shape,l,u,s,i);return n.runWebGLProgram(d,[r],r.dtype)}var Eq={kernelName:$u,backendName:"webgl",kernelFunc:Tq},Cq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],d=o[1]/l[1],p=1/u,c=1/d,h=Math.ceil(p)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${d});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${c});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${a}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Rq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new Cq(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Mq={kernelName:sc,backendName:"webgl",kernelFunc:Rq},Fq=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=lt(n);this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},$q=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=hn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=lt(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(a.slice())};
|
|
if(${r}){
|
|
result.g = ${l(a.slice())};
|
|
}
|
|
if(${s}) {
|
|
result.b = ${u(a.slice())};
|
|
if(${r}) {
|
|
result.a = ${d(a.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(h){return p(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function d(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let m=e.map((y,g)=>c(g,h)),f=m.join(","),A=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${A}))`}function c(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function Dq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=k.parseAxisParam(s,r.shape);if(i===0)return Pn({inputs:{x:r},backend:n});let l=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new $q(r.shape,o):new Fq(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var zq={kernelName:js,backendName:"webgl",kernelFunc:Dq},Oq=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
uniform vec4 params;
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}getCustomSetupFunc(e,t,n,a){return(r,s)=>{this.paramsLoc==null&&(this.paramsLoc=r.getUniformLocationNoThrow(s,"params")),r.gl.uniform4f(this.paramsLoc,e,t,n,a)}}},_q={kernelName:rl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new Oq(a.shape,s),[u,d]=C.getImageCenter(i,a.shape[1],a.shape[2]),p=l.getCustomSetupFunc(u,d,Math.sin(r),Math.cos(r));return o.runWebGLProgram(l,[a],a.dtype,p)}},Pq=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,Lq=Xe({opSnippet:Pq}),Wq={kernelName:Us,backendName:"webgl",kernelFunc:Lq},Bq="return inversesqrt(x);",Vq=Xe({opSnippet:Bq,cpuKernelImpl:bW}),jq={kernelName:Hs,backendName:"webgl",kernelFunc:Vq},Iw=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=lt(r.length),l=lt(s.length),u="";n===1?u="i":n===2&&(u="i, j");let d=`getIndices(${u})`,p="";a===1?p="i":a===2&&(p="i, coords[1]");let c=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${d});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${c};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function Uq(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:p}=C.calculateShapes(s,r,i),c=[p/u,u];if(p===0)return n.makeTensorInfo(i,r.dtype);let h=Ae({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=Ae({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),A=new Iw(l,o,h.shape.length,m.shape.length,d,c),y=n.runWebGLProgram(A,[m,h,f],m.dtype),g=Ae({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(f),g}var Hq={kernelName:Ho,backendName:"webgl",kernelFunc:Uq},Gq=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);a=o.join(),r=l.join()}let s=lt(n);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
float cVal = getC(${a});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function qq(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new Gq(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],la(r.dtype,s.dtype))}var Xq={kernelName:Go,backendName:"webgl",kernelFunc:qq},Kq=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${C.SELU_SCALEALPHA};
|
|
float scale = ${C.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,Zq=Xe({opSnippet:Kq}),Yq={kernelName:qo,backendName:"webgl",kernelFunc:Zq},Jq="return 1.0 / (1.0 + exp(-1.0 * x));",Qq=Xe({opSnippet:Jq}),eX={kernelName:qs,backendName:"webgl",kernelFunc:Qq},tX=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,nX=Xe({opSnippet:tX}),aX={kernelName:Zo,backendName:"webgl",kernelFunc:nX},rX=Lv+`
|
|
return sin(x);
|
|
`,sX=Xe({opSnippet:rX}),iX={kernelName:Gs,backendName:"webgl",kernelFunc:sX},oX=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,lX=Xe({opSnippet:oX}),uX={kernelName:Ko,backendName:"webgl",kernelFunc:lX},dX=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,pX=Xe({opSnippet:dX}),cX={kernelName:Yo,backendName:"webgl",kernelFunc:pX},hX=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;k.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,g)=>y*g),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<r.shape.length;++y)l.push([0,0]);let u=[],d=ww({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=C.getReshaped(d.shape,s,o,!1),c=C.getPermuted(p.length,s.length,!1),h=C.getReshapedPermuted(d.shape,s,o,!1),m=Ae({inputs:{x:d},backend:n,attrs:{shape:p}}),f=fn({inputs:{x:m},backend:n,attrs:{perm:c}}),A=Ae({inputs:{x:f},backend:n,attrs:{shape:h}});return u.push(d),u.push(m),u.push(f),u.forEach(y=>n.disposeIntermediateTensorInfo(y)),A},fX={kernelName:Du,backendName:"webgl",kernelFunc:hX};function mX(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.readSync(a.dataId),l=n.readSync(r.dataId),u=n.readSync(s.dataId),d=n.readSync(i.dataId)[0],[p,c,h,m,f]=wW(o,a.shape,a.dtype,l,r.dtype,u,d);return[n.makeTensorInfo(c,a.dtype,p),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(A=>Number(A)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var AX={kernelName:oc,backendName:"webgl",kernelFunc:mX};function yX(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(r.dataId)),o=n.readSync(a.dataId),l=Array.from(n.readSync(s.dataId)),[u,d,p]=kW(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(d,a.dtype,u),n.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var gX={kernelName:lc,backendName:"webgl",kernelFunc:yX};function xX(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,strides:d,outputSize:p}=C.calculateShapes(s,r,o),c=!1,h=new Iw(u,l,r.shape.length,s.shape.length,d,[p,1],c),m=n.runWebGLProgram(h,[s,r,i],s.dtype),f=Ae({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var bX={kernelName:uc,backendName:"webgl",kernelFunc:xX};function vX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=k.parseAxisParam(i,r.shape)[0],l=C.prepareSplitSize(r,s,o),u=r.shape.length,d=new Array(u).fill(0),p=r.shape.slice();return l.map(c=>{let h=[...p];h[o]=c;let m=kd({inputs:{x:r},backend:n,attrs:{begin:d,size:h}});return d[o]+=c,m})}var wX={kernelName:Jo,backendName:"webgl",kernelFunc:vX},kX="return sqrt(x);",IX=Xe({opSnippet:kX}),SX={kernelName:Xs,backendName:"webgl",kernelFunc:IX},NX="return x * x;",TX=Xe({opSnippet:NX}),EX={kernelName:zu,backendName:"webgl",kernelFunc:TX},Sw="return (a - b) * (a - b);",CX=tn({opSnippet:Sw,packedOpSnippet:Sw}),RX={kernelName:Ys,backendName:"webgl",kernelFunc:CX};function MX({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=ba+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new Vr(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var FX={kernelName:Rr,backendName:"webgl",kernelFunc:MX},$X=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=lt(n.length),s=lt(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function DX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:p,shrinkAxisMask:c}=a,{nonStrided:h,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=ln.sliceInfo(r.shape,s,i,o,l,u,d,p,c),x=Ae({inputs:{x:r},backend:n,attrs:{shape:y}}),w;if(h){let v=kd({inputs:{x},backend:n,attrs:{begin:m,size:A}});w=Ae({inputs:{x:v},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(v)}else if(g.some(v=>v===0))w=n.makeTensorInfo(g,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let v=n.texData.get(x.dataId).values,N=We(x.shape,x.dtype,v),T=IW(g,N,f,m);w=n.makeTensorInfo(g,x.dtype,T.values)}else{let v=new $X(m,f,g);w=n.runWebGLProgram(v,[x],x.dtype)}let b=Ae({inputs:{x:w},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(w),b}var zX={kernelName:Qo,backendName:"webgl",kernelFunc:DX},OX="return tan(x);",_X=Xe({opSnippet:OX}),PX={kernelName:Qs,backendName:"webgl",kernelFunc:_X},LX=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,WX=Xe({opSnippet:LX}),BX={kernelName:ei,backendName:"webgl",kernelFunc:WX},VX=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=lt(this.rank),r=jX(e);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function jX(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function Nw(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"||r.shape.length>5){let o=n.readSync(r.dataId),l=r.dtype==="string"?o.map(p=>k.decodeString(p)):o,u=We(r.shape,r.dtype,l),d=NW(u,s);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let i=new VX(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var UX={kernelName:Cr,backendName:"webgl",kernelFunc:Nw};function HX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=n.readSync(r.dataId),[l,u]=TW(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var GX={kernelName:el,backendName:"webgl",kernelFunc:HX},qX=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${o} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${i} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function XX(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[d,p,c,h]=r.shape,[m,f]=u!=null?u:[p,c],A=[d,m,f,h],y=new qX(p,c,i,o,l,A);return n.runWebGLProgram(y,[r,s],"float32")}var KX={kernelName:tl,backendName:"webgl",kernelFunc:XX};function ZX(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;$l(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=EW(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var YX={kernelName:dc,backendName:"webgl",kernelFunc:ZX};function JX(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],u=new Array(o-1),d=0;for(let f=0;f<o;f++)f!==s&&(u[d++]=i.shape[f]);let p=[],c=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){c[s]=f;let A=kd({inputs:{x:i},backend:n,attrs:{begin:c,size:h}}),y=Ae({inputs:{x:A},backend:n,attrs:{shape:u}});m[f]=y,p.push(A)}return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var QX={kernelName:nl,backendName:"webgl",kernelFunc:JX},eK=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,d=n%4,p=`
|
|
sumValue += dot(values, segFilter);
|
|
`,c="";r%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${s})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${s})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${d===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${d===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${d===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function tK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],u=0,d=C.getAxesPermutation([u],o),p=r;d!=null&&(p=fn({inputs:{x:r},backend:n,attrs:{perm:d}}),l.push(p),u=C.getInnerMostAxes(1,o)[0]);let c=C.segment_util.computeOutShape(p.shape,u,i),h=k.sizeFromShape([p.shape[u]]),m=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=Ac(r.dtype),A=(w,b,v,N,T)=>{let R=w.shape[0],$=w.shape[1],O=C.segment_util.segOpComputeOptimalWindowSize($,T),_={windowSize:O,inSize:$,batchSize:R,numSegments:T},V=new eK(_,b),U=n.compileAndRun(V,[w,v],N);if(l.push(U),U.shape[1]===T)return U;let j=kw({backend:n,attrs:{start:0,stop:T,step:1,dtype:"float32"}}),X=Nw({inputs:{x:j},backend:n,attrs:{reps:[$/O]}});return l.push(j),l.push(X),A(U,b,X,N,T)},y=A(m,"unsortedSegmentSum",s,f,i),g=Ae({inputs:{x:y},backend:n,attrs:{shape:c}}),x=g;if(d!=null){l.push(g);let w=C.getUndoAxesPermutation(d);x=fn({inputs:{x},backend:n,attrs:{perm:w}})}return l.forEach(w=>n.disposeIntermediateTensorInfo(w)),x}var nK={kernelName:Ou,backendName:"webgl",kernelFunc:tK},aK=[BH,UH,NB,EB,MB,DB,OB,LB,BB,jB,qB,KB,JB,tV,lV,rV,pV,mV,hV,xV,vV,kV,TV,DV,OV,VV,UV,XV,YV,oB,nj,cj,fj,ij,gj,bj,Aj,kj,Nj,Cj,Mj,$j,Oj,Vj,Uj,Pj,qj,Zj,Jj,nU,iU,dU,hU,fU,mU,yU,xU,vU,kU,SU,CU,FU,zU,_U,WU,UU,XU,JU,iB,eH,ej,aH,iH,uH,uB,hH,yH,xH,NH,kH,RH,$H,_H,GH,eG,JH,rG,iG,lG,ZH,dG,cG,AG,bG,IG,FG,fB,DG,_G,WG,jG,PV,GG,XG,ZG,QG,aq,pB,sq,iq,LV,EG,uq,yq,hq,AB,vq,Iq,Eq,Mq,zq,_q,Wq,jq,Hq,Xq,Yq,eX,aX,iX,uX,FV,RG,cX,fX,AX,gX,bX,wX,SX,EX,RX,FX,zX,CG,kB,PX,BX,UX,GX,KX,IB,YX,QX,nK,qG];for(let e of aK)si(e);var Nn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Nn||(Nn={}));var Sd;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid"})(Sd||(Sd={}));var Tw;function rK(e){Tw=e.wasm.cwrap(ni,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function sK(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:p}=a,c=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let T=n.dataIdMap.get(i.dataId);if(T.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${T.shape.length}.`);m=T.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,A=Sd[d];if(A==null)throw new Error(`${d} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],g=u?s.shape[1]:s.shape[2],x=r.shape[0],w=n.makeOutput([x,y,g],r.dtype),b=n.dataIdMap.get(w.dataId).id,v=new Uint8Array(new Int32Array(r.shape).buffer),N=new Uint8Array(new Int32Array(s.shape).buffer);return Tw(c,v,r.shape.length,h,N,s.shape.length,l,u,A,m,f,p||0,b),w}var iK={kernelName:ni,backendName:"wasm",setupFunc:rK,kernelFunc:sK};function mn(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function a(r){let{backend:s,inputs:{x:i}}=r,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),u=s.dataIdMap.get(l.dataId).id;return k.sizeFromShape(l.shape)===0||t(o,u),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var oK=mn(ao);function An(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:d}=l,p=o.dataIdMap.get(u.dataId).id,c=o.dataIdMap.get(d.dataId).id,h=n!=null?n:u.dtype,m=C.assertAndGetBroadcastShape(u.shape,d.shape),f=o.makeOutput(m,h);if(k.sizeFromShape(m)===0)return f;let A=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(d.shape).buffer),g=o.dataIdMap.get(f.dataId).id,x=()=>a(p,A,u.shape.length,c,y,d.shape.length,Nn[u.dtype],g);if(t&&u.dtype==="float32")return x(),f;let w=C.getBroadcastDims(u.shape,m),b=C.getBroadcastDims(d.shape,m),v=w.every((T,R)=>T===R),N=b.every((T,R)=>T===R);if(v&&N)return x(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var lK=!0,uK=An(Tr,lK),Ew;function dK(e){Ew=e.wasm.cwrap(ls,null,["array","number","number","number"])}function pK(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(k.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return Ew(s,r.length,Nn[a.dtype],i),a}var cK={kernelName:ls,backendName:"wasm",setupFunc:dK,kernelFunc:pK};function Fh(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var hK={kernelName:Ss,backendName:"wasm",kernelFunc:Fh},Cw;function fK(e){Cw=e.wasm.cwrap(ti,null,["number","array","number","number","number","array","number"])}function $h(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=AK(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=mK(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=Fh({inputs:t,backend:n});return m.shape=o,m}let u=n.makeOutput(o,l.dtype),d=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(u.dataId).id,c=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return Cw(d,h,l.shape.length,Nn[l.dtype],p,c,s.length),u}function mK(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function AK(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var yK={kernelName:ti,backendName:"wasm",kernelFunc:$h,setupFunc:fK};function Ur(e,t,n){let a=e.shape,r=e.shape.length,s=k.parseAxisParam(t,a),i=s,o=C.getAxesPermutation(i,r),l=null,u=!1;if(o!=null){let d=new Array(r);for(let c=0;c<d.length;c++)d[c]=a[o[c]];i=C.getInnerMostAxes(i.length,r),l=$h({inputs:{x:e},attrs:{perm:o},backend:n});let p=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==p&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var Rw;function gK(e){Rw=e.wasm.cwrap(io,null,["number, number, number"])}function xK(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:c}=Ur(i,r,t);if(c){let g=t.dataIdMap.get(u.dataId).id;l=u,o=g}let h=l.shape.length;C.assertAxesAreInnerMostDims("all",d,h);let[m,f]=C.computeOutAndReduceShapes(l.shape,d),A=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;Rw(o,A,g)}if(c&&t.disposeData(u.dataId),s){let g=C.expandShapeToKeepDim(y.shape,p);y.shape=g}return y}var bK={kernelName:io,backendName:"wasm",setupFunc:gK,kernelFunc:xK},Mw;function vK(e){Mw=e.wasm.cwrap(oo,null,["number, number, number"])}function wK(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:c}=Ur(i,r,t);if(c){let g=t.dataIdMap.get(u.dataId).id;l=u,o=g}let h=l.shape.length;C.assertAxesAreInnerMostDims("any",d,h);let[m,f]=C.computeOutAndReduceShapes(l.shape,d),A=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;Mw(o,A,g)}if(c&&t.disposeData(u.dataId),s){let g=C.expandShapeToKeepDim(y.shape,p);y.shape=g}return y}var kK={kernelName:oo,backendName:"wasm",setupFunc:vK,kernelFunc:wK},Fw;function IK(e){Fw=e.wasm.cwrap(us,null,["number","number","number","number","number"])}function SK(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:d,inputWasTransposed:p}=Ur(s,r,t);if(p){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(l=u,o=y)}let c=l.shape.slice(0,-1),h=t.makeOutput(c,"int32"),m=t.dataIdMap.get(h.dataId).id,f=k.sizeFromShape(h.shape),A=l.shape[d[0]];return Fw(o,Nn[l.dtype],f,A,m),p&&t.disposeData(u.dataId),h}var NK={kernelName:us,backendName:"wasm",kernelFunc:SK,setupFunc:IK},$w;function TK(e){$w=e.wasm.cwrap(ds,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function EK(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,d=C.computePool2DInfo(r.shape,i,o,1,l,u),p=d.filterHeight,c=d.filterWidth,h=d.padInfo.top,m=d.padInfo.right,f=d.padInfo.bottom,A=d.padInfo.left,y=d.strideHeight,g=d.strideWidth,x=d.inChannels;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);if(d.dilationWidth!==1||d.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${d.dilationHeight}, ${d.dilationWidth}].`);let w=a.makeOutput(d.outShape,"float32"),b=a.dataIdMap.get(w.dataId).id;return $w(s,r.shape[0],r.shape[1],r.shape[2],p,c,h,m,f,A,y,g,x,b),w}var CK={kernelName:ds,backendName:"wasm",setupFunc:TK,kernelFunc:EK};function va(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=k.sizeFromShape(a.shape),i=k.inferFromImplicitShape(r,s);return k.assert(s===k.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var RK={kernelName:Uo,backendName:"wasm",kernelFunc:va},Dw;function MK(e){Dw=e.wasm.cwrap(ps,null,["number","array","number","number","array","number","number","number","number"])}function FK(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=s.shape.length,d=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),A=k.sizeFromShape(m),y=k.sizeFromShape(f),g=A===y||A===1||y===1;k.assert(l>=2&&u>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(A>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([c,h]);k.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let w=i?[A,d,c]:[A,c,d],b=o?[y,h,p]:[y,p,h],v=va({inputs:{x:r},backend:n,attrs:{shape:w}}),N=va({inputs:{x:s},backend:n,attrs:{shape:b}}),T=n.dataIdMap.get(v.dataId).id,R=n.dataIdMap.get(N.dataId).id,$=i?v.shape[2]:v.shape[1],O=o?N.shape[1]:N.shape[2],_=Math.max(A,y),V=n.makeOutput([_,$,O],v.dtype),U=n.dataIdMap.get(V.dataId).id,j=new Uint8Array(new Int32Array(v.shape).buffer),X=new Uint8Array(new Int32Array(N.shape).buffer);return Dw(T,j,v.shape.length,R,X,N.shape.length,i,o,U),n.disposeData(v.dataId),n.disposeData(N.dataId),V.shape=x,V}var $K={kernelName:ps,backendName:"wasm",setupFunc:MK,kernelFunc:FK};function Dh(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var DK={kernelName:cs,backendName:"wasm",kernelFunc:Dh},zK=mn(hs),zw;function OK(e){zw=e.wasm.cwrap(Er,null,["number","number","number","number"])}function _K(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return zw(o,s,i,u),l}var PK={kernelName:Er,backendName:"wasm",setupFunc:OK,kernelFunc:_K};function Ow(e){let{inputs:t,backend:n}=e,a=k.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=C.computeOutShape(t.map(h=>h.shape),a),s=t.filter(h=>k.sizeFromShape(h.shape)>0);if(s.length===1)return Fh({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(k.sizeFromShape(r)===0)return i;let o=s.map(h=>h.shape);if(C.assertParamsConsistent(o,a),s[0].dtype==="string"){let h=s.map(x=>{let w=k.sizeFromShape(x.shape.slice(a));return va({inputs:{x},backend:n,attrs:{shape:[-1,w]}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=C.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,A=ZA(m,r,t[0].dtype,f),y=C.computeOutShape(s.map(x=>x.shape),a);i.shape=y;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=C.fromStringArrayToUint8(A),h.forEach(x=>n.disposeData(x.dataId)),i}let l=k.sizeFromShape(s[0].shape.slice(0,a)),u=0,d=s.map(h=>{let m=k.sizeFromShape(h.shape.slice(a));return u+=m,m}),p=s.map(h=>n.typedArrayFromHeap(h)),c=n.typedArrayFromHeap(i);for(let h=0;h<l;h++){let m=h*u;for(let f=0;f<p.length;f++){let A=d[f],y=h*A,g=p[f].subarray(y,y+A);c.set(g,m),m+=A}}return i}var LK={kernelName:fo,backendName:"wasm",kernelFunc:Ow},_w;function WK(e){_w=e.wasm.cwrap(fs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function BK(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:d,dimRoundingMode:p,dataFormat:c}=n,h=C.convertConv2DDataFormat(c),m=C.computeConv2DInfo(r.shape,s.shape,l,u,d,p,!1,h),f=m.filterHeight,A=m.filterWidth,y=m.padInfo.top,g=m.padInfo.right,x=m.padInfo.bottom,w=m.padInfo.left,b=m.dilationHeight,v=m.dilationWidth,N=m.strideHeight,T=m.strideWidth,R=m.inChannels,$=m.outChannels,O=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let _=a.makeOutput(m.outShape,"float32"),V=a.dataIdMap.get(_.dataId).id;return _w(i,r.shape[0],r.shape[1],r.shape[2],o,f,A,y,g,x,w,O,b,v,N,T,R,$,V),_}var VK={kernelName:fs,backendName:"wasm",setupFunc:WK,kernelFunc:BK},Pw;function jK(e){Pw=e.wasm.cwrap(ms,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function UK(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:d}=a,p=1,c=C.convertConv2DDataFormat(l),h=C.computeConv2DInfo(d,s.shape,i,p,o,u,!1,c),{batchSize:m,filterHeight:f,filterWidth:A,inChannels:y,inHeight:g,inWidth:x,outChannels:w,outHeight:b,outWidth:v,strideHeight:N,strideWidth:T}=h,R=f-1-h.padInfo.top,$=A-1-h.padInfo.left,O=h.dataFormat==="channelsLast",_=k.computeStrides(h.inShape),V=k.computeStrides(r.shape),[U,j,X]=k.computeStrides(s.shape),G=_[0],ee=O?_[1]:_[2],Y=O?_[2]:1,re=O?1:_[1],ne=V[0],ie=O?V[1]:V[2],Q=O?V[2]:1,de=O?1:V[1],oe=t.makeOutput(h.inShape,"float32"),ye=t.dataIdMap.get(oe.dataId).id,he=t.dataIdMap.get(r.dataId).id,Ie=t.dataIdMap.get(s.dataId).id;return Pw(he,Ie,m,f,A,g,x,y,b,v,w,N,T,R,$,U,j,X,G,ee,Y,re,ne,ie,Q,de,ye),oe}var HK={kernelName:ms,backendName:"wasm",setupFunc:jK,kernelFunc:UK},GK=mn(As),T1;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(T1||(T1={}));var Lw;function qK(e){Lw=e.wasm.cwrap(Ao,null,["number","number","number","number","array","number","number","number","number","number"])}function XK(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:u}=n,d=l.shape[0],[p,c]=i,h=[d,p,c,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=Dh({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let A=m.id,y=t.dataIdMap.get(l.dataId).id,g=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(h,"float32"),w=t.dataIdMap.get(x.dataId).id,b=new Uint8Array(new Int32Array(o.shape).buffer);return Lw(A,y,g,d,b,p,c,T1[r],s,w),f!=null&&t.disposeData(f.dataId),x}var KK={kernelName:Ao,backendName:"wasm",setupFunc:qK,kernelFunc:XK},Ww;function ZK(e){Ww=e.wasm.cwrap(ys,null,["number","number","number","number","number","number"])}function YK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;k.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([s],l),d=r;u!==null&&(d=$h({inputs:{x:r},attrs:{perm:u},backend:n}));let p=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumsum",[p],l);let c=n.makeOutput(d.shape,d.dtype),h=d.shape[p],m=n.dataIdMap.get(d.dataId).id,f=n.dataIdMap.get(c.dataId).id;Ww(m,i?1:0,o?1:0,h,f,Nn[r.dtype]);let A=c;if(u!==null){let y=C.getUndoAxesPermutation(u);A=$h({inputs:{x:c},attrs:{perm:y},backend:n}),n.disposeData(d.dataId),n.disposeData(c.dataId)}return A}var JK={kernelName:ys,backendName:"wasm",setupFunc:ZK,kernelFunc:YK},Bw;function QK(e){Bw=e.wasm.cwrap(yo,null,["number","number","number","array","number","array","array","number","number"])}function eZ(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],d=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,c=u*s,h=d/(s*s),m=i==="NHWC"?[o,p,c,h]:[o,h,p,c],f=t.makeOutput(m,"float32"),A=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),g=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(k.computeStrides(m)).buffer),w=t.dataIdMap.get(f.dataId).id;return Bw(A,s,i==="NHWC"?1:0,y,r.shape.length-1,g,x,m.length,w),f}var tZ={kernelName:yo,backendName:"wasm",setupFunc:QK,kernelFunc:eZ},Vw;function nZ(e){Vw=e.wasm.cwrap(gs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function aZ(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:d,dimRoundingMode:p}=n,c=u==null?[1,1]:u,h=C.computeConv2DInfo(r.shape,s.shape,l,c,d,p,!0),m=h.filterHeight,f=h.filterWidth,A=h.padInfo.top,y=h.padInfo.right,g=h.padInfo.bottom,x=h.padInfo.left,w=h.dilationHeight,b=h.dilationWidth,v=h.strideHeight,N=h.strideWidth,T=h.inChannels,R=h.outChannels,$=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let O=a.makeOutput(h.outShape,"float32"),_=a.dataIdMap.get(O.dataId).id;return Vw(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,A,y,g,x,$,w,b,v,N,T,R,_),O}var rZ={kernelName:gs,backendName:"wasm",setupFunc:nZ,kernelFunc:aZ},sZ=!1,iZ=An(bo,sZ,"bool"),oZ=mn(bs);function E1(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),va({inputs:{x:r},backend:a,attrs:{shape:o}})}var lZ={kernelName:vo,backendName:"wasm",kernelFunc:E1};function uZ(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var dZ={kernelName:Tu,backendName:"wasm",kernelFunc:uZ},jw;function pZ(e){jw=e.wasm.cwrap(ko,null,["number","number","number","number","number","number"])}function cZ(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,u,d]=a.shape;return jw(s,o,l,u,d,i),r}var hZ={kernelName:ko,backendName:"wasm",kernelFunc:cZ,setupFunc:pZ},fZ=mn(vs),mZ=!1,AZ=An(ws,mZ),Uw;function yZ(e){Uw=e.wasm.cwrap(ks,null,["number","number","number","number","number","number","number"])}function gZ(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:u}=n,d=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(k.sizeFromShape(s.shape)===0)return f;let A=t.dataIdMap.get(f.dataId).id;return Uw(d,p,c,h,m,r,A),f}var xZ={kernelName:ks,backendName:"wasm",setupFunc:yZ,kernelFunc:gZ},Hw;function bZ(e){Hw=e.wasm.cwrap(ai,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function vZ(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dataFormat:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=C.computeConv2DInfo(r.shape,s.shape,l,d,u,c),A=Sd[h];if(A==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,g=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let Q=a.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);w=Q.id}let b=f.filterHeight,v=f.filterWidth,N=f.padInfo.top,T=f.padInfo.right,R=f.padInfo.bottom,$=f.padInfo.left,O=f.dilationHeight,_=f.dilationWidth,V=f.strideHeight,U=f.strideWidth,j=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let re=a.makeOutput(f.outShape,"float32"),ne=a.dataIdMap.get(re.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return Hw(y,G,ee,Y,g,b,v,w,N,T,R,$,X,O,_,V,U,j,x,A,ie,m||0,ne),re}var wZ={kernelName:ai,backendName:"wasm",setupFunc:bZ,kernelFunc:vZ},Gw;function kZ(e){Gw=e.wasm.cwrap(ri,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function IZ(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dataFormat:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=C.computeConv2DInfo(r.shape,s.shape,l,d,u,c,!0),A=Sd[h];if(A==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,g=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let Q=a.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);w=Q.id}let b=f.filterHeight,v=f.filterWidth,N=f.padInfo.top,T=f.padInfo.right,R=f.padInfo.bottom,$=f.padInfo.left,O=f.dilationHeight,_=f.dilationWidth,V=f.strideHeight,U=f.strideWidth,j=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let re=a.makeOutput(f.outShape,"float32"),ne=a.dataIdMap.get(re.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return Gw(y,G,ee,Y,g,b,v,w,N,T,R,$,X,O,_,V,U,j,x,A,ie,m||0,ne),re}var SZ={kernelName:ri,backendName:"wasm",setupFunc:kZ,kernelFunc:IZ},qw;function NZ(e){qw=e.wasm.cwrap(So,null,["number","number","number","number","number","number","array","number"])}function TZ(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=Gm.prepareAndValidate(a,r),u=t.makeOutput(s,a.dtype);if(i===0)return u;let d=r.shape,p=d[d.length-1],c=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return qw(c,Nn[a.dtype],h,i,p,o,m,f),u}var EZ={kernelName:So,backendName:"wasm",setupFunc:NZ,kernelFunc:TZ},Xw;function CZ(e){Xw=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function RZ(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=k.parseAxisParam(i,r.shape)[0],u=C.segment_util.collectGatherOpShapeInfo(r,s,l,o),d=va({inputs:{x:r},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),p=k.sizeFromShape(s.shape),c=va({inputs:{x:s},attrs:{shape:[u.batchSize,p/u.batchSize]},backend:t}),h=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize],m=t.makeOutput(h,r.dtype);if(k.sizeFromShape(r.shape)===0)return m;let f=d.shape.length-1,A=t.dataIdMap.get(d.dataId).id,y=t.dataIdMap.get(c.dataId).id,g=t.dataIdMap.get(m.dataId).id,x=new Uint8Array(new Int32Array(k.computeStrides(d.shape)).buffer),w=new Uint8Array(new Int32Array(k.computeStrides(h)).buffer);return Xw(A,Nn[r.dtype],x,f,y,u.batchSize,w,g),t.disposeData(d.dataId),t.disposeData(c.dataId),m.shape=u.outputShape,m}var MZ={kernelName:Io,backendName:"wasm",setupFunc:CZ,kernelFunc:RZ},FZ=!1,$Z=An(No,FZ,"bool"),DZ=!1,zZ=An(Is,DZ,"bool"),Kw;function OZ(e){Kw=e.wasm.cwrap(Ns,null,["number","number","number"])}function _Z(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,t.dtype);if(k.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;Kw(r,n,i)}return s}var PZ={kernelName:Ns,backendName:"wasm",setupFunc:OZ,kernelFunc:_Z},LZ=!1,WZ=An(Ro,LZ,"bool"),BZ=!1,VZ=An(Mo,BZ,"bool"),jZ=mn(Ts),UZ=!1,HZ=An($o,UZ,"bool"),Zw;function GZ(e){Zw=e.wasm.cwrap(Es,null,["number, number, number"])}function qZ(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:c}=Ur(i,r,t);if(c){let g=t.dataIdMap.get(u.dataId).id;l=u,o=g}let h=l.shape.length;C.assertAxesAreInnerMostDims("max",d,h);let[m,f]=C.computeOutAndReduceShapes(l.shape,d),A=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;Zw(o,A,g)}if(c&&t.disposeData(u.dataId),s){let g=C.expandShapeToKeepDim(y.shape,p);y.shape=g}return y}var XZ={kernelName:Es,backendName:"wasm",setupFunc:GZ,kernelFunc:qZ},KZ=!1,ZZ=An(Cs,KZ),Yw;function YZ(e){Yw=e.wasm.cwrap(Rs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function JZ(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,d=C.computePool2DInfo(r.shape,i,o,1,l,u),p=d.filterHeight,c=d.filterWidth,h=d.padInfo.top,m=d.padInfo.right,f=d.padInfo.bottom,A=d.padInfo.left,y=d.dilationHeight,g=d.dilationWidth,x=d.strideHeight,w=d.strideWidth,b=d.inChannels,v=d.outChannels;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let N=a.makeOutput(d.outShape,"float32"),T=a.dataIdMap.get(N.dataId).id;return Yw(s,r.shape[0],r.shape[1],r.shape[2],p,c,h,m,f,A,y,g,x,w,b,v,T),N}var QZ={kernelName:Rs,backendName:"wasm",setupFunc:YZ,kernelFunc:JZ},Jw;function eY(e){Jw=e.wasm.cwrap(Ms,null,["number, number, number"])}function tY(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:p,originalAxes:c,inputWasTransposed:h}=Ur(i,r,t),m=p;if(h){let w=t.dataIdMap.get(d.dataId).id;w!==o&&(u=d,l=w,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,A]=C.computeOutAndReduceShapes(u.shape,m),y=k.sizeFromShape(A),g=u;u.dtype!=="float32"&&(g=Dh({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(g.dataId).id);let x=t.makeOutput(f,"float32");if(k.sizeFromShape(u.shape)!==0){let w=t.dataIdMap.get(x.dataId).id;Jw(l,y,w)}if(h&&t.disposeData(d.dataId),s){let w=C.expandShapeToKeepDim(x.shape,c);x.shape=w}return u.dtype!=="float32"&&t.disposeData(g.dataId),x}var nY={kernelName:Ms,backendName:"wasm",setupFunc:eY,kernelFunc:tY},Qw;function aY(e){Qw=e.wasm.cwrap(Fs,null,["number, number, number"])}function rY(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:p,originalAxes:c,inputWasTransposed:h}=Ur(i,r,t);if(h){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x)}let m=u.shape.length;C.assertAxesAreInnerMostDims("min",p,m);let[f,A]=C.computeOutAndReduceShapes(u.shape,p),y=k.sizeFromShape(A),g=t.makeOutput(f,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;Qw(l,y,x)}if(h&&t.disposeData(d.dataId),s){let x=C.expandShapeToKeepDim(g.shape,c);g.shape=x}return g}var sY={kernelName:Fs,backendName:"wasm",setupFunc:aY,kernelFunc:rY},iY=!1,oY=An($s,iY),C1;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(C1||(C1={}));var e6;function lY(e){e6=e.wasm.cwrap(Ds,null,["number","array","number","number","array","array","number","number"])}function uY(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,mode:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=a.map(m=>m[0]),p=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(d).buffer),h=new Uint8Array(new Int32Array(p).buffer);return e6(i,u,t.shape.length,Nn[t.dtype],c,h,C1[r],l),o}var dY={kernelName:Ds,backendName:"wasm",kernelFunc:uY,setupFunc:lY},pY=!0,cY=An(zs,pY),hY=mn(zo);function R1(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var t6;function fY(e){t6=e.wasm.cwrap(_o,"number",["number","number","number","number","number"])}function mY(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,d=t.dataIdMap.get(l.dataId).id,p=t6(u,d,s,r,i),{pSelectedIndices:c,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=R1(t,p);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",c)}var AY={kernelName:_o,backendName:"wasm",setupFunc:fY,kernelFunc:mY},n6;function yY(e){n6=e.wasm.cwrap(Po,"number",["number","number","number","number","number","bool"])}function gY(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:u}=n,d=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,c=n6(d,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=R1(t,c);t.wasm._free(f);let y=t.makeOutput([m],"int32",h),g=t.makeOutput([],"int32",A);return[y,g]}var xY={kernelName:Po,backendName:"wasm",setupFunc:yY,kernelFunc:gY},a6;function bY(e){a6=e.wasm.cwrap(Lo,"number",["number","number","number","number","number","number"])}function vY(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:u}=n,d=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,c=a6(d,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=R1(t,c);t.wasm._free(A);let y=t.makeOutput([m],"int32",h),g=t.makeOutput([m],"float32",f);return[y,g]}var wY={kernelName:Lo,backendName:"wasm",setupFunc:bY,kernelFunc:vY},kY=!1,IY=An(Oo,kY,"bool"),r6;function SY(e){r6=e.wasm.cwrap(Os,null,["number","number","number","number","number"])}function NY(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=n.makeOutput([...r.shape,s],"int32"),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(r.dataId).id;return r6(d,s,i,o,u),l}var TY={kernelName:Os,backendName:"wasm",setupFunc:SY,kernelFunc:NY};function EY(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var CY={kernelName:Wo,backendName:"wasm",kernelFunc:EY};function RY(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return E1({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{k.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let p=E1({inputs:{input:d},backend:n,attrs:{dim:r}});return o.push(p),p}),u=Ow({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(d=>n.disposeData(d.dataId)),u}var MY={kernelName:Bo,backendName:"wasm",kernelFunc:RY},s6;function FY(e){s6=e.wasm.cwrap(_s,null,["number","array","number","number","array","array","number","number"])}function $Y(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=a.map(m=>m[0]),p=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(d).buffer),h=new Uint8Array(new Int32Array(p).buffer);return s6(i,u,t.shape.length,Nn[t.dtype],c,h,r,l),o}var DY={kernelName:_s,backendName:"wasm",kernelFunc:$Y,setupFunc:FY},zY=!1,OY=An(Ps,zY),i6;function _Y(e){i6=e.wasm.cwrap(Ls,null,["number","number","number"])}function PY(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=n.makeOutput(a.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return i6(s,i,l),o}var LY={kernelName:Ls,backendName:"wasm",setupFunc:_Y,kernelFunc:PY},o6;function WY(e){o6=e.wasm.cwrap(Vo,null,["number","number","number","number"])}function BY(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:p,originalAxes:c,inputWasTransposed:h}=Ur(i,r,t),m=p;if(h){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,A]=C.computeOutAndReduceShapes(u.shape,m),y=k.sizeFromShape(A),g=t.makeOutput(f,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;o6(l,y,Nn[g.dtype],x)}if(h&&t.disposeData(d.dataId),s){let x=C.expandShapeToKeepDim(g.shape,c);g.shape=x}return g}var VY={kernelName:Vo,backendName:"wasm",setupFunc:WY,kernelFunc:BY},jY=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=QA(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},UY={kernelName:Fu,backendName:"wasm",kernelFunc:jY},HY=!0,GY=An(xs,HY),qY=mn(Ws),XY=mn(Vs),l6;function KY(e){l6=e.wasm.cwrap(Bs,null,["number","number","number","number","number","number","number","number","number","number"])}function ZY(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[d,p,c,h]=r.shape,m=[d,l,u,h],f=t.dataIdMap.get(r.dataId),A;f.dtype!=="float32"&&(A=Dh({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(A.dataId));let y=f.id,g=t.makeOutput(m,"float32");if(k.sizeFromShape(r.shape)===0)return g;let x=t.dataIdMap.get(g.dataId).id;return l6(y,d,p,c,h,l,u,s?1:0,i?1:0,x),A!=null&&t.disposeData(A.dataId),g}var YY={kernelName:Bs,backendName:"wasm",setupFunc:KY,kernelFunc:ZY},u6;function JY(e){u6=e.wasm.cwrap(js,null,["number","array","number","array","number","number"])}function QY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=k.parseAxisParam(s,r.shape);if(r.shape.length===0)return Fh({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(o.dataId).id,d=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);u6(l,d,i.length,p,r.shape.length,u);let c=va({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),c}var eJ={kernelName:js,backendName:"wasm",kernelFunc:QY,setupFunc:JY},d6;function tJ(e){d6=e.wasm.cwrap(rl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function nJ(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,d=n.dataIdMap.get(l.dataId).id,[p,c,h,m]=r.shape,[f,A]=C.getImageCenter(o,c,h),y=i===0,g=255,x=typeof i=="number"?[i,i,i,y?0:g]:[...i,g],w=new Uint8Array(new Int32Array(x).buffer);return d6(u,p,c,h,m,s,f,A,w,x.length,d),l}var aJ={kernelName:rl,backendName:"wasm",kernelFunc:nJ,setupFunc:tJ},rJ=mn(Us),sJ=mn(Hs),p6;function iJ(e){p6=e.wasm.cwrap(Ho,null,["number","number","number","number","number","number","array","number","number"])}function oJ(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(k.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:d,strides:p,outputSize:c}=qm.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(p).buffer),A=t.dataIdMap.get(o.dataId).id;return p6(h,m,Nn[s.dtype],l,u,d,f,c,A),o}var lJ={kernelName:Ho,backendName:"wasm",setupFunc:iJ,kernelFunc:oJ},c6;function uJ(e){c6=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function dJ(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(r.shape,r.dtype),d=n.dataIdMap.get(u.dataId).id,p=a.shape.length,c=r.shape.length,h=p===0||p>1||c===1?1:k.sizeFromShape(r.shape.slice(1));return c6(i,o,l,h,d),u}var pJ={kernelName:Go,backendName:"wasm",kernelFunc:dJ,setupFunc:uJ},h6;function cJ(e){h6=e.wasm.cwrap(qs,null,["number","number"])}function hJ(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return k.sizeFromShape(r.shape)===0||h6(a,s),r}var fJ={kernelName:"Sigmoid",backendName:"wasm",setupFunc:cJ,kernelFunc:hJ},mJ=mn(Gs);function zh(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=ln.parseSliceParams(t,n,a),o=ln.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),u=r.makeOutput(i,t.dtype),d=k.computeStrides(t.shape),p=r.dataIdMap.get(u.dataId);if(o){let m=ln.computeFlatOffset(s,d);return t.dtype==="string"?p.stringBytes=l.slice(m,m+k.sizeFromShape(i)):r.typedArrayFromHeap(u).set(l.subarray(m,m+k.sizeFromShape(i))),u}if(t.dtype==="string"){let m=ph(l,s,i,t.shape,t.dtype);return p.stringBytes=m,u}let c=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)AJ(l,d[0],c,s,i);else if(h===3)yJ(l,d[0],d[1],c,s,i);else if(h===4)gJ(l,d[0],d[1],d[2],c,s,i);else{let m=ph(l,s,i,t.shape,t.dtype);c.set(m)}return u}function AJ(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let u=i;u<l;u++){let d=u*t+o;n.set(e.subarray(d,d+r[1]),s),s+=r[1]}}function yJ(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],u=r[2],d=o+s[0],p=l+s[1];for(let c=o;c<d;c++)for(let h=l;h<p;h++){let m=c*t+h*n+u;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function gJ(e,t,n,a,r,s,i){let o=0,l=s[0],u=s[1],d=s[2],p=l+i[0],c=u+i[1],h=d+i[2],m=s[3];for(let f=l;f<p;f++)for(let A=u;A<c;A++)for(let y=d;y<h;y++){let g=f*t+A*n+y*a+m;r.set(e.subarray(g,g+i[3]),o),o+=i[3]}}var xJ={kernelName:Xo,backendName:"wasm",kernelFunc:zh},f6;function bJ(e){f6=e.wasm.cwrap(Zs,null,["number","number","number","number"])}function vJ(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=k.sizeFromShape(n.shape)/o;return k.sizeFromShape(s.shape)===0||f6(r,i,o,l),s}var wJ={kernelName:Zs,backendName:"wasm",setupFunc:bJ,kernelFunc:vJ};function kJ(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=k.parseAxisParam(i,r.shape)[0],l=C.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),d=r.shape.slice();return l.map(p=>{let c=[...d];c[o]=p;let h=zh({inputs:{x:r},attrs:{begin:u,size:c},backend:a});return u[o]+=p,h})}var IJ={kernelName:Jo,backendName:"wasm",kernelFunc:kJ},SJ=mn(Xs),NJ=mn(zu),TJ=!0,EJ=An(Ys,TJ),m6;function CJ(e){m6=e.wasm.cwrap(Rr,null,["number","number","number"])}function RJ(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return m6(i,r,l),o}var MJ={kernelName:Rr,backendName:"wasm",setupFunc:CJ,kernelFunc:RJ},A6;function FJ(e){A6=e.wasm.cwrap(Qo,null,["number","array","number","array","array","array","array","array","number","number"])}function $J(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o}=a;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:p,shrinkAxisMask:c}=a,h=C.slice_util.maskToAxes(d);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(d!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(d!==0&&c!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=r.shape.length-s.length,f=C.slice_util.maskToAxes(p),A=r.shape.slice();f.forEach($=>{s[$]=0,i[$]=1,A.splice($,0,1)});let y=va({inputs:{x:r},attrs:{shape:A},backend:t}),{begin:g,end:x,strides:w}=C.slice_util.getNormalizedAxes(y.shape,h,m,s,i,o,l,u,d);s=g,i=x,o=w;let b=C.slice_util.maskToAxes(c);b.forEach($=>{i[$]=s[$]+1,o[$]=1});let v=C.slice_util.computeOutShape(s,i,o),N=v.filter(($,O)=>b.indexOf(O)===-1);if(o.every($=>$===1)){let $=zh({inputs:{x:y},attrs:{begin:s,size:v},backend:t});t.disposeData(y.dataId);let O=va({inputs:{x:$},attrs:{shape:N},backend:t});return t.disposeData($.dataId),O}let T=t.makeOutput(N,"float32");if(!N.some($=>$===0)){let $=t.dataIdMap.get(y.dataId).id,O=new Uint8Array(new Int32Array(k.computeStrides(y.shape)).buffer),_=new Uint8Array(new Int32Array(s).buffer),V=new Uint8Array(new Int32Array(i).buffer),U=new Uint8Array(new Int32Array(o).buffer),j=new Uint8Array(new Int32Array(N).buffer),X=new Uint8Array(new Int32Array(k.computeStrides(N)).buffer),G=t.dataIdMap.get(T.dataId).id;A6($,O,y.shape.length,_,V,U,j,X,N.length,G)}t.disposeData(y.dataId);let R=va({inputs:{x:T},attrs:{shape:N},backend:t});return t.disposeData(T.dataId),R}var DJ={kernelName:Qo,backendName:"wasm",setupFunc:FJ,kernelFunc:$J},zJ=!0,OJ=An(Js,zJ),y6;function _J(e){y6=e.wasm.cwrap(Ks,null,["number, number, number"])}function PJ(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:p,originalAxes:c,inputWasTransposed:h}=Ur(i,r,t),m=p;if(h){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,A]=C.computeOutAndReduceShapes(u.shape,m),y=k.sizeFromShape(A),g=t.makeOutput(f,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;y6(l,y,x)}if(h&&t.disposeData(d.dataId),s){let x=C.expandShapeToKeepDim(g.shape,c);g.shape=x}return g}var LJ={kernelName:Ks,backendName:"wasm",setupFunc:_J,kernelFunc:PJ},WJ=mn(Qs),BJ=mn(ei),g6;function VJ(e){g6=e.wasm.cwrap(Cr,null,["number","array","number","array","number","number"])}function jJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let c=0;c<o.length;c++)o[c]=r.shape[c]*i[c];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),d=n.makeOutput(o,r.dtype),p=n.dataIdMap.get(d.dataId).id;return g6(s,l,r.shape.length,u,o.length,Nn[d.dtype],p),d}var UJ={kernelName:Cr,backendName:"wasm",setupFunc:VJ,kernelFunc:jJ},x6;function HJ(e){x6=e.wasm.cwrap(el,null,["number","array","number","number","number","bool","number","number"])}var GJ=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,a.dtype),d=t.dataIdMap.get(u.dataId).id,p=t.makeOutput(l,"int32"),c=t.dataIdMap.get(p.dataId).id;return x6(i,o,a.shape.length,Nn[a.dtype],r,s,d,c),[u,p]},qJ={kernelName:el,backendName:"wasm",setupFunc:HJ,kernelFunc:GJ},b6;function XJ(e){b6=e.wasm.cwrap(tl,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function KJ(e){let{backend:t,inputs:n,attrs:a}=e,{image:r,transforms:s}=n,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[d,p,c,h]=r.shape,[m,f]=u!=null?u:[p,c],A=[d,m,f,h],y=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),g=t.makeOutput(A,r.dtype),x=t.dataIdMap.get(g.dataId).id,w=t.dataIdMap.get(r.dataId).id,b=t.dataIdMap.get(s.dataId).id,v=i==="nearest"?1:2,N;switch(o){case"constant":N=1;break;case"reflect":N=2;break;case"wrap":N=3;break;case"nearest":N=4;break;default:N=1;break}return b6(w,b,s.shape[0]>1,d,m,f,h,c,p,y,r.shape.length-1,v,N,l,x),g}var ZJ={kernelName:tl,backendName:"wasm",setupFunc:XJ,kernelFunc:KJ};function YJ(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==s&&(l[u++]=r.shape[h]);let d=new Array(i),p=new Array(o).fill(0),c=r.shape.slice();c[s]=1;for(let h=0;h<d.length;h++)p[s]=h,d[h]=zh({inputs:{x:r},attrs:{begin:p,size:c},backend:n});return d.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var JJ={kernelName:nl,backendName:"wasm",kernelFunc:YJ};function QJ(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var eQ={kernelName:al,backendName:"wasm",kernelFunc:QJ},tQ=[oK,uK,cK,bK,kK,NK,CK,$K,DK,zK,PK,LK,VK,HK,GK,KK,JK,tZ,rZ,iZ,oZ,lZ,dZ,hZ,fZ,AZ,iK,xZ,wZ,SZ,EZ,MZ,$Z,zZ,hK,PZ,WZ,VZ,jZ,HZ,XZ,ZZ,QZ,nY,sY,oY,dY,cY,hY,AY,xY,wY,IY,TY,CY,MY,DY,OY,LY,VY,UY,GY,qY,XY,RK,YY,eJ,aJ,sJ,rJ,lJ,pJ,fJ,mJ,xJ,wJ,IJ,SJ,NJ,EJ,MJ,DJ,OJ,LJ,WJ,BJ,UJ,qJ,ZJ,yK,JJ,eQ];for(let e of tQ)si(e);var M1=J();M1.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));M1.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(M1.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var v6=eo(mI()),nQ='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',aQ=eo(AI()),w6=class extends gu{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Rp(this,ir())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=k.sizeFromShape(n),o=i*k.bytesPerElement(a),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:a,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let s=this.wasm.HEAPU8.slice(t,t+k.sizeFromShape(a)*k.bytesPerElement(n));return iQ(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{let r=this.dataIdNextNumber++;a={id:r},this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=k.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=k.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function rQ(e){return(t,n)=>(k.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function k6(e,t,n){if(Oh!=null)return Oh;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),Td!=null&&Td[a]!=null?Td[a]:n+a}async function sQ(){let[e,t]=await Promise.all([J().getAsync("WASM_HAS_SIMD_SUPPORT"),J().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=nQ,d=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(d)}return o.endsWith(".wasm")?k6(e,t,Nd!=null?Nd:l):l+o},F1&&(r.instantiateWasm=rQ(k6(e,t,Nd!=null?Nd:"")));let s=!1;r.onAbort=()=>{s||Ed||(Ed=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Oh==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+v6.default.toString()],{type:"text/javascript"}),i=(0,v6.default)(r)):i=(0,aQ.default)(r),i.then(o=>{s=!0,Ed=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function iQ(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var oQ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Oh=null,Nd=null,Td={},Ed=!1,F1=!1;function lQ(e,t=!1){if(Qm("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Ed)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Oh=e,F1=t}function uQ(e,t=!1){if(Ed)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Nd=e;else{Td=e;let n=oQ.filter(a=>Td[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}F1=t}var I6="3.6.0",dQ=2;hl("wasm",async()=>{let{wasm:e}=await sQ();return new w6(e)},dQ);Z().prototype.abs=function(){return this.throwIfDisposed(),Pt(this)};Z().prototype.acos=function(){return this.throwIfDisposed(),tA(this)};Z().prototype.acosh=function(){return this.throwIfDisposed(),nA(this)};Z().prototype.add=function(e){return this.throwIfDisposed(),se(this,e)};Z().prototype.all=function(e,t){return this.throwIfDisposed(),Ic(this,e,t)};Z().prototype.any=function(e,t){return this.throwIfDisposed(),Xu(this,e,t)};Z().prototype.argMax=function(e){return this.throwIfDisposed(),Ku(this,e)};Z().prototype.argMin=function(e){return this.throwIfDisposed(),aA(this,e)};Z().prototype.asScalar=function(){return this.throwIfDisposed(),F(this.size===1,()=>"The array must have only 1 element."),H(this,[])};Z().prototype.asType=function(e){return this.throwIfDisposed(),fe(this,e)};Z().prototype.as1D=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.as2D=function(e,t){return this.throwIfDisposed(),H(this,[e,t])};Z().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),H(this,[e,t,n])};Z().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),H(this,[e,t,n,a])};Z().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),H(this,[e,t,n,a,r])};Z().prototype.asin=function(){return this.throwIfDisposed(),rA(this)};Z().prototype.asinh=function(){return this.throwIfDisposed(),sA(this)};Z().prototype.atan=function(){return this.throwIfDisposed(),iA(this)};Z().prototype.atan2=function(e){return this.throwIfDisposed(),oA(this,e)};Z().prototype.atanh=function(){return this.throwIfDisposed(),lA(this)};Z().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),Yu(this,e,t,n,a)};Z().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Ju(this,e,t)};Z().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),hi(this,e,t,n,a,r)};Z().prototype.broadcastTo=function(e){return this.throwIfDisposed(),ml(this,e)};Z().prototype.cast=function(e){return this.throwIfDisposed(),fe(this,e)};Z().prototype.ceil=function(){return this.throwIfDisposed(),hA(this)};Z().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),Sn(this,e,t)};Z().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Le&&(e=[e]),ot([this,...e],t)};Z().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Nc(this,e,t,n,a,r,s)};Z().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),Tc(this,e,t,n,a,r)};Z().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),or(this,e,t,n,a,r,s)};Z().prototype.cos=function(){return this.throwIfDisposed(),Qu(this)};Z().prototype.cosh=function(){return this.throwIfDisposed(),Ec(this)};Z().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Cc(this,e,t,n)};Z().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),AA(this,e,t)};Z().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),yl(this,e,t,n,a,r,s)};Z().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),yA(this,e,t,n,a,r)};Z().prototype.divNoNan=function(e){return this.throwIfDisposed(),gA(this,e)};Z().prototype.div=function(e){return this.throwIfDisposed(),me(this,e)};Z().prototype.dot=function(e){return this.throwIfDisposed(),Xb(this,e)};Z().prototype.elu=function(){return this.throwIfDisposed(),gl(this)};Z().prototype.equal=function(e){return this.throwIfDisposed(),Or(this,e)};Z().prototype.erf=function(){return this.throwIfDisposed(),xA(this)};Z().prototype.exp=function(){return this.throwIfDisposed(),Yn(this)};Z().prototype.expandDims=function(e){return this.throwIfDisposed(),un(this,e)};Z().prototype.expm1=function(){return this.throwIfDisposed(),bA(this)};Z().prototype.fft=function(){return this.throwIfDisposed(),ld(this)};Z().prototype.flatten=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.floor=function(){return this.throwIfDisposed(),bl(this)};Z().prototype.floorDiv=function(e){return this.throwIfDisposed(),wc(this,e)};Z().prototype.gather=function(e,t){return this.throwIfDisposed(),fi(this,e,t)};Z().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Pr(this,e)};Z().prototype.greater=function(e){return this.throwIfDisposed(),Fn(this,e)};Z().prototype.ifft=function(){return this.throwIfDisposed(),Sl(this)};Z().prototype.irfft=function(){return this.throwIfDisposed(),Gc(this)};Z().prototype.isFinite=function(){return this.throwIfDisposed(),Zb(this)};Z().prototype.isInf=function(){return this.throwIfDisposed(),Yb(this)};Z().prototype.isNaN=function(){return this.throwIfDisposed(),wA(this)};Z().prototype.leakyRelu=function(e){return this.throwIfDisposed(),ed(this,e)};Z().prototype.lessEqual=function(e){return this.throwIfDisposed(),Lr(this,e)};Z().prototype.less=function(e){return this.throwIfDisposed(),Mc(this,e)};Z().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),kA(this,e,t,n,a)};Z().prototype.logSigmoid=function(){return this.throwIfDisposed(),e3(this)};Z().prototype.logSoftmax=function(e){return this.throwIfDisposed(),Dc(this,e)};Z().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),NA(this,e,t)};Z().prototype.log=function(){return this.throwIfDisposed(),$n(this)};Z().prototype.log1p=function(){return this.throwIfDisposed(),Fc(this)};Z().prototype.logicalAnd=function(e){return this.throwIfDisposed(),da(this,e)};Z().prototype.logicalNot=function(){return this.throwIfDisposed(),td(this)};Z().prototype.logicalOr=function(e){return this.throwIfDisposed(),zc(this,e)};Z().prototype.logicalXor=function(e){return this.throwIfDisposed(),r3(this,e)};Z().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Be(this,e,t,n)};Z().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),nd(this,e,t,n,a)};Z().prototype.max=function(e,t){return this.throwIfDisposed(),Jn(this,e,t)};Z().prototype.maximum=function(e){return this.throwIfDisposed(),Wa(this,e)};Z().prototype.mean=function(e,t){return this.throwIfDisposed(),wt(this,e,t)};Z().prototype.min=function(e,t){return this.throwIfDisposed(),vl(this,e,t)};Z().prototype.minimum=function(e){return this.throwIfDisposed(),wl(this,e)};Z().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),EA(this,e,t)};Z().prototype.mod=function(e){return this.throwIfDisposed(),CA(this,e)};Z().prototype.mul=function(e){return this.throwIfDisposed(),P(this,e)};Z().prototype.neg=function(){return this.throwIfDisposed(),vt(this)};Z().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Zc(this,e,t,n)};Z().prototype.notEqual=function(e){return this.throwIfDisposed(),yi(this,e)};Z().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),pl(this,e,t,n)};Z().prototype.onesLike=function(){return this.throwIfDisposed(),zn(this)};Z().prototype.pad=function(e,t){return this.throwIfDisposed(),lr(this,e,t)};Z().prototype.pool=function(e,t,n,a,r){return this.throwIfDisposed(),o3(this,e,t,n,a,r)};Z().prototype.pow=function(e){return this.throwIfDisposed(),ur(this,e)};Z().prototype.prelu=function(e){return this.throwIfDisposed(),rd(this,e)};Z().prototype.prod=function(e,t){return this.throwIfDisposed(),_c(this,e,t)};Z().prototype.reciprocal=function(){return this.throwIfDisposed(),FA(this)};Z().prototype.relu=function(){return this.throwIfDisposed(),Ba(this)};Z().prototype.relu6=function(){return this.throwIfDisposed(),Pc(this)};Z().prototype.reshapeAs=function(e){return this.throwIfDisposed(),H(this,e.shape)};Z().prototype.reshape=function(e){return this.throwIfDisposed(),H(this,e)};Z().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),S3(this,e,t,n)};Z().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),N3(this,e,t,n)};Z().prototype.reverse=function(e){return this.throwIfDisposed(),On(this,e)};Z().prototype.rfft=function(){return this.throwIfDisposed(),ud(this)};Z().prototype.round=function(){return this.throwIfDisposed(),Lc(this)};Z().prototype.rsqrt=function(){return this.throwIfDisposed(),Wc(this)};Z().prototype.selu=function(){return this.throwIfDisposed(),Bc(this)};Z().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),$A(this,e,t,n,a,r,s)};Z().prototype.sigmoid=function(){return this.throwIfDisposed(),In(this)};Z().prototype.sign=function(){return this.throwIfDisposed(),DA(this)};Z().prototype.sin=function(){return this.throwIfDisposed(),Vc(this)};Z().prototype.sinh=function(){return this.throwIfDisposed(),jc(this)};Z().prototype.slice=function(e,t){return this.throwIfDisposed(),Re(this,e,t)};Z().prototype.softmax=function(e){return this.throwIfDisposed(),od(this,e)};Z().prototype.softplus=function(){return this.throwIfDisposed(),mi(this)};Z().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),ad(this,e,t)};Z().prototype.split=function(e,t){return this.throwIfDisposed(),Gt(this,e,t)};Z().prototype.sqrt=function(){return this.throwIfDisposed(),Qt(this)};Z().prototype.square=function(){return this.throwIfDisposed(),it(this)};Z().prototype.squaredDifference=function(e){return this.throwIfDisposed(),qc(this,e)};Z().prototype.squeeze=function(e){return this.throwIfDisposed(),Va(this,e)};Z().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Le?[this,e]:[this,...e];return dn(n,t)};Z().prototype.step=function(e){return this.throwIfDisposed(),Nl(this,e)};Z().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),OA(this,e,t,n,a,r,s,i,o)};Z().prototype.sub=function(e){return this.throwIfDisposed(),ge(this,e)};Z().prototype.sum=function(e,t){return this.throwIfDisposed(),ke(this,e,t)};Z().prototype.tan=function(){return this.throwIfDisposed(),_A(this)};Z().prototype.tanh=function(){return this.throwIfDisposed(),ci(this)};Z().prototype.tile=function(e){return this.throwIfDisposed(),_r(this,e)};Z().prototype.toBool=function(){return this.throwIfDisposed(),fe(this,"bool")};Z().prototype.toFloat=function(){return this.throwIfDisposed(),fe(this,"float32")};Z().prototype.toInt=function(){return this.throwIfDisposed(),fe(this,"int32")};Z().prototype.topk=function(e,t){return this.throwIfDisposed(),PA(this,e,t)};Z().prototype.transpose=function(e){return this.throwIfDisposed(),Ye(this,e)};Z().prototype.unique=function(e){return this.throwIfDisposed(),Kc(this,e)};Z().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),LA(this,e,t)};Z().prototype.unstack=function(e){return this.throwIfDisposed(),pa(this,e)};Z().prototype.where=function(e,t){return this.throwIfDisposed(),an(e,this,t)};Z().prototype.zerosLike=function(){return this.throwIfDisposed(),Ue(this)};var S6={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,Nl(fe(n,"float32"),-1))}}},pQ={kernelName:ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=it(fe(n,"float32")),r=Qt(ge(Se(1),a));return vt(me(e,r))}}}},cQ={kernelName:so,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=Qt(ge(it(fe(n,"float32")),1));return me(e,a)}}}},hQ={kernelName:Tr,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=e,i=Lt(n.shape,r);return i.length>0&&(s=ke(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Lt(a.shape,r);return i.length>0&&(s=ke(s,i)),H(s,a.shape)}}}},fQ={kernelName:ls,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},mQ={kernelName:us,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ue(n)}}},AQ={kernelName:vu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ue(n)}}},yQ={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,Qt(ge(Se(1),it(fe(n,"float32")))))}}},gQ={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=Qt(se(Se(1),it(fe(n,"float32"))));return me(e,a)}}}},xQ={kernelName:ho,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=se(it(n),it(a)),i=P(e,me(a,s)),o=Lt(n.shape,r);return o.length>0&&(i=ke(i,o)),H(i,n.shape)},b:()=>{let s=se(it(n),it(a)),i=vt(P(e,me(n,s))),o=Lt(a.shape,r);return o.length>0&&(i=ke(i,o)),H(i,a.shape)}}}},bQ={kernelName:po,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,se(it(fe(n,"float32")),1))}}},vQ={kernelName:co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,ge(Se(1),it(fe(n,"float32"))))}}};function wQ(e,t,n,a,r,s){let i=M(e,"dy","avgPool3dGrad"),o=M(t,"input","avgPool3dGrad"),l=i,u=o,d=!1;o.rank===4&&(d=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),F(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),F(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),s!=null&&F(Ut(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let p={dy:l,input:u},c={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=D.runKernel(zp,p,c);return d?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var kQ=z({avgPool3dGrad_:wQ}),IQ={kernelName:wu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>kQ(e,a,r,s,i,o)}}};function SQ(e,t,n,a,r){let s=M(e,"dy","avgPoolGrad"),i=M(t,"input","avgPoolGrad");F(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),F(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let d={dy:l,input:o},p={filterSize:n,strides:a,pad:r},c=D.runKernel(Dp,d,p);return u?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var NQ=z({avgPoolGrad_:SQ}),TQ={kernelName:ds,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>NQ(e,a,r,s,i)}}},EQ={kernelName:ps,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Be(e,r,!1,!0),b:()=>Be(a,e,!0,!1)}:!s&&i?{a:()=>Be(e,r,!1,!1),b:()=>Be(e,a,!0,!1)}:s&&!i?{a:()=>Be(r,e,!1,!0),b:()=>Be(a,e,!1,!1)}:{a:()=>Be(r,e,!0,!0),b:()=>Be(e,a,!0,!0)}}},CQ={kernelName:ku,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>ad(e,a,r)}}},RQ={kernelName:Vx,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>ke(e,o,!0)}}},MQ={kernelName:cs,gradFunc:e=>({x:()=>e.clone()})},FQ={kernelName:hs,gradFunc:e=>({x:()=>Ue(e)})},$Q={kernelName:Er,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>an(da(Pr(a,r),Lr(a,s)),e,Ue(e))}}},DQ={kernelName:Iu,inputsToSave:["x"],gradFunc:S6.gradFunc},zQ={kernelName:fo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=ia(r,t[0].shape)[0],i=a.map(o=>o[s]);return Gt(e,i,s).map(o=>()=>o)}},OQ={kernelName:fs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return F(zr(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>fA(a.shape,e,r,i,o,l),filter:()=>jA(a,e,r.shape,i,o,l)}}},_Q={kernelName:ms,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>or(e,r,s,i,o,1,l),filter:()=>jA(e,a,r.shape,s,i,o,l)}}};function PQ(e,t,n,a,r){let s=e;e.rank===4&&(s=H(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),F(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),F(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),F(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),F(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),F(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return D.runKernel(Lp,o,l)}var LQ=z({conv3DBackpropFilter_:PQ}),WQ={kernelName:Su,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;F(zr(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>Hb(i.shape,e,o,r,s),filter:()=>LQ(i,e,o.shape,r,s)}}},BQ={kernelName:As,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(vt(Vc(fe(n,"float32"))),e)}}},VQ={kernelName:mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(jc(fe(n,"float32")),e)}}},jQ={kernelName:ys,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=a3([r],a.rank),l=Cc(e,r,s,!i);return o!=null&&(l=Ye(l,o)),l}}}},UQ={kernelName:gs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;F(zr(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return F(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),F(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),F(Pa(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),i!=null&&F(Ut(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>g3(l.shape,e,u,r,s,a,i),filter:()=>y3(l,e,u.shape,r,s,a,i)}}},HQ={kernelName:Nu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>D.runKernel(Hp,s,n),filter:()=>D.runKernel(Gp,i,n)}}},GQ={kernelName:go,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>D.runKernel(Xp,a)}}},qQ={kernelName:xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=P(Yn(vt(it(n))),2/Math.sqrt(Math.PI));return{x:()=>P(e,a)}}},XQ={kernelName:bs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,n)}}},KQ={kernelName:vo,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>H(e,n.shape)}}},ZQ={kernelName:wo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,Yn(n))}}},YQ={kernelName:vs,gradFunc:e=>({x:()=>Ue(e)})},JQ={kernelName:ws,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=me(e,fe(a,"float32")),i=Lt(n.shape,r);return i.length>0?H(ke(s,i),n.shape):s},b:()=>{let s=P(e,fe(n,"float32")),i=Lt(a.shape,r);i.length>0&&(s=H(ke(s,i),a.shape));let o=it(a);return vt(me(s,fe(o,"float32")))}}}},QQ={kernelName:ks,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?Se(1):o,u=Lt(s.shape,r.shape),d=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)d.push(r.shape[f]);d.push(1)}let p=ge(r,s),c=P(e,l),h=Wc(se(i,Se(a))),m=P(P(P(h,h),h),Se(-.5));return{x:()=>s.rank===1?H(P(P(e,_r(H(h,[1,1,1,s.shape[0]]),d)),l),r.shape):H(P(P(e,h),l),r.shape),mean:()=>{let f=P(P(h,Se(-1)),c);return s.rank===1&&(f=ke(f,u)),H(f,s.shape)},variance:()=>{let f=P(P(m,p),c);return s.rank===1&&(f=ke(f,u)),H(f,s.shape)},scale:()=>{let f=P(p,h),A=P(e,f);return s.rank===1&&(A=ke(A,u)),H(A,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=ke(f,u)),H(f,s.shape)}}}},eee={kernelName:Io,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=ia(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,u=o.slice(0,i),d=u.length,p=o.slice(s,o.length).slice(1),c=p.length,h=N6(0,d),m=N6(d+1,d+1+c),f=T6([u,[l],p]),A=H(e,f),y=H(r,[l]),g=T6([[d],h,m]),x=Ye(A,g),w=LA(x,y,a.shape[i]),b=SA(g);return w=Ye(w,b),w},indices:()=>r}}};function N6(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function T6(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var tee={kernelName:Is,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>Ue(n),b:()=>Ue(a)}}},nee={kernelName:Ss,gradFunc:e=>({x:()=>fe(e,"float32")})},aee={kernelName:To,gradFunc:e=>({x:()=>Ue(e)})},ree={kernelName:Eo,gradFunc:e=>({x:()=>Ue(e)})},see={kernelName:Co,gradFunc:e=>({x:()=>Ue(e)})},iee={kernelName:Ns,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=Fn(a,0);return{x:()=>an(s,e,P(e,r))}}},oee={kernelName:Fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,se(n,1))}}},lee={kernelName:Ts,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,fe(n,"float32"))}}},uee={kernelName:jx,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=!0,i=Yn(a);return ge(e,P(ke(e,r,s),i))}}}};function dee(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return D.runKernel(Qp,o,l)}var pee=z({localResponseNormalizationBackprop_:dee}),cee={kernelName:Ru,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>pee(a,r,e,s,i,o,l)}}};function E6(e,t,n,a){return t.rank<n.rank&&(t=H(t,Ai(t.shape,a))),e.rank<n.rank&&(e=H(e,Ai(e.shape,a))),{x:()=>P(e,fe(Or(n,t),e.dtype))}}var C6={kernelName:Es,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=ia(r,s.shape),l=E6(e,i,s,o);return{x:()=>l.x()}}},hee={kernelName:Cs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>P(e,fe(Pr(n,a),"float32")),b:()=>P(e,fe(Mc(n,a),"float32"))}}};function fee(e,t,n,a,r,s,i){let o=M(e,"dy","maxPool3dGrad"),l=M(t,"input","maxPool3dGrad"),u=M(n,"output","maxPool3dGrad"),d=o,p=l,c=u,h=!1;l.rank===4&&(h=!0,d=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),p=H(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),c=H(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),F(d.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${d.rank}.`),F(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),F(c.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${c.rank}.`),i!=null&&F(Ut(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let m={dy:d,input:p,output:c},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},A=D.runKernel(tc,m,f);return h?H(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var mee=z({maxPool3dGrad_:fee}),Aee={kernelName:Mu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>mee(e,a,r,s,i,o,l)}}};function yee(e,t,n,a,r,s,i){let o=M(e,"dy","maxPoolGrad"),l=M(t,"input","maxPoolGrad"),u=M(n,"output","maxPoolGrad");F(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),F(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),F(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&F(Ut(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let d={dy:o,input:l,output:u},p={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return D.runKernel(ec,d,p)}var gee=z({maxPoolGrad_:yee}),xee={kernelName:Rs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>gee(e,a,r,s,i,o)}}},bee={kernelName:Ms,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=ia(r,a.shape),i=n3(a.shape,s)[1],o=Tt(i);return{x:()=>{let l=a.shape.slice();s.forEach(d=>{l[d]=1});let u=H(e,l);return me(P(u,Dn(a.shape,"float32")),o)}}}},vee={kernelName:Fs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=ia(r,s.shape),l=E6(e,i,s,o);return{x:()=>l.x()}}},wee={kernelName:$s,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>P(e,fe(Lr(n,a),"float32")),b:()=>P(e,fe(Fn(n,a),"float32"))}}},kee={kernelName:Ds,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Re(e,s,a.shape)}}},Iee={kernelName:Do,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=Lt(n.shape,r);return s.length>0?H(ke(e,s),n.shape):e},b:()=>{let s=P(e,vt(bl(me(n,a)))),i=Lt(a.shape,r);return i.length>0?H(ke(s,i),a.shape):s}}}},See={kernelName:zs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=P(e,fe(a,"float32")),i=Lt(n.shape,r);return i.length>0?H(ke(s,i),n.shape):s},b:()=>{let s=P(e,fe(n,"float32")),i=Lt(a.shape,r);return i.length>0?H(ke(s,i),a.shape):s}}}},Nee={kernelName:zo,gradFunc:e=>({x:()=>vt(e)})},Tee={kernelName:Os,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Rt(n.shape,"float32")}}},Eee={kernelName:Wo,gradFunc:e=>({x:()=>Ue(e)})},Cee={kernelName:Bo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return pa(e,a).map(r=>()=>r)}},R6={kernelName:_s,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Re(e,s,a.shape)}}},Ree={kernelName:Ps,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=pt(s.shape,i.shape);return{a:()=>{let l=fe(i,"float32"),u=P(e,P(l,ur(s,ge(l,Se(1))))),d=Lt(s.shape,o);return d.length>0&&(u=ke(u,d)),H(u,s.shape)},b:()=>{let l=Fn(s,0),u=an(l,$n(s),Ue(s)),d=P(e,P(r,u)),p=Lt(i.shape,o);return p.length>0&&(d=ke(d,p)),H(d,i.shape)}}}},Mee={kernelName:Ls,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=Fn(n,0);return{x:()=>an(r,e,P(e,a)),alpha:()=>{let s=an(r,Ue(e),P(e,n)),i=Lt(a.shape,e.shape);return i.length>0&&(s=ke(s,i)),H(s,a.shape)}}}},Fee={kernelName:xs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=me(e,fe(a,"float32")),i=Lt(n.shape,r);return i.length>0?H(ke(s,i),n.shape):s},b:()=>{let s=P(e,fe(n,"float32")),i=Lt(a.shape,r);i.length>0&&(s=H(ke(s,i),a.shape));let o=it(a);return vt(me(s,fe(o,"float32")))}}}},$ee={kernelName:jo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,vt(it(n)))}}},Dee={kernelName:Vs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=P(Lr(n,6),Nl(n));return{x:()=>P(e,fe(a,"float32"))}}},zee={kernelName:Ws,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,fe(Nl(n),"float32"))}}},Oee={kernelName:Uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>H(e,n.shape)}}},_ee={kernelName:Bs,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>D.runKernel(ic,r,n)}}},Pee={kernelName:$u,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>D.runKernel(sc,r,n)}}},Lee={kernelName:js,gradFunc:(e,t,n)=>{let{dims:a}=n,r=ia(a,e.shape);return{x:()=>On(e,r)}}},Wee={kernelName:Us,gradFunc:e=>({x:()=>Ue(e)})},Bee={kernelName:Hs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>vt(me(e,P(ur(n,1.5),2)))}}},Vee={kernelName:Go,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>fe(Ue(n),"float32"),t:()=>P(e,fe(n,e.dtype)),e:()=>P(e,fe(td(n),e.dtype))}}},jee={kernelName:qo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=Fn(n,Se(0)),r=Se(R3),s=Se(M3),i=P(e,s),o=P(P(e,r),Yn(fe(n,"float32")));return an(a,i,o)}}}},Uee={kernelName:qs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,P(n,ge(Se(1),n)))}}},Hee={kernelName:Zo,gradFunc:e=>({x:()=>Ue(e)})},Gee={kernelName:Gs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(Qu(fe(n,"float32")),e)}}},qee={kernelName:Ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(Ec(fe(n,"float32")),e)}}},Xee={kernelName:Xo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=Rb(a,r,s),u=[];for(let d=0;d<e.rank;d++)u.push([o[d],i[d]-o[d]-l[d]]);return{x:()=>lr(e,u)}}},Kee={kernelName:Zs,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=P(e,a);return{logits:()=>ge(i,P(ke(i,[r],s),a))}}},Zee={kernelName:Yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,In(n))}}},M6={kernelName:Du,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>Ju(e,a,r)}}},F6={kernelName:Jo,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>ot(e,a)}}},Yee={kernelName:Xs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,P(Qt(fe(n,"float32")),2))}}},Jee={kernelName:zu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,P(fe(n,"float32"),2))}}},Qee={kernelName:Ys,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=Se(2);return{a:()=>P(e,P(r,ge(n,a))),b:()=>P(e,P(r,ge(a,n)))}}},ete={kernelName:Rr,gradFunc:e=>({x:()=>Ue(e)})},tte={kernelName:Js,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=e,i=Lt(n.shape,r);return i.length>0&&(s=ke(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Lt(a.shape,r);return i.length>0&&(s=ke(s,i)),H(vt(s),a.shape)}}}},nte={kernelName:Ks,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;ia(s,a.shape).forEach(l=>{r[l]=1});let i=H(e,r),o=P(i,Dn(a.shape,"float32"));return{x:()=>o}}},ate={kernelName:Qs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,it(Qu(n)))}}},rte={kernelName:ei,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(ge(Se(1),it(n)),e)}}},ste={kernelName:Cr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=Ue(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=se(s,Re(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=se(s,Re(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=se(s,Re(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let u=0;u<r[3];++u)s=se(s,Re(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],u*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},ite={kernelName:ti,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=SA(r);return{x:()=>Ye(e,s)}}},ote={kernelName:nl,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>dn(e,r)}}},lte={kernelName:Ou,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ute(e,n)}}};function ute(e,t){let n=Wa(t,Ue(t)),a=fi(e,n),r=Pr(t,Se(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=un(r,o+1);r=da(r,Dn(a.shape,"bool"));let i=Ue(a);return an(r,a,i)}var dte={kernelName:al,gradFunc:e=>({x:()=>Ue(e)})},pte=[S6,pQ,cQ,hQ,fQ,mQ,AQ,yQ,gQ,xQ,bQ,vQ,IQ,TQ,EQ,CQ,RQ,MQ,FQ,$Q,DQ,zQ,_Q,OQ,WQ,BQ,VQ,jQ,UQ,HQ,Fee,GQ,qQ,XQ,KQ,ZQ,JQ,YQ,QQ,eee,tee,nee,aee,ree,see,iee,oee,lee,uee,cee,C6,C6,hee,Aee,xee,bee,vee,wee,kee,Iee,See,Nee,Tee,Eee,Cee,R6,R6,Ree,Mee,$ee,Dee,zee,Oee,_ee,Pee,Lee,Wee,Bee,Vee,jee,Uee,Hee,Gee,qee,Xee,Kee,Zee,M6,M6,F6,F6,Yee,Qee,Jee,ete,tte,nte,ate,rte,ste,ite,ote,lte,dte];for(let e of pte)Ux(e);var $6={};Fe($6,{maxNorm:()=>mte,minMaxNorm:()=>gte,nonNeg:()=>yte,unitNorm:()=>Ate});var $1;function Wt(){return $1==null&&($1=zb().epsilon()),$1}function wa(){return"channelsLast"}var hr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,hr.prototype)}},ka=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ka.prototype)}},B=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,B.prototype)}},ze=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ze.prototype)}},D6=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,D6.prototype)}};function Ei(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Ga(e,t){if(!e)throw new D6(t)}function z6(e,t){let n=0;for(let a of e)a===t&&n++;return n}function Tn(e){return e.length===1?e[0]:e}function ht(e){return Array.isArray(e)?e:[e]}function fr(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Ci(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var ca={};function D1(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function z1(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>z1(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:z1(a))}}}function Cd(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in ca)i=ca[s];else if(i=t[s],i==null)throw new B(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new B(`${a}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in ca?[o,l]=ca.className:i in t&&([o,l]=t[i]),o==null)throw new B(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(ca))u[h]=ca[h];for(let h of Object.keys(n))u[h]=n[h];let d=s.config;d.customObjects=u;let p=Object.assign({},ca);for(let h of Object.keys(n))ca[h]=n[h];z1(s.config);let c=l(o,s.config,n,r);return ca=Object.assign({},p),c}else{let u=Object.assign({},ca);for(let p of Object.keys(n))ca[p]=n[p];let d=new o(s.config);return ca=Object.assign({},u),d}}}function cte(e,t){return e<t?-1:e>t?1:0}function _h(e,t){return-1*cte(e,t)}function Hr(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function hte(e){if(e==null)throw new B(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Ri(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new B(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function O1(e,t,n=0,a=Infinity){return Ga(n>=0),Ga(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function Xt(e,t){Array.isArray(e)?(k.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>Xt(n,`element ${a+1} of ${t}`))):k.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${O6(e)}.`)}function O6(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>O6(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function fte(e,t){let n=k.now(),a;return(...r)=>{let s=k.now();return s-n<t||(n=s,a=e(...r)),a}}function _6(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function _1(e,t){return W(()=>Qt(ke(P(e,e),t,!0)))}var Rd=class extends ae.Serializable{getConfig(){return{}}},P1=class extends Rd{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return W(()=>{let t=_1(e,this.axis),n=Sn(t,0,this.maxValue);return P(e,me(n,se(Wt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};P1.className="MaxNorm";ae.registerClass(P1);var L1=class extends Rd{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return W(()=>me(e,se(Wt(),_1(e,this.axis))))}getConfig(){return{axis:this.axis}}};L1.className="UnitNorm";ae.registerClass(L1);var W1=class extends Rd{apply(e){return Ba(e)}};W1.className="NonNeg";ae.registerClass(W1);var B1=class extends Rd{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return W(()=>{let t=_1(e,this.axis),n=se(P(this.rate,Sn(t,this.minValue,this.maxValue)),P(1-this.rate,t));return P(e,me(n,se(Wt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};B1.className="MinMaxNorm";ae.registerClass(B1);var P6={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Bt(e){return D1(e)}function L6(e,t={}){return Cd(e,ae.SerializationMap.getMap().classNameMap,t,"constraint")}function Vt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in P6?P6[e]:e,config:{}};return L6(t)}else return e instanceof Rd?e:L6(e)}function mte(e){return new P1(e)}function Ate(e){return new L1(e)}function yte(){return new W1}function gte(e){return new B1(e)}var W6={};Fe(W6,{constant:()=>Bte,glorotNormal:()=>Xte,glorotUniform:()=>qte,heNormal:()=>Kte,heUniform:()=>Zte,identity:()=>Hte,leCunNormal:()=>Yte,leCunUniform:()=>Jte,ones:()=>Wte,orthogonal:()=>Qte,randomNormal:()=>jte,randomUniform:()=>Vte,truncatedNormal:()=>Ute,varianceScaling:()=>Gte,zeros:()=>Lte});var xte=["channelsFirst","channelsLast"],bte=["nearest","bilinear"],vte=["valid","same","causal"],wte=["max","avg"],kte=["sum","mul","concat","ave"],jl=new Map;function Ct(e){Ri(xte,"DataFormat",e)}function Ite(e){Ri(bte,"InterpolationFormat",e)}function na(e){Ri(vte,"PaddingMode",e)}function B6(e){Ri(wte,"PoolMode",e)}var Md=[],V6="/";function Mi(e,t){Md.push(e);try{let n=t();return Md.pop(),n}catch(n){throw Md.pop(),n}}function Ste(){return Md.length===0?"":Md.join(V6)+V6}function j6(e){if(!H6(e))throw new Error("Not a valid tensor name: '"+e+"'");return Ste()+e}function U6(e){if(!H6(e))throw new Error("Not a valid tensor name: '"+e+"'");jl.has(e)||jl.set(e,0);let t=jl.get(e);if(jl.set(e,jl.get(e)+1),t>0){let n=`${e}_${t}`;return jl.set(n,1),n}else return e}var Nte=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function H6(e){return!!e.match(Nte)}function Tte(e){return e===parseInt(e.toString(),10)}function Gr(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function G6(e){return e=Array.isArray(e)?new Float32Array(e):e,Et(e)}function Ul(e){return vl(G6(e)).dataSync()[0]}function qr(e){return Jn(G6(e)).dataSync()[0]}function Ia(e,t){if(t<e)throw new B(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}function Fd(e,t){return e.asType(t)}function $d(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function Ete(e,t){return W(()=>{if(e.shape.length!==2)throw new B(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=$d(e,1);return U1(n,[1,t,1])})}function Cte(e){let t=[Gr(e.shape)];return e.reshape(t)}function Rte(e){if(e.rank<=1)throw new B(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Gr(e.shape,1)];return e.reshape(t)}function Fi(e,t,n){return W(()=>{switch(e.rank){case 1:return Uc(e,t,n);case 2:return zA(e,[t,0],[n,e.shape[1]]);case 3:return Hc(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return id(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Re(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Re(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new B(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function V1(e,t,n){return W(()=>{switch(e.rank){case 1:return Uc(e,t,n);case 2:return zA(e,[0,t],[e.shape[0],n]);case 3:return Hc(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return id(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Ph(e,t,n,a){return W(()=>{switch(e.rank){case 1:return Uc(e,t,n);case 2:switch(a){case 1:return Fi(e,t,n);case 2:return V1(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return Fi(e,t,n);case 2:return Hc(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return V1(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return Fi(e,t,n);case 2:return id(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return id(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return V1(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${a}`)}default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function j1(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),ot(e,t)}function q6(e,t){switch(e.rank){case 1:return Vb([e,t]);case 2:return Al([e,t],0);case 3:return jb([e,t],0);case 4:return Ub([e,t],0);default:throw new B(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function U1(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new B(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return _r(e,t)}function Lh(e,t=0,n=1,a,r){return l3(e,t,n,a,r)}function qa(e,t,n,a){if(e.rank<2||t.rank<2)throw new ze(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new ze(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,s=!1;return Wr.matMul({a:e,b:t,transposeA:r,transposeB:s,bias:a?H1(e.rank,a,wa()):null,activation:n})}else{let r=e.shape.slice(),s=r.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],d=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=t.transpose(d).reshape([l,-1]);let p=[...r,...u],c=!1,h=!1;return Wr.matMul({a:e,b:t,transposeA:c,transposeB:h,bias:a?H1(e.rank,a,wa()):null,activation:n}).reshape(p)}}function X6(e,t,n){return W(()=>(Array.isArray(t)?t=Et(t,"int32"):t=t.toInt(),fi(e,t,n)))}function Dd(e){return P(e,e)}function H1(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new B(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1,1]):t.reshape([1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1]):t.reshape([1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1]):t.reshape([1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,a[0]]):t.reshape([1].concat(a))}else if(e<3)return t;throw new B(`Unsupported input rank by biasAdd: ${t.rank}`)}function Sa(e,t,n){return W(()=>(n==null&&(n=wa()),Ct(n),e.add(H1(e.rank,t,n))))}function Mte(e,t=1){if(t!==1)throw new ze(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return gl(e)}function Fte(e){return W(()=>me(e,Pt(e).add(1)))}function K6(e,t,n,a){return W(()=>m3(e,t,n,a))}function $te(e){return W(()=>{let t=se(.5,P(.2,e));return Sn(t,0,1)})}function zd(e,t,n=!1){return n?e():t()}var Dte=["fanIn","fanOut","fanAvg"],zte=["normal","uniform","truncatedNormal"];function Ote(e){Ri(Dte,"FanMode",e)}function _te(e){Ri(zte,"Distribution",e)}var ha=class extends ae.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},G1=class extends ha{apply(e,t){return Rt(e,t)}};G1.className="Zeros";ae.registerClass(G1);var Wh=class extends ha{apply(e,t){return Dn(e,t)}};Wh.className="Ones";ae.registerClass(Wh);var q1=class extends ha{constructor(e){super();if(typeof e!="object")throw new B(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new B(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return W(()=>P(Se(this.value),Dn(e,t)))}getConfig(){return{value:this.value}}};q1.className="Constant";ae.registerClass(q1);var X1=class extends ha{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return kl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};X1.className="RandomUniform";ae.registerClass(X1);var K1=class extends ha{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new ze(`randomNormal does not support dType ${t}.`);return Lh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};K1.className="RandomNormal";ae.registerClass(K1);var Z1=class extends ha{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new ze(`truncatedNormal does not support dType ${t}.`);return Xc(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Z1.className="TruncatedNormal";ae.registerClass(Z1);var Y1=class extends ha{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return W(()=>{if(e.length!==2||e[0]!==e[1])throw new B("Identity matrix initializer can only be used for 2D square matrices.");return P(this.gain,vA(e[0]))})}getConfig(){return{gain:this.gain}}};Y1.className="Identity";ae.registerClass(Y1);function Pte(e,t="channelsLast"){let n,a;if(Ct(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=Gr(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=Gr(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=Gr(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var En=class extends ha{constructor(e){super();if(e.scale<0)throw new B(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,Ote(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,_te(this.distribution),this.seed=e.seed}apply(e,t){let n=Pte(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new ze(`${this.getClassName()} does not support dType ${t}.`);return Xc(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return kl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};En.className="VarianceScaling";ae.registerClass(En);var Bh=class extends En{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return En.className}};Bh.className="GlorotUniform";ae.registerClass(Bh);var Vh=class extends En{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return En.className}};Vh.className="GlorotNormal";ae.registerClass(Vh);var jh=class extends En{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return En.className}};jh.className="HeNormal";ae.registerClass(jh);var Uh=class extends En{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return En.className}};Uh.className="HeUniform";ae.registerClass(Uh);var Hh=class extends En{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return En.className}};Hh.className="LeCunNormal";ae.registerClass(Hh);var Gh=class extends En{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return En.className}};Gh.className="LeCunNormal";ae.registerClass(Gh);var J1=class extends ha{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new ze("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return W(()=>{if(e.length<2)throw new ze("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=Lh(n,0,1,"float32"),r=E3.gramSchmidt(a);return e[0]>e[1]&&(r=r.transpose()),P(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};J1.className="Orthogonal";ae.registerClass(J1);var Z6={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Y6(e,t={}){return Cd(e,ae.SerializationMap.getMap().classNameMap,t,"initializer")}function kt(e){return D1(e)}function mt(e){if(typeof e=="string"){let t=e in Z6?Z6[e]:e;if(t==="GlorotNormal")return new Vh;if(t==="GlorotUniform")return new Bh;if(t==="HeNormal")return new jh;if(t==="HeUniform")return new Uh;if(t==="LeCunNormal")return new Hh;if(t==="LeCunUniform")return new Gh;{let n={};return n.className=t,n.config={},Y6(n)}}else return e instanceof ha?e:Y6(e)}function Lte(){return new G1}function Wte(){return new Wh}function Bte(e){return new q1(e)}function Vte(e){return new X1(e)}function jte(e){return new K1(e)}function Ute(e){return new Z1(e)}function Hte(e){return new Y1(e)}function Gte(e){return new En(e)}function qte(e){return new Bh(e)}function Xte(e){return new Vh(e)}function Kte(e){return new jh(e)}function Zte(e){return new Uh(e)}function Yte(e){return new Hh(e)}function Jte(e){return new Gh(e)}function Qte(e){return new J1(e)}var J6={};Fe(J6,{Layer:()=>qe,RNN:()=>Za,RNNCell:()=>Ud,activation:()=>zae,add:()=>Uae,alphaDropout:()=>Tre,average:()=>Hae,averagePooling1d:()=>A2,averagePooling2d:()=>y2,averagePooling3d:()=>g2,avgPool1d:()=>ere,avgPool2d:()=>nre,avgPool3d:()=>rre,avgPooling1d:()=>tre,avgPooling2d:()=>are,avgPooling3d:()=>sre,batchNormalization:()=>Yae,bidirectional:()=>xre,concatenate:()=>Gae,conv1d:()=>Nae,conv2d:()=>Tae,conv2dTranspose:()=>Eae,conv3d:()=>Cae,conv3dTranspose:()=>Rae,convLstm2d:()=>mre,convLstm2dCell:()=>Are,cropping2D:()=>Fae,dense:()=>Oae,depthwiseConv2d:()=>Dae,dot:()=>Zae,dropout:()=>_ae,elu:()=>bae,embedding:()=>jae,flatten:()=>Lae,gaussianDropout:()=>Nre,gaussianNoise:()=>Sre,globalAveragePooling1d:()=>ire,globalAveragePooling2d:()=>ore,globalMaxPool1d:()=>vre,globalMaxPool2d:()=>wre,globalMaxPooling1d:()=>o8,globalMaxPooling2d:()=>l8,gru:()=>ure,gruCell:()=>dre,input:()=>M4,inputLayer:()=>xae,layerNormalization:()=>Jae,leakyReLU:()=>wae,lstm:()=>pre,lstmCell:()=>cre,masking:()=>Ere,maxPool1d:()=>kre,maxPool2d:()=>Ire,maxPooling1d:()=>u8,maxPooling2d:()=>d8,maxPooling3d:()=>lre,maximum:()=>qae,minimum:()=>Xae,multiply:()=>Kae,permute:()=>Vae,prelu:()=>kae,reLU:()=>vae,repeatVector:()=>Wae,reshape:()=>Bae,rnn:()=>yre,separableConv2d:()=>Mae,simpleRNN:()=>hre,simpleRNNCell:()=>fre,softmax:()=>Iae,spatialDropout1d:()=>Pae,stackedRNNCells:()=>gre,thresholdedReLU:()=>Sae,timeDistributed:()=>bre,upSampling2d:()=>$ae,zeroPadding2d:()=>Qae});var ene=0;function Q6(){return ene++}var qh={};function Xh(e=""){return e in qh||(qh[e]=0),qh[e]+=1,e+qh[e].toString()}function Q1(e){return Array.isArray(e)&&Array.isArray(e[0])}function Kh(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function _e(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new B(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function rt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new B(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Zh(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var e4="Variable",t4=class{constructor(e,t="float32",n=e4,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=Q6(),n=n==null?e4:n,this.originalName=j6(n),this.name=U6(this.originalName),this.trainable_=a,this.constraint=r,this.val=d3(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),tne(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function tne(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function ey(e){return e.map(t=>t.read())}function ty(e){e.forEach(t=>{t[0].write(t[1])})}var Ft=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Na=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=Q6(),s!=null&&(this.originalName=j6(s),this.name=U6(this.originalName)),this.rank=t.length}},nne=0,Yh=class{constructor(e,t){this.callArgs=t,this.id=nne++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},ane=0,qe=class extends ae.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=ane++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=fr(n)+"_"+Xh(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new ka(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new B(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Tn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Tn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new hr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new hr(`Layer ${this.name} is not connected, no input to return.`);return Tn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new hr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new hr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Tn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=ht(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=ht(this.inputSpec);if(e.length!==t.length)throw new B(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new B(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),u=r.axes[o],d=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(d)===-1)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=ht(e),a=!0;for(let s of n)if(!(s instanceof Na)){a=!1;break}let r=!0;for(let s of n)if(s instanceof Na){r=!1;break}if(a===r)throw new B("Arguments to apply() must be all SymbolicTensors or all Tensors");return Mi(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of ht(e))s.push(i.shape);this.build(Tn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=ht(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Tn(o),this.activityRegularizer!=null)throw new ze("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=rne(e),i=this.computeOutputShape(s),o,l=sne(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,d)=>new Na(l,u,this,ht(e),t,this.name,d)):o=new Na(l,i,this,ht(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new ze("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new hr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new hr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new ka(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Zh(this.weights)}build(e){this.built=!0}getWeights(e=!1){return ey(e?this.trainableWeights:this.weights)}setWeights(e){W(()=>{let t=this.weights;if(t.length!==e.length)throw new B(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=ey(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!k.arraysEqual(s.shape,o.shape))throw new B(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}ty(n)})}addWeight(e,t,n,a,r,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new B(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=mt("zeros"));let o=a.apply(t,n),l=new t4(o,n,e,s,i);return o.dispose(),r!=null&&this.addLoss(()=>r.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=ht(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=ht(e);t=ht(t),n=ht(n),a=ht(a),r=Kh(r),s=Kh(s);let l=[],u=[],d=[];for(let p of o)l.push(p.sourceLayer),u.push(p.nodeIndex),d.push(p.tensorIndex);new Yh({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:d,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let p=0;p<t.length;p++)t[p].sourceLayer=this,t[p].nodeIndex=this.inboundNodes.length-1,t[p].tensorIndex=p}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function rne(e){e=ht(e);let t=[];for(let n of e)t.push(n.shape);return Tn(t)}function sne(e){return"float32"}function n4(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],u=n4(i,o,l);for(let d of u)r.indexOf(d)===-1&&r.push(d)}return r}}}var Hl=class extends qe{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Xh("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new B("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new B("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new B("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new Na(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new Yh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new B(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Hl.className="InputLayer";ae.registerClass(Hl);function a4(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new B("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Hl({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Xr(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];Ee(a)}}function r4(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var s4;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(s4||(s4={}));var ine=125,Gl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},i4=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},one=class extends Gl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=W(()=>se(this.totals[a],P(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:W(()=>{let a=P(me(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),Ht(t[n])}))}},o4=class extends Gl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},l4=class extends Gl{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=ine),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");k.isNumber(this.yieldEvery)&&(this.maybeWait=fte(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await Xr(n),a.push(this.yield(e,t,n))),a.push(oh()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Xr(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Xr(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(oh()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Xr(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Xr(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(oh()):k.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Xr(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Xr(e),await this.trainEnd(e))}};function u4(e,t){return e==null&&(e={}),e instanceof Gl?[e]:Array.isArray(e)&&e[0]instanceof Gl?e:ht(e).map(n=>new l4(n,t))}var fa=class{constructor(){}static registerCallbackConstructor(e,t){k.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),fa.checkForDuplicate(t),fa.constructors[e]==null&&(fa.constructors[e]=[]),fa.constructors[e].push(t)}static checkForDuplicate(e){for(let t in fa.constructors)fa.constructors[+t].forEach(n=>{if(n===e)throw new B("Duplicate callback constructor.")})}static clear(){fa.constructors={}}static createCallbacks(e){let t=[];for(let n in fa.constructors){let a=+n;e>=a&&t.push(...fa.constructors[a])}return t.map(n=>new n)}};fa.constructors={};function d4(e,t,n,a,r,s,i,o,l){let u=new o4,d=[new one,...fa.createCallbacks(t)];e!=null&&d.push(...e),d.push(u);let p=new i4(d);return p.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:p,history:u}}function Ta(e,t={},n=!1){return Cd(e,ae.SerializationMap.getMap().classNameMap,t,"layer",n)}function Jh(e,t){return W(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=ke(Dd(e),t,!0),a=xl(n.shape,Wt()),r=Qt(Wa(n,a));return me(e,r)})}function $i(e,t){return W(()=>wt(Dd(ge(t,e)),-1))}function Qh(e,t){return W(()=>wt(Pt(ge(t,e)),-1))}function ql(e,t){return W(()=>{let n=ge(e,t),a=Sn(Pt(e),Wt(),Number.MAX_VALUE),r=Pt(me(n,a));return P(100,wt(r,-1))})}function lne(e,t){return W(()=>{let n=Sn(t,Wt(),Number.MAX_VALUE),a=$n(se(1,n)),r=Sn(e,Wt(),Number.MAX_VALUE),s=$n(se(1,r));return wt(Dd(ge(a,s)),-1)})}function une(e,t){return W(()=>{let n=Wa(0,ge(1,P(e,t)));return wt(Dd(n),-1)})}function dne(e,t){return W(()=>{let n=Wa(0,ge(1,P(e,t)));return wt(n,-1)})}function pne(e,t){return W(()=>{let n=ke(P(e,t),-1),a=Jn(P(ge(1,e),t),-1);return Wa(0,se(1,ge(a,n)))})}function cne(e,t){return W(()=>{let n=Math.log(2),a=ge(t,e),r=ge(se(a,mi(P(-2,a))),n);return wt(r,-1)})}function Od(e,t,n=!1){return W(()=>{if(n)t=od(t);else{let a=ke(t,t.shape.length-1,!0);t=me(t,a)}return t=Sn(t,Wt(),1-Wt()),vt(ke(P(e.toFloat(),$n(t)),t.shape.length-1))})}function e0(e,t,n=!1){return W(()=>{let a=bl(Cte(e)).toInt();t=Sn(t,Wt(),1-Wt());let r=t.shape,s=pl(a,r[r.length-1]).reshape(r);return Od(s,t,n)})}function hne(e,t){if(!k.arraysEqual(e.shape,t.shape))throw new B(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return W(()=>{let n=t.relu(),a=t.abs().neg();return n.sub(t.mul(e)).add(a.exp().log1p())})}function t0(e,t){return W(()=>{let n;return n=Sn(t,Wt(),1-Wt()),n=$n(me(n,ge(1,n))),wt(hne(e,n),-1)})}function fne(e,t){return W(()=>{let n=Sn(e,Wt(),1),a=Sn(t,Wt(),1);return ke(P(e,$n(me(n,a))),-1)})}function mne(e,t){return W(()=>{let n=$n(se(Wt(),t));return wt(ge(t,P(e,n)),-1)})}function ny(e,t){return W(()=>{let n=Jh(e,-1),a=Jh(t,-1),r=P(n,a);return vt(ke(r,-1))})}var n0={meanSquaredError:$i,meanAbsoluteError:Qh,meanAbsolutePercentageError:ql,meanSquaredLogarithmicError:lne,squaredHinge:une,hinge:dne,categoricalHinge:pne,logcosh:cne,categoricalCrossentropy:Od,sparseCategoricalCrossentropy:e0,binaryCrossentropy:t0,kullbackLeiblerDivergence:fne,poisson:mne,cosineProximity:ny};function ay(e){if(typeof e=="string"){if(e in n0)return n0[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new B(t)}else return e}function ry(e,t){return W(()=>{let n=P(.5,zn(t)),a=Fd(Fn(t,n),e.dtype);return wt(Or(e,a),-1)})}function sy(e,t){return W(()=>Fd(Or(Ku(e,-1),Ku(t,-1)),"float32"))}function p4(e,t){return W(()=>da(e.equal(1),t.equal(1)).sum().cast("float32"))}function Ane(e,t){return W(()=>da(e.equal(1),t.equal(0)).sum().cast("float32"))}function yne(e,t){return W(()=>da(e.equal(0),t.equal(1)).sum().cast("float32"))}function c4(e,t){return W(()=>{let n=p4(e,t),a=yne(e,t),r=n.add(a);return an(Fn(r,0),n.div(r),0).cast("float32")})}function gne(e,t){return W(()=>{let n=p4(e,t),a=Ane(e,t),r=n.add(a);return an(Fn(r,0),n.div(r),0).cast("float32")})}function h4(e,t){return t0(e,t)}function f4(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Or(e,t).asType("float32")}var xne=$i,bne=$i,vne=Qh,wne=Qh,kne=ql,Ine=ql,iy=Od,Sne=ny,m4=e0,a0={binaryAccuracy:ry,categoricalAccuracy:sy,precision:c4,categoricalCrossentropy:iy,sparseCategoricalCrossentropy:m4,mse:xne,MSE:bne,mae:vne,MAE:wne,mape:kne,MAPE:Ine,cosine:Sne};function Nne(e){if(typeof e=="string"&&e in a0)return a0[e];if(typeof e!="string"&&e!=null)return e;throw new B(`Unknown metric ${e}`)}function r0(e){if(Ga(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(n0))if(n0[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(a0))if(a0[n]===e){t=n;break}return t!==void 0?t:e.name}}function Tne(e){let t={Adagrad:()=>xi.adagrad(.01),Adadelta:()=>xi.adadelta(1,.95,Wt()),Adam:()=>xi.adam(.001,.9,.999,Wt()),Adamax:()=>xi.adamax(.002,.9,.999,Wt(),0),RMSProp:()=>xi.rmsprop(.001,.9,0,Wt()),SGD:()=>xi.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new B(`Unknown Optimizer ${e}`)}var A4=1*1024*1024;function y4(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!oy(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>A4&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${A4}.`)}}function oy(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!oy(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!oy(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function Ene(e,t,n,a=console.log){let r=Rne(e),s=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(d=>Math.floor(t*d)));let i;if(!r){s.push("Receives inputs"),i=[];for(let d in e.nodesByDepth)i.push(...e.nodesByDepth[d])}a("_".repeat(t)),s0(s,n,a),a("=".repeat(t));let o=e.layers;for(let d=0;d<o.length;++d)r?Mne(o[d],n,a):Fne(o[d],n,i,a),a((d===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=Cne(e),u=Zh(e.nonTrainableWeights);a(`Total params: ${l+u}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${u}`),a("_".repeat(t))}function Cne(e){let t;return e.collectedTrainableWeights!=null?t=Zh(e.collectedTrainableWeights):t=Zh(e.trainableWeights),t}function Rne(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function s0(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function Mne(e,t,n){let a;try{a=JSON.stringify(e.outputShape)}catch(o){a="multiple"}let r=e.name,s=e.getClassName(),i=[`${r} (${s})`,a,e.countParams().toString()];s0(i,t,n)}function Fne(e,t,n,a){let r;try{r=JSON.stringify(e.outputShape)}catch(d){r="multiple"}let s=[];for(let d of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(d)===-1))for(let p=0;p<d.inboundLayers.length;++p){let c=d.inboundLayers[p].name,h=d.nodeIndices[p],m=d.tensorIndices[p];s.push(`${c}[${h}][${m}]`)}let i=e.name,o=e.getClassName(),l=s.length===0?"":s[0],u=[`${i} (${o})`,r,e.countParams().toString(),l];s0(u,t,a);for(let d=1;d<s.length;++d)s0(["","","",s[d]],t,a)}function g4(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function _d(e,t){if(e===null)return null;if(typeof e=="string")return Ci(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];g4(t,r,s)?n.push(s):n.push(_d(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=Ci(a);n[s]=_d(r,s)}}return n}}function ly(e,t){if(e==null)return null;if(typeof e=="string")return fr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];g4(t,r,s)?n.push(s):n.push(ly(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=fr(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=ly(r,a)}return n}}var uy="3.6.0";function $ne(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return fe(t,e.dtype)}catch(n){throw new B(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Di=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Di)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=$ne(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new B(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Na){if(this.id2Value[e.id]==null)throw new B(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new B(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Na){if(this.id2Value[e.id]==null)throw new B(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new B(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Ee(this.id2Mask)}},dy={},x4={};function Pd(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],u=t.names();for(let m of o)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-Infinity,a.minNumTensors=Infinity);let d=o.join(",")+"|"+t.names().join(","),p,c;if(dy[d]==null){let m=Dne(i,t);p=m.sorted,c=m.recipientCounts,dy[d]=p,x4[d]=c}p=dy[d],c={},r||Object.assign(c,x4[d]);let h=new Di(t);for(let m=0;m<p.length;++m){if(a!=null){let R=vc().numTensors;R>a.maxNumTensors&&(a.maxNumTensors=R),R<a.minNumTensors&&(a.minNumTensors=R)}let f=p[m],A=f.sourceLayer;if(A instanceof Hl)continue;let y=[],g=[],x=[],w=!1;for(let R of f.inputs){let $=h.getValue(R),O=h.getMask(R);y.push($),g.push(O),O!=null&&(w=!0),r||(c[R.name]--,c[R.name]===0&&!t.hasKey(R)&&o.indexOf(R.name)===-1&&!$.isDisposed&&R.sourceLayer.stateful!==!0&&x.push($))}w&&(n=n||{},n.mask=g[0]);let b=ht(A.apply(y,n)),v=null;A.supportsMasking&&(v=A.computeMask(y,g));let N=One(f),T=Array.isArray(N)?N:[N];for(let R=0;R<T.length;++R){h.hasKey(T[R])||h.add(T[R],b[R],Array.isArray(v)?v[0]:v);let $=o.indexOf(T[R].name);$!==-1&&(l[$]=b[R])}r||Ee(x)}return h.disposeMasks(),s?l:l[0]}function Dne(e,t){k.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=b4(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=b4(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(u=>a[l].add(u))}}return{sorted:n,recipientCounts:zne(a)}}function zne(e){let t={};for(let n in e)t[n]=e[n].size;return t}function b4(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:a,recipientMap:r}}function One(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var Xa=class extends qe{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=Xh(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Hr(this.inputs).length!==this.inputs.length)throw new B(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);Hr(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let g=y.sourceLayer,x=y.nodeIndex,w=y.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(w)}for(let y of this.inputs){let g=y.sourceLayer,x=y.nodeIndex,w=y.tensorIndex;Ga(x===0,"input layer has >1 nodes"),Ga(w===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(w)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let g=this.inputLayers[y];if(!(g instanceof Hl))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${g.getClassName()}.`);this.inputNames.push(g.name),this.feedInputShapes.push(g.batchInputShape),this.feedInputNames.push(g.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},a={},r={},s={},i=[],o=(y,g,x,w,b,v)=>{(w==null||b==null||v==null)&&(w=y.sourceLayer,b=y.nodeIndex,v=y.tensorIndex);let N=w.inboundNodes[b];if(x.indexOf(N)!==-1)throw new ka(`The tensor ${y.name} at layer "${w.name}" is part of a cycle.`);if(g.indexOf(N)!==-1)return;this.containerNodes.add(Xa.nodeKey(w,b)),w.id in s||(s[w.id]=Object.keys(s).length),x.indexOf(N)===-1&&x.push(N);let T=N.inboundLayers.length;for(let R=0;R<T;R++){let $=N.inputTensors[R],O=N.inboundLayers[R],_=N.nodeIndices[R],V=N.tensorIndices[R];o($,g,x,O,_,V)}for(g.push(N);x.indexOf(N)>=0;)x.splice(x.indexOf(N),1);i.push(N)},l=[],u=[];for(let y of this.outputs)o(y,l,u);let d=i.slice().reverse();for(let y of d){n[y.id]=y,y.id in t||(t[y.id]=0);let g=t[y.id],x=a[y.outboundLayer.id]==null?0:a[y.outboundLayer.id];g=Math.max(g,x),a[y.outboundLayer.id]=g,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=g;for(let w=0;w<y.inboundLayers.length;w++){let b=y.inboundLayers[w],v=y.nodeIndices[w],N=b.inboundNodes[v],T=t[N.id]==null?0:t[N.id];t[N.id]=Math.max(g+1,T),n[N.id]=N}}let p={};for(let y in t){let g=t[y];g in p||(p[g]=[]),p[g].push(n[y])}let c={};for(let y in a){let g=a[y];g in c||(c[g]=[]),c[g].push(r[y])}let h=Object.keys(c).map(y=>parseInt(y,10)).sort(_h);this.layers=[];for(let y of h){let g=c[y];g.sort((x,w)=>{let b=s[x.id],v=s[w.id];return b<v?-1:b>v?1:0});for(let x of g)x instanceof Xa&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=c,h=Object.keys(p).map(y=>parseInt(y,10)).sort(_h);let m=this.inputs.slice(),f=[];for(let y of h)for(let g of p[y]){let x=g.outboundLayer;if(x!=null){for(let w of g.inputTensors)if(m.indexOf(w)===-1)throw new ka(`Graph disconnected: cannot obtain value for tensor ${w} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let w of g.outputTensors)m.push(w);f.push(x.name)}}this.nodesByDepth=p;let A=this.layers.map(y=>y.name);for(let y of A){let g=A.filter(x=>x===y).length;if(g!==1)throw new ka(`The name "${y}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new Yh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new B("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new B(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new B(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new B(`${s.length} of ${a} weights are not set: ${s}`)}ty(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${uy}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=ly(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return W(()=>{e=ht(e);let n=new Di;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return Pd(this.outputs,n,t)})}computeMask(e,t){return W(()=>{e=ht(e);let n;return t==null?n=Ei(null,e.length):n=ht(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Kh(e);if(t.length!==this.inputLayers.length)throw new B(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(_h);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let d=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],A=l.nodeIndices[m],y=l.tensorIndices[m],g=`${f.name}_${A}_${y}`,x=n[g];d.push(x)}let p=u.computeOutputShape(Tn(d)),c=Kh(p),h=u.inboundNodes.indexOf(l);for(let m=0;m<c.length;m++){let f=`${u.name}_${h}_${m}`;n[f]=c[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],d=`${o.name}_${l}_${u}`;s.push(d)}for(let i=0;i<s.length;i++){let o=s[i];Ga(o in n),r.push(n[o])}return Tn(r)}runInternalGraph(e,t){t==null&&(t=Ei(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],d=t[o];n[l.id]=[u,d]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(_h);for(let o of a){let l=this.nodesByDepth[o];for(let u of l){let d=u.outboundLayer,p=u.inputTensors,c=u.outputTensors,h=new Array;for(let m of p)m.id in n&&h.push(n[m.id]);if(h.length===p.length){let m={},f,A,y,g;if(u.callArgs!=null&&(m=u.callArgs),h.length===1){let[x,w]=h[0];m.mask==null&&(m.mask=w),y=ht(d.call(x,m)),g=ht(d.computeMask(x,w)),f=[x],A=[w]}else f=h.map(x=>x[0]),A=h.map(x=>x[1]),m.mask==null&&(m.mask=A),y=ht(d.call(f,m)),g=ht(d.computeMask(f,A));if(d.activityRegularizer)throw new ze("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<c.length;++x){let w=c[x],b=y[x],v=g[x];n[w.id]=[b,v]}}}}let r=[],s=[],i=[];for(let o of this.outputs){Ga(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),r.push(l),s.push(u)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof Xa?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=Xa.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new B(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new B("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new B(`No such layer: ${e}`)}calculateLosses(){return W(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=Xa.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let d=0;d<s.inboundNodes.length;d++){let p=s.inboundNodes[d],c=Xa.nodeKey(s,d),h={};if(this.containerNodes.has(c)){if(p.callArgs)try{JSON.stringify(p.callArgs),h=p.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${p.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(p.inboundLayers.length>0){let m=[];for(let f=0;f<p.inboundLayers.length;f++){let A=p.inboundLayers[f],y=p.nodeIndices[f],g=p.tensorIndices[f],x=Xa.nodeKey(A,y),w=t[x];w==null&&(w=0),m.push([A.name,w,g,h])}l.push(m)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=Xa.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let d=this.inputLayersTensorIndices[s];a.push([i.name,u,d])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=Xa.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let d=this.outputLayersTensorIndices[s];r.push([i.name,u,d])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,A){f.name in s?s[f.name].push(A):s[f.name]=[A]}function o(f,A){let y=[],g;for(let x of A){let w=x[0],b=x[1],v=x[2];if(g=x[3]==null?{}:x[3],!(w in r)){i(f,A);return}let N=r[w];if(N.inboundNodes.length<=b){i(f,A);return}let T=N.inboundNodes[b];y.push(T.outputTensors[v])}y.length>0&&f.apply(Tn(y),g)}function l(f){let A=f.name,y=Ta(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(a),r[A]=y,f.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new B(`Corrupted configuration, expected array for nodeData: ${g}`);i(y,g)})}let u=t.name,d=t.layers;for(let f of d)l(f);for(;!hte(s);)for(let f of d){let A=r[f.name];if(A.name in s){let y=s[A.name];delete s[A.name];for(let g of y)o(A,g)}}let p=[],c=[],h=t.inputLayers;for(let f of h){let A=f[0],y=f[1],g=f[2];Ga(A in r);let x=r[A].inboundNodes[y].outputTensors;p.push(x[g])}let m=t.outputLayers;for(let f of m){let A=f[0],y=f[1],g=f[2];Ga(A in r);let x=r[A].inboundNodes[y].outputTensors;c.push(x[g])}return new e({inputs:p,outputs:c,name:u})}get stateful(){if(this._stateful)throw new B("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){W(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function _ne(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function v4(e,t){return _ne(e,t,"classWeight")}async function w4(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=W(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());Ee(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Et(i,"float32")}else return null}function Pne(e,t){return P(e,t)}var Lne=32;function k4(e,t){let n,a,r=t;n=r.xs,a=r.ys,k.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=I4("input",e.inputNames,n),i=I4("output",e.outputNames,a),o=s[0].shape[0];k.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),k.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)k.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)k.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function I4(e,t,n){if(n instanceof Le)return[n];if(Array.isArray(n))return k.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new B(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function Wne(e){if(e.length===3)throw new ze("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function Bne(e,t,n){let a=n.batchesPerEpoch!=null;if(k.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),k.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),k.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),k.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),k.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(S4(n.validationData))k.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=Wne(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(A=>"val_"+A)):u=l.slice();let d=u4(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:c,history:h}=d4(d,p,n.epochs,null,null,Vne(t,n),null,r,u);c.setModel(e),e.history=h,await c.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let A={};await c.onEpochBegin(m);let y=0,g=0;for(a||(f=await t.iterator());a?y<n.batchesPerEpoch:!0;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:w,ys:b}=k4(e,x.value),v={};v.batch=g,v.size=w[0].shape[0],await c.onBatchBegin(g,v);let N=[];if(n.classWeight!=null){let $=v4(n.classWeight,e.outputNames);for(let O=0;O<$.length;++O)N.push(await w4(b[O],null,$[O]))}let T=w.concat(b).concat(N),R=o(T);Ee(T);for(let $=0;$<l.length;++$){let O=l[$],_=R[$];v[O]=_,Ht(_)}await c.onBatchEnd(g,v),r4(v),g++,y++}if(a?y>=n.batchesPerEpoch:x.done){if(r){let w;S4(n.validationData)?w=ht(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):w=ht(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?Lne:n.validationBatchSize,verbose:0}));for(let b=0;b<e.metricsNames.length;++b)A[`val_${e.metricsNames[b]}`]=w[b]}break}if(e.stopTraining_)break}if(await c.onEpochEnd(m,A),m++,e.stopTraining_)break}return await c.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function Vne(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function S4(e){return typeof e.iterator=="function"}function jne(e){return typeof e.next=="function"}async function Une(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new ze("Verbose mode is not implemented yet.");k.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=jne(t)?t:await t.iterator(),o=0,l=0;for(;a?l<n.batches:!0;){let u=await i.next();if(s=W(()=>{if(u.value){let{xs:d,ys:p}=k4(e,u.value),c=d.concat(p),h=W(()=>r(c));if(Ee(c),l===0)for(let f=0;f<h.length;++f)s.push(Se(0));let m=c[0].shape[0];for(let f=0;f<h.length;++f){let A=h[f],y=s[f];s[f]=W(()=>se(s[f],P(m,A))),l>0&&Ee(y)}Ee(h),o+=m,++l}return s}),u.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let d=s[u];s[u]=me(s[u],o),Ee(d)}return Tn(s)}function py(e){k.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Ld(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>Fi(a,t,n-t)):Fi(e,t,n-t)}function cy(e,t){return W(()=>e==null?null:Array.isArray(e)?e.map(n=>cy(n,t)):X6(e,t.dtype==="int32"?t:t.toInt()))}function hy(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}async function Hne(e,t,n,a,r,s,i,o,l,u,d,p,c,h,m){r==null&&(r=32),s==null&&(s=1),d==null&&(d=!0),c==null&&(c=0);let f=!1;if(l!=null&&u!=null&&(f=!0),m!=null&&(f=!0,h==null))throw new B("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;A!=null&&(y=Ia(0,A)),i==null&&(i=1);let{callbackList:g,history:x}=d4(o,i,s,c,A,h,r,f,p);g.setModel(e),e.history=x,await g.onTrainBegin(),e.stopTraining_=!1;for(let w=c;w<s;++w){await g.onEpochBegin(w);let b={};if(h!=null)throw new ze("stepsPerEpoch mode is not implemented yet.");{if(d==="batch")throw new ze("batch shuffling is not implemneted yet");d&&k.shuffle(y);let v=Et(y),N=hy(A,r);for(let T=0;T<N.length;++T){let R={};if(await g.onBatchBegin(T,R),W(()=>{let $=N[T][0],O=N[T][1],_=Fi(v,$,O-$);R.batch=T,R.size=O-$;let V=cy(n,_),U=t(V);for(let j=0;j<a.length;++j){let X=a[j],G=U[j];R[X]=G,Ht(G)}if(T===N.length-1&&f){let j=e.testLoop(l,u,r);for(let X=0;X<a.length;++X){let G=a[X],ee=j[X];Ht(ee),b["val_"+G]=ee}}}),await g.onBatchEnd(T,R),r4(R),e.stopTraining_)break}v.dispose()}if(await g.onEpochEnd(w,b),e.stopTraining_)break}return await g.onTrainEnd(),await e.history.syncData(),e.history}async function Gne(e,t,n,a={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,s,i,o,l,u,d;try{let p=a.batchSize==null?32:a.batchSize;py(p);let c=!1,h=await e.standardizeUserData(t,n,a.sampleWeight,a.classWeight,c,p);r=h[0],s=h[1],d=h[2];let m=!1,f;if(a.validationData!=null&&a.validationData.length>0){if(m=!0,a.validationData.length===2)i=a.validationData[0],o=a.validationData[1];else throw a.validationData.length===3?new ze("validationData including sample weights is not supported yet."):new B(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${a.validationData} is invalid.`);let v=!0,N=await e.standardizeUserData(i,o,null,null,v,p);l=N[0],u=N[1],f=l.concat(u)}else if(a.validationSplit!=null&&a.validationSplit>0&&a.validationSplit<1){m=!0;let v=Math.floor(r[0].shape[0]*(1-a.validationSplit)),N=r[0].shape[0];l=Ld(r,v,N),r=Ld(r,0,v),u=Ld(s,v,N),s=Ld(s,0,v),f=l.concat(u)}else a.validationSteps!=null&&(m=!0);let A=r.concat(s).concat(d);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),x,w;m?(e.makeTestFunction(),x=e.testFunction,w=g.slice().concat(g.map(v=>"val_"+v))):(x=null,f=[],w=g.slice());let b=u4(a.callbacks,a.yieldEvery);return await Hne(e,y,A,g,p,a.epochs,a.verbose,b,x,f,a.shuffle,w,a.initialEpoch,null,null)}finally{e.isTraining=!1,zi(r,t),zi(s,n),zi(l,i),zi(u,o),d!=null&&Ee(d)}}function N4(e){let t=[];e instanceof Le&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push($d(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function zi(e,t){if(e==null)return;let n=[];if(t instanceof Le)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Le)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function qne(e){return e instanceof Le}function fy(e){return Array.isArray(e)}function T4(e){return!qne(e)&&!fy(e)}function E4(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(fy(e)&&e.length>0)i=!0;else if(T4(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new B(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(T4(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new B(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(fy(e)){if(e=e,e.length!==t.length)throw new B(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new B(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=N4(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new B(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],d=n[i][l];if(d!=null&&d>=0&&u!==d)throw new B(`Error when checking ${r}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function Xne(e,t,n){let a=Hr(e.map(s=>s.shape[0]));a.sort();let r=Hr(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new B(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new B(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!k.arraysEqual(a,r))throw new B(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function Kne(e,t,n){let a=[$i,t0,Od];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===Od&&s.shape[s.shape.length-1]===1)throw new B(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let d=0;d<l.length;++d){let p=l[d],c=u[d];if(c!=null&&p!==c)throw new B(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function C4(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new B(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new B(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new B(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],d=n[i][l];if(d!=null&&d!==u)throw new B(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function Zne(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var Yne="layers-model",mr=class extends Xa{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new B("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");Ene(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=Tne(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof pr))throw new B("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new B(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(ay(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new B(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>ay(s))}else{let s=ay(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Mi("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=Zne(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Mi("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",u,d,p;for(let c of o){if(typeof c=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(c)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===t0?["accuracy","acc"].indexOf(c)!==-1?d=ry:["crossentropy","ce"].indexOf(c)!==-1&&(d=h4):this.lossFunctions[s]===e0?["accuracy","acc"].indexOf(c)!==-1?d=f4:["crossentropy","ce"].indexOf(c)!==-1&&(d=m4):["accuracy","acc"].indexOf(c)!==-1?d=sy:["crossentropy","ce"].indexOf(c)!==-1&&(d=iy);let f;["accuracy","acc"].indexOf(c)!==-1?f="acc":["crossentropy","ce"].indexOf(c)!==-1&&(f="ce"),p=d,u=l+f}else p=Nne(c),u=l+r0(c);let h;Mi(u,()=>{h=p}),r(s,u,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;py(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return Tn(l)}finally{zi(s[0],e),zi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),Une(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new B(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new B(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new B("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new Di;if(e instanceof Le&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new B(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new B(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=Pd(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=Ei(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new B(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return W(()=>{let a=this.checkNumSamples(e);if(n)throw new ze("Verbose predictLoop() is not implemented yet.");let r=hy(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)W(()=>{let o=r[i][0],l=r[i][1],u=Ld(e,o,l),d=[];if(Array.isArray(u))for(let c=0;c<u.length;++c)d.push({key:this.inputs[c],value:u[c]});else d.push({key:this.inputs[0],value:u});let p=new Di(d);return Pd(this.outputs,p)}).forEach((o,l)=>s[l].push(o));return Tn(s.map(i=>ot(i,0)))})}predict(e,t={}){let n=N4(e);C4(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return py(a),this.predictLoop(n,a)}finally{zi(n,e)}}predictOnBatch(e){C4(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new ka("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===e0?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=E4(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=E4(t,this.feedOutputNames,r,!1,"target"),Xne(e,t,null),Kne(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!=0)throw new B(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let u=v4(a,this.outputNames);l=[];for(let d=0;d<u.length;++d)l.push(await w4(o[d],null,u[d]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return W(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new ze("Verbose mode is not implemented yet.");if(r!=null)throw new ze("steps mode in testLoop() is not implemented yet");{let o=hy(s,n),l=Et(Ia(0,s));for(let u=0;u<o.length;++u){let d=o[u][0],p=o[u][1],c=Fi(l,d,p-d),h=cy(t,c),m=e(h);if(u===0)for(let f=0;f<m.length;++f)i.push(Se(0));for(let f=0;f<m.length;++f){let A=m[f];i[f]=se(i[f],P(p-d,A))}}for(let u=0;u<i.length;++u)i[u]=me(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;z6(e,a)>1&&(r+=`_${z6(e.slice(0,n),a)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let h=0;h<this.inputs.length;++h)u.push({key:this.inputs[h],value:n[h]});let d=new Di(u),p=Pd(this.outputs,d,{training:!0}),c;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h](a[h],p[h]);r[h]!=null&&(m=Pne(m,r[h]));let f=wt(m);t.push(f),h===0?c=m:c=se(c,m)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],A=this.metricsTensors[h][1];m=wt(f(a[A],p[A]))}Ht(m),s.push(m)}return c=wt(c),this.calculateLosses().forEach(h=>{c=se(c,h)}),c},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>W(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new Di(s),o=Pd(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],d=wt(u(r[l],o[l]));l===0?n=d:n=se(n,d),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],d=this.metricsTensors[l][1],p=wt(u(r[d],o[d]));t.push(p)}return t})}async fit(e,t,n={}){return Gne(this,e,t,n)}async fitDataset(e,t){return Bne(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Ee(s),Tn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=vc().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-vc().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=fr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>fr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=fr(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[fr(r0(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>fr(r0(e)));{let e={};for(let t in this.metrics)e[t]=fr(r0(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=_d(e.optimizer_config),n=Ta(t),a;if(typeof e.loss=="string")a=Ci(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>Ci(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=Ci(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>Ci(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=Ci(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=kn.getSaveHandlers(e);if(i.length===0)throw new B(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new B(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new B("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await kn.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:Yne,generatedBy:`TensorFlow.js tfjs-layers v${uy}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await kn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=kn.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;y4(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){y4(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};mr.className="Model";ae.registerClass(mr);var R4=class extends mr{};R4.className="Functional";ae.registerClass(R4);async function Jne(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=_d(n),r=Ta(a,t);if(e.weightsManifest!=null){let s=await kn.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),Ee(s)}return r}async function Qne(e,t){if(t==null&&(t={}),typeof e=="string"){let n=kn.getLoadHandlers(e,t);if(n.length===0)n.push(kn.browserHTTPRequest(e,t));else if(n.length>1)throw new B(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return eae(e,void 0,t)}async function eae(e,t,n){if(n==null&&(n={}),e.load==null)throw new B("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=Ta(_d(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new B("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:d}=tae(a.weightData,a.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&d.length>0&&await o.optimizer.setWeights(d),Ee(u),Ee(d.map(p=>p.tensor))}return o}function tae(e,t){let n=kn.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var Xl=class extends mr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Xh("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new B(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Xl||e instanceof mr,n;if(t){if(n=e,n.outputs.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new B("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new B("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=a4({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new B(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=n4(this.outputs[0])}this.inboundNodes=[],new Yh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Ei(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(rt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new mr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new ka("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new ka("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new ka("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new ka("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new B("Legacy serialization format not supported yet.");r=t}else k.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Xl))throw new ze(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=Ta(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new B("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new B("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Xl.className="Sequential";ae.registerClass(Xl);function nae(e){return new mr(e)}function aae(e){return new Xl(e)}function rae(e,t){return t==null&&(t={}),Qne(e,t)}function M4(e){return a4(e)}function sae(e,t){fa.registerCallbackConstructor(e,t)}var Cn=class extends ae.Serializable{getConfig(){return{}}},F4=class extends Cn{apply(e,t=1){return Mte(e,t)}};F4.className="elu";ae.registerClass(F4);var $4=class extends Cn{apply(e){return Bc(e)}};$4.className="selu";ae.registerClass($4);var D4=class extends Cn{apply(e){return Ba(e)}};D4.className="relu";ae.registerClass(D4);var z4=class extends Cn{apply(e){return W(()=>wl(6,Ba(e)))}};z4.className="relu6";ae.registerClass(z4);var O4=class extends Cn{apply(e){return e}};O4.className="linear";ae.registerClass(O4);var _4=class extends Cn{apply(e){return In(e)}};_4.className="sigmoid";ae.registerClass(_4);var P4=class extends Cn{apply(e){return $te(e)}};P4.className="hardSigmoid";ae.registerClass(P4);var L4=class extends Cn{apply(e){return mi(e)}};L4.className="softplus";ae.registerClass(L4);var W4=class extends Cn{apply(e){return Fte(e)}};W4.className="softsign";ae.registerClass(W4);var B4=class extends Cn{apply(e){return ci(e)}};B4.className="tanh";ae.registerClass(B4);var my=class extends Cn{apply(e,t=-1){return od(e,t)}};my.className="softmax";ae.registerClass(my);var V4=class extends Cn{apply(e,t=-1){return Dc(e,t)}};V4.className="logSoftmax";ae.registerClass(V4);var j4=class extends Cn{apply(e,t=1){return W(()=>In(e.mul(t)).mul(e))}};j4.className="swish";ae.registerClass(j4);var U4=class extends Cn{apply(e){return W(()=>P(e,ci(mi(e))))}};U4.className="mish";ae.registerClass(U4);function Kr(e){return e.getClassName()}function Ay(e,t={}){return Cd(e,ae.SerializationMap.getMap().classNameMap,t,"activation")}function Zr(e){if(e==null){let t={};return t.className="linear",t.config={},Ay(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Ay(t)}else return e instanceof Cn?e:Ay(e)}function yy(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var H4=class extends ae.Serializable{},Wd=class extends H4{constructor(e){super();yy(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return W(()=>{let t=Rt([1]);return this.hasL1&&(t=se(t,ke(P(this.l1,Pt(e))))),this.hasL2&&(t=se(t,ke(P(this.l2,Dd(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Wd.className="L1L2";ae.registerClass(Wd);function iae(e){return yy(e),new Wd({l1:e!=null?e.l1:null,l2:0})}function oae(e){return yy(e),new Wd({l2:e!=null?e.l2:null,l1:0})}var G4={l1l2:"L1L2"};function ut(e){return D1(e)}function q4(e,t={}){return Cd(e,ae.SerializationMap.getMap().classNameMap,t,"regularizer")}function At(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in G4?G4[e]:e,config:{}};return q4(t)}else return e instanceof H4?e:q4(e)}var gy=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=_e(e);let n=Ba(e);return this.maxValue!=null&&(n=Sn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};gy.className="ReLU";ae.registerClass(gy);var xy=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=_e(e);return ed(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};xy.className="LeakyReLU";ae.registerClass(xy);var by=class extends qe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=mt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=At(e.alphaRegularizer),this.alphaConstraint=Vt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new B(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=rt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new Ft({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=_e(e),rd(e,this.alpha.read())}getConfig(){let e={alphaInitializer:kt(this.alphaInitializer),alphaRegularizer:ut(this.alphaRegularizer),alphaConstraint:Bt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};by.className="PReLU";ae.registerClass(by);var vy=class extends qe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new ze(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=_e(e);return gl(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};vy.className="ELU";ae.registerClass(vy);var wy=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=_e(e);return n.mul(Fd(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};wy.className="ThresholdedReLU";ae.registerClass(wy);var ky=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new my().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=_e(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};ky.className="Softmax";ae.registerClass(ky);function Kl(e,t,n){if(typeof e=="number")return Ei(e,t);if(e.length!==t)throw new B(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!Tte(r))throw new B(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Ea(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function Ka(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+qr([n-t,0]);else if(a==="same")e=e*t;else throw new B(`Unsupport padding mode: ${a}.`);return e}function Iy(e,t){return W(()=>(Ct(t),t==="channelsFirst"?Ye(e,[0,2,3,1]):e))}function X4(e,t){return W(()=>(Ct(t),t==="channelsFirst"?Ye(e,[0,2,3,4,1]):e))}function lae(e,t,n,a=1,r="valid",s,i=1){return W(()=>{if(s==null&&(s=wa()),Ct(s),e.shape.length!==3)throw new B(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new B(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new B(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Ye(e,[0,2,1])),r==="causal")throw new ze("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Nc(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=Sa(o,n)),o})}function K4(e,t,n,a=[1,1],r="valid",s,i,o=null){return W(()=>{if(s==null&&(s=wa()),Ct(s),e.rank!==3&&e.rank!==4)throw new B(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new B(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=Iy(e,s);if(r==="causal")throw new ze("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Wr.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Ye(l,[0,3,1,2])),l})}function uae(e,t,n,a=[1,1,1],r="valid",s,i){return W(()=>{if(s==null&&(s=wa()),Ct(s),e.rank!==4&&e.rank!==5)throw new B(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new B(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=X4(e,s);if(r==="causal")throw new ze("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=mA(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Sa(o,n)),s==="channelsFirst"&&(o=Ye(o,[0,4,1,2,3])),o})}var Sy=class extends qe{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Sy.verifyArgs(t),this.rank=e,Xt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new ze(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Kl(t.kernelSize,e,"kernelSize"),this.strides=Kl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,na(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ct(this.dataFormat),this.activation=Zr(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=mt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Vt(t.biasConstraint),this.biasRegularizer=At(t.biasRegularizer),this.activityRegularizer=At(t.activityRegularizer),this.dilationRate=Kl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new B(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new B(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new B(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Ga("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!O1(e.kernelSize,"number",1,3))throw new B(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Kr(this.activation),useBias:this.useBias,biasInitializer:kt(this.biasInitializer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),biasConstraint:Bt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Bd=class extends Sy{constructor(e,t){super(e,t);this.kernel=null,Bd.verifyArgs(t),this.filters=t.filters,Xt(this.filters,"filters"),this.kernelInitializer=mt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Vt(t.kernelConstraint),this.kernelRegularizer=At(t.kernelRegularizer)}build(e){e=rt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return W(()=>{e=_e(e);let n,a=this.bias==null?null:this.bias.read(),r=_6(this.activation.getClassName());if(r!=null&&this.rank===2)n=K4(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=lae(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=K4(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=uae(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new ze("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=rt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=Ea(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:kt(this.kernelInitializer),kernelRegularizer:ut(this.kernelRegularizer),kernelConstraint:Bt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new B(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Vd=class extends Bd{constructor(e){super(2,e);Vd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!O1(e.kernelSize,"number",1,2))throw new B(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Vd.className="Conv2D";ae.registerClass(Vd);var jd=class extends Bd{constructor(e){super(3,e);jd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new B(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};jd.className="Conv3D";ae.registerClass(jd);var Ny=class extends Vd{constructor(e){super(e);if(this.inputSpec=[new Ft({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=rt(e),e.length!==4)throw new B("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ft({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return W(()=>{let n=_e(e);if(n.shape.length!==4)throw new B(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],u=this.kernelSize[0],d=this.kernelSize[1],p=this.strides[0],c=this.strides[1],h=Ka(o,p,u,this.padding),m=Ka(l,c,d,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Ye(n,[0,2,3,1]));let A=Tc(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=Ye(A,[0,3,1,2])),this.bias!=null&&(A=Sa(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=rt(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=Ka(t[a],o,s,this.padding),t[r]=Ka(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Ny.className="Conv2DTranspose";ae.registerClass(Ny);var Ty=class extends jd{constructor(e){super(e);if(this.inputSpec=[new Ft({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=rt(e),e.length!==5)throw new B("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ft({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return W(()=>{let n=_e(e);if(n.shape.length!==5)throw new B(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=a[o],u=a[s],d=a[i],p=this.kernelSize[0],c=this.kernelSize[1],h=this.kernelSize[2],m=this.strides[0],f=this.strides[1],A=this.strides[2],y=Ka(l,m,p,this.padding),g=Ka(u,f,c,this.padding),x=Ka(d,A,h,this.padding),w=[r,y,g,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Ye(n,[0,2,3,4,1]));let b=Gb(n,this.kernel.read(),w,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(b=Ye(b,[0,4,1,2,3])),this.bias!==null&&(b=Sa(b,this.bias.read(),this.dataFormat)),this.activation!==null&&(b=this.activation.apply(b)),b})}computeOutputShape(e){e=rt(e);let t=e.slice(),n,a,r,s;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3,s=4):(n=4,a=1,r=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],d=this.strides[1],p=this.strides[2];return t[n]=this.filters,t[a]=Ka(t[a],u,i,this.padding),t[r]=Ka(t[r],d,o,this.padding),t[s]=Ka(t[s],p,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Ty.className="Conv3DTranspose";ae.registerClass(Ty);var Z4=class extends Bd{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new B("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new B("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new B(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=mt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=At(t.depthwiseRegularizer),this.depthwiseConstraint=Vt(t.depthwiseConstraint),this.pointwiseInitializer=mt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=At(t.pointwiseRegularizer),this.pointwiseConstraint=Vt(t.pointwiseConstraint)}build(e){if(e=rt(e),e.length<this.rank+2)throw new B(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Ft({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return W(()=>{e=_e(e);let n;if(this.rank===1)throw new ze("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ye(e,[0,2,3,1])),n=$A(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Sa(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ye(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=kt(this.depthwiseInitializer),e.pointwiseInitializer=kt(this.pointwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.pointwiseRegularizer=ut(this.pointwiseRegularizer),e.depthwiseConstraint=Bt(this.depthwiseConstraint),e.pointwiseConstraint=Bt(this.pointwiseConstraint),e}};Z4.className="SeparableConv";var Ey=class extends Z4{constructor(e){super(2,e)}};Ey.className="SeparableConv2D";ae.registerClass(Ey);var i0=class extends Bd{constructor(e){super(1,e);i0.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!O1(e.kernelSize,"number",1,1))throw new B(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};i0.className="Conv1D";ae.registerClass(i0);var Cy=class extends qe{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return W(()=>{if(e=_e(e),this.dataFormat==="channelsLast"){let n=Ph(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Ph(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Ph(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Ph(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Cy.className="Cropping2D";ae.registerClass(Cy);var Ry=class extends qe{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,Ite(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return W(()=>{let n=_e(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=Ye(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s]);return Ye(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ry.className="UpSampling2D";ae.registerClass(Ry);function dae(e,t,n=[1,1],a="valid",r,s){return W(()=>{r==null&&(r=wa()),Ct(r);let i=Iy(e,r);if(e.rank!==4)throw new B(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new B(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=yl(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=Ye(i,[0,3,1,2])),i})}var My=class extends Sy{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=mt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Vt(e.depthwiseConstraint),this.depthwiseRegularizer=At(e.depthwiseRegularizer)}build(e){if(e=rt(e),e.length<4)throw new B(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return W(()=>{e=_e(e);let n=dae(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Sa(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=rt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Ea(t,this.kernelSize[0],this.padding,this.strides[0]),s=Ea(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=kt(this.depthwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.depthwiseConstraint=Bt(this.depthwiseRegularizer),e}};My.className="DepthwiseConv2D";ae.registerClass(My);function Y4(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new B("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function J4(e,t,n,a=!1,r,s,i=!1,o=!1){return W(()=>{let l=t.shape.length;if(l<3)throw new B(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Ia(2,l));if(t=Ye(t,u),s!=null)throw new ze("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=r.asType("bool").asType("float32"),r.rank===l-1&&(r=un(r,-1)),r=Ye(r,u)),a&&(t=On(t,0),r!=null&&(r=On(r,0)));let d=[],p,c=n,h=t.shape[0],m=pa(t),f;r!=null&&(f=pa(r));for(let y=0;y<h;++y){let g=m[y],x=W(()=>e(g,c));if(r==null)p=x[0],c=x[1];else{let w=W(()=>{let b=f[y],v=zn(b).sub(b),N=x[0].mul(b).add(c[0].mul(v)),T=c.map((R,$)=>x[1][$].mul(b).add(R.mul(v)));return{output:N,newStates:T}});p=w.output,c=w.newStates}o&&d.push(p)}let A;return o&&(A=dn(d,1)),[p,A,c]})}var Za=class extends qe{constructor(e){super(e);let t;if(e.cell==null)throw new B("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new u0({cells:e.cell}):t=e.cell,t.stateSize==null)throw new B("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Ft({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Ia(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Q1(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return W(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new ze("Constants support is not implemented in RNN yet.");Q1(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,a=e.slice(2);this.inputSpec[0]=new Ft({shape:[n,null,...a]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new ze("Constants support is not implemented in RNN yet.");this.cell.build(r);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!k.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new B(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Ft({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){W(()=>{if(!this.stateful)throw new hr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>Rt([n,a])):this.states_=[Rt([n,this.cell.stateSize])];else if(e==null)Ee(this.states_),this.keptStates!=null&&(Ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>Rt([n,a])):this.states_[0]=Rt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Ee(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!k.arraysEqual(r.shape,i))throw new B(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>Ht(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=Y4(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Ft({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof Na){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let d=super.apply(o,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return W(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=_e(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new B(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=J4((c,h)=>{let m=this.cell.call([c].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],d=o[2];this.stateful&&this.resetStates(d,a);let p=this.returnSequences?u:l;return this.returnState?[p].concat(d):p})}getInitialState(e){return W(()=>{let t=Rt(e.shape);return t=ke(t,[1,2]),t=$d(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?U1(t,[1,n]):t):this.cell.stateSize>1?[U1(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Za.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let a=t.cell,r=Ta(a,n);return new e(Object.assign(t,{cell:r}))}};Za.className="RNN";ae.registerClass(Za);var Ud=class extends qe{},o0=class extends Ud{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Xt(this.units,"units"),this.activation=Zr(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=mt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=mt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=mt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=At(e.kernelRegularizer),this.recurrentRegularizer=At(e.recurrentRegularizer),this.biasRegularizer=At(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Ul([1,qr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Ul([1,qr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=rt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return W(()=>{if(e=e,e.length!==2)throw new B(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Yr({ones:()=>zn(e),rate:this.dropout,training:a})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Yr({ones:()=>zn(n),rate:this.recurrentDropout,training:a}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=qa(P(e,s),this.kernel.read()):r=qa(e,this.kernel.read()),this.bias!=null&&(r=Sa(r,this.bias.read())),i!=null&&(n=P(n,i));let o=se(r,qa(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Kr(this.activation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),recurrentConstraint:Bt(this.recurrentConstraint),biasConstraint:Bt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};o0.className="SimpleRNNCell";ae.registerClass(o0);var Fy=class extends Za{constructor(e){e.cell=new o0(e),super(e)}call(e,t){return W(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};Fy.className="SimpleRNN";ae.registerClass(Fy);var l0=class extends Ud{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new B("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Xt(this.units,"units"),this.activation=Zr(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Zr(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=mt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=mt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=mt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=At(e.kernelRegularizer),this.recurrentRegularizer=At(e.recurrentRegularizer),this.biasRegularizer=At(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Ul([1,qr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Ul([1,qr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=rt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return W(()=>{if(e=e,e.length!==2)throw new B(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Yr({ones:()=>zn(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Yr({ones:()=>zn(a),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=P(e,r[0]));let u=qa(e,this.kernel.read());this.useBias&&(u=Sa(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=P(a,s[0]));let d=this.recurrentKernel.read(),[p,c]=Gt(d,[2*this.units,this.units],d.rank-1),h=qa(a,p),[m,f,A]=Gt(u,3,u.rank-1),[y,g]=Gt(h,2,h.rank-1);i=this.recurrentActivation.apply(se(m,y)),o=this.recurrentActivation.apply(se(f,g));let x=qa(P(o,a),c);l=this.activation.apply(se(A,x));let w=se(P(i,a),P(se(1,vt(i)),l));return[w,w]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Kr(this.activation),recurrentActivation:Kr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),recurrentConstraint:Bt(this.recurrentConstraint),biasConstraint:Bt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};l0.className="GRUCell";ae.registerClass(l0);var $y=class extends Za{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new l0(e),super(e)}call(e,t){return W(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};$y.className="GRU";ae.registerClass($y);var Hd=class extends Ud{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Xt(this.units,"units"),this.activation=Zr(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Zr(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=mt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=mt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=mt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=At(e.kernelRegularizer),this.recurrentRegularizer=At(e.recurrentRegularizer),this.biasRegularizer=At(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Ul([1,qr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Ul([1,qr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=rt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends ha{apply(i,o){let l=r.apply([s]),u=new Wh().apply([s]),d=r.apply([s*2]);return q6(q6(l,u),d)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return W(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new B(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Yr({ones:()=>zn(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Yr({ones:()=>zn(a),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,d;0<this.dropout&&this.dropout<1&&(e=P(e,s[0]));let p=qa(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=P(a,i[0])),p=se(p,qa(a,this.recurrentKernel.read())),this.useBias&&(p=Sa(p,this.bias.read()));let[c,h,m,f]=Gt(p,4,p.rank-1);o=this.recurrentActivation.apply(c),l=this.recurrentActivation.apply(h),u=se(P(l,r),P(o,this.activation.apply(m))),d=this.recurrentActivation.apply(f);let A=P(d,this.activation.apply(u));return[A,A,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Kr(this.activation),recurrentActivation:Kr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),recurrentConstraint:Bt(this.recurrentConstraint),biasConstraint:Bt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Hd.className="LSTMCell";ae.registerClass(Hd);var Dy=class extends Za{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Hd(e),super(e)}call(e,t){return W(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Dy.className="LSTM";ae.registerClass(Dy);var u0=class extends Ud{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return W(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){Q1(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{Mi(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(Ta(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return ey(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}ty(t)}};u0.className="StackedRNNCells";ae.registerClass(u0);function Yr(e){let{ones:t,rate:n,training:a=!1,count:r=1}=e,s=()=>K6(t(),n),i=()=>zd(s,t,a);return!r||r<=1?Ht(i().clone()):Array(r).fill(void 0).map(i).map(o=>Ht(o.clone()))}var pae=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},Q4=class extends Za{constructor(e){if(e.unroll)throw new ze("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new ze("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Ft({ndim:5})]}call(e,t){return W(()=>{if(this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new B("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return W(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=Rt(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){W(()=>{if(!this.stateful)throw new hr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Rt(r)):this.states_=[Rt(r)];else if(e==null)Ee(this.states_),this.keptStates!=null&&(Ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Rt(r)):this.states_[0]=Rt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Ee(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!k.arraysEqual(i.shape,o))throw new B(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Ht(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],d=Ea(l,a[0],r,s[0],i[0]),p=Ea(u,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,d,p]:[d,p,n]]}};Q4.className="ConvRNN2D";var d0=class extends Hd{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Xt(this.filters,"filters"),this.kernelSize=Kl(n,2,"kernelSize"),this.kernelSize.forEach(o=>Xt(o,"kernelSize")),this.strides=Kl(a||1,2,"strides"),this.strides.forEach(o=>Xt(o,"strides")),this.padding=r||"valid",na(this.padding),this.dataFormat=s||"channelsLast",Ct(this.dataFormat),this.dilationRate=Kl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Xt(o,"dilationRate"))}build(e){var t;e=rt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends ha{apply(d,p){let c=l.apply([u]),h=Dn([u]),m=l.apply([u*2]);return j1([c,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return W(()=>{if(e.length!==3)throw new B(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Yr({ones:()=>zn(a),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Y,re,ne)=>!re||!re[ne]?Y:P(re[ne],Y),u=l(a,o,0),d=l(a,o,1),p=l(a,o,2),c=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Yr({ones:()=>zn(r),rate:this.recurrentDropout,training:n,count:i}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),A=l(r,h,2),y=l(r,h,3),g=3,[x,w,b,v]=Gt(this.kernel.read(),i,g),[N,T,R,$]=this.useBias?Gt(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,x,N,this.padding),d=this.inputConv(d,w,T,this.padding),p=this.inputConv(p,b,R,this.padding),c=this.inputConv(c,v,$,this.padding);let[O,_,V,U]=Gt(this.recurrentKernel.read(),i,g);m=this.recurrentConv(m,O),f=this.recurrentConv(f,_),A=this.recurrentConv(A,V),y=this.recurrentConv(y,U);let j=this.recurrentActivation.apply(se(u,m)),X=this.recurrentActivation.apply(se(d,f)),G=se(P(X,s),P(j,this.activation.apply(se(p,A)))),ee=P(this.recurrentActivation.apply(se(c,y)),this.activation.apply(G));return[ee,ee,G]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=pae(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,a)}inputConv(e,t,n,a){let r=or(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Sa(r,n,this.dataFormat):r}recurrentConv(e,t){return or(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};d0.className="ConvLSTM2DCell";ae.registerClass(d0);var zy=class extends Q4{constructor(e){let t=new d0(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};zy.className="ConvLSTM2D";ae.registerClass(zy);var p0=class extends qe{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return zd(()=>K6(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};p0.className="Dropout";ae.registerClass(p0);var Oy=class extends p0{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Oy.className="SpatialDropout1D";ae.registerClass(Oy);var _y=class extends qe{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Xt(this.units,"units"),this.activation=Zr(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=mt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=mt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Vt(e.kernelConstraint),this.biasConstraint=Vt(e.biasConstraint),this.kernelRegularizer=At(e.kernelRegularizer),this.biasRegularizer=At(e.biasRegularizer),this.activityRegularizer=At(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=rt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=rt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e),a=_6(this.activation.getClassName()),r;return a!=null?r=qa(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=qa(n,this.kernel.read()),this.bias!=null&&(r=Sa(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:Kr(this.activation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),biasConstraint:Bt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};_y.className="Dense";ae.registerClass(_y);var Py=class extends qe{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=rt(e);for(let t of e.slice(1))if(t==null)throw new B(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Gr(e,1)]}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=n.transpose(a)}return Rte(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Py.className="Flatten";ae.registerClass(Py);var Ly=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.activation=Zr(e.activation)}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e);return this.activation.apply(n)})}getConfig(){let e={activation:Kr(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Ly.className="Activation";ae.registerClass(Ly);var Wy=class extends qe{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return W(()=>(e=_e(e),Ete(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Wy.className="RepeatVector";ae.registerClass(Wy);var By=class extends qe{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new B("Can only specifiy one unknown dimension.");else r*=l}let i=Gr(e);if(s!==null){if(r===0||i%r!=0)throw new B(n);a[s]=i/r}else if(i!==r)throw new B(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return n.reshape(r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};By.className="Reshape";ae.registerClass(By);var Vy=class extends qe{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Ia(1,e.dims.length+1);if(!k.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Ft({ndim:this.dims.length+1})]}computeOutputShape(e){e=rt(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return Ye(_e(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Vy.className="Permute";ae.registerClass(Vy);var jy=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=_e(e),a=-1;return Xu(yi(n,this.maskValue),a)}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e),a=-1,r=!0,s=Xu(yi(n,this.maskValue),a,r);return n.mul(s.asType(n.dtype))})}};jy.className="Masking";ae.registerClass(jy);var Uy=class extends qe{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(ht(e.inputLength))}this.inputDim=e.inputDim,Xt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Xt(this.outputDim,"outputDim"),this.embeddingsInitializer=mt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=At(e.embeddingsRegularizer),this.activityRegularizer=At(e.activityRegularizer),this.embeddingsConstraint=Vt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return W(()=>this.maskZero?(e=_e(e),yi(e,Ue(e))):null)}computeOutputShape(e){if(e=rt(e),this.inputLength==null)return[...e,this.outputDim];let t=ht(this.inputLength);if(t.length!==e.length-1)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e);return n.dtype!=="int32"&&(n=Fd(n,"int32")),X6(this.embeddings.read(),n.as1D()).reshape(rt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:kt(this.embeddingsInitializer),embeddingsRegularizer:ut(this.embeddingsRegularizer),activityRegularizer:ut(this.activityRegularizer),embeddingsConstraint:Bt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Uy.className="Embedding";ae.registerClass(Uy);var Oi=class extends qe{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new ze}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new B("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[rt(e)]),e=e,e.length<2)throw new B(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=Hr(t),t.length>1)throw new B(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&Hr(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return W(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=qr(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=$d(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,d=u[0],p=u.slice(1).concat([d]),c=o.reshape([d].concat(Gr(u.slice(1))));c=Ye(c,[1,0]),c=c.reshape(p),n.push(c),r=!0}else if(l>1){let u=Ia(1,l).concat([0]);n.push(Ye(o,u)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,u=o[l-1],d=[u].concat(o.slice(0,o.length-1));s=Ye(s.reshape([-1,u]),[1,0]).reshape(d)}else if(i>1){let o=[i-1].concat(Ia(0,i-1));s=Ye(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=Hr(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return W(()=>{if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an Array");if(!Array.isArray(e))throw new B("`inputs` should be an Array");if(t.length!==e.length)throw new B(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:un(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=da(n,t[a]);return n})}},Hy=class extends Oi{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=se(t,e[n]);return t})}};Hy.className="Add";ae.registerClass(Hy);var Gy=class extends Oi{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=P(t,e[n]);return t})}};Gy.className="Multiply";ae.registerClass(Gy);var qy=class extends Oi{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=se(t,e[n]);return P(1/e.length,t)})}};qy.className="Average";ae.registerClass(qy);var Xy=class extends Oi{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Wa(t,e[n]);return t})}};Xy.className="Maximum";ae.registerClass(Xy);var Ky=class extends Oi{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=wl(t,e[n]);return t})}};Ky.className="Minimum";ae.registerClass(Ky);var Zy=class extends Oi{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new B("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(k.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new B("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return W(()=>j1(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new B("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new B("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new B(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return W(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(zn(e[s]).asType("bool")):t[s].rank<e[s].rank?a.push(un(t[s],-1)):a.push(t[s]);let r=ot(a,this.axis);return Ic(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Zy.className="Concatenate";ae.registerClass(Zy);function Gd(e,t){for(;e<0;)e+=t;return e}function cae(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new ze("batchDot is not implemented for tensors of 4D or higher rank yet");if(k.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),k.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new ze("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return W(()=>{let i;if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);t=t.reshape(t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);e=e.reshape(e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=e.mul(t).sum(s[0]):o=e.transpose([1,0]).mul(t).sum(s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=e.matMul(t,l,u)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let u=[];for(let d=l;d<l+i;++d)u.push(d);o=o.squeeze(u)}return o.shape.length===1&&(o=o.expandDims(1)),o})}var Yy=class extends Oi{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new ze("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new B(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new B(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>Gd(r,e[s].shape.length)):a=[Gd(this.axes,t.shape.length),Gd(this.axes,n.shape.length)],this.normalize&&(t=Jh(t,a[0]),n=Jh(n,a[1])),cae(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Gd(this.axes,e.length),Gd(this.axes,t.length)],n}computeOutputShape(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new ze("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Yy.className="Dot";ae.registerClass(Yy);var Jy=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e);return zd(()=>Lh(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};Jy.className="GaussianNoise";ae.registerClass(Jy);var Qy=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e);return this.rate>0&&this.rate<1?zd(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return n.mul(Lh(n.shape,1,a))},()=>n,t.training||!1):n})}};Qy.className="GaussianDropout";ae.registerClass(Qy);var e2=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||_e(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return W(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return zd(()=>{let a=_e(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=Pr(kl(n),this.rate);o=Fd(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate;return a.mul(o).add(o.add(-1).mul(i)).mul(l).add(u)},()=>_e(e),t.training||!1)}return e})}};e2.className="AlphaDropout";ae.registerClass(e2);function qd(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=Lb(e,t,n,a,r,s);else if(e.rank===3)i=Wb(e,t,n,a,r,s);else if(e.rank===4)i=Bb(e,t,n,a,r,s);else throw new ze(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function hae(e,t,n,a,r=.001){return W(()=>{let s=Oc(e,a),i=s.mean,o=s.variance;return[qd(e,i,o,n,t,r),i,o]})}function fae(e,t,n,a,r=.001){return W(()=>{let s=Oc(e,a),i=s.mean,o=s.variance,l=[];for(let h of Ia(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let u=i.reshape(l),d=o.reshape(l),p=t==null?null:t.reshape(l),c=n==null?null:n.reshape(l);return[qd(e,u,d,c,p,r),i,o]})}function mae(e,t,n,a,r=.001){return k.arraysEqual(a.slice().sort(),Ia(0,e.rank-1))?hae(e,t,n,a,r):fae(e,t,n,a,r)}var t2=class extends qe{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=mt(e.betaInitializer||"zeros"),this.gammaInitializer=mt(e.gammaInitializer||"ones"),this.movingMeanInitializer=mt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=mt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Vt(e.betaConstraint),this.gammaConstraint=Vt(e.gammaConstraint),this.betaRegularizer=At(e.betaRegularizer),this.gammaRegularizer=At(e.gammaRegularizer)}build(e){e=rt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new B(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Ft({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return W(()=>{let n=t.training==null?!1:t.training,a=_e(e),r=a.shape,s=r.length,i=Ia(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=Ei(1,s);l[o]=r[o];let u=i.slice();u.sort();let d=!k.arraysEqual(u,Ia(0,s).slice(0,s-1)),p=()=>{if(d){let A=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),g=this.center?this.beta.read().reshape(l):null,x=this.scale?this.gamma.read().reshape(l):null;return qd(a,A,y,g,x,this.epsilon)}else return qd(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[c,h,m]=mae(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(A,y,g)=>{W(()=>{let x=1-g,w=A.read(),b=w.sub(y).mul(x);A.write(w.sub(b))})};return(()=>{f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum)})(),c})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:kt(this.betaInitializer),gammaInitializer:kt(this.gammaInitializer),movingMeanInitializer:kt(this.movingMeanInitializer),movingVarianceInitializer:kt(this.movingVarianceInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer),betaConstraint:Bt(this.betaConstraint),gammaConstraint:Bt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};t2.className="BatchNormalization";ae.registerClass(t2);var n2=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=mt(e.betaInitializer||"zeros"),this.gammaInitializer=mt(e.gammaInitializer||"ones"),this.betaRegularizer=At(e.betaRegularizer),this.gammaRegularizer=At(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=rt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==Hr(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=_e(e),a=n.shape,r=a.length;return W(()=>{let s=!0,{mean:i,variance:o}=Oc(n,this.axis,s),l=Ei(1,r);for(let m of this.axis)l[m]=a[m];let u=m=>m!=null&&m.shape.length!==r&&this.axis!==[r-1]?m.reshape(l):m,d=u(this.gamma.read()),p=u(this.beta.read()),c=[],h=[];for(let m=0;m<r;++m)this.axis.indexOf(m)!==-1?(c.push(a[m]),h.push(1)):(c.push(1),h.push(a[m]));return i=i.tile(c),o=o.tile(c),d=d.tile(h),p=p.tile(h),qd(n,i,o,p,d,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:kt(this.betaInitializer),gammaInitializer:kt(this.gammaInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};n2.className="LayerNormalization";ae.registerClass(n2);function Aae(e,t,n){return W(()=>{if(e.rank!==4)throw new B(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new B("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=wa()),n!=="channelsLast"&&n!=="channelsFirst")throw new B(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],lr(e,a)})}var a2=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?wa():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new B(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new B(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new B(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){e=rt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return W(()=>Aae(_e(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};a2.className="ZeroPadding2D";ae.registerClass(a2);function c0(e,t,n,a,r,s){return W(()=>{Ct(r),B6(s),na(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=wa()),s==null&&(s="max"),e=Iy(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=nd(e,t,n,o):i=Yu(e,t,n,o),r==="channelsFirst"&&(i=Ye(i,[0,3,1,2])),i})}function e8(e,t,n,a,r,s){return W(()=>{Ct(r),B6(s),na(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=wa()),s==null&&(s="max"),e=X4(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=TA(e,t,n,o):i=pA(e,t,n,o),r==="channelsFirst"&&(i=Ye(i,[0,4,1,2,3])),i})}var t8=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new B(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Xt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new B(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Xt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,na(this.padding),this.inputSpec=[new Ft({ndim:3})]}computeOutputShape(e){e=rt(e);let t=Ea(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return W(()=>{this.invokeCallHook(e,t),e=$d(_e(e),2);let n=this.poolingFunction(_e(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Va(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},r2=class extends t8{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ct(r),na(a),c0(e,t,n,a,r,"max")}};r2.className="MaxPooling1D";ae.registerClass(r2);var s2=class extends t8{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ct(r),na(a),c0(e,t,n,a,r,"avg")}};s2.className="AveragePooling1D";ae.registerClass(s2);var n8=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new B(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Xt(this.poolSize,"poolSize"),Xt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),na(this.padding),this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){e=rt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Ea(t,this.poolSize[0],this.padding,this.strides[0]),n=Ea(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return W(()=>(this.invokeCallHook(e,t),this.poolingFunction(_e(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},i2=class extends n8{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ct(r),na(a),c0(e,t,n,a,r,"max")}};i2.className="MaxPooling2D";ae.registerClass(i2);var o2=class extends n8{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ct(r),na(a),c0(e,t,n,a,r,"avg")}};o2.className="AveragePooling2D";ae.registerClass(o2);var a8=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new B(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Xt(this.poolSize,"poolSize"),Xt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),na(this.padding),this.inputSpec=[new Ft({ndim:5})]}computeOutputShape(e){e=rt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Ea(t,this.poolSize[0],this.padding,this.strides[0]),n=Ea(n,this.poolSize[1],this.padding,this.strides[1]),a=Ea(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return W(()=>(this.invokeCallHook(e,t),this.poolingFunction(_e(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},l2=class extends a8{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ct(r),na(a),e8(e,t,n,a,r,"max")}};l2.className="MaxPooling3D";ae.registerClass(l2);var u2=class extends a8{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ct(r),na(a),e8(e,t,n,a,r,"avg")}};u2.className="AveragePooling3D";ae.registerClass(u2);var r8=class extends qe{constructor(e){super(e);this.inputSpec=[new Ft({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new ze}},d2=class extends r8{constructor(e){super(e||{})}call(e,t){return W(()=>{let n=_e(e);return wt(n,1)})}};d2.className="GlobalAveragePooling1D";ae.registerClass(d2);var p2=class extends r8{constructor(e){super(e||{})}call(e,t){return W(()=>{let n=_e(e);return Jn(n,1)})}};p2.className="GlobalMaxPooling1D";ae.registerClass(p2);var s8=class extends qe{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new ze}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},c2=class extends s8{call(e,t){return W(()=>{let n=_e(e);return this.dataFormat==="channelsLast"?wt(n,[1,2]):wt(n,[2,3])})}};c2.className="GlobalAveragePooling2D";ae.registerClass(c2);var h2=class extends s8{call(e,t){return W(()=>{let n=_e(e);return this.dataFormat==="channelsLast"?Jn(n,[1,2]):Jn(n,[2,3])})}};h2.className="GlobalMaxPooling2D";ae.registerClass(h2);var i8=class extends qe{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=Ta(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},f2=class extends i8{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=rt(e),e.length<3)throw new B(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=rt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return W(()=>(e=_e(e),J4((n,a)=>[_e(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};f2.className="TimeDistributed";ae.registerClass(f2);function yae(e){Ri(kte,"BidirectionalMergeMode",e)}var gae="concat",m2=class extends i8{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Ta(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=Ta(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?gae:e.mergeMode,yae(this.mergeMode),e.weights)throw new ze("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):Tn(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=Y4(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new B("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(d=>new Ft({shape:d.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(a!=null)throw new ze("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Na;for(let l of s)if(l instanceof Na!==o)throw new B("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),d=this.inputSpec;this.inputSpec=u;let p=super.apply(l,t);return this.inputSpec=d,p}else return super.apply(e,t)}call(e,t){return W(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=On(r,1));let i;return this.mergeMode==="concat"?i=j1([a,r]):this.mergeMode==="sum"?i=se(a,r):this.mergeMode==="ave"?i=P(.5,se(a,r)):this.mergeMode==="mul"?i=P(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Mi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Mi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Ta(t.layer);if(delete t.layer,t.numConstants!=null)throw new ze("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};m2.className="Bidirectional";ae.registerClass(m2);function xae(e){return new Hl(e)}function bae(e){return new vy(e)}function vae(e){return new gy(e)}function wae(e){return new xy(e)}function kae(e){return new by(e)}function Iae(e){return new ky(e)}function Sae(e){return new wy(e)}function Nae(e){return new i0(e)}function Tae(e){return new Vd(e)}function Eae(e){return new Ny(e)}function Cae(e){return new jd(e)}function Rae(e){return new Ty(e)}function Mae(e){return new Ey(e)}function Fae(e){return new Cy(e)}function $ae(e){return new Ry(e)}function Dae(e){return new My(e)}function zae(e){return new Ly(e)}function Oae(e){return new _y(e)}function _ae(e){return new p0(e)}function Pae(e){return new Oy(e)}function Lae(e){return new Py(e)}function Wae(e){return new Wy(e)}function Bae(e){return new By(e)}function Vae(e){return new Vy(e)}function jae(e){return new Uy(e)}function Uae(e){return new Hy(e)}function Hae(e){return new qy(e)}function Gae(e){return new Zy(e)}function qae(e){return new Xy(e)}function Xae(e){return new Ky(e)}function Kae(e){return new Gy(e)}function Zae(e){return new Yy(e)}function Yae(e){return new t2(e)}function Jae(e){return new n2(e)}function Qae(e){return new a2(e)}function A2(e){return new s2(e)}function ere(e){return A2(e)}function tre(e){return A2(e)}function y2(e){return new o2(e)}function nre(e){return y2(e)}function are(e){return y2(e)}function g2(e){return new u2(e)}function rre(e){return g2(e)}function sre(e){return g2(e)}function ire(e){return new d2(e)}function ore(e){return new c2(e)}function o8(e){return new p2(e)}function l8(e){return new h2(e)}function u8(e){return new r2(e)}function d8(e){return new i2(e)}function lre(e){return new l2(e)}function ure(e){return new $y(e)}function dre(e){return new l0(e)}function pre(e){return new Dy(e)}function cre(e){return new Hd(e)}function hre(e){return new Fy(e)}function fre(e){return new o0(e)}function mre(e){return new zy(e)}function Are(e){return new d0(e)}function yre(e){return new Za(e)}function gre(e){return new u0(e)}function xre(e){return new m2(e)}function bre(e){return new f2(e)}var vre=o8,wre=l8,kre=u8,Ire=d8;function Sre(e){return new Jy(e)}function Nre(e){return new Qy(e)}function Tre(e){return new e2(e)}function Ere(e){return new jy(e)}var p8={};Fe(p8,{MAPE:()=>Lre,MSE:()=>Vre,binaryAccuracy:()=>Cre,binaryCrossentropy:()=>Rre,categoricalAccuracy:()=>Fre,categoricalCrossentropy:()=>$re,cosineProximity:()=>Ore,mape:()=>Wre,meanAbsoluteError:()=>_re,meanAbsolutePercentageError:()=>Pre,meanSquaredError:()=>Bre,mse:()=>jre,precision:()=>Dre,recall:()=>zre,sparseCategoricalAccuracy:()=>Mre});function Cre(e,t){return ry(e,t)}function Rre(e,t){return h4(e,t)}function Mre(e,t){return f4(e,t)}function Fre(e,t){return sy(e,t)}function $re(e,t){return iy(e,t)}function Dre(e,t){return c4(e,t)}function zre(e,t){return gne(e,t)}function Ore(e,t){return ny(e,t)}function _re(e,t){return Qh(e,t)}function Pre(e,t){return ql(e,t)}function Lre(e,t){return ql(e,t)}function Wre(e,t){return ql(e,t)}function Bre(e,t){return $i(e,t)}function Vre(e,t){return $i(e,t)}function jre(e,t){return $i(e,t)}var c8={};Fe(c8,{modelFromJSON:()=>Jne});var h8={};Fe(h8,{l1:()=>Hre,l1l2:()=>Ure,l2:()=>Gre});function Ure(e){return new Wd(e)}function Hre(e){return iae(e)}function Gre(e){return oae(e)}var f8=class extends Gl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof mr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function h0(e,t){return e<t}function m8(e,t){return e>t}var A8=class extends f8{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new ze("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=h0:this.mode==="max"?this.monitorFunc=m8:this.monitor.indexOf("acc")!==-1?this.monitorFunc=m8:this.monitorFunc=h0,this.monitorFunc===h0&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===h0?Infinity:-Infinity}async onEpochEnd(e,t){await Xr(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function qre(e){return new A8(e)}var Xre={earlyStopping:qre},Ca;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Ca||(Ca={}));var y8;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(y8||(y8={}));var x2={};function Kre(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};x2[e]=n}function g8(e){return x2[e]}function Zre(e){delete x2[e]}function I(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return yn(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(p=>yn(p,n,a,r));let u=yn(t.inputNames.slice(o)[0],n,a,r),d=u.dataSync();return s.type==="number"?d[0]:k.toNestedArray(u.shape,d)}let i=t.attrParams[e];return i&&i.value}function yn(e,t,n,a){let[r,s]=Ln(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[f0(r,o)]);return i!==void 0?t[f0(r,i)][s]:void 0}function Yre(e,t,n){return t[f0(e,n.currentContextId)]}function Ar(e,t){let[n,a]=Ln(e);return[f0(n,t&&t.currentContextId),a]}function f0(e,t){return t?`${e}-${t}`:e}function Ln(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function m0(e,t,n){let a=I("pad",e,t,n);if(a==="explicit"){a=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function yr(e){return e.kept?e:_a(e)}var x8={};Fe(x8,{json:()=>Jre});var Jre=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],b8={};Fe(b8,{json:()=>Qre});var Qre=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],v8={};Fe(v8,{json:()=>ese});var ese=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],w8={};Fe(w8,{json:()=>tse});var tse=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],k8={};Fe(k8,{json:()=>nse});var nse=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],I8={};Fe(I8,{json:()=>ase});var ase=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],S8={};Fe(S8,{json:()=>rse});var rse=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],N8={};Fe(N8,{json:()=>sse});var sse=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],T8={};Fe(T8,{json:()=>ise});var ise=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],E8={};Fe(E8,{json:()=>ose});var ose=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],C8={};Fe(C8,{json:()=>lse});var lse=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],R8={};Fe(R8,{json:()=>use});var use=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],M8={};Fe(M8,{json:()=>dse});var dse=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],F8={};Fe(F8,{json:()=>pse});var pse=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],$8={};Fe($8,{json:()=>cse});var cse=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],D8={};Fe(D8,{json:()=>hse});var hse=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],z8={};Fe(z8,{json:()=>fse});var fse=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],O8=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[x8,b8,v8,w8,k8,I8,S8,C8,E8,N8,R8,M8,F8,$8,D8,z8,T8],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],u={},d={};t!=null&&(u=this.mapSignatureEntries(t.inputs),d=this.mapSignatureEntries(t.outputs));let p=Object.keys(i);p.forEach(m=>{let f=i[m];f.inputNames.forEach(A=>{let[y]=Ar(A);f.inputs.push(i[y]),i[y].children.push(f)})}),Object.keys(d).length===0?p.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(d).forEach(m=>{let[f]=Ar(m),A=i[f];A!=null&&(A.signatureKey=d[m],l.push(A))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=Ar(m),A=i[f];A&&(A.signatureKey=u[m],o.push(A))}):o=a;let c={};e.library!=null&&e.library.function!=null&&(c=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:c};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=g8(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.substr(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=b2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=b2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=E2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=E2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=w2(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=w2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=T2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=T2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=v2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=v2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=R2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=R2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=N2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=N2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=C2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=C2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=I2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=I2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=S2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=S2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=P8(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=P8(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((u,d)=>(u[d.name]=this.mapNode(d),d.op==="Const"&&a.push(u[d.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[d]=Ar(u.name),p={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:k2(u.type),type:"dtype"}},children:[]};p.signatureKey=u.name,s.push(p),r[d]=p}),Object.keys(r).forEach(u=>{let d=r[u];d.inputNames.forEach(p=>{let[c]=Ar(p);d.inputs.push(r[c]),r[c].children.push(d)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[d,p]=Ar(o[u.name]),c=r[d];c!=null&&(c.defaultOutput=p,i.push(c))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function mse(e){let t=J().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function _8(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):mse(e);return t?n:n.toLowerCase()}function b2(e,t,n,a=!1){let r=e[t];return r!=null?_8(r.s,a):n}function v2(e,t,n){let a=e[t];return a?a.b:n}function w2(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function k2(e){switch(typeof e=="string"&&(e=Ca[e]),e){case Ca.DT_FLOAT:return"float32";case Ca.DT_INT32:case Ca.DT_INT64:case Ca.DT_INT8:case Ca.DT_UINT8:return"int32";case Ca.DT_BOOL:return"bool";case Ca.DT_DOUBLE:return"float32";case Ca.DT_STRING:return"string";default:return null}}function P8(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function I2(e,t,n){let a=e[t];return a&&a.type?k2(a.type):n}function S2(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>k2(r)):n}function L8(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function N2(e,t,n){let a=e[t];return a&&a.shape?L8(a.shape):n}function T2(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function E2(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>_8(s,a)):n}function C2(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>L8(r)):n}function R2(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var Ase=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return yn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return yn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return w2(this.node.rawAttrs,e,t);if(n.s!=null)return b2(this.node.rawAttrs,e,t);if(n.b!=null)return v2(this.node.rawAttrs,e,t);if(n.shape!=null)return N2(this.node.rawAttrs,e,t);if(n.type!=null)return I2(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return T2(this.node.rawAttrs,e,t);if(n.list.s!=null)return E2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return C2(this.node.rawAttrs,e,t);if(n.list.b!=null)return R2(this.node.rawAttrs,e,t);if(n.list.type!=null)return S2(this.node.rawAttrs,e,t)}return t}},yse=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[se(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[kc(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[CA(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[P(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[me(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[gA(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[wc(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[ge(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[wl(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[Wa(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[ur(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[qc(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},gse=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Pt(I("x",e,t,n))];case"Acos":return[tA(I("x",e,t,n))];case"Acosh":return[nA(I("x",e,t,n))];case"Asin":return[rA(I("x",e,t,n))];case"Asinh":return[sA(I("x",e,t,n))];case"Atan":return[iA(I("x",e,t,n))];case"Atan2":return[oA(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[lA(I("x",e,t,n))];case"Ceil":return[hA(I("x",e,t,n))];case"Complex":return[Mr(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[Qu(I("x",e,t,n))];case"Cosh":return[Ec(I("x",e,t,n))];case"Elu":return[gl(I("x",e,t,n))];case"Erf":return[xA(I("x",e,t,n))];case"Exp":return[Yn(I("x",e,t,n))];case"Expm1":return[bA(I("x",e,t,n))];case"Floor":return[bl(I("x",e,t,n))];case"Log":return[$n(I("x",e,t,n))];case"Log1p":return[Fc(I("x",e,t,n))];case"Imag":return[Rc(I("x",e,t,n))];case"Neg":return[vt(I("x",e,t,n))];case"Reciprocal":return[FA(I("x",e,t,n))];case"Real":return[sd(I("x",e,t,n))];case"Relu":return[Ba(I("x",e,t,n))];case"Round":return[Lc(I("x",e,t,n))];case"Selu":return[Bc(I("x",e,t,n))];case"Sigmoid":return[In(I("x",e,t,n))];case"Sin":return[Vc(I("x",e,t,n))];case"Sign":return[DA(I("x",e,t,n))];case"Sinh":return[jc(I("x",e,t,n))];case"Softplus":return[mi(I("x",e,t,n))];case"Sqrt":return[Qt(I("x",e,t,n))];case"Square":return[it(I("x",e,t,n))];case"Tanh":return[ci(I("x",e,t,n))];case"Tan":return[_A(I("x",e,t,n))];case"ClipByValue":return[Sn(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[Pc(I("x",e,t,n))];case"Rsqrt":return[Wc(yn(e.inputNames[0],t,n))];case"Prod":return[_c(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[ed(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[rd(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[wA(yn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ma(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){k.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];k.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function W8(e){return!(typeof e=="number"||e.some(t=>t<0))}function Xd(e,t,n){let a=M2(e,n),r=!W8(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=M2(s.shape,a)}),!W8(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function M2(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var xse=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=Se(0),Ht(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),ma(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Ht(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return ua([],[0].concat(this.elementShape));let n=this.readMany(e);return ma(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),dn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return ua([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return ma(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),ot(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,pa(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];W(()=>{t=H(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=o===0?0:a[o-1],u=[0,l,0],d=[1,e[o],r];s[o]=H(Re(t,u,d),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Kd=class{constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);ma(t,r.shape,"TensorList shape mismatch: "),Ht(r)}),this.idTensor=Se(0),this.maxNumElements=a,Ht(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Kd([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);ma(e,this.elementShape,"TensorList shape mismatch: ");let a=Xd(this.elementShape,this.tensors,e);return W(()=>{let r=this.tensors.map(s=>H(s,a));return dn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Xd(this.elementShape,this.tensors,e),a=this.tensors.pop();return ma(a.shape,e,"TensorList shape mismatch: "),H(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(ma(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Ht(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);ma(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=Xd(this.elementShape,this.tensors,t);return H(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);ma(this.elementShape,t.shape,"TensorList shape mismatch: "),Ht(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);ma(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=Xd(this.elementShape,this.tensors,n);return e.length===0?ua([],[0].concat(a)):W(()=>{let r=e.map(s=>H(this.tensors[s],a));return dn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);ma(this.elementShape,t,"TensorList shape mismatch: ");let n=Xd(this.elementShape,this.tensors,t);return this.size()===0?ua([],[0].concat(n)):W(()=>{let a=this.tensors.map(r=>H(r,n));return ot(a,0)})}};function bse(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);ma(r,t,"TensorList shape mismatch: ");let s=pa(e);return new Kd(s,t,a)}function vse(e,t,n){return new Kd([],e,t,n)}function wse(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new Kd([],n,e.dtype,a),i=pa(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function kse(e,t,n){let a=0,r=t.map(d=>(a+=d,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=M2(s,n),o=a===0?0:e.size/a,l=W(()=>{let d=[];e=H(e,[1,a,o]);for(let p=0;p<t.length;++p){let c=p===0?0:r[p-1],h=[0,c,0],m=[1,t[p],o];d[p]=H(Re(e,h,m),i)}return e.dispose(),d}),u=new Kd([],n,e.dtype,t.length);for(let d=0;d<l.length;d++)u.setItem(d,l[d]);return u}var Ise=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=I("body",e,t,n),r=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(d=>d.id),l=await i[0].data();i.forEach(d=>{!d.kept&&o.indexOf(d.id)===-1&&d.dispose()});let u=s;for(;l[0];){let d=u;u=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let p=u.map(h=>h.id);d.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let c=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await c[0].data(),c.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let a=I("pred",e,t,n);return[yr(a)]}case"Switch":{let a=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=yr(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>yn(r,t,n)!==void 0);if(a){let r=yn(a,t,n);return[yr(r)]}return}case"Enter":{let a=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(a),[yr(r)]}case"Exit":{let a=I("tensor",e,t,n);return n.exitFrame(),[yr(a)]}case"NextIteration":{let a=I("tensor",e,t,n);return n.nextIteration(),[yr(a)]}case"TensorArrayV3":{let a=I("size",e,t,n),r=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),u=I("name",e,t,n),d=new xse(u,r,a,s,l,i,o);return n.addTensorArray(d),[d.idTensor,Se(1)]}case"TensorArrayWriteV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=I("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[Se(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=I("indices",e,t,n),r=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=wse(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=I("elementShape",e,t,n),r=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=vse(a,r,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let a=I("tensorListId",e,t,n),r=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=bse(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let a=I("tensorListId",e,t,n),r=n.getTensorList(a.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=I("tensorListId",e,t,n),r=I("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=kse(a,s,r);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function B8(e,t,n){let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=a==="fusedbatchnorm",l=I("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let u=I("strides",e,t,n),d=m0(e,t,n),p=I("dataFormat",e,t,n).toUpperCase(),c=I("dilations",e,t,n),[h,m]=I("args",e,t,n),f=I("leakyreluAlpha",e,t,n);return{stride:u,pad:d,dataFormat:p,dilations:c,biasArg:h,preluArg:m,activationFunc:r,leakyreluAlpha:f}}var Sse=(e,t,n)=>{switch(e.op){case"Conv1D":{let a=I("stride",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[Nc(I("x",e,t,n),I("filter",e,t,n),a,r,s,i)]}case"Conv2D":{let a=I("strides",e,t,n),r=m0(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[or(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:d}=B8(e,t,n);return[Wr.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:d})]}case"FusedDepthwiseConv2dNative":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:d}=B8(e,t,n);return[Wr.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:d})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let a=I("outputShape",e,t,n),r=I("strides",e,t,n),s=m0(e,t,n);return[Tc(I("x",e,t,n),I("filter",e,t,n),a,[r[1],r[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let a=I("strides",e,t,n),r=m0(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[yl(I("input",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,i,[s[1],s[2]])]}case"Conv3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[mA(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2],a[3]],r,s,[i[1],i[2],i[3]])]}case"AvgPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Yu(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[nd(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPoolWithArgmax":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=s3(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r,i);return[o,l]}case"AvgPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[pA(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"MaxPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[TA(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"Dilation2D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dilations",e,t,n),i=a[1],o=a[2],l=s[1],u=s[2];return[yA(I("x",e,t,n),I("filter",e,t,n),[i,o],r,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Nse=(e,t,n)=>{switch(e.op){case"Fill":{let a=I("shape",e,t,n),r=I("dtype",e,t,n),s=I("value",e,t,n);return[xl(a,s,r)]}case"LinSpace":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("num",e,t,n);return[Jb(a,r,s)]}case"Multinomial":{let a=I("logits",e,t,n),r=I("numSamples",e,t,n),s=I("seed",e,t,n);return[i3(a,r,s)]}case"OneHot":{let a=I("indices",e,t,n),r=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[pl(a,r,s,i)]}case"Ones":return[Dn(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[zn(I("x",e,t,n))];case"RandomUniform":return[kl(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("step",e,t,n);return[Il(a,r,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let a=I("shape",e,t,n),r=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[Xc(a,r,s,I("dtype",e,t,n),i)]}case"Zeros":return[Rt(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Ue(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function F2(e,t,n){let a=I("boxes",e,t,n),r=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var Tse=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=F2(e,t,n),u=await Ge.nonMaxSuppressionWithScoreAsync(a,r,s,i,o,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=F2(e,t,n),l=I("padToMaxOutputSize",e,t,n),u=await Ge.nonMaxSuppressionPaddedAsync(a,r,s,i,o,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=F2(e,t,n);return[await Ge.nonMaxSuppressionAsync(a,r,s,i,o)]}case"Where":{let a=fe(I("condition",e,t,n),"bool"),r=[await WA(a)];return a.dispose(),r}case"ListDiff":return u3(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ese=(e,t,n)=>{switch(e.op){case"TopKV2":{let a=I("x",e,t,n),r=I("k",e,t,n),s=I("sorted",e,t,n),i=PA(a,r,s);return[i.values,i.indices]}case"Unique":{let a=I("x",e,t,n),r=Kc(a);return[r.values,r.indices]}case"UniqueV2":{let a=I("x",e,t,n),r=I("axis",e,t,n),s=Kc(a,r);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Cse=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let a=I("default",e,t,n);return[yn(e.name,t,n)||a];case"Placeholder":return[yn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=I("x",e,t,n);return[yr(u)]}case"IdentityN":return I("x",e,t,n).map(u=>yr(u));case"Snapshot":let r=I("x",e,t,n);return[yr(r)];case"Shape":return[Et(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(u=>Et(u.shape));case"Size":return[Se(I("x",e,t,n).size,"int32")];case"Rank":return[Se(I("x",e,t,n).rank,"int32")];case"NoOp":return[Se(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let u=0;u<i.length;u++)console.log(Array.prototype.slice.call(i[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Rse=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Se(0),this.tensorMap=new Map,Ht(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Se(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),W(()=>{let a=pa(t),r=n.length,s=a.length;k.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];Ht(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return W(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return dn(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},Mse=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new Rse(r,s);return a.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Fse=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ge.resizeBilinear(a,[r[0],r[1]],s,i)]}case"ResizeNearestNeighbor":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ge.resizeNearestNeighbor(a,[r[0],r[1]],s,i)]}case"CropAndResize":{let a=I("image",e,t,n),r=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Ge.cropAndResize(a,r,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},$se=(e,t,n)=>{switch(e.op){case"Equal":return[Or(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[yi(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[Fn(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[Pr(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Mc(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[Lr(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[da(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[td(I("a",e,t,n))];case"LogicalOr":return[zc(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[an(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Dse=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Be(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[Kb(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Ye(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,d]=I("args",e,t,n);return[Wr.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:u,activation:r,preluActivationWeights:d,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},zse=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[hi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[hi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[kA(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[od(I("x",e,t,n))];case"LogSoftmax":return[Dc(I("x",e,t,n))];case"SparseToDense":return[BA(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ose=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Jn(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[wt(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[vl(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[ke(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Ic(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Xu(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[Ku(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[aA(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[_c(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[Cc(I("x",e,t,n),i,o,l)]}case"Bincount":let a=I("x",e,t,n),r=I("weights",e,t,n),s=I("size",e,t,n);return[cA(a,r,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),u=I("binaryOutput",e,t,n);return[qb(i,o,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},_se=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let a=I("n",e,t,n),r=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,a),[ot(s,r)]}case"Gather":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[fi(a,fe(r,"int32"),0)]}case"GatherV2":{let a=I("axis",e,t,n),r=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[fi(s,fe(i,"int32"),a,r)]}case"Reverse":{let a=I("dims",e,t,n),r=[];for(let i=0;i<a.length;i++)a[i]&&r.push(i);let s=I("x",e,t,n);return[On(s,r)]}case"ReverseV2":{let a=I("axis",e,t,n),r=I("x",e,t,n);return[On(r,a)]}case"Slice":{let a=I("begin",e,t,n),r=I("size",e,t,n);return[Re(I("x",e,t,n),a,r)]}case"StridedSlice":{let a=I("begin",e,t,n),r=I("end",e,t,n),s=I("strides",e,t,n),i=I("beginMask",e,t,n),o=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),u=I("newAxisMask",e,t,n),d=I("shrinkAxisMask",e,t,n),p=I("x",e,t,n);return[OA(p,a,r,s,i,o,l,u,d)]}case"Pack":return W(()=>{let a=I("axis",e,t,n),r=I("tensors",e,t,n),s=r[0].shape,i=Va(r[0]).shape,o=r.map(l=>{let u=k.arraysEqual(l.shape,s);if(!u&&!k.arraysEqual(Va(l).shape,i))throw new Error("the input tensors shape does not match");return u?l:H(l,s)});return[dn(o,a)]});case"Unpack":{let a=I("axis",e,t,n),r=I("tensor",e,t,n);return pa(r,a)}case"Tile":{let a=I("reps",e,t,n);return[_r(I("x",e,t,n),a)]}case"Split":case"SplitV":{let a=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return Gt(s,r,a)}case"ScatterNd":{let a=I("indices",e,t,n),r=I("values",e,t,n),s=I("shape",e,t,n);return[h3(a,r,s)]}case"GatherNd":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[f3(a,r)]}case"SparseToDense":{let a=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[BA(a,s,r,s.dtype===i.dtype?i:fe(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Pse=(e,t,n)=>{switch(e.op){case"SparseReshape":{let{outputIndices:a,outputShape:r}=C3.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[a,r]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Lse=(e,t,n)=>{switch(e.op){case"FFT":return[ld(I("x",e,t,n))];case"IFFT":return[Sl(I("x",e,t,n))];case"RFFT":return[ud(I("x",e,t,n))];case"IRFFT":return[Gc(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Wse=(e,t,n)=>{switch(e.op){case"Cast":return[fe(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let a=I("axis",e,t,n);return[un(I("x",e,t,n),a)]}case"Squeeze":{let a=I("axis",e,t,n);return[Va(I("x",e,t,n),a)]}case"Reshape":return[H(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[EA(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[lr(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let a=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[ad(I("x",e,t,n),a,r)]}case"BatchToSpaceND":{let a=I("blockShape",e,t,n),r=I("crops",e,t,n);return[Ju(I("x",e,t,n),a,r)]}case"DepthToSpace":{let a=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[AA(I("x",e,t,n),a,r)]}case"BroadcastTo":return[ml(I("x",e,t,n),I("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function V8(e,t,n,a){let r=((s,i,o)=>{switch(s.category){case"arithmetic":return W(()=>yse(s,i,o));case"basic_math":return W(()=>gse(s,i,o));case"control":return Ise(s,i,o);case"convolution":return W(()=>Sse(s,i,o));case"creation":return W(()=>Nse(s,i,o));case"dynamic":return Tse(s,i,o);case"evaluation":return W(()=>Ese(s,i,o));case"image":return W(()=>Fse(s,i,o));case"graph":return W(()=>Cse(s,i,o));case"logical":return W(()=>$se(s,i,o));case"matrices":return W(()=>Dse(s,i,o));case"normalization":return W(()=>zse(s,i,o));case"reduction":return W(()=>Ose(s,i,o));case"slice_join":return W(()=>_se(s,i,o));case"sparse":return W(()=>Pse(s,i,o));case"spectral":return W(()=>Lse(s,i,o));case"transformation":return W(()=>Wse(s,i,o));case"hash_table":return Mse(s,i,o,a);case"custom":let l=g8(s.op);if(l&&l.customExecutor)return l.customExecutor(new Ase(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return k.isPromise(r)?r.then(s=>[].concat(s)):[].concat(r)}var j8=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function U8(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(c=>Ln(c)[0]),d=[];a!=null&&(d=a.map(c=>Ln(c.name)[0]));let p=[...t];for(;p.length>0;){let c=p.pop();if((H8(c)||Hse(c)||Gse(c))&&i==null&&(i=c,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(c.name),n[c.name]==null&&u.indexOf(c.name)===-1&&d.indexOf(c.name)===-1){if(c.inputs.length===0){s.push(c.name);continue}c.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function Bse(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(d=>Ln(d)[0]).map(d=>e.nodes[d]),o=e.initNodes;i.forEach(d=>{a.has(d.name)&&s.push(d)}),e.weights.forEach(d=>{a.has(d.name)&&s.push(d)}),o!=null&&o.forEach(d=>{a.has(d.name)&&s.push(d)});let l=new Set,u=[];for(;s.length>0;){let d=s.pop();l.add(d.name),t[d.name]||u.push(d),d.children.forEach(p=>{!l.has(p.name)&&a.has(p.name)&&p.inputs.every(c=>l.has(c.name))&&s.push(p)})}return u}var Vse=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],jse=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Use=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function H8(e){return Vse.indexOf(e.op)>=0}function Hse(e){return jse.indexOf(e.op)>=0}function Gse(e){return Use.indexOf(e.op)>=0}var $2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new $2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=U8(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return Bse(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(d=>this.graph.nodes[Ln(d)[0]]),r=t.map(d=>Ln(d)[0]),s=r.map(d=>this.graph.nodes[d]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return W(()=>{let d=new j8(this.weightMap,l,u,this.functionExecutorMap),p=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,A]=Ln(m),y=[];y[A]=e[m],p[f]=y});let c=this.getFrozenTensorIds(p),h={};for(let m=0;m<o.length;m++){let f=o[m];if(!p[f.name]){let A=V8(f,p,d,this._resourceManager);if(k.isPromise(A))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);p[f.name]=A,this.checkTensorForDisposal(f.name,f,p,d,c,r,h)}}return this.parent==null&&d.dispose(c),t.map(m=>yn(m,p,d))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=Yre(o.name,n,a);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let d=i[u.id];d===1?(u.dispose(),delete i[u.id]):d!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,a={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new j8(this.weightMap,a,r,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(p=>yn(p,i,s)),l=o.map(p=>p.id),u=Object.keys(e).map(p=>e[p].id),d=new Set([...l,...u,...this.weightIds]);return Object.keys(i).forEach(p=>{i[p].forEach(c=>{c&&!c.kept&&!c.isDisposed&&!d.has(c.id)&&c.dispose()})}),this.parent==null&&s.dispose(d),o}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(g=>this.graph.nodes[Ln(g)[0]]),i=n.map(g=>Ln(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:d,syncInputs:p}=U8(e,o,this.weightMap,this._initNodes),c=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[x,w]=Ln(g),b=[];b[w]=e[g],h[x]=b});let m={},f=this.getFrozenTensorIds(h),A={};for(;c.length>0;){let g=this.processStack(s,c,t,h,A,f,i,m,l);await Promise.all(g)}d==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(g=>!H8(g)&&!yn(g.name,h,t)).map(g=>g.name);if(y.length>0){let g="";throw d!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${g}`)}return h}processStack(e,t,n,a,r,s,i,o,l){let u=[];for(;t.length>0;){let d=t.pop();n.currentContext=d.contexts;let p="";if(d.node.op==="Enter"&&I("isConstant",d.node,a,n)&&([p]=Ar(d.node.name,n)),a[d.node.name]==null){let c=V8(d.node,a,n,this._resourceManager);p||([p]=Ar(d.node.name,n));let h=n.currentContext;k.isPromise(c)?u.push(c.then(m=>(a[p]=m,n.currentContext=h,this.checkTensorForDisposal(p,d.node,a,n,s,i,o),this.processChildNodes(d.node,t,n,a,r,l),m))):(a[p]=c,this.checkTensorForDisposal(p,d.node,a,n,s,i,o),this.processChildNodes(d.node,t,n,a,r,l))}else this.processChildNodes(d.node,t,n,a,r,l)}return u}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=Ar(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!yn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!yn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=Ln(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);k.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&k.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let a=this._signature.inputs[n];t[a.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=Ln(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Ln(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},qse=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},Xse="?tfjs-format=file",Kse="model.json",G8=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new qse}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=kn.browserHTTPRequest(e,this.loadOptions);else{let t=kn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(kn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=kn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new $2(O8.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=O8.Instance.transformGraph(e.modelInitializer);this.initializer=new $2(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=kn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Le)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,a)=>(t[n]=e[a],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function $t(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${Kse}${Xse}`);let n=new G8(e,t);return await n.load(),n}var Zse="3.6.0",q8={};Fe(q8,{CSVDataset:()=>sk,Dataset:()=>Yl,FileDataSource:()=>ck,TextLineDataset:()=>nk,URLDataSource:()=>hk,array:()=>xie,csv:()=>Rie,func:()=>Mie,generator:()=>Fie,microphone:()=>Die,version_data:()=>zie,webcam:()=>$ie,zip:()=>bie});var Yse=eo(Qg()),Jse=eo(Qg());function Qse(e,t){return A0(e,t)}function A0(e,t,n=new Map,a=new Set){if(e==null)return null;if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Zl(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=A0(o,t,n,a);s[i]=l}return a.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function eie(e,t=K8){return X8(e,t)}function X8(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Zl(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(u=>u[i]),l=X8(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function K8(e){return e===null?null:Zl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function Z8(e,t){let n=new Map;A0(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(k.isPromise(r)){let s=await r;n.set(a,s)}}return A0(e,t,n)}function Zl(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Le))}function tie(e){return e==null||nie(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Le||k.isTypedArray(e)}function nie(e){return e===null||typeof e!="object"&&typeof e!="function"}function aie(e){return Qse(e,rie)}function rie(e){return e instanceof Le?{value:e.clone(),recurse:!1}:Zl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var Y8=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},D2=class extends Y8{constructor(){super(D2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};D2.INITIAL_CAPACITY=32;function J8(e){return new oie(e)}function z2(e){return new lie(e)}function sie(e,t){return new ek(e,t)}function iie(e,t=Jr.FAIL){return new yie(e,t)}var Kt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new mie(this,e)}filter(e){return new hie(this,e)}map(e){return new fie(this,e)}mapAsync(e){return new Q8(this,e)}serialMapAsync(e){return new Q8(this,e).serial()}flatmap(e){return new Aie(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new cie(this,e,t)}columnMajorBatch(e,t=!0,n=K8){return this.rowMajorBatch(e,t).map(a=>eie(a,n))}concatenate(e,t){return new ek(J8([this,e]),t)}take(e){return e<0||e==null?this:new pie(this,e)}skip(e){return e<0||e==null?this:new die(this,e)}prefetch(e){return new tk(this,e)}shuffle(e,t){return new gie(this,e,t)}serial(){return new uie(this)}},oie=class extends Kt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:aie(e),done:!1}}},lie=class extends Kt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},uie=class extends Kt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},die=class extends Kt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Ee(e.value)}return this.upstream.next()}},pie=class extends Kt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},cie=class extends Kt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},hie=class extends Kt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Ee(e.value)}}},fie=class extends Kt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=ya.getTensorsInContainer(e.value),n=this.transform(e.value),a=ya.getTensorsInContainer(n);for(let r of t)ya.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},mie=class extends Kt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},Q8=class extends Kt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=ya.getTensorsInContainer(e.value),n=await this.transform(e.value),a=ya.getTensorsInContainer(n);for(let r of t)ya.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},O2=class extends Kt{constructor(){super();this.outputQueue=new D2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},Aie=class extends O2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=ya.getTensorsInContainer(e.value),n=this.transform(e.value),a=ya.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)ya.isTensorInList(r,a)||r.dispose();return!0}},ek=class extends Kt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Jr;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Jr||(Jr={}));var yie=class extends Kt{constructor(e,t=Jr.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof Kt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await Z8(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Jr.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Jr.SHORTEST:return{value:null,done:!0};case Jr.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},tk=class extends Kt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new Y8(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},gie=class extends tk{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=Jse.alea(n||k.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Yl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;k.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let a;return this.size===Infinity||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),Wn(async()=>(await n.iterator()).columnMajorBatch(e,t,vie),a)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Wn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Wn(async()=>(await t.iterator()).filter(a=>W(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Wn(async()=>(await t.iterator()).map(n=>W(()=>e(n))),this.size)}mapAsync(e){let t=this;return Wn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Wn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Wn(async()=>{let a=z2(async()=>({value:await t.iterator(),done:!1}));return sie(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Wn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=Yse.alea(t||k.now().toString());return Wn(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Wn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Yl.MAX_BUFFER_SIZE=1e4;function Wn(e,t=null){return new class extends Yl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function xie(e){return Wn(async()=>J8(e),e.length)}function bie(e){if(!Zl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Wn(async()=>{let n=await Z8(e,a=>{if(a instanceof Yl)return{value:a.iterator(),recurse:!1};if(Zl(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return iie(n,Jr.SHORTEST)},t)}function vie(e){if(e===null)return null;let t=e[0];return tie(t)?{value:wie(e),recurse:!1}:{value:null,recurse:!0}}function wie(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Le?dn(e):ua(e)}var nk=class extends Yl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},y0='"',Zd=Symbol("out"),ak=Symbol("field"),g0=Symbol("quote"),_2=Symbol("quoteafterquote"),rk=Symbol("quoteinquote"),sk=class extends Yl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new nk(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(k.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&k.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(k.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=Zd;for(let i=0;i<r;i++)switch(s){case Zd:switch(e.charAt(i)){case y0:a=i+1,s=g0;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=Zd;break;default:s=ak,a=i;break}break;case ak:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=Zd,a=i+1;break;default:}break;case g0:switch(e.charAt(i)){case y0:s=_2;break;default:}break;case _2:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=Zd,a=i+1;break;case y0:s=g0;break;default:s=rk;break}break;case rk:switch(e.charAt(i)){case y0:s=g0;break;default:}break;default:}if(s===_2?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},ik=class extends Kt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(J().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new ik(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(k.sizeFromShape(t));return n.set(e,n.length-e.length),ua(n,t)}},ok=class extends Kt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Et([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=xa([s,r,o,i],[1,4])}else this.cropBox=xa([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(J().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new ok(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&k.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=ui.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return W(()=>{let t=un(fe(e,"float32"),0),n;n=Ge.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return H(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},lk=class{},uk=class extends Kt{split(e){return new kie(this,e)}},kie=class extends uk{constructor(e,t){super();this.upstream=e,this.impl=new Iie(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Iie=class extends O2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},Sie=class extends Kt{decodeUTF8(){return new Nie(this)}},Nie=class extends uk{constructor(e){super();this.upstream=e,this.impl=new Tie(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Tie=class extends O2{constructor(e){super();if(this.upstream=e,J().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=II();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return J().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},dk=class extends Sie{constructor(e,t={}){super();this.file=e,this.options=t,k.assert(e instanceof Uint8Array||(J().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function Eie(e,t={}){let n,a;typeof e=="string"?n=e:(n=e.url,a=Cie(e));let r=await k.fetch(n,a);if(r.ok){let s=new Uint8Array(await r.arrayBuffer());return new dk(s,t)}else throw new Error(r.statusText)}var Cie=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function pk(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var ck=class extends lk{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(pk(this.input)&&J().get("IS_NODE")){let e=Qi("fs");this.input=e.readFileSync(this.input.substr(7))}return new dk(this.input,this.options)}},hk=class extends lk{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return pk(this.url)?new ck(this.url,this.fileOptions).iterator():Eie(this.url,this.fileOptions)}};function Rie(e,t={}){return new sk(new hk(e),t)}function Mie(e){let t=z2(e);return Wn(async()=>t)}function Fie(e){return Wn(async()=>{let t=await e();return z2(()=>t.next())})}async function $ie(e,t){return ok.create(e,t)}async function Die(e){return ik.create(e)}var zie="3.6.0",Oie={tfjs:(fm==null?void 0:fm.version)||void 0,"tfjs-core":(mm==null?void 0:mm.version)||void 0,"tfjs-data":(Am==null?void 0:Am.version)||void 0,"tfjs-layers":(ym==null?void 0:ym.version)||void 0,"tfjs-converter":(gm==null?void 0:gm.version)||void 0,"tfjs-backend-cpu":u7||void 0,"tfjs-backend-webgl":Fv||void 0,"tfjs-backend-wasm":I6||void 0};var Bn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function fk(){if(!eA(Bn.name)){ce("backend registration:",Bn.name);try{Bn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Bn.width,Bn.height):document.createElement("canvas")}catch(e){ce("error: cannot create canvas:",e);return}try{Bn.gl=Bn.canvas.getContext("webgl2",Bn.webGLattr)}catch(e){ce("error: cannot get WebGL2 context:",e);return}try{fh(2,Bn.gl)}catch(e){ce("error: cannot set WebGL2 context:",e);return}try{let e=new vh(Bn.gl);hl(Bn.name,()=>new Ll(e),Bn.priority)}catch(e){ce("error: cannot register WebGL backend:",e);return}try{il("webgl").forEach(t=>{let n={...t,backendName:Bn.name};si(n)})}catch(e){ce("error: cannot update WebGL backend registration:",e);return}try{oa.set("WEBGL_VERSION",2)}catch(e){ce("error: cannot set WebGL backend flags:",e);return}ce("backend registered:",Bn.name)}}var q2={};Da(q2,{load:()=>G2,predict:()=>H2,triangulation:()=>Nk,uvmap:()=>Tk});function mk(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],a=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:a}}function Jd(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Jl(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function Ql(e,t,n){let a=t.shape[1],r=t.shape[2],s=[[e.startPoint[1]/a,e.startPoint[0]/r,e.endPoint[1]/a,e.endPoint[0]/r]];return Ge.cropAndResize(t,s,[0],n)}function x0(e,t=1.5){let n=Jl(e),a=Jd(e),r=[t*a[0]/2,t*a[1]/2],s=[n[0]-r[0],n[1]-r[1]],i=[n[0]+r[0],n[1]+r[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function b0(e){let t=Jl(e),n=Jd(e),r=Math.max(...n)/2,s=[Math.round(t[0]-r),Math.round(t[1]-r)],i=[Math.round(t[0]+r),Math.round(t[1]+r)];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function P2(e){let t=e.map(s=>s[0]),n=e.map(s=>s[1]),a=[Math.min(...t),Math.min(...n)],r=[Math.max(...t),Math.max(...n)];return{startPoint:a,endPoint:r,landmarks:e}}var Ak=e=>({startPoint:Re(e,[0,0],[-1,2]),endPoint:Re(e,[0,2],[-1,2])});var v0=[[1,0,0],[0,1,0],[0,0,1]];function _ie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function L2(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return _ie(n)}function yk(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function Qr(e,t){let n=0;for(let a=0;a<e.length;a++)n+=e[a]*t[a];return n}function Pie(e,t){let n=[];for(let a=0;a<e.length;a++)n.push(e[a][t]);return n}function gk(e,t){let n=[],a=e.length;for(let r=0;r<a;r++){n.push([]);for(let s=0;s<a;s++)n[r].push(Qr(e[r],Pie(t,s)))}return n}function w0(e,t){let n=Math.cos(e),a=Math.sin(e),r=[[n,-a,0],[a,n,0],[0,0,1]],s=yk(t[0],t[1]),i=gk(s,r),o=yk(-t[0],-t[1]);return gk(i,o)}function xk(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],a=[-Qr(t[0],n),-Qr(t[1],n)];return[t[0].concat(a[0]),t[1].concat(a[1]),[0,0,1]]}function bk(e,t){return[Qr(e,t[0]),Qr(e,t[1])]}function vk(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let a=0;a<t.strides.length;a++){let r=t.strides[a],s=Math.floor((e+r-1)/r),i=Math.floor((e+r-1)/r),o=t.anchors[a];for(let l=0;l<s;l++){let u=r*(l+.5);for(let d=0;d<i;d++){let p=r*(d+.5);for(let c=0;c<o;c++)n.push([p,u])}}}return n}var wk=6;function Lie(e,t,n){let a=Re(e,[0,1],[-1,2]),r=se(a,t),s=Re(e,[0,3],[-1,2]),i=me(s,n),o=me(r,n),l=me(i,2),u=ge(o,l),d=se(o,l),p=P(u,n),c=P(d,n);return Al([p,c],1)}var kk=class{constructor(t,n){this.model=t,this.anchorsData=vk(t.inputs[0].shape[1]),this.anchors=xa(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=n}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[n,a,r]=W(()=>{let u=t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(.5),d=this.model.execute(u),p;if(Array.isArray(d)){let f=d.sort((x,w)=>x.size-w.size),A=ot([f[0],f[2]],2),y=ot([f[1],f[3]],2);p=ot([y,A],1).squeeze(0)}else p=d.squeeze();let c=Lie(p,this.anchors,[this.inputSize,this.inputSize]),h=Re(p,[0,0],[-1,1]),m=In(h).squeeze().dataSync();return[p,c,m]}),s=await Ge.nonMaxSuppressionAsync(a,r,this.config.face.detector.maxDetected,this.config.face.detector.iouThreshold,this.config.face.detector.minConfidence),i=s.arraySync();s.dispose();let o=[];for(let l=0;l<i.length;l++){let u=r[i[l]];if(u>this.config.face.detector.minConfidence){let d=Re(a,[i[l],0],[1,-1]),p=Ak(d);d.dispose();let c=this.anchorsData[i[l]],h=W(()=>Re(n,[i[l],wk-1],[1,-1]).squeeze().reshape([wk,-1]));o.push({box:p,landmarks:h,anchor:c,confidence:u})}}return n.dispose(),a.dispose(),{boxes:o,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function Ik(e){let t=await $t(Ot(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new kk(t,e);return!t||!t.modelUrl?ce("load model failed:",e.face.detector.modelPath):e.debug&&ce("load model:",t.modelUrl),n}var Ya={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},W2=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],Qd=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],_i=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var Wie=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Bie=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Vie=[33,133,362,263,1,78,308],Noe=Wie.map(e=>Qd[e]),Toe=Bie.map(e=>Qd[e]),Eoe=Vie.map(e=>Qd[e]);var B2=Ya.leftEyeLower0,V2=Ya.rightEyeLower0,eu={leftBounds:[B2[0],B2[B2.length-1]],rightBounds:[V2[0],V2[V2.length-1]]},k0={count:468,mouth:13,symmetryLine:[13,Ya.midwayBetweenEyes[0]]},Sk={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},tu={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function I0(e,t,n,a){for(let r=0;r<W2.length;r++){let{key:s,indices:i}=W2[r],o=Ya[`${n}${s}`];if(!a||a.includes(s))for(let l=0;l<i.length;l++){let u=i[l];e[o[l]]=[t[u][0],t[u][1],(t[u][2]+e[o[l]][2])/2]}}}var j2=class{constructor(t,n,a){var r,s;this.storedBoxes=[],this.boundingBoxDetector=t,this.meshDetector=n,this.irisModel=a,this.boxSize=((r=t==null?void 0:t.model)==null?void 0:r.inputs[0].shape[2])||0,this.meshSize=(n==null?void 0:n.inputs[0].shape[2])||((s=t==null?void 0:t.model)==null?void 0:s.inputs[0].shape[2]),this.irisSize=(a==null?void 0:a.inputs[0].shape[1])||0,this.irisEnlarge=2.3,this.skipped=0,this.detectedFaces=0}transformRawCoords(t,n,a,r){let s=Jd({startPoint:n.startPoint,endPoint:n.endPoint}),i=t.map(p=>[s[0]/this.meshSize*(p[0]-this.meshSize/2),s[1]/this.meshSize*(p[1]-this.meshSize/2),p[2]]),o=a!==0?w0(a,[0,0]):v0,l=a!==0?i.map(p=>[...bk(p,o),p[2]]):i,u=a!==0?xk(r):v0,d=[...Jl({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(p=>[Math.round(p[0]+Qr(d,u[0])),Math.round(p[1]+Qr(d,u[1])),Math.round(p[2])])}getLeftToRightEyeDepthDifference(t){let n=t[eu.leftBounds[0]][2],a=t[eu.rightBounds[0]][2];return n-a}getEyeBox(t,n,a,r,s=!1){let i=b0(x0(P2([t[a],t[r]]),this.irisEnlarge)),o=Jd(i),l=Ge.cropAndResize(n,[[i.startPoint[1]/this.meshSize,i.startPoint[0]/this.meshSize,i.endPoint[1]/this.meshSize,i.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return s&&oa.flags.IS_BROWSER&&(l=Ge.flipLeftRight(l)),{box:i,boxSize:o,crop:l}}getEyeCoords(t,n,a,r=!1){let s=[];for(let i=0;i<tu.numCoordinates;i++){let o=t[i*3],l=t[i*3+1],u=t[i*3+2];s.push([(r?1-o/this.irisSize:o/this.irisSize)*a[0]+n.startPoint[0],l/this.irisSize*a[1]+n.startPoint[1],u])}return{rawCoords:s,iris:s.slice(tu.index)}}getAdjustedIrisCoords(t,n,a){let r=t[Ya[`${a}EyeUpper0`][tu.upperCenter]][2],s=t[Ya[`${a}EyeLower0`][tu.lowerCenter]][2],i=(r+s)/2;return n.map((o,l)=>{let u=i;return l===2?u=r:l===4&&(u=s),[o[0],o[1],u]})}async predict(t,n){let a=!1,r;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.skipFrame)&&(r=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.skipFrame&&this.skipped++,!n.skipFrame||r&&r.boxes&&(!n.face.mesh.enabled||r.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxDetected)){this.storedBoxes=[],this.detectedFaces=0;for(let i of r.boxes)this.storedBoxes.push({startPoint:i.box.startPoint.dataSync(),endPoint:i.box.endPoint.dataSync(),landmarks:i.landmarks.arraySync(),confidence:i.confidence});this.storedBoxes.length>0&&(a=!0)}if(a){if(!r||!r.boxes||r.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i<this.storedBoxes.length;i++){let o=mk({startPoint:this.storedBoxes[i].startPoint,endPoint:this.storedBoxes[i].endPoint},r.scaleFactor),l=x0(o),u=b0(l),d=this.storedBoxes[i].landmarks,p=this.storedBoxes[i].confidence;this.storedBoxes[i]={...u,confidence:p,landmarks:d}}}r&&r.boxes&&r.boxes.forEach(i=>{i.box.startPoint.dispose(),i.box.endPoint.dispose(),i.landmarks.dispose()});let s=W(()=>this.storedBoxes.map((i,o)=>{let l,u=0,d;if(n.face.detector.rotation&&n.face.mesh.enabled&&oa.flags.IS_BROWSER){let[x,w]=i.landmarks.length>=k0.count?k0.symmetryLine:Sk.symmetryLine;u=L2(i.landmarks[x],i.landmarks[w]);let b=Jl({startPoint:i.startPoint,endPoint:i.endPoint}),v=[b[0]/t.shape[2],b[1]/t.shape[1]],N=Ge.rotateWithOffset(t,u,0,v);d=w0(-u,b),n.face.mesh.enabled?l=Ql({startPoint:i.startPoint,endPoint:i.endPoint},N,[this.meshSize,this.meshSize]).div(255):l=Ql({startPoint:i.startPoint,endPoint:i.endPoint},N,[this.boxSize,this.boxSize]).div(255)}else{d=v0;let x=t.clone();n.face.mesh.enabled?l=Ql({startPoint:i.startPoint,endPoint:i.endPoint},x,[this.meshSize,this.meshSize]).div(255):l=Ql({startPoint:i.startPoint,endPoint:i.endPoint},x,[this.boxSize,this.boxSize]).div(255)}if(!n.face.mesh.enabled)return{mesh:[],box:i,faceConfidence:null,boxConfidence:i.confidence,confidence:i.confidence,image:l};let[,p,c]=this.meshDetector.execute(l),h=p.dataSync()[0];if(h<n.face.detector.minConfidence)return this.storedBoxes[o].confidence=h,null;let f=H(c,[-1,3]).arraySync();if(n.face.iris.enabled){let{box:x,boxSize:w,crop:b}=this.getEyeBox(f,l,eu.leftBounds[0],eu.leftBounds[1],!0),{box:v,boxSize:N,crop:T}=this.getEyeBox(f,l,eu.rightBounds[0],eu.rightBounds[1]),$=this.irisModel.predict(ot([b,T])).dataSync(),O=$.slice(0,tu.numCoordinates*3),{rawCoords:_,iris:V}=this.getEyeCoords(O,x,w,!0),U=$.slice(tu.numCoordinates*3),{rawCoords:j,iris:X}=this.getEyeCoords(U,v,N),G=this.getLeftToRightEyeDepthDifference(f);Math.abs(G)<30?(I0(f,_,"left",null),I0(f,j,"right",null)):G<1?I0(f,_,"left",["EyeUpper0","EyeLower0"]):I0(f,j,"right",["EyeUpper0","EyeLower0"]);let ee=this.getAdjustedIrisCoords(f,V,"left"),Y=this.getAdjustedIrisCoords(f,X,"right");f=f.concat(ee).concat(Y)}let A=this.transformRawCoords(f,i,u,d),y=i.confidence;if(i=x0(P2(A),1.5),i.confidence=y,n.face.detector.rotation&&n.face.mesh.enabled&&n.face.description.enabled&&oa.flags.IS_BROWSER){let[x,w]=i.landmarks.length>=k0.count?k0.symmetryLine:Sk.symmetryLine;u=L2(i.landmarks[x],i.landmarks[w]);let b=Jl({startPoint:i.startPoint,endPoint:i.endPoint}),v=[b[0]/t.shape[2],b[1]/t.shape[1]],N=Ge.rotateWithOffset(t.toFloat(),u,0,v);d=w0(-u,b),l=Ql({startPoint:i.startPoint,endPoint:i.endPoint},N,[this.meshSize,this.meshSize]).div(255)}let g={mesh:A,box:i,faceConfidence:h,boxConfidence:i.confidence,image:l};return this.storedBoxes[o]={...b0(i),confidence:i.confidence,faceConfidence:h},g}));return n.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(i=>i.confidence>n.face.detector.minConfidence)),this.detectedFaces=s.length,s}};var Nt=[null,null,null],U2;async function H2(e,t){let n=await U2.predict(e,t),a=[];for(let r of n||[]){if(!r||r.isDisposedInternal)continue;let s=r.mesh.map(u=>[u[0]/e.shape[2],u[1]/e.shape[1],u[2]/U2.meshSize]),i={};if(r.mesh&&r.mesh.length>0)for(let u of Object.keys(Ya))i[u]=Ya[u].map(d=>r.mesh[d]);let o=r.box?[Math.max(0,r.box.startPoint[0]),Math.max(0,r.box.startPoint[1]),Math.min(e.shape[2],r.box.endPoint[0])-Math.max(0,r.box.startPoint[0]),Math.min(e.shape[1],r.box.endPoint[1])-Math.max(0,r.box.startPoint[1])]:0,l=r.box?[r.box.startPoint[0]/e.shape[2],r.box.startPoint[1]/e.shape[1],(r.box.endPoint[0]-r.box.startPoint[0])/e.shape[2],(r.box.endPoint[1]-r.box.startPoint[1])/e.shape[1]]:[];a.push({confidence:Math.round(100*r.faceConfidence||100*r.boxConfidence||0)/100,boxConfidence:Math.round(100*r.boxConfidence)/100,faceConfidence:Math.round(100*r.faceConfidence)/100,box:o,boxRaw:l,mesh:r.mesh,meshRaw:s,annotations:i,image:r.image}),r.coords&&r.coords.dispose()}return a}async function G2(e){return!Nt[0]&&e.face.enabled||!Nt[1]&&e.face.mesh.enabled||!Nt[2]&&e.face.iris.enabled?(Nt=await Promise.all([!Nt[0]&&e.face.enabled?Ik(e):null,!Nt[1]&&e.face.mesh.enabled?$t(Ot(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Nt[2]&&e.face.iris.enabled?$t(Ot(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!Nt[1]||!Nt[1].modelUrl?ce("load model failed:",e.face.mesh.modelPath):e.debug&&ce("load model:",Nt[1].modelUrl)),e.face.iris.enabled&&(!Nt[2]||!Nt[2].modelUrl?ce("load model failed:",e.face.iris.modelPath):e.debug&&ce("load model:",Nt[2].modelUrl))):e.debug&&(Nt[0]&&ce("cached model:",Nt[0].model.modelUrl),Nt[1]&&ce("cached model:",Nt[1].modelUrl),Nt[2]&&ce("cached model:",Nt[2].modelUrl)),U2=new j2(Nt[0],Nt[1],Nt[2]),Nt}var Nk=_i,Tk=Qd;var Y2={};Da(Y2,{load:()=>Z2,predict:()=>N0});var jie=["angry","disgust","fear","happy","sad","surprise","neutral"],Ra,S0=[],Ek=0,X2=Number.MAX_SAFE_INTEGER,K2=[.2989,.587,.114];async function Z2(e){return Ra?e.debug&&ce("cached model:",Ra.modelUrl):(Ra=await $t(Ot(e.modelBasePath,e.face.emotion.modelPath)),!Ra||!Ra.modelUrl?ce("load model failed:",e.face.emotion.modelPath):e.debug&&ce("load model:",Ra.modelUrl)),Ra}async function N0(e,t,n,a){return Ra?X2<t.face.emotion.skipFrames&&t.skipFrame&&Ek===a&&S0[n]&&S0[n].length>0?(X2++,S0[n]):(X2=0,new Promise(async r=>{let s=Ge.resizeBilinear(e,[Ra.inputs[0].shape[2],Ra.inputs[0].shape[1]],!1),[i,o,l]=Gt(s,3,3);s.dispose();let u=P(i,K2[0]),d=P(o,K2[1]),p=P(l,K2[2]);i.dispose(),o.dispose(),l.dispose();let c=kc([u,d,p]);u.dispose(),d.dispose(),p.dispose();let h=W(()=>c.sub(.5).mul(2));c.dispose();let m=[];if(t.face.emotion.enabled){let f=await Ra.predict(h),A=f.dataSync();Ee(f);for(let y=0;y<A.length;y++)A[y]>t.face.emotion.minConfidence&&m.push({score:Math.min(.99,Math.trunc(100*A[y])/100),emotion:jie[y]});m.sort((y,g)=>g.score-y.score)}h.dispose(),S0[n]=m,Ek=a,r(m)})):null}var ng={};Da(ng,{enhance:()=>tg,load:()=>Q2,match:()=>Rk,predict:()=>E0,similarity:()=>eg});var Ma,T0=[],Ck=0,J2=Number.MAX_SAFE_INTEGER;async function Q2(e){let t=Ot(e.modelBasePath,e.face.description.modelPath);return Ma?e.debug&&ce("cached model:",t):(Ma=await $t(t),Ma?e.debug&&ce("load model:",t):ce("load model failed:",e.face.description.modelPath)),Ma}function eg(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let a=5*e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(0,100-a)/100}function Rk(e,t,n=0){let a={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return a;for(let r of t)if(r.embedding&&r.name){let s=eg(e,r.embedding);s>n&&s>a.similarity&&(a={...r,similarity:s})}return a}function tg(e){return W(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Le))return null;let a=[[.05,.15,.85,.85]];return Ma.inputs[0].shape?(n.shape.length===3?Ge.cropAndResize(un(n,0),a,[0],[Ma.inputs[0].shape[2],Ma.inputs[0].shape[1]]):Ge.cropAndResize(n,a,[0],[Ma.inputs[0].shape[2],Ma.inputs[0].shape[1]])).mul(255):null})}async function E0(e,t,n,a){var r,s;return Ma?J2<t.face.description.skipFrames&&t.skipFrame&&Ck===a&&((r=T0[n])==null?void 0:r.age)&&((s=T0[n])==null?void 0:s.age)>0?(J2++,T0):(J2=0,new Promise(async i=>{let o=tg(e),l,u={age:0,gender:"unknown",genderConfidence:0,descriptor:[]};t.face.description.enabled&&(l=await Ma.predict(o)),Ee(o),l&&(W(()=>{let d=l.find(f=>f.shape[1]===1).dataSync(),p=Math.trunc(200*Math.abs(d[0]-.5))/100;p>t.face.description.minConfidence&&(u.gender=d[0]<=.5?"female":"male",u.genderConfidence=Math.min(.99,p));let c=l.find(f=>f.shape[1]===100).argMax(1).dataSync()[0],h=l.find(f=>f.shape[1]===100).dataSync();u.age=Math.round(h[c-1]>h[c+1]?10*c-100*h[c-1]:10*c+100*h[c+1])/10;let m=l.find(f=>f.shape[1]===1024);u.descriptor=[...m.dataSync()]}),l.forEach(d=>Ee(d))),T0[n]=u,Ck=a,i(u)})):null}var Uie=(e,t)=>{let n=A=>A*180/Math.PI,a=A=>{let y=Math.sqrt(A[0]*A[0]+A[1]*A[1]+A[2]*A[2]);return A[0]/=y,A[1]/=y,A[2]/=y,A},r=(A,y)=>{let g=A[0]-y[0],x=A[1]-y[1],w=A[2]-y[2];return[g,x,w]},s=(A,y)=>{let g=A[1]*y[2]-A[2]*y[1],x=A[2]*y[0]-A[0]*y[2],w=A[0]*y[1]-A[1]*y[0];return[g,x,w]},i=A=>{let[y,g,x,w,b,v,N,T,R]=A,$,O,_;return w<1?w>-1?(_=Math.asin(w),O=Math.atan2(-N,y),$=Math.atan2(-v,b)):(_=-Math.PI/2,O=-Math.atan2(T,R),$=0):(_=Math.PI/2,O=Math.atan2(T,R),$=0),{pitch:2*-$,yaw:2*-O,roll:2*-_}},o=A=>{let y=(x,w,b,v)=>Math.atan2(v-w,b-x);return{pitch:y(A[10][1],A[10][2],A[152][1],A[152][2]),yaw:y(A[33][0],A[33][2],A[263][0],A[263][2]),roll:y(A[33][0],A[33][1],A[263][0],A[263][1])}},l=e.meshRaw;if(!l||l.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1]};let u=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,d=[l[10],l[152],l[234],l[454]].map(A=>[A[0]*t[0]/u,A[1]*t[1]/u,A[2]]),p=a(r(d[1],d[0])),c=a(r(d[3],d[2])),h=a(s(c,p));c=s(p,h);let m=[c[0],c[1],c[2],p[0],p[1],p[2],h[0],h[1],h[2]];return{angle:i(m),matrix:m}},ag=async(e,t)=>{var d,p,c,h,m,f,A,y;let n,a,r,s,i,o,l=[];e.state="run:face",n=nt();let u=await H2(t,e.config);if(e.perf.face=Math.trunc(nt()-n),!u)return[];for(let g=0;g<u.length;g++){if(e.analyze("Get Face"),!u[g].image||u[g].image.isDisposedInternal){ce("Face object is disposed:",u[g].image);continue}let x=Uie(u[g],[t.shape[2],t.shape[1]]);e.analyze("Start Emotion:"),e.config.async?s=e.config.face.emotion.enabled?N0(u[g].image,e.config,g,u.length):{}:(e.state="run:emotion",n=nt(),s=e.config.face.emotion.enabled?await N0(u[g].image,e.config,g,u.length):{},e.perf.emotion=Math.trunc(nt()-n)),e.analyze("End Emotion:"),e.analyze("Start Description:"),e.config.async?o=e.config.face.description.enabled?E0(u[g],e.config,g,u.length):[]:(e.state="run:description",n=nt(),o=e.config.face.description.enabled?await E0(u[g].image,e.config,g,u.length):[],e.perf.embedding=Math.trunc(nt()-n)),e.analyze("End Description:"),e.config.async&&([a,r,s,i,o]=await Promise.all([a,r,s,i,o])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((p=(d=u[g])==null?void 0:d.annotations)==null?void 0:p.leftEyeIris)&&((h=(c=u[g])==null?void 0:c.annotations)==null?void 0:h.rightEyeIris)&&(delete u[g].annotations.leftEyeIris,delete u[g].annotations.rightEyeIris);let w=((m=u[g].annotations)==null?void 0:m.leftEyeIris)&&((f=u[g].annotations)==null?void 0:f.rightEyeIris)?11.7*Math.max(Math.abs(u[g].annotations.leftEyeIris[3][0]-u[g].annotations.leftEyeIris[1][0]),Math.abs(u[g].annotations.rightEyeIris[4][1]-u[g].annotations.rightEyeIris[2][1])):0;l.push({id:g,...u[g],age:o.age,gender:o.gender,genderConfidence:o.genderConfidence,embedding:o.descriptor,emotion:s,iris:w!==0?Math.trunc(w)/100:0,rotation:x,tensor:e.config.face.detector.return?(A=u[g].image)==null?void 0:A.squeeze():null}),(y=u[g].image)==null||y.dispose(),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.perf.face&&delete e.perf.face,e.perf.age&&delete e.perf.age,e.perf.gender&&delete e.perf.gender,e.perf.emotion&&delete e.perf.emotion),l};var pg={};Da(pg,{load:()=>dg,predict:()=>ug});var ep=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Mk=ep.length,tp=ep.reduce((e,t,n)=>(e[t]=n,e),{}),Hie=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Gie=Hie.map(([e,t])=>[tp[e],tp[t]]),Fk=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function $k(e){let t=e.reduce(({maxX:n,maxY:a,minX:r,minY:s},{position:{x:i,y:o}})=>({maxX:Math.max(n,i),maxY:Math.max(a,o),minX:Math.min(r,i),minY:Math.min(s,o)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function Dk(e,[t,n],[a,r]){let s=t/a,i=n/r,o=(u,d)=>({id:d,score:u.score,bowRaw:[u.box[0]/r,u.box[1]/a,u.box[2]/r,u.box[3]/a],box:[Math.trunc(u.box[0]*i),Math.trunc(u.box[1]*s),Math.trunc(u.box[2]*i),Math.trunc(u.box[3]*s)],keypoints:u.keypoints.map(({score:p,part:c,position:h})=>({score:p,part:c,position:{x:Math.trunc(h.x*i),y:Math.trunc(h.y*s)}}))});return e.map((u,d)=>o(u,d))}var rg=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let a=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=a}};function sg(e,t,n,a){return{y:a.get(e,t,n),x:a.get(e,t,n+Mk)}}function ig(e,t,n){let{heatmapY:a,heatmapX:r,id:s}=e,{y:i,x:o}=sg(a,r,s,n);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}function og(e,t,n){return e<t?t:e>n?n:e}function zk(e,t,n,a){let r=n-e,s=a-t;return r*r+s*s}function lg(e,t){return{x:e.x+t.x,y:e.y+t.y}}var C0=1,nu=16,qie=50**2;function Ok(e,t,n,a,r,s,i=2){let o=y=>({y:s.get(y.y,y.x,e),x:s.get(y.y,y.x,s.shape[2]/2+e)}),l=(y,g,x)=>({y:og(Math.round(y.y/nu),0,g-1),x:og(Math.round(y.x/nu),0,x-1)}),[u,d]=a.shape,p=l(t.position,u,d),c=o(p),m=lg(t.position,c);for(let y=0;y<i;y++){let g=l(m,u,d),x=sg(g.y,g.x,n,r);m=lg({x:g.x*nu,y:g.y*nu},{x:x.x,y:x.y})}let f=l(m,u,d),A=a.get(f.y,f.x,n);return{position:m,part:ep[n],score:A}}function Xie(e,t,n,a,r){let s=Fk.map(([c,h])=>[tp[c],tp[h]]),i=s.map(([,c])=>c),o=s.map(([c])=>c),l=t.shape[2],u=i.length,d=new Array(l),p=ig(e.part,nu,n);d[e.part.id]={score:e.score,part:ep[e.part.id],position:p};for(let c=u-1;c>=0;--c){let h=i[c],m=o[c];d[h]&&!d[m]&&(d[m]=Ok(c,d[h],m,t,n,r))}for(let c=0;c<u;++c){let h=o[c],m=i[c];d[h]&&!d[m]&&(d[m]=Ok(c,d[h],m,t,n,a))}return d}function Kie(e,t,n,a,r){let[s,i]=r.shape,o=!0,l=Math.max(n-C0,0),u=Math.min(n+C0+1,s);for(let d=l;d<u;++d){let p=Math.max(a-C0,0),c=Math.min(a+C0+1,i);for(let h=p;h<c;++h)if(r.get(d,h,e)>t){o=!1;break}if(!o)break}return o}function Zie(e,t){let[n,a,r]=t.shape,s=new rg(n*a*r,({score:i})=>i);for(let i=0;i<n;++i)for(let o=0;o<a;++o)for(let l=0;l<r;++l){let u=t.get(i,o,l);u<e||Kie(l,u,i,o,t)&&s.enqueue({score:u,part:{heatmapY:i,heatmapX:o,id:l}})}return s}function _k(e,{x:t,y:n},a){return e.some(({keypoints:r})=>{var i;let s=(i=r[a])==null?void 0:i.position;return s?zk(n,t,s.y,s.x)<=qie:!1})}function Yie(e,t){return t.reduce((a,{position:r,score:s},i)=>(_k(e,r,i)||(a+=s),a),0)/t.length}function Pk(e,t,n,a,r,s){let i=[],o=Zie(s,t);for(;i.length<r&&!o.empty();){let l=o.dequeue(),u=ig(l.part,nu,e);if(_k(i,u,l.part.id))continue;let d=Xie(l,t,e,n,a);d=d.filter(h=>h.score>s);let p=Yie(i,d),c=$k(d);p>s&&i.push({keypoints:d,box:c,score:Math.round(100*p)/100})}return i}var Vn,Jie=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function ug(e,t){let n=W(()=>{if(!Vn.inputs[0].shape)return[];let o=e.resizeBilinear([Vn.inputs[0].shape[2],Vn.inputs[0].shape[1]]).toFloat().div(127.5).sub(1),u=Vn.execute(o,Jie).map(d=>d.squeeze([0]));return u[1]=u[1].sigmoid(),u}),a=await Promise.all(n.map(i=>i.buffer()));for(let i of n)i.dispose();let r=await Pk(a[0],a[1],a[2],a[3],t.body.maxDetected,t.body.minConfidence);return Vn.inputs[0].shape?Dk(r,[e.shape[1],e.shape[2]],[Vn.inputs[0].shape[2],Vn.inputs[0].shape[1]]):[]}async function dg(e){return Vn?e.debug&&ce("cached model:",Vn.modelUrl):(Vn=await $t(Ot(e.modelBasePath,e.body.modelPath)),!Vn||!Vn.modelUrl?ce("load model failed:",e.body.modelPath):e.debug&&ce("load model:",Vn.modelUrl)),Vn}var gg={};Da(gg,{load:()=>yg,predict:()=>Ag});function R0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function np(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function Lk(e,t,n){let a=t.shape[1],r=t.shape[2],s=[[e.startPoint[1]/a,e.startPoint[0]/r,e.endPoint[1]/a,e.endPoint[0]/r]];return Ge.cropAndResize(t,s,[0],n)}function Wk(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],a=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:a,palmLandmarks:r,confidence:e.confidence}}function M0(e,t=1.5){let n=np(e),a=R0(e),r=[t*a[0]/2,t*a[1]/2],s=[n[0]-r[0],n[1]-r[1]],i=[n[0]+r[0],n[1]+r[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function F0(e){let t=np(e),n=R0(e),r=Math.max(...n)/2,s=[t[0]-r,t[1]-r],i=[t[0]+r,t[1]+r];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}var Bk=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var cg=class{constructor(t){var n;this.model=t,this.anchors=Bk.map(a=>[a.x,a.y]),this.anchorsTensor=xa(this.anchors),this.inputSize=(n=this.model)==null?void 0:n.inputs[0].shape[2],this.inputSizeTensor=Et([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Et([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return W(()=>{let n=Re(t,[0,0],[-1,2]),a=Re(t,[0,2],[-1,2]),r=se(me(n,this.inputSizeTensor),this.anchorsTensor),s=me(a,this.doubleInputSizeTensor),i=P(ge(r,s),this.inputSizeTensor),o=P(se(r,s),this.inputSizeTensor);return Al([i,o],1)})}normalizeLandmarks(t,n){return W(()=>{let a=se(me(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return P(a,this.inputSizeTensor)})}async getBoxes(t,n){let a=this.model.predict(t),r=a.squeeze();a.dispose();let s=W(()=>In(Re(r,[0,0],[-1,1])).squeeze()),i=s.dataSync(),o=Re(r,[0,1],[-1,4]),l=this.normalizeBoxes(o);o.dispose();let u=await Ge.nonMaxSuppressionAsync(l,i,n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence),d=u.arraySync();s.dispose(),u.dispose();let p=[];for(let c of d)if(i[c]>=n.hand.minConfidence){let h=Re(l,[c,0],[1,-1]),m=Re(r,[c,5],[1,14]),f=W(()=>this.normalizeLandmarks(m,c).reshape([-1,2]));m.dispose(),p.push({box:h,palmLandmarks:f,confidence:i[c]})}return r.dispose(),l.dispose(),p}async estimateHandBounds(t,n){let a=t.shape[1],r=t.shape[2],s=W(()=>t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),i=await this.getBoxes(s,n);s.dispose();let o=[];if(!i||i.length===0)return o;for(let l of i){let u=l.box.dataSync(),d=u.slice(0,2),p=u.slice(2,4),c=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),o.push(Wk({startPoint:d,endPoint:p,palmLandmarks:c,confidence:l.confidence},[r/this.inputSize,a/this.inputSize]))}return o}};function Qie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function Vk(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Qie(n)}var jk=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function es(e,t){let n=0;for(let a=0;a<e.length;a++)n+=e[a]*t[a];return n}function eoe(e,t){let n=[];for(let a=0;a<e.length;a++)n.push(e[a][t]);return n}function Uk(e,t){let n=[],a=e.length;for(let r=0;r<a;r++){n.push([]);for(let s=0;s<a;s++)n[r].push(es(e[r],eoe(t,s)))}return n}function hg(e,t){let n=Math.cos(e),a=Math.sin(e),r=[[n,-a,0],[a,n,0],[0,0,1]],s=jk(t[0],t[1]),i=Uk(s,r),o=jk(-t[0],-t[1]);return Uk(i,o)}function Hk(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],a=[-es(t[0],n),-es(t[1],n)];return[t[0].concat(a[0]),t[1].concat(a[1]),[0,0,1]]}function fg(e,t){return[es(e,t[0]),es(e,t[1])]}var toe=5,Gk=1.65,qk=[0,5,9,13,17,1,2],noe=0,aoe=2,mg=class{constructor(t,n){var a;this.handDetector=t,this.handPoseModel=n,this.inputSize=(a=this.handPoseModel)==null?void 0:a.inputs[0].shape[2],this.storedBoxes=[],this.skipped=0,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),a=t.map(i=>i[1]),r=[Math.min(...n),Math.min(...a)],s=[Math.max(...n),Math.max(...a)];return{startPoint:r,endPoint:s}}getBoxForPalmLandmarks(t,n){let a=t.map(s=>fg([...s,1],n)),r=this.calculateLandmarksBoundingBox(a);return M0(F0(r),toe)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),a=M0(F0(n),Gk);a.palmLandmarks=[];for(let r=0;r<qk.length;r++)a.palmLandmarks.push(t[qk[r]].slice(0,2));return a}transformRawCoords(t,n,a,r){let s=R0(n),i=[s[0]/this.inputSize,s[1]/this.inputSize,(s[0]+s[1])/this.inputSize/2],o=t.map(h=>[i[0]*(h[0]-this.inputSize/2),i[1]*(h[1]-this.inputSize/2),i[2]*h[2]]),l=hg(a,[0,0]),u=o.map(h=>[...fg(h,l),h[2]]),d=Hk(r),p=[...np(n),1],c=[es(p,d[0]),es(p,d[1])];return u.map(h=>[h[0]+c[0],h[1]+c[1],h[2]])}async estimateHands(t,n){let a=!1,r;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.skipFrame)&&(r=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.skipFrame&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(a=!0));let s=[];for(let i=0;i<this.storedBoxes.length;i++){let o=this.storedBoxes[i];if(!!o)if(n.hand.landmarks){let l=n.hand.rotation?Vk(o.palmLandmarks[noe],o.palmLandmarks[aoe]):0,u=np(o),d=[u[0]/t.shape[2],u[1]/t.shape[1]],p=n.hand.rotation?Ge.rotateWithOffset(t,l,0,d):t.clone(),c=hg(-l,u),h=a?this.getBoxForPalmLandmarks(o.palmLandmarks,c):o,m=Lk(h,p,[this.inputSize,this.inputSize]),f=m.div(255);m.dispose(),p.dispose();let[A,y]=await this.handPoseModel.predict(f);f.dispose();let g=A.dataSync()[0];if(A.dispose(),g>=n.hand.minConfidence){let x=H(y,[-1,3]),w=x.arraySync();y.dispose(),x.dispose();let b=this.transformRawCoords(w,h,l,c),v=this.getBoxForHandLandmarks(b);this.storedBoxes[i]={...v,confidence:g};let N={landmarks:b,confidence:g,box:{topLeft:v.startPoint,bottomRight:v.endPoint}};s.push(N)}else this.storedBoxes[i]=null;y.dispose()}else{let l=M0(F0(o),Gk),u={confidence:o.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};s.push(u)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}};var Xk={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},ts,ns,Kk;async function Ag(e,t){let n=await Kk.estimateHands(e,t);if(!n)return[];let a=[];for(let r=0;r<n.length;r++){let s={};if(n[r].landmarks)for(let u of Object.keys(Xk))s[u]=Xk[u].map(d=>n[r].landmarks[d]);let i=n[r].box?[Math.max(0,n[r].box.topLeft[0]),Math.max(0,n[r].box.topLeft[1]),Math.min(e.shape[2],n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0]),Math.min(e.shape[1],n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1])]:[0,0,0,0],o=[n[r].box.topLeft[0]/e.shape[2],n[r].box.topLeft[1]/e.shape[1],(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/e.shape[2],(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/e.shape[1]],l=n[r].landmarks;a.push({id:r,confidence:Math.round(100*n[r].confidence)/100,box:i,boxRaw:o,landmarks:l,annotations:s})}return a}async function yg(e){!ts||!ns?([ts,ns]=await Promise.all([e.hand.enabled?$t(Ot(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?$t(Ot(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!ts||!ts.modelUrl?ce("load model failed:",e.hand.detector.modelPath):e.debug&&ce("load model:",ts.modelUrl),!ns||!ns.modelUrl?ce("load model failed:",e.hand.skeleton.modelPath):e.debug&&ce("load model:",ns.modelUrl))):(e.debug&&ce("cached model:",ts.modelUrl),e.debug&&ce("cached model:",ns.modelUrl));let t=new cg(ts);return Kk=new mg(t,ns),[ts,ns]}var vg={};Da(vg,{load:()=>xg,predict:()=>bg});var Zk=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],Yk=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var Rn;async function xg(e){return Rn?e.debug&&ce("cached model:",Rn.modelUrl):(Rn=await $t(Ot(e.modelBasePath,e.body.modelPath)),Rn.width=parseInt(Rn.signature.inputs["input_1:0"].tensorShape.dim[2].size),Rn.height=parseInt(Rn.signature.inputs["input_1:0"].tensorShape.dim[1].size),!Rn||!Rn.modelUrl?ce("load model failed:",e.body.modelPath):e.debug&&ce("load model:",Rn.modelUrl)),Rn}async function bg(e,t){if(!Rn||!t.body.enabled)return null;let n={width:e.shape[2],height:e.shape[1]},a=Ge.resizeBilinear(e,[Rn.width,Rn.height],!1),r=me(a,[255]);a.dispose();let s=await Rn.predict(r),i=s.find(p=>p.size===195||p.size===155).dataSync();s.forEach(p=>p.dispose()),r.dispose();let o=[],l=i.length===195?Zk:Yk,u=5;for(let p=0;p<i.length/u;p++)o.push({id:p,part:l[p],position:{x:Math.trunc(n.width*i[u*p+0]/255),y:Math.trunc(n.height*i[u*p+1]/255),z:Math.trunc(i[u*p+2])+0},score:(100-Math.trunc(100/(1+Math.exp(i[u*p+3]))))/100,presence:(100-Math.trunc(100/(1+Math.exp(i[u*p+4]))))/100});return[{score:o.reduce((p,c)=>c.score>p?c.score:p,0),keypoints:o}]}var Ng={};Da(Ng,{load:()=>Ig,predict:()=>Sg});var au=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var jn,wg=[],kg=Number.MAX_SAFE_INTEGER,$0=2.5;async function Ig(e){if(jn)e.debug&&ce("cached model:",jn.modelUrl);else{jn=await $t(Ot(e.modelBasePath,e.object.modelPath));let t=Object.values(jn.modelSignature.inputs);if(jn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!jn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!jn||!jn.modelUrl?ce("load model failed:",e.object.modelPath):e.debug&&ce("load model:",jn.modelUrl)}return jn}async function roe(e,t,n,a){let r=0,s=[];for(let u of[1,2,4])W(()=>{var A,y;let d=u*13,p=(A=e.find(g=>g.shape[1]===d**2&&g.shape[2]===au.length))==null?void 0:A.squeeze(),c=(y=e.find(g=>g.shape[1]===d**2&&g.shape[2]<au.length))==null?void 0:y.squeeze(),m=c.reshape([-1,4,c.shape[1]/4]).argMax(2).arraySync(),f=p.arraySync();for(let g=0;g<p.shape[0];g++)for(let x=0;x<p.shape[1];x++){let w=f[g][x];if(w>a.object.minConfidence&&x!==61){let b=(.5+Math.trunc(g%d))/d,v=(.5+Math.trunc(g/d))/d,N=m[g].map(j=>j*(d/u/t)),[T,R]=[b-$0/u*N[0],v-$0/u*N[1]],[$,O]=[b+$0/u*N[2]-T,v+$0/u*N[3]-R],_=[T,R,$,O];_=_.map(j=>Math.max(0,Math.min(j,1)));let V=[_[0]*n[0],_[1]*n[1],_[2]*n[0],_[3]*n[1]],U={id:r++,strideSize:u,score:Math.round(100*w)/100,class:x+1,label:au[x].label,center:[Math.trunc(n[0]*b),Math.trunc(n[1]*v)],centerRaw:[b,v],box:V.map(j=>Math.trunc(j)),boxRaw:_};s.push(U)}}});e.forEach(u=>Ee(u));let i=s.map(u=>[u.boxRaw[1],u.boxRaw[0],u.boxRaw[3],u.boxRaw[2]]),o=s.map(u=>u.score),l=[];if(i&&i.length>0){let u=await Ge.nonMaxSuppressionAsync(i,o,a.object.maxDetected,a.object.iouThreshold,a.object.minConfidence);l=u.dataSync(),Ee(u)}return s=s.filter((u,d)=>l.includes(d)).sort((u,d)=>d.score-u.score),s}async function Sg(e,t){return kg<t.object.skipFrames&&t.skipFrame&&wg.length>0?(kg++,wg):(kg=0,new Promise(async n=>{let a=[e.shape[2],e.shape[1]],r=Ge.resizeBilinear(e,[jn.inputSize,jn.inputSize],!1),s=r.div(255),i=s.transpose([0,3,1,2]);s.dispose(),r.dispose();let o;t.object.enabled&&(o=await jn.predict(i)),i.dispose();let l=await roe(o,jn.inputSize,a,t);wg=l,n(l)}))}var Mg={};Da(Mg,{load:()=>Cg,predict:()=>Rg});var Un,Tg=[],Eg=Number.MAX_SAFE_INTEGER;async function Cg(e){if(Un)e.debug&&ce("cached model:",Un.modelUrl);else{Un=await $t(Ot(e.modelBasePath,e.object.modelPath));let t=Object.values(Un.modelSignature.inputs);if(Un.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!Un.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!Un||!Un.modelUrl?ce("load model failed:",e.object.modelPath):e.debug&&ce("load model:",Un.modelUrl)}return Un}async function soe(e,t,n,a){let r=[],s=e.arraySync(),i=Va(e);e.dispose();let o=Gt(i,6,1);i.dispose();let u=dn([o[1],o[0],o[3],o[2]],1).squeeze(),d=o[4].squeeze(),p=o[5].squeeze();o.forEach(m=>m.dispose());let c=await Ge.nonMaxSuppressionAsync(u,d,a.object.maxDetected,a.object.iouThreshold,a.object.minConfidence);u.dispose(),d.dispose(),p.dispose();let h=c.dataSync();c.dispose();for(let m of h){let f=s[0][m][4],A=s[0][m][5],y=au[A].label,g=[s[0][m][0]/t,s[0][m][1]/t,s[0][m][2]/t,s[0][m][3]/t],x=[Math.trunc(g[0]*n[0]),Math.trunc(g[1]*n[1]),Math.trunc(g[2]*n[0]),Math.trunc(g[3]*n[1])];r.push({score:f,class:A,label:y,box:x,boxRaw:g})}return r}async function Rg(e,t){return Eg<t.object.skipFrames&&t.skipFrame&&Tg.length>0?(Eg++,Tg):(Eg=0,new Promise(async n=>{let a=[e.shape[2],e.shape[1]],r=Ge.resizeBilinear(e,[Un.inputSize,Un.inputSize],!1),s;t.object.enabled&&(s=Un.execute(r,"tower_0/detections")),r.dispose();let i=await soe(s,Un.inputSize,a,t);Tg=i,n(i)}))}var Jk=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let a=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&a&&r&&a.position.y<s.position.y&&r.position.y<s.position.y?t.push({body:n,gesture:"i give up"}):s&&a&&a.position.y<s.position.y?t.push({body:n,gesture:"raise left hand"}):s&&r&&r.position.y<s.position.y&&t.push({body:n,gesture:"raise right hand"});let i=e[n].keypoints.find(l=>l.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},Qk=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>0){let a=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(a)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${a<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t},e9=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.rightEyeIris)continue;let a=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],s=Math.abs(a*r),i=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],o=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(i*o),u=!1;Math.abs(s-l)/Math.max(s,l)<.25&&(u=!0,t.push({iris:n,gesture:"facing center"}));let p=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].annotations.rightEyeIris[0][0],c=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].annotations.leftEyeIris[0][0];(c>.033||p>.033)&&(u=!1),c>.033&&t.push({iris:n,gesture:"looking right"}),p>.033&&t.push({iris:n,gesture:"looking left"});let h=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].annotations.rightEyeIris[0][1],m=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].annotations.leftEyeIris[0][1];(m<.015||h<.015||m>.03||h>.03)&&(u=!1),(m<.015||h<.015)&&t.push({iris:n,gesture:"looking down"}),(m>.03||h>.03)&&t.push({iris:n,gesture:"looking up"}),u&&t.push({iris:n,gesture:"looking center"})}return t},t9=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let a=[];for(let[r,s]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(s)&&a.push({name:r.toLowerCase(),position:s[0]});if(a&&a.length>0){let r=a.reduce((i,o)=>i.position[2]<o.position[2]?i:o),s=a.reduce((i,o)=>i.position[1]<o.position[1]?i:o);t.push({hand:n,gesture:`${r.name} forward ${s.name} up`})}}return t};function ioe(e,t,n){let a=function(o,l,u){let d=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(d,(p,c)=>(u[c]=0,p))},r=function(o,l){let u=e.createShader(l);if(e.shaderSource(u,o),e.compileShader(u),!e.getShaderParameter(u,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(u));return u};this.uniform={},this.attribute={};let s=r(t,e.VERTEX_SHADER),i=r(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),a(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);a(t,"uniform",this.uniform),a(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)}function n9(e){e||(e={});let t=0,n=null,a=!1,r=-1,s=[null,null],i=[],o=-1,l=-1,u=null,d=null,p={},c=e.canvas||document.createElement("canvas"),h={},m={INTERMEDIATE:1},f=c.getContext("webgl");if(!f)throw new Error("Filter: getContext() failed");this.addFilter=function(b){let v=Array.prototype.slice.call(arguments,1),N=p[b];i.push({func:N,args:v})},this.reset=function(){i=[]};let A=function(b,v){if(!(b===o&&v===l)){if(c.width=b,o=b,c.height=v,l=v,!u){let N=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);u=f.createBuffer(),f.bindBuffer(f.ARRAY_BUFFER,u),f.bufferData(f.ARRAY_BUFFER,N,f.STATIC_DRAW),f.pixelStorei(f.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}f.viewport(0,0,o,l),s=[null,null]}},y=function(b,v){let N=f.createFramebuffer();f.bindFramebuffer(f.FRAMEBUFFER,N);let T=f.createRenderbuffer();f.bindRenderbuffer(f.RENDERBUFFER,T);let R=f.createTexture();return f.bindTexture(f.TEXTURE_2D,R),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,b,v,0,f.RGBA,f.UNSIGNED_BYTE,null),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.framebufferTexture2D(f.FRAMEBUFFER,f.COLOR_ATTACHMENT0,f.TEXTURE_2D,R,0),f.bindTexture(f.TEXTURE_2D,null),f.bindFramebuffer(f.FRAMEBUFFER,null),{fbo:N,texture:R}},g=function(b){return s[b]=s[b]||y(o,l),s[b]},x=function(b=null){var R,$;let v=null,N=null,T=!1;t===0?v=n:v=(R=g(r))==null?void 0:R.texture,t++,a&&!(b&m.INTERMEDIATE)?(N=null,T=t%2==0):(r=(r+1)%2,N=($=g(r))==null?void 0:$.fbo),f.bindTexture(f.TEXTURE_2D,v),f.bindFramebuffer(f.FRAMEBUFFER,N),f.uniform1f(d.uniform.flipY,T?-1:1),f.drawArrays(f.TRIANGLES,0,6)};this.apply=function(b){if(A(b.width,b.height),t=0,n||(n=f.createTexture()),f.bindTexture(f.TEXTURE_2D,n),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.NEAREST),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.NEAREST),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,f.RGBA,f.UNSIGNED_BYTE,b),i.length===0)return x(),c;for(let v=0;v<i.length;v++){a=v===i.length-1;let N=i[v];N.func.apply(this,N.args||[])}return c};let w=function(b){if(h[b])return d=h[b],f.useProgram(d.id),d;let v={};v.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
|
|
`),v.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
|
|
`),d=new ioe(f,v.VERTEX_IDENTITY,b);let N=Float32Array.BYTES_PER_ELEMENT,T=4*N;return f.enableVertexAttribArray(d.attribute.pos),f.vertexAttribPointer(d.attribute.pos,2,f.FLOAT,!1,T,0*N),f.enableVertexAttribArray(d.attribute.uv),f.vertexAttribPointer(d.attribute.uv,2,f.FLOAT,!1,T,2*N),h[b]=d,d};p.colorMatrix=function(b){let v=new Float32Array(b);v[4]/=255,v[9]/=255,v[14]/=255,v[19]/=255;let N=v[18]===1&&v[3]===0&&v[8]===0&&v[13]===0&&v[15]===0&&v[16]===0&&v[17]===0&&v[19]===0?p.colorMatrix.SHADER.WITHOUT_ALPHA:p.colorMatrix.SHADER.WITH_ALPHA,T=w(N);f.uniform1fv(T.uniform.m,v),x()},p.colorMatrix.SHADER={},p.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
|
|
`),p.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
|
|
`),p.brightness=function(b){let v=(b||0)+1;p.colorMatrix([v,0,0,0,0,0,v,0,0,0,0,0,v,0,0,0,0,0,1,0])},p.saturation=function(b){let v=(b||0)*2/3+1,N=(v-1)*-.5;p.colorMatrix([v,N,N,0,0,N,v,N,0,0,N,N,v,0,0,0,0,0,1,0])},p.desaturate=function(){p.saturation(-1)},p.contrast=function(b){let v=(b||0)+1,N=-128*(v-1);p.colorMatrix([v,0,0,0,N,0,v,0,0,N,0,0,v,0,N,0,0,0,1,0])},p.negative=function(){p.contrast(-2)},p.hue=function(b){b=(b||0)/180*Math.PI;let v=Math.cos(b),N=Math.sin(b),T=.213,R=.715,$=.072;p.colorMatrix([T+v*(1-T)+N*-T,R+v*-R+N*-R,$+v*-$+N*(1-$),0,0,T+v*-T+N*.143,R+v*(1-R)+N*.14,$+v*-$+N*-.283,0,0,T+v*-T+N*-(1-T),R+v*-R+N*R,$+v*(1-$)+N*$,0,0,0,0,0,1,0])},p.desaturateLuminance=function(){p.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},p.sepia=function(){p.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},p.brownie=function(){p.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},p.vintagePinhole=function(){p.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},p.kodachrome=function(){p.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},p.technicolor=function(){p.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},p.polaroid=function(){p.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},p.shiftToBGR=function(){p.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},p.convolution=function(b){let v=new Float32Array(b),N=1/o,T=1/l,R=w(p.convolution.SHADER);f.uniform1fv(R.uniform.m,v),f.uniform2f(R.uniform.px,N,T),x()},p.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
|
|
`),p.detectEdges=function(){p.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},p.sobelX=function(){p.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},p.sobelY=function(){p.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},p.sharpen=function(b){let v=b||1;p.convolution.call(this,[0,-1*v,0,-1*v,1+4*v,-1*v,0,-1*v,0])},p.emboss=function(b){let v=b||1;p.convolution.call(this,[-2*v,-1*v,0,-1*v,1,1*v,0,1*v,2*v])},p.blur=function(b){let v=b/7/o,N=b/7/l,T=w(p.blur.SHADER);f.uniform2f(T.uniform.px,0,N),x(m.INTERMEDIATE),f.uniform2f(T.uniform.px,v,0),x()},p.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
|
|
`),p.pixelate=function(b){let v=b/o,N=b/l,T=w(p.pixelate.SHADER);f.uniform2f(T.uniform.size,v,N),x()},p.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
|
|
`)}var D0=2048,Ce,yt,Dt;function Fg(e,t){let n;if(!e)throw new Error("Human: Input is missing");if(!(e instanceof Le)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("Human: Input type is not recognized");if(e instanceof Le)if(e.shape&&e.shape.length===4&&e.shape[0]===1&&e.shape[3]===3)n=_a(e);else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);else{let r=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,s=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,i=r,o=s;if(i>D0&&(i=D0,o=i*s/r),o>D0&&(o=D0,i=o*r/s),t.filter.width>0?i=t.filter.width:t.filter.height>0&&(i=r*(t.filter.height/s)),t.filter.height>0?o=t.filter.height:t.filter.width>0&&(o=s*(t.filter.width/r)),!i||!o)throw new Error("Human: Input cannot determine dimension");(!Ce||(Ce==null?void 0:Ce.width)!==i||(Ce==null?void 0:Ce.height)!==o)&&(Ce=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas"),(Ce==null?void 0:Ce.width)!==i&&(Ce.width=i),(Ce==null?void 0:Ce.height)!==o&&(Ce.height=o));let l=Ce.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):t.filter.flip&&typeof l.translate!="undefined"?(l.translate(r,0),l.scale(-1,1),l.drawImage(e,0,0,r,s,0,0,Ce==null?void 0:Ce.width,Ce==null?void 0:Ce.height),l.setTransform(1,0,0,1,0,0)):l.drawImage(e,0,0,r,s,0,0,Ce==null?void 0:Ce.width,Ce==null?void 0:Ce.height),t.filter.enabled){if((!Dt||!yt||Ce.width!==yt.width||(Ce==null?void 0:Ce.height)!==(yt==null?void 0:yt.height))&&(yt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ce==null?void 0:Ce.width,Ce==null?void 0:Ce.height):document.createElement("canvas"),(yt==null?void 0:yt.width)!==(Ce==null?void 0:Ce.width)&&(yt.width=Ce==null?void 0:Ce.width),(yt==null?void 0:yt.height)!==(Ce==null?void 0:Ce.height)&&(yt.height=Ce==null?void 0:Ce.height),Dt=oa.flags.IS_BROWSER?new n9({canvas:yt}):null),!Dt)return{tensor:null,canvas:Ce};Dt.reset(),Dt.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&Dt.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&Dt.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&Dt.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&Dt.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&Dt.addFilter("hue",t.filter.hue),t.filter.negative&&Dt.addFilter("negative"),t.filter.sepia&&Dt.addFilter("sepia"),t.filter.vintage&&Dt.addFilter("brownie"),t.filter.sepia&&Dt.addFilter("sepia"),t.filter.kodachrome&&Dt.addFilter("kodachrome"),t.filter.technicolor&&Dt.addFilter("technicolor"),t.filter.polaroid&&Dt.addFilter("polaroid"),t.filter.pixelate!==0&&Dt.addFilter("pixelate",t.filter.pixelate),Dt.apply(Ce)}else yt=Ce,Dt&&(Dt=null);let u;if(yt.data){let p=[yt.height,yt.width,3];u=xc(yt.data,p,"int32")}else if(yt instanceof ImageData)u=ui.fromPixels(yt);else if(t.backend==="webgl"||t.backend==="humangl"){let p=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");p.width=i,p.height=o;let c=p.getContext("2d");c==null||c.drawImage(yt,0,0),u=ui.fromPixels(p)}else{let p=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");p.width=i,p.height=o;let c=p.getContext("2d");c==null||c.drawImage(yt,0,0);let h=c==null?void 0:c.getImageData(0,0,i,o);u=ui.fromPixels(h)}let d=u.toFloat();n=d.expandDims(0),u.dispose(),d.dispose()}let a=t.filter.return?yt:null;return{tensor:n,canvas:a}}var zg={};Da(zg,{all:()=>loe,body:()=>s9,canvas:()=>ooe,face:()=>r9,gesture:()=>a9,hand:()=>i9,object:()=>o9,options:()=>Pi});var Pi={color:"rgba(173, 216, 230, 0.3)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:24,lineWidth:6,pointSize:2,roundRect:28,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!1,useRawBoxes:!1,calculateHandBox:!0},Ja;function $g(e,t,n,a=0,r){e.fillStyle=r.useDepth&&a?`rgba(${127.5+2*a}, ${127.5-2*a}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function Li(e,t,n,a,r,s){if(e.beginPath(),s.useCurves){let i=(t+t+a)/2,o=(n+n+r)/2;e.ellipse(i,o,a/2,r/2,0,0,2*Math.PI)}else e.lineWidth=s.lineWidth,e.moveTo(t+s.roundRect,n),e.lineTo(t+a-s.roundRect,n),e.quadraticCurveTo(t+a,n,t+a,n+s.roundRect),e.lineTo(t+a,n+r-s.roundRect),e.quadraticCurveTo(t+a,n+r,t+a-s.roundRect,n+r),e.lineTo(t+s.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-s.roundRect),e.lineTo(t,n+s.roundRect),e.quadraticCurveTo(t,n,t+s.roundRect,n),e.closePath();e.stroke()}function Dg(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let a of t){let r=a[2]||0;e.strokeStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(a[0],Math.round(a[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function ap(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){Dg(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let a=0;a<t.length-2;a++){let r=(t[a][0]+t[a+1][0])/2,s=(t[a][1]+t[a+1][1])/2;e.quadraticCurveTo(t[a][0],t[a][1],r,s)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}async function a9(e,t,n){let a=Kn(Pi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!r)return;r.font=a.font,r.fillStyle=a.color;let s=1;for(let i=0;i<t.length;i++){let o=[],l=[];if([o,l]=Object.entries(t[i]),l.length>1&&l[1].length>0){let u=o[1]>0?`#${o[1]}`:"",d=`${o[0]} ${u}: ${l[1]}`;a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(d,8,2+s*a.lineHeight)),r.fillStyle=a.labelColor,r.fillText(d,6,0+s*a.lineHeight),s+=1}}}async function r9(e,t,n){let a=Kn(Pi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r)for(let s of t){r.font=a.font,r.strokeStyle=a.color,r.fillStyle=a.color,a.drawBoxes&&(a.useRawBoxes?Li(r,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],a):Li(r,s.box[0],s.box[1],s.box[2],s.box[3],a));let i=[];if(i.push(`face confidence: ${Math.trunc(100*s.confidence)}%`),s.genderConfidence&&i.push(`${s.gender||""} ${Math.trunc(100*s.genderConfidence)}% confident`),s.age&&i.push(`age: ${s.age||""}`),s.iris&&i.push(`iris distance: ${s.iris}`),s.emotion&&s.emotion.length>0){let o=s.emotion.map(l=>`${Math.trunc(100*l.score)}% ${l.emotion}`);i.push(o.join(" "))}s.rotation&&s.rotation.angle&&s.rotation.angle.roll&&i.push(`roll: ${Math.trunc(100*s.rotation.angle.roll)/100} yaw:${Math.trunc(100*s.rotation.angle.yaw)/100} pitch:${Math.trunc(100*s.rotation.angle.pitch)/100}`),i.length===0&&i.push("face"),r.fillStyle=a.color;for(let o=i.length-1;o>=0;o--){let l=Math.max(s.box[0],0),u=o*a.lineHeight+s.box[1];a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(i[o],l+5,u+16)),r.fillStyle=a.labelColor,r.fillText(i[o],l+4,u+15)}if(r.lineWidth=1,s.mesh&&s.mesh.length>0){if(a.drawPoints)for(let o of s.mesh)$g(r,o[0],o[1],o[2],a);if(a.drawPolygons){r.lineWidth=1;for(let o=0;o<_i.length/3;o++){let l=[_i[o*3+0],_i[o*3+1],_i[o*3+2]].map(u=>s.mesh[u]);Dg(r,l,a)}if(s.annotations&&s.annotations.leftEyeIris){r.strokeStyle=a.useDepth?"rgba(255, 200, 255, 0.3)":a.color,r.beginPath();let o=Math.abs(s.annotations.leftEyeIris[3][0]-s.annotations.leftEyeIris[1][0])/2,l=Math.abs(s.annotations.leftEyeIris[4][1]-s.annotations.leftEyeIris[2][1])/2;r.ellipse(s.annotations.leftEyeIris[0][0],s.annotations.leftEyeIris[0][1],o,l,0,0,2*Math.PI),r.stroke(),a.fillPolygons&&(r.fillStyle=a.useDepth?"rgba(255, 255, 200, 0.3)":a.color,r.fill())}if(s.annotations&&s.annotations.rightEyeIris){r.strokeStyle=a.useDepth?"rgba(255, 200, 255, 0.3)":a.color,r.beginPath();let o=Math.abs(s.annotations.rightEyeIris[3][0]-s.annotations.rightEyeIris[1][0])/2,l=Math.abs(s.annotations.rightEyeIris[4][1]-s.annotations.rightEyeIris[2][1])/2;r.ellipse(s.annotations.rightEyeIris[0][0],s.annotations.rightEyeIris[0][1],o,l,0,0,2*Math.PI),r.stroke(),a.fillPolygons&&(r.fillStyle=a.useDepth?"rgba(255, 255, 200, 0.3)":a.color,r.fill())}}}}}async function s9(e,t,n){var s;let a=Kn(Pi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round";for(let i=0;i<t.length;i++){if(r.strokeStyle=a.color,r.fillStyle=a.color,r.lineWidth=a.lineWidth,r.font=a.font,a.drawBoxes&&t[i].box&&((s=t[i].box)==null?void 0:s.length)===4&&(Li(r,t[i].box[0],t[i].box[1],t[i].box[2],t[i].box[3],a),a.drawLabels&&(a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(`body ${100*t[i].score}%`,t[i].box[0]+3,1+t[i].box[1]+a.lineHeight,t[i].box[2])),r.fillStyle=a.labelColor,r.fillText(`body ${100*t[i].score}%`,t[i].box[0]+2,0+t[i].box[1]+a.lineHeight,t[i].box[2]))),a.drawPoints)for(let o=0;o<t[i].keypoints.length;o++)r.fillStyle=a.useDepth&&t[i].keypoints[o].position.z?`rgba(${127.5+2*(t[i].keypoints[o].position.z||0)}, ${127.5-2*(t[i].keypoints[o].position.z||0)}, 255, 0.5)`:a.color,$g(r,t[i].keypoints[o].position.x,t[i].keypoints[o].position.y,0,a);if(a.drawLabels&&(r.font=a.font,t[i].keypoints))for(let o of t[i].keypoints)r.fillStyle=a.useDepth&&o.position.z?`rgba(${127.5+2*o.position.z}, ${127.5-2*o.position.z}, 255, 0.5)`:a.color,r.fillText(`${o.part} ${Math.trunc(100*o.score)}%`,o.position.x+4,o.position.y+4);if(a.drawPolygons&&t[i].keypoints){let o,l=[];l.length=0,o=t[i].keypoints.find(u=>u.part==="leftShoulder"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="rightShoulder"),o&&l.push([o.position.x,o.position.y]),ap(r,l,a),l.length=0,o=t[i].keypoints.find(u=>u.part==="rightShoulder"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="rightHip"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="leftHip"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="leftShoulder"),o&&l.push([o.position.x,o.position.y]),l.length===4&&Dg(r,l,a),l.length=0,o=t[i].keypoints.find(u=>u.part==="leftHip"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="leftKnee"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="leftAnkle"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="leftHeel"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="leftFoot"),o&&l.push([o.position.x,o.position.y]),ap(r,l,a),l.length=0,o=t[i].keypoints.find(u=>u.part==="rightHip"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="rightKnee"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="rightAnkle"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="rightHeel"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="rightFoot"),o&&l.push([o.position.x,o.position.y]),ap(r,l,a),l.length=0,o=t[i].keypoints.find(u=>u.part==="leftShoulder"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="leftElbow"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="leftWrist"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="leftPalm"),o&&l.push([o.position.x,o.position.y]),ap(r,l,a),l.length=0,o=t[i].keypoints.find(u=>u.part==="rightShoulder"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="rightElbow"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="rightWrist"),o&&l.push([o.position.x,o.position.y]),o=t[i].keypoints.find(u=>u.part==="rightPalm"),o&&l.push([o.position.x,o.position.y]),ap(r,l,a)}}}}async function i9(e,t,n){let a=Kn(Pi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=a.font;for(let s of t){if(a.drawBoxes){r.strokeStyle=a.color,r.fillStyle=a.color;let i;if(!a.calculateHandBox)i=a.useRawBoxes?s.boxRaw:s.box;else if(i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],s.landmarks&&s.landmarks.length>0){for(let o of s.landmarks)o[0]<i[0]&&(i[0]=o[0]),o[1]<i[1]&&(i[1]=o[1]),o[0]>i[2]&&(i[2]=o[0]),o[1]>i[3]&&(i[3]=o[1]);i[2]-=i[0],i[3]-=i[1]}a.useRawBoxes?Li(r,e.width*i[0],e.height*i[1],e.width*i[2],e.height*i[3],a):Li(r,i[0],i[1],i[2],i[3],a),a.drawLabels&&(a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText("hand",i[0]+3,1+i[1]+a.lineHeight,i[2])),r.fillStyle=a.labelColor,r.fillText("hand",i[0]+2,0+i[1]+a.lineHeight,i[2])),r.stroke()}if(a.drawPoints&&s.landmarks&&s.landmarks.length>0)for(let i of s.landmarks)r.fillStyle=a.useDepth?`rgba(${127.5+2*i[2]}, ${127.5-2*i[2]}, 255, 0.5)`:a.color,$g(r,i[0],i[1],0,a);if(a.drawLabels){let i=(o,l)=>{r.fillStyle=a.useDepth?`rgba(${127.5+2*o[o.length-1][2]}, ${127.5-2*o[o.length-1][2]}, 255, 0.5)`:a.color,r.fillText(l,o[o.length-1][0]+4,o[o.length-1][1]+4)};r.font=a.font,i(s.annotations.indexFinger,"index"),i(s.annotations.middleFinger,"middle"),i(s.annotations.ringFinger,"ring"),i(s.annotations.pinky,"pinky"),i(s.annotations.thumb,"thumb"),i(s.annotations.palmBase,"palm")}if(a.drawPolygons){let i=o=>{if(!!o)for(let l=0;l<o.length;l++)r.beginPath(),r.strokeStyle=a.useDepth?`rgba(${127.5+2*o[l][2]}, ${127.5-2*o[l][2]}, 255, 0.5)`:a.color,r.moveTo(o[l>0?l-1:0][0],o[l>0?l-1:0][1]),r.lineTo(o[l][0],o[l][1]),r.stroke()};r.lineWidth=a.lineWidth,i(s.annotations.indexFinger),i(s.annotations.middleFinger),i(s.annotations.ringFinger),i(s.annotations.pinky),i(s.annotations.thumb)}}}}async function o9(e,t,n){let a=Kn(Pi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=a.font;for(let s of t)if(a.drawBoxes){if(r.strokeStyle=a.color,r.fillStyle=a.color,a.useRawBoxes?Li(r,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],a):Li(r,s.box[0],s.box[1],s.box[2],s.box[3],a),a.drawLabels){let i=`${Math.round(100*s.score)}% ${s.label}`;a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(i,s.box[0]+3,1+s.box[1]+a.lineHeight,s.box[2])),r.fillStyle=a.labelColor,r.fillText(i,s.box[0]+2,0+s.box[1]+a.lineHeight,s.box[2])}r.stroke()}}}async function ooe(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let n=e.getContext("2d");n==null||n.drawImage(e,0,0)}async function loe(e,t,n){let a=Kn(Pi,n);!t||!e||e instanceof HTMLCanvasElement&&(a.bufferedOutput?t.timestamp!==(Ja==null?void 0:Ja.timestamp)&&(Ja=t):Ja=t,r9(e,Ja.face,a),s9(e,Ja.body,a),i9(e,Ja.hand,a),a9(e,Ja.gesture,a),o9(e,Ja.object,a))}var z0=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,O0=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;var l9="1.9.2";var ru,rp,sp,Wi,Bi,su,_0,ip,P0,L0,W0,B0,doe=class{constructor(t={}){Xn(this,ru,void 0);Xn(this,rp,void 0);Xn(this,sp,void 0);Xn(this,Wi,void 0);Xn(this,Bi,void 0);Xn(this,su,void 0);this.analyze=(...t)=>{if(!sn(this,rp))return;let n=this.tf.engine().state.numTensors,a=sn(this,ru);Aa(this,ru,n);let r=n-a;r!==0&&ce(...t,r)};Xn(this,_0,t=>{if(!sn(this,sp))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof Le))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});Xn(this,ip,async(t=!1)=>{var n;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let a=nt();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&this.config.debug&&ce("running inside web worker"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&ce("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&ce("wasm path:",this.config.wasmPath),typeof((n=this.tf)==null?void 0:n.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let r=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),s=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&ce(`wasm execution: ${r?"SIMD":"no SIMD"} ${s?"multithreaded":"singlethreaded"}`),this.config.debug&&!r&&ce("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&fk();try{await this.tf.setBackend(this.config.backend)}catch(r){ce("error: cannot set backend:",this.config.backend,r)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_CPU_FORWARD",!0),oa.set("WEBGL_FORCE_F16_TEXTURES",!0),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),typeof this.config.deallocate!="undefined"&&(ce("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0));let r=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&ce(`gl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`)}await this.tf.ready(),this.perf.backend=Math.trunc(nt()-a)}});Xn(this,P0,async t=>{if(this.config.cacheSensitivity===0)return!1;let n=40,a=t.resizeBilinear([Math.trunc(t.shape[1]/n),Math.trunc(t.shape[2]/n)]),r=this.tf.sum(a),s=r.dataSync()[0];r.dispose(),a.dispose();let i=Math.max(s,sn(this,Bi))/Math.min(s,sn(this,Bi))-1;Aa(this,Bi,s);let o=i<Math.max(this.config.cacheSensitivity,sn(this,su));return Aa(this,su,i>4*this.config.cacheSensitivity?0:i),o});Xn(this,L0,async()=>{let t=(r,s="application/octet-stream")=>fetch(`data:${s};base64,${r}`).then(i=>i.blob()),n,a;switch(this.config.warmup){case"face":n=await t(z0);break;case"full":n=await t(O0);break;default:n=null}if(n){let r=await createImageBitmap(n);a=await this.detect(r,this.config),r.close()}return a});Xn(this,W0,async()=>new Promise(t=>{let n,a=0;switch(this.config.warmup){case"face":a=256,n="data:image/jpeg;base64,"+z0;break;case"full":case"body":a=1200,n="data:image/jpeg;base64,"+O0;break;default:n=null}let r=new Image;r.onload=async()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(a,a):document.createElement("canvas");s.width=r.naturalWidth,s.height=r.naturalHeight;let i=s.getContext("2d");i==null||i.drawImage(r,0,0);let o=await this.detect(s,this.config);t(o)},n?r.src=n:t(null)}));Xn(this,B0,async()=>{let t=r=>Buffer.from(r,"base64"),n;if(this.config.warmup==="face"&&(n=t(z0)),(this.config.warmup==="body"||this.config.warmup==="full")&&(n=t(O0)),!n)return null;let a;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),s=r.expandDims(0);this.tf.dispose(r),a=await this.detect(s,this.config),this.tf.dispose(s)}else this.config.debug&&ce("Warmup tfjs-node not loaded");return a});this.tf=Yd,this.draw=zg,this.version=l9,this.config=Kn(Kg,t),this.state="idle",Aa(this,ru,0),Aa(this,rp,!1),Aa(this,sp,!1),Aa(this,Wi,!0),Aa(this,su,0),this.perf={},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,handpose:null,iris:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,centernet:null,faceres:null},this.image=n=>Fg(n,this.config),this.classes={facemesh:q2,emotion:Y2,faceres:ng,body:this.config.body.modelPath.includes("posenet")?pg:vg,hand:gg,nanodet:Ng,centernet:Mg},this.faceTriangulation=Nk,this.faceUVMap=Tk,this.sysinfo=Zg(),Aa(this,Bi,1)}similarity(t,n){return eg(t,n)}enhance(t){return tg(t)}match(t,n,a=0){return Rk(t,n,a)}async load(t={}){this.state="load";let n=nt();t&&(this.config=Kn(this.config,t)),sn(this,Wi)&&(this.config.debug&&ce(`version: ${this.version}`),this.config.debug&&ce(`tfjs version: ${this.tf.version_core}`),this.config.debug&&ce("platform:",this.sysinfo.platform),this.config.debug&&ce("agent:",this.sysinfo.agent),await sn(this,ip).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&ce("configuration:",this.config),this.config.debug&&ce("tf flags:",this.tf.ENV.flags))),this.config.async?[this.models.face,this.models.emotion,this.models.handpose,this.models.posenet,this.models.blazepose,this.models.nanodet,this.models.centernet,this.models.faceres]=await Promise.all([this.models.face||(this.config.face.enabled?G2(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?Z2(this.config):null),this.models.handpose||(this.config.hand.enabled?yg(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelPath.includes("posenet")?dg(this.config):null),this.models.blazepose||(this.config.body.enabled&&this.config.body.modelPath.includes("blazepose")?xg(this.config):null),this.models.nanodet||(this.config.object.enabled&&this.config.object.modelPath.includes("nanodet")?Ig(this.config):null),this.models.centernet||(this.config.object.enabled&&this.config.object.modelPath.includes("centernet")?Cg(this.config):null),this.models.faceres||(this.config.face.enabled&&this.config.face.description.enabled?Q2(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await G2(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await Z2(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await yg(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelPath.includes("posenet")&&(this.models.posenet=await dg(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelPath.includes("blazepose")&&(this.models.blazepose=await xg(this.config)),this.config.object.enabled&&!this.models.nanodet&&this.config.object.modelPath.includes("nanodet")&&(this.models.nanodet=await Ig(this.config)),this.config.object.enabled&&!this.models.centernet&&this.config.object.modelPath.includes("centernet")&&(this.models.centernet=await Cg(this.config)),this.config.face.enabled&&this.config.face.description.enabled&&!this.models.faceres&&(this.models.faceres=await Q2(this.config))),sn(this,Wi)&&(this.config.debug&&ce("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),Aa(this,Wi,!1));let a=Math.trunc(nt()-n);a>(this.perf.load||0)&&(this.perf.load=a)}async detect(t,n={}){return new Promise(async a=>{this.state="config";let r;this.config=Kn(this.config,n),this.state="check";let s=sn(this,_0).call(this,t);s&&(ce(s,t),a({error:s}));let i=nt();await sn(this,ip).call(this),await this.load(),r=nt();let o=Fg(t,this.config);if(!o||!o.tensor){ce("could not convert input to tensor"),a({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(nt()-r),this.analyze("Get Image:"),r=nt(),this.config.skipFrame=await sn(this,P0).call(this,o.tensor),this.perf.frames||(this.perf.frames=0),this.perf.cached||(this.perf.cached=0),this.perf.frames++,this.config.skipFrame&&this.perf.cached++,this.perf.changed=Math.trunc(nt()-r),this.analyze("Check Changed:");let l,u,d,p,c;this.config.async?(l=this.config.face.enabled?ag(this,o.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",r=nt(),l=this.config.face.enabled?await ag(this,o.tensor):[],c=Math.trunc(nt()-r),c>0&&(this.perf.face=c)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?u=this.config.body.enabled?ug(o.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")&&(u=this.config.body.enabled?bg(o.tensor,this.config):[]),this.perf.body&&delete this.perf.body):(this.state="run:body",r=nt(),this.config.body.modelPath.includes("posenet")?u=this.config.body.enabled?await ug(o.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")&&(u=this.config.body.enabled?await bg(o.tensor,this.config):[]),c=Math.trunc(nt()-r),c>0&&(this.perf.body=c)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(d=this.config.hand.enabled?Ag(o.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",r=nt(),d=this.config.hand.enabled?await Ag(o.tensor,this.config):[],c=Math.trunc(nt()-r),c>0&&(this.perf.hand=c)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(this.config.object.modelPath.includes("nanodet")?p=this.config.object.enabled?Sg(o.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(p=this.config.object.enabled?Rg(o.tensor,this.config):[]),this.perf.object&&delete this.perf.object):(this.state="run:object",r=nt(),this.config.object.modelPath.includes("nanodet")?p=this.config.object.enabled?await Sg(o.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(p=this.config.object.enabled?await Rg(o.tensor,this.config):[]),c=Math.trunc(nt()-r),c>0&&(this.perf.object=c)),this.analyze("End Object:"),this.config.async&&([l,u,d,p]=await Promise.all([l,u,d,p])),Ee(o.tensor);let h=[];this.config.gesture.enabled&&(r=nt(),h=[...Qk(l),...Jk(u),...t9(d),...e9(l)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(nt()-r)),this.perf.total=Math.trunc(nt()-i),this.state="idle";let m={face:l,body:u,hand:d,gesture:h,object:p,performance:this.perf,canvas:o.canvas,timestamp:Date.now()};a(m)})}async warmup(t={}){let n=nt();if(t&&(this.config=Kn(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let a;typeof createImageBitmap=="function"?a=await sn(this,L0).call(this):typeof Image!="undefined"?a=await sn(this,W0).call(this):a=await sn(this,B0).call(this);let r=nt();return this.config.debug&&ce("Warmup",this.config.warmup,Math.round(r-n),"ms",a),a}};ru=new WeakMap,rp=new WeakMap,sp=new WeakMap,Wi=new WeakMap,Bi=new WeakMap,su=new WeakMap,_0=new WeakMap,ip=new WeakMap,P0=new WeakMap,L0=new WeakMap,W0=new WeakMap,B0=new WeakMap;export{doe as Human,doe as default};
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|
|
//# sourceMappingURL=human.esm.js.map
|