human/dist/human.js

8128 lines
1.4 MiB

/*
Human
homepage: <https://github.com/vladmandic/human>
author: <https://github.com/vladmandic>'
*/
"use strict";var Human=(()=>{var ac=Object.defineProperty;var NI=Object.getOwnPropertyDescriptor;var EI=Object.getOwnPropertyNames;var RI=Object.prototype.hasOwnProperty;var MI=(e,t,a)=>t in e?ac(e,t,{enumerable:!0,configurable:!0,writable:!0,value:a}):e[t]=a;var Ss=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,a)=>(typeof require!="undefined"?require:t)[a]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var cr=(e,t)=>{for(var a in t)ac(e,a,{get:t[a],enumerable:!0})},$I=(e,t,a,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of EI(t))!RI.call(e,r)&&r!==a&&ac(e,r,{get:()=>t[r],enumerable:!(n=NI(t,r))||n.enumerable});return e};var _I=e=>$I(ac({},"__esModule",{value:!0}),e);var le=(e,t,a)=>(MI(e,typeof t!="symbol"?t+"":t,a),a),_g=(e,t,a)=>{if(!t.has(e))throw TypeError("Cannot "+a)};var Un=(e,t,a)=>(_g(e,t,"read from private field"),a?a.call(e):t.get(e)),Xo=(e,t,a)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,a)},Bu=(e,t,a,n)=>(_g(e,t,"write to private field"),n?n.call(e,a):t.set(e,a),a);var w0e={};cr(w0e,{Env:()=>Ap,Human:()=>mg,default:()=>mg,defaults:()=>wo,draw:()=>a0,empty:()=>ir,env:()=>ne,match:()=>E0,models:()=>fg});var Ue={};cr(Ue,{Abs:()=>vl,Acos:()=>wl,Acosh:()=>kl,AdadeltaOptimizer:()=>kh,AdagradOptimizer:()=>Ih,AdamOptimizer:()=>Sh,AdamaxOptimizer:()=>Th,Add:()=>Qr,AddN:()=>qs,All:()=>Xs,Any:()=>Ks,ArgMax:()=>Zs,ArgMin:()=>kd,Asin:()=>Il,Asinh:()=>Sl,Atan:()=>Tl,Atan2:()=>Nl,Atanh:()=>Cl,AvgPool:()=>Ys,AvgPool3D:()=>Vc,AvgPool3DGrad:()=>W1,AvgPoolGrad:()=>B1,BackendWasm:()=>v8,BatchMatMul:()=>Js,BatchToSpaceND:()=>El,Bincount:()=>Id,BroadcastArgs:()=>Uc,BroadcastTo:()=>kS,Cast:()=>Qs,Ceil:()=>ei,ClipByValue:()=>es,Complex:()=>Sd,ComplexAbs:()=>Gc,Concat:()=>Rl,Conv2D:()=>ti,Conv2DBackpropFilter:()=>Hc,Conv2DBackpropInput:()=>ai,Conv3D:()=>jc,Conv3DBackpropFilterV2:()=>V1,Conv3DBackpropInputV2:()=>qc,Cos:()=>ni,Cosh:()=>ri,CropAndResize:()=>oi,Cumprod:()=>si,Cumsum:()=>ii,DataStorage:()=>vd,DenseBincount:()=>Td,DepthToSpace:()=>li,DepthwiseConv2dNative:()=>ui,DepthwiseConv2dNativeBackpropFilter:()=>Xc,DepthwiseConv2dNativeBackpropInput:()=>Kc,Diag:()=>Zc,Dilation2D:()=>Yc,Dilation2DBackpropFilter:()=>Wm,Dilation2DBackpropInput:()=>Bm,ENV:()=>z1,Einsum:()=>Cd,Elu:()=>pi,EluGrad:()=>U1,Environment:()=>cA,Equal:()=>ci,Erf:()=>Ml,Exp:()=>hi,ExpandDims:()=>$l,Expm1:()=>_l,FFT:()=>Nd,Fill:()=>Pl,FlipLeftRight:()=>fi,Floor:()=>mi,FloorDiv:()=>gi,FromPixels:()=>rd,FusedBatchNorm:()=>xi,FusedConv2D:()=>Hr,FusedDepthwiseConv2D:()=>jr,GPGPUContext:()=>sl,GatherNd:()=>Ai,GatherV2:()=>Fl,GraphModel:()=>op,Greater:()=>yi,GreaterEqual:()=>bi,IFFT:()=>Ed,Identity:()=>vi,Imag:()=>Rd,IsFinite:()=>Ol,IsInf:()=>Dl,IsNan:()=>wi,KernelBackend:()=>yl,LRN:()=>Qc,LRNGrad:()=>G1,LeakyRelu:()=>ki,Less:()=>Ii,LessEqual:()=>Si,LinSpace:()=>Jc,Log:()=>Ti,Log1p:()=>zl,LogSoftmax:()=>IS,LogicalAnd:()=>Ci,LogicalNot:()=>Ni,LogicalOr:()=>Ll,LogicalXor:()=>fA,LowerBound:()=>SS,MathBackendCPU:()=>Eh,MathBackendWebGL:()=>hu,Max:()=>Ei,MaxPool:()=>Mi,MaxPool3D:()=>eh,MaxPool3DGrad:()=>j1,MaxPoolGrad:()=>H1,MaxPoolWithArgmax:()=>th,Maximum:()=>Ri,Mean:()=>$i,Min:()=>_i,Minimum:()=>Pi,MirrorPad:()=>Fi,Mod:()=>Bl,MomentumOptimizer:()=>Ch,Multinomial:()=>ah,Multiply:()=>Oi,Neg:()=>Wl,NonMaxSuppressionV3:()=>zi,NonMaxSuppressionV4:()=>Vl,NonMaxSuppressionV5:()=>Li,NotEqual:()=>Di,OP_SCOPE_SUFFIX:()=>Y1,OneHot:()=>Bi,OnesLike:()=>Ul,Optimizer:()=>rs,OptimizerConstructors:()=>Pr,Pack:()=>Gl,PadV2:()=>Wi,Pool:()=>TS,Pow:()=>Vi,Prelu:()=>Ui,Prod:()=>Gi,RMSPropOptimizer:()=>Nh,RaggedGather:()=>nh,RaggedRange:()=>rh,RaggedTensorToTensor:()=>sh,Range:()=>Hl,Rank:()=>Gm,Real:()=>Md,RealDiv:()=>di,Reciprocal:()=>Hi,Reduction:()=>ya,Relu:()=>ji,Relu6:()=>Ki,Reshape:()=>jl,ResizeBilinear:()=>Xi,ResizeBilinearGrad:()=>X1,ResizeNearestNeighbor:()=>qi,ResizeNearestNeighborGrad:()=>q1,Reverse:()=>Zi,RotateWithOffset:()=>ho,Round:()=>ql,Rsqrt:()=>Yi,SGDOptimizer:()=>ip,ScatterNd:()=>Ji,SearchSorted:()=>$d,Select:()=>Xl,Selu:()=>_d,Sigmoid:()=>eo,Sign:()=>Pd,Sin:()=>Qi,Sinh:()=>Zl,Slice:()=>Kl,Softmax:()=>no,Softplus:()=>Fd,SpaceToBatchND:()=>Yl,SparseFillEmptyRows:()=>Od,SparseReshape:()=>Ql,SparseSegmentMean:()=>Dd,SparseSegmentSum:()=>zd,SparseToDense:()=>Ld,SplitV:()=>Jl,Sqrt:()=>to,Square:()=>Bd,SquaredDifference:()=>ro,Step:()=>co,StridedSlice:()=>so,StringNGrams:()=>eu,StringSplit:()=>Wd,StringToHashBucketFast:()=>Vd,Sub:()=>io,Sum:()=>ao,Tan:()=>oo,Tanh:()=>lo,Tensor:()=>pt,TensorBuffer:()=>jt,Tile:()=>ts,TopK:()=>uo,Transform:()=>po,Transpose:()=>gr,Unique:()=>ih,Unpack:()=>tu,UnsortedSegmentSum:()=>oh,UpperBound:()=>CS,Variable:()=>od,WebGPUBackend:()=>Lh,ZerosLike:()=>au,_FusedMatMul:()=>Gr,abs:()=>ja,acos:()=>ry,acosh:()=>sy,add:()=>be,addN:()=>uh,all:()=>iy,any:()=>oy,argMax:()=>tr,argMin:()=>ly,asin:()=>uy,asinh:()=>dy,atan:()=>py,atan2:()=>cy,atanh:()=>hy,avgPool:()=>x2,avgPool3d:()=>xy,backend:()=>er,backend_util:()=>T,basicLSTMCell:()=>Ay,batchNorm:()=>Qd,batchNorm2d:()=>yy,batchNorm3d:()=>by,batchNorm4d:()=>vy,batchToSpaceND:()=>A2,bincount:()=>y2,booleanMaskAsync:()=>Qb,broadcastArgs:()=>wy,broadcastTo:()=>rl,broadcast_util:()=>mo,browser:()=>br,buffer:()=>Me,cast:()=>He,ceil:()=>ky,clipByValue:()=>Iy,clone:()=>wa,complex:()=>Ar,concat:()=>at,concat1d:()=>Sy,concat2d:()=>nu,concat3d:()=>Ty,concat4d:()=>Cy,conv1d:()=>Ny,conv2d:()=>ep,conv2dTranspose:()=>Ry,conv3d:()=>My,conv3dTranspose:()=>$y,copyRegisteredKernels:()=>$S,cos:()=>_y,cosh:()=>Py,cosineWindow:()=>Ah,cumprod:()=>Fy,cumsum:()=>Oy,customGrad:()=>Jn,denseBincount:()=>Dy,deprecationWarn:()=>s2,depthToSpace:()=>zy,depthwiseConv2d:()=>dh,deregisterOp:()=>gP,device_util:()=>jd,diag:()=>Ly,dilation2d:()=>By,disableDeprecationWarnings:()=>iC,dispose:()=>Y,disposeVariables:()=>oC,div:()=>me,divNoNan:()=>Wy,dot:()=>Vy,dropout:()=>r4,einsum:()=>Uy,elu:()=>v2,enableDebugMode:()=>sC,enableProdMode:()=>r2,enclosingPowerOfTwo:()=>K2,engine:()=>kt,env:()=>W,equal:()=>b2,erf:()=>Gy,euclideanNorm:()=>qy,exp:()=>Xr,expandDims:()=>Gt,expm1:()=>Xy,eye:()=>k2,fft:()=>gh,fill:()=>ar,findBackend:()=>i2,findBackendFactory:()=>cC,floor:()=>I2,floorDiv:()=>Yd,forceHalfFloat:()=>W6,fused:()=>Z2,gather:()=>S2,gatherND:()=>n4,gather_util:()=>u2,getBackend:()=>ia,getGradient:()=>Vm,getKernel:()=>wc,getKernelsForBackend:()=>Kn,getThreadsCount:()=>Tne,gpgpu_util:()=>y6,grad:()=>BE,grads:()=>WE,greater:()=>np,greaterEqual:()=>T2,ifft:()=>hd,imag:()=>Zd,image:()=>ge,inTopKAsync:()=>s4,io:()=>Hn,irfft:()=>H2,isFinite:()=>Ky,isInf:()=>Zy,isNaN:()=>Yy,keep:()=>Fn,kernel_impls:()=>Sn,leakyRelu:()=>C2,less:()=>Jy,lessEqual:()=>ph,linalg:()=>h4,linspace:()=>Qy,loadGraphModel:()=>t3,loadGraphModelSync:()=>bF,localResponseNormalization:()=>eb,log:()=>pl,log1p:()=>N2,logSigmoid:()=>ab,logSoftmax:()=>nb,logSumExp:()=>R2,logicalAnd:()=>pd,logicalNot:()=>M2,logicalOr:()=>$2,logicalXor:()=>rb,losses:()=>f4,lowerBound:()=>sb,matMul:()=>st,math:()=>BA,max:()=>pa,maxPool:()=>_2,maxPool3d:()=>ib,maxPoolWithArgmax:()=>ob,maximum:()=>P2,mean:()=>cd,memory:()=>lC,meshgrid:()=>lb,min:()=>qr,minimum:()=>F2,mirrorPad:()=>ub,mod:()=>ru,moments:()=>db,movingAverage:()=>e4,mul:()=>ae,multiRNNCell:()=>pb,multinomial:()=>cb,neg:()=>qn,nextFrame:()=>x4,norm:()=>ap,notEqual:()=>O2,oneHot:()=>Sc,ones:()=>Lr,onesLike:()=>hb,op:()=>D,outerProduct:()=>fb,pad:()=>nr,pad1d:()=>mb,pad2d:()=>gb,pad3d:()=>xb,pad4d:()=>Ab,pool:()=>yb,pow:()=>dl,prelu:()=>z2,print:()=>t2,prod:()=>bb,profile:()=>uC,raggedGather:()=>vb,raggedRange:()=>wb,raggedTensorToTensor:()=>kb,rand:()=>Ib,randomGamma:()=>Sb,randomNormal:()=>W2,randomStandardNormal:()=>Tb,randomUniform:()=>V2,range:()=>cl,ready:()=>Kd,real:()=>ul,reciprocal:()=>Cb,registerBackend:()=>fo,registerGradient:()=>ES,registerKernel:()=>fn,registerOp:()=>mP,relu:()=>rp,relu6:()=>U2,removeBackend:()=>pC,reshape:()=>J,reverse:()=>Kr,reverse1d:()=>Nb,reverse2d:()=>Eb,reverse3d:()=>Rb,reverse4d:()=>Mb,rfft:()=>xh,round:()=>G2,rsqrt:()=>$b,scalar:()=>Fe,scatterND:()=>t4,scatter_util:()=>d2,searchSorted:()=>hh,selu:()=>_b,separableConv2d:()=>Pb,serialization:()=>QA,setBackend:()=>Xd,setPlatform:()=>hC,setThreadsCount:()=>Sne,setWasmPath:()=>Ine,setWasmPaths:()=>zh,setWebGLContext:()=>$h,setdiff1dAsync:()=>Fb,shared:()=>Rh,sigmoid:()=>Da,sign:()=>Ob,signal:()=>c4,sin:()=>Db,sinh:()=>zb,slice:()=>Pe,slice1d:()=>Lb,slice2d:()=>Bb,slice3d:()=>sp,slice4d:()=>fh,slice_util:()=>It,softmax:()=>mh,softplus:()=>E2,spaceToBatchND:()=>D2,sparse:()=>m4,sparseToDense:()=>a4,spectral:()=>p4,split:()=>ka,sqrt:()=>Yn,square:()=>kn,squaredDifference:()=>j2,squeeze:()=>_e,stack:()=>sa,step:()=>q2,stridedSlice:()=>Wb,string:()=>g4,sub:()=>fe,sum:()=>tt,sumOutType:()=>Hd,tan:()=>Vb,tanh:()=>Cc,tensor:()=>Be,tensor1d:()=>Ht,tensor2d:()=>Xn,tensor3d:()=>l2,tensor4d:()=>Ub,tensor5d:()=>Gb,tensor6d:()=>Hb,tensor_util:()=>AA,test_util:()=>ty,tidy:()=>$e,tile:()=>Vr,time:()=>dC,topk:()=>jb,train:()=>c_,transpose:()=>Ls,truncatedNormal:()=>qb,unique:()=>Xb,unregisterGradient:()=>MS,unregisterKernel:()=>RS,unsortedSegmentSum:()=>Kb,unstack:()=>Ta,upcastType:()=>ca,upperBound:()=>Zb,util:()=>v,valueAndGrad:()=>VE,valueAndGrads:()=>UE,variable:()=>Yb,variableGrads:()=>tb,version:()=>xp,version_converter:()=>wF,version_core:()=>m2,version_cpu:()=>EO,version_wasm:()=>Cne,version_webgl:()=>mG,webgl:()=>gG,webgl_util:()=>U7,webgpu_util:()=>I8,where:()=>Bs,whereAsync:()=>X2,zeros:()=>hn,zerosLike:()=>Xa});var PI=Object.create,F1=Object.defineProperty,FI=Object.getOwnPropertyDescriptor,OI=Object.getOwnPropertyNames,DI=Object.getPrototypeOf,zI=Object.prototype.hasOwnProperty,Qx=(e=>typeof Ss!="undefined"?Ss:typeof Proxy!="undefined"?new Proxy(e,{get:(t,a)=>(typeof Ss!="undefined"?Ss:t)[a]}):e)(function(e){if(typeof Ss!="undefined")return Ss.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')}),qt=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Xe=(e,t)=>{for(var a in t)F1(e,a,{get:t[a],enumerable:!0})},LI=(e,t,a,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of OI(t))!zI.call(e,r)&&r!==a&&F1(e,r,{get:()=>t[r],enumerable:!(n=FI(t,r))||n.enumerable});return e},Al=(e,t,a)=>(a=e!=null?PI(DI(e)):{},LI(t||!e||!e.__esModule?F1(a,"default",{value:e,enumerable:!0}):a,e)),BI=qt((e,t)=>{t.exports=n;var a=null;try{a=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(I){}function n(I,N,O){this.low=I|0,this.high=N|0,this.unsigned=!!O}n.prototype.__isLong__,Object.defineProperty(n.prototype,"__isLong__",{value:!0});function r(I){return(I&&I.__isLong__)===!0}n.isLong=r;var s={},i={};function o(I,N){var O,L,B;return N?(I>>>=0,(B=0<=I&&I<256)&&(L=i[I],L)?L:(O=u(I,(I|0)<0?-1:0,!0),B&&(i[I]=O),O)):(I|=0,(B=-128<=I&&I<128)&&(L=s[I],L)?L:(O=u(I,I<0?-1:0,!1),B&&(s[I]=O),O))}n.fromInt=o;function l(I,N){if(isNaN(I))return N?b:y;if(N){if(I<0)return b;if(I>=g)return _}else{if(I<=-x)return $;if(I+1>=x)return E}return I<0?l(-I,N).neg():u(I%m|0,I/m|0,N)}n.fromNumber=l;function u(I,N,O){return new n(I,N,O)}n.fromBits=u;var p=Math.pow;function c(I,N,O){if(I.length===0)throw Error("empty string");if(I==="NaN"||I==="Infinity"||I==="+Infinity"||I==="-Infinity")return y;if(typeof N=="number"?(O=N,N=!1):N=!!N,O=O||10,O<2||36<O)throw RangeError("radix");var L;if((L=I.indexOf("-"))>0)throw Error("interior hyphen");if(L===0)return c(I.substring(1),N,O).neg();for(var B=l(p(O,8)),G=y,j=0;j<I.length;j+=8){var U=Math.min(8,I.length-j),H=parseInt(I.substring(j,j+U),O);if(U<8){var V=l(p(O,U));G=G.mul(V).add(l(H))}else G=G.mul(B),G=G.add(l(H))}return G.unsigned=N,G}n.fromString=c;function d(I,N){return typeof I=="number"?l(I,N):typeof I=="string"?c(I,N):u(I.low,I.high,typeof N=="boolean"?N:I.unsigned)}n.fromValue=d;var h=1<<16,f=1<<24,m=h*h,g=m*m,x=g/2,A=o(f),y=o(0);n.ZERO=y;var b=o(0,!0);n.UZERO=b;var w=o(1);n.ONE=w;var S=o(1,!0);n.UONE=S;var C=o(-1);n.NEG_ONE=C;var E=u(-1,2147483647,!1);n.MAX_VALUE=E;var _=u(-1,-1,!0);n.MAX_UNSIGNED_VALUE=_;var $=u(0,-2147483648,!1);n.MIN_VALUE=$;var M=n.prototype;M.toInt=function(){return this.unsigned?this.low>>>0:this.low},M.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},M.toString=function(I){if(I=I||10,I<2||36<I)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq($)){var N=l(I),O=this.div(N),L=O.mul(N).sub(this);return O.toString(I)+L.toInt().toString(I)}else return"-"+this.neg().toString(I);for(var B=l(p(I,6),this.unsigned),G=this,j="";;){var U=G.div(B),H=G.sub(U.mul(B)).toInt()>>>0,V=H.toString(I);if(G=U,G.isZero())return V+j;for(;V.length<6;)V="0"+V;j=""+V+j}},M.getHighBits=function(){return this.high},M.getHighBitsUnsigned=function(){return this.high>>>0},M.getLowBits=function(){return this.low},M.getLowBitsUnsigned=function(){return this.low>>>0},M.getNumBitsAbs=function(){if(this.isNegative())return this.eq($)?64:this.neg().getNumBitsAbs();for(var I=this.high!=0?this.high:this.low,N=31;N>0&&(I&1<<N)==0;N--);return this.high!=0?N+33:N+1},M.isZero=function(){return this.high===0&&this.low===0},M.eqz=M.isZero,M.isNegative=function(){return!this.unsigned&&this.high<0},M.isPositive=function(){return this.unsigned||this.high>=0},M.isOdd=function(){return(this.low&1)===1},M.isEven=function(){return(this.low&1)===0},M.equals=function(I){return r(I)||(I=d(I)),this.unsigned!==I.unsigned&&this.high>>>31===1&&I.high>>>31===1?!1:this.high===I.high&&this.low===I.low},M.eq=M.equals,M.notEquals=function(I){return!this.eq(I)},M.neq=M.notEquals,M.ne=M.notEquals,M.lessThan=function(I){return this.comp(I)<0},M.lt=M.lessThan,M.lessThanOrEqual=function(I){return this.comp(I)<=0},M.lte=M.lessThanOrEqual,M.le=M.lessThanOrEqual,M.greaterThan=function(I){return this.comp(I)>0},M.gt=M.greaterThan,M.greaterThanOrEqual=function(I){return this.comp(I)>=0},M.gte=M.greaterThanOrEqual,M.ge=M.greaterThanOrEqual,M.compare=function(I){if(r(I)||(I=d(I)),this.eq(I))return 0;var N=this.isNegative(),O=I.isNegative();return N&&!O?-1:!N&&O?1:this.unsigned?I.high>>>0>this.high>>>0||I.high===this.high&&I.low>>>0>this.low>>>0?-1:1:this.sub(I).isNegative()?-1:1},M.comp=M.compare,M.negate=function(){return!this.unsigned&&this.eq($)?$:this.not().add(w)},M.neg=M.negate,M.add=function(I){r(I)||(I=d(I));var N=this.high>>>16,O=this.high&65535,L=this.low>>>16,B=this.low&65535,G=I.high>>>16,j=I.high&65535,U=I.low>>>16,H=I.low&65535,V=0,Q=0,Z=0,re=0;return re+=B+H,Z+=re>>>16,re&=65535,Z+=L+U,Q+=Z>>>16,Z&=65535,Q+=O+j,V+=Q>>>16,Q&=65535,V+=N+G,V&=65535,u(Z<<16|re,V<<16|Q,this.unsigned)},M.subtract=function(I){return r(I)||(I=d(I)),this.add(I.neg())},M.sub=M.subtract,M.multiply=function(I){if(this.isZero())return y;if(r(I)||(I=d(I)),a){var N=a.mul(this.low,this.high,I.low,I.high);return u(N,a.get_high(),this.unsigned)}if(I.isZero())return y;if(this.eq($))return I.isOdd()?$:y;if(I.eq($))return this.isOdd()?$:y;if(this.isNegative())return I.isNegative()?this.neg().mul(I.neg()):this.neg().mul(I).neg();if(I.isNegative())return this.mul(I.neg()).neg();if(this.lt(A)&&I.lt(A))return l(this.toNumber()*I.toNumber(),this.unsigned);var O=this.high>>>16,L=this.high&65535,B=this.low>>>16,G=this.low&65535,j=I.high>>>16,U=I.high&65535,H=I.low>>>16,V=I.low&65535,Q=0,Z=0,re=0,ee=0;return ee+=G*V,re+=ee>>>16,ee&=65535,re+=B*V,Z+=re>>>16,re&=65535,re+=G*H,Z+=re>>>16,re&=65535,Z+=L*V,Q+=Z>>>16,Z&=65535,Z+=B*H,Q+=Z>>>16,Z&=65535,Z+=G*U,Q+=Z>>>16,Z&=65535,Q+=O*V+L*H+B*U+G*j,Q&=65535,u(re<<16|ee,Q<<16|Z,this.unsigned)},M.mul=M.multiply,M.divide=function(I){if(r(I)||(I=d(I)),I.isZero())throw Error("division by zero");if(a){if(!this.unsigned&&this.high===-2147483648&&I.low===-1&&I.high===-1)return this;var N=(this.unsigned?a.div_u:a.div_s)(this.low,this.high,I.low,I.high);return u(N,a.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:y;var O,L,B;if(this.unsigned){if(I.unsigned||(I=I.toUnsigned()),I.gt(this))return b;if(I.gt(this.shru(1)))return S;B=b}else{if(this.eq($)){if(I.eq(w)||I.eq(C))return $;if(I.eq($))return w;var G=this.shr(1);return O=G.div(I).shl(1),O.eq(y)?I.isNegative()?w:C:(L=this.sub(I.mul(O)),B=O.add(L.div(I)),B)}else if(I.eq($))return this.unsigned?b:y;if(this.isNegative())return I.isNegative()?this.neg().div(I.neg()):this.neg().div(I).neg();if(I.isNegative())return this.div(I.neg()).neg();B=y}for(L=this;L.gte(I);){O=Math.max(1,Math.floor(L.toNumber()/I.toNumber()));for(var j=Math.ceil(Math.log(O)/Math.LN2),U=j<=48?1:p(2,j-48),H=l(O),V=H.mul(I);V.isNegative()||V.gt(L);)O-=U,H=l(O,this.unsigned),V=H.mul(I);H.isZero()&&(H=w),B=B.add(H),L=L.sub(V)}return B},M.div=M.divide,M.modulo=function(I){if(r(I)||(I=d(I)),a){var N=(this.unsigned?a.rem_u:a.rem_s)(this.low,this.high,I.low,I.high);return u(N,a.get_high(),this.unsigned)}return this.sub(this.div(I).mul(I))},M.mod=M.modulo,M.rem=M.modulo,M.not=function(){return u(~this.low,~this.high,this.unsigned)},M.and=function(I){return r(I)||(I=d(I)),u(this.low&I.low,this.high&I.high,this.unsigned)},M.or=function(I){return r(I)||(I=d(I)),u(this.low|I.low,this.high|I.high,this.unsigned)},M.xor=function(I){return r(I)||(I=d(I)),u(this.low^I.low,this.high^I.high,this.unsigned)},M.shiftLeft=function(I){return r(I)&&(I=I.toInt()),(I&=63)===0?this:I<32?u(this.low<<I,this.high<<I|this.low>>>32-I,this.unsigned):u(0,this.low<<I-32,this.unsigned)},M.shl=M.shiftLeft,M.shiftRight=function(I){return r(I)&&(I=I.toInt()),(I&=63)===0?this:I<32?u(this.low>>>I|this.high<<32-I,this.high>>I,this.unsigned):u(this.high>>I-32,this.high>=0?0:-1,this.unsigned)},M.shr=M.shiftRight,M.shiftRightUnsigned=function(I){if(r(I)&&(I=I.toInt()),I&=63,I===0)return this;var N=this.high;if(I<32){var O=this.low;return u(O>>>I|N<<32-I,N>>>I,this.unsigned)}else return I===32?u(N,0,this.unsigned):u(N>>>I-32,0,this.unsigned)},M.shru=M.shiftRightUnsigned,M.shr_u=M.shiftRightUnsigned,M.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},M.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},M.toBytes=function(I){return I?this.toBytesLE():this.toBytesBE()},M.toBytesLE=function(){var I=this.high,N=this.low;return[N&255,N>>>8&255,N>>>16&255,N>>>24,I&255,I>>>8&255,I>>>16&255,I>>>24]},M.toBytesBE=function(){var I=this.high,N=this.low;return[I>>>24,I>>>16&255,I>>>8&255,I&255,N>>>24,N>>>16&255,N>>>8&255,N&255]},n.fromBytes=function(I,N,O){return O?n.fromBytesLE(I,N):n.fromBytesBE(I,N)},n.fromBytesLE=function(I,N){return new n(I[0]|I[1]<<8|I[2]<<16|I[3]<<24,I[4]|I[5]<<8|I[6]<<16|I[7]<<24,N)},n.fromBytesBE=function(I,N){return new n(I[4]<<24|I[5]<<16|I[6]<<8|I[7],I[0]<<24|I[1]<<16|I[2]<<8|I[3],N)}}),WI=qt(()=>{}),VI=qt(()=>{}),UI=qt((e,t)=>{(function(a,n,r){function s(u){var p=this,c=l();p.next=function(){var d=2091639*p.s0+p.c*23283064365386963e-26;return p.s0=p.s1,p.s1=p.s2,p.s2=d-(p.c=d|0)},p.c=1,p.s0=c(" "),p.s1=c(" "),p.s2=c(" "),p.s0-=c(u),p.s0<0&&(p.s0+=1),p.s1-=c(u),p.s1<0&&(p.s1+=1),p.s2-=c(u),p.s2<0&&(p.s2+=1),c=null}function i(u,p){return p.c=u.c,p.s0=u.s0,p.s1=u.s1,p.s2=u.s2,p}function o(u,p){var c=new s(u),d=p&&p.state,h=c.next;return h.int32=function(){return c.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&i(d,c),h.state=function(){return i(c,{})}),h}function l(){var u=4022871197,p=function(c){c=String(c);for(var d=0;d<c.length;d++){u+=c.charCodeAt(d);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return p}n&&n.exports?n.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),GI=qt((e,t)=>{(function(a,n,r){function s(l){var u=this,p="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:p+=l;for(var c=0;c<p.length+64;c++)u.x^=p.charCodeAt(c)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var p=new s(l),c=u&&u.state,d=function(){return(p.next()>>>0)/4294967296};return d.double=function(){do var h=p.next()>>>11,f=(p.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=p.next,d.quick=d,c&&(typeof c=="object"&&i(c,p),d.state=function(){return i(p,{})}),d}n&&n.exports?n.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),HI=qt((e,t)=>{(function(a,n,r){function s(l){var u=this,p="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:p+=l;for(var c=0;c<p.length+64;c++)u.x^=p.charCodeAt(c)|0,c==p.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var p=new s(l),c=u&&u.state,d=function(){return(p.next()>>>0)/4294967296};return d.double=function(){do var h=p.next()>>>11,f=(p.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=p.next,d.quick=d,c&&(typeof c=="object"&&i(c,p),d.state=function(){return i(p,{})}),d}n&&n.exports?n.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),jI=qt((e,t)=>{(function(a,n,r){function s(l){var u=this;u.next=function(){var c=u.x,d=u.i,h,f,m;return h=c[d],h^=h>>>7,f=h^h<<24,h=c[d+1&7],f^=h^h>>>10,h=c[d+3&7],f^=h^h>>>3,h=c[d+4&7],f^=h^h<<7,h=c[d+7&7],h=h^h<<13,f^=h^h<<9,c[d]=f,u.i=d+1&7,f};function p(c,d){var h,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,h=0;h<d.length;++h)m[h&7]=m[h&7]<<15^d.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],c.x=m,c.i=0,h=256;h>0;--h)c.next()}p(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),c=u&&u.state,d=function(){return(p.next()>>>0)/4294967296};return d.double=function(){do var h=p.next()>>>11,f=(p.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=p.next,d.quick=d,c&&(c.x&&i(c,p),d.state=function(){return i(p,{})}),d}n&&n.exports?n.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),qI=qt((e,t)=>{(function(a,n,r){function s(l){var u=this;u.next=function(){var c=u.w,d=u.X,h=u.i,f,m;return u.w=c=c+1640531527|0,m=d[h+34&127],f=d[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[h]=m^f,u.i=h,m+(c^c>>>16)|0};function p(c,d){var h,f,m,g,x,A=[],y=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,y=Math.max(y,d.length)),m=0,g=-32;g<y;++g)d&&(f^=d.charCodeAt((g+32)%d.length)),g===0&&(x=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(x=x+1640531527|0,h=A[g&127]^=f+x,m=h==0?m+1:0);for(m>=128&&(A[(d&&d.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=A[m+34&127],h=A[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,A[m]=f^h;c.w=x,c.X=A,c.i=m}p(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),c=u&&u.state,d=function(){return(p.next()>>>0)/4294967296};return d.double=function(){do var h=p.next()>>>11,f=(p.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=p.next,d.quick=d,c&&(c.X&&i(c,p),d.state=function(){return i(p,{})}),d}n&&n.exports?n.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),XI=qt((e,t)=>{(function(a,n,r){function s(l){var u=this,p="";u.next=function(){var d=u.b,h=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^h,u.c=h=h-f|0,u.d=f<<16^h>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):p+=l;for(var c=0;c<p.length+20;c++)u.b^=p.charCodeAt(c)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var p=new s(l),c=u&&u.state,d=function(){return(p.next()>>>0)/4294967296};return d.double=function(){do var h=p.next()>>>11,f=(p.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=p.next,d.quick=d,c&&(typeof c=="object"&&i(c,p),d.state=function(){return i(p,{})}),d}n&&n.exports?n.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),KI=qt(()=>{}),ZI=qt((e,t)=>{(function(a,n,r){var s=256,i=6,o=52,l="random",u=r.pow(s,i),p=r.pow(2,o),c=p*2,d=s-1,h;function f(w,S,C){var E=[];S=S==!0?{entropy:!0}:S||{};var _=A(x(S.entropy?[w,b(n)]:w==null?y():w,3),E),$=new m(E),M=function(){for(var I=$.g(i),N=u,O=0;I<p;)I=(I+O)*s,N*=s,O=$.g(1);for(;I>=c;)I/=2,N/=2,O>>>=1;return(I+O)/N};return M.int32=function(){return $.g(4)|0},M.quick=function(){return $.g(4)/4294967296},M.double=M,A(b($.S),n),(S.pass||C||function(I,N,O,L){return L&&(L.S&&g(L,$),I.state=function(){return g($,{})}),O?(r[l]=I,N):I})(M,_,"global"in S?S.global:this==r,S.state)}function m(w){var S,C=w.length,E=this,_=0,$=E.i=E.j=0,M=E.S=[];for(C||(w=[C++]);_<s;)M[_]=_++;for(_=0;_<s;_++)M[_]=M[$=d&$+w[_%C]+(S=M[_])],M[$]=S;(E.g=function(I){for(var N,O=0,L=E.i,B=E.j,G=E.S;I--;)N=G[L=d&L+1],O=O*s+G[d&(G[L]=G[B=d&B+N])+(G[B]=N)];return E.i=L,E.j=B,O})(s)}function g(w,S){return S.i=w.i,S.j=w.j,S.S=w.S.slice(),S}function x(w,S){var C=[],E=typeof w,_;if(S&&E=="object")for(_ in w)try{C.push(x(w[_],S-1))}catch($){}return C.length?C:E=="string"?w:w+"\0"}function A(w,S){for(var C=w+"",E,_=0;_<C.length;)S[d&_]=d&(E^=S[d&_]*19)+C.charCodeAt(_++);return b(S)}function y(){try{var w;return h&&(w=h.randomBytes)?w=w(s):(w=new Uint8Array(s),(a.crypto||a.msCrypto).getRandomValues(w)),b(w)}catch(E){var S=a.navigator,C=S&&S.plugins;return[+new Date,a,C,a.screen,b(n)]}}function b(w){return String.fromCharCode.apply(0,w)}if(A(r.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{h=KI()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return f}):r["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}),eA=qt((e,t)=>{var a=UI(),n=GI(),r=HI(),s=jI(),i=qI(),o=XI(),l=ZI();l.alea=a,l.xor128=n,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),yc=qt(()=>{}),tA=qt(()=>{}),YI=qt(()=>{}),JI=qt(()=>{}),QI=qt(()=>{}),eS=qt((e,t)=>{var a=(()=>{var n=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(n=n||__filename),function(r){r=r||{};function s(){return oe.buffer!=je&&dt(oe.buffer),ht}function i(){return oe.buffer!=je&&dt(oe.buffer),Va}function o(){return oe.buffer!=je&&dt(oe.buffer),Ft}function l(){return oe.buffer!=je&&dt(oe.buffer),aa}function u(){return oe.buffer!=je&&dt(oe.buffer),$a}function p(){return oe.buffer!=je&&dt(oe.buffer),sn}function c(){return oe.buffer!=je&&dt(oe.buffer),_a}var d=typeof r!="undefined"?r:{},h,f;d.ready=new Promise(function(F,q){h=F,f=q});var m;typeof process!="undefined"&&process.listeners&&(m={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},d),x=[],A="./this.program",y=(F,q)=>{throw q},b=typeof window=="object",w=typeof importScripts=="function",S=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",C=d.ENVIRONMENT_IS_PTHREAD||!1,E="";function _(F){return d.locateFile?d.locateFile(F,E):E+F}var $,M,I,N;function O(F){F instanceof ks||H("exiting due to exception: "+F)}if(S){w?E=yc().dirname(E)+"/":E=__dirname+"/";var L,B;typeof Qx=="function"&&(L=tA(),B=yc()),$=(q,se)=>(q=B.normalize(q),L.readFileSync(q,se?void 0:"utf8")),I=q=>{var se=$(q,!0);return se.buffer||(se=new Uint8Array(se)),se},M=(q,se,pe)=>{q=B.normalize(q),L.readFile(q,function(Te,Je){Te?pe(Te):se(Je.buffer)})},process.argv.length>1&&(A=process.argv[1].replace(/\\/g,"/")),x=process.argv.slice(2),process.on("uncaughtException",function(q){if(!(q instanceof ks))throw q}),process.on("unhandledRejection",function(q){throw q}),y=(q,se)=>{if(yn())throw process.exitCode=q,se;O(se),process.exit(q)},d.inspect=function(){return"[Emscripten Module object]"};let F;try{F=YI()}catch(q){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),q}global.Worker=F.Worker}else(b||w)&&(w?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof n!="undefined"&&n&&(E=n),E.indexOf("blob:")!==0?E=E.substr(0,E.replace(/[?#].*/,"").lastIndexOf("/")+1):E="",S||($=F=>{var q=new XMLHttpRequest;return q.open("GET",F,!1),q.send(null),q.responseText},w&&(I=F=>{var q=new XMLHttpRequest;return q.open("GET",F,!1),q.responseType="arraybuffer",q.send(null),new Uint8Array(q.response)}),M=(F,q,se)=>{var pe=new XMLHttpRequest;pe.open("GET",F,!0),pe.responseType="arraybuffer",pe.onload=()=>{if(pe.status==200||pe.status==0&&pe.response){q(pe.response);return}se()},pe.onerror=se,pe.send(null)}),N=F=>document.title=F);S&&typeof performance=="undefined"&&(global.performance=JI().performance);var G=console.log.bind(console),j=console.warn.bind(console);S&&(G=F=>L.writeSync(1,F+`
`),j=F=>L.writeSync(2,F+`
`));var U=d.print||G,H=d.printErr||j;Object.assign(d,g),g=null,d.arguments&&(x=d.arguments),d.thisProgram&&(A=d.thisProgram),d.quit&&(y=d.quit);var V=4,Q=Atomics.load,Z=Atomics.store,re=Atomics.compareExchange,ee;d.wasmBinary&&(ee=d.wasmBinary);var he=d.noExitRuntime||!0;typeof WebAssembly!="object"&&Wo("no native wasm support detected");var oe,Ae,we=!1,Re;function Ge(F,q){F||Wo(q)}var Ke=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function nt(F,q,se){for(var pe=q+se,Te=q;F[Te]&&!(Te>=pe);)++Te;if(Te-q>16&&F.buffer&&Ke)return Ke.decode(F.buffer instanceof SharedArrayBuffer?F.slice(q,Te):F.subarray(q,Te));for(var Je="";q<Te;){var Oe=F[q++];if(!(Oe&128)){Je+=String.fromCharCode(Oe);continue}var We=F[q++]&63;if((Oe&224)==192){Je+=String.fromCharCode((Oe&31)<<6|We);continue}var Dt=F[q++]&63;if((Oe&240)==224?Oe=(Oe&15)<<12|We<<6|Dt:Oe=(Oe&7)<<18|We<<12|Dt<<6|F[q++]&63,Oe<65536)Je+=String.fromCharCode(Oe);else{var ln=Oe-65536;Je+=String.fromCharCode(55296|ln>>10,56320|ln&1023)}}return Je}function ut(F,q){return F?nt(i(),F,q):""}function et(F,q,se,pe){if(!(pe>0))return 0;for(var Te=se,Je=se+pe-1,Oe=0;Oe<F.length;++Oe){var We=F.charCodeAt(Oe);if(We>=55296&&We<=57343){var Dt=F.charCodeAt(++Oe);We=65536+((We&1023)<<10)|Dt&1023}if(We<=127){if(se>=Je)break;q[se++]=We}else if(We<=2047){if(se+1>=Je)break;q[se++]=192|We>>6,q[se++]=128|We&63}else if(We<=65535){if(se+2>=Je)break;q[se++]=224|We>>12,q[se++]=128|We>>6&63,q[se++]=128|We&63}else{if(se+3>=Je)break;q[se++]=240|We>>18,q[se++]=128|We>>12&63,q[se++]=128|We>>6&63,q[se++]=128|We&63}}return q[se]=0,se-Te}function rt(F,q,se){return et(F,i(),q,se)}var je,ht,Va,Ft,rn,aa,$a,sn,_a;C&&(je=d.buffer);function dt(F){je=F,d.HEAP8=ht=new Int8Array(F),d.HEAP16=Ft=new Int16Array(F),d.HEAP32=aa=new Int32Array(F),d.HEAPU8=Va=new Uint8Array(F),d.HEAPU16=rn=new Uint16Array(F),d.HEAPU32=$a=new Uint32Array(F),d.HEAPF32=sn=new Float32Array(F),d.HEAPF64=_a=new Float64Array(F)}var Pa=d.INITIAL_MEMORY||16777216;if(C)oe=d.wasmMemory,je=d.buffer;else if(d.wasmMemory)oe=d.wasmMemory;else if(oe=new WebAssembly.Memory({initial:Pa/65536,maximum:32768,shared:!0}),!(oe.buffer instanceof SharedArrayBuffer))throw H("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),S&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");oe&&(je=oe.buffer),Pa=je.byteLength,dt(je);var Ua,lr=[],zo=[],Vn=[],Mu=!1;function yn(){return he}function Lo(){if(d.preRun)for(typeof d.preRun=="function"&&(d.preRun=[d.preRun]);d.preRun.length;)B0(d.preRun.shift());Fu(lr)}function Xt(){Mu=!0,!C&&Fu(zo)}function Rp(){if(!C){if(d.postRun)for(typeof d.postRun=="function"&&(d.postRun=[d.postRun]);d.postRun.length;)gg(d.postRun.shift());Fu(Vn)}}function B0(F){lr.unshift(F)}function W0(F){zo.unshift(F)}function gg(F){Vn.unshift(F)}var Mr=0,Bo=null,ur=null;function xg(F){Mr++,d.monitorRunDependencies&&d.monitorRunDependencies(Mr)}function Ag(F){if(Mr--,d.monitorRunDependencies&&d.monitorRunDependencies(Mr),Mr==0&&(Bo!==null&&(clearInterval(Bo),Bo=null),ur)){var q=ur;ur=null,q()}}function Wo(F){C?postMessage({cmd:"onAbort",arg:F}):d.onAbort&&d.onAbort(F),F="Aborted("+F+")",H(F),we=!0,Re=1,F+=". Build with -sASSERTIONS for more info.";var q=new WebAssembly.RuntimeError(F);throw f(q),q}var V0="data:application/octet-stream;base64,";function Mp(F){return F.startsWith(V0)}function $u(F){return F.startsWith("file://")}var xa;xa="tfjs-backend-wasm-threaded-simd.wasm",Mp(xa)||(xa=_(xa));function $p(F){try{if(F==xa&&ee)return new Uint8Array(ee);if(I)return I(F);throw"both async and sync fetching of the wasm failed"}catch(q){Wo(q)}}function U0(){if(!ee&&(b||w)){if(typeof fetch=="function"&&!$u(xa))return fetch(xa,{credentials:"same-origin"}).then(function(F){if(!F.ok)throw"failed to load wasm binary file at '"+xa+"'";return F.arrayBuffer()}).catch(function(){return $p(xa)});if(M)return new Promise(function(F,q){M(xa,function(se){F(new Uint8Array(se))},q)})}return Promise.resolve().then(function(){return $p(xa)})}function G0(){var F={env:Gp,wasi_snapshot_preview1:Gp};function q(Oe,We){var Dt=Oe.exports;if(d.asm=Dt,ef(d.asm._emscripten_tls_init),Ua=d.asm.__indirect_function_table,W0(d.asm.__wasm_call_ctors),Ae=We,!C){var ln=Le.unusedWorkers.length;Le.unusedWorkers.forEach(function(pr){Le.loadWasmModuleToWorker(pr,function(){--ln||Ag("wasm-instantiate")})})}}C||xg("wasm-instantiate");function se(Oe){q(Oe.instance,Oe.module)}function pe(Oe){return U0().then(function(We){return WebAssembly.instantiate(We,F)}).then(function(We){return We}).then(Oe,function(We){H("failed to asynchronously prepare wasm: "+We),Wo(We)})}function Te(){return!ee&&typeof WebAssembly.instantiateStreaming=="function"&&!Mp(xa)&&!$u(xa)&&!S&&typeof fetch=="function"?fetch(xa,{credentials:"same-origin"}).then(function(Oe){var We=WebAssembly.instantiateStreaming(Oe,F);return We.then(se,function(Dt){return H("wasm streaming compile failed: "+Dt),H("falling back to ArrayBuffer instantiation"),pe(se)})}):pe(se)}if(d.instantiateWasm)try{var Je=d.instantiateWasm(F,q);return Je}catch(Oe){H("Module.instantiateWasm callback failed with error: "+Oe),f(Oe)}return Te().catch(f),{}}var H0,yg,j0={};function ks(F){this.name="ExitStatus",this.message="Program terminated with exit("+F+")",this.status=F}function q0(F){var q=Le.pthreads[F];delete Le.pthreads[F],q.terminate(),Sm(F),Le.runningWorkers.splice(Le.runningWorkers.indexOf(q),1),q.pthread_ptr=0}function X0(F){var q=Le.pthreads[F];q.postMessage({cmd:"cancel"})}function _u(F){var q=Le.pthreads[F];Ge(q),Le.returnWorkerToPool(q)}function _p(F){var q=Le.getNewWorker();if(!q)return 6;Le.runningWorkers.push(q),Le.pthreads[F.pthread_ptr]=q,q.pthread_ptr=F.pthread_ptr;var se={cmd:"run",start_routine:F.startRoutine,arg:F.arg,pthread_ptr:F.pthread_ptr};return q.runPthread=()=>{se.time=performance.now(),q.postMessage(se,F.transferList)},q.loaded&&(q.runPthread(),delete q.runPthread),0}var Pp={varargs:void 0,get:function(){Pp.varargs+=4;var F=l()[Pp.varargs-4>>2];return F},getStr:function(F){var q=ut(F);return q}};function Pu(F){if(C)return $r(1,1,F);Re=F,yn()||(Le.terminateAllThreads(),d.onExit&&d.onExit(F),we=!0),y(F,new ks(F))}function bg(F,q){if(Re=F,!q&&C)throw Op(F),"unwind";Pu(F)}var Fp=bg;function K0(F){if(F instanceof ks||F=="unwind")return Re;y(1,F)}var Le={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],pthreads:{},init:function(){C?Le.initWorker():Le.initMainThread()},initMainThread:function(){for(var F=8;F--;)Le.allocateUnusedWorker()},initWorker:function(){he=!1},setExitStatus:function(F){Re=F},terminateAllThreads:function(){for(var F of Object.values(Le.pthreads))Le.returnWorkerToPool(F);for(var F of Le.unusedWorkers)F.terminate();Le.unusedWorkers=[]},returnWorkerToPool:function(F){var q=F.pthread_ptr;delete Le.pthreads[q],Le.unusedWorkers.push(F),Le.runningWorkers.splice(Le.runningWorkers.indexOf(F),1),F.pthread_ptr=0,Sm(q)},receiveObjectTransfer:function(F){},threadInitTLS:function(){Le.tlsInitFunctions.forEach(F=>F())},loadWasmModuleToWorker:function(F,q){F.onmessage=se=>{var pe=se.data,Te=pe.cmd;if(F.pthread_ptr&&(Le.currentProxiedOperationCallerThread=F.pthread_ptr),pe.targetThread&&pe.targetThread!=Zp()){var Je=Le.pthreads[pe.targetThread];Je?Je.postMessage(pe,pe.transferList):H('Internal error! Worker sent a message "'+Te+'" to target pthread '+pe.targetThread+", but that thread no longer exists!"),Le.currentProxiedOperationCallerThread=void 0;return}Te==="processProxyingQueue"?Ou(pe.queue):Te==="spawnThread"?_p(pe):Te==="cleanupThread"?_u(pe.thread):Te==="killThread"?q0(pe.thread):Te==="cancelThread"?X0(pe.thread):Te==="loaded"?(F.loaded=!0,q&&q(F),F.runPthread&&(F.runPthread(),delete F.runPthread)):Te==="print"?U("Thread "+pe.threadId+": "+pe.text):Te==="printErr"?H("Thread "+pe.threadId+": "+pe.text):Te==="alert"?alert("Thread "+pe.threadId+": "+pe.text):pe.target==="setimmediate"?F.postMessage(pe):Te==="onAbort"?d.onAbort&&d.onAbort(pe.arg):Te&&H("worker sent an unknown command "+Te),Le.currentProxiedOperationCallerThread=void 0},F.onerror=se=>{var pe="worker sent an error!";throw H(pe+" "+se.filename+":"+se.lineno+": "+se.message),se},S&&(F.on("message",function(se){F.onmessage({data:se})}),F.on("error",function(se){F.onerror(se)}),F.on("detachedExit",function(){})),F.postMessage({cmd:"load",urlOrBlob:d.mainScriptUrlOrBlob||n,wasmMemory:oe,wasmModule:Ae})},allocateUnusedWorker:function(){var F=_("tfjs-backend-wasm-threaded-simd.worker.js");Le.unusedWorkers.push(new Worker(F))},getNewWorker:function(){return Le.unusedWorkers.length==0&&(Le.allocateUnusedWorker(),Le.loadWasmModuleToWorker(Le.unusedWorkers[0])),Le.unusedWorkers.pop()}};d.PThread=Le;function Fu(F){for(;F.length>0;)F.shift()(d)}function Z0(F){var q=Tm(),se=F();return Yp(q),se}function vg(F){return F}function wg(F){var q=/\b_Z[\w\d_]+/g;return F.replace(q,function(se){var pe=se;return se===pe?se:pe+" ["+se+"]"})}function Y0(){var F=Zp(),q=l()[F+44>>2],se=l()[F+48>>2],pe=q-se;Eg(q,pe),Yp(q)}d.establishStackSpace=Y0;function Op(F){if(C)return $r(2,0,F);try{Fp(F)}catch(q){K0(q)}}var Vo=[];function J0(F){var q=Vo[F];return q||(F>=Vo.length&&(Vo.length=F+1),Vo[F]=q=Ua.get(F)),q}function Q0(F,q){var se=J0(F)(q);yn()?Le.setExitStatus(se):Ng(se)}d.invokeEntryPoint=Q0;function kg(){var F=new Error;if(!F.stack){try{throw new Error}catch(q){F=q}if(!F.stack)return"(no stack trace available)"}return F.stack.toString()}function ef(F){Le.tlsInitFunctions.push(F)}function tf(F,q){s().set(F,q)}function af(F){Sg(F,!w,1,!b),Le.threadInitTLS()}function nf(F){C?postMessage({cmd:"cleanupThread",thread:F}):_u(F)}function Dp(F,q,se,pe){return C?$r(3,1,F,q,se,pe):zp(F,q,se,pe)}function zp(F,q,se,pe){if(typeof SharedArrayBuffer=="undefined")return H("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var Te=[],Je=0;if(C&&(Te.length===0||Je))return Dp(F,q,se,pe);if(Je)return Je;var Oe={startRoutine:se,pthread_ptr:F,arg:pe,transferList:Te};return C?(Oe.cmd="spawnThread",postMessage(Oe,Te),0):_p(Oe)}function rf(){return 2097152}var sf=!0;function of(){return sf}function Ou(F){Atomics.store(l(),F>>2,1),Zp()&&Cg(F),Atomics.compareExchange(l(),F>>2,1,0)}d.executeNotifiedProxyingQueue=Ou;function lf(F,q,se,pe){if(F==q)setTimeout(()=>Ou(pe));else if(C)postMessage({targetThread:F,cmd:"processProxyingQueue",queue:pe});else{var Te=Le.pthreads[F];if(!Te)return;Te.postMessage({cmd:"processProxyingQueue",queue:pe})}return 1}function uf(F,q,se){return-1}function df(){Wo("")}function Is(F){Is.shown||(Is.shown={}),Is.shown[F]||(Is.shown[F]=1,S&&(F="warning: "+F),H(F))}function pf(){S||w||Is("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function cf(){return Date.now()}function Lp(){return 2147483648}function hf(){return Lp()}var Uo;S?Uo=()=>{var F=process.hrtime();return F[0]*1e3+F[1]/1e6}:C?Uo=()=>performance.now()-d.__performance_now_clock_drift:Uo=()=>performance.now();function ff(F,q,se){i().copyWithin(F,q,q+se)}function mf(){return S?QI().cpus().length:navigator.hardwareConcurrency}function $r(F,q){var se=arguments.length-2,pe=arguments;return Z0(()=>{for(var Te=se,Je=Jp(Te*8),Oe=Je>>3,We=0;We<se;We++){var Dt=pe[2+We];c()[Oe+We]=Dt}return Tg(F,Te,Je,q)})}var Du=[];function gf(F,q,se){Du.length=q;for(var pe=se>>3,Te=0;Te<q;Te++)Du[Te]=c()[pe+Te];var Je=F<0,Oe=Je?j0[-F-1]:If[F];return Oe.apply(null,Du)}function xf(F){try{return oe.grow(F-je.byteLength+65535>>>16),dt(oe.buffer),1}catch(q){}}function Af(F){var q=i().length;if(F=F>>>0,F<=q)return!1;var se=Lp();if(F>se)return!1;let pe=(Dt,ln)=>Dt+(ln-Dt%ln)%ln;for(var Te=1;Te<=4;Te*=2){var Je=q*(1+.2/Te);Je=Math.min(Je,F+100663296);var Oe=Math.min(se,pe(Math.max(F,Je),65536)),We=xf(Oe);if(We)return!0}return!1}function yf(){throw"unwind"}function Bp(F){return C?$r(4,1,F):52}function Wp(F,q,se,pe,Te){return C?$r(5,1,F,q,se,pe,Te):70}var bf=[null,[],[]];function vf(F,q){var se=bf[F];q===0||q===10?((F===1?U:H)(nt(se,0)),se.length=0):se.push(q)}function Vp(F,q,se,pe){if(C)return $r(6,1,F,q,se,pe);for(var Te=0,Je=0;Je<se;Je++){var Oe=u()[q>>2],We=u()[q+4>>2];q+=8;for(var Dt=0;Dt<We;Dt++)vf(F,i()[Oe+Dt]);Te+=We}return u()[pe>>2]=Te,0}function Up(F){var q=d["_"+F];return q}function wf(F,q,se,pe,Te){var Je={string:un=>{var qo=0;if(un!=null&&un!==0){var $g=(un.length<<2)+1;qo=Jp($g),rt(un,qo,$g)}return qo},array:un=>{var qo=Jp(un.length);return tf(un,qo),qo}};function Oe(un){return q==="string"?ut(un):q==="boolean"?Boolean(un):un}var We=Up(F),Dt=[],ln=0;if(pe)for(var pr=0;pr<pe.length;pr++){var Mg=Je[se[pr]];Mg?(ln===0&&(ln=Tm()),Dt[pr]=Mg(pe[pr])):Dt[pr]=pe[pr]}var Cm=We.apply(null,Dt);function CI(un){return ln!==0&&Yp(ln),Oe(un)}return Cm=CI(Cm),Cm}function kf(F,q,se,pe){se=se||[];var Te=se.every(Oe=>Oe==="number"||Oe==="boolean"),Je=q!=="string";return Je&&Te&&!pe?Up(F):function(){return wf(F,q,se,arguments,pe)}}Le.init();var If=[null,Pu,Op,Dp,Bp,Wp,Vp],Gp={__emscripten_init_main_thread_js:af,__emscripten_thread_cleanup:nf,__pthread_create_js:zp,_emscripten_default_pthread_stack_size:rf,_emscripten_get_now_is_monotonic:of,_emscripten_notify_task_queue:lf,_emscripten_set_offscreencanvas_size:uf,abort:df,emscripten_check_blocking_allowed:pf,emscripten_date_now:cf,emscripten_get_heap_max:hf,emscripten_get_now:Uo,emscripten_memcpy_big:ff,emscripten_num_logical_cores:mf,emscripten_receive_on_main_thread_js:gf,emscripten_resize_heap:Af,emscripten_unwind_to_js_event_loop:yf,exit:Fp,fd_close:Bp,fd_seek:Wp,fd_write:Vp,memory:oe||d.wasmMemory},Ig=G0(),Sf=d.___wasm_call_ctors=function(){return(Sf=d.___wasm_call_ctors=d.asm.__wasm_call_ctors).apply(null,arguments)},Tf=d._init=function(){return(Tf=d._init=d.asm.init).apply(null,arguments)},Cf=d._init_with_threads_count=function(){return(Cf=d._init_with_threads_count=d.asm.init_with_threads_count).apply(null,arguments)},Nf=d._get_threads_count=function(){return(Nf=d._get_threads_count=d.asm.get_threads_count).apply(null,arguments)},Ef=d._register_tensor=function(){return(Ef=d._register_tensor=d.asm.register_tensor).apply(null,arguments)},Rf=d._dispose_data=function(){return(Rf=d._dispose_data=d.asm.dispose_data).apply(null,arguments)},Mf=d._dispose=function(){return(Mf=d._dispose=d.asm.dispose).apply(null,arguments)},$f=d._Abs=function(){return($f=d._Abs=d.asm.Abs).apply(null,arguments)},_f=d._Add=function(){return(_f=d._Add=d.asm.Add).apply(null,arguments)},Pf=d._AddN=function(){return(Pf=d._AddN=d.asm.AddN).apply(null,arguments)},Ff=d._All=function(){return(Ff=d._All=d.asm.All).apply(null,arguments)},Of=d._Any=function(){return(Of=d._Any=d.asm.Any).apply(null,arguments)},Df=d._ArgMax=function(){return(Df=d._ArgMax=d.asm.ArgMax).apply(null,arguments)},zf=d._AvgPool=function(){return(zf=d._AvgPool=d.asm.AvgPool).apply(null,arguments)},Lf=d._BatchMatMul=function(){return(Lf=d._BatchMatMul=d.asm.BatchMatMul).apply(null,arguments)},Bf=d._Ceil=function(){return(Bf=d._Ceil=d.asm.Ceil).apply(null,arguments)},Wf=d._ClipByValue=function(){return(Wf=d._ClipByValue=d.asm.ClipByValue).apply(null,arguments)},Vf=d._Conv2D=function(){return(Vf=d._Conv2D=d.asm.Conv2D).apply(null,arguments)},Uf=d._Conv2DBackpropInput=function(){return(Uf=d._Conv2DBackpropInput=d.asm.Conv2DBackpropInput).apply(null,arguments)},Gf=d._Cos=function(){return(Gf=d._Cos=d.asm.Cos).apply(null,arguments)},Hf=d._Cosh=function(){return(Hf=d._Cosh=d.asm.Cosh).apply(null,arguments)},jf=d._CropAndResize=function(){return(jf=d._CropAndResize=d.asm.CropAndResize).apply(null,arguments)},qf=d._Cumprod=function(){return(qf=d._Cumprod=d.asm.Cumprod).apply(null,arguments)},Xf=d._Cumsum=function(){return(Xf=d._Cumsum=d.asm.Cumsum).apply(null,arguments)},Kf=d._DepthToSpace=function(){return(Kf=d._DepthToSpace=d.asm.DepthToSpace).apply(null,arguments)},Zf=d._DepthwiseConv2dNative=function(){return(Zf=d._DepthwiseConv2dNative=d.asm.DepthwiseConv2dNative).apply(null,arguments)},Yf=d._Elu=function(){return(Yf=d._Elu=d.asm.Elu).apply(null,arguments)},Jf=d._Equal=function(){return(Jf=d._Equal=d.asm.Equal).apply(null,arguments)},Qf=d._Exp=function(){return(Qf=d._Exp=d.asm.Exp).apply(null,arguments)},em=d._FlipLeftRight=function(){return(em=d._FlipLeftRight=d.asm.FlipLeftRight).apply(null,arguments)},tm=d._Floor=function(){return(tm=d._Floor=d.asm.Floor).apply(null,arguments)},am=d._FloorDiv=function(){return(am=d._FloorDiv=d.asm.FloorDiv).apply(null,arguments)},nm=d._FusedBatchNorm=function(){return(nm=d._FusedBatchNorm=d.asm.FusedBatchNorm).apply(null,arguments)},rm=d._FusedConv2D=function(){return(rm=d._FusedConv2D=d.asm.FusedConv2D).apply(null,arguments)},sm=d._FusedDepthwiseConv2D=function(){return(sm=d._FusedDepthwiseConv2D=d.asm.FusedDepthwiseConv2D).apply(null,arguments)},im=d._Gather=function(){return(im=d._Gather=d.asm.Gather).apply(null,arguments)},om=d._GatherNd=function(){return(om=d._GatherNd=d.asm.GatherNd).apply(null,arguments)},lm=d._Greater=function(){return(lm=d._Greater=d.asm.Greater).apply(null,arguments)},um=d._GreaterEqual=function(){return(um=d._GreaterEqual=d.asm.GreaterEqual).apply(null,arguments)},dm=d._IsNan=function(){return(dm=d._IsNan=d.asm.IsNan).apply(null,arguments)},pm=d._LeakyRelu=function(){return(pm=d._LeakyRelu=d.asm.LeakyRelu).apply(null,arguments)},cm=d._Less=function(){return(cm=d._Less=d.asm.Less).apply(null,arguments)},hm=d._LessEqual=function(){return(hm=d._LessEqual=d.asm.LessEqual).apply(null,arguments)},fm=d._Log=function(){return(fm=d._Log=d.asm.Log).apply(null,arguments)},mm=d._LogicalAnd=function(){return(mm=d._LogicalAnd=d.asm.LogicalAnd).apply(null,arguments)},gm=d._LogicalNot=function(){return(gm=d._LogicalNot=d.asm.LogicalNot).apply(null,arguments)},xm=d._LogicalOr=function(){return(xm=d._LogicalOr=d.asm.LogicalOr).apply(null,arguments)},Am=d._LogicalXor=function(){return(Am=d._LogicalXor=d.asm.LogicalXor).apply(null,arguments)},ym=d._Max=function(){return(ym=d._Max=d.asm.Max).apply(null,arguments)},bm=d._MaxPool=function(){return(bm=d._MaxPool=d.asm.MaxPool).apply(null,arguments)},Hp=d._Maximum=function(){return(Hp=d._Maximum=d.asm.Maximum).apply(null,arguments)},jp=d._Mean=function(){return(jp=d._Mean=d.asm.Mean).apply(null,arguments)},zu=d._Min=function(){return(zu=d._Min=d.asm.Min).apply(null,arguments)},vm=d._Minimum=function(){return(vm=d._Minimum=d.asm.Minimum).apply(null,arguments)},wm=d._MirrorPad=function(){return(wm=d._MirrorPad=d.asm.MirrorPad).apply(null,arguments)},Go=d._Multiply=function(){return(Go=d._Multiply=d.asm.Multiply).apply(null,arguments)},qp=d._Neg=function(){return(qp=d._Neg=d.asm.Neg).apply(null,arguments)},Ho=d._NonMaxSuppressionV3=function(){return(Ho=d._NonMaxSuppressionV3=d.asm.NonMaxSuppressionV3).apply(null,arguments)},jo=d._NonMaxSuppressionV4=function(){return(jo=d._NonMaxSuppressionV4=d.asm.NonMaxSuppressionV4).apply(null,arguments)},km=d._NonMaxSuppressionV5=function(){return(km=d._NonMaxSuppressionV5=d.asm.NonMaxSuppressionV5).apply(null,arguments)},X=d._NotEqual=function(){return(X=d._NotEqual=d.asm.NotEqual).apply(null,arguments)},ie=d._OneHot=function(){return(ie=d._OneHot=d.asm.OneHot).apply(null,arguments)},ke=d._PadV2=function(){return(ke=d._PadV2=d.asm.PadV2).apply(null,arguments)},Ye=d._Pow=function(){return(Ye=d._Pow=d.asm.Pow).apply(null,arguments)},yt=d._Prelu=function(){return(yt=d._Prelu=d.asm.Prelu).apply(null,arguments)},bt=d._Prod=function(){return(bt=d._Prod=d.asm.Prod).apply(null,arguments)},Ze=d._RealDiv=function(){return(Ze=d._RealDiv=d.asm.RealDiv).apply(null,arguments)},qe=d._Reciprocal=function(){return(qe=d._Reciprocal=d.asm.Reciprocal).apply(null,arguments)},Ot=d._Relu=function(){return(Ot=d._Relu=d.asm.Relu).apply(null,arguments)},on=d._Relu6=function(){return(on=d._Relu6=d.asm.Relu6).apply(null,arguments)},dr=d._ResizeBilinear=function(){return(dr=d._ResizeBilinear=d.asm.ResizeBilinear).apply(null,arguments)},Xp=d._ResizeNearestNeighbor=function(){return(Xp=d._ResizeNearestNeighbor=d.asm.ResizeNearestNeighbor).apply(null,arguments)},Lu=d._Reverse=function(){return(Lu=d._Reverse=d.asm.Reverse).apply(null,arguments)},Im=d._RotateWithOffset=function(){return(Im=d._RotateWithOffset=d.asm.RotateWithOffset).apply(null,arguments)},Fa=d._Round=function(){return(Fa=d._Round=d.asm.Round).apply(null,arguments)},_r=d._Rsqrt=function(){return(_r=d._Rsqrt=d.asm.Rsqrt).apply(null,arguments)},Kp=d._ScatterNd=function(){return(Kp=d._ScatterNd=d.asm.ScatterNd).apply(null,arguments)},Kk=d._SelectV2=function(){return(Kk=d._SelectV2=d.asm.SelectV2).apply(null,arguments)},Zk=d._Sigmoid=function(){return(Zk=d._Sigmoid=d.asm.Sigmoid).apply(null,arguments)},Yk=d._Sin=function(){return(Yk=d._Sin=d.asm.Sin).apply(null,arguments)},Jk=d._Softmax=function(){return(Jk=d._Softmax=d.asm.Softmax).apply(null,arguments)},Qk=d._SparseFillEmptyRows=function(){return(Qk=d._SparseFillEmptyRows=d.asm.SparseFillEmptyRows).apply(null,arguments)},eI=d._SparseReshape=function(){return(eI=d._SparseReshape=d.asm.SparseReshape).apply(null,arguments)},tI=d._SparseSegmentReduction=function(){return(tI=d._SparseSegmentReduction=d.asm.SparseSegmentReduction).apply(null,arguments)},aI=d._Sqrt=function(){return(aI=d._Sqrt=d.asm.Sqrt).apply(null,arguments)},nI=d._Square=function(){return(nI=d._Square=d.asm.Square).apply(null,arguments)},rI=d._SquaredDifference=function(){return(rI=d._SquaredDifference=d.asm.SquaredDifference).apply(null,arguments)},sI=d._Step=function(){return(sI=d._Step=d.asm.Step).apply(null,arguments)},iI=d._StridedSlice=function(){return(iI=d._StridedSlice=d.asm.StridedSlice).apply(null,arguments)},oI=d._Sub=function(){return(oI=d._Sub=d.asm.Sub).apply(null,arguments)},lI=d._Sum=function(){return(lI=d._Sum=d.asm.Sum).apply(null,arguments)},uI=d._Tan=function(){return(uI=d._Tan=d.asm.Tan).apply(null,arguments)},dI=d._Tanh=function(){return(dI=d._Tanh=d.asm.Tanh).apply(null,arguments)},pI=d._Tile=function(){return(pI=d._Tile=d.asm.Tile).apply(null,arguments)},cI=d._TopK=function(){return(cI=d._TopK=d.asm.TopK).apply(null,arguments)},hI=d._Transform=function(){return(hI=d._Transform=d.asm.Transform).apply(null,arguments)},fI=d._Transpose=function(){return(fI=d._Transpose=d.asm.Transpose).apply(null,arguments)},mI=d.__FusedMatMul=function(){return(mI=d.__FusedMatMul=d.asm._FusedMatMul).apply(null,arguments)},gI=d._malloc=function(){return(gI=d._malloc=d.asm.malloc).apply(null,arguments)},xI=d._free=function(){return(xI=d._free=d.asm.free).apply(null,arguments)},AI=d.__emscripten_tls_init=function(){return(AI=d.__emscripten_tls_init=d.asm._emscripten_tls_init).apply(null,arguments)},Zp=d._pthread_self=function(){return(Zp=d._pthread_self=d.asm.pthread_self).apply(null,arguments)},yI=d.___errno_location=function(){return(yI=d.___errno_location=d.asm.__errno_location).apply(null,arguments)},Sg=d.__emscripten_thread_init=function(){return(Sg=d.__emscripten_thread_init=d.asm._emscripten_thread_init).apply(null,arguments)},bI=d.__emscripten_thread_crashed=function(){return(bI=d.__emscripten_thread_crashed=d.asm._emscripten_thread_crashed).apply(null,arguments)},vI=d._emscripten_main_thread_process_queued_calls=function(){return(vI=d._emscripten_main_thread_process_queued_calls=d.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},wI=d._emscripten_main_browser_thread_id=function(){return(wI=d._emscripten_main_browser_thread_id=d.asm.emscripten_main_browser_thread_id).apply(null,arguments)},Tg=d._emscripten_run_in_main_runtime_thread_js=function(){return(Tg=d._emscripten_run_in_main_runtime_thread_js=d.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},kI=d._emscripten_dispatch_to_thread_=function(){return(kI=d._emscripten_dispatch_to_thread_=d.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},Cg=d.__emscripten_proxy_execute_task_queue=function(){return(Cg=d.__emscripten_proxy_execute_task_queue=d.asm._emscripten_proxy_execute_task_queue).apply(null,arguments)},Sm=d.__emscripten_thread_free_data=function(){return(Sm=d.__emscripten_thread_free_data=d.asm._emscripten_thread_free_data).apply(null,arguments)},Ng=d.__emscripten_thread_exit=function(){return(Ng=d.__emscripten_thread_exit=d.asm._emscripten_thread_exit).apply(null,arguments)},Eg=d._emscripten_stack_set_limits=function(){return(Eg=d._emscripten_stack_set_limits=d.asm.emscripten_stack_set_limits).apply(null,arguments)},Tm=d.stackSave=function(){return(Tm=d.stackSave=d.asm.stackSave).apply(null,arguments)},Yp=d.stackRestore=function(){return(Yp=d.stackRestore=d.asm.stackRestore).apply(null,arguments)},Jp=d.stackAlloc=function(){return(Jp=d.stackAlloc=d.asm.stackAlloc).apply(null,arguments)},II=d.dynCall_iijjiiii=function(){return(II=d.dynCall_iijjiiii=d.asm.dynCall_iijjiiii).apply(null,arguments)},SI=d.dynCall_jiji=function(){return(SI=d.dynCall_jiji=d.asm.dynCall_jiji).apply(null,arguments)};d.keepRuntimeAlive=yn,d.wasmMemory=oe,d.cwrap=kf,d.ExitStatus=ks,d.PThread=Le;var Qp;ur=function F(){Qp||Rg(),Qp||(ur=F)};function Rg(F){if(F=F||x,Mr>0)return;if(C){h(d),Xt(),postMessage({cmd:"loaded"});return}if(Lo(),Mr>0)return;function q(){Qp||(Qp=!0,d.calledRun=!0,!we&&(Xt(),h(d),d.onRuntimeInitialized&&d.onRuntimeInitialized(),Rp()))}d.setStatus?(d.setStatus("Running..."),setTimeout(function(){setTimeout(function(){d.setStatus("")},1),q()},1)):q()}if(d.preInit)for(typeof d.preInit=="function"&&(d.preInit=[d.preInit]);d.preInit.length>0;)d.preInit.pop()();Rg();var ec;m&&(ec={uncaughtException:process.listeners("uncaughtException").filter(function(F){return!m.uncaughtException.indexOf(F)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(F){return!m.unhandledRejection.indexOf(F)>-1})});var tc;if(typeof WasmBackendModule!="undefined")tc=WasmBackendModule;else if(typeof r!="undefined")tc=r;else throw new Error("Could not find wasm module in post.js");if(ec){var TI=tc._dispose;tc._dispose=function(){TI(),ec.uncaughtException.forEach(function(F){process.removeListener("uncaughtException",F)}),ec.unhandledRejection.forEach(function(F){process.removeListener("unhandledRejection",F)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=a:typeof define=="function"&&define.amd?define([],function(){return a}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=a)}),tS=qt((e,t)=>{t.exports.wasmWorkerContents=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",data=>onmessage({data:data}));var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}var initializedJS=false;var pendingNotifiedProxyingQueues=[];function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=(info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports};self.onunhandledrejection=e=>{throw e.reason??e};self.onmessage=e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob=="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.pthread_ptr,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInitTLS();if(!initializedJS){pendingNotifiedProxyingQueues.forEach(queue=>{Module["executeNotifiedProxyingQueue"](queue)});pendingNotifiedProxyingQueues=[];initializedJS=true}try{Module["invokeEntryPoint"](e.data.start_routine,e.data.arg)}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processProxyingQueue"){if(initializedJS){Module["executeNotifiedProxyingQueue"](e.data.queue)}else{pendingNotifiedProxyingQueues.push(e.data.queue)}}else if(e.data.cmd){err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}};`}),aS=qt((e,t)=>{var a=(()=>{var n=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(n=n||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(X,ie){i=X,o=ie});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},s),p=[],c="./this.program",d=(X,ie)=>{throw ie},h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function x(X){return s.locateFile?s.locateFile(X,g):g+X}var A,y,b,w;function S(X){X instanceof Bo||$("exiting due to exception: "+X)}if(m){f?g=yc().dirname(g)+"/":g=__dirname+"/";var C,E;typeof Qx=="function"&&(C=tA(),E=yc()),A=(X,ie)=>(X=E.normalize(X),C.readFileSync(X,ie?void 0:"utf8")),b=X=>{var ie=A(X,!0);return ie.buffer||(ie=new Uint8Array(ie)),ie},y=(X,ie,ke)=>{X=E.normalize(X),C.readFile(X,function(Ye,yt){Ye?ke(Ye):ie(yt.buffer)})},process.argv.length>1&&(c=process.argv[1].replace(/\\/g,"/")),p=process.argv.slice(2),process.on("uncaughtException",function(X){if(!(X instanceof Bo))throw X}),process.on("unhandledRejection",function(X){throw X}),d=(X,ie)=>{if(Va())throw process.exitCode=X,ie;S(ie),process.exit(X)},s.inspect=function(){return"[Emscripten Module object]"}}else(h||f)&&(f?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),n&&(g=n),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",A=X=>{var ie=new XMLHttpRequest;return ie.open("GET",X,!1),ie.send(null),ie.responseText},f&&(b=X=>{var ie=new XMLHttpRequest;return ie.open("GET",X,!1),ie.responseType="arraybuffer",ie.send(null),new Uint8Array(ie.response)}),y=(X,ie,ke)=>{var Ye=new XMLHttpRequest;Ye.open("GET",X,!0),Ye.responseType="arraybuffer",Ye.onload=()=>{if(Ye.status==200||Ye.status==0&&Ye.response){ie(Ye.response);return}ke()},Ye.onerror=ke,Ye.send(null)},w=X=>document.title=X);var _=s.print||console.log.bind(console),$=s.printErr||console.warn.bind(console);Object.assign(s,u),u=null,s.arguments&&(p=s.arguments),s.thisProgram&&(c=s.thisProgram),s.quit&&(d=s.quit);var M=4,I;s.wasmBinary&&(I=s.wasmBinary);var N=s.noExitRuntime||!0;typeof WebAssembly!="object"&&Vn("no native wasm support detected");var O,L=!1,B;function G(X,ie){X||Vn(ie)}var j=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function U(X,ie,ke){for(var Ye=ie+ke,yt=ie;X[yt]&&!(yt>=Ye);)++yt;if(yt-ie>16&&X.buffer&&j)return j.decode(X.subarray(ie,yt));for(var bt="";ie<yt;){var Ze=X[ie++];if(!(Ze&128)){bt+=String.fromCharCode(Ze);continue}var qe=X[ie++]&63;if((Ze&224)==192){bt+=String.fromCharCode((Ze&31)<<6|qe);continue}var Ot=X[ie++]&63;if((Ze&240)==224?Ze=(Ze&15)<<12|qe<<6|Ot:Ze=(Ze&7)<<18|qe<<12|Ot<<6|X[ie++]&63,Ze<65536)bt+=String.fromCharCode(Ze);else{var on=Ze-65536;bt+=String.fromCharCode(55296|on>>10,56320|on&1023)}}return bt}function H(X,ie){return X?U(ee,X,ie):""}function V(X,ie,ke,Ye){if(!(Ye>0))return 0;for(var yt=ke,bt=ke+Ye-1,Ze=0;Ze<X.length;++Ze){var qe=X.charCodeAt(Ze);if(qe>=55296&&qe<=57343){var Ot=X.charCodeAt(++Ze);qe=65536+((qe&1023)<<10)|Ot&1023}if(qe<=127){if(ke>=bt)break;ie[ke++]=qe}else if(qe<=2047){if(ke+1>=bt)break;ie[ke++]=192|qe>>6,ie[ke++]=128|qe&63}else if(qe<=65535){if(ke+2>=bt)break;ie[ke++]=224|qe>>12,ie[ke++]=128|qe>>6&63,ie[ke++]=128|qe&63}else{if(ke+3>=bt)break;ie[ke++]=240|qe>>18,ie[ke++]=128|qe>>12&63,ie[ke++]=128|qe>>6&63,ie[ke++]=128|qe&63}}return ie[ke]=0,ke-yt}function Q(X,ie,ke){return V(X,ee,ie,ke)}var Z,re,ee,he,oe,Ae,we,Re,Ge;function Ke(X){Z=X,s.HEAP8=re=new Int8Array(X),s.HEAP16=he=new Int16Array(X),s.HEAP32=Ae=new Int32Array(X),s.HEAPU8=ee=new Uint8Array(X),s.HEAPU16=oe=new Uint16Array(X),s.HEAPU32=we=new Uint32Array(X),s.HEAPF32=Re=new Float32Array(X),s.HEAPF64=Ge=new Float64Array(X)}var nt=s.INITIAL_MEMORY||16777216,ut,et=[],rt=[],je=[],ht=!1;function Va(){return N}function Ft(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)$a(s.preRun.shift());ur(et)}function rn(){ht=!0,ur(rt)}function aa(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)_a(s.postRun.shift());ur(je)}function $a(X){et.unshift(X)}function sn(X){rt.unshift(X)}function _a(X){je.unshift(X)}var dt=0,Pa=null,Ua=null;function lr(X){dt++,s.monitorRunDependencies&&s.monitorRunDependencies(dt)}function zo(X){if(dt--,s.monitorRunDependencies&&s.monitorRunDependencies(dt),dt==0&&(Pa!==null&&(clearInterval(Pa),Pa=null),Ua)){var ie=Ua;Ua=null,ie()}}function Vn(X){s.onAbort&&s.onAbort(X),X="Aborted("+X+")",$(X),L=!0,B=1,X+=". Build with -sASSERTIONS for more info.";var ie=new WebAssembly.RuntimeError(X);throw o(ie),ie}var Mu="data:application/octet-stream;base64,";function yn(X){return X.startsWith(Mu)}function Lo(X){return X.startsWith("file://")}var Xt;Xt="tfjs-backend-wasm.wasm",yn(Xt)||(Xt=x(Xt));function Rp(X){try{if(X==Xt&&I)return new Uint8Array(I);if(b)return b(X);throw"both async and sync fetching of the wasm failed"}catch(ie){Vn(ie)}}function B0(){if(!I&&(h||f)){if(typeof fetch=="function"&&!Lo(Xt))return fetch(Xt,{credentials:"same-origin"}).then(function(X){if(!X.ok)throw"failed to load wasm binary file at '"+Xt+"'";return X.arrayBuffer()}).catch(function(){return Rp(Xt)});if(y)return new Promise(function(X,ie){y(Xt,function(ke){X(new Uint8Array(ke))},ie)})}return Promise.resolve().then(function(){return Rp(Xt)})}function W0(){var X={env:Pu,wasi_snapshot_preview1:Pu};function ie(Ze,qe){var Ot=Ze.exports;s.asm=Ot,O=s.asm.memory,Ke(O.buffer),ut=s.asm.__indirect_function_table,sn(s.asm.__wasm_call_ctors),zo("wasm-instantiate")}lr("wasm-instantiate");function ke(Ze){ie(Ze.instance)}function Ye(Ze){return B0().then(function(qe){return WebAssembly.instantiate(qe,X)}).then(function(qe){return qe}).then(Ze,function(qe){$("failed to asynchronously prepare wasm: "+qe),Vn(qe)})}function yt(){return!I&&typeof WebAssembly.instantiateStreaming=="function"&&!yn(Xt)&&!Lo(Xt)&&!m&&typeof fetch=="function"?fetch(Xt,{credentials:"same-origin"}).then(function(Ze){var qe=WebAssembly.instantiateStreaming(Ze,X);return qe.then(ke,function(Ot){return $("wasm streaming compile failed: "+Ot),$("falling back to ArrayBuffer instantiation"),Ye(ke)})}):Ye(ke)}if(s.instantiateWasm)try{var bt=s.instantiateWasm(X,ie);return bt}catch(Ze){$("Module.instantiateWasm callback failed with error: "+Ze),o(Ze)}return yt().catch(o),{}}var gg,Mr;function Bo(X){this.name="ExitStatus",this.message="Program terminated with exit("+X+")",this.status=X}function ur(X){for(;X.length>0;)X.shift()(s)}function xg(X){return X}function Ag(X){var ie=/\b_Z[\w\d_]+/g;return X.replace(ie,function(ke){var Ye=ke;return ke===Ye?ke:Ye+" ["+ke+"]"})}function Wo(){var X=new Error;if(!X.stack){try{throw new Error}catch(ie){X=ie}if(!X.stack)return"(no stack trace available)"}return X.stack.toString()}function V0(X,ie){re.set(X,ie)}function Mp(){Vn("")}function $u(){return 2147483648}function xa(){return $u()}function $p(X,ie,ke){ee.copyWithin(X,ie,ie+ke)}function U0(X){try{return O.grow(X-Z.byteLength+65535>>>16),Ke(O.buffer),1}catch(ie){}}function G0(X){var ie=ee.length;X=X>>>0;var ke=$u();if(X>ke)return!1;let Ye=(Ot,on)=>Ot+(on-Ot%on)%on;for(var yt=1;yt<=4;yt*=2){var bt=ie*(1+.2/yt);bt=Math.min(bt,X+100663296);var Ze=Math.min(ke,Ye(Math.max(X,bt),65536)),qe=U0(Ze);if(qe)return!0}return!1}var H0={varargs:void 0,get:function(){H0.varargs+=4;var X=Ae[H0.varargs-4>>2];return X},getStr:function(X){var ie=H(X);return ie}};function yg(X){return 52}function j0(X,ie,ke,Ye,yt){return 70}var ks=[null,[],[]];function q0(X,ie){var ke=ks[X];ie===0||ie===10?((X===1?_:$)(U(ke,0)),ke.length=0):ke.push(ie)}function X0(X,ie,ke,Ye){for(var yt=0,bt=0;bt<ke;bt++){var Ze=we[ie>>2],qe=we[ie+4>>2];ie+=8;for(var Ot=0;Ot<qe;Ot++)q0(X,ee[Ze+Ot]);yt+=qe}return we[Ye>>2]=yt,0}function _u(X){var ie=s["_"+X];return ie}function _p(X,ie,ke,Ye,yt){var bt={string:Fa=>{var _r=0;if(Fa!=null&&Fa!==0){var Kp=(Fa.length<<2)+1;_r=zu(Kp),Q(Fa,_r,Kp)}return _r},array:Fa=>{var _r=zu(Fa.length);return V0(Fa,_r),_r}};function Ze(Fa){return ie==="string"?H(Fa):ie==="boolean"?Boolean(Fa):Fa}var qe=_u(X),Ot=[],on=0;if(Ye)for(var dr=0;dr<Ye.length;dr++){var Xp=bt[ke[dr]];Xp?(on===0&&(on=Hp()),Ot[dr]=Xp(Ye[dr])):Ot[dr]=Ye[dr]}var Lu=qe.apply(null,Ot);function Im(Fa){return on!==0&&jp(on),Ze(Fa)}return Lu=Im(Lu),Lu}function Pp(X,ie,ke,Ye){ke=ke||[];var yt=ke.every(Ze=>Ze==="number"||Ze==="boolean"),bt=ie!=="string";return bt&&yt&&!Ye?_u(X):function(){return _p(X,ie,ke,arguments,Ye)}}var Pu={abort:Mp,emscripten_get_heap_max:xa,emscripten_memcpy_big:$p,emscripten_resize_heap:G0,fd_close:yg,fd_seek:j0,fd_write:X0},bg=W0(),Fp=s.___wasm_call_ctors=function(){return(Fp=s.___wasm_call_ctors=s.asm.__wasm_call_ctors).apply(null,arguments)},K0=s._init=function(){return(K0=s._init=s.asm.init).apply(null,arguments)},Le=s._init_with_threads_count=function(){return(Le=s._init_with_threads_count=s.asm.init_with_threads_count).apply(null,arguments)},Fu=s._get_threads_count=function(){return(Fu=s._get_threads_count=s.asm.get_threads_count).apply(null,arguments)},Z0=s._register_tensor=function(){return(Z0=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},vg=s._dispose_data=function(){return(vg=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},wg=s._dispose=function(){return(wg=s._dispose=s.asm.dispose).apply(null,arguments)},Y0=s._Abs=function(){return(Y0=s._Abs=s.asm.Abs).apply(null,arguments)},Op=s._Add=function(){return(Op=s._Add=s.asm.Add).apply(null,arguments)},Vo=s._AddN=function(){return(Vo=s._AddN=s.asm.AddN).apply(null,arguments)},J0=s._All=function(){return(J0=s._All=s.asm.All).apply(null,arguments)},Q0=s._Any=function(){return(Q0=s._Any=s.asm.Any).apply(null,arguments)},kg=s._ArgMax=function(){return(kg=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},ef=s._AvgPool=function(){return(ef=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},tf=s._BatchMatMul=function(){return(tf=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},af=s._Ceil=function(){return(af=s._Ceil=s.asm.Ceil).apply(null,arguments)},nf=s._ClipByValue=function(){return(nf=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},Dp=s._Conv2D=function(){return(Dp=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},zp=s._Conv2DBackpropInput=function(){return(zp=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},rf=s._Cos=function(){return(rf=s._Cos=s.asm.Cos).apply(null,arguments)},sf=s._Cosh=function(){return(sf=s._Cosh=s.asm.Cosh).apply(null,arguments)},of=s._CropAndResize=function(){return(of=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},Ou=s._Cumprod=function(){return(Ou=s._Cumprod=s.asm.Cumprod).apply(null,arguments)},lf=s._Cumsum=function(){return(lf=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},uf=s._DepthToSpace=function(){return(uf=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},df=s._DepthwiseConv2dNative=function(){return(df=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},Is=s._Elu=function(){return(Is=s._Elu=s.asm.Elu).apply(null,arguments)},pf=s._Equal=function(){return(pf=s._Equal=s.asm.Equal).apply(null,arguments)},cf=s._Exp=function(){return(cf=s._Exp=s.asm.Exp).apply(null,arguments)},Lp=s._FlipLeftRight=function(){return(Lp=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},hf=s._Floor=function(){return(hf=s._Floor=s.asm.Floor).apply(null,arguments)},Uo=s._FloorDiv=function(){return(Uo=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},ff=s._FusedBatchNorm=function(){return(ff=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},mf=s._FusedConv2D=function(){return(mf=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},$r=s._FusedDepthwiseConv2D=function(){return($r=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},Du=s._Gather=function(){return(Du=s._Gather=s.asm.Gather).apply(null,arguments)},gf=s._GatherNd=function(){return(gf=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},xf=s._Greater=function(){return(xf=s._Greater=s.asm.Greater).apply(null,arguments)},Af=s._GreaterEqual=function(){return(Af=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},yf=s._IsNan=function(){return(yf=s._IsNan=s.asm.IsNan).apply(null,arguments)},Bp=s._LeakyRelu=function(){return(Bp=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},Wp=s._Less=function(){return(Wp=s._Less=s.asm.Less).apply(null,arguments)},bf=s._LessEqual=function(){return(bf=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},vf=s._Log=function(){return(vf=s._Log=s.asm.Log).apply(null,arguments)},Vp=s._LogicalAnd=function(){return(Vp=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},Up=s._LogicalNot=function(){return(Up=s._LogicalNot=s.asm.LogicalNot).apply(null,arguments)},wf=s._LogicalOr=function(){return(wf=s._LogicalOr=s.asm.LogicalOr).apply(null,arguments)},kf=s._LogicalXor=function(){return(kf=s._LogicalXor=s.asm.LogicalXor).apply(null,arguments)},If=s._Max=function(){return(If=s._Max=s.asm.Max).apply(null,arguments)},Gp=s._MaxPool=function(){return(Gp=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},Ig=s._Maximum=function(){return(Ig=s._Maximum=s.asm.Maximum).apply(null,arguments)},Sf=s._Mean=function(){return(Sf=s._Mean=s.asm.Mean).apply(null,arguments)},Tf=s._Min=function(){return(Tf=s._Min=s.asm.Min).apply(null,arguments)},Cf=s._Minimum=function(){return(Cf=s._Minimum=s.asm.Minimum).apply(null,arguments)},Nf=s._MirrorPad=function(){return(Nf=s._MirrorPad=s.asm.MirrorPad).apply(null,arguments)},Ef=s._Multiply=function(){return(Ef=s._Multiply=s.asm.Multiply).apply(null,arguments)},Rf=s._Neg=function(){return(Rf=s._Neg=s.asm.Neg).apply(null,arguments)},Mf=s._NonMaxSuppressionV3=function(){return(Mf=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},$f=s._NonMaxSuppressionV4=function(){return($f=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},_f=s._NonMaxSuppressionV5=function(){return(_f=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},Pf=s._NotEqual=function(){return(Pf=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},Ff=s._OneHot=function(){return(Ff=s._OneHot=s.asm.OneHot).apply(null,arguments)},Of=s._PadV2=function(){return(Of=s._PadV2=s.asm.PadV2).apply(null,arguments)},Df=s._Pow=function(){return(Df=s._Pow=s.asm.Pow).apply(null,arguments)},zf=s._Prelu=function(){return(zf=s._Prelu=s.asm.Prelu).apply(null,arguments)},Lf=s._Prod=function(){return(Lf=s._Prod=s.asm.Prod).apply(null,arguments)},Bf=s._RealDiv=function(){return(Bf=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},Wf=s._Reciprocal=function(){return(Wf=s._Reciprocal=s.asm.Reciprocal).apply(null,arguments)},Vf=s._Relu=function(){return(Vf=s._Relu=s.asm.Relu).apply(null,arguments)},Uf=s._Relu6=function(){return(Uf=s._Relu6=s.asm.Relu6).apply(null,arguments)},Gf=s._ResizeBilinear=function(){return(Gf=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},Hf=s._ResizeNearestNeighbor=function(){return(Hf=s._ResizeNearestNeighbor=s.asm.ResizeNearestNeighbor).apply(null,arguments)},jf=s._Reverse=function(){return(jf=s._Reverse=s.asm.Reverse).apply(null,arguments)},qf=s._RotateWithOffset=function(){return(qf=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},Xf=s._Round=function(){return(Xf=s._Round=s.asm.Round).apply(null,arguments)},Kf=s._Rsqrt=function(){return(Kf=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},Zf=s._ScatterNd=function(){return(Zf=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},Yf=s._SelectV2=function(){return(Yf=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},Jf=s._Sigmoid=function(){return(Jf=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},Qf=s._Sin=function(){return(Qf=s._Sin=s.asm.Sin).apply(null,arguments)},em=s._Softmax=function(){return(em=s._Softmax=s.asm.Softmax).apply(null,arguments)},tm=s._SparseFillEmptyRows=function(){return(tm=s._SparseFillEmptyRows=s.asm.SparseFillEmptyRows).apply(null,arguments)},am=s._SparseReshape=function(){return(am=s._SparseReshape=s.asm.SparseReshape).apply(null,arguments)},nm=s._SparseSegmentReduction=function(){return(nm=s._SparseSegmentReduction=s.asm.SparseSegmentReduction).apply(null,arguments)},rm=s._Sqrt=function(){return(rm=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},sm=s._Square=function(){return(sm=s._Square=s.asm.Square).apply(null,arguments)},im=s._SquaredDifference=function(){return(im=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},om=s._Step=function(){return(om=s._Step=s.asm.Step).apply(null,arguments)},lm=s._StridedSlice=function(){return(lm=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},um=s._Sub=function(){return(um=s._Sub=s.asm.Sub).apply(null,arguments)},dm=s._Sum=function(){return(dm=s._Sum=s.asm.Sum).apply(null,arguments)},pm=s._Tan=function(){return(pm=s._Tan=s.asm.Tan).apply(null,arguments)},cm=s._Tanh=function(){return(cm=s._Tanh=s.asm.Tanh).apply(null,arguments)},hm=s._Tile=function(){return(hm=s._Tile=s.asm.Tile).apply(null,arguments)},fm=s._TopK=function(){return(fm=s._TopK=s.asm.TopK).apply(null,arguments)},mm=s._Transform=function(){return(mm=s._Transform=s.asm.Transform).apply(null,arguments)},gm=s._Transpose=function(){return(gm=s._Transpose=s.asm.Transpose).apply(null,arguments)},xm=s.__FusedMatMul=function(){return(xm=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},Am=s._malloc=function(){return(Am=s._malloc=s.asm.malloc).apply(null,arguments)},ym=s._free=function(){return(ym=s._free=s.asm.free).apply(null,arguments)},bm=s.___errno_location=function(){return(bm=s.___errno_location=s.asm.__errno_location).apply(null,arguments)},Hp=s.stackSave=function(){return(Hp=s.stackSave=s.asm.stackSave).apply(null,arguments)},jp=s.stackRestore=function(){return(jp=s.stackRestore=s.asm.stackRestore).apply(null,arguments)},zu=s.stackAlloc=function(){return(zu=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},vm=s.dynCall_iijjiiii=function(){return(vm=s.dynCall_iijjiiii=s.asm.dynCall_iijjiiii).apply(null,arguments)},wm=s.dynCall_jiji=function(){return(wm=s.dynCall_jiji=s.asm.dynCall_jiji).apply(null,arguments)};s.cwrap=Pp;var Go;Ua=function X(){Go||qp(),Go||(Ua=X)};function qp(X){if(X=X||p,dt>0||(Ft(),dt>0))return;function ie(){Go||(Go=!0,s.calledRun=!0,!L&&(rn(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),aa()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ie()},1)):ie()}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();qp();var Ho;l&&(Ho={uncaughtException:process.listeners("uncaughtException").filter(function(X){return!l.uncaughtException.indexOf(X)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(X){return!l.unhandledRejection.indexOf(X)>-1})});var jo;if(typeof r!="undefined")jo=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")jo=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(Ho){var km=jo._dispose;jo._dispose=function(){km(),Ho.uncaughtException.forEach(function(X){process.removeListener("uncaughtException",X)}),Ho.unhandledRejection.forEach(function(X){process.removeListener("unhandledRejection",X)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=a:typeof define=="function"&&define.amd?define([],function(){return a}):typeof e=="object"&&(e.WasmBackendModule=a)}),vd=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},yl=class{refCount(e){return Ga("refCount")}incRef(e){return Ga("incRef")}timerAvailable(){return!0}time(e){return Ga("time")}read(e){return Ga("read")}readSync(e){return Ga("readSync")}readToGPU(e,t){return Ga("readToGPU")}numDataIds(){return Ga("numDataIds")}disposeData(e,t){return Ga("disposeData")}write(e,t,a){return Ga("write")}move(e,t,a,n,r){return Ga("move")}createTensorFromTexture(e,t,a){return Ga("createTensorFromTexture")}memory(){return Ga("memory")}floatPrecision(){return Ga("floatPrecision")}epsilon(){return this.floatPrecision()===32?1e-7:1e-4}dispose(){return Ga("dispose")}};function Ga(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function aA(e){let t=e.length,a=0;for(;t>0;)a=Math.random()*t|0,t--,bc(e,t,a)}function nS(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let a=e.length,n=0;for(;a>0;)n=Math.random()*a|0,a--,bc(e,a,n),bc(t,a,n)}function nd(e,t,a){return Math.max(e,Math.min(t,a))}function rS(e){return e%2===0?e:e+1}function bc(e,t,a){let n=e[t];e[t]=e[a],e[a]=n}function sS(e){let t=0;for(let a=0;a<e.length;a++)t+=e[a];return t}function iS(e,t){let a=Math.random();return t*a+(1-a)*e}function oS(e,t){let a=0;for(let n=0;n<e.length;n++){let r=Number(e[n])-Number(t[n]);a+=r*r}return a}function P(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Sa(e,t,a=""){P(Jr(e,t),()=>a+` Shapes ${e} and ${t} must match`)}function js(e){P(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Os(e,t=[],a=!1){if(t==null&&(t=[]),Array.isArray(e)||da(e)&&!a)for(let n=0;n<e.length;++n)Os(e[n],t,a);else t.push(e);return t}function At(e){if(e.length===0)return 1;let t=e[0];for(let a=1;a<e.length;a++)t*=e[a];return t}function lS(e){return e.length===0}function Jr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let a=0;a<e.length;a++)if(e[a]!==t[a])return!1;return!0}function il(e){return e%1===0}function uS(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function dS(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function pS(e){let t=new Uint32Array(e);for(let a=0;a<e;++a)t[a]=a;return aA(t),t}function Qu(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function cS(e,t=r=>0,a,n){return new Promise((r,s)=>{let i=0,o=()=>{if(e()){r();return}i++;let l=t(i);if(a!=null&&i>=a){s();return}n!=null?n(o,l):setTimeout(o,l)};o()})}function hS(e,t){let a=1,n=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)a*=e[s];else if(e[s]===-1){if(n!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${n} and dim ${s}`);n=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(n===-1){if(t>0&&t!==a)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(a===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%a!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${a}`);let r=e.slice();return r[n]=t/a,r}function wd(e,t){let a=t.length;return e=e==null?t.map((n,r)=>r):[].concat(e),P(e.every(n=>n>=-a&&n<a),()=>`All values in axis param must be in range [-${a}, ${a}) but got axis ${e}`),P(e.every(n=>il(n)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(n=>n<0?a+n:n)}function nA(e,t){let a=[],n=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:wd(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(a.push(e[o]),n.push(o)),s[i]<=o&&i++}e[o]!==1&&(a.push(e[o]),n.push(o))}return{newShape:a,keptDims:n}}function rA(e,t){let a=null;if(e==null||e==="float32")a=new Float32Array(t);else if(e==="int32")a=new Int32Array(t);else if(e==="bool")a=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return a}function sA(e,t){let a=null;if(e==null||e==="float32")a=new Float32Array(t);else if(e==="int32")a=new Int32Array(t);else if(e==="bool")a=new Uint8Array(t);else if(e==="string")a=new Array(t);else throw new Error(`Unknown data type ${e}`);return a}function iA(e,t){for(let a=0;a<e.length;a++){let n=e[a];if(isNaN(n)||!isFinite(n))throw Error(`A tensor of type ${t} being uploaded contains ${n}.`)}}function oA(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function fS(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function da(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function Lm(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function lA(e){if(e==null)return 0;let t=0;return e.forEach(a=>t+=a.length),t}function Dr(e){return typeof e=="string"||e instanceof String}function uA(e){return typeof e=="boolean"}function dA(e){return typeof e=="number"}function Bc(e){return Array.isArray(e)?Bc(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":dA(e)?"float32":Dr(e)?"string":uA(e)?"bool":"float32"}function Ur(e){return!!(e&&e.constructor&&e.call&&e.apply)}function vc(e,t){for(let a=t;a<e;++a)if(e%a===0)return a;return e}function bl(e){let t=e.length;if(t<2)return[];let a=new Array(t-1);a[t-2]=e[t-1];for(let n=t-3;n>=0;--n)a[n]=a[n+1]*e[n+1];return a}function pA(e,t,a,n=!1){let r=new Array;if(t.length===1){let s=t[0]*(n?2:1);for(let i=0;i<s;i++)r[i]=a[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(n?2:1);for(let l=0;l<s;l++)r[l]=pA(e+l*o,i,a,n)}return r}function tl(e,t,a=!1){if(e.length===0)return t[0];let n=e.reduce((r,s)=>r*s)*(a?2:1);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${a?" for a complex tensor":""}.`);return pA(0,e,t,a)}function O1(e,t){let a=Wc(e,t);for(let n=0;n<a.length;n++)a[n]=1;return a}function Wc(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function mS(e,t){let a=e.reduce((n,r)=>n*r,1);if(t==null||t==="float32")return tl(e,new Float32Array(a));if(t==="int32")return tl(e,new Int32Array(a));if(t==="bool")return tl(e,new Uint8Array(a));throw new Error(`Unknown data type ${t}`)}function Ya(e){e.forEach(t=>{P(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function gS(e,t,a){if(t===0)return 0;if(t===1)return e[0];let n=e[e.length-1];for(let r=0;r<e.length-1;++r)n+=a[r]*e[r];return n}function xS(e,t,a){if(t===0)return[];if(t===1)return[e];let n=new Array(t);for(let r=0;r<n.length-1;++r)n[r]=Math.floor(e/a[r]),e-=n[r]*a[r];return n[n.length-1]=e,n}function D1(e){return e&&e.then&&typeof e.then=="function"}var Pg="tfjsflags",cA=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=AS,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(W().getBool("IS_TEST")||W().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,a){if(this.flagRegistry[e]={evaluationFn:t,setHook:a},this.urlFlags[e]!=null){let n=this.urlFlags[e];W().getBool("IS_TEST")||W().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${n}.`),this.set(e,n)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(D1(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);Pg in e&&e[Pg].split(",").forEach(t=>{let[a,n]=t.split(":");this.urlFlags[a]=bS(a,n)})}};function AS(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(a,...n)=>(yS(t,n[0],n[1]),n.join("="))),t}function yS(e,t,a){e[decodeURIComponent(t)]=decodeURIComponent(a||"")}function bS(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function W(){return z1}var z1=null;function vS(e){z1=e}var Nm;function hA(){if(Nm==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Nm=e}return Nm}function wS(){let e=hA();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function L1(e,t){let a=wS();if(a.has(e))return a.get(e);{let n=t();return a.set(e,n),a.get(e)}}var vl="Abs",wl="Acos",kl="Acosh",Qr="Add",qs="AddN",Xs="All",Ks="Any",Zs="ArgMax",kd="ArgMin",Il="Asin",Sl="Asinh",Tl="Atan",Cl="Atanh",Nl="Atan2",Ys="AvgPool",B1="AvgPoolGrad",Vc="AvgPool3D",W1="AvgPool3DGrad",Js="BatchMatMul",El="BatchToSpaceND",Id="Bincount",kS="BroadcastTo",Uc="BroadcastArgs",Qs="Cast",ei="Ceil",es="ClipByValue",Sd="Complex",Gc="ComplexAbs",Rl="Concat",ti="Conv2D",Hc="Conv2DBackpropFilter",ai="Conv2DBackpropInput",jc="Conv3D",V1="Conv3DBackpropFilterV2",qc="Conv3DBackpropInputV2",ni="Cos",ri="Cosh",si="Cumprod",ii="Cumsum",oi="CropAndResize",Td="DenseBincount",li="DepthToSpace",ui="DepthwiseConv2dNative",Xc="DepthwiseConv2dNativeBackpropFilter",Kc="DepthwiseConv2dNativeBackpropInput",Zc="Diag",Yc="Dilation2D",Bm="Dilation2DBackpropInput",Wm="Dilation2DBackpropFilter",di="RealDiv",Cd="Einsum",pi="Elu",U1="EluGrad",Ml="Erf",ci="Equal",hi="Exp",$l="ExpandDims",_l="Expm1",Nd="FFT",Pl="Fill",fi="FlipLeftRight",mi="Floor",gi="FloorDiv",xi="FusedBatchNorm",Fl="GatherV2",Ai="GatherNd",yi="Greater",bi="GreaterEqual",vi="Identity",Ed="IFFT",Rd="Imag",Ol="IsFinite",Dl="IsInf",wi="IsNan",ki="LeakyRelu",Ii="Less",Si="LessEqual",Jc="LinSpace",Ti="Log",zl="Log1p",Ci="LogicalAnd",Ni="LogicalNot",Ll="LogicalOr",fA="LogicalXor",IS="LogSoftmax",SS="LowerBound",Qc="LRN",G1="LRNGrad",Ei="Max",Ri="Maximum",Mi="MaxPool",H1="MaxPoolGrad",eh="MaxPool3D",j1="MaxPool3DGrad",th="MaxPoolWithArgmax",$i="Mean",_i="Min",Pi="Minimum",Fi="MirrorPad",Bl="Mod",ah="Multinomial",Oi="Multiply",Wl="Neg",Di="NotEqual",zi="NonMaxSuppressionV3",Vl="NonMaxSuppressionV4",Li="NonMaxSuppressionV5",Ul="OnesLike",Bi="OneHot",Gl="Pack",Wi="PadV2",TS="Pool",Vi="Pow",Ui="Prelu",Gi="Prod",nh="RaggedGather",rh="RaggedRange",sh="RaggedTensorToTensor",Hl="Range",Md="Real",Hi="Reciprocal",ji="Relu",jl="Reshape",qi="ResizeNearestNeighbor",q1="ResizeNearestNeighborGrad",Xi="ResizeBilinear",X1="ResizeBilinearGrad",Ki="Relu6",Zi="Reverse",ql="Round",Yi="Rsqrt",Ji="ScatterNd",$d="SearchSorted",Xl="Select",_d="Selu",Kl="Slice",Qi="Sin",Zl="Sinh",Pd="Sign",eo="Sigmoid",Fd="Softplus",to="Sqrt",ao="Sum",Yl="SpaceToBatchND",Jl="SplitV",no="Softmax",Od="SparseFillEmptyRows",Ql="SparseReshape",Dd="SparseSegmentMean",zd="SparseSegmentSum",Ld="SparseToDense",ro="SquaredDifference",Bd="Square",so="StridedSlice",eu="StringNGrams",Wd="StringSplit",Vd="StringToHashBucketFast",io="Sub",oo="Tan",lo="Tanh",ts="Tile",uo="TopK",po="Transform",gr="Transpose",ih="Unique",tu="Unpack",oh="UnsortedSegmentSum",CS="UpperBound",au="ZerosLike",co="Step",rd="FromPixels",ho="RotateWithOffset",Gr="_FusedMatMul",Hr="FusedConv2D",jr="FusedDepthwiseConv2D";function Or(...e){W().getBool("IS_TEST")||W().getBool("PROD")||console.warn(...e)}function NS(...e){W().getBool("IS_TEST")||W().getBool("PROD")||console.log(...e)}var ol=L1("kernelRegistry",()=>new Map),sd=L1("gradRegistry",()=>new Map);function wc(e,t){let a=K1(e,t);return ol.get(a)}function Vm(e){return sd.get(e)}function Kn(e){let t=ol.entries(),a=[];for(;;){let{done:n,value:r}=t.next();if(n)break;let[s,i]=r,[o]=s.split("_");o===e&&a.push(i)}return a}function fn(e){let{kernelName:t,backendName:a}=e,n=K1(t,a);ol.has(n)&&Or(`The kernel '${t}' for backend '${a}' is already registered`),ol.set(n,e)}function ES(e){let{kernelName:t}=e;sd.has(t)&&W().getBool("DEBUG")&&Or(`Overriding the gradient for '${t}'`),sd.set(t,e)}function RS(e,t){let a=K1(e,t);if(!ol.has(a))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);ol.delete(a)}function MS(e){if(!sd.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);sd.delete(e)}function $S(e,t){Kn(e).forEach(a=>{let n=Object.assign({},a,{backendName:t});fn(n)})}function K1(e,t){return`${t}_${e}`}var v={};Xe(v,{arraysEqual:()=>Jr,assert:()=>P,assertNonNegativeIntegerDimensions:()=>Ya,assertNonNull:()=>js,assertShapesMatch:()=>Sa,bytesFromStringArray:()=>lA,bytesPerElement:()=>Lm,checkConversionForErrors:()=>iA,clamp:()=>nd,computeStrides:()=>bl,createScalarValue:()=>zS,createShuffledIndices:()=>pS,decodeString:()=>kc,distSquared:()=>oS,encodeString:()=>Gd,fetch:()=>BS,fingerPrint64:()=>DS,flatten:()=>Os,getArrayFromDType:()=>sA,getTypedArrayFromDType:()=>rA,hasEncodingLoss:()=>fS,hexToLong:()=>Ud,indexToLoc:()=>xS,inferDtype:()=>Bc,inferFromImplicitShape:()=>hS,isBoolean:()=>uA,isFunction:()=>Ur,isInt:()=>il,isNumber:()=>dA,isPromise:()=>D1,isScalarShape:()=>lS,isString:()=>Dr,isTypedArray:()=>da,isValidDtype:()=>oA,locToIndex:()=>gS,makeOnesTypedArray:()=>O1,makeZerosNestedTypedArray:()=>mS,makeZerosTypedArray:()=>Wc,nearestDivisor:()=>vc,nearestLargerEven:()=>rS,now:()=>id,parseAxisParam:()=>wd,randUniform:()=>iS,repeatedTry:()=>cS,rightPad:()=>Qu,shuffle:()=>aA,shuffleCombo:()=>nS,sizeFromShape:()=>At,sizeToSquarishShape:()=>dS,squeezeShape:()=>nA,sum:()=>sS,swap:()=>bc,tanh:()=>uS,toNestedArray:()=>tl,toTypedArray:()=>lh});var Fg=Al(BI()),Rs=Fg.default||Fg;function Ud(e){return Rs.fromString(e,!0,16)}var mA=Ud("c3a5c85c97cb3127"),Ns=Ud("b492b66fbe98f273"),Aa=Ud("9ae16a3b2f90404f");function Um(e){return e.xor(e.shru(47))}function gA(e,t,a){let n=e.slice(t,t+a);return Rs.fromBytes(Array.from(n),!0,!0)}function ft(e,t){return gA(e,t,8)}function Og(e,t){return gA(e,t,4)}function Kt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Wr(e,t,a=Ud("9ddfea08eb382d69")){let n=e.xor(t).mul(a);n=n.xor(n.shru(47));let r=t.xor(n).mul(a);return r=r.xor(r.shru(47)),r=r.mul(a),r}function _S(e,t,a,n,r,s){r=r.add(e),s=Kt(s.add(r).add(n),21);let i=r;return r=r.add(t),r=r.add(a),s=s.add(Kt(r,44)),[r.add(n),s.add(i)]}function nc(e,t,a,n){return _S(ft(e,t),ft(e,t+8),ft(e,t+16),ft(e,t+24),a,n)}function PS(e,t=e.length){if(t>=8){let a=Aa.add(t*2),n=ft(e,0).add(Aa),r=ft(e,t-8),s=Kt(r,37).mul(a).add(n),i=Kt(n,25).add(r).mul(a);return Wr(s,i,a)}if(t>=4){let a=Aa.add(t*2),n=Og(e,0);return Wr(n.shl(3).add(t),Og(e,t-4),a)}if(t>0){let a=e[0],n=e[t>>1],r=e[t-1],s=a+(n<<8),i=t+(r<<2);return Um(Aa.mul(s).xor(mA.mul(i))).mul(Aa)}return Aa}function FS(e,t=e.length){let a=Aa.add(t*2),n=ft(e,0).mul(Ns),r=ft(e,8),s=ft(e,t-8).mul(a),i=ft(e,t-16).mul(Aa);return Wr(Kt(n.add(r),43).add(Kt(s,30)).add(i),n.add(Kt(r.add(Aa),18)).add(s),a)}function OS(e,t=e.length){let a=Aa.add(t*2),n=ft(e,0).mul(Aa),r=ft(e,8),s=ft(e,t-8).mul(a),i=ft(e,t-16).mul(Aa),o=Kt(n.add(r),43).add(Kt(s,30)).add(i),l=Wr(o,n.add(Kt(r.add(Aa),18)).add(s),a),u=ft(e,16).mul(a),p=ft(e,24),c=o.add(ft(e,t-32)).mul(a),d=l.add(ft(e,t-24)).mul(a);return Wr(Kt(u.add(p),43).add(Kt(c,30)).add(d),u.add(Kt(p.add(n),18)).add(c),a)}function DS(e,t=e.length){let a=Rs.fromNumber(81,!0);if(t<=32)return t<=16?PS(e,t):FS(e,t);if(t<=64)return OS(e,t);let n=a,r=a.mul(Ns).add(113),s=Um(r.mul(Aa).add(113)).mul(Aa),i=[Rs.UZERO,Rs.UZERO],o=[Rs.UZERO,Rs.UZERO];n=n.mul(Aa).add(ft(e,0));let l=0,u=(t-1>>6)*64,p=u+(t-1&63)-63;do n=Kt(n.add(r).add(i[0]).add(ft(e,l+8)),37).mul(Ns),r=Kt(r.add(i[1]).add(ft(e,l+48)),42).mul(Ns),n=n.xor(o[1]),r=r.add(i[0]).add(ft(e,l+40)),s=Kt(s.add(o[0]),33).mul(Ns),i=nc(e,l,i[1].mul(Ns),n.add(o[0])),o=nc(e,l+32,s.add(o[1]),r.add(ft(e,l+16))),[s,n]=[n,s],l+=64;while(l!==u);let c=Ns.add(s.and(255).shl(1));return l=p,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),n=Kt(n.add(r).add(i[0]).add(ft(e,l+8)),37).mul(c),r=Kt(r.add(i[1]).add(ft(e,l+48)),42).mul(c),n=n.xor(o[1].mul(9)),r=r.add(i[0].mul(9).add(ft(e,l+40))),s=Kt(s.add(o[0]),33).mul(c),i=nc(e,l,i[1].mul(c),n.add(o[0])),o=nc(e,l+32,s.add(o[1]),r.add(ft(e,l+16))),[s,n]=[n,s],Wr(Wr(i[0],o[0],c).add(Um(r).mul(mA)).add(s),Wr(i[1],o[1],c).add(n),c)}function zS(e,t){return t==="string"?Gd(e):lh([e],t)}function LS(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function lh(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Os(e)),W().getBool("DEBUG")&&iA(e,t),LS(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let a=new Uint8Array(e.length);for(let n=0;n<a.length;++n)Math.round(e[n])!==0&&(a[n]=1);return a}else throw new Error(`Unknown data type ${t}`)}function id(){return W().platform.now()}function BS(e,t){return W().platform.fetch(e,t)}function Gd(e,t="utf-8"){return t=t||"utf-8",W().platform.encode(e,t)}function kc(e,t="utf-8"){return t=t||"utf-8",W().platform.decode(e,t)}var WS=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new US)}profileKernel(e,t,a){let n,r=()=>{n=a()},s,i=id();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of n)o.dataSync();s=Promise.resolve({kernelMs:id()-i})}if(W().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<n.length;o++){let l=n[o];l.data().then(u=>{VS(u,l.dtype,e)})}return{kernelName:e,outputs:n,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:a,timeMs:n,inputs:r,extraInfo:s}=e;a.forEach(i=>{Promise.all([i.data(),n,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function VS(e,t,a){if(t!=="float32")return!1;for(let n=0;n<e.length;n++){let r=e[n];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${a}'`),!0}return!1}var US=class{logKernelProfile(e,t,a,n,r,s){let i=typeof n=="number"?Qu(`${n}ms`,9):n.error,o=Qu(e,25),l=t.rank,u=t.size,p=Qu(t.shape.toString(),14),c="";for(let d in r){let h=r[d];if(h!=null){let f=h.shape||t.shape,m=f.length;c+=`${d}: ${m}D ${m>0?f:""} `}}console.log(`%c${o} %c${i} %c${l}D ${p} %c${u} %c${c} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function GS(e,t,a){let n={},r={};for(let l=0;l<t.length;l++)n[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],p=u.inputs;for(let c in p){let d=p[c],h=!1;for(let f=0;f<t.length;f++)if(n[d.id]){u.outputs.forEach(m=>n[m.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let s={};s[a.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],p=u.inputs;for(let c=0;c<u.outputs.length;c++)if(s[u.outputs[c].id]){for(let d in p)s[p[d].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&i[u.id]){let p={};for(let d in u.inputs){let h=u.inputs[d];n[h.id]&&(p[d]=h)}let c=Object.assign({},u);c.inputs=p,c.outputs=u.outputs,o.push(c)}}return o}function HS(e,t,a,n){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=a(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let p=s.inputs[l];if(!Jr(u.shape,p.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${p.shape}'`);if(e[p.id]==null)e[p.id]=u;else{let c=e[p.id];e[p.id]=n(c,u),c.dispose()}}}}var Dg=20,Wu=3,Em=7;function jS(e,t,a,n){let r=bl(t),s=qS(e,t,a,r),i=t.length,o=dc(e,t,a,r,s),l=["Tensor"];return n&&(l.push(` dtype: ${a}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
`)),l.join(`
`)}function qS(e,t,a,n){let r=At(t),s=n[n.length-1],i=new Array(s).fill(0),o=t.length,l=a==="complex64"?Gu(e):e;if(o>1)for(let u=0;u<r/s;u++){let p=u*s;for(let c=0;c<s;c++)i[c]=Math.max(i[c],Uu(l[p+c],0,a).length)}return i}function Uu(e,t,a){let n;return Array.isArray(e)?n=`${parseFloat(e[0].toFixed(Em))} + ${parseFloat(e[1].toFixed(Em))}j`:Dr(e)?n=`'${e}'`:a==="bool"?n=xA(e):n=parseFloat(e.toFixed(Em)).toString(),Qu(n,t)}function xA(e){return e===0?"false":"true"}function dc(e,t,a,n,r,s=!0){let i=a==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(a==="complex64"){let m=Gu(e);return[Uu(m[0],0,a)]}return a==="bool"?[xA(e[0])]:[e[0].toString()]}if(l===1){if(o>Dg){let m=Wu*i,g=Array.from(e.slice(0,m)),x=Array.from(e.slice((o-Wu)*i,o*i));return a==="complex64"&&(g=Gu(g),x=Gu(x)),["["+g.map((A,y)=>Uu(A,r[y],a)).join(", ")+", ..., "+x.map((A,y)=>Uu(A,r[o-Wu+y],a)).join(", ")+"]"]}return["["+(a==="complex64"?Gu(e):Array.from(e)).map((m,g)=>Uu(m,r[g],a)).join(", ")+"]"]}let u=t.slice(1),p=n.slice(1),c=n[0]*i,d=[];if(o>Dg){for(let m=0;m<Wu;m++){let g=m*c,x=g+c;d.push(...dc(e.slice(g,x),u,a,p,r,!1))}d.push("...");for(let m=o-Wu;m<o;m++){let g=m*c,x=g+c;d.push(...dc(e.slice(g,x),u,a,p,r,m===o-1))}}else for(let m=0;m<o;m++){let g=m*c,x=g+c;d.push(...dc(e.slice(g,x),u,a,p,r,m===o-1))}let h=l===2?",":"";d[0]="["+d[0]+h;for(let m=1;m<d.length-1;m++)d[m]=" "+d[m]+h;let f=`,
`;for(let m=2;m<l;m++)f+=`
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(s?"":f),d}function Gu(e){let t=[];for(let a=0;a<e.length;a+=2)t.push([e[a],e[a+1]]);return t}var jt=class{constructor(e,t,a){if(this.dtype=t,this.shape=e.slice(),this.size=At(e),a!=null){let n=a.length;P(n===this.size,()=>`Length of values '${n}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=a||sA(t,this.size),this.strides=bl(e)}set(e,...t){t.length===0&&(t=[0]),P(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let a=this.locToIndex(t);this.values[a]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let n of e){if(n<0||n>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let a=e[e.length-1];for(let n=0;n<e.length-1;++n)a+=this.strides[n]*e[n];return this.values[a]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let a=0;a<e.length-1;++a)t+=this.strides[a]*e[a];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let a=0;a<t.length-1;++a)t[a]=Math.floor(e/this.strides[a]),e-=t[a]*this.strides[a];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Pn().makeTensor(this.values,this.shape,this.dtype)}},Pn=null,Jo=null,XS=null;function KS(e){Pn=e}function ZS(e){Jo=e}function YS(e){XS=e}var pt=class{constructor(e,t,a,n){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=At(e),this.strides=bl(e),this.dataId=a,this.id=n,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Jo.buffer(this.shape,this.dtype,e)}bufferSync(){return Jo.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return tl(this.shape,e,this.dtype==="complex64")}arraySync(){return tl(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Pn().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(a=>kc(a))}catch(a){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),Pn().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=Pn().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>kc(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Pn().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Pn().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Jo.print(this,e)}clone(){return this.throwIfDisposed(),Jo.clone(this)}toString(e=!1){let t=this.dataSync();return jS(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Jo.cast(this,e)}variable(e=!0,t,a){return this.throwIfDisposed(),Pn().makeVariable(this,e,t,a)}};Object.defineProperty(pt,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function JS(){return L1("Tensor",()=>pt)}JS();var od=class extends pt{constructor(e,t,a,n){super(e.shape,e.dtype,e.dataId,n),this.trainable=t,this.name=a}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Jr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Pn().disposeTensor(this),this.dataId=e.dataId,Pn().incRef(this,null)}dispose(){Pn().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(od,Symbol.hasInstance,{value:e=>e instanceof pt&&e.assign!=null&&e.assign instanceof Function});var AA={};Xe(AA,{assertTypesMatch:()=>yA,getTensorsInContainer:()=>Z1,isTensorInList:()=>eT,makeTypesMatch:()=>St});var Gm;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Gm||(Gm={}));var Hm;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Hm||(Hm={}));var jm;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(jm||(jm={}));var qm;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(qm||(qm={}));var Xm;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Xm||(Xm={}));var QS={float32:qm,int32:Hm,bool:jm,complex64:Xm};function ca(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return QS[e][t]}function Hd(e){return ca(e,"int32")}function St(e,t){if(e.dtype===t.dtype)return[e,t];let a=ca(e.dtype,t.dtype);return[e.cast(a),t.cast(a)]}function yA(e,t){P(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function eT(e,t){return t.some(a=>a.id===e.id)}function Z1(e){let t=[];return bA(e,t,new Set),t}function bA(e,t,a){if(e==null)return;if(e instanceof pt){t.push(e);return}if(!tT(e))return;let n=e;for(let r in n){let s=n[r];a.has(s)||(a.add(s),bA(s,t,a))}}function tT(e){return Array.isArray(e)||typeof e=="object"}function Rm(e){return e.kernelName!=null}var zg=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},ld=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new zg}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let a=e[t];if(await this.initializeBackend(a).success){await this.setBackend(a);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,a=1){return e in this.registryFactory?(Or(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:a},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:a}=this.initializeBackend(e);if(!(a?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new WS(this.backendInstance),!0}setupRegisteredKernels(){Kn(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Kn(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let a=t.factory();if(a&&!(a instanceof yl)&&typeof a.then=="function"){let n=++this.pendingBackendInitId,r=a.then(s=>n<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(n<this.pendingBackendInitId||(this.pendingBackendInit=null,Or(`Initialization of backend ${e} failed`),Or(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=a,{success:!0,asyncInit:!1}}catch(a){return Or(`Initialization of backend ${e} failed`),Or(a.stack||a.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let a=e[t],{success:n,asyncInit:r}=this.initializeBackend(a);if(r||n)return{name:a,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let a=this.state.tensorInfo.get(t),n=a.backend,r=this.readSync(t),s=n.refCount(t);n.disposeData(t,!0),a.backend=e,e.move(t,r,a.shape,a.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let a=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");a=e}let n;return this.scopedRun(()=>this.startScope(a),()=>this.endScope(n),()=>(n=t(),n instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),n))}scopedRun(e,t,a){e();try{let n=a();return t(),n}catch(n){throw t(),n}}nextTensorId(){return ld.nextTensorId++}nextVariableId(){return ld.nextVariableId++}clone(e){let t=z.runKernel(vi,{x:e}),a={x:e},n=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return z.runKernel(Qs,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,a,[t],n,r,{}),t}runKernel(e,t,a){if(this.backendName==null&&this.backend,wc(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:a})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,a){let n=this.backend.numDataIds(),r=0;a.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=n-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,a=[],n=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Rm(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Rm(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=wc(h,this.backendName);P(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let x=this.backend.numDataIds();o=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let A=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,x,A);let y=A.map(b=>b.rank!=null?b:this.makeTensorFromTensorInfo(b));if(n){let b=this.getTensorsForGradient(h,f,y);a=this.saveTensorsForBackwardMode(b)}return y}}else{let{forwardFunc:h}=e,f=m=>{!n||(a=m.map(g=>this.keep(this.clone(g))))};i=()=>{let m=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,f));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:u,attrs:p}=e,c=Rm(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),n&&this.addTapeNode(l,u,t,c,a,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,a){let n=Vm(e);if(n!=null){let r=n.inputsToSave||[],s=n.outputsToSave||[],i;n.saveAllInputs?(P(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=a.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,a,n){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");a=a||"float32",n=n||this.backend;let r=e;a==="string"&&Dr(e[0])&&(r=e.map(o=>Gd(o)));let s=n.write(r,t,a),i=new pt(t,a,s,this.nextTensorId());if(this.trackTensor(i,n),a==="string"){let o=this.state.tensorInfo.get(s),l=lA(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,a,n){a=a||"float32";let r={dataId:e,shape:t,dtype:a};return this.makeTensorFromTensorInfo(r,n)}makeTensorFromTensorInfo(e,t){let{dataId:a,shape:n,dtype:r}=e,s=new pt(n,r,a,this.nextTensorId());return this.trackTensor(s,t),s}makeVariable(e,t=!0,a,n){a=a||this.nextVariableId().toString(),n!=null&&n!==e.dtype&&(e=e.cast(n));let r=new od(e,t,a,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let a=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(a=e.size*Lm(e.dtype)),this.state.numBytes+=a,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:a})),e instanceof od||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let a=e.size*Lm(e.dtype);this.state.numBytes-=a}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,a=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(n=>n.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-a;for(let n of this.state.activeProfile.kernels)n.kernelTimeMs=await n.kernelTimeMs,n.extraInfo=await n.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,a,n,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:a,saved:r},o=Vm(e);o!=null&&(n=o.gradFunc),n!=null&&(i.gradient=l=>(l=l.map((u,p)=>{if(u==null){let c=a[p],d=Wc(c.size,c.dtype);return this.makeTensor(d,c.shape,c.dtype)}return u}),n(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Z1(e),a=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!a.has(s.id)&&s.dispose()}let n=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===n.id&&this.track(r)})}gradients(e,t,a,n=!1){if(P(t.length>0,()=>"gradients() received an empty list of xs."),a!=null&&a.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${a.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));P(r instanceof pt,()=>"The result y returned by f() must be a tensor.");let s=GS(this.state.activeTape,t,r);if(!n&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=a==null?aT(r.shape):a,HS(i,s,l=>this.tidy(l),nT);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return P(Ur(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{P(t.every(i=>i instanceof pt),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let a,n={};t.forEach((i,o)=>{n[o]=i});let r=(i,o)=>(a=e(...t,o),P(a.value instanceof pt,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),P(Ur(a.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),a.value),s=(i,o)=>{let l=a.gradFunc(i,o),u=Array.isArray(l)?l:[l];P(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),P(u.every(c=>c instanceof pt),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return u.forEach((c,d)=>{p[d]=()=>c}),p};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:n})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=id(),a=await this.backend.time(e);return a.wallMs=id()-t,a}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new zg;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};ld.nextTensorId=0;ld.nextVariableId=0;function aT(e){let t=O1(At(e),"float32");return z.makeTensor(t,e,"float32")}function vA(){let e=hA();if(e._tfengine==null){let t=new cA(e);e._tfengine=new ld(t)}return vS(e._tfengine.ENV),KS(()=>e._tfengine),e._tfengine}var z=vA();function nT(e,t){let a={a:e,b:t};return z.runKernel(Qr,a)}var jd={};Xe(jd,{isBrowser:()=>wA,isMobile:()=>iT,mockIsMobile:()=>sT});function rT(){return typeof navigator!="undefined"&&navigator!=null}var Km;function sT(e){Km=e}function iT(e){if(Km!==void 0)return Km;if(e||rT()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let a=e;return a.userAgentData&&a.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function wA(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var cn=W();cn.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});cn.registerFlag("IS_BROWSER",()=>wA());cn.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");cn.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));cn.registerFlag("PROD",()=>!1);cn.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>cn.getBool("DEBUG"));cn.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);cn.registerFlag("IS_TEST",()=>!1);cn.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);cn.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);cn.registerFlag("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU",()=>!1);cn.registerFlag("USE_SETTIMEOUTCUSTOM",()=>!1);function Zn(e,t){let a=e;if(da(e))return t==="string"?[]:[e.length];if(typeof e=="object"&&"texture"in e){let r=e.channels||"RGBA";return[e.height,e.width*r.length]}if(!Array.isArray(e))return[];let n=[];for(;Array.isArray(a)||da(a)&&t!=="string";)n.push(a.length),a=a[0];return Array.isArray(e)&&W().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&kA(e,n,[]),n}function kA(e,t,a){if(a=a||[],!Array.isArray(e)&&!da(e)){P(t.length===0,()=>`Element arr[${a.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}P(t.length>0,()=>`Element arr[${a.join("][")}] should be a primitive, but is an array of ${e.length} elements`),P(e.length===t[0],()=>`Element arr[${a.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let n=t.slice(1);for(let r=0;r<e.length;++r)kA(e[r],n,a.concat(r))}function Lg(e,t,a,n){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${a}' passed to '${n}' must be ${e} tensor, but got ${t} tensor`)}}function R(e,t,a,n="numeric"){if(e instanceof pt)return Lg(n,e.dtype,t,a),e;let r=Bc(e);if(r!=="string"&&["bool","int32","float32"].indexOf(n)>=0&&(r=n),Lg(n,r,t,a),e==null||!da(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${a}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Zn(e,r);!da(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?lh(e,r):Os(e,[],!0);return z.makeTensor(i,s,r)}function ud(e,t,a,n="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${a} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>R(r,`${t}[${s}]`,a,n))}var Y1="__op";function D(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let a=t[0],n=e[a];a.endsWith("_")&&(a=a.substring(0,a.length-1)),a=a+Y1;let r=(...s)=>{z.startScope(a);try{let i=n(...s);return D1(i)&&console.error("Cannot return a Promise inside of tidy."),z.endScope(i),i}catch(i){throw z.endScope(null),i}};return Object.defineProperty(r,"name",{value:a,configurable:!0}),r}function oT(e,t){let a=R(e,"real","complex"),n=R(t,"imag","complex");Sa(a.shape,n.shape,`real and imag shapes, ${a.shape} and ${n.shape}, must match in call to tf.complex().`);let r={real:a,imag:n};return z.runKernel(Sd,r)}var Ar=D({complex_:oT});function as(e,t,a,n){if(n==null&&(n=Bc(e)),n==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(typeof e=="object"&&"texture"in e){if(n!=="float32"&&n!=="int32")throw new Error(`Creating tensor from texture only supports 'float32'|'int32' dtype, while the dtype is ${n}.`);return e.channels=e.channels||"RGBA",z.backend.createTensorFromTexture(e,t||a,n)}if(!da(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Ya(t);let r=At(t),s=At(a);P(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<a.length;++i){let o=a[i],l=i===a.length-1?o!==At(t.slice(i)):!0;P(a[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${a}) does not match the provided shape (${t}). `)}}return!da(e)&&!Array.isArray(e)&&(e=[e]),t=t||a,e=n!=="string"?lh(e,n):Os(e,[],!0),z.makeTensor(e,t,n)}function Be(e,t,a){let n=Zn(e,a);return as(e,t,n,a)}var Zm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Ic=4;async function lT(e,t){let a=[],n=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let p=new Promise(async c=>{let d=await l.bytes(),h=d.reduce((g,x)=>g+x.length,0)+Ic*d.length,f=new Uint8Array(h),m=0;for(let g=0;g<d.length;g++){let x=d[g],A=new Uint8Array(new Uint32Array([x.length]).buffer);f.set(A,m),m+=Ic,f.set(x,m),m+=x.length}c(f)});n.push(p)}else n.push(l.data());t!=null&&(u.group=t),a.push(u)}let s=await Promise.all(n);return{data:uT(s),specs:a}}function IA(e,t){let a={},n,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=At(l),p;if("quantization"in s){let c=s.quantization;if(c.dtype==="uint8"||c.dtype==="uint16"){if(!("min"in c&&"scale"in c))throw new Error(`Weight ${s.name} with quantization ${c.dtype} doesn't have corresponding metadata min and scale.`)}else if(c.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${c.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${c.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=Zm[c.dtype],h=e.slice(r,r+u*d),f=c.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(c.dtype==="uint8"||c.dtype==="uint16"){p=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];p[m]=g*c.scale+c.min}}else if(c.dtype==="float16")n===void 0&&(n=mT()),p=n(f);else throw new Error(`Unsupported quantization type ${c.dtype} for weight type float32.`);else if(o==="int32"){if(c.dtype!=="uint8"&&c.dtype!=="uint16")throw new Error(`Unsupported quantization type ${c.dtype} for weight type int32.`);p=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];p[m]=Math.round(g*c.scale+c.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*d}else if(o==="string"){let c=At(s.shape);p=[];for(let d=0;d<c;d++){let h=new Uint32Array(e.slice(r,r+Ic))[0];r+=Ic;let f=new Uint8Array(e.slice(r,r+h));p.push(f),r+=h}}else{let c=Zm[o],d=e.slice(r,r+u*c);if(o==="float32")p=new Float32Array(d);else if(o==="int32")p=new Int32Array(d);else if(o==="bool")p=new Uint8Array(d);else if(o==="complex64"){p=new Float32Array(d);let h=new Float32Array(p.length/2),f=new Float32Array(p.length/2);for(let x=0;x<h.length;x++)h[x]=p[x*2],f[x]=p[x*2+1];let m=Be(h,l,"float32"),g=Be(f,l,"float32");a[i]=Ar(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*c}o!=="complex64"&&(a[i]=Be(p,l,o))}return a}function uT(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,a=[];e.forEach(s=>{if(t+=s.byteLength,a.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let n=new Uint8Array(t),r=0;return a.forEach(s=>{n.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),n.buffer}var J1=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Bg(e){return J1?Buffer.byteLength(e):new Blob([e]).size}function dT(e){if(J1)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),a="";for(let n=0,r=t.length;n<r;n++)a+=String.fromCharCode(t[n]);return btoa(a)}function pT(e){if(J1){let n=Buffer.from(e,"base64");return n.buffer.slice(n.byteOffset,n.byteOffset+n.byteLength)}let t=atob(e),a=new Uint8Array(t.length);for(let n=0;n<t.length;++n)a.set([t.charCodeAt(n)],n);return a.buffer}function Q1(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let a=new Uint8Array(t),n=0;return e.forEach(r=>{a.set(new Uint8Array(r),n),n+=r.byteLength}),a.buffer}function Wg(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let a=e.split(t);return a[a.length-1]}function SA(e,t){let a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),e.initializerSignature!=null&&(a.initializerSignature=e.initializerSignature),e.trainingConfig!=null&&(a.trainingConfig=e.trainingConfig),a}function TA(e,t,a){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){if(!t)throw new Error("modelJSON has weightsManifest but weightSpecs is null");if(!a)throw new Error("modelJSON has weightsManifest but weightData is null");n.weightSpecs=t,n.weightData=a}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.initializerSignature!=null&&(n.initializerSignature=e.initializerSignature),n}async function e2(e,t){let a,n;return e.weightsManifest!=null&&([a,n]=await t(e.weightsManifest)),TA(e,a,n)}function qd(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Bg(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Bg(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function CA(e){let t=[];for(let a of e)t.push(...a.weights);return t}function cT(){let e=a=>{let n=a<<13,r=0;for(;(n&8388608)===0;)r-=8388608,n<<=1;return n&=-8388609,r+=947912704,n|r},t=new Uint32Array(2048);t[0]=0;for(let a=1;a<1024;a++)t[a]=e(a);for(let a=1024;a<2048;a++)t[a]=939524096+(a-1024<<13);return t}function hT(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function fT(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function mT(){let e=cT(),t=hT(),a=fT();return n=>{let r=new ArrayBuffer(4*n.length),s=new Uint32Array(r);for(let i=0;i<n.length;i++){let o=n[i],l=e[a[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var Rt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Rt.instance==null&&(Rt.instance=new Rt),Rt.instance}static registerSaveRouter(e){Rt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Rt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Rt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Rt.getHandlers(e,"load",t)}static getHandlers(e,t,a){let n=[];return(t==="load"?Rt.getInstance().loadRouters:Rt.getInstance().saveRouters).forEach(r=>{let s=r(e,a);s!==null&&n.push(s)}),n}},gT=e=>Rt.registerSaveRouter(e),xT=e=>Rt.registerLoadRouter(e),AT=e=>Rt.getSaveHandlers(e),yT=(e,t)=>Rt.getLoadHandlers(e,t),Ym="tensorflowjs",Jm=1,_s="models_store",zr="model_info_store";function NA(){if(!W().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Qm(e){let t=e.result;t.createObjectStore(_s,{keyPath:"modelPath"}),t.createObjectStore(zr,{keyPath:"modelPath"})}var Ds=class{constructor(e){if(this.indexedDB=NA(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((a,n)=>{let r=this.indexedDB.open(Ym,Jm);r.onupgradeneeded=()=>Qm(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(_s,"readonly"),o=i.objectStore(_s).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),n(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));a(o.result.modelArtifacts)},o.onerror=l=>(s.close(),n(o.error)),i.oncomplete=()=>s.close()}else{let i=qd(t),o=s.transaction(zr,"readwrite"),l=o.objectStore(zr),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),p;u.onsuccess=()=>{p=s.transaction(_s,"readwrite");let c=p.objectStore(_s).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});c.onsuccess=()=>a({modelArtifactsInfo:i}),c.onerror=d=>{l=o.objectStore(zr);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),n(c.error)),h.onerror=f=>(s.close(),n(c.error))}},u.onerror=c=>(s.close(),n(u.error)),o.oncomplete=()=>{p==null?s.close():p.oncomplete=()=>s.close()}}},r.onerror=s=>n(r.error)})}};Ds.URL_SCHEME="indexeddb://";var EA=e=>W().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Ds.URL_SCHEME)?bT(e.slice(Ds.URL_SCHEME.length)):null;Rt.registerSaveRouter(EA);Rt.registerLoadRouter(EA);function bT(e){return new Ds(e)}function vT(e){return e.startsWith(Ds.URL_SCHEME)?e.slice(Ds.URL_SCHEME.length):e}var wT=class{constructor(){this.indexedDB=NA()}async listModels(){return new Promise((e,t)=>{let a=this.indexedDB.open(Ym,Jm);a.onupgradeneeded=()=>Qm(a),a.onsuccess=()=>{let n=a.result,r=n.transaction(zr,"readonly"),s=r.objectStore(zr).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(n.close(),t(s.error)),r.oncomplete=()=>n.close()},a.onerror=n=>t(a.error)})}async removeModel(e){return e=vT(e),new Promise((t,a)=>{let n=this.indexedDB.open(Ym,Jm);n.onupgradeneeded=()=>Qm(n),n.onsuccess=()=>{let r=n.result,s=r.transaction(zr,"readwrite"),i=s.objectStore(zr),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),a(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),p=()=>{l=r.transaction(_s,"readwrite");let c=l.objectStore(_s).delete(e);c.onsuccess=()=>t(o.result.modelArtifactsInfo),c.onerror=d=>a(o.error)};u.onsuccess=p,u.onerror=c=>(p(),r.close(),a(o.error))}},o.onerror=u=>(r.close(),a(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},n.onerror=r=>a(n.error)})}},mr="/",Qo="tensorflowjs_models",RA="info",kT="model_topology",IT="weight_specs",ST="weight_data",TT="model_metadata";function MA(e){return{info:[Qo,e,RA].join(mr),topology:[Qo,e,kT].join(mr),weightSpecs:[Qo,e,IT].join(mr),weightData:[Qo,e,ST].join(mr),modelMetadata:[Qo,e,TT].join(mr)}}function $A(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function CT(e){let t=e.split(mr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(mr)}function NT(e){return e.startsWith(zs.URL_SCHEME)?e.slice(zs.URL_SCHEME.length):e}var zs=class{constructor(e){if(!W().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=MA(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),a=JSON.stringify(e.weightSpecs),n=qd(e);try{this.LS.setItem(this.keys.info,JSON.stringify(n)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,a),this.LS.setItem(this.keys.weightData,dT(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,initializerSignature:e.initializerSignature!=null?e.initializerSignature:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:n}}catch(r){throw $A(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${n.modelTopologyBytes}, weightSpecsBytes=${n.weightSpecsBytes}, weightDataBytes=${n.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},a=JSON.parse(this.LS.getItem(this.keys.topology));if(a==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=a;let n=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(n==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=n;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer),i.initializerSignature!=null&&(t.initializerSignature=i.initializerSignature),i.trainingConfig!=null&&(t.trainingConfig=i.trainingConfig)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=pT(s),t}};zs.URL_SCHEME="localstorage://";var _A=e=>W().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(zs.URL_SCHEME)?ET(e.slice(zs.URL_SCHEME.length)):null;Rt.registerSaveRouter(_A);Rt.registerLoadRouter(_A);function ET(e){return new zs(e)}var RT=class{constructor(){P(W().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),P(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Qo+mr,a=mr+RA;for(let n=0;n<this.LS.length;++n){let r=this.LS.key(n);if(r.startsWith(t)&&r.endsWith(a)){let s=CT(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=NT(e);let t=MA(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let a=JSON.parse(this.LS.getItem(t.info));return $A(t),a}},al="://",Oa=class{constructor(){this.managers={}}static getInstance(){return Oa.instance==null&&(Oa.instance=new Oa),Oa.instance}static registerManager(e,t){P(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(al)&&(e=e.slice(0,e.indexOf(al))),P(e.length>0,()=>"scheme must not be an empty string.");let a=Oa.getInstance();P(a.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),a.managers[e]=t}static getManager(e){let t=Oa.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(Oa.getInstance().managers)}};function pc(e){if(e.indexOf(al)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Oa.getSchemes().join(",")}`);return{scheme:e.split(al)[0],path:e.split(al)[1]}}async function PA(e,t,a=!1){P(e!==t,()=>`Old path and new path are the same: '${e}'`);let n=Rt.getLoadHandlers(e);P(n.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),P(n.length<2,()=>`Copying failed because more than one (${n.length}) load handlers for source URL ${e}.`);let r=n[0],s=Rt.getSaveHandlers(t);P(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),P(s.length<2,()=>`Copying failed because more than one (${n.length}) save handlers for destination URL ${t}.`);let i=s[0],o=pc(e).scheme,l=pc(e).path,u=o===pc(e).scheme,p=await r.load();a&&u&&await Oa.getManager(o).removeModel(l);let c=await i.save(p);return a&&!u&&await Oa.getManager(o).removeModel(l),c.modelArtifactsInfo}async function MT(){let e=Oa.getSchemes(),t={};for(let a of e){let n=await Oa.getManager(a).listModels();for(let r in n){let s=a+al+r;t[s]=n[r]}}return t}async function $T(e){let t=pc(e);return Oa.getManager(t.scheme).removeModel(t.path)}async function _T(e,t){return PA(e,t,!1)}async function PT(e,t){return PA(e,t,!0)}var FT=class{constructor(){this.messageName="setTimeoutCustom",this.functionRefs=[],this.handledMessageCount=0,this.hasEventListener=!1}fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}setTimeoutCustom(e,t){if(typeof window=="undefined"||!W().getBool("USE_SETTIMEOUTCUSTOM")){setTimeout(e,t);return}this.functionRefs.push(e),setTimeout(()=>{window.postMessage({name:this.messageName,index:this.functionRefs.length-1},"*")},t),this.hasEventListener||(this.hasEventListener=!0,window.addEventListener("message",a=>{if(a.source===window&&a.data.name===this.messageName){a.stopPropagation();let n=this.functionRefs[a.data.index];n(),this.handledMessageCount++,this.handledMessageCount===this.functionRefs.length&&(this.functionRefs=[],this.handledMessageCount=0)}},!0))}};if(W().get("IS_BROWSER")){W().setPlatform("browser",new FT);try{Oa.registerManager(zs.URL_SCHEME,new RT)}catch(e){}try{Oa.registerManager(Ds.URL_SCHEME,new wT)}catch(e){}}var OT={importFetch:()=>WI()},Mm,DT=class{constructor(){this.util=VI(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return W().global.fetch!=null?W().global.fetch(e,t):(Mm==null&&(Mm=OT.importFetch()),Mm(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};W().get("IS_NODE")&&!W().get("IS_BROWSER")&&W().setPlatform("node",new DT);function Me(e,t="float32",a){return t=t||"float32",Ya(e),new jt(e,t,a)}function zT(e,t){let a=R(e,"x","cast");if(!oA(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&a.dtype!=="string"||t!=="string"&&a.dtype==="string")throw new Error("Only strings can be casted to strings");let n={x:a},r={dtype:t};return z.runKernel(Qs,n,r)}var He=D({cast_:zT});function LT(e){let t={x:R(e,"x","clone","string_or_numeric")};return z.runKernel(vi,t)}var wa=D({clone_:LT});function t2(e,t=!1){console.log(e.toString(t))}vA();var BT={buffer:Me,cast:He,clone:wa,print:t2};ZS(BT);var Hn={};Xe(Hn,{browserFiles:()=>qT,browserHTTPRequest:()=>JT,concatenateArrayBuffers:()=>Q1,copyModel:()=>_T,decodeWeights:()=>IA,encodeWeights:()=>lT,fromMemory:()=>eC,fromMemorySync:()=>LA,getLoadHandlers:()=>yT,getModelArtifactsForJSON:()=>e2,getModelArtifactsForJSONSync:()=>TA,getModelArtifactsInfoForJSON:()=>qd,getSaveHandlers:()=>AT,getWeightSpecs:()=>CA,http:()=>n2,isHTTPScheme:()=>e1,listModels:()=>MT,loadWeights:()=>XT,moveModel:()=>PT,registerLoadRouter:()=>xT,registerSaveRouter:()=>gT,removeModel:()=>$T,weightsLoaderFactory:()=>OA,withSaveHandler:()=>tC,withSaveHandlerSync:()=>aC});var WT="model",VT=".json",UT=".weights.bin";function Vg(e){return new Promise(t=>setTimeout(t)).then(e)}var ll=class{constructor(e){if(!W().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(ll.URL_SCHEME)&&(e=e.slice(ll.URL_SCHEME.length)),(e==null||e.length===0)&&(e=WT),this.modelJsonFileName=e+VT,this.weightDataFileName=e+UT}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let a=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],n=SA(e,a),r=window.URL.createObjectURL(new Blob([JSON.stringify(n)],{type:"application/json"})),s=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(s.download=this.modelJsonFileName,s.href=r,await Vg(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await Vg(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:qd(e)}}}};ll.URL_SCHEME="downloads://";var GT=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let a=new FileReader;a.onload=n=>{let r=JSON.parse(n.target.result),s=r.modelTopology;if(s==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:s});return}let i=e2(r,o=>this.loadWeights(o));e(i)},a.onerror=n=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(this.jsonFile)})}loadWeights(e){let t=[],a=[];for(let s of e)t.push(...s.weights),a.push(...s.paths);let n=this.checkManifestAndWeightFiles(e),r=a.map(s=>this.loadWeightsFile(s,n[s]));return Promise.all(r).then(s=>[t,Q1(s)])}loadWeightsFile(e,t){return new Promise((a,n)=>{let r=new FileReader;r.onload=s=>{let i=s.target.result;a(i)},r.onerror=s=>n(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],a=this.weightsFiles.map(r=>Wg(r.name)),n={};for(let r of e)r.paths.forEach(s=>{let i=Wg(s);if(t.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(t.push(i),a.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);n[s]=this.weightsFiles[a.indexOf(i)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return n}},HT=e=>W().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ll.URL_SCHEME)?jT(e.slice(ll.URL_SCHEME.length)):null;Rt.registerSaveRouter(HT);function jT(e="model"){return new ll(e)}function qT(e){return new GT(e)}function Ug(e,t,a,n){i(e),a=a==null?0:a,n=n==null?1:n,o(a,n);let r=0,s=l=>(l.then(u=>{let p=a+ ++r/e.length*(n-a);return t(p),u}),l);function i(l){P(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){P(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),P(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),P(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function FA(e,t){t==null&&(t={});let a=t.fetchFunc==null?W().platform.fetch:t.fetchFunc,n=e.map(u=>a(u,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(n):await Ug(n,t.onProgress,r,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await Ug(i,t.onProgress,o,l)}async function XT(e,t="",a,n){return OA(r=>FA(r,{requestInit:n}))(e,t,a)}function OA(e){return async(t,a="",n)=>{let r=t.map(()=>!1),s={},i=n!=null?n.map(()=>!1):[],o=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let x="quantization"in g?g.quantization.dtype:g.dtype,A=Zm[x]*At(g.shape),y=()=>{r[f]=!0,s[f]==null&&(s[f]=[]),s[f].push({manifestEntry:g,groupOffset:m,sizeBytes:A})};n!=null?n.forEach((b,w)=>{b===g.name&&(y(),i[w]=!0)}):y(),o.push(g.name),m+=A})}),!i.every(h=>h)){let h=n.filter((f,m)=>!i[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(f=>{let m=a+(a.endsWith("/")?"":"/")+f;u.push(m)})});let p=await e(u),c={},d=0;return l.forEach(h=>{let f=t[h].paths.length,m=0;for(let y=0;y<f;y++)m+=p[d+y].byteLength;let g=new ArrayBuffer(m),x=new Uint8Array(g),A=0;for(let y=0;y<f;y++){let b=new Uint8Array(p[d+y]);x.set(b,A),A+=b.byteLength}s[h].forEach(y=>{let b=g.slice(y.groupOffset,y.groupOffset+y.sizeBytes),w=IA(b,[y.manifestEntry]);for(let S in w)c[S]=w[S]}),d+=f}),c}}var KT="application/octet-stream",ZT="application/json",a2=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(P(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=W().platform.fetch,P(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&P(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let a=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],n=SA(e,a);t.body.append("model.json",new Blob([JSON.stringify(n)],{type:ZT}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:KT}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:qd(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let s=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?s+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":s+=" Please make sure the server is serving valid JSON for this request.",new Error(s)}let a=t.modelTopology,n=t.weightsManifest;if(a==null&&n==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return e2(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[a,n]=YT(t),r=this.weightPathPrefix||a,s=CA(e),i=[],o=[];for(let u of e)for(let p of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(p)):i.push(r+p+n);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await FA(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Q1(l)]}};a2.URL_SCHEME_REGEX=/^https?:\/\//;function YT(e){let t=e.lastIndexOf("/"),a=e.lastIndexOf("?"),n=e.substring(0,t),r=a>t?e.substring(a):"";return[n+"/",r]}function e1(e){return e.match(a2.URL_SCHEME_REGEX)!=null}var DA=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let a=!0;if(Array.isArray(e)?a=e.every(n=>e1(n)):a=e1(e),a)return n2(e,t)}return null};Rt.registerSaveRouter(DA);Rt.registerLoadRouter(DA);function n2(e,t){return new a2(e,t)}function JT(e,t){return n2(e,t)}var $m=class{constructor(e){this.modelArtifacts=e}load(){return this.modelArtifacts}},zA=class{constructor(e){this.saveHandler=e}save(e){return this.saveHandler(e)}},QT=class{constructor(e){e.load&&(this.load=()=>Promise.resolve(e.load())),e.save&&(this.save=t=>Promise.resolve(e.save(t)))}};function eC(e,t,a,n){let r=arguments;return new QT(LA(...r))}function LA(e,t,a,n){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new $m(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new $m({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new $m({modelTopology:e,weightSpecs:t,weightData:a,trainingConfig:n}))}function tC(e){return new zA(e)}function aC(e){return new zA(e)}var BA={};Xe(BA,{confusionMatrix:()=>yC});function nC(e,t,a=!1,n=!1){let r=R(e,"a","matMul"),s=R(t,"b","matMul");[r,s]=St(r,s);let i={a:r,b:s},o={transposeA:a,transposeB:n};return z.runKernel(Js,i,o)}var st=D({matMul_:nC});function rC(e,t,a=1,n=0,r="int32"){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let s={indices:R(e,"indices","oneHot","int32")},i={dtype:r,depth:t,onValue:a,offValue:n};return z.runKernel(Bi,s,i)}var Sc=D({oneHot_:rC});function r2(){W().set("PROD",!0)}function sC(){W().set("DEBUG",!0)}function iC(){W().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function s2(e){W().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}YS(s2);function oC(){z.disposeVariables()}function kt(){return z}function lC(){return z.memory()}function uC(e){return z.profile(e)}function $e(e,t){return z.tidy(e,t)}function Y(e){Z1(e).forEach(t=>t.dispose())}function Fn(e){return z.keep(e)}function dC(e){return z.time(e)}function Xd(e){return z.setBackend(e)}function Kd(){return z.ready()}function ia(){return z.backendName}function pC(e){z.removeBackend(e)}function i2(e){return z.findBackend(e)}function cC(e){return z.findBackendFactory(e)}function fo(e,t,a=1){return z.registerBackend(e,t,a)}function er(){return z.backend}function hC(e,t){W().setPlatform(e,t)}function fC(e){let t={input:R(e,"input","imag")};return z.runKernel(Rd,t)}var Zd=D({imag_:fC});function mC(e){let t={x:R(e,"x","neg")};return z.runKernel(Wl,t)}var qn=D({neg_:mC});function gC(e){let t={input:R(e,"input","real")};return z.runKernel(Md,t)}var ul=D({real_:gC});function xC(e,t,a){let n=R(e,"x","transpose");if(t==null&&(t=n.shape.map((i,o)=>o).reverse()),P(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(i=>{P(i>=0&&i<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},s={perm:t};return n.dtype==="complex64"?$e(()=>{let i=ul(n),o=Zd(n);return i=z.runKernel(gr,{x:i},s),o=z.runKernel(gr,{x:o},s),a&&(o=qn(o)),Ar(i,o)}):z.runKernel(gr,r,s)}var Ls=D({transpose_:xC});function AC(e,t,a){let n=R(e,"labels","confusionMatrix"),r=R(t,"predictions","confusionMatrix");P(a==null||a>0&&Number.isInteger(a),()=>`If provided, numClasses must be a positive integer, but got ${a}`),P(n.rank===1,()=>`Expected the rank of labels to be 1, but got ${n.rank}`),P(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),P(n.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${n.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),P(a>0&&Number.isInteger(a),()=>`numClasses is required to be a positive integer, but got ${a}`);let s=Sc(He(n,"int32"),a),i=Sc(He(r,"int32"),a),o=Ls(s),l=st(o,i);return He(l,"int32")}var yC=D({confusionMatrix_:AC}),mo={};Xe(mo,{assertAndGetBroadcastShape:()=>zt,getBroadcastDims:()=>WA,getReductionAxes:()=>o2});function WA(e,t){let a=e.length,n=[];for(let r=0;r<a;r++){let s=a-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&n.unshift(s)}return n}function o2(e,t){let a=[];for(let n=0;n<t.length;n++){let r=e[e.length-n-1],s=t.length-n-1,i=t[s];(r==null||r===1&&i>1)&&a.unshift(s)}return a}function zt(e,t){let a=[],n=Math.max(e.length,t.length);for(let r=0;r<n;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)a.unshift(i);else if(i===1)a.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else a.unshift(s)}return a}var br={};Xe(br,{fromPixels:()=>TC,fromPixelsAsync:()=>IC,toPixels:()=>SC});function l2(e,t,a){if(js(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let n=Zn(e,a);if(n.length!==3&&n.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return as(e,t,n,a)}var Ts;function VA(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let a=!1,n=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)a=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)n=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(wc(rd,z.backendName)!=null){let d={pixels:e},h={numChannels:t};return z.runKernel(rd,d,h)}let[l,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(i)p=e.getContext("2d").getImageData(0,0,l,u).data;else if(n||a)p=e.data;else if(s||r||o){if(Ts==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Ts=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Ts=document.createElement("canvas").getContext("2d",{willReadFrequently:!0});Ts.canvas.width=l,Ts.canvas.height=u,Ts.drawImage(e,0,0,l,u),p=Ts.getImageData(0,0,l,u).data}let c;if(t===4)c=new Int32Array(p);else{let d=l*u;c=new Int32Array(d*t);for(let h=0;h<d;h++)for(let f=0;f<t;++f)c[h*t+f]=p[h*4+f]}return l2(c,[u,l,t],"int32")}function bC(e){return e!=null&&e.data instanceof Uint8Array}function vC(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function wC(e){return e!=null&&e.width!==0&&e.height!==0}function kC(e){return vC()&&!(e instanceof ImageBitmap)&&wC(e)&&!bC(e)}async function IC(e,t=3){let a=null;if(W().getBool("WRAP_TO_IMAGEBITMAP")&&kC(e)){let n;try{n=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){n=null}n!=null&&n.width===e.width&&n.height===e.height?a=n:a=e}else a=e;return VA(a,t)}async function SC(e,t){let a=R(e,"img","toPixels");if(!(e instanceof pt)){let u=a;a=He(u,"int32"),u.dispose()}if(a.rank!==2&&a.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${a.rank}.`);let[n,r]=a.shape.slice(0,2),s=a.rank===2?1:a.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(a.dtype!=="float32"&&a.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${a.dtype}. Please use float32 or int32 tensors.`);let i=await a.data(),o=a.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*n*4);for(let u=0;u<n*r;++u){let p=[0,0,0,255];for(let d=0;d<s;d++){let h=i[u*s+d];if(a.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(a.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(p[0]=h*o,p[1]=h*o,p[2]=h*o):p[d]=h*o}let c=u*4;l[c+0]=Math.round(p[0]),l[c+1]=Math.round(p[1]),l[c+2]=Math.round(p[2]),l[c+3]=Math.round(p[3])}if(t!=null){t.width=r,t.height=n;let u=t.getContext("2d"),p=new ImageData(l,r,n);u.putImageData(p,0,0)}return a!==e&&a.dispose(),l}var TC=D({fromPixels_:VA}),u2={};Xe(u2,{prepareAndValidate:()=>UA});function UA(e,t){let a=e.shape.length,n=t.shape.length;if(a<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${a}.`);if(n<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${n}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[n-1]>a)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[n-1]} vs. ${a}`);if(At(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let c=0;c<r.length-1;++c)i*=r[c];let o=e.shape,l=r.slice();l.pop();let u=1;for(let c=s;c<a;++c)u*=o[c],l.push(o[c]);let p=[...bl(e.shape).map(c=>c/u),1].slice(0,s);return[l,i,u,p]}var d2={};Xe(d2,{calculateShapes:()=>GA,validateInput:()=>c2,validateUpdateShape:()=>p2});function p2(e,t,a){let n=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${a.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${n}, and batchDim: ${r}.`;if(a.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<n+(a.rank-r))throw new Error(s+` Output shape length < ${n+(a.rank-r)}`);if(a.rank!==r+e.length-n)throw new Error(s+` update.rank != ${r+e.length-n}`);for(let i=0;i<r;++i)if(a.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${a.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<a.rank-r;++i)if(a.shape[i+r]!==e[i+n])throw new Error(s+` updates.shape[${i+r}] (${a.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function c2(e,t,a){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(a.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${a}`);if(a.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}p2(a,t,e)}function GA(e,t,a){let n=t.shape.length,r=n>1?t.shape[n-1]:1,s=a.length,i=1;for(let c=r;c<s;++c)i*=a[c];let o=r<1?1:r,l=At(t.shape)/o,u=[...bl(a.slice(0,r)),1],p=At(a);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:u,outputSize:p}}var It={};Xe(It,{assertParamsValid:()=>NC,computeFlatOffset:()=>_C,computeOutShape:()=>RC,getNormalizedAxes:()=>MC,isSliceContinous:()=>$C,maskToAxes:()=>EC,parseSliceParams:()=>PC,sliceInfo:()=>FC,startForAxis:()=>YA,startIndicesWithElidedDims:()=>XA,stopForAxis:()=>JA,stopIndicesWithElidedDims:()=>KA,stridesForAxis:()=>ZA,stridesWithElidedDims:()=>HA});var t1=-2,CC=-1;function NC(e,t,a){let n=e.shape.length;P(n===t.length,()=>`Error in slice${n}D: Length of begin ${t} must match the rank of the array (${n}).`),P(n===a.length,()=>`Error in slice${n}D: Length of size ${a} must match the rank of the array (${n}).`);for(let r=0;r<n;++r)P(t[r]+a[r]<=e.shape[r],()=>`Error in slice${n}D: begin[${r}] + size[${r}] (${t[r]+a[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function EC(e){let t=[],a=0;for(;e>0;)e&1&&t.push(a),e/=2,a++;return t}function RC(e,t,a){let n=[];for(let r=0;r<e.length;r++)n[r]=Math.ceil((t[r]-e[r])/a[r]);return n}function HA(e,t,a,n){let r=[...e];for(let s=r.length;s<n.length;s++)r.push(1);for(let s=0;s<a;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function jA(e,t,a){return a<=e?a:a-(t-1)}function qA(e,t){let a=[];for(let n=0;n<e;n++)a.push(t+n);return a}function MC(e,t,a,n,r,s,i,o,l){let u=e.length,p=new Array(u),c=new Array(u),d=new Array(u);if(t.length&&a>0){let h=t[0],f=a+1;p=XA(i,h,f,n,e),c=KA(o,h,f,r,e),d=HA(s,h,f,e)}else for(let h=0;h<u;h++)p[h]=YA(i,n,s,e,h,l),c[h]=JA(o,r,s,e,h,l),d[h]=ZA(s,h,l);return{begin:p,end:c,strides:d}}function XA(e,t,a,n,r){let s=[...r],i=qA(a,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=jA(t,a,o),u=n[l];e&1<<l&&(u=0),s[o]=u}return s}function KA(e,t,a,n,r){let s=[...r],i=qA(a,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=jA(t,a,o),u=n[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=nd(0,s[o],r[o])}return s}function ZA(e,t,a){let n=e[t];return(a&1<<t||n==null)&&(n=1),n}function YA(e,t,a,n,r,s){let i=t[r],o=a[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=n[r];return i<0&&(i+=l),i=nd(0,i,l-1),i}function JA(e,t,a,n,r,s){let i=t[r],o=a[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=n[r];return i<0&&(i+=l),o>0?i=nd(0,i,l):i=nd(-1,i,l-1),i}function $C(e,t,a){let n=a.length;for(let r=0;r<a.length;r++)if(a[r]>1){n=r;break}for(let r=n+1;r<a.length;r++)if(t[r]>0||a[r]!==e[r])return!1;return!0}function _C(e,t){let a=e.length>0?e[e.length-1]:1;for(let n=0;n<e.length-1;n++)a+=e[n]*t[n];return a}function PC(e,t,a){let n,r=e.shape.length;typeof t=="number"?n=[t,...new Array(r-1).fill(0)]:t.length<r?n=t.concat(new Array(r-t.length).fill(0)):n=t.slice(),n.forEach(i=>{P(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return a==null?s=new Array(r).fill(-1):typeof a=="number"?s=[a,...new Array(r-1).fill(-1)]:a.length<r?s=a.concat(new Array(r-a.length).fill(-1)):s=a,s=s.map((i,o)=>i>=0?i:(P(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-n[o])),[n,s]}function FC(e,t,a,n,r,s,i,o,l){let u;if(n==null?(u=new Array(t.length),u.fill(1)):u=n,i!=null&&(i&i-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let p=!1,c={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:a.slice(),strides:u.slice(),beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};for(let A=0;A<c.dims;A++)p&&(1<<A&o)!==0&&c.numAddAxisAfterEllipsis++,1<<A&i&&(p=!0);p||(c.ellipsisMask|=1<<c.dims,c.dims++);let d={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};OC(c,d);let h=!0,f=!0,m=!0,g=[],x=[];for(let A=0;A<e.length;++A){if(d.strides[A]===0)throw Error(`strides[${A}] must be non-zero`);let y=!!(d.shrinkAxisMask&1<<A),b=e[A];if(b===-1){g.push(y?1:-1);continue}let w=[d.beginMask&1<<A,d.endMask&1<<A],S=[d.strides[A]>0?0:-1,d.strides[A]>0?b:b-1];if(y&&d.strides[A]<=0)throw Error("only stride 1 allowed on non-range indexing.");m=m&&d.strides[A]===1;let C=!!(d.beginMask&1<<A&&d.endMask&1<<A);if(d.beginValid&&d.endValid){if(y){let M=d.begin[A]<0?b+d.begin[A]:d.begin[A];if(d.begin[A]=M,d.end[A]=d.begin[A]+1,M<0||M>=b)throw Error(`slice index ${d.begin[A]} of dimension ${A} out of bounds.`)}else d.begin[A]=Gg(d.begin[A],0,d.strides[A],b,w,S),d.end[A]=Gg(d.end[A],1,d.strides[A],b,w,S);let $=d.strides[A]===1&&d.begin[A]===0&&d.end[A]===b;h=h&&$,f=f&&(A===0&&d.strides[A]===1||$)}else h=h&&d.strides[A]===1&&C,f=f&&(A===0&&d.strides[A]===1||C);let E,_=!1;if(d.beginValid&&d.endValid?(E=d.end[A]-d.begin[A],_=!0):y?(E=1,_=!0):C&&b>=0&&(d.strides[A]<0?E=-b:E=b,_=!0),_){let $;E===0||E<0!=d.strides[A]<0?$=0:$=Math.trunc(E/d.strides[A])+(E%d.strides[A]!==0?1:0),g.push($)}else g.push(-1)}for(let A=0;A<d.finalShapeGatherIndices.length;++A){let y=d.finalShapeGatherIndices[A];y>=0?x.push(g[y]):y===t1&&x.push(1)}return{finalShapeSparse:x.filter((A,y)=>d.finalShapeGatherIndices[y]!==t1),finalShape:x,isIdentity:h,sliceDim0:f,isSimpleSlice:m,begin:d.begin,end:d.end,strides:d.strides}}function OC(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let a=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let n=0;n<e.dims;n++)if(1<<n&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-n)+1+e.numAddAxisAfterEllipsis,t.dims);for(;a<r;a++)t.begin[a]=0,t.end[a]=0,t.strides[a]=1,t.beginMask|=1<<a,t.endMask|=1<<a,t.finalShapeGatherIndices.push(a),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[a]=n}else if(1<<n&e.newAxisMask)t.finalShapeGatherIndices.push(t1),t.finalShapeGatherIndicesSparse.push(-1);else{if(a===t.begin.length)throw Error(`Index out of range using input dim ${a}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[a]=e.begin[n]),e.end!=null&&(t.end[a]=e.end[n]),t.strides[a]=e.strides[n],e.beginMask&1<<n&&(t.beginMask|=1<<a),e.endMask&1<<n&&(t.endMask|=1<<a),e.shrinkAxisMask&1<<n?(t.finalShapeGatherIndices.push(CC),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<a):(t.finalShapeGatherIndices.push(a),t.finalShapeGatherIndicesSparse.push(n)),t.inputShapeGatherIndicesSparse[a]=n,a++}}function Gg(e,t,a,n,r,s){if(r[t])return a>0?s[t]:s[t+1&1];{let i=e<0?n+e:e;return i<s[0]?s[0]:i>s[1]?s[1]:i}}var QA={};Xe(QA,{Serializable:()=>ey,SerializationMap:()=>Ms,registerClass:()=>ns});var ey=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Ms=class{constructor(){this.classNameMap={}}static getMap(){return Ms.instance==null&&(Ms.instance=new Ms),Ms.instance}static register(e){Ms.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function ns(e){P(e.className!=null,()=>"Class being registered does not have the static className property defined."),P(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),P(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Ms.register(e)}var ty={};Xe(ty,{TEST_EPSILON_FLOAT16:()=>ay,createVideoElement:()=>GC,encodeStrings:()=>ny,expectArrayBuffersEqual:()=>UC,expectArraysClose:()=>zC,expectArraysEqual:()=>BC,expectNumbersClose:()=>WC,expectPromiseToFail:()=>LC,expectValuesInRange:()=>VC,play:()=>HC,testEpsilon:()=>h2});var DC=.001,ay=.1;function zC(e,t,a){return a==null&&(a=h2()),a1(e,t,(n,r)=>f2(n,r,a))}function h2(){return z.backend.floatPrecision()===32?DC:ay}function a1(e,t,a){let n=!0;if((da(e)||da(t))&&(n=!1),da(e)&&da(t)&&(n=!0),n){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Zn(e),o=Zn(t);if(!Jr(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=da(e)?e:Os(e),s=da(t)?t:Os(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
Actual: ${r}.
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!a(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
Actual: ${r}.
Expected: ${s}.`)}typeof expect!="undefined"&&expect().nothing()}function LC(e,t){e().then(()=>t.fail(),()=>t()),typeof expect!="undefined"&&expect().nothing()}function BC(e,t){let a=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Dr(e)||Dr(e[0])||Dr(t)||Dr(t[0])?a1(e,a,(n,r)=>n==r):a1(e,t,(n,r)=>f2(n,r,0))}function WC(e,t,a){if(a==null&&(a=h2()),!f2(e,t,a))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`);typeof expect!="undefined"&&expect().nothing()}function f2(e,t,a){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>a)}function VC(e,t,a){for(let n=0;n<e.length;n++)if(e[n]<t||e[n]>a)throw new Error(`Value out of range:${e[n]} low: ${t}, high: ${a}`)}function UC(e,t){let a=new Float32Array(e),n=new Float32Array(t);if(a.length!==n.length)throw new Error(`Expected ArrayBuffer to be of length ${n.length}, but it was ${a.length}`);for(let r=0;r<n.length;r++)if(a[r]!==n[r])throw new Error(`Expected ArrayBuffer value at ${r} to be ${n[r]} but got ${a[r]} instead`)}function ny(e){for(let t=0;t<e.length;t++){let a=e[t];Array.isArray(a)?ny(a):e[t]=Gd(a)}return e}function GC(e){let t=document.createElement("video");return"playsInline"in t&&(t.playsInline=!0),t.muted=!0,t.loop=!0,t.style.position="fixed",t.style.left="0px",t.style.top="0px",t.preload="auto",t.appendChild(e),new Promise(a=>{t.addEventListener("loadeddata",n=>a(t)),t.load()})}async function HC(e){await e.play(),"requestVideoFrameCallback"in e&&await new Promise(t=>{e.requestVideoFrameCallback(t)})}var m2="4.1.0";function jC(e,t){let a=R(e,"a","add"),n=R(t,"b","add");[a,n]=St(a,n);let r={a,b:n};return z.runKernel(Qr,r)}var be=D({add_:jC});function qC(e,t){let a=R(e,"a","floorDiv"),n=R(t,"b","floorDiv");[a,n]=St(a,n);let r={a,b:n};return z.runKernel(gi,r)}var Yd=D({floorDiv_:qC});function XC(e,t){let a=R(e,"a","div"),n=R(t,"b","div");if([a,n]=St(a,n),a.dtype==="int32"&&n.dtype==="int32")return Yd(a,n);let r={a,b:n},s={};return z.runKernel(di,r,s)}var me=D({div_:XC});function KC(e,t){let a=R(e,"a","mul"),n=R(t,"b","mul");[a,n]=St(a,n);let r={a,b:n};return z.runKernel(Oi,r)}var ae=D({mul_:KC});function ZC(e){let t=R(e,"x","abs");if(t.dtype==="complex64"){let a={x:t};return z.runKernel(Gc,a)}else{let a={x:t};return z.runKernel(vl,a)}}var ja=D({abs_:ZC});function YC(e){let t={x:R(e,"x","acos")};return z.runKernel(wl,t)}var ry=D({acos_:YC});function JC(e){let t={x:R(e,"x","acosh")};return z.runKernel(kl,t)}var sy=D({acosh_:JC});function QC(e){P(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),P(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>R(r,`tensors${s}`,"addN")),a=t[0];t.forEach(r=>{if(r.dtype!==a.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!Jr(r.shape,a.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let n=t;return z.runKernel(qs,n)}var uh=D({addN_:QC});function eN(e,t=null,a=!1){let n={x:R(e,"x","all","bool")},r={axis:t,keepDims:a};return z.runKernel(Xs,n,r)}var iy=D({all_:eN});function tN(e,t=null,a=!1){let n={x:R(e,"x","any","bool")},r={axis:t,keepDims:a};return z.runKernel(Ks,n,r)}var oy=D({any_:tN});function aN(e,t=0){let a={x:R(e,"x","argMax")},n={axis:t};return z.runKernel(Zs,a,n)}var tr=D({argMax_:aN});function nN(e,t=0){let a={x:R(e,"x","argMin")},n={axis:t};return z.runKernel(kd,a,n)}var ly=D({argMin_:nN});function rN(e){let t={x:R(e,"x","asin")};return z.runKernel(Il,t)}var uy=D({asin_:rN});function sN(e){let t={x:R(e,"x","asinh")};return z.runKernel(Sl,t)}var dy=D({asinh_:sN});function iN(e){let t={x:R(e,"x","atan")};return z.runKernel(Tl,t)}var py=D({atan_:iN});function oN(e,t){let a=R(e,"a","atan2"),n=R(t,"b","atan2");[a,n]=St(a,n);let r={a,b:n};return z.runKernel(Nl,r)}var cy=D({atan2_:oN});function lN(e){let t={x:R(e,"x","atanh")};return z.runKernel(Cl,t)}var hy=D({atanh_:lN});function uN(e,t,a,n,r="NHWC",s){let i=e[3],o=[...t,i],l=gy(r);return Jd(e,o,a,s,n,null,null,l)}function fy(e,t,a,n,r,s,i="channelsLast"){let[o,l]=Tc(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Jd(e,u,a,n,r,s,!1,i)}function dN(e,t,a,n,r,s,i="NDHWC"){let[o,l,u]=n1(t),p,c;if(i==="NDHWC")c="channelsLast",p=[o,l,u,e[4],e[4]];else if(i==="NCDHW")c="channelsFirst",p=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return my(e,p,a,n,r,!1,c,s)}function Jd(e,t,a,n,r,s,i=!1,o="channelsLast"){let[l,u,p,c]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,p,c]=e;else if(o==="channelsFirst")[l,c,u,p]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,h,,f]=t,[m,g]=Tc(a),[x,A]=Tc(n),y=nl(d,x),b=nl(h,A),{padInfo:w,outHeight:S,outWidth:C}=hN(r,u,p,m,g,y,b,s,o),E=i?f*c:f,_;return o==="channelsFirst"?_=[l,E,S,C]:o==="channelsLast"&&(_=[l,S,C,E]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:p,inChannels:c,outHeight:S,outWidth:C,outChannels:E,padInfo:w,strideHeight:m,strideWidth:g,filterHeight:d,filterWidth:h,effectiveFilterHeight:y,effectiveFilterWidth:b,dilationHeight:x,dilationWidth:A,inShape:e,outShape:_,filterShape:t}}function my(e,t,a,n,r,s=!1,i="channelsLast",o){let[l,u,p,c,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,p,c,d]=e;else if(i==="channelsFirst")[l,d,u,p,c]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,f,m,,g]=t,[x,A,y]=n1(a),[b,w,S]=n1(n),C=nl(h,b),E=nl(f,w),_=nl(m,S),{padInfo:$,outDepth:M,outHeight:I,outWidth:N}=fN(r,u,p,c,x,A,y,C,E,_,o),O=s?g*d:g,L;return i==="channelsFirst"?L=[l,O,M,I,N]:i==="channelsLast"&&(L=[l,M,I,N,O]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:p,inWidth:c,inChannels:d,outDepth:M,outHeight:I,outWidth:N,outChannels:O,padInfo:$,strideDepth:x,strideHeight:A,strideWidth:y,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:C,effectiveFilterHeight:E,effectiveFilterWidth:_,dilationDepth:b,dilationHeight:w,dilationWidth:S,inShape:e,outShape:L,filterShape:t}}function pN(e,t,a,n,r){n==null&&(n=g2(e,t,a));let s=e[0],i=e[1],o=Ps((s-t+2*n)/a+1,r),l=Ps((i-t+2*n)/a+1,r);return[o,l]}function cN(e,t,a,n,r,s){r==null&&(r=g2(e,t,n));let i=e[0],o=e[1],l=e[2],u=Ps((i-t+2*r)/n+1,s),p=Ps((o-t+2*r)/n+1,s),c=Ps((l-t+2*r)/n+1,s);return[u,p,c,a]}function g2(e,t,a,n=1){let r=nl(t,n);return Math.floor((e[0]*(a-1)-a+r)/2)}function Tc(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function n1(e){return typeof e=="number"?[e,e,e]:e}function nl(e,t){return t<=1?e:e+(e-1)*(t-1)}function hN(e,t,a,n,r,s,i,o,l){let u,p,c;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=pN([t,a],s,n,e,o);p=d[0],c=d[1]}else if(e==="same"){p=Math.ceil(t/n),c=Math.ceil(a/r);let d=Math.max(0,(p-1)*n+s-t),h=Math.max(0,(c-1)*r+i-a),f=Math.floor(d/2),m=d-f,g=Math.floor(h/2),x=h-g;u={top:f,bottom:m,left:g,right:x,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},p=Math.ceil((t-s+1)/n),c=Math.ceil((a-i+1)/r);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:d,bottom:h,left:f,right:m,type:d===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},p=Ps((t-s+d+h)/n+1,o),c=Ps((a-i+f+m)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:p,outWidth:c}}function fN(e,t,a,n,r,s,i,o,l,u,p){let c,d,h,f;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let m=cN([t,a,n,1],o,1,r,e,p);d=m[0],h=m[1],f=m[2]}else if(e==="same"){d=Math.ceil(t/r),h=Math.ceil(a/s),f=Math.ceil(n/i);let m=(d-1)*r+o-t,g=(h-1)*s+l-a,x=(f-1)*i+u-n,A=Math.floor(m/2),y=m-A,b=Math.floor(g/2),w=g-b,S=Math.floor(x/2),C=x-S;c={top:b,bottom:w,left:S,right:C,front:A,back:y,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/r),h=Math.ceil((a-l+1)/s),f=Math.ceil((n-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outDepth:d,outHeight:h,outWidth:f}}function Ps(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function dd(e){let[t,a,n]=Tc(e);return t===1&&a===1&&n===1}function vr(e,t){return dd(e)||dd(t)}function gy(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function In(e,t,a){if(a!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${a} but got pad ${t}.`);if(typeof t=="number")P(il(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${a} but got pad ${t}.`);else if(typeof t=="object")t.forEach(n=>{n.forEach(r=>{P(il(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${a} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function mN(e,t){let a={x:R(e,"x","reshape","string_or_numeric")},n={shape:t};return z.runKernel(jl,a,n)}var J=D({reshape_:mN});function gN(e,t,a,n,r){let s=R(e,"x","avgPool","float32"),i=1;P(vr(a,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=J(s,[1,s.shape[0],s.shape[1],s.shape[2]])),P(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),In("avgPool",n,r);let u={x:o},p={filterSize:t,strides:a,pad:n,dimRoundingMode:r},c=z.runKernel(Ys,u,p);return c=He(c,s.dtype),l?J(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var x2=D({avgPool_:gN});function xN(e,t,a,n,r,s="NDHWC"){let i=R(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=J(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),P(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),P(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),In("avgPool3d",n,r);let u={x:o},p={filterSize:t,strides:a,pad:n,dimRoundingMode:r,dataFormat:s},c=z.runKernel(Vc,u,p);return c=He(c,o.dtype),l?J(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var xy=D({avgPool3d_:xN});function AN(e,t=0){P(e.length>=1,()=>"Pass at least one tensor to concat");let a=ud(e,"tensors","concat","string_or_numeric");if(a[0].dtype==="complex64"&&a.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),a.length===1)return wa(a[0]);let n=a,r={axis:t};return z.runKernel(Rl,n,r)}var at=D({concat_:AN});function yN(e){let t={x:R(e,"x","sigmoid","float32")};return z.runKernel(eo,t)}var Da=D({sigmoid_:yN});function bN(e,t,a){let n=R(e,"x","slice","string_or_numeric");if(n.rank===0)throw new Error("Slicing scalar is not possible");let r={x:n},s={begin:t,size:a};return z.runKernel(Kl,r,s)}var Pe=D({slice_:bN});function vN(e){let t={x:R(e,"x","tanh","float32")};return z.runKernel(lo,t)}var Cc=D({tanh_:vN});function wN(e,t,a,n,r,s){let i=R(e,"forgetBias","basicLSTMCell"),o=R(t,"lstmKernel","basicLSTMCell"),l=R(a,"lstmBias","basicLSTMCell"),u=R(n,"data","basicLSTMCell"),p=R(r,"c","basicLSTMCell"),c=R(s,"h","basicLSTMCell"),d=at([u,c],1),h=st(d,o),f=be(h,l),m=f.shape[0],g=f.shape[1]/4,x=[m,g],A=Pe(f,[0,0],x),y=Pe(f,[0,g],x),b=Pe(f,[0,g*2],x),w=Pe(f,[0,g*3],x),S=be(ae(Da(A),Cc(y)),ae(p,Da(be(i,b)))),C=ae(Cc(S),Da(w));return[S,C]}var Ay=D({basicLSTMCell_:wN});function kN(e,t,a){let n=R(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);P(n.rank>=1+t.length,()=>`input rank is ${n.rank} but should be > than blockShape.length ${t.length}`),P(a.length===t.length,()=>`crops.length is ${a.length} but should be equal to blockShape.length ${t.length}`),P(n.shape[0]%r===0,()=>`input tensor batch is ${n.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:n},i={blockShape:t,crops:a};return z.runKernel(El,s,i)}var A2=D({batchToSpaceND_:kN});function IN(e){let t;return e.rank===0||e.rank===1?t=J(e,[1,1,1,e.size]):e.rank===2?t=J(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=J(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function SN(e,t,a,n,r,s){s==null&&(s=.001);let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(a,"variance","batchNorm"),u;r!=null&&(u=R(r,"scale","batchNorm"));let p;n!=null&&(p=R(n,"offset","batchNorm")),P(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),P(p==null||o.rank===p.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),P(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let c={x:IN(i),scale:u,offset:p,mean:o,variance:l},d={varianceEpsilon:s},h=z.runKernel(xi,c,d);return J(h,i.shape)}var Qd=D({batchNorm_:SN});function TN(e,t,a,n,r,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(a,"variance","batchNorm"),u;r!=null&&(u=R(r,"scale","batchNorm"));let p;return n!=null&&(p=R(n,"offset","batchNorm")),P(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),P(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),P(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&P(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),p!=null&&P(p.rank===2||p.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${p.rank}.`),Qd(i,o,l,p,u,s)}var yy=D({batchNorm2d_:TN});function CN(e,t,a,n,r,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(a,"variance","batchNorm"),u;r!=null&&(u=R(r,"scale","batchNorm"));let p;return n!=null&&(p=R(n,"offset","batchNorm")),P(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),P(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),P(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&P(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),p!=null&&P(p.rank===3||p.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${p.rank}.`),Qd(i,o,l,p,u,s)}var by=D({batchNorm3d_:CN});function NN(e,t,a,n,r,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(a,"variance","batchNorm"),u;r!=null&&(u=R(r,"scale","batchNorm"));let p;return n!=null&&(p=R(n,"offset","batchNorm")),P(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),P(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),P(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&P(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),p!=null&&P(p.rank===4||p.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${p.rank}.`),Qd(i,o,l,p,u,s)}var vy=D({batchNorm4d_:NN});function EN(e,t,a){let n=R(e,"x","bincount"),r=R(t,"weights","bincount");P(n.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${n.dtype}`),P(a>=0,()=>`size must be non-negative, but got ${a}.`),P(r.size===n.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${n.shape}, weights shape: ${r.shape}.`);let s={x:n,weights:r},i={size:a};return z.runKernel(Id,s,i)}var y2=D({bincount_:EN});function RN(e,t){let a=R(e,"s0","broadcastArgs","int32"),n=R(t,"s1","broadcastArgs","int32");if(a.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${a.rank}`);if(n.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${n.rank}`);let r={s0:a,s1:n};return z.runKernel(Uc,r)}var wy=D({broadcastArgs_:RN});function MN(e,t){let a=R(e,"broadcastTo","x"),n=a.shape;if(Ya(t),t.length<a.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${a.rank}.`);if(t.length>a.rank){let l=a.shape.slice();for(;l.length<t.length;)l.unshift(1);a=J(a,l)}let r=a.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(a.shape[l]!==1)throw new Error(`broadcastTo(): [${n}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return wa(a);let i={x:a},o={reps:s};return z.runKernel(ts,i,o)}var rl=D({broadcastTo_:MN});function $N(e){let t={x:R(e,"x","ceil","float32")};return z.runKernel(ei,t)}var ky=D({ceil_:$N});function ar(e,t,a){Ya(e);let n={shape:e,value:t,dtype:a};return z.runKernel(Pl,{},n)}function _N(e,t,a){let n=R(e,"x","clipByValue");if(P(t<=a,()=>`Error in clip: min (${t}) must be less than or equal to max (${a}).`),t===a)return ar(n.shape,t,n.dtype);let r={x:n},s={clipValueMin:t,clipValueMax:a};return z.runKernel(es,r,s)}var Iy=D({clipByValue_:_N});function PN(e){return at(e,0)}var Sy=D({concat1d_:PN});function FN(e,t){return at(e,t)}var nu=D({concat2d_:FN});function ON(e,t){return at(e,t)}var Ty=D({concat3d_:ON});function DN(e,t){return at(e,t)}var Cy=D({concat4d_:DN});function zN(e,t,a,n,r="NHWC",s=[1,1],i){let o=R(e,"x","conv2d","float32"),l=R(t,"filter","conv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=J(o,[1,o.shape[0],o.shape[1],o.shape[2]])),P(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),P(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),In("conv2d",n,i);let c=r==="NHWC"?u.shape[3]:u.shape[1];P(c===l.shape[2],()=>`Error in conv2d: depth of input (${c}) must match input depth for filter ${l.shape[2]}.`),P(vr(a,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${a} and dilations '${s}'`);let d={x:u,filter:l},h={strides:a,pad:n,dataFormat:r,dilations:s,dimRoundingMode:i},f=z.runKernel(ti,d,h);return p?J(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var ep=D({conv2d_:zN});function LN(e,t,a,n,r="NWC",s=1,i){let o=R(e,"x","conv1d"),l=R(t,"filter","conv1d"),u=o,p=!1;o.rank===2&&(p=!0,u=J(o,[1,o.shape[0],o.shape[1]])),P(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),P(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),In("conv1d",n,i),P(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),P(vr(a,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${a} and dilation '${s}'`),P(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let c=J(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=J(u,[u.shape[0],1,u.shape[1],u.shape[2]]),h=ep(d,c,[1,a],n,"NHWC",[1,s],i);return p?J(h,[h.shape[2],h.shape[3]]):J(h,[h.shape[0],h.shape[2],h.shape[3]])}var Ny=D({conv1d_:LN});function BN(e,t,a,n,r,s="NHWC",i){P(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=J(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),P(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),P(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),P(a.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${a.rank}`);let p=s==="NHWC"?o[3]:o[1],c=s==="NHWC"?l.shape[3]:l.shape[1];P(p===a.shape[2],()=>`Error in conv2dDerInput: depth of input (${p}) must match input depth for filter ${a.shape[2]}.`),P(c===a.shape[3],()=>`Error in conv2dDerInput: depth of output (${c}) must match output depth for filter ${a.shape[3]}.`),In("conv2dDerInput",r,i);let d={dy:l,filter:a},h={strides:n,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},f=z.runKernel(ai,d,h);return u?J(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Ey=D({conv2DBackpropInput_:BN});function WN(e,t,a,n,r,s){let i=R(e,"x","conv2dTranspose"),o=R(t,"filter","conv2dTranspose");return Ey(a,i,o,n,r,"NHWC",s)}var Ry=D({conv2dTranspose_:WN});function VN(e,t,a,n,r="NDHWC",s=[1,1,1]){let i=R(e,"x","conv3d"),o=R(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=J(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),P(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),P(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),P(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),P(vr(a,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${a} and dilations '${s}'`),P(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let p={x:l,filter:o},c={strides:a,pad:n,dataFormat:r,dilations:s},d=z.runKernel(jc,p,c);return u?J(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var My=D({conv3d_:VN});function UN(e,t,a,n,r){P(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=J(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];P(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),P(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),P(a.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${a.rank}`),P(l===a.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${a.shape[3]}.`),P(u===a.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${a.shape[4]}.`);let p={dy:i,filter:a},c={pad:r,strides:n,inputShape:s},d=z.runKernel(qc,p,c);return o?J(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var GN=D({conv3DBackpropInput_:UN});function HN(e,t,a,n,r){let s=R(e,"x","conv3dTranspose"),i=R(t,"filter","conv3dTranspose");return GN(a,s,i,n,r)}var $y=D({conv3dTranspose_:HN});function jN(e){let t={x:R(e,"x","cos","float32")};return z.runKernel(ni,t)}var _y=D({cos_:jN});function qN(e){let t={x:R(e,"x","cosh","float32")};return z.runKernel(ri,t)}var Py=D({cosh_:qN});function XN(e,t=0,a=!1,n=!1){let r={x:R(e,"x","cumprod")},s={axis:t,exclusive:a,reverse:n};return z.runKernel(si,r,s)}var Fy=D({cumprod_:XN});function KN(e,t=0,a=!1,n=!1){let r={x:R(e,"x","cumsum")},s={axis:t,exclusive:a,reverse:n};return z.runKernel(ii,r,s)}var Oy=D({cumsum_:KN});function ZN(e,t,a,n=!1){let r=R(e,"x","denseBincount"),s=R(t,"weights","denseBincount");P(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),P(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),P(a>=0,()=>`size must be non-negative, but got ${a}.`),P(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:a,binaryOutput:n};return z.runKernel(Td,i,o)}var Dy=D({denseBincount_:ZN});function YN(e,t,a="NHWC"){let n=R(e,"x","depthToSpace","float32"),r=a==="NHWC"?n.shape[1]:n.shape[2],s=a==="NHWC"?n.shape[2]:n.shape[3],i=a==="NHWC"?n.shape[3]:n.shape[1];P(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),P(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${r} and ${t} for depthToSpace with input shape
${n.shape}`),P(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${t} for depthToSpace with input shape
${n.shape}`),P(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${n.shape}`);let o={x:n},l={blockSize:t,dataFormat:a};return z.runKernel(li,o,l)}var zy=D({depthToSpace_:YN});function JN(e,t,a,n,r="NHWC",s=[1,1],i){let o=R(e,"x","depthwiseConv2d","float32"),l=R(t,"filter","depthwiseConv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=J(o,[1,o.shape[0],o.shape[1],o.shape[2]])),P(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),P(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`);let c=r==="NHWC"?u.shape[3]:u.shape[1];P(c===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c}) must match the inChannels dimension in filter ${l.shape[2]}.`),In("depthwiseConv2d",n,i);let d={x:u,filter:l},h={strides:a,pad:n,dataFormat:r,dilations:s,dimRoundingMode:i},f=z.runKernel(ui,d,h);return p?J(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var dh=D({depthwiseConv2d_:JN});function QN(e){let t={x:R(e,"x","diag")};return z.runKernel(Zc,t)}var Ly=D({diag_:QN});function eE(e,t,a,n,r=[1,1],s="NHWC"){let i=R(e,"x","dilation2d"),o=R(t,"filter","dilation2d");P(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),P(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),P(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=J(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let p={x:l,filter:o},c={strides:a,pad:n,dilations:r},d=z.runKernel(Yc,p,c);return u?J(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var By=D({dilation2d_:eE});function tE(e,t){let a=R(e,"a","equal","string_or_numeric"),n=R(t,"b","equal","string_or_numeric");[a,n]=St(a,n),zt(a.shape,n.shape);let r={a,b:n};return z.runKernel(ci,r)}var b2=D({equal_:tE});function aE(e,t,a){let n=R(t,"a","where"),r=R(a,"b","where"),s=R(e,"condition","where","bool"),i=zt(zt(s.shape,n.shape),r.shape),o=rl(s,i),l=rl(n,i),u=rl(r,i),p={condition:o,t:l,e:u};return z.runKernel(Xl,p)}var Bs=D({where_:aE});function nE(e){let t={x:R(e,"x","zerosLike")};return z.runKernel(au,t)}var Xa=D({zerosLike_:nE});function rE(e,t){let a=R(e,"a","div"),n=R(t,"b","div");[a,n]=St(a,n);let r=me(a,n),s=Xa(r),i=b2(n,s);return Bs(i,s,r)}var Wy=D({divNoNan_:rE});function sE(e,t){let a=R(e,"t1","dot"),n=R(t,"t2","dot");P((a.rank===1||a.rank===2)&&(n.rank===1||n.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${a.rank} and ${n.rank}.`);let r=a.rank===1?a.size:a.shape[1],s=n.rank===1?n.size:n.shape[0];if(P(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),a.rank===1&&n.rank===1){let i=J(a,[1,-1]),o=J(n,[-1,1]),l=st(i,o);return J(l,[])}else if(a.rank===1&&n.rank===2){let i=J(a,[1,-1]),o=J(n,[n.shape[0],n.shape[1]]),l=st(i,o);return J(l,[l.size])}else if(a.rank===2&&n.rank===1){let i=J(n,[-1,1]),o=st(a,i);return J(o,[o.size])}else{let i=J(n,[n.shape[0],n.shape[1]]);return st(a,i)}}var Vy=D({dot_:sE});function iE(e,...t){let a=t.map((r,s)=>R(r,`tensors${s}`,"einsum")),n={equation:e};return z.runKernel(Cd,a,n)}var Uy=D({einsum_:iE});function oE(e){let t={x:R(e,"x","elu","float32")};return z.runKernel(pi,t)}var v2=D({elu_:oE});function lE(e){let t=R(e,"x","erf");P(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=He(t,"float32"));let a={x:t};return z.runKernel(Ml,a)}var Gy=D({erf_:lE});function w2(e,t){for(let a=0;a<e.length;++a)if(e[e.length-a-1]!==t-1-a)return!1;return!0}function Hy(e,t,a){let n=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<n;o++)a.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function uE(e,t){let a=[],n=e.length;for(let s=0;s<n;s++)t.indexOf(s)===-1&&a.push(e[s]);let r=t.map(s=>e[s]);return[a,r]}function tp(e,t){let a=t.map(n=>1);return Hy(e,a,t)}function dE(e,t,a){P(w2(t,a),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${a} input.`)}function pE(e,t){if(w2(e,t))return null;let a=[];for(let n=0;n<t;++n)e.indexOf(n)===-1&&a.push(n);return e.forEach(n=>a.push(n)),a}function cE(e){return e.map((t,a)=>[a,t]).sort((t,a)=>t[1]-a[1]).map(t=>t[0])}function hE(e,t){let a=[];for(let n=t-e;n<t;++n)a.push(n);return a}function fE(e,t=null,a=!1){let n={x:R(e,"x","max")},r={reductionIndices:t,keepDims:a};return z.runKernel(Ei,n,r)}var pa=D({max_:fE});function mE(e,t=null,a=!1){let n={x:R(e,"x","min")},r={axis:t,keepDims:a};return z.runKernel(_i,n,r)}var qr=D({min_:mE});function gE(e,t){let a=R(e,"base","pow"),n=R(t,"exp","pow");[a,n]=St(a,n);let r={a,b:n};return z.runKernel(Vi,r)}var dl=D({pow_:gE});function Fe(e,t){if((da(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&da(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return as(e,[],[],t)}function xE(e){let t={x:R(e,"x","sqrt","float32")};return z.runKernel(to,t)}var Yn=D({sqrt_:xE});function AE(e){let t=R(e,"x","square"),a={};return z.runKernel("Square",{x:t},a)}var kn=D({square_:AE});function yE(e,t=null,a=!1){let n=R(e,"x","sum");n.dtype==="bool"&&(n=He(n,"int32"));let r={x:n},s={axis:t,keepDims:a};return z.runKernel(ao,r,s)}var tt=D({sum_:yE});function bE(e,t="euclidean",a=null,n=!1){e=R(e,"x","norm");let r=jy(e,t,a),s=r.shape;if(n){let i=wd(a,e.shape);s=tp(r.shape,i)}return J(r,s)}function jy(e,t,a=null){if(e.rank===0)return ja(e);if(e.rank!==1&&a===null)return jy(J(e,[-1]),t,a);if(e.rank===1||typeof a=="number"||Array.isArray(a)&&a.length===1){if(t===1)return tt(ja(e),a);if(t===1/0)return pa(ja(e),a);if(t===-1/0)return qr(ja(e),a);if(t==="euclidean"||t===2)return Yn(tt(dl(ja(e),Fe(2,"int32")),a));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(a)&&a.length===2){if(t===1)return pa(tt(ja(e),a[0]),a[1]-1);if(t===1/0)return pa(tt(ja(e),a[1]),a[0]);if(t===-1/0)return qr(tt(ja(e),a[1]),a[0]);if(t==="fro"||t==="euclidean")return Yn(tt(kn(e),a));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${a}`)}var ap=D({norm_:bE});function vE(e,t=null,a=!1){return ap(e,"euclidean",t,a)}var qy=D({euclideanNorm_:vE});function wE(e){let t={x:R(e,"x","exp")};return z.runKernel(hi,t)}var Xr=D({exp_:wE});function kE(e,t=0){let a=R(e,"x","expandDims","string_or_numeric");P(t<=a.rank,()=>"Axis must be <= rank of the tensor");let n={input:a},r={dim:t};return z.runKernel($l,n,r)}var Gt=D({expandDims_:kE});function IE(e){let t={x:R(e,"x","expm1")};return z.runKernel(_l,t)}var Xy=D({expm1_:IE});function SE(e,t){let a=R(e,"x","tile","string_or_numeric");P(a.rank===t.length,()=>`Error in transpose: rank of input ${a.rank} must match length of reps ${t}.`);let n={x:a},r={reps:t};return z.runKernel(ts,n,r)}var Vr=D({tile_:SE});function TE(e,t,a,n="float32"){t==null&&(t=e);let r=Me([e,t],n),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=J(r.toTensor(),[e,t]);if(a==null)return i;if(a.length===1)return Vr(Gt(i,0),[a[0],1,1]);if(a.length===2)return Vr(Gt(Gt(i,0),0),[a[0],a[1],1,1]);if(a.length===3)return Vr(Gt(Gt(Gt(i,0),0),0),[a[0],a[1],a[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${a.length}D.`)}var k2=D({eye_:TE});function CE(e){let t={x:R(e,"x","floor","float32")};return z.runKernel(mi,t)}var I2=D({floor_:CE});function NE(e,t,a=0,n=0){let r=R(e,"x","gather"),s=R(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:a,batchDims:n};return z.runKernel(Fl,i,o)}var S2=D({gather_:NE});function EE(e,t){let a=R(e,"a","greater","string_or_numeric"),n=R(t,"b","greater","string_or_numeric");[a,n]=St(a,n),zt(a.shape,n.shape);let r={a,b:n};return z.runKernel(yi,r)}var np=D({greater_:EE});function RE(e,t){let a=R(e,"a","greaterEqual","string_or_numeric"),n=R(t,"b","greaterEqual","string_or_numeric");[a,n]=St(a,n),zt(a.shape,n.shape);let r={a,b:n};return z.runKernel(bi,r)}var T2=D({greaterEqual_:RE});function ME(e){let t={x:R(e,"x","isFinite")};return z.runKernel(Ol,t)}var Ky=D({isFinite_:ME});function $E(e){let t={x:R(e,"x","isInf")};return z.runKernel(Dl,t)}var Zy=D({isInf_:$E});function _E(e){let t={x:R(e,"x","isNaN")};return z.runKernel(wi,t)}var Yy=D({isNaN_:_E});function PE(e,t=.2){let a={x:R(e,"x","leakyRelu")},n={alpha:t};return z.runKernel(ki,a,n)}var C2=D({leakyRelu_:PE});function FE(e,t){let a=R(e,"a","less","string_or_numeric"),n=R(t,"b","less","string_or_numeric");[a,n]=St(a,n),zt(a.shape,n.shape);let r={a,b:n};return z.runKernel(Ii,r)}var Jy=D({less_:FE});function OE(e,t){let a=R(e,"a","lessEqual","string_or_numeric"),n=R(t,"b","lessEqual","string_or_numeric");[a,n]=St(a,n),zt(a.shape,n.shape);let r={a,b:n};return z.runKernel(Si,r)}var ph=D({lessEqual_:OE});function Qy(e,t,a){if(a<=0)throw new Error("The number of values should be positive.");let n={start:e,stop:t,num:a};return z.runKernel(Jc,{},n)}function DE(e,t=5,a=1,n=1,r=.5){let s=R(e,"x","localResponseNormalization");P(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),P(il(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=J(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:a,alpha:n,beta:r},p=z.runKernel(Qc,l,u);return o?J(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var eb=D({localResponseNormalization_:DE});function zE(e){let t={x:R(e,"x","log","float32")};return z.runKernel(Ti,t)}var pl=D({log_:zE});function LE(e){let t={x:R(e,"x","log1p")};return z.runKernel(zl,t)}var N2=D({log1p_:LE});function BE(e){return P(Ur(e),()=>"The f passed in grad(f) must be a function"),(t,a)=>{let n=R(t,"x","tf.grad","string_or_numeric"),r=a!=null?R(a,"dy","tf.grad"):null;return z.tidy(()=>{let{value:s,grads:i}=z.gradients(()=>e(n),[n],r);return r!=null&&Sa(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),ch(i),i[0]})}}function WE(e){return P(Ur(e),()=>"The f passed in grads(f) must be a function"),(t,a)=>{P(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let n=ud(t,"args","tf.grads","string_or_numeric"),r=a!=null?R(a,"dy","tf.grads"):null;return z.tidy(()=>{let{value:s,grads:i}=z.gradients(()=>e(...n),n,r);return r!=null&&Sa(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),ch(i),i})}}function VE(e){return P(Ur(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,a)=>{P(t instanceof pt,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),P(a==null||a instanceof pt,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:n,value:r}=z.gradients(()=>e(t),[t],a);return ch(n),{grad:n[0],value:r}}}function UE(e){return P(Ur(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,a)=>{P(Array.isArray(t)&&t.every(r=>r instanceof pt),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),P(a==null||a instanceof pt,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let n=z.gradients(()=>e(...t),t,a);return a!=null&&Sa(n.value.shape,a.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),ch(n.grads),n}}function tb(e,t){P(Ur(e),()=>"The f passed in variableGrads(f) must be a function"),P(t==null||Array.isArray(t)&&t.every(u=>u instanceof od),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let a=t!=null;if(!a){t=[];for(let u in z.registeredVariables)t.push(z.registeredVariables[u])}let n=a?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),P(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=z.gradients(e,t,null,s);P(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),P(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,p)=>{o[p]!=null&&(l[u.name]=o[p])}),n!=null&&n.forEach(u=>l[u.name]=null),{value:i,grads:l}}function Jn(e){return z.customGrad(e)}function ch(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function GE(e){let t={x:R(e,"x","softplus")};return z.runKernel(Fd,t)}var E2=D({softplus_:GE});function HE(e){let t=R(e,"x","logSigmoid");return Jn(a=>({value:qn(E2(qn(a))),gradFunc:n=>ae(n,Da(qn(a)))}))(t)}var ab=D({logSigmoid_:HE});function jE(e,t){let a=R(e,"a","sub"),n=R(t,"b","sub");[a,n]=St(a,n);let r={a,b:n};return z.runKernel(io,r)}var fe=D({sub_:jE});function qE(e,t=-1){let a=R(e,"logits","logSoftmax");if(t===-1&&(t=a.rank-1),t!==a.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${a.rank} and axis was ${t}`);return Jn((n,r)=>{let s=pa(n,t,!0),i=fe(n,s),o=fe(He(i,"float32"),pl(tt(Xr(i),t,!0)));return r([o]),{value:o,gradFunc:(l,u)=>{let[p]=u,c=!0,d=Xr(p);return fe(l,ae(tt(l,t,c),d))}}})(a)}var nb=D({logSoftmax_:qE});function XE(e,t=null,a=!1){let n=R(e,"x","logSumExp"),r=wd(t,n.shape),s=pa(n,r,!0),i=fe(n,s),o=Xr(i),l=tt(o,r),u=pl(l),p=be(J(s,u.shape),u);if(a){let c=tp(p.shape,r);return J(p,c)}return p}var R2=D({logSumExp_:XE});function KE(e,t){let a=R(e,"a","logicalAnd","bool"),n=R(t,"b","logicalAnd","bool");zt(a.shape,n.shape);let r={a,b:n};return z.runKernel(Ci,r)}var pd=D({logicalAnd_:KE});function ZE(e){let t={x:R(e,"x","logicalNot","bool")};return z.runKernel(Ni,t)}var M2=D({logicalNot_:ZE});function YE(e,t){let a=R(e,"a","logicalOr","bool"),n=R(t,"b","logicalOr","bool");zt(a.shape,n.shape);let r={a,b:n};return z.runKernel(Ll,r)}var $2=D({logicalOr_:YE});function JE(e,t){let a=R(e,"a","logicalXor","bool"),n=R(t,"b","logicalXor","bool");return zt(a.shape,n.shape),pd($2(e,t),M2(pd(e,t)))}var rb=D({logicalXor_:JE}),rc=2147483648;function QE(e,t,a="left"){let n=R(e,"sortedSequence","searchSorted"),r=R(t,"values","searchSorted"),s=n.shape[n.shape.length-1],i=r.shape[r.shape.length-1],o=J(n,[-1,s]),l=J(r,[-1,i]);if(o.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(o.shape[0]!==l.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(At(l.shape)>=rc)throw new Error(`values tensor size must less than ${rc}`);if(o.shape[1]>=rc)throw new Error(`trailing dim_size must less than ${rc} for int32 output type, was ${o.shape[1]}`);let u={sortedSequence:o,values:l},p={side:a};return z.runKernel($d,u,p)}var hh=D({searchSorted_:QE});function sb(e,t){return hh(e,t,"left")}function eR(e,t,a,n,r){let s=R(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=J(s,[1,s.shape[0],s.shape[1],s.shape[2]])),P(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),P(vr(a,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${i}'`),In("maxPool",n,r);let u={x:o},p={filterSize:t,strides:a,pad:n,dimRoundingMode:r},c=z.runKernel(Mi,u,p);return l?J(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var _2=D({maxPool_:eR});function tR(e,t=[1,1,1],a,n,r,s="NDHWC"){let i=R(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=J(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),P(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),P(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),In("maxPool3d",n,r);let u={x:o},p={filterSize:t,strides:a,pad:n,dimRoundingMode:r,dataFormat:s},c=z.runKernel(eh,u,p);return l?J(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var ib=D({maxPool3d_:tR});function aR(e,t,a,n,r=!1){let s={x:R(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:a,pad:n,includeBatchInIndex:r},o=z.runKernel(th,s,i);return{result:o[0],indexes:o[1]}}var ob=D({maxPoolWithArgmax_:aR});function nR(e,t){let a=R(e,"a","maximum"),n=R(t,"b","maximum");[a,n]=St(a,n),a.dtype==="bool"&&(a=He(a,"int32"),n=He(n,"int32")),zt(a.shape,n.shape);let r={a,b:n};return z.runKernel(Ri,r)}var P2=D({maximum_:nR});function rR(e,t=null,a=!1){let n={x:R(e,"x","mean")},r={axis:t,keepDims:a};return z.runKernel($i,n,r)}var cd=D({mean_:rR});function hn(e,t="float32"){if(Ya(e),t==="complex64"){let n=hn(e,"float32"),r=hn(e,"float32");return Ar(n,r)}let a=Wc(At(e),t);return z.makeTensor(a,e,t)}function Lr(e,t="float32"){if(Ya(e),t==="complex64"){let n=Lr(e,"float32"),r=hn(e,"float32");return Ar(n,r)}let a=O1(At(e),t);return z.makeTensor(a,e,t)}function lb(e,t,{indexing:a="xy"}={}){if(a!=="xy"&&a!=="ij")throw new TypeError(`${a} is not a valid third argument to meshgrid`);if(e===void 0)return[];let n=R(e,"x","meshgrid",e instanceof pt?e.dtype:"float32");if(t===void 0)return[n];let r=R(t,"y","meshgrid",t instanceof pt?t.dtype:"float32"),s=At(n.shape),i=At(r.shape);return a==="xy"?(n=J(n,[1,-1]),r=J(r,[-1,1]),[st(Lr([i,1],n.dtype),n),st(r,Lr([1,s],r.dtype))]):(n=J(n,[-1,1]),r=J(r,[1,-1]),[st(n,Lr([1,i],n.dtype)),st(Lr([s,1],r.dtype),r)])}function sR(e,t){let a=R(e,"a","minimum"),n=R(t,"b","minimum");[a,n]=St(a,n),a.dtype==="bool"&&(a=He(a,"int32"),n=He(n,"int32")),zt(a.shape,n.shape);let r={a,b:n};return z.runKernel(Pi,r)}var F2=D({minimum_:sR});function iR(e,t,a){P(a==="reflect"||a==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${a}.`);let n=R(e,"x","mirrorPad");if(n.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");P(t.length===n.rank,()=>`Padding doesn't match input. Must be ${n.rank}. Got ${t.length}.`);let r=a==="reflect"?1:0;for(let o=0;o<n.rank;o++)P(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),P(t[o][0]>=0&&t[o][0]<=n.shape[o]-r&&t[o][1]>=0&&t[o][1]<=n.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${n.shape[o]-r} or less than 0 for input of shape ${n.shape}`);let s={paddings:t,mode:a},i={x:n};return z.runKernel(Fi,i,s)}var ub=D({mirrorPad_:iR});function oR(e,t){let a=R(e,"a","mod"),n=R(t,"b","mod");[a,n]=St(a,n);let r={a,b:n};return z.runKernel(Bl,r)}var ru=D({mod_:oR});function lR(e,t=null,a=!1){e=R(e,"x","moments");let n=wd(t,e.shape),r=cd(e,n,a),s=r.shape;a||(s=tp(r.shape,n));let i=kn(fe(He(e,"float32"),J(r,s))),o=cd(i,n,a);return{mean:r,variance:o}}var db=D({moments_:lR});function uR(e,t,a,n){let r=R(t,"data","multiRNNCell"),s=ud(a,"c","multiRNNCell"),i=ud(n,"h","multiRNNCell"),o=r,l=[];for(let c=0;c<e.length;c++){let d=e[c](o,s[c],i[c]);l.push(d[0]),l.push(d[1]),o=d[1]}let u=[],p=[];for(let c=0;c<l.length;c+=2)u.push(l[c]),p.push(l[c+1]);return[u,p]}var pb=D({multiRNNCell_:uR});function dR(e,t,a,n=!1){let r=R(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);a=a||Math.random();let o={logits:i===1?J(r,[1,-1]):r},l={numSamples:t,seed:a,normalized:n},u=z.runKernel(ah,o,l);return i===1?J(u,[u.size]):u}var cb=D({multinomial_:dR});function pR(e,t){let a=R(e,"a","notEqual","string_or_numeric"),n=R(t,"b","notEqual","string_or_numeric");[a,n]=St(a,n),zt(a.shape,n.shape);let r={a,b:n};return z.runKernel(Di,r)}var O2=D({notEqual_:pR});function cR(e){let t={x:R(e,"x","onesLike")};return z.runKernel(Ul,t)}var hb=D({onesLike_:cR});function hR(e,t){let a=R(e,"v1","outerProduct"),n=R(t,"v2","outerProduct");P(a.rank===1&&n.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${a.rank} and ${n.rank}.`);let r=J(a,[-1,1]),s=J(n,[1,-1]);return st(r,s)}var fb=D({outerProduct_:hR});function fR(e,t,a=0){let n=R(e,"x","pad");if(n.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:a},s={x:n};return z.runKernel(Wi,s,r)}var nr=D({pad_:fR});function mR(e,t,a=0){return P(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),nr(e,[t],a)}var mb=D({pad1d_:mR});function gR(e,t,a=0){return P(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),nr(e,t,a)}var gb=D({pad2d_:gR});function xR(e,t,a=0){return P(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),nr(e,t,a)}var xb=D({pad3d_:xR});function AR(e,t,a=0){return P(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),nr(e,t,a)}var Ab=D({pad4d_:AR});function yR(e,t,a){let n=R(e,"x","spaceToBatchND");P(n.rank>=1+t.length,()=>`input rank ${n.rank} should be > than [blockShape] ${t.length}`),P(a.length===t.length,()=>`paddings.shape[0] ${a.length} must be equal to [blockShape] ${t.length}`),P(n.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+a[l-1][0]+a[l-1][1])%t[l-1]===0:i,!0),()=>`input spatial dimensions ${n.shape.slice(1)} with paddings ${a.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:n},s={blockShape:t,paddings:a};return z.runKernel(Yl,r,s)}var D2=D({spaceToBatchND_:yR});function bR(e,t,a,n,r,s,i){r==null&&(r=[1,1]),s==null&&(s=1),n===0&&(n="valid");let o=R(e,"x","maxPool"),l=o,u=!1;o.rank===3&&(u=!0,l=J(o,[1,o.shape[0],o.shape[1],o.shape[2]])),P(vr(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let p=fy(l.shape,t,s,r,n),c=[p.dilationHeight,p.dilationWidth],d;n==="same"?d=wR([p.filterHeight,p.filterWidth],c):d=[[0,0],[0,0]];let h=c[0]===1&&c[1]===1,[f,m]=vR([p.inHeight,p.inWidth],c,d),g=h?n:"valid",x=h?l:D2(l,c,f),A=(a==="avg"?()=>x2(x,t,s,g,i):()=>_2(x,t,s,g,i))(),y=h?A:A2(A,c,m);return u?J(y,[y.shape[1],y.shape[2],y.shape[3]]):y}function vR(e,t,a){let n=a.map(p=>p[0]),r=a.map(p=>p[1]),s=e.concat(n,r),i=t.map((p,c)=>(p-s[c]%p)%p),o=r.map((p,c)=>p+i[c]),l=t.map((p,c)=>[n[c],o[c]]),u=t.map((p,c)=>[0,i[c]]);return[l,u]}function wR(e,t){let a=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),n=a.map(s=>Math.floor(s/2)),r=a.map((s,i)=>s-n[i]);return a.map((s,i)=>[n[i],r[i]])}var yb=D({pool_:bR});function kR(e,t){let a=R(e,"x","prelu"),n=R(t,"alpha","prelu"),r={x:a,alpha:n};return z.runKernel(Ui,r)}var z2=D({prelu_:kR});function IR(e,t=null,a=!1){let n=R(e,"x","prod");n.dtype==="bool"&&(n=He(n,"int32"));let r={x:n},s={axis:t,keepDims:a};return z.runKernel(Gi,r,s)}var bb=D({prod_:IR});function SR(e,t,a,n){let r=e.map((p,c)=>R(p,`tensors${c}`,"raggedGather","int32")),s=R(t,"paramsDenseValues","raggedGather"),i=R(a,"indices","raggedGather","int32"),o={paramsNestedSplits:r,paramsDenseValues:s,indices:i},l={outputRaggedRank:n},u=z.runKernel(nh,o,l);return{outputNestedSplits:u.slice(0,u.length-1),outputDenseValues:u[u.length-1]}}var vb=D({raggedGather_:SR});function TR(e,t,a){let n=R(e,"starts","raggedRange"),r=R(t,"limits","raggedRange",n.dtype),s=R(a,"deltas","raggedRange",n.dtype),i={starts:n,limits:r,deltas:s},o=z.runKernel(rh,i);return{rtNestedSplits:o[0],rtDenseValues:o[1]}}var wb=D({raggedRange_:TR});function CR(e,t,a,n,r){let s=R(e,"shape","raggedTensorToTensor","int32"),i=R(t,"values","raggedTensorToTensor"),o=R(a,"defaultValue","raggedTensorToTensor",i.dtype),l=n.map((c,d)=>R(c,`tensors${d}`,"raggedTensorToTensor","int32")),u={shape:s,values:i,defaultValue:o,rowPartitionTensors:l},p={rowPartitionTypes:r};return z.runKernel(sh,u,p)}var kb=D({raggedTensorToTensor_:CR});function NR(e,t,a){Ya(e);let n=At(e),r=null;if(a==null||a==="float32")r=new Float32Array(n);else if(a==="int32")r=new Int32Array(n);else if(a==="bool")r=new Uint8Array(n);else throw new Error(`Unknown data type ${a}`);for(let s=0;s<n;s++)r[s]=t();return z.makeTensor(r,e,a)}var Ib=D({rand_:NR}),L2=Al(eA()),B2=class{constructor(e,t,a,n,r){this.mean=e,this.stdDev=t,this.dtype=a,this.nextVal=NaN,this.truncated=n,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=L2.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let n=this.nextVal;return this.nextVal=NaN,n}let e,t,a=!1;for(;!a;){let n,r,s;do n=2*this.random()-1,r=2*this.random()-1,s=n*n+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*n*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(a=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},ER=class{constructor(e,t,a,n){this.alpha=e,this.beta=1/t,this.dtype=a;let r=n||Math.random();this.randu=L2.alea(r.toString()),this.randn=new B2(0,1,a,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,a,n,r,s;for(;;){do n=this.randn.nextValue(),s=1+this.c*n;while(s<=0);if(s*=s*s,e=n*n,t=1-.331*e*e,a=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<a)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},RR=class{constructor(e=0,t=1,a,n){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=a,n==null&&(n=Math.random()),typeof n=="number"&&(n=n.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=L2.alea(n)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function MR(e,t,a=1,n="float32",r){if(Ya(e),a==null&&(a=1),n==null&&(n="float32"),n!=="float32"&&n!=="int32")throw new Error(`Unsupported data type ${n}`);let s=new ER(t,a,n,r),i=Me(e,n);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Sb=D({randomGamma_:MR});function $R(e,t=0,a=1,n,r){if(Ya(e),n!=null&&n==="bool")throw new Error(`Unsupported data type ${n}`);let s=new B2(t,a,n,!1,r),i=Me(e,n);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var W2=D({randomNormal_:$R});function _R(e,t,a){if(t!=null&&t==="bool")throw new Error(`Unsupported data type ${t}`);return W2(e,0,1,t,a)}var Tb=D({randomStandardNormal_:_R});function PR(e,t=0,a=1,n="float32",r){Ya(e);let s=Me(e,n),i=new RR(t,a,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var V2=D({randomUniform_:PR});function cl(e,t,a=1,n="float32"){if(a===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:a,dtype:n};return z.runKernel(Hl,{},r)}function FR(e){let t={x:R(e,"x","reciprocal")};return z.runKernel(Hi,t)}var Cb=D({reciprocal_:FR});function OR(e){let t={x:R(e,"x","relu")};return z.runKernel(ji,t)}var rp=D({relu_:OR});function DR(e){let t={x:R(e,"x","relu6")};return z.runKernel(Ki,t)}var U2=D({relu6_:DR});function zR(e,t){let a={x:R(e,"x","reverse")},n={dims:t};return z.runKernel(Zi,a,n)}var Kr=D({reverse_:zR});function LR(e){let t=R(e,"x","reverse");return P(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Kr(t,0)}var Nb=D({reverse1d_:LR});function BR(e,t){let a=R(e,"x","reverse");return P(a.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${a.rank}.`),Kr(a,t)}var Eb=D({reverse2d_:BR});function WR(e,t){let a=R(e,"x","reverse");return P(a.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${a.rank}.`),Kr(a,t)}var Rb=D({reverse3d_:WR});function VR(e,t){let a=R(e,"x","reverse");return P(a.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${a.rank}.`),Kr(a,t)}var Mb=D({reverse4d_:VR});function UR(e){let t={x:R(e,"x","round")};return z.runKernel(ql,t)}var G2=D({round_:UR});function GR(e){let t={x:R(e,"x","rsqrt","float32")};return z.runKernel(Yi,t)}var $b=D({rsqrt_:GR});function HR(e){let t={x:R(e,"x","selu")};return z.runKernel(_d,t)}var _b=D({selu_:HR});function jR(e,t,a,n,r,s=[1,1],i="NHWC"){let o=R(e,"x","separableConv2d"),l=R(t,"depthwiseFilter","separableConv2d"),u=R(a,"pointwiseFilter","separableConv2d"),p=o,c=!1;if(o.rank===3&&(c=!0,p=J(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");P(p.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${p.rank}.`),P(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),P(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),P(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),P(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let d=l.shape[2],h=l.shape[3];P(u.shape[2]===d*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*h}, but got ${u.shape[2]}.`);let f=dh(p,l,n,r,i,s),m=ep(f,u,1,"valid",i);return c?J(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Pb=D({separableConv2d_:jR});async function qR(e,t){let a=R(e,"x","setdiff1d"),n=R(t,"y","setdiff1d");P(a.dtype===n.dtype,()=>`x and y should have the same dtype, but got x (${a.dtype}) and y (${n.dtype}).`),P(a.rank===1,()=>`x should be 1D tensor, but got x (${a.shape}).`),P(n.rank===1,()=>`y should be 1D tensor, but got y (${n.shape}).`);let r=await a.data(),s=await n.data(),i=new Set(s),o=0;for(let p=0;p<r.length;p++)i.has(r[p])||o++;let l=new jt([o],a.dtype),u=new jt([o],"int32");for(let p=0,c=0;p<r.length;p++)i.has(r[p])||(l.values[c]=r[p],u.values[c]=p,c++);return[l.toTensor(),u.toTensor()]}var Fb=qR;function XR(e){let t={x:R(e,"x","sign")};return z.runKernel(Pd,t)}var Ob=D({sign_:XR});function KR(e){let t={x:R(e,"x","sin","float32")};return z.runKernel(Qi,t)}var Db=D({sin_:KR});function ZR(e){let t={x:R(e,"x","sinh")};return z.runKernel(Zl,t)}var zb=D({sinh_:ZR});function YR(e,t,a){let n=R(e,"x","slice1d");return P(n.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${n.rank} tensor`),Pe(n,[t],[a])}var Lb=D({slice1d_:YR});function JR(e,t,a){let n=R(e,"x","slice2d");return P(n.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${n.rank} tensor`),Pe(n,t,a)}var Bb=D({slice2d_:JR});function QR(e,t,a){let n=R(e,"x","slice3d");return P(n.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${n.rank} tensor`),Pe(n,t,a)}var sp=D({slice3d_:QR});function eM(e,t,a){let n=R(e,"x","slice4d");return P(n.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${n.rank} tensor`),Pe(n,t,a)}var fh=D({slice4d_:eM});function tM(e,t=-1){let a=R(e,"logits","softmax","float32");if(t===-1&&(t=a.rank-1),t!==a.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${a.rank} and dim was ${t}`);let n={logits:a},r={dim:t};return z.runKernel(no,n,r)}var mh=D({softmax_:tM});function aM(e){P(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return z.runKernel(Nd,t)}var gh=D({fft_:aM});function nM(e){P(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return z.runKernel(Ed,t)}var hd=D({ifft_:nM});function rM(e){let t=e.shape[e.shape.length-1],a=e.size/t,n;if(t<=2){let r=J(e,[a,t]);n=hd(r)}else{let r=[a,2*(t-1)],s=J(ul(e),[a,t]),i=J(Zd(e),[a,t]),o=Kr(Pe(s,[0,1],[a,t-2]),1),l=ae(Kr(Pe(i,[0,1],[a,t-2]),1),Fe(-1)),u=at([s,o],1),p=at([i,l],1),c=J(Ar(u,p),[r[0],r[1]]);n=hd(c)}if(n=ul(n),e.rank===3&&e.shape[0]!==0){let r=n,s=e.shape[0];n=J(n,[s,n.shape[0]/s,n.shape[1]]),r.dispose()}return n}var H2=D({irfft_:rM});function sM(e,t,a=0){let n={x:R(e,"x","split")},r={numOrSizeSplits:t,axis:a};return z.runKernel(Jl,n,r)}var ka=D({split_:sM});function iM(e,t){P(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let a=e.shape[e.shape.length-1],n=e.size/a,r;if(t!=null&&t<a){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=Pe(e,f,m),a=t}else if(t!=null&&t>a){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-a,r=at([e,hn(f)],e.shape.length-1),a=t}else r=e;let s=Xa(r),i=J(Ar(r,s),[n,a]),o=gh(i),l=Math.floor(a/2)+1,u=ul(o),p=Zd(o),c=ka(u,[l,a-l],u.shape.length-1),d=ka(p,[l,a-l],p.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,J(Ar(c[0],d[0]),h)}var xh=D({rfft_:iM});function oM(e,t){let a=R(e,"a","squaredDifference"),n=R(t,"b","squaredDifference");[a,n]=St(a,n),zt(a.shape,n.shape);let r={a,b:n},s={};return z.runKernel(ro,r,s)}var j2=D({squaredDifference_:oM});function lM(e,t){let a=R(e,"x","squeeze","string_or_numeric");return J(a,nA(a.shape,t).newShape)}var _e=D({squeeze_:lM});function uM(e,t=0){let a=ud(e,"tensors","stack","string_or_numeric");P(a.length>=1,()=>"Pass at least one tensor to tf.stack"),a.length>0&&P(t<=a[0].rank,()=>"Axis must be <= rank of the tensor");let n=a,r={axis:t};return z.runKernel(Gl,n,r)}var sa=D({stack_:uM});function dM(e,t=0){let a={x:R(e,"x","step")},n={alpha:t};return z.runKernel(co,a,n)}var q2=D({step_:dM});function pM(e,t,a,n,r=0,s=0,i=0,o=0,l=0){let u={x:R(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:a,strides:n,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return z.runKernel(so,u,p)}var Wb=D({stridedSlice_:pM});function cM(e){let t={x:R(e,"x","tan","float32")};return z.runKernel(oo,t)}var Vb=D({tan_:cM});function Ht(e,t){js(e);let a=Zn(e,t);if(a.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return as(e,null,a,t)}function Xn(e,t,a){if(js(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let n=Zn(e,a);if(n.length!==2&&n.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return as(e,t,n,a)}function Ub(e,t,a){if(js(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let n=Zn(e,a);if(n.length!==4&&n.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return as(e,t,n,a)}function Gb(e,t,a){if(js(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let n=Zn(e,a);if(n.length!==5&&n.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return as(e,t,n,a)}function Hb(e,t,a){if(js(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let n=Zn(e,a);if(n.length!==6&&n.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||n,as(e,t,n,a)}function hM(e,t=1,a=!0){let n=R(e,"x","topk");if(n.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=n.shape[n.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:n},i={k:t,sorted:a},[o,l]=z.runKernel(uo,s,i);return{values:o,indices:l}}var jb=D({topk_:hM});function fM(e,t=0,a=1,n,r){if(Ya(e),n!=null&&n==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new B2(t,a,n,!0,r),i=Me(e,n);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var qb=D({truncatedNormal_:fM});function mM(e,t=0){let a=R(e,"x","unique","string_or_numeric");P(a.rank>0,()=>"The input tensor must be at least 1D");let n={x:a},r={axis:t},[s,i]=z.runKernel(ih,n,r);return{values:s,indices:i}}var Xb=D({unique_:mM});function gM(e,t,a){let n=R(e,"x","unsortedSegmentSum"),r=R(t,"segmentIds","unsortedSegmentSum","int32");P(il(a),()=>"numSegments must be of dtype int");let s={x:n,segmentIds:r},i={numSegments:a};return z.runKernel(oh,s,i)}var Kb=D({unsortedSegmentSum_:gM});function xM(e,t=0){let a=R(e,"x","unstack","string_or_numeric");P(t>=-a.shape.length&&t<a.shape.length,()=>`Axis = ${t} is not in [-${a.shape.length}, ${a.shape.length})`);let n={value:a},r={axis:t};return z.runKernel(tu,n,r)}var Ta=D({unstack_:xM});function Zb(e,t){return hh(e,t,"right")}function Yb(e,t=!0,a,n){return z.makeVariable(e,t,a,n)}function Jb(e,t){let a=[];for(let s=0;s<t.length;s++)t[s]&&a.push(s);let n=Me(e,"int32"),r=Me([a.length,e.length],"int32");for(let s=0;s<a.length;s++){let i=n.indexToLoc(a[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function AM(e){let t=R(e,"condition","whereAsync","bool"),a=await t.data(),n=Jb(t.shape,a);return e!==t&&t.dispose(),n}var X2=AM;async function yM(e,t,a){let n=R(e,"tensor","boolMask"),r=R(t,"mask","boolMask","bool"),s=a==null?0:a,i=r.rank,o=n.shape;P(i>0,()=>"mask cannot be scalar"),Sa(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=s;m<s+i;m++)l*=o[m];let u=o.slice(0,s).concat([l],o.slice(s+i)),p=J(n,u),c=J(r,[-1]),d=await X2(c),h=_e(d,[1]),f=S2(p,h,s);return e!==n&&n.dispose(),t!==r&&r.dispose(),h.dispose(),p.dispose(),c.dispose(),d.dispose(),f}var Qb=yM;function bM(e,t,a,n,r=!0){let s=R(e,"v","movingAverage"),i=R(t,"x","movingAverage"),o=R(a,"decay","movingAverage");yA(s,i),P(Jr(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=Fe(1),u=fe(l,o),p=ae(fe(i,s),u);if(r){P(n!=null,()=>"When using zeroDebias: true, step is required.");let c=R(n,"step","movingAverage");p=me(p,fe(l,dl(o,c)))}return be(s,p)}var e4=D({movingAverage_:bM});function vM(e,t,a){Ya(a);let n=R(e,"indices","scatterND","int32"),r=R(t,"updates","scatterND");c2(r,n,a);let s={indices:n,updates:r},i={shape:a};return z.runKernel(Ji,s,i)}var t4=D({scatterND_:vM});function wM(e,t,a,n){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(a.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${a.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==n.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function kM(e,t,a,n=0){Ya(a);let r=R(e,"sparseIndices","sparseToDense","int32"),s=R(t,"sparseValues","sparseToDense","string_or_numeric"),i=R(n,"defaultValue","sparseToDense",s.dtype);wM(r,s,a,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:a};return z.runKernel(Ld,o,l)}var a4=D({sparseToDense_:kM});function IM(e,t){let a=R(t,"indices","gatherND","int32"),n={params:R(e,"x","gatherND","string_or_numeric"),indices:a};return z.runKernel(Ai,n)}var n4=D({gatherND_:IM});function SM(e,t){if(t==null)return e.shape.slice();if(Jr(e.shape,t))return t;if(e.shape.length===t.length){let a=[];for(let n=0;n<e.shape.length;n++)t[n]==null&&e.shape[n]!=null?a.push(e.shape[n]):a.push(t[n]);return a}return t}function TM(e,t,a,n){let r=R(e,"x","dropout");if(P(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),P(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof pt?r.clone():r;let s=SM(r,a),i=1-t,o=me(I2(be(V2(s,0,1,"float32",n),i)),i);return ae(r,o)}var r4=D({dropout_:TM});function K2(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Ah(e,t,a){let n=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+n-1);r[s]=t-a*Math.cos(i)}return Ht(r,"float32")}async function CM(e,t,a=1){let n=R(e,"predictions","inTopK"),r=R(t,"targets","inTopK");P(n.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${n.rank}`),P(n.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${n.rank} and targets rank ${r.rank}`),Sa(n.shape.slice(0,n.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=n.shape[n.shape.length-1];P(a>0&&a<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${a}`);let i=await n.data(),o=await r.data(),[l,u]=[i.length/s,s],p=rA("bool",l);for(let c=0;c<l;c++){let d=c*u,h=i.subarray(d,d+u),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),p[c]=0;for(let m=0;m<a;m++)if(f[m].index===o[c]){p[c]=1;break}}return e!==n&&n.dispose(),t!==r&&r.dispose(),Be(p,r.shape,"bool")}var s4=CM,Z2={};Xe(Z2,{conv2d:()=>MM,depthwiseConv2d:()=>DM,matMul:()=>LM});function NM(e,t,a,n,r,s="NHWC",i){let o=e;e.rank===3&&(o=J(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=J(t,[1,t.shape[0],t.shape[1],t.shape[2]])),P(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),P(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),P(a.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${a}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],p=s==="NHWC"?l.shape[3]:l.shape[1];P(u===a[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${a[2]}.`),P(p===a[3],()=>`Error in conv2dDerFilter: depth of dy (${p}) must match output depth for filter (${a[3]}).`),In("conv2dDerFilter",r,i);let c={x:o,dy:l},d={strides:n,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:a};return z.runKernel(Hc,c,d)}var EM=D({conv2DBackpropFilter_:NM});function yh(e,t,a){if(a==null||a==="linear")return e;if(a==="relu")return ae(e,q2(t));throw new Error(`Cannot compute gradient for fused activation ${a}.`)}function bh(e,t){let a=t,n=o2(e.shape,t.shape);return n.length>0&&(a=tt(a,n)),J(a,e.shape)}function vh(e,t,a,n){if(t==="linear")return e;if(t==="relu")return rp(e);if(t==="elu")return v2(e);if(t==="relu6")return U2(e);if(t==="prelu")return z2(e,a);if(t==="leakyrelu")return C2(e,n);if(t==="sigmoid")return Da(e);throw new Error(`Unknown fused activation ${t}.`)}var wh=(e,t)=>!(e>0)||t==="linear";function RM({x:e,filter:t,strides:a,pad:n,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(l=l||"linear",wh(z.state.gradientDepth,l)===!1){P(r==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${r} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let S=ep(e,t,a,n,r,s,i);return o!=null&&(S=be(S,o)),vh(S,l,u,p)}let c=R(e,"x","conv2d","float32"),d=R(t,"filter","conv2d","float32"),h=c,f=!1;c.rank===3&&(f=!0,h=J(c,[1,c.shape[0],c.shape[1],c.shape[2]])),P(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),P(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),In("fused conv2d",n,i);let m=r==="NHWC"?h.shape[3]:h.shape[1];P(d.shape[2]===m,()=>`Error in conv2d: depth of input (${m}) must match input depth for filter ${d.shape[2]}.`),P(vr(a,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${a} and dilations '${s}'`);let g=Jd(h.shape,d.shape,a,s,n,i),x;o!=null&&(x=R(o,"bias","fused conv2d"),[x]=St(x,c),r==="NHWC"?zt(g.outShape,x.shape):(P(x.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${x.shape.length}.`),P(x.shape.length===0||x.shape[0]===g.outChannels||x.shape[0]===1,()=>`Error in fused conv2d: bias shape (${x.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let A;if(u!=null){let S=u.shape;if(P(S.length<=1||S.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${S.length}.`),S.length===1)P(S[0]===1||S[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${S}) is not compatible with the number of output channels (${g.outChannels}).`);else if(S.length===3)try{zt(S,g.outShape)}catch(C){let E=`Error in fused conv2d: PReLU activation weights (${S}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(E)}A=R(u,"prelu weights","fused conv2d")}let y=(S,C)=>{P(r==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${r} but only NHWC is currently supported.`);let[E,_,$,M]=C,I=yh(S,$,l);P(dd(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let N=Ey(_.shape,I,E,a,n),O=EM(_,I,E.shape,a,n),L=[N,O];if(M!=null){let B=bh(M,I);L.push(B)}return L},b={x:h,filter:d,bias:x,preluActivationWeights:A},w={strides:a,pad:n,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?Jn((S,C,E)=>{let _=z.runKernel(Hr,b,w);return E([C,S,_]),f&&(_=J(_,[_.shape[1],_.shape[2],_.shape[3]])),{value:_,gradFunc:y}})(h,d):Jn((S,C,E,_)=>{let $=z.runKernel(Hr,b,w);return _([C,S,$,E]),f&&($=J($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:y}})(h,d,x)}var MM=D({fusedConv2d_:RM});function $M(e,t,a,n,r,s=[1,1],i){let o=e;e.rank===3&&(o=J(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=J(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},p={strides:n,pad:r,dimRoundingMode:i,dilations:s,filterShape:a};return z.runKernel(Xc,u,p)}var _M=D({depthwiseConv2dNativeBackpropFilter_:$M});function PM(e,t,a,n,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=J(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:a},p={strides:n,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},c=z.runKernel(Kc,u,p);return l?J(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var FM=D({depthwiseConv2dNativeBackpropInput_:PM});function OM({x:e,filter:t,strides:a,pad:n,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(wh(z.state.gradientDepth,l)===!1){let w=dh(e,t,a,n,r,s,i);return o!=null&&(w=be(w,o)),vh(w,l,u,p)}let c=R(e,"x","depthwiseConv2d","float32"),d=R(t,"filter","depthwiseConv2d","float32"),h=c,f=!1;c.rank===3&&(f=!0,h=J(c,[1,c.shape[0],c.shape[1],c.shape[2]])),P(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),P(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),P(h.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),P(vr(a,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${s}'`),In("fused depthwiseConv2d",n,i);let m=Jd(h.shape,d.shape,a,s,n,i,!0),g;o!=null&&(g=R(o,"bias","fused conv2d"),[g]=St(g,c),zt(m.outShape,g.shape));let x;u!=null&&(x=R(u,"prelu weights","fused depthwiseConv2d"));let A=(w,S)=>{P(dd(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[C,E,_,$]=S,M=yh(w,_,l),I=FM(E.shape,M,C,a,n,s,i),N=_M(E,M,C.shape,a,n,s,i);if($!=null){let O=bh(g,M);return[I,N,O]}return[I,N]},y={x:h,filter:d,bias:g,preluActivationWeights:x},b={strides:a,pad:n,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?Jn((w,S,C)=>{let E=z.runKernel(jr,y,b);return C([S,w,E]),f&&(E=J(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:A}})(h,d):Jn((w,S,C,E)=>{let _=z.runKernel(jr,y,b);return E([S,w,_,C]),f&&(_=J(_,[_.shape[1],_.shape[2],_.shape[3]])),{value:_,gradFunc:A}})(h,d,g)}var DM=D({fusedDepthwiseConv2d_:OM});function zM({a:e,b:t,transposeA:a=!1,transposeB:n=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o=.2}){if(wh(z.state.gradientDepth,s)===!1){let $=st(e,t,a,n);return r!=null&&($=be($,r)),vh($,s,i,o)}let l=R(e,"a","fused matMul"),u=R(t,"b","fused matMul");[l,u]=St(l,u);let p=a?l.shape[l.rank-2]:l.shape[l.rank-1],c=n?u.shape[u.rank-1]:u.shape[u.rank-2],d=a?l.shape[l.rank-1]:l.shape[l.rank-2],h=n?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),g=At(f),x=At(m);P(p===c,()=>`Error in fused matMul: inner shapes (${p}) and (${c}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${a} and transposeB=${n} must match.`);let A=zt(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([d,h]),y=a?J(l,[g,p,d]):J(l,[g,d,p]),b=n?J(u,[x,h,c]):J(u,[x,c,h]),w;r!=null&&(w=R(r,"bias","fused matMul"),[w]=St(w,l),zt(A,w.shape));let S;i!=null&&(S=R(i,"prelu weights","fused matMul"));let C=($,M)=>{let[I,N,O,L]=M,B=yh(J($,O.shape),O,s),G,j;if(!a&&!n?(G=st(B,N,!1,!0),j=st(I,B,!0,!1)):!a&&n?(G=st(B,N,!1,!1),j=st(B,I,!0,!1)):a&&!n?(G=st(N,B,!1,!0),j=st(I,B,!1,!1)):(G=st(N,B,!0,!0),j=st(B,I,!0,!0)),r!=null){let U=bh(L,B);return[G,j,U]}else return[G,j]},E={a:y,b,bias:w,preluActivationWeights:S},_={transposeA:a,transposeB:n,activation:s,leakyreluAlpha:o};return r==null?Jn(($,M,I)=>{let N=z.runKernel(Gr,E,_);return I([$,M,N]),{value:J(N,A),gradFunc:C}})(y,b):Jn(($,M,I,N)=>{let O=z.runKernel(Gr,E,_);return N([$,M,O,I]),{value:J(O,A),gradFunc:C}})(y,b,w)}var LM=D({fusedMatMul_:zM});function BM(e){return Ah(e,.54,.46)}var WM=D({hammingWindow_:BM});function VM(e){return Ah(e,.5,.5)}var i4=D({hannWindow_:VM});function UM(e,t,a,n=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Pe(e,s,t)),s+=a;if(n)for(;s<e.size;){let o=s+t-e.size,l=at([Pe(e,s,t-o),ar([o],r)]);i.push(l),s+=a}return i.length===0?Xn([],[0,t]):J(at(i),[i.length,t])}var o4=D({frame_:UM});function GM(e,t,a,n,r=i4){n==null&&(n=K2(t));let s=o4(e,t,a),i=ae(s,r(t));return xh(i,n)}var HM=D({stft_:GM});function jM(e,t,a,n,r="bilinear",s=0){let i=R(e,"image","cropAndResize"),o=R(t,"boxes","cropAndResize","float32"),l=R(a,"boxInd","cropAndResize","int32"),u=o.shape[0];P(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),P(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),P(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),P(n.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${n.length}.`),P(n[0]>=1&&n[1]>=1,()=>`cropSize must be atleast [1,1], but was ${n}`),P(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let p={image:i,boxes:o,boxInd:l},c={method:r,extrapolationValue:s,cropSize:n};return z.runKernel(oi,p,c)}var qM=D({cropAndResize_:jM});function XM(e){let t=R(e,"image","flipLeftRight","float32");P(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let a={image:t};return z.runKernel(fi,a,{})}var KM=D({flipLeftRight_:XM});function ZM(e){let t=R(e,"image","grayscaleToRGB"),a=t.rank-1,n=t.shape[a];P(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),P(n===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${n}.`);let r=new Array(t.rank);return r.fill(1,0,a),r[a]=3,Vr(t,r)}var YM=D({grayscaleToRGB_:ZM});function JM(e,t,a=0,n=.5){let r=R(e,"image","rotateWithOffset","float32");P(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:a,center:n};return z.runKernel(ho,s,i)}var QM=D({rotateWithOffset_:JM});function su(e,t,a,n,r,s){n==null&&(n=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return a=Math.min(a,i),P(0<=n&&n<=1,()=>`iouThreshold must be in [0, 1], but was '${n}'`),P(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),P(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),P(t.rank===1,()=>"scores must be a 1D tensor"),P(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),P(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:a,iouThreshold:n,scoreThreshold:r,softNmsSigma:s}}function e$(e,t,a,n=.5,r=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppression","float32"),i=R(t,"scores","nonMaxSuppression","float32"),o=su(s,i,a,n,r);a=o.maxOutputSize,n=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:a,iouThreshold:n,scoreThreshold:r};return z.runKernel(zi,{boxes:s,scores:i},l)}var t$=D({nonMaxSuppression_:e$});function a$(e,t,a){let n=n$(e,t,a),r=n<0?-(n+1):n;e.splice(r,0,t)}function n$(e,t,a){return s$(e,t,a||r$)}function r$(e,t){return e>t?1:e<t?-1:0}function s$(e,t,a){let n=0,r=e.length,s=0,i=!1;for(;n<r;){s=n+(r-n>>>1);let o=a(t,e[s]);o>0?n=s+1:(r=s,i=!o)}return i?n:-n-1}function l4(e,t,a,n,r){return Y2(e,t,a,n,r,0)}function u4(e,t,a,n,r,s){return Y2(e,t,a,n,r,0,!1,s,!0)}function d4(e,t,a,n,r,s){return Y2(e,t,a,n,r,s,!0)}function Y2(e,t,a,n,r,s,i=!1,o=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(Hg);let p=s>0?-.5/s:0,c=[],d=[];for(;c.length<a&&u.length>0;){let g=u.pop(),{score:x,boxIndex:A,suppressBeginIndex:y}=g;if(x<r)break;let b=!1;for(let w=c.length-1;w>=y;--w){let S=i$(e,A,c[w]);if(S>=n){b=!0;break}if(g.score=g.score*o$(n,p,S),g.score<=r)break}g.suppressBeginIndex=c.length,b||(g.score===x?(c.push(A),d.push(g.score)):g.score>r&&a$(u,g,Hg))}let h=c.length,f=a-h;o&&f>0&&(c.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:c};return i&&(m.selectedScores=d),l&&(m.validOutputs=h),m}function i$(e,t,a){let n=e.subarray(t*4,t*4+4),r=e.subarray(a*4,a*4+4),s=Math.min(n[0],n[2]),i=Math.min(n[1],n[3]),o=Math.max(n[0],n[2]),l=Math.max(n[1],n[3]),u=Math.min(r[0],r[2]),p=Math.min(r[1],r[3]),c=Math.max(r[0],r[2]),d=Math.max(r[1],r[3]),h=(o-s)*(l-i),f=(c-u)*(d-p);if(h<=0||f<=0)return 0;let m=Math.max(s,u),g=Math.max(i,p),x=Math.min(o,c),A=Math.min(l,d),y=Math.max(x-m,0)*Math.max(A-g,0);return y/(h+f-y)}function o$(e,t,a){let n=Math.exp(t*a*a);return a<=e?n:0}function Hg(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function l$(e,t,a,n=.5,r=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppressionAsync"),i=R(t,"scores","nonMaxSuppressionAsync"),o=su(s,i,a,n,r);a=o.maxOutputSize,n=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],p=l[1],{selectedIndices:c}=l4(u,p,a,n,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),Ht(c,"int32")}var u$=l$;function d$(e,t,a,n=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=su(i,o,a,n,r,s);a=l.maxOutputSize,n=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},p={maxOutputSize:a,iouThreshold:n,scoreThreshold:r,softNmsSigma:s},c=z.runKernel(Li,u,p);return{selectedIndices:c[0],selectedScores:c[1]}}var p$=D({nonMaxSuppressionWithScore_:d$});async function c$(e,t,a,n=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=su(i,o,a,n,r,s);a=l.maxOutputSize,n=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),p=u[0],c=u[1],{selectedIndices:d,selectedScores:h}=d4(p,c,a,n,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Ht(d,"int32"),selectedScores:Ht(h)}}var h$=c$;function f$(e,t,a,n=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=su(i,o,a,n,r,null),u=l.maxOutputSize,p=l.iouThreshold,c=l.scoreThreshold,d={boxes:i,scores:o},h={maxOutputSize:u,iouThreshold:p,scoreThreshold:c,padToMaxOutputSize:s},f=z.runKernel(Vl,d,h);return{selectedIndices:f[0],validOutputs:f[1]}}var m$=D({nonMaxSuppressionPadded_:f$});async function g$(e,t,a,n=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=su(i,o,a,n,r,null),u=l.maxOutputSize,p=l.iouThreshold,c=l.scoreThreshold,[d,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:f,validOutputs:m}=u4(d,h,u,p,c,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Ht(f,"int32"),validOutputs:Fe(m,"int32")}}var x$=g$;function A$(e,t,a=!1,n=!1){let r=R(e,"images","resizeBilinear");P(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),P(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),P(n===!1||a===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=J(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:a,halfPixelCenters:n,size:t},u=z.runKernel(Xi,o,l);return i?J(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var y$=D({resizeBilinear_:A$});function b$(e,t,a=!1,n=!1){let r=R(e,"images","resizeNearestNeighbor");P(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),P(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),P(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),P(n===!1||a===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=J(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:a,halfPixelCenters:n,size:t},u=z.runKernel(qi,o,l);return i?J(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var v$=D({resizeNearestNeighbor_:b$});function w$(e,t="binary",a=!1,n=.5){let r=R(e,"image","threshold"),s=.2989,i=.587,o=.114,l=r.shape[0]*r.shape[1],u=ae(Ht([n]),255),p,c,d,h;if(P(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),P(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),P(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),P(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[p,c,d]=ka(r,[1,1,1],-1);let m=ae(p,s),g=ae(c,i),x=ae(d,o);h=be(be(m,g),x)}else h=e;if(t==="otsu"){let m=y2(He(G2(h),"int32"),Be([]),256);u=k$(m,l)}let f=a?ph(h,u):np(h,u);return He(ae(f,255),"int32")}function k$(e,t){let a=Ht([-1]),n=Ht([0]),r=Ht([0]),s,i,o,l,u,p;for(let c=0;c<e.size-1;c++){s=Pe(e,0,c+1),i=Pe(e,c+1),u=me(tt(s),t),p=me(tt(i),t);let d=tt(ae(s,cl(0,s.size)));o=me(d,tt(s));let h=ar(i.shape,s.size),f=be(cl(0,i.size),h),m=ae(i,f);l=me(tt(m),tt(i));let g=fe(o,l),x=fe(o,l),A=ae(u,p);r=ae(ae(A,g),x);let y=np(r,n);n=Bs(y,r,n),a=Bs(y,Ht([c]),a)}return a}var I$=D({threshold_:w$});function S$(e,t,a="nearest",n="constant",r=0,s){let i=R(e,"image","transform","float32"),o=R(t,"transforms","transform","float32");P(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),P(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),P(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:a,fillMode:n,fillValue:r,outputShape:s};return z.runKernel(po,l,u)}var T$=D({transform_:S$});function C$(e,t,a){P(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),P(a%1===0,()=>`bandPart(): numUpper must be an integer, got ${a}.`);let n=R(e,"a","bandPart");P(n.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${n.rank}.`);let r=n.shape,[s,i]=n.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(a<=i))throw new Error(`bandPart(): numUpper (${a}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),a<0&&(a=i);let o=J(cl(0,s,1,"int32"),[-1,1]),l=cl(0,i,1,"int32"),u=fe(o,l),p=pd(ph(u,Fe(+t,"int32")),T2(u,Fe(-a,"int32"))),c=hn([s,i],n.dtype);return J(sa(Ta(J(n,[-1,s,i])).map(d=>Bs(p,d,c))),r)}var N$=D({bandPart_:C$});function E$(e){let t;if(Array.isArray(e)){t=!1,P(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)P(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=ka(e,e.shape[0],0).map(r=>_e(r,[0]));P(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let a=[],n=e;for(let r=0;r<e.length;++r)a.push(z.tidy(()=>{let s=n[r];if(r>0)for(let i=0;i<r;++i){let o=ae(tt(ae(a[i],s)),a[i]);s=fe(s,o)}return me(s,ap(s,"euclidean"))}));return t?sa(a,0):a}var R$=D({gramSchmidt_:E$});function M$(e,t=!1){if(P(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return jg(e,t);{let a=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),n=Ta(J(e,[a,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];n.forEach(l=>{let[u,p]=jg(l,t);r.push(u),s.push(p)});let i=J(sa(r,0),e.shape),o=J(sa(s,0),e.shape);return[i,o]}}function jg(e,t=!1){return z.tidy(()=>{P(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let a=e.shape[0],n=e.shape[1],r=k2(a),s=wa(e),i=Xn([[1]],[1,1]),o=wa(i),l=a>=n?n:a;for(let u=0;u<l;++u){let p=s,c=o,d=r;[o,s,r]=z.tidy(()=>{let h=Pe(s,[u,u],[a-u,1]),f=ap(h),m=Pe(s,[u,u],[1,1]),g=Bs(np(m,0),Xn([[-1]]),Xn([[1]])),x=fe(m,ae(g,f)),A=me(h,x);A.shape[0]===1?o=wa(i):o=at([i,Pe(A,[1,0],[A.shape[0]-1,A.shape[1]])],0);let y=qn(me(st(g,x),f)),b=Pe(s,[u,0],[a-u,n]),w=ae(y,o),S=Ls(o);if(u===0)s=fe(b,st(w,st(S,b)));else{let _=fe(b,st(w,st(S,b)));s=at([Pe(s,[0,0],[u,n]),_],0)}let C=Ls(w),E=Pe(r,[0,u],[a,r.shape[1]-u]);if(u===0)r=fe(E,st(st(E,o),C));else{let _=fe(E,st(st(E,o),C));r=at([Pe(r,[0,0],[a,u]),_],1)}return[o,s,r]}),Y([p,c,d])}return!t&&a>n&&(r=Pe(r,[0,0],[a,n]),s=Pe(s,[0,0],[n,n])),[r,s]})}var $$=D({qr_:M$}),ya;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(ya||(ya={}));function _$(e,t,a=ya.SUM_BY_NONZERO_WEIGHTS){let n=R(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=R(t,"weights","computeWeightedLoss"));let s=r==null?n:ae(n,r);if(a===ya.NONE)return s;if(a===ya.SUM)return tt(s);if(a===ya.MEAN){if(r==null)return cd(s);{let i=n.size/r.size,o=me(tt(s),tt(r));return i>1?me(o,Fe(i)):o}}if(a===ya.SUM_BY_NONZERO_WEIGHTS){if(r==null)return me(tt(s),Fe(n.size));{let i=ae(r,Lr(n.shape)),o=He(tt(O2(i,Fe(0))),"float32");return me(tt(s),o)}}throw Error(`Unknown reduction: ${a}`)}var wr=D({computeWeightedLoss_:_$});function P$(e,t,a,n=ya.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"labels","absoluteDifference"),s=R(t,"predictions","absoluteDifference"),i=null;a!=null&&(i=R(a,"weights","absoluteDifference")),Sa(r.shape,s.shape,"Error in absoluteDifference: ");let o=ja(fe(r,s));return wr(o,i,n)}var F$=D({absoluteDifference_:P$});function O$(e,t,a,n,r=ya.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","cosineDistance"),i=R(t,"predictions","cosineDistance"),o=null;n!=null&&(o=R(n,"weights","cosineDistance")),Sa(s.shape,i.shape,"Error in cosineDistance: ");let l=Fe(1),u=fe(l,tt(ae(s,i),a,!0));return wr(u,o,r)}var D$=D({cosineDistance_:O$});function z$(e,t,a,n=ya.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"labels","hingeLoss"),s=R(t,"predictions","hingeLoss"),i=null;a!=null&&(i=R(a,"weights","hingeLoss")),Sa(r.shape,s.shape,"Error in hingeLoss: ");let o=Fe(1);r=fe(ae(Fe(2),r),o);let l=rp(fe(o,ae(r,s)));return wr(l,i,n)}var L$=D({hingeLoss_:z$});function B$(e,t,a,n=1,r=ya.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","huberLoss"),i=R(t,"predictions","huberLoss"),o=null;a!=null&&(o=R(a,"weights","huberLoss")),Sa(s.shape,i.shape,"Error in huberLoss: ");let l=Fe(n),u=ja(fe(i,s)),p=F2(u,l),c=fe(u,p),d=be(ae(Fe(.5),kn(p)),ae(l,c));return wr(d,o,r)}var W$=D({huberLoss_:B$});function V$(e,t,a,n=1e-7,r=ya.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","logLoss"),i=R(t,"predictions","logLoss"),o=null;a!=null&&(o=R(a,"weights","logLoss")),Sa(s.shape,i.shape,"Error in logLoss: ");let l=Fe(1),u=Fe(n),p=qn(ae(s,pl(be(i,u)))),c=ae(fe(l,s),pl(be(fe(l,i),u))),d=fe(p,c);return wr(d,o,r)}var U$=D({logLoss_:V$});function G$(e,t,a,n=ya.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"labels","meanSquaredError"),s=R(t,"predictions","meanSquaredError"),i=null;a!=null&&(i=R(a,"weights","meanSquaredError")),Sa(r.shape,s.shape,"Error in meanSquaredError: ");let o=j2(r,s);return wr(o,i,n)}var H$=D({meanSquaredError_:G$});function j$(e,t){let a=R(e,"labels","sigmoidCrossEntropyWithLogits"),n=R(t,"logits","sigmoidCrossEntropyWithLogits");Sa(a.shape,n.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=rp(n),s=ae(n,a),i=N2(Xr(qn(ja(n))));return be(fe(r,s),i)}function q$(e,t,a,n=0,r=ya.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"multiClassLabels","sigmoidCrossEntropy"),i=R(t,"logits","sigmoidCrossEntropy"),o=null;if(a!=null&&(o=R(a,"weights","sigmoidCrossEntropy")),Sa(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),n>0){let u=Fe(n),p=Fe(1),c=Fe(.5);s=be(ae(s,fe(p,u)),ae(c,u))}let l=j$(s,i);return wr(l,o,r)}var X$=D({sigmoidCrossEntropy_:q$});function K$(e,t,a=-1){if(a===-1&&(a=t.rank-1),a!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${a}`);return Jn((n,r,s)=>{let i=R2(r,[a],!0),o=fe(He(r,"float32"),i);s([n,o]);let l=qn(ae(o,n));return{value:tt(l,[a]),gradFunc:(u,p)=>{let[c,d]=p,h=tp(u.shape,[a]);return[ae(J(u,h),fe(He(c,"float32"),Xr(d))),ae(J(u,h),fe(Xr(d),He(c,"float32")))]}}})(e,t)}function Z$(e,t,a,n=0,r=ya.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"onehotLabels","softmaxCrossEntropy"),i=R(t,"logits","softmaxCrossEntropy"),o=null;if(a!=null&&(o=R(a,"weights","softmaxCrossEntropy")),Sa(s.shape,i.shape,"Error in softmaxCrossEntropy: "),n>0){let u=Fe(n),p=Fe(1),c=Fe(s.shape[1]);s=be(ae(s,fe(p,u)),me(u,c))}let l=K$(s,i);return wr(l,o,r)}var Y$=D({softmaxCrossEntropy_:Z$});function J$(e,t,a,n){let r=R(e,"indices","sparseFillEmptyRows","int32"),s=R(t,"values","sparseFillEmptyRows"),i=R(a,"denseShape","sparseFillEmptyRows","int32"),o=R(n,"defaultValue","sparseFillEmptyRows",s.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:r,values:s,denseShape:i,defaultValue:o},u=z.runKernel(Od,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var Q$=D({sparseFillEmptyRows_:J$});function e_(e,t,a){let n=R(e,"inputIndices","sparseReshape","int32"),r=R(t,"inputShape","sparseReshape","int32"),s=R(a,"newShape","sparseReshape","int32");if(n.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
${n.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:n,inputShape:r,newShape:s},o=z.runKernel(Ql,i);return{outputIndices:o[0],outputShape:o[1]}}var t_=D({sparseReshape_:e_});function a_(e,t,a){let n=R(e,"data","sparseSegmentMean"),r=R(t,"indices","sparseSegmentMean","int32"),s=R(a,"segmentIds","sparseSegmentMean","int32");if(n.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:n,indices:r,segmentIds:s};return z.runKernel(Dd,i)}var n_=D({sparseSegmentMean_:a_});function r_(e,t,a){let n=R(e,"data","sparseSegmentSum"),r=R(t,"indices","sparseSegmentSum","int32"),s=R(a,"segmentIds","sparseSegmentSum","int32");if(n.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:n,indices:r,segmentIds:s};return z.runKernel(zd,i)}var s_=D({sparseSegmentSum_:r_});function i_(e,t,a,n,r,s,i,o){let l=R(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=R(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let p={separator:a,nGramWidths:n,leftPad:r,rightPad:s,padWidth:i,preserveShortSequences:o},c={data:l,dataSplits:u},d=z.runKernel(eu,c,p);return{nGrams:d[0],nGramsSplits:d[1]}}var o_=D({stringNGrams_:i_});function l_(e,t,a=!0){let n=R(e,"input","stringSplit","string"),r=R(t,"delimiter","stringSplit","string");if(n.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${n.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let s={skipEmpty:a},i={input:n,delimiter:r},o=z.runKernel(Wd,i,s);return{indices:o[0],values:o[1],shape:o[2]}}var u_=D({stringSplit_:l_});function d_(e,t){let a=R(e,"input","stringToHashBucketFast","string"),n={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:a};return z.runKernel(Vd,r,n)}var p_=D({stringToHashBucketFast_:d_}),p4={fft:gh,ifft:hd,rfft:xh,irfft:H2},c4={hammingWindow:WM,hannWindow:i4,frame:o4,stft:HM},ge={flipLeftRight:KM,grayscaleToRGB:YM,resizeNearestNeighbor:v$,resizeBilinear:y$,rotateWithOffset:QM,cropAndResize:qM,nonMaxSuppression:t$,nonMaxSuppressionAsync:u$,nonMaxSuppressionWithScore:p$,nonMaxSuppressionWithScoreAsync:h$,nonMaxSuppressionPadded:m$,nonMaxSuppressionPaddedAsync:x$,threshold:I$,transform:T$},h4={bandPart:N$,gramSchmidt:R$,qr:$$},f4={absoluteDifference:F$,computeWeightedLoss:wr,cosineDistance:D$,hingeLoss:L$,huberLoss:W$,logLoss:U$,meanSquaredError:H$,sigmoidCrossEntropy:X$,softmaxCrossEntropy:Y$},m4={sparseFillEmptyRows:Q$,sparseReshape:t_,sparseSegmentMean:n_,sparseSegmentSum:s_},g4={stringNGrams:o_,stringSplit:u_,stringToHashBucketFast:p_},rs=class extends ey{minimize(e,t=!1,a){let{value:n,grads:r}=this.computeGradients(e,a);if(a!=null){let s=a.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return Y(r),t?n:(n.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return tb(e,t)}dispose(){this.iterations_!=null&&Y(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Fe(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(rs,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var kh=class extends rs{constructor(e,t,a=null){super(),this.learningRate=e,this.rho=t,this.epsilon=a,this.accumulatedGrads=[],this.accumulatedUpdates=[],a==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,a)=>{let n=z.registeredVariables[t],r=!1;this.accumulatedGrads[a]==null&&(this.accumulatedGrads[a]={originalName:`${t}/accum_grad`,variable:$e(()=>Xa(n).variable(r))}),this.accumulatedUpdates[a]==null&&(this.accumulatedUpdates[a]={originalName:`${t}/accum_var`,variable:$e(()=>Xa(n).variable(r))});let s=Array.isArray(e)?e[a].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[a].variable,o=this.accumulatedUpdates[a].variable;$e(()=>{let l=be(ae(i,this.rho),ae(kn(s),1-this.rho)),u=ae(me(Yn(be(o,this.epsilon)),Yn(be(i,this.epsilon))),s),p=be(ae(o,this.rho),ae(kn(u),1-this.rho));i.assign(l),o.assign(p);let c=be(ae(u,-this.learningRate),n);n.assign(c)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Y(this.accumulatedGrads.map(e=>e.variable)),Y(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,a=!1;this.accumulatedGrads=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(a)})),this.accumulatedUpdates=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(a)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};kh.className="Adadelta";ns(kh);var Ih=class extends rs{constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,a)=>{let n=z.registeredVariables[t];this.accumulatedGrads[a]==null&&(this.accumulatedGrads[a]={originalName:`${t}/accumulator`,variable:$e(()=>ar(n.shape,this.initialAccumulatorValue).variable(!1))});let r=Array.isArray(e)?e[a].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[a].variable;$e(()=>{let i=be(s,kn(r));s.assign(i);let o=be(ae(me(r,Yn(be(i,z.backend.epsilon()))),-this.learningRate),n);n.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Y(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(a=>({originalName:a.name,variable:a.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Ih.className="Adagrad";ns(Ih);var Sh=class extends rs{constructor(e,t,a,n=null){super(),this.learningRate=e,this.beta1=t,this.beta2=a,this.epsilon=n,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],$e(()=>{this.accBeta1=Fe(t).variable(),this.accBeta2=Fe(a).variable()}),n==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(a=>a.name):Object.keys(e);$e(()=>{let a=fe(1,this.accBeta1),n=fe(1,this.accBeta2);t.forEach((r,s)=>{let i=z.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:$e(()=>Xa(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:$e(()=>Xa(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedSecondMoment[s].variable,c=be(ae(u,this.beta1),ae(l,1-this.beta1)),d=be(ae(p,this.beta2),ae(kn(l),1-this.beta2)),h=me(c,a),f=me(d,n);u.assign(c),p.assign(d);let m=be(ae(me(h,be(Yn(f),this.epsilon)),-this.learningRate),i);i.assign(m)}),this.accBeta1.assign(ae(this.accBeta1,this.beta1)),this.accBeta2.assign(ae(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Y(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Y(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),$e(()=>{this.accBeta1.assign(dl(this.beta1,this.iterations_+1)),this.accBeta2.assign(dl(this.beta2,this.iterations_+1))});let t=e.length/2,a=!1;this.accumulatedFirstMoment=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(a)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(a)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Sh.className="Adam";ns(Sh);var Th=class extends rs{constructor(e,t,a,n=null,r=0){super(),this.learningRate=e,this.beta1=t,this.beta2=a,this.epsilon=n,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],$e(()=>{this.iteration=Fe(0).variable(),this.accBeta1=Fe(t).variable()}),n==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(a=>a.name):Object.keys(e);$e(()=>{let a=fe(1,this.accBeta1),n=me(-this.learningRate,be(ae(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=z.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:Xa(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:Xa(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedWeightedInfNorm[s].variable,c=be(ae(u,this.beta1),ae(l,1-this.beta1)),d=ae(p,this.beta2),h=ja(l),f=P2(d,h);u.assign(c),p.assign(f);let m=be(ae(me(n,a),me(c,be(f,this.epsilon))),i);i.assign(m)}),this.iteration.assign(be(this.iteration,1)),this.accBeta1.assign(ae(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Y(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Y(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Th.className="Adamax";ns(Th);var ip=class extends rs{constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,a)=>{let n=Array.isArray(e)?e[a].tensor:e[t];if(n==null)return;let r=z.registeredVariables[t];$e(()=>{let s=be(ae(this.c,n),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Fn(Fe(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};ip.className="SGD";ns(ip);var Ch=class extends ip{constructor(e,t,a=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=a,this.accumulations=[],this.m=Fe(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,a)=>{let n=z.registeredVariables[t];this.accumulations[a]==null&&(this.accumulations[a]={originalName:`${t}/momentum`,variable:$e(()=>Xa(n).variable(!1))});let r=this.accumulations[a].variable,s=Array.isArray(e)?e[a].tensor:e[t];s!=null&&$e(()=>{let i,o=be(ae(this.m,r),s);this.useNesterov?i=be(ae(this.c,be(s,ae(o,this.m))),n):i=be(ae(this.c,o),n),r.assign(o),n.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Y(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(a=>({originalName:a.name,variable:a.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Ch.className="Momentum";ns(Ch);var Nh=class extends rs{constructor(e,t=.9,a=0,n=null,r=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=a,this.epsilon=n,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,n==null&&(this.epsilon=z.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,a)=>{let n=z.registeredVariables[t],r=!1;this.accumulatedMeanSquares[a]==null&&(this.accumulatedMeanSquares[a]={originalName:`${t}/rms`,variable:$e(()=>Xa(n).variable(r))}),this.accumulatedMoments[a]==null&&(this.accumulatedMoments[a]={originalName:`${t}/momentum`,variable:$e(()=>Xa(n).variable(r))}),this.accumulatedMeanGrads[a]==null&&this.centered&&(this.accumulatedMeanGrads[a]={originalName:`${t}/mg`,variable:$e(()=>Xa(n).variable(r))});let s=Array.isArray(e)?e[a].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[a].variable,o=this.accumulatedMoments[a].variable;$e(()=>{let l=be(ae(i,this.decay),ae(kn(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[a].variable,p=be(ae(u,this.decay),ae(s,1-this.decay)),c=me(ae(s,this.learningRate),Yn(fe(l,be(kn(p),this.epsilon)))),d=be(ae(o,this.momentum),c);i.assign(l),u.assign(p),o.assign(d);let h=fe(n,d);n.assign(h)}else{let u=be(ae(i,this.decay),ae(kn(s),1-this.decay)),p=be(ae(o,this.momentum),me(ae(s,this.learningRate),Yn(be(u,this.epsilon))));i.assign(u),o.assign(p);let c=fe(n,p);n.assign(c)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Y(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Y(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Y(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,a=!1;this.accumulatedMeanSquares=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(a)})),this.accumulatedMoments=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(a)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(n=>({originalName:n.name,variable:n.tensor.variable(a)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Nh.className="RMSProp";ns(Nh);var Pr=class{static sgd(e){return new ip(e)}static momentum(e,t,a=!1){return new Ch(e,t,a)}static rmsprop(e,t=.9,a=0,n=null,r=!1){return new Nh(e,t,a,n,r)}static adam(e=.001,t=.9,a=.999,n=null){return new Sh(e,t,a,n)}static adadelta(e=.001,t=.95,a=null){return new kh(e,t,a)}static adamax(e=.002,t=.9,a=.999,n=null,r=0){return new Th(e,t,a,n,r)}static adagrad(e,t=.1){return new Ih(e,t)}},c_={sgd:Pr.sgd,momentum:Pr.momentum,adadelta:Pr.adadelta,adagrad:Pr.adagrad,rmsprop:Pr.rmsprop,adamax:Pr.adamax,adam:Pr.adam},h_=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function x4(){return new Promise(e=>h_(()=>e()))}var T={};Xe(T,{ERF_A1:()=>R_,ERF_A2:()=>M_,ERF_A3:()=>$_,ERF_A4:()=>__,ERF_A5:()=>P_,ERF_P:()=>E_,PARALLELIZE_THRESHOLD:()=>J2,RowPartitionType:()=>Gn,SELU_SCALE:()=>N_,SELU_SCALEALPHA:()=>C_,applyActivation:()=>vh,assertAndGetBroadcastShape:()=>zt,assertAxesAreInnerMostDims:()=>dE,assertParamsConsistent:()=>f_,assignToTypedArray:()=>B_,axesAreInnerMostDims:()=>w2,calculateShapes:()=>GA,checkEinsumDimSizes:()=>j_,checkPadOnDimRoundingMode:()=>In,combineLocations:()=>Hy,combineRaggedTensorToTensorShapes:()=>g_,complexWithEvenIndex:()=>D_,complexWithOddIndex:()=>z_,computeConv2DInfo:()=>Jd,computeConv3DInfo:()=>my,computeDefaultPad:()=>g2,computeDilation2DInfo:()=>uN,computeOptimalWindowSize:()=>b_,computeOutAndReduceShapes:()=>uE,computeOutShape:()=>m_,computePool2DInfo:()=>fy,computePool3DInfo:()=>dN,convertConv2DDataFormat:()=>gy,decodeEinsumEquation:()=>G_,eitherStridesOrDilationsAreOne:()=>vr,expandShapeToKeepDim:()=>tp,exponent:()=>V_,exponents:()=>W_,fromStringArrayToUint8:()=>hP,fromUint8ToStringArray:()=>cP,getAxesPermutation:()=>pE,getBroadcastDims:()=>WA,getComplexWithIndex:()=>L_,getEinsumComputePath:()=>q_,getEinsumPermutation:()=>H_,getFusedBiasGradient:()=>bh,getFusedDyActivation:()=>yh,getImageCenter:()=>v_,getInnerMostAxes:()=>hE,getPermuted:()=>k_,getRaggedRank:()=>A_,getReductionAxes:()=>o2,getReshaped:()=>w_,getReshapedPermuted:()=>I_,getRowPartitionTypesHelper:()=>x_,getSliceBeginCoords:()=>S_,getSliceSize:()=>T_,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>Y_,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>J_,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>Q_,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>aP,getSparseReshapeInputOutputMismatchErrorMessage:()=>rP,getSparseReshapeInputOutputMultipleErrorMessage:()=>nP,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>eP,getSparseReshapeNegativeOutputDimErrorMessage:()=>tP,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>lP,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>sP,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>iP,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>oP,getUndoAxesPermutation:()=>cE,isIdentityPermutation:()=>X_,log:()=>NS,mergeRealAndImagArrays:()=>F_,prepareAndValidate:()=>UA,prepareSplitSize:()=>Z_,segment_util:()=>A4,shouldFuse:()=>wh,slice_util:()=>It,splitRealAndImagArrays:()=>O_,tupleValuesAreOne:()=>dd,upcastType:()=>ca,validateDefaultValueShape:()=>y_,validateInput:()=>c2,validateUpdateShape:()=>p2,warn:()=>Or});function f_(e,t){let a=e[0].length;e.forEach((r,s)=>{P(r.length===a,()=>`Error in concat${a}D: rank of tensors[${s}] must be the same as the rank of the rest (${a})`)}),P(t>=0&&t<a,()=>`Error in concat${a}D: axis must be between 0 and ${a-1}.`);let n=e[0];e.forEach((r,s)=>{for(let i=0;i<a;i++)P(i===t||r[i]===n[i],()=>`Error in concat${a}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${n}) along the non-concatenated axis ${s}.`)})}function m_(e,t){let a=e[0].slice();for(let n=1;n<e.length;n++)a[t]+=e[n][t];return a}var Gn;(function(e){e[e.FIRST_DIM_SIZE=0]="FIRST_DIM_SIZE",e[e.VALUE_ROWIDS=1]="VALUE_ROWIDS",e[e.ROW_LENGTHS=2]="ROW_LENGTHS",e[e.ROW_SPLITS=3]="ROW_SPLITS",e[e.ROW_LIMITS=4]="ROW_LIMITS",e[e.ROW_STARTS=5]="ROW_STARTS"})(Gn||(Gn={}));function g_(e,t,a){let n=new Array;if(a==null&&t==null)return n;if(t==null)for(;n.length<e+a.length;)n.push(-1);else n=t.slice();if(a==null)return n;if(e+a.length!==n.length)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.rank = ${e+a.length}, but shape.rank = ${n.length}`);for(let r=1;r<a.length;++r){let s=a[r],i=n[n.length-a.length+r],o=n[i];if(s>=0)if(o>=0){if(o!==s)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.shape[${r+e}] = ${s} but shape[${r+e}] = ${o}`)}else n[i]=s}return n}function x_(e){let t={FIRST_DIM_SIZE:Gn.FIRST_DIM_SIZE,VALUE_ROWIDS:Gn.VALUE_ROWIDS,ROW_LENGTHS:Gn.ROW_LENGTHS,ROW_SPLITS:Gn.ROW_SPLITS,ROW_LIMITS:Gn.ROW_LIMITS,ROW_STARTS:Gn.ROW_STARTS},a=[];for(let n of e)if(n in t)a.push(t[n]);else break;return a}function A_(e){return e.length===0?0:e[0]===Gn.FIRST_DIM_SIZE?e.length-1:e.length}function y_(e,t){if(e==null||t==null)return;let a=e.length,n=t.length;if(a>=n)throw new Error(`defaultValue.shape=${e} and ragged tensor flatValues.shape=${t}, are incompatible: defaultValue.rank = ${a} must be less than ragged tensor input flatValues.rank = ${n})`);for(let r=0;r<Math.min(a,n-1);++r){let s=e[r],i=t[r+1];if(s>=0&&i>=0&&s!==1&&s!==i)throw new Error(`defaultValue.shape=${e}, and ragged tensor input flatValues.shape=${t} are incompatible: defaultValue.shape[${r-e.length}] = ${s} but ragged tensor input.flatValues.shape[${r-e.length}] = ${i}`)}}var J2=30;function b_(e){return e<=J2?e:vc(e,Math.floor(Math.sqrt(e)))}function v_(e,t,a){let n=a*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[n,r]}function w_(e,t,a,n=!0){let r=[];if(n)r=r.concat(t.slice(0)),r.push(e[0]/a),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function k_(e,t,a=!0){let n=[];if(a){n.push(t);for(let r=t+1;r<e;++r)r<=2*t?(n.push(r),n.push(r-(t+1))):n.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2===1?s.push(i):r.push(i);n.push(...r),n.push(0),n.push(...s)}return n}function I_(e,t,a,n=!0){let r=[];n?r.push(e[0]/a):r.push(e[0]*a);for(let s=1;s<e.length;++s)s<=t.length?n?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function S_(e,t){let a=[0];for(let n=0;n<t;++n)a.push(e[n][0]);return a}function T_(e,t,a){let n=e.slice(0,1);for(let r=0;r<a;++r)n.push(e[r+1]-t[r][0]-t[r][1]);return n}var C_=1.7580993408473768,N_=1.0507009873554805,E_=.3275911,R_=.254829592,M_=-.284496736,$_=1.421413741,__=-1.453152027,P_=1.061405429;function F_(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let a=new Float32Array(e.length*2);for(let n=0;n<a.length;n+=2)a[n]=e[n/2],a[n+1]=t[n/2];return a}function O_(e){let t=new Float32Array(e.length/2),a=new Float32Array(e.length/2);for(let n=0;n<e.length;n+=2)t[n/2]=e[n],a[n/2]=e[n+1];return{real:t,imag:a}}function D_(e){let t=Math.ceil(e.length/4),a=new Float32Array(t),n=new Float32Array(t);for(let r=0;r<e.length;r+=4)a[Math.floor(r/4)]=e[r],n[Math.floor(r/4)]=e[r+1];return{real:a,imag:n}}function z_(e){let t=Math.floor(e.length/4),a=new Float32Array(t),n=new Float32Array(t);for(let r=2;r<e.length;r+=4)a[Math.floor(r/4)]=e[r],n[Math.floor(r/4)]=e[r+1];return{real:a,imag:n}}function L_(e,t){let a=e[t*2],n=e[t*2+1];return{real:a,imag:n}}function B_(e,t,a,n){e[n*2]=t,e[n*2+1]=a}function W_(e,t){let a=new Float32Array(e/2),n=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);a[r]=Math.cos(s),n[r]=Math.sin(s)}return{real:a,imag:n}}function V_(e,t,a){let n=(a?2:-2)*Math.PI*(e/t),r=Math.cos(n),s=Math.sin(n);return{real:r,imag:s}}var _m="->",U_=/->/g,qg=",",Xg="...";function G_(e,t){e=e.replace(/\s/g,"");let a=(e.length-e.replace(U_,"").length)/_m.length;if(a<1)throw new Error("Equations without an arrow are not supported.");if(a>1)throw new Error(`Equation must contain exactly one arrow ("${_m}").`);let[n,r]=e.split(_m);P(n.indexOf(Xg)===-1,()=>`The ellipsis notation ("${Xg}") is not supported yet.`);let s=n.split(qg),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let d=0;d<r.length;++d){let h=r[d];if(!s.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let d=0;d<n.length;++d){let h=n[d];o.indexOf(h)===-1&&h!==qg&&o.push(h)}let l=new Array(s.length);for(let d=0;d<i;++d){if(new Set(s[d].split("")).size!==s[d].length)throw new Error(`Found duplicate axes in input component ${s[d]}. Support for duplicate axes in input is not implemented yet.`);l[d]=[];for(let h=0;h<s[d].length;++h)l[d].push(o.indexOf(s[d][h]))}let u=o.length,p=r.length,c=[];for(let d=p;d<u;++d)c.push(d);return{allDims:o,summedDims:c,idDims:l}}function H_(e,t){let a=new Array(e);a.fill(-1);for(let r=0;r<t.length;++r)a[t[r]]=r;let n=[];for(let r=0;r<e;++r)a[r]===-1&&n.push(r);return a=a.filter(r=>r!==-1),{permutationIndices:a,expandDims:n}}function j_(e,t,a){let n=new Array(e);for(let r=0;r<a.length;++r){let s=a[r].shape;for(let i=0;i<t[r].length;++i)n[t[r][i]]===void 0?n[t[r][i]]=s[i]:P(n[t[r][i]]===s[i],()=>`Expected dimension ${n[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function q_(e,t){let a=e,n=[],r=0;e.length===0&&a.push(-1),r=e.length+1;for(let i=0;i<r;++i)n.push([]);let s=[];for(let i=0;i<a.length;++i){let o=a[i],l=K_(t,o);for(let u of l)s.indexOf(u)===-1&&(n[i].push(u),s.push(u))}return{path:a,steps:n}}function X_(e){return e.every((t,a)=>t===a)}function K_(e,t){let a=[];for(let n=0;n<e.length;++n)(e[n].length===0||e[n].indexOf(t)!==-1||t===-1)&&a.push(n);return a}function Z_(e,t,a=0){let n=[];if(typeof t=="number")P(e.shape[a]%t===0,()=>"Number of splits must evenly divide the axis."),n=new Array(t).fill(e.shape[a]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);P(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[a]-i}P(e.shape[a]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),n=t}return n}function Y_(e){return`Received SparseTensor with denseShape[0] = 0 but
indices.shape[0] = ${e}`}function J_(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function Q_(e,t,a){return`indices(${e}, 0) is invalid: ${t} >= ${a}`}function eP(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function tP(e,t){return`size ${e} must be non-negative, not ${t}`}function aP(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function nP(e,t){let a=At(e),n=At(t);return`Input to reshape is a SparseTensor with ${a}
dense values, but the requested shape requires a multiple of ${n}. inputShape=${e} outputShape= ${t}`}function rP(e,t){let a=At(e),n=At(t);return`Input to reshape is a tensor with ${a} dense values, but the requested shape has ${n}. inputShape=${e} outputShape=${t}`}function sP(){return"segment ids must be >= 0"}function iP(){return"segment ids are not increasing"}function oP(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function lP(e,t,a){return`Bad: indices[${e}] == ${t} out of range [0, ${a})`}var A4={};Xe(A4,{collectGatherOpShapeInfo:()=>pP,computeOutShape:()=>dP,segOpComputeOptimalWindowSize:()=>uP});function uP(e,t){let a=!1,n;for(e<=J2?(n=e,a=!0):n=vc(e,Math.floor(Math.sqrt(e)));!a;)n>t||n===e?a=!0:n=vc(e,n+1);return n}function dP(e,t,a){let n=[],r=e.length;for(let s=0;s<r;s++)s!==t?n.push(e[s]):n.push(a);return n}function pP(e,t,a,n){let r=t.shape.length,s=e.shape.length;if(n!==0&&(n<-r||n>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${n}`);if(n<0&&(n+=r),n>s)throw new Error(`batchDims (${n}) must be less than rank(x) (
${s}).`);if(a<n)throw new Error(`batchDims (${n}) must be less than or equal to axis (${a}).`);for(let c=0;c<n;++c)if(e.shape[c]!==t.shape[c])throw new Error(`x.shape[${c}]: ${e.shape[c]} should be equal to indices.shape[${c}]: ${t.shape[c]}.`);let i=e.shape[a],o=[],l=1,u=1,p=1;for(let c=0;c<n;++c)o.push(e.shape[c]),l*=e.shape[c];for(let c=n;c<a;c++)o.push(e.shape[c]),u*=e.shape[c];for(let c=n;c<r;c++)o.push(t.shape[c]);for(let c=a+1;c<s;c++)o.push(e.shape[c]),p*=e.shape[c];return{batchSize:l,sliceSize:p,outerSize:u,dimSize:i,outputShape:o}}function cP(e){try{return e.map(t=>kc(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function hP(e){return e.map(t=>Gd(t))}var Sn={};Xe(Sn,{nonMaxSuppressionV3Impl:()=>l4,nonMaxSuppressionV4Impl:()=>u4,nonMaxSuppressionV5Impl:()=>d4,whereImpl:()=>Jb});var fP=W();fP.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var vn;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF"})(vn||(vn={}));var Kg;(function(e){let t;(function(a){a[a.LEGACY=0]="LEGACY",a[a.V1=1]="V1",a[a.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(Kg||(Kg={}));var Q2={};function mP(e,t){let a={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};Q2[e]=a}function y4(e){return Q2[e]}function gP(e){delete Q2[e]}function k(e,t,a,n,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return ba(t.inputNames[s.inputIndexStart],a,n,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(c=>ba(c,a,n,r));let u=ba(t.inputNames.slice(o)[0],a,n,r),p=u.dataSync();return s.type==="number"?p[0]:v.toNestedArray(u.shape,p)}let i=t.attrParams[e];return i&&i.value}function ba(e,t,a,n){let[r,s]=Ha(e);if(n!=null){let o=n.getHashTableHandleByName(r);if(o!=null)return o}let i=a.currentContextIds.find(o=>!!t[Nc(r,o)]);return i!==void 0?t[Nc(r,i)][s]:void 0}function xP(e,t,a){return t[Nc(e,a.currentContextId)]}function hr(e,t){let[a,n,r]=Ha(e);return[Nc(a,t&&t.currentContextId),n,r]}function Nc(e,t){return t?`${e}-${t}`:e}function Ha(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let a=t[0],n=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[a,r,n]}function cc(e,t,a){let n=k("pad",e,t,a);if(n==="explicit"){n=k("explicitPaddings",e,t,a);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=n[s*2],r[s][1]=n[s*2+1];return r}return n}function fr(e){return e.kept?e:wa(e)}var b4={};Xe(b4,{json:()=>AP});var AP=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],v4={};Xe(v4,{json:()=>yP});var yP=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],w4={};Xe(w4,{json:()=>bP});var bP=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],k4={};Xe(k4,{json:()=>vP});var vP=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],I4={};Xe(I4,{json:()=>wP});var wP=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomStandardNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],S4={};Xe(S4,{json:()=>kP});var kP=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],T4={};Xe(T4,{json:()=>IP});var IP=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],C4={};Xe(C4,{json:()=>SP});var SP=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],N4={};Xe(N4,{json:()=>TP});var TP=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"InitializeTable",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}]},{tfOpName:"InitializeTableV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}]}],E4={};Xe(E4,{json:()=>CP});var CP=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],R4={};Xe(R4,{json:()=>NP});var NP=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],M4={};Xe(M4,{json:()=>EP});var EP=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],$4={};Xe($4,{json:()=>RP});var RP=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],_4={};Xe(_4,{json:()=>MP});var MP=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],P4={};Xe(P4,{json:()=>$P});var $P=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],F4={};Xe(F4,{json:()=>_P});var _P=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],O4={};Xe(O4,{json:()=>PP});var PP=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],D4={};Xe(D4,{json:()=>FP});var FP=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],z4={};Xe(z4,{json:()=>OP});var OP=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],Zg=class{constructor(){let e=[b4,v4,w4,k4,I4,S4,T4,C4,N4,E4,R4,M4,$4,_4,P4,F4,O4,D4,z4],t=[].concat(...e.map(a=>a.json));this.opMappers=t.reduce((a,n)=>(a[n.tfOpName]=n,a),{})}static get Instance(){return this._instance||(this._instance=new this)}transformGraph(e,t={}){let a=e.node,n=[],r=[],s=[],i=a.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?n.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&s.push(f[m.name]),f),{}),o=[],l=[],u={},p={};t!=null&&(u=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));let c=Object.keys(i);c.forEach(f=>{let m=i[f];m.inputNames.forEach((g,x)=>{let[A,,y]=hr(g),b=i[A];if(b.outputs!=null){let w=b.outputs.indexOf(y);if(w!==-1){let S=`${A}:${w}`;m.inputNames[x]=S}}m.inputs.push(b),b.children.push(m)})}),Object.keys(p).length===0?c.forEach(f=>{let m=i[f];m.children.length===0&&l.push(m)}):Object.keys(p).forEach(f=>{let[m]=hr(f),g=i[m];g!=null&&(g.signatureKey=p[f],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=hr(f),g=i[m];g&&(g.signatureKey=u[f],o.push(g))}):o=n;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:n,signature:t,functions:d};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,a)=>(t[e[a].name]=a,t),{})}mapNode(e){let t=y4(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let a={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(n=>n.startsWith("^")?n.slice(1):n),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(a.inputParams=t.inputs.reduce((n,r)=>(n[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},n),{})),t.attrs!=null&&(a.attrParams=t.attrs.reduce((n,r)=>{let s=r.type,i;switch(r.type){case"string":i=r1(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=r1(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=p1(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=p1(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=i1(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=i1(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=d1(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=d1(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=s1(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=s1(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=h1(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=h1(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=u1(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=u1(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=c1(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=c1(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=o1(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=o1(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=l1(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=l1(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=Yg(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Yg(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return n[r.name]={value:i,type:s},n},{})),a}mapFunction(e){let t=e.nodeDef,a=[],n=[],r={};t!=null&&(r=t.reduce((u,p)=>(u[p.name]=this.mapNode(p),p.op==="Const"&&n.push(u[p.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[p]=hr(u.name),c={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:e3(u.type),type:"dtype"}},children:[]};c.signatureKey=u.name,s.push(c),r[p]=c}),Object.keys(r).forEach(u=>{let p=r[u];p.inputNames.forEach((c,d)=>{let[h,,f]=hr(c),m=r[h];if(m.outputs!=null){let g=m.outputs.indexOf(f);if(g!==-1){let x=`${h}:${g}`;p.inputNames[d]=x}}p.inputs.push(m),m.children.push(p)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[p,c]=hr(o[u.name]),d=r[p];d!=null&&(d.defaultOutput=c,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:n,placeholders:a,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,a)=>(t[a.name]=this.mapArgToTensorInfo(a),t),{}),outputs:e.signature.outputArg.reduce((t,a)=>(t[a.name]=this.mapArgToTensorInfo(a,e.ret),t),{})}}mapArgToTensorInfo(e,t){let a=e.name;return t!=null&&(a=t[a]),{name:a,dtype:e.type}}};function DP(e){let t=W().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function L4(e,t){let a=Array.isArray(e)?String.fromCharCode.apply(null,e):DP(e);return t?a:a.toLowerCase()}function r1(e,t,a,n=!1){let r=e[t];return r!=null?L4(r.s,n):a}function s1(e,t,a){let n=e[t];return n?n.b:a}function i1(e,t,a){let n=e[t]||{},r=n.i!=null?n.i:n.f!=null?n.f:a;return typeof r=="number"?r:parseInt(r,10)}function e3(e){switch(typeof e=="string"&&(e=vn[e]),e){case vn.DT_FLOAT:case vn.DT_HALF:return"float32";case vn.DT_INT32:case vn.DT_INT64:case vn.DT_INT8:case vn.DT_UINT8:return"int32";case vn.DT_BOOL:return"bool";case vn.DT_DOUBLE:return"float32";case vn.DT_STRING:return"string";default:return null}}function Yg(e,t,a){let n=e[t];return n&&n.func?n.func.name:a}function o1(e,t,a){let n=e[t];return n&&n.type?e3(n.type):a}function l1(e,t,a){let n=e[t];return n&&n.list&&n.list.type?n.list.type.map(r=>e3(r)):a}function B4(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function u1(e,t,a){let n=e[t];return n&&n.shape?B4(n.shape):a}function d1(e,t,a){let n=e[t];return n?((n.list.f&&n.list.f.length?n.list.f:n.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):a}function p1(e,t,a,n=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>L4(s,n)):a}function c1(e,t,a){let n=e[t];return n&&n.list&&n.list.shape?n.list.shape.map(r=>B4(r)):a}function h1(e,t,a){let n=e[t];return n&&n.list&&n.list.b?n.list.b:a}var zP=class{constructor(e,t,a){this.node=e,this.tensorMap=t,this.context=a,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(n=>this.getInput(n)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((n,r)=>(n[r]=this.getAttr(r),n),{}))}getInput(e){return ba(e,this.tensorMap,this.context)}getAttr(e,t){let a=this.node.rawAttrs[e];if(a.tensor!=null)return ba(e,this.tensorMap,this.context);if(a.i!=null||a.f!=null)return i1(this.node.rawAttrs,e,t);if(a.s!=null)return r1(this.node.rawAttrs,e,t);if(a.b!=null)return s1(this.node.rawAttrs,e,t);if(a.shape!=null)return u1(this.node.rawAttrs,e,t);if(a.type!=null)return o1(this.node.rawAttrs,e,t);if(a.list!=null){if(a.list.i!=null||a.list.f!=null)return d1(this.node.rawAttrs,e,t);if(a.list.s!=null)return p1(this.node.rawAttrs,e,t);if(a.list.shape!=null)return c1(this.node.rawAttrs,e,t);if(a.list.b!=null)return h1(this.node.rawAttrs,e,t);if(a.list.type!=null)return l1(this.node.rawAttrs,e,t)}return t}},Zt={};Xe(Zt,{OP_SCOPE_SUFFIX:()=>Y1,abs:()=>ja,acos:()=>ry,acosh:()=>sy,add:()=>be,addN:()=>uh,all:()=>iy,any:()=>oy,argMax:()=>tr,argMin:()=>ly,asin:()=>uy,asinh:()=>dy,atan:()=>py,atan2:()=>cy,atanh:()=>hy,avgPool:()=>x2,avgPool3d:()=>xy,basicLSTMCell:()=>Ay,batchNorm:()=>Qd,batchNorm2d:()=>yy,batchNorm3d:()=>by,batchNorm4d:()=>vy,batchToSpaceND:()=>A2,bincount:()=>y2,booleanMaskAsync:()=>Qb,broadcastArgs:()=>wy,broadcastTo:()=>rl,buffer:()=>Me,cast:()=>He,ceil:()=>ky,clipByValue:()=>Iy,clone:()=>wa,complex:()=>Ar,concat:()=>at,concat1d:()=>Sy,concat2d:()=>nu,concat3d:()=>Ty,concat4d:()=>Cy,conv1d:()=>Ny,conv2d:()=>ep,conv2dTranspose:()=>Ry,conv3d:()=>My,conv3dTranspose:()=>$y,cos:()=>_y,cosh:()=>Py,cosineWindow:()=>Ah,cumprod:()=>Fy,cumsum:()=>Oy,denseBincount:()=>Dy,depthToSpace:()=>zy,depthwiseConv2d:()=>dh,diag:()=>Ly,dilation2d:()=>By,div:()=>me,divNoNan:()=>Wy,dot:()=>Vy,dropout:()=>r4,einsum:()=>Uy,elu:()=>v2,enclosingPowerOfTwo:()=>K2,equal:()=>b2,erf:()=>Gy,euclideanNorm:()=>qy,exp:()=>Xr,expandDims:()=>Gt,expm1:()=>Xy,eye:()=>k2,fft:()=>gh,fill:()=>ar,floor:()=>I2,floorDiv:()=>Yd,fused:()=>Z2,gather:()=>S2,gatherND:()=>n4,greater:()=>np,greaterEqual:()=>T2,ifft:()=>hd,imag:()=>Zd,image:()=>ge,inTopKAsync:()=>s4,irfft:()=>H2,isFinite:()=>Ky,isInf:()=>Zy,isNaN:()=>Yy,leakyRelu:()=>C2,less:()=>Jy,lessEqual:()=>ph,linalg:()=>h4,linspace:()=>Qy,localResponseNormalization:()=>eb,log:()=>pl,log1p:()=>N2,logSigmoid:()=>ab,logSoftmax:()=>nb,logSumExp:()=>R2,logicalAnd:()=>pd,logicalNot:()=>M2,logicalOr:()=>$2,logicalXor:()=>rb,losses:()=>f4,lowerBound:()=>sb,matMul:()=>st,max:()=>pa,maxPool:()=>_2,maxPool3d:()=>ib,maxPoolWithArgmax:()=>ob,maximum:()=>P2,mean:()=>cd,meshgrid:()=>lb,min:()=>qr,minimum:()=>F2,mirrorPad:()=>ub,mod:()=>ru,moments:()=>db,movingAverage:()=>e4,mul:()=>ae,multiRNNCell:()=>pb,multinomial:()=>cb,neg:()=>qn,norm:()=>ap,notEqual:()=>O2,oneHot:()=>Sc,ones:()=>Lr,onesLike:()=>hb,op:()=>D,outerProduct:()=>fb,pad:()=>nr,pad1d:()=>mb,pad2d:()=>gb,pad3d:()=>xb,pad4d:()=>Ab,pool:()=>yb,pow:()=>dl,prelu:()=>z2,print:()=>t2,prod:()=>bb,raggedGather:()=>vb,raggedRange:()=>wb,raggedTensorToTensor:()=>kb,rand:()=>Ib,randomGamma:()=>Sb,randomNormal:()=>W2,randomStandardNormal:()=>Tb,randomUniform:()=>V2,range:()=>cl,real:()=>ul,reciprocal:()=>Cb,relu:()=>rp,relu6:()=>U2,reshape:()=>J,reverse:()=>Kr,reverse1d:()=>Nb,reverse2d:()=>Eb,reverse3d:()=>Rb,reverse4d:()=>Mb,rfft:()=>xh,round:()=>G2,rsqrt:()=>$b,scalar:()=>Fe,scatterND:()=>t4,searchSorted:()=>hh,selu:()=>_b,separableConv2d:()=>Pb,setdiff1dAsync:()=>Fb,sigmoid:()=>Da,sign:()=>Ob,signal:()=>c4,sin:()=>Db,sinh:()=>zb,slice:()=>Pe,slice1d:()=>Lb,slice2d:()=>Bb,slice3d:()=>sp,slice4d:()=>fh,softmax:()=>mh,softplus:()=>E2,spaceToBatchND:()=>D2,sparse:()=>m4,sparseToDense:()=>a4,spectral:()=>p4,split:()=>ka,sqrt:()=>Yn,square:()=>kn,squaredDifference:()=>j2,squeeze:()=>_e,stack:()=>sa,step:()=>q2,stridedSlice:()=>Wb,string:()=>g4,sub:()=>fe,sum:()=>tt,tan:()=>Vb,tanh:()=>Cc,tensor:()=>Be,tensor1d:()=>Ht,tensor2d:()=>Xn,tensor3d:()=>l2,tensor4d:()=>Ub,tensor5d:()=>Gb,tensor6d:()=>Hb,tile:()=>Vr,topk:()=>jb,transpose:()=>Ls,truncatedNormal:()=>qb,unique:()=>Xb,unsortedSegmentSum:()=>Kb,unstack:()=>Ta,upperBound:()=>Zb,variable:()=>Yb,where:()=>Bs,whereAsync:()=>X2,zeros:()=>hn,zerosLike:()=>Xa});var LP=(e,t,a,n=Zt)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[n.add(k("a",e,t,a),k("b",e,t,a))];case"AddN":return[n.addN(k("tensors",e,t,a))];case"FloorMod":case"Mod":return[n.mod(k("a",e,t,a),k("b",e,t,a))];case"Mul":return[n.mul(k("a",e,t,a),k("b",e,t,a))];case"RealDiv":case"Div":return[n.div(k("a",e,t,a),k("b",e,t,a))];case"DivNoNan":return[n.divNoNan(k("a",e,t,a),k("b",e,t,a))];case"FloorDiv":return[n.floorDiv(k("a",e,t,a),k("b",e,t,a))];case"Sub":return[n.sub(k("a",e,t,a),k("b",e,t,a))];case"Minimum":return[n.minimum(k("a",e,t,a),k("b",e,t,a))];case"Maximum":return[n.maximum(k("a",e,t,a),k("b",e,t,a))];case"Pow":return[n.pow(k("a",e,t,a),k("b",e,t,a))];case"SquaredDifference":return[n.squaredDifference(k("a",e,t,a),k("b",e,t,a))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},BP=(e,t,a,n=Zt)=>{switch(e.op){case"Abs":case"ComplexAbs":return[n.abs(k("x",e,t,a))];case"Acos":return[n.acos(k("x",e,t,a))];case"Acosh":return[n.acosh(k("x",e,t,a))];case"Asin":return[n.asin(k("x",e,t,a))];case"Asinh":return[n.asinh(k("x",e,t,a))];case"Atan":return[n.atan(k("x",e,t,a))];case"Atan2":return[n.atan2(k("x",e,t,a),k("y",e,t,a))];case"Atanh":return[n.atanh(k("x",e,t,a))];case"Ceil":return[n.ceil(k("x",e,t,a))];case"Complex":return[n.complex(k("real",e,t,a),k("imag",e,t,a))];case"Cos":return[n.cos(k("x",e,t,a))];case"Cosh":return[n.cosh(k("x",e,t,a))];case"Elu":return[n.elu(k("x",e,t,a))];case"Erf":return[n.erf(k("x",e,t,a))];case"Exp":return[n.exp(k("x",e,t,a))];case"Expm1":return[n.expm1(k("x",e,t,a))];case"Floor":return[n.floor(k("x",e,t,a))];case"Log":return[n.log(k("x",e,t,a))];case"Log1p":return[n.log1p(k("x",e,t,a))];case"Imag":return[n.imag(k("x",e,t,a))];case"Neg":return[n.neg(k("x",e,t,a))];case"Reciprocal":return[n.reciprocal(k("x",e,t,a))];case"Real":return[n.real(k("x",e,t,a))];case"Relu":return[n.relu(k("x",e,t,a))];case"Round":return[n.round(k("x",e,t,a))];case"Selu":return[n.selu(k("x",e,t,a))];case"Sigmoid":return[n.sigmoid(k("x",e,t,a))];case"Sin":return[n.sin(k("x",e,t,a))];case"Sign":return[n.sign(k("x",e,t,a))];case"Sinh":return[n.sinh(k("x",e,t,a))];case"Softplus":return[n.softplus(k("x",e,t,a))];case"Sqrt":return[n.sqrt(k("x",e,t,a))];case"Square":return[n.square(k("x",e,t,a))];case"Tanh":return[n.tanh(k("x",e,t,a))];case"Tan":return[n.tan(k("x",e,t,a))];case"ClipByValue":return[n.clipByValue(k("x",e,t,a),k("clipValueMin",e,t,a),k("clipValueMax",e,t,a))];case"Relu6":return[n.relu6(k("x",e,t,a))];case"Rsqrt":return[n.rsqrt(ba(e.inputNames[0],t,a))];case"Prod":return[n.prod(k("x",e,t,a),k("axes",e,t,a))];case"LeakyRelu":return[n.leakyRelu(k("x",e,t,a),k("alpha",e,t,a))];case"Prelu":return[n.prelu(k("x",e,t,a),k("alpha",e,t,a))];case"IsNan":return[n.isNaN(ba(e.inputNames[0],t,a))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function wn(e,t,a=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>a+` Shapes ${e} and ${t} must match`);for(let n=0;n<e.length;n++){let r=e[n],s=t[n];v.assert(r<0||s<0||r===s,()=>a+` Shapes ${e} and ${t} must match`)}}}function Jg(e){return!(typeof e=="number"||e.some(t=>t<0))}function Vu(e,t,a){let n=f1(e,a),r=!Jg(n);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${n}`);if(r&&t.forEach(s=>{n=f1(s.shape,n)}),!Jg(n))throw new Error(`Non-fully-defined elementShape: ${n}`);return n}function f1(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let a=[];for(let n=0;n<e.length;++n){let r=e[n],s=t[n];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);a[n]=r>=0?r:s}return a}var WP=class{constructor(e,t,a,n,r,s,i){this.name=e,this.dtype=t,this.maxSize=a,this.elementShape=n,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=Fe(0),Fn(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let a=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),wn(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),a.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(a.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);a.tensor=t,Fn(t),a.written=!0,this.tensors[e]=a}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((a,n)=>this.write(a,t[n]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let n=0;n<this.size();n++)e.push(n)}if(e.length===0)return Be([],[0].concat(this.elementShape));let a=this.readMany(e);return wn(this.elementShape,a[0].shape,"TensorArray shape mismatch: "),sa(a,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Be([],[0].concat(this.elementShape));let t=[];for(let n=0;n<this.size();n++)t.push(n);let a=this.readMany(t);return wn(this.elementShape,a[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${a[0].shape})`),at(a,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let a=Math.max(...e);if(!this.dynamicSize&&a>=this.maxSize)throw new Error(`Max index must be < array size (${a} vs. ${this.maxSize})`);this.writeMany(e,Ta(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let a=0,n=e.map(o=>(a+=o,a));if(a!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${a}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=a===0?0:t.size/a,s=[];$e(()=>{t=J(t,[1,a,r]);for(let o=0;o<e.length;++o){let l=[0,o===0?0:n[o-1],0],u=[1,e[o],r];s[o]=J(Pe(t,l,u),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},hl=class{constructor(e,t,a,n=-1){this.tensors=e,this.elementShape=t,this.elementDtype=a,e!=null&&e.forEach(r=>{if(a!==r.dtype)throw new Error(`Invalid data types; op elements ${a}, but list elements ${r.dtype}`);wn(t,r.shape,"TensorList shape mismatch: "),Fn(r)}),this.idTensor=Fe(0),this.maxNumElements=n,Fn(this.idTensor)}get id(){return this.idTensor.id}copy(){return new hl([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,a=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(a!==-1&&this.tensors.length!==a)throw new Error(`Operation expected a list with ${a} elements but got a list with ${this.tensors.length} elements.`);wn(e,this.elementShape,"TensorList shape mismatch: ");let n=Vu(this.elementShape,this.tensors,e);return $e(()=>{let r=this.tensors.map(s=>J(s,n));return sa(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let a=Vu(this.elementShape,this.tensors,e),n=this.tensors.pop();return n.kept=!1,wn(n.shape,e,"TensorList shape mismatch: "),J(n,a)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(wn(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Fn(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new hl([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let a=0;a<Math.min(this.tensors.length,e);++a)t.tensors[a]=this.tensors[a];return t}getItem(e,t,a){if(a!==this.elementDtype)throw new Error(`Invalid data types; op elements ${a}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);wn(this.tensors[e].shape,t,"TensorList shape mismatch: ");let n=Vu(this.elementShape,this.tensors,t);return J(this.tensors[e],n)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);wn(this.elementShape,t.shape,"TensorList shape mismatch: "),Fn(t),this.tensors[e]!=null&&(this.tensors[e].kept=!1),this.tensors[e]=t}gather(e,t,a){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);wn(this.elementShape,a,"TensorList shape mismatch: "),e=e.slice(0,this.size());let n=Vu(this.elementShape,this.tensors,a);return e.length===0?Be([],[0].concat(n)):$e(()=>{let r=e.map(s=>J(this.tensors[s],n));return sa(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);wn(this.elementShape,t,"TensorList shape mismatch: ");let a=Vu(this.elementShape,this.tensors,t);return this.size()===0?Be([],[0].concat(a)):$e(()=>{let n=this.tensors.map(r=>J(r,a));return at(n,0)})}};function VP(e,t,a){let n=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==a)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${a}`);let r=e.shape.slice(1);wn(r,t,"TensorList shape mismatch: ");let s=Ta(e);return new hl(s,t,n)}function UP(e,t,a,n){return new hl([],e,t,n)}function GP(e,t,a,n){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(n!=null&&n!==-1&&r>=n)throw new Error(`Max index must be < array size (${r} vs. ${n})`);let s=new hl([],a,e.dtype,n),i=Ta(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function HP(e,t,a){let n=0,r=t.map(p=>(n+=p,n));if(n!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=f1(s,a),o=n===0?0:e.size/n,l=$e(()=>{let p=[];e=J(e,[1,n,o]);for(let c=0;c<t.length;++c){let d=[0,c===0?0:r[c-1],0],h=[1,t[c],o];p[c]=J(Pe(e,d,h),i)}return e.dispose(),p}),u=new hl([],a,e.dtype,t.length);for(let p=0;p<l.length;p++)u.setItem(p,l[p]);return u}var jP=async(e,t,a)=>{switch(e.op){case"If":case"StatelessIf":{let n=k("thenBranch",e,t,a),r=k("elseBranch",e,t,a),s=k("cond",e,t,a),i=k("args",e,t,a);return(await s.data())[0]?a.functionMap[n].executeFunctionAsync(i,a.tensorArrayMap,a.tensorListMap):a.functionMap[r].executeFunctionAsync(i,a.tensorArrayMap,a.tensorListMap)}case"While":case"StatelessWhile":{let n=k("body",e,t,a),r=k("cond",e,t,a),s=k("args",e,t,a),i=await a.functionMap[r].executeFunctionAsync(s,a.tensorArrayMap,a.tensorListMap),o=s.map(p=>p.id),l=await i[0].data();i.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&p.dispose()});let u=s;for(;l[0];){let p=u;u=await a.functionMap[n].executeFunctionAsync(u,a.tensorArrayMap,a.tensorListMap);let c=u.map(h=>h.id);p.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&c.indexOf(h.id)===-1&&h.dispose()});let d=await a.functionMap[r].executeFunctionAsync(u,a.tensorArrayMap,a.tensorListMap);l=await d[0].data(),d.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&c.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let n=k("pred",e,t,a);return[fr(n)]}case"Switch":{let n=k("pred",e,t,a),r=k("data",e,t,a);return r.kept||(r=fr(r)),(await n.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let n=e.inputNames.find(r=>ba(r,t,a)!==void 0);if(n){let r=ba(n,t,a);return[fr(r)]}return}case"Enter":{let n=k("frameName",e,t,a),r=k("tensor",e,t,a);return a.enterFrame(n),[fr(r)]}case"Exit":{let n=k("tensor",e,t,a);return a.exitFrame(),[fr(n)]}case"NextIteration":{let n=k("tensor",e,t,a);return a.nextIteration(),[fr(n)]}case"TensorArrayV3":{let n=k("size",e,t,a),r=k("dtype",e,t,a),s=k("elementShape",e,t,a),i=k("dynamicSize",e,t,a),o=k("clearAfterRead",e,t,a),l=k("identicalElementShapes",e,t,a),u=k("name",e,t,a),p=new WP(u,r,n,s,l,i,o);return a.addTensorArray(p),[p.idTensor,Fe(1)]}case"TensorArrayWriteV3":{let n=k("tensorArrayId",e,t,a),r=k("index",e,t,a),s=k("tensor",e,t,a),i=a.getTensorArray(n.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let n=k("tensorArrayId",e,t,a),r=k("index",e,t,a);return[a.getTensorArray(n.id).read(r)]}case"TensorArrayGatherV3":{let n=k("tensorArrayId",e,t,a),r=k("indices",e,t,a),s=k("dtype",e,t,a);return[a.getTensorArray(n.id).gather(r,s)]}case"TensorArrayScatterV3":{let n=k("tensorArrayId",e,t,a),r=k("indices",e,t,a),s=k("tensor",e,t,a),i=a.getTensorArray(n.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let n=k("tensorArrayId",e,t,a),r=a.getTensorArray(n.id),s=k("dtype",e,t,a);return[r.concat(s)]}case"TensorArraySplitV3":{let n=k("tensorArrayId",e,t,a),r=k("tensor",e,t,a),s=k("lengths",e,t,a),i=a.getTensorArray(n.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let n=k("tensorArrayId",e,t,a),r=a.getTensorArray(n.id);return[Fe(r.size(),"int32")]}case"TensorArrayCloseV3":{let n=k("tensorArrayId",e,t,a),r=a.getTensorArray(n.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let n=k("tensorListId",e,t,a),r=k("index",e,t,a),s=k("tensor",e,t,a),i=a.getTensorList(n.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let n=k("tensorListId",e,t,a),r=k("index",e,t,a),s=k("elementShape",e,t,a),i=k("elementDType",e,t,a);return[a.getTensorList(n.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let n=k("indices",e,t,a),r=k("tensor",e,t,a),s=k("elementShape",e,t,a),i=k("numElements",e,t,a),o=GP(r,n,s,i);return a.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let n=k("elementShape",e,t,a),r=k("elementDType",e,t,a),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=k(s,e,t,a),o=e.op==="TensorListReserve"?-1:i,l=UP(n,r,i,o);return a.addTensorList(l),[l.idTensor]}case"TensorListGather":{let n=k("tensorListId",e,t,a),r=k("indices",e,t,a),s=k("elementShape",e,t,a),i=k("elementDType",e,t,a);return[a.getTensorList(n.id).gather(r,i,s)]}case"TensorListStack":{let n=k("tensorListId",e,t,a),r=k("elementShape",e,t,a),s=k("elementDType",e,t,a),i=k("numElements",e,t,a);return[a.getTensorList(n.id).stack(r,s,i)]}case"TensorListFromTensor":{let n=k("tensor",e,t,a),r=k("elementShape",e,t,a),s=k("elementDType",e,t,a),i=VP(n,r,s);return a.addTensorList(i),[i.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let n=k("tensorListId",e,t,a),r=a.getTensorList(n.id),s=k("dtype",e,t,a),i=k("elementShape",e,t,a);return[r.concat(s,i)]}case"TensorListPushBack":{let n=k("tensorListId",e,t,a),r=k("tensor",e,t,a),s=a.getTensorList(n.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let n=k("tensorListId",e,t,a),r=k("elementShape",e,t,a),s=k("elementDType",e,t,a);return[a.getTensorList(n.id).popBack(r,s)]}case"TensorListSplit":{let n=k("tensor",e,t,a),r=k("elementShape",e,t,a),s=k("lengths",e,t,a),i=HP(n,s,r);return a.addTensorList(i),[i.idTensor]}case"TensorListLength":{let n=k("tensorListId",e,t,a),r=a.getTensorList(n.id);return[Fe(r.size(),"int32")]}case"TensorListResize":{let n=k("tensorListId",e,t,a),r=k("size",e,t,a),s=a.getTensorList(n.id).resize(r);return a.addTensorList(s),[s.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Qg(e,t,a){let[n,r]=k("fusedOps",e,t,a),s=n==="biasadd",i=!s,o=r==="prelu",l=n==="fusedbatchnorm",u=k("numArgs",e,t,a);if(s){if(o&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&s&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let p=k("strides",e,t,a),c=cc(e,t,a),d=k("dataFormat",e,t,a).toUpperCase(),h=k("dilations",e,t,a),[f,m]=k("args",e,t,a);i&&(m=f,f=void 0);let g=k("leakyreluAlpha",e,t,a);return{stride:p,pad:c,dataFormat:d,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var qP=(e,t,a,n=Zt)=>{switch(e.op){case"Conv1D":{let r=k("stride",e,t,a),s=k("pad",e,t,a),i=k("dataFormat",e,t,a).toUpperCase(),o=k("dilation",e,t,a);return[n.conv1d(k("x",e,t,a),k("filter",e,t,a),r,s,i,o)]}case"Conv2D":{let r=k("strides",e,t,a),s=cc(e,t,a),i=k("dataFormat",e,t,a).toUpperCase(),o=k("dilations",e,t,a);return[n.conv2d(k("x",e,t,a),k("filter",e,t,a),[r[1],r[2]],s,i,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:r,pad:s,dataFormat:i,dilations:o,biasArg:l,preluArg:u,activationFunc:p,leakyreluAlpha:c}=Qg(e,t,a);return[n.fused.conv2d({x:k("x",e,t,a),filter:k("filter",e,t,a),strides:[r[1],r[2]],pad:s,dataFormat:i,dilations:[o[1],o[2]],bias:l,activation:p,preluActivationWeights:u,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:s,dataFormat:i,dilations:o,biasArg:l,preluArg:u,activationFunc:p,leakyreluAlpha:c}=Qg(e,t,a);return[n.fused.depthwiseConv2d({x:k("x",e,t,a),filter:k("filter",e,t,a),strides:[r[1],r[2]],pad:s,dataFormat:i,dilations:[o[1],o[2]],bias:l,activation:p,preluActivationWeights:u,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=k("outputShape",e,t,a),s=k("strides",e,t,a),i=cc(e,t,a);return[n.conv2dTranspose(k("x",e,t,a),k("filter",e,t,a),r,[s[1],s[2]],i)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=k("strides",e,t,a),s=cc(e,t,a),i=k("dilations",e,t,a),o=k("dataFormat",e,t,a).toUpperCase();return[n.depthwiseConv2d(k("input",e,t,a),k("filter",e,t,a),[r[1],r[2]],s,o,[i[1],i[2]])]}case"Conv3D":{let r=k("strides",e,t,a),s=k("pad",e,t,a),i=k("dataFormat",e,t,a).toUpperCase(),o=k("dilations",e,t,a);return[n.conv3d(k("x",e,t,a),k("filter",e,t,a),[r[1],r[2],r[3]],s,i,[o[1],o[2],o[3]])]}case"AvgPool":{let r=k("strides",e,t,a),s=k("pad",e,t,a),i=k("kernelSize",e,t,a);return[n.avgPool(k("x",e,t,a),[i[1],i[2]],[r[1],r[2]],s)]}case"MaxPool":{let r=k("strides",e,t,a),s=k("pad",e,t,a),i=k("kernelSize",e,t,a);return[n.maxPool(k("x",e,t,a),[i[1],i[2]],[r[1],r[2]],s)]}case"MaxPoolWithArgmax":{let r=k("strides",e,t,a),s=k("pad",e,t,a),i=k("kernelSize",e,t,a),o=k("includeBatchInIndex",e,t,a),{result:l,indexes:u}=n.maxPoolWithArgmax(k("x",e,t,a),[i[1],i[2]],[r[1],r[2]],s,o);return[l,u]}case"AvgPool3D":{let r=k("strides",e,t,a),s=k("pad",e,t,a),i=k("kernelSize",e,t,a);return[n.avgPool3d(k("x",e,t,a),[i[1],i[2],i[3]],[r[1],r[2],r[3]],s)]}case"MaxPool3D":{let r=k("strides",e,t,a),s=k("pad",e,t,a),i=k("kernelSize",e,t,a);return[n.maxPool3d(k("x",e,t,a),[i[1],i[2],i[3]],[r[1],r[2],r[3]],s)]}case"Dilation2D":{let r=k("strides",e,t,a),s=k("pad",e,t,a),i=k("dilations",e,t,a),o=r[1],l=r[2],u=i[1],p=i[2];return[n.dilation2d(k("x",e,t,a),k("filter",e,t,a),[o,l],s,[u,p],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},XP=(e,t,a,n=Zt)=>{switch(e.op){case"Fill":{let r=k("shape",e,t,a),s=k("dtype",e,t,a),i=k("value",e,t,a);return[n.fill(r,i,s)]}case"LinSpace":{let r=k("start",e,t,a),s=k("stop",e,t,a),i=k("num",e,t,a);return[n.linspace(r,s,i)]}case"Multinomial":{let r=k("logits",e,t,a),s=k("numSamples",e,t,a),i=k("seed",e,t,a);return[n.multinomial(r,s,i)]}case"OneHot":{let r=k("indices",e,t,a),s=k("depth",e,t,a),i=k("onValue",e,t,a),o=k("offValue",e,t,a),l=k("dtype",e,t,a);return[n.oneHot(r,s,i,o,l)]}case"Ones":return[n.ones(k("shape",e,t,a),k("dtype",e,t,a))];case"OnesLike":return[n.onesLike(k("x",e,t,a))];case"RandomStandardNormal":return[n.randomStandardNormal(k("shape",e,t,a),k("dtype",e,t,a),k("seed",e,t,a))];case"RandomUniform":return[n.randomUniform(k("shape",e,t,a),k("minval",e,t,a),k("maxval",e,t,a),k("dtype",e,t,a))];case"Range":{let r=k("start",e,t,a),s=k("stop",e,t,a),i=k("step",e,t,a);return[n.range(r,s,i,k("dtype",e,t,a))]}case"TruncatedNormal":{let r=k("shape",e,t,a),s=k("mean",e,t,a),i=k("stdDev",e,t,a),o=k("seed",e,t,a);return[n.truncatedNormal(r,s,i,k("dtype",e,t,a),o)]}case"Zeros":return[n.zeros(k("shape",e,t,a),k("dtype",e,t,a))];case"ZerosLike":return[n.zerosLike(k("x",e,t,a))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Pm(e,t,a){let n=k("boxes",e,t,a),r=k("scores",e,t,a),s=k("maxOutputSize",e,t,a),i=k("iouThreshold",e,t,a),o=k("scoreThreshold",e,t,a),l=k("softNmsSigma",e,t,a);return{boxes:n,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var KP=async(e,t,a,n,r=Zt)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u,softNmsSigma:p}=Pm(e,t,a),c=await r.image.nonMaxSuppressionWithScoreAsync(s,i,o,l,u,p);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u}=Pm(e,t,a),p=k("padToMaxOutputSize",e,t,a),c=await r.image.nonMaxSuppressionPaddedAsync(s,i,o,l,u,p);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u}=Pm(e,t,a);return[await r.image.nonMaxSuppressionAsync(s,i,o,l,u)]}case"Where":{let s=r.cast(k("condition",e,t,a),"bool"),i=[await r.whereAsync(s)];return s.dispose(),i}case"ListDiff":return r.setdiff1dAsync(k("x",e,t,a),k("y",e,t,a));default:throw TypeError(`Node type ${e.op} is not implemented`)}},ZP=(e,t,a,n=Zt)=>{switch(e.op){case"LowerBound":{let r=k("sortedSequence",e,t,a),s=k("values",e,t,a);return[n.lowerBound(r,s)]}case"TopKV2":{let r=k("x",e,t,a),s=k("k",e,t,a),i=k("sorted",e,t,a),o=n.topk(r,s,i);return[o.values,o.indices]}case"UpperBound":{let r=k("sortedSequence",e,t,a),s=k("values",e,t,a);return[n.upperBound(r,s)]}case"Unique":{let r=k("x",e,t,a),s=n.unique(r);return[s.values,s.indices]}case"UniqueV2":{let r=k("x",e,t,a),s=k("axis",e,t,a),i=n.unique(r,s);return[i.values,i.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},YP=(e,t,a,n=Zt)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=k("default",e,t,a);return[ba(e.name,t,a)||r];case"Placeholder":return[ba(e.name,t,a)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let p=k("x",e,t,a);return[fr(p)]}case"IdentityN":return k("x",e,t,a).map(p=>fr(p));case"Snapshot":let s=k("x",e,t,a);return[fr(s)];case"Shape":return[n.tensor1d(k("x",e,t,a).shape,"int32")];case"ShapeN":return k("x",e,t,a).map(p=>n.tensor1d(p.shape));case"Size":return[n.scalar(k("x",e,t,a).size,"int32")];case"Rank":return[n.scalar(k("x",e,t,a).rank,"int32")];case"NoOp":return[n.scalar(1)];case"Print":let i=k("x",e,t,a),o=k("data",e,t,a),l=k("message",e,t,a),u=k("summarize",e,t,a);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(l);for(let p=0;p<o.length;p++)console.log(Array.prototype.slice.call(o[p].dataSync()).slice(0,u));return[i];default:throw TypeError(`Node type ${e.op} is not implemented`)}},JP=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Fe(0),this.tensorMap=new Map,Fn(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Fe(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let a=await e.data();return this.tensorMap.forEach(n=>n.dispose()),this.tensorMap.clear(),$e(()=>{let n=Ta(t),r=a.length,s=n.length;v.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=a[i],l=n[i];Fn(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let a=await e.data();return $e(()=>{let n=[];for(let r=0;r<a.length;r++){let s=a[r],i=this.findWithDefault(s,t);n.push(i)}return sa(n)})}findWithDefault(e,t){let a=this.tensorMap.get(e);return a!=null?a:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},QP=async(e,t,a,n)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=n.getHashTableHandleByName(e.name);if(r!=null)return[r];{let s=k("keyDType",e,t,a),i=k("valueDType",e,t,a),o=new JP(s,i);return n.addHashTable(e.name,o),[o.handle]}}case"InitializeTable":case"InitializeTableV2":case"LookupTableImport":case"LookupTableImportV2":{let r=k("tableHandle",e,t,a,n),s=k("keys",e,t,a),i=k("values",e,t,a);return[await n.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=k("tableHandle",e,t,a,n),s=k("keys",e,t,a),i=k("defaultValue",e,t,a);return[await n.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=k("tableHandle",e,t,a,n);return[n.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},eF=(e,t,a,n=Zt)=>{switch(e.op){case"ResizeBilinear":{let r=k("images",e,t,a),s=k("size",e,t,a),i=k("alignCorners",e,t,a),o=k("halfPixelCenters",e,t,a);return[n.image.resizeBilinear(r,[s[0],s[1]],i,o)]}case"ResizeNearestNeighbor":{let r=k("images",e,t,a),s=k("size",e,t,a),i=k("alignCorners",e,t,a),o=k("halfPixelCenters",e,t,a);return[n.image.resizeNearestNeighbor(r,[s[0],s[1]],i,o)]}case"CropAndResize":{let r=k("image",e,t,a),s=k("boxes",e,t,a),i=k("boxInd",e,t,a),o=k("cropSize",e,t,a),l=k("method",e,t,a),u=k("extrapolationValue",e,t,a);return[n.image.cropAndResize(r,s,i,o,l,u)]}case"ImageProjectiveTransformV3":{let r=k("images",e,t,a),s=k("transforms",e,t,a),i=k("outputShape",e,t,a),o=k("fillValue",e,t,a),l=k("interpolation",e,t,a),u=k("fillMode",e,t,a);return[n.image.transform(r,s,l.toLowerCase(),u.toLowerCase(),o,i)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},tF=(e,t,a,n=Zt)=>{switch(e.op){case"Equal":return[n.equal(k("a",e,t,a),k("b",e,t,a))];case"NotEqual":return[n.notEqual(k("a",e,t,a),k("b",e,t,a))];case"Greater":return[n.greater(k("a",e,t,a),k("b",e,t,a))];case"GreaterEqual":return[n.greaterEqual(k("a",e,t,a),k("b",e,t,a))];case"Less":return[n.less(k("a",e,t,a),k("b",e,t,a))];case"LessEqual":return[n.lessEqual(k("a",e,t,a),k("b",e,t,a))];case"LogicalAnd":return[n.logicalAnd(k("a",e,t,a),k("b",e,t,a))];case"LogicalNot":return[n.logicalNot(k("a",e,t,a))];case"LogicalOr":return[n.logicalOr(k("a",e,t,a),k("b",e,t,a))];case"Select":case"SelectV2":return[n.where(k("condition",e,t,a),k("a",e,t,a),k("b",e,t,a))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},aF=(e,t,a,n=Zt)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[n.matMul(k("a",e,t,a),k("b",e,t,a),k("transposeA",e,t,a),k("transposeB",e,t,a))];case"Einsum":return[n.einsum(k("equation",e,t,a),...k("tensors",e,t,a))];case"Transpose":return[n.transpose(k("x",e,t,a),k("perm",e,t,a))];case"_FusedMatMul":let[r,s]=k("fusedOps",e,t,a),i=r==="biasadd",o=s==="prelu",l=k("numArgs",e,t,a),u=k("leakyreluAlpha",e,t,a);if(i){if(o&&l!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&l!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[p,c]=k("args",e,t,a);return[n.fused.matMul({a:k("a",e,t,a),b:k("b",e,t,a),transposeA:k("transposeA",e,t,a),transposeB:k("transposeB",e,t,a),bias:p,activation:s,preluActivationWeights:c,leakyreluAlpha:u})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},nF=(e,t,a,n=Zt)=>{switch(e.op){case"EuclideanNorm":return[n.euclideanNorm(k("x",e,t,a),k("axis",e,t,a),k("keepDims",e,t,a))];case"FusedBatchNorm":case"FusedBatchNormV2":return[n.batchNorm(k("x",e,t,a),k("mean",e,t,a),k("variance",e,t,a),k("offset",e,t,a),k("scale",e,t,a),k("epsilon",e,t,a))];case"FusedBatchNormV3":return[n.batchNorm(k("x",e,t,a),k("mean",e,t,a),k("variance",e,t,a),k("offset",e,t,a),k("scale",e,t,a),k("epsilon",e,t,a))];case"LRN":return[n.localResponseNormalization(k("x",e,t,a),k("radius",e,t,a),k("bias",e,t,a),k("alpha",e,t,a),k("beta",e,t,a))];case"Softmax":return[n.softmax(k("x",e,t,a))];case"LogSoftmax":return[n.logSoftmax(k("x",e,t,a))];case"SparseToDense":return[n.sparseToDense(k("sparseIndices",e,t,a),k("outputShape",e,t,a),k("sparseValues",e,t,a),k("defaultValue",e,t,a))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},rF=(e,t,a,n=Zt)=>{switch(e.op){case"RaggedGather":{let{outputNestedSplits:r,outputDenseValues:s}=n.raggedGather(k("paramsNestedSplits",e,t,a),k("paramsDenseValues",e,t,a),k("indices",e,t,a),k("outputRaggedRank",e,t,a));return r.concat(s)}case"RaggedRange":{let{rtNestedSplits:r,rtDenseValues:s}=n.raggedRange(k("starts",e,t,a),k("limits",e,t,a),k("splits",e,t,a));return[r,s]}case"RaggedTensorToTensor":return[n.raggedTensorToTensor(k("shape",e,t,a),k("values",e,t,a),k("defaultValue",e,t,a),k("rowPartitionTensors",e,t,a),k("rowPartitionTypes",e,t,a))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},sF=(e,t,a,n=Zt)=>{switch(e.op){case"Max":{let o=k("axis",e,t,a),l=k("keepDims",e,t,a);return[n.max(k("x",e,t,a),o,l)]}case"Mean":{let o=k("axis",e,t,a),l=k("keepDims",e,t,a);return[n.mean(k("x",e,t,a),o,l)]}case"Min":{let o=k("axis",e,t,a),l=k("keepDims",e,t,a);return[n.min(k("x",e,t,a),o,l)]}case"Sum":{let o=k("axis",e,t,a),l=k("keepDims",e,t,a);return[n.sum(k("x",e,t,a),o,l)]}case"All":{let o=k("axis",e,t,a),l=k("keepDims",e,t,a);return[n.all(k("x",e,t,a),o,l)]}case"Any":{let o=k("axis",e,t,a),l=k("keepDims",e,t,a);return[n.any(k("x",e,t,a),o,l)]}case"ArgMax":{let o=k("axis",e,t,a);return[n.argMax(k("x",e,t,a),o)]}case"ArgMin":{let o=k("axis",e,t,a);return[n.argMin(k("x",e,t,a),o)]}case"Prod":{let o=k("axis",e,t,a),l=k("keepDims",e,t,a);return[n.prod(k("x",e,t,a),o,l)]}case"Cumprod":{let o=k("axis",e,t,a),l=k("exclusive",e,t,a),u=k("reverse",e,t,a);return[n.cumprod(k("x",e,t,a),o,l,u)]}case"Cumsum":{let o=k("axis",e,t,a),l=k("exclusive",e,t,a),u=k("reverse",e,t,a);return[n.cumsum(k("x",e,t,a),o,l,u)]}case"Bincount":let r=k("x",e,t,a),s=k("weights",e,t,a),i=k("size",e,t,a);return[n.bincount(r,s,i)];case"DenseBincount":{let o=k("x",e,t,a),l=k("weights",e,t,a),u=k("size",e,t,a),p=k("binaryOutput",e,t,a);return[n.denseBincount(o,l,u,p)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},iF=(e,t,a,n=Zt)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=k("n",e,t,a),s=k("axis",e,t,a),i=k("tensors",e,t,a);return i=i.slice(0,r),[n.concat(i,s)]}case"Gather":{let r=k("x",e,t,a),s=k("indices",e,t,a);return[n.gather(r,n.cast(s,"int32"),0)]}case"GatherV2":{let r=k("axis",e,t,a),s=k("batchDims",e,t,a),i=k("x",e,t,a),o=k("indices",e,t,a);return[n.gather(i,n.cast(o,"int32"),r,s)]}case"Reverse":{let r=k("dims",e,t,a),s=[];for(let o=0;o<r.length;o++)r[o]&&s.push(o);let i=k("x",e,t,a);return[n.reverse(i,s)]}case"ReverseV2":{let r=k("axis",e,t,a),s=k("x",e,t,a);return[n.reverse(s,r)]}case"Slice":{let r=k("begin",e,t,a),s=k("size",e,t,a);return[n.slice(k("x",e,t,a),r,s)]}case"StridedSlice":{let r=k("begin",e,t,a),s=k("end",e,t,a),i=k("strides",e,t,a),o=k("beginMask",e,t,a),l=k("endMask",e,t,a),u=k("ellipsisMask",e,t,a),p=k("newAxisMask",e,t,a),c=k("shrinkAxisMask",e,t,a),d=k("x",e,t,a);return[n.stridedSlice(d,r,s,i,o,l,u,p,c)]}case"Pack":return $e(()=>{let r=k("axis",e,t,a),s=k("tensors",e,t,a),i=s[0].shape,o=n.squeeze(s[0]).shape,l=s.map(u=>{let p=v.arraysEqual(u.shape,i);if(!p&&!v.arraysEqual(n.squeeze(u).shape,o))throw new Error("the input tensors shape does not match");return p?u:n.reshape(u,i)});return[n.stack(l,r)]});case"Unpack":{let r=k("axis",e,t,a),s=k("tensor",e,t,a);return n.unstack(s,r)}case"Tile":{let r=k("reps",e,t,a);return[n.tile(k("x",e,t,a),r)]}case"Split":case"SplitV":{let r=k("axis",e,t,a),s=k("numOrSizeSplits",e,t,a),i=k("x",e,t,a);return n.split(i,s,r)}case"ScatterNd":{let r=k("indices",e,t,a),s=k("values",e,t,a),i=k("shape",e,t,a);return[n.scatterND(r,s,i)]}case"GatherNd":{let r=k("x",e,t,a),s=k("indices",e,t,a);return[n.gatherND(r,s)]}case"SparseToDense":{let r=k("sparseIndices",e,t,a),s=k("outputShape",e,t,a),i=k("sparseValues",e,t,a),o=k("defaultValue",e,t,a);return[n.sparseToDense(r,i,s,i.dtype===o.dtype?o:n.cast(o,i.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},oF=(e,t,a,n=Zt)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:r,outputValues:s,emptyRowIndicator:i,reverseIndexMap:o}=n.sparse.sparseFillEmptyRows(k("indices",e,t,a),k("values",e,t,a),k("denseShape",e,t,a),k("defaultValue",e,t,a));return[r,s,i,o]}case"SparseReshape":{let{outputIndices:r,outputShape:s}=n.sparse.sparseReshape(k("inputIndices",e,t,a),k("inputShape",e,t,a),k("newShape",e,t,a));return[r,s]}case"SparseSegmentMean":return[n.sparse.sparseSegmentMean(k("data",e,t,a),k("indices",e,t,a),k("segmentIds",e,t,a))];case"SparseSegmentSum":return[n.sparse.sparseSegmentSum(k("data",e,t,a),k("indices",e,t,a),k("segmentIds",e,t,a))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},lF=(e,t,a,n=Zt)=>{switch(e.op){case"FFT":return[n.fft(k("x",e,t,a))];case"IFFT":return[n.ifft(k("x",e,t,a))];case"RFFT":return[n.rfft(k("x",e,t,a))];case"IRFFT":return[n.irfft(k("x",e,t,a))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},uF=(e,t,a,n=Zt)=>{switch(e.op){case"StringNGrams":{let{nGrams:r,nGramsSplits:s}=n.string.stringNGrams(k("data",e,t,a),k("dataSplits",e,t,a),k("separator",e,t,a),k("nGramWidths",e,t,a),k("leftPad",e,t,a),k("rightPad",e,t,a),k("padWidth",e,t,a),k("preserveShortSequences",e,t,a));return[r,s]}case"StringSplit":{let{indices:r,values:s,shape:i}=n.string.stringSplit(k("input",e,t,a),k("delimiter",e,t,a),k("skipEmpty",e,t,a));return[r,s,i]}case"StringToHashBucketFast":return[n.string.stringToHashBucketFast(k("input",e,t,a),k("numBuckets",e,t,a))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},dF=(e,t,a,n=Zt)=>{switch(e.op){case"Cast":return[n.cast(k("x",e,t,a),k("dtype",e,t,a))];case"ExpandDims":{let r=k("axis",e,t,a);return[n.expandDims(k("x",e,t,a),r)]}case"Squeeze":{let r=k("axis",e,t,a);return[n.squeeze(k("x",e,t,a),r)]}case"Reshape":return[n.reshape(k("x",e,t,a),k("shape",e,t,a))];case"MirrorPad":return[n.mirrorPad(k("x",e,t,a),k("padding",e,t,a),k("mode",e,t,a))];case"PadV2":case"Pad":return[n.pad(k("x",e,t,a),k("padding",e,t,a),k("constantValue",e,t,a))];case"SpaceToBatchND":{let r=k("blockShape",e,t,a),s=k("paddings",e,t,a);return[n.spaceToBatchND(k("x",e,t,a),r,s)]}case"BatchToSpaceND":{let r=k("blockShape",e,t,a),s=k("crops",e,t,a);return[n.batchToSpaceND(k("x",e,t,a),r,s)]}case"DepthToSpace":{let r=k("blockSize",e,t,a),s=k("dataFormat",e,t,a).toUpperCase();return[n.depthToSpace(k("x",e,t,a),r,s)]}case"BroadcastTo":return[n.broadcastTo(k("x",e,t,a),k("shape",e,t,a))];case"BroadcastArgs":return[n.broadcastArgs(k("s0",e,t,a),k("s1",e,t,a))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ex(e,t,a,n,r=$e){let s=((i,o,l)=>{switch(i.category){case"arithmetic":return r(()=>LP(i,o,l));case"basic_math":return r(()=>BP(i,o,l));case"control":return jP(i,o,l);case"convolution":return r(()=>qP(i,o,l));case"creation":return r(()=>XP(i,o,l));case"dynamic":return KP(i,o,l);case"evaluation":return r(()=>ZP(i,o,l));case"image":return r(()=>eF(i,o,l));case"graph":return r(()=>YP(i,o,l));case"logical":return r(()=>tF(i,o,l));case"matrices":return r(()=>aF(i,o,l));case"normalization":return r(()=>nF(i,o,l));case"ragged":return r(()=>rF(i,o,l));case"reduction":return r(()=>sF(i,o,l));case"slice_join":return r(()=>iF(i,o,l));case"sparse":return r(()=>oF(i,o,l));case"spectral":return r(()=>lF(i,o,l));case"string":return r(()=>uF(i,o,l));case"transformation":return r(()=>dF(i,o,l));case"hash_table":return QP(i,o,l,n);case"custom":let u=y4(i.op);if(u&&u.customExecutor)return u.customExecutor(new zP(i,o,l));throw TypeError(`Custom op ${i.op} is not registered.`);default:throw TypeError(`Unknown op '${i.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,a);return v.isPromise(s)?s.then(i=>[].concat(i)):[].concat(s)}var tx=class{constructor(e={},t={},a={},n={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=a,this.functionMap=n,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let a=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(a))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function ax(e,t,a,n){let r=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(d=>Ha(d)[0]),p=[];n!=null&&(p=n.map(d=>Ha(d.name)[0]));let c=[...t];for(;c.length>0;){let d=c.pop();if((W4(d)||mF(d)||gF(d))&&i==null&&(i=d,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(d.name),a[d.name]==null&&u.indexOf(d.name)===-1&&p.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),c.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function pF(e,t,a){let{usedNodes:n,inputs:r}=a,s=[],i=Object.keys(r).map(p=>Ha(p)[0]).map(p=>e.nodes[p]),o=e.initNodes;i.forEach(p=>{n.has(p.name)&&s.push(p)}),e.weights.forEach(p=>{n.has(p.name)&&s.push(p)}),o!=null&&o.forEach(p=>{n.has(p.name)&&s.push(p)});let l=new Set,u=[];for(;s.length>0;){let p=s.pop();l.add(p.name),t[p.name]||u.push(p),p.children.forEach(c=>{!l.has(c.name)&&n.has(c.name)&&c.inputs.every(d=>l.has(d.name))&&s.push(c)})}return u}var cF=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],hF=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],fF=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function W4(e){return cF.indexOf(e.op)>=0}function mF(e){return hF.indexOf(e.op)>=0}function gF(e){return fF.indexOf(e.op)>=0}var m1=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.keepIntermediateTensors=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(a=>{this._functionExecutorMap[a]=new m1(e.functions[a],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(a=>e[a].map(n=>n.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let a=e.map(r=>r.name).sort(),n=t.map(r=>r.name).sort();return a.join(this.SEPERATOR)+"--"+n.join(this.SEPERATOR)}compile(e,t){let a=ax(e,t,this.weightMap,this._initNodes),{missingInputs:n,dynamicNode:r,syncInputs:s}=a;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(n.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${n}]`)}return pF(this.graph,this.weightMap,a)}cloneAndKeepTensor(e){if(e==null)return null;let t=e.clone();return Fn(t),t}cloneTensorList(e){return e?e.map(t=>this.cloneAndKeepTensor(t)):null}cloneTensorMap(e){return Object.fromEntries(Object.entries(e).map(([t,a])=>[t,this.cloneTensorList(a)]))}execute(e,t){this.disposeIntermediateTensors(),e=this.mapInputs(e);let a=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let n=a.map(p=>this.graph.nodes[Ha(p)[0]]),r=t.map(p=>Ha(p)[0]),s=r.map(p=>this.graph.nodes[p]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(n,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));try{this.keepIntermediateTensors=W().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(p){this.keepIntermediateTensors=!1,console.warn(p.message)}let l={},u={};return $e(()=>{let p=new tx(this.weightMap,l,u,this.functionExecutorMap),c=Object.assign({},this.weightMap);this.keepIntermediateTensors&&(this.clonedTensorsMap=this.cloneTensorMap(this.weightMap)),Object.keys(e).forEach(f=>{let[m,g]=Ha(f),x=[];x[g]=e[f],c[m]=x,this.keepIntermediateTensors&&(this.clonedTensorsMap[m]=this.cloneTensorList(x))});let d=this.getFrozenTensorIds(c),h={};for(let f=0;f<o.length;f++){let m=o[f];if(!c[m.name]){let g=ex(m,c,p,this._resourceManager);if(v.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);c[m.name]=g,this.keepIntermediateTensors&&(this.clonedTensorsMap[m.name]=this.cloneTensorList(g)),this.checkTensorForDisposal(m.name,m,c,p,d,r,h)}}return this.parent==null&&p.dispose(d),t.map(f=>ba(f,c,p))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(a=>e[a]).map(a=>a.map(n=>n.id)));return new Set(t)}checkTensorForDisposal(e,t,a,n,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(a[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=xP(o.name,a,n);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let p=i[u.id];p===1?(u.dispose(),delete i[u.id]):p!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.clonedTensorsMap||(Object.values(this.clonedTensorsMap).forEach(e=>{for(let t of e)t&&!t.isDisposed&&t.dispose()}),this.clonedTensorsMap=null)}getIntermediateTensors(){return this.clonedTensorsMap}async _executeAsync(e,t,a=!1,n={},r={}){this.disposeIntermediateTensors(),a||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepIntermediateTensors=W().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(c){this.keepIntermediateTensors=!1,console.warn(c.message)}let s=new tx(this.weightMap,n,r,this.functionExecutorMap);this.keepIntermediateTensors&&(this.clonedTensorsMap=this.cloneTensorMap(this.weightMap));let i=await this.executeWithControlFlow(e,s,t,a),o=t.map(c=>ba(c,i,s)),l=o.map(c=>c.id),u=Object.keys(e).map(c=>e[c].id),p=new Set([...l,...u,...this.weightIds]);return Object.values(i).forEach(c=>{c.forEach(d=>{d&&!d.isDisposed&&!p.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(p),o}async executeFunctionAsync(e,t,a){let n=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(n,this.outputNodes,!0,t,a)}async executeWithControlFlow(e,t,a,n){let r=Object.keys(e),s=r.map(A=>this.graph.nodes[Ha(A)[0]]),i=a.map(A=>Ha(A)[0]),o=i.map(A=>this.graph.nodes[A]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:p,syncInputs:c}=ax(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(A=>({node:A,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(A=>{let[y,b]=Ha(A),w=[];w[b]=e[A],h[y]=w});let f={},m=this.getFrozenTensorIds(h),g={};for(;d.length>0;){let A=this.processStack(s,d,t,h,g,m,i,f,l);await Promise.all(A)}p==null&&!n&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let x=o.filter(A=>!W4(A)&&!ba(A.name,h,t)).map(A=>A.name);if(x.length>0){let A="";throw p!=null&&(A=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${c}]`),new Error(`Cannot compute the outputs [${x}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${A}`)}return h}processStack(e,t,a,n,r,s,i,o,l){let u=[];for(;t.length>0;){let p=t.pop();a.currentContext=p.contexts;let c="";if(p.node.op==="Enter"&&k("isConstant",p.node,n,a)&&([c]=hr(p.node.name,a)),n[p.node.name]==null){let d=ex(p.node,n,a,this._resourceManager);c||([c]=hr(p.node.name,a));let h=a.currentContext;v.isPromise(d)?u.push(d.then(f=>(n[c]=f,this.keepIntermediateTensors&&(this.clonedTensorsMap[c]=this.cloneTensorList(f)),a.currentContext=h,this.checkTensorForDisposal(c,p.node,n,a,s,i,o),this.processChildNodes(p.node,t,a,n,r,l),f))):(n[c]=d,this.keepIntermediateTensors&&(this.clonedTensorsMap[c]=this.cloneTensorList(d)),this.checkTensorForDisposal(c,p.node,n,a,s,i,o),this.processChildNodes(p.node,t,a,n,r,l))}else this.processChildNodes(p.node,t,a,n,r,l)}return u}processChildNodes(e,t,a,n,r,s){e.children.forEach(i=>{let[o]=hr(i.name,a);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!ba(l,n,a))&&(r[o]=!0,t.push({contexts:a.currentContext,node:i})):i.inputNames.every(l=>!!ba(l,n,a))&&(r[o]=!0,t.push({contexts:a.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let a=e[t],[n]=Ha(t),r=this.graph.nodes[n];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===a.shape.length&&a.shape.every((o,l)=>s[l]===-1||s[l]===o);v.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${a.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&v.assert(a.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${a.dtype}`)})}mapInputs(e){var t,a;let n={};for(let r in e){let s=(a=(t=this._signature)===null||t===void 0?void 0:t.inputs)===null||a===void 0?void 0:a[r];s!=null?n[s.name]=e[r]:n[r]=e[r]}return n}checkInputs(e){let t=Object.keys(e).filter(a=>{let[n]=Ha(a);return this.graph.nodes[n]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>{var a,n;let r=(n=(a=this._signature)===null||a===void 0?void 0:a.outputs)===null||n===void 0?void 0:n[t];return r!=null?r.name:t},{})}checkOutputs(e){e.forEach(t=>{let[a]=Ha(t);if(!this.graph.nodes[a])throw new Error(`The output '${t}' is not found in the graph`)})}},xF=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},AF="?tfjs-format=file",yF="model.json",op=class{constructor(e,t={},a=Hn){this.modelUrl=e,this.loadOptions=t,this.version="n/a",this.io=a,t==null&&(this.loadOptions={}),this.resourceManager=new xF}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}get modelStructuredOutputKeys(){return this.structuredOutputKeys}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=this.io.browserHTTPRequest(e,this.loadOptions);else{let t=this.io.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(this.io.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=this.handler.load();return v.isPromise(e)?e.then(t=>this.loadSync(t)):this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,a=this.artifacts.signature;if(this.artifacts.userDefinedMetadata!=null){let r=this.artifacts.userDefinedMetadata;r.signature!=null&&(a=r.signature),r.structuredOutputKeys!=null&&(this.structuredOutputKeys=r.structuredOutputKeys)}this.signature=a,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let n=this.io.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new m1(Zg.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(n),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=Zg.Instance.transformGraph(e.modelInitializer);this.initializer=new m1(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializerSignature=e.initializerSignature}return!0}async save(e,t){if(typeof e=="string"){let a=this.io.getSaveHandlers(e);if(a.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(a.length>1)throw new Error(`Found more than one (${a.length}) save handlers for URL '${e}'`);e=a[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}addStructuredOutputNames(e){if(this.structuredOutputKeys){let t=e instanceof pt?[e]:e,a={};return t.forEach((n,r)=>a[this.structuredOutputKeys[r]]=n),a}return e}predict(e,t){let a=this.execute(e,this.outputNodes);return this.addStructuredOutputNames(a)}async predictAsync(e,t){let a=await this.executeAsync(e,this.outputNodes);return this.addStructuredOutputNames(a)}normalizeInputs(e){var t;if(!(e instanceof pt)&&!Array.isArray(e)){let r=(t=this.signature)===null||t===void 0?void 0:t.inputs;if(r!=null)for(let s in r){let i=r[s];i.resourceId!=null&&(e[s]=this.resourceIdToCapturedInput[i.resourceId])}return e}e=Array.isArray(e)?e:[e];let a=Object.keys(this.resourceIdToCapturedInput).length;if(e.length+a!==this.inputNodes.length)throw new Error(`Input tensor count mismatch, the graph model has ${this.inputNodes.length-a} non-resource placeholders, while there are ${e.length} input tensors provided.`);let n=0;return this.inputNodes.reduce((r,s)=>{var i,o,l;let u=(l=(o=(i=this.signature)===null||i===void 0?void 0:i.inputs)===null||o===void 0?void 0:o[s])===null||l===void 0?void 0:l.resourceId;return u!=null?r[s]=this.resourceIdToCapturedInput[u]:r[s]=e[n++],r},{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}executeInitializerGraph(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.execute({},[]):this.initializer.execute({},Object.keys(this.initializerSignature.outputs))}async executeInitializerGraphAsync(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.executeAsync({},[]):this.initializer.executeAsync({},Object.keys(this.initializerSignature.outputs))}setResourceIdToCapturedInput(e){if(this.resourceIdToCapturedInput={},this.initializerSignature){let t=this.initializerSignature.outputs,a=Object.keys(t);for(let n=0;n<a.length;n++){let r=a[n],s=t[r];this.resourceIdToCapturedInput[s.resourceId]=e[n]}}}execute(e,t){this.resourceIdToCapturedInput==null&&this.setResourceIdToCapturedInput(this.executeInitializerGraph()),e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let a=this.executor.execute(e,t);return a.length>1?a:a[0]}async executeAsync(e,t){this.resourceIdToCapturedInput==null&&this.setResourceIdToCapturedInput(await this.executeInitializerGraphAsync()),e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let a=await this.executor.executeAsync(e,t);return a.length>1?a:a[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,a)=>(t[a]=[e[a]],t),{})}dispose(){this.executor.dispose(),this.initializer&&(this.initializer.dispose(),this.resourceIdToCapturedInput&&Y(this.resourceIdToCapturedInput)),this.resourceManager.dispose()}};async function t3(e,t={},a=Hn){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof e=="string"&&(e=vF(e));let n=new op(e,t,a);return await n.load(),n}function bF(e){if(e==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide model artifacts or an IOHandler that loads the model");let t;if(e instanceof Array){let[n,r]=e;if(!n)throw new Error("modelJSON must be the first element of the array");if(!r||!(r instanceof ArrayBuffer))throw new Error("An ArrayBuffer of weights must be the second element of the array");if(!("modelTopology"in n))throw new Error("Model JSON is missing 'modelTopology'");if(!("weightsManifest"in n))throw new Error("Model JSON is missing 'weightsManifest'");let s=Hn.getWeightSpecs(n.weightsManifest),i=Hn.getModelArtifactsForJSONSync(n,s,r);t=Hn.fromMemorySync(i)}else if("load"in e)t=e;else if("modelTopology"in e&&"weightSpecs"in e&&"weightData"in e)t=Hn.fromMemorySync(e);else throw new Error("Unknown model format");let a=new op(t);return a.load(),a}function vF(e){return e.endsWith("/")||(e=e+"/"),`${e}${yF}${AF}`}var wF="4.1.0";function ye(e,t){Array.isArray(e)||(e=[e]),e.forEach(a=>{a!=null&&v.assert(a.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var kF=Sn.whereImpl,Eh=class extends yl{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new vd(this,kt())}nextDataId(){return Eh.nextDataId++}write(e,t,a){this.firstUse&&(this.firstUse=!1,W().get("IS_NODE")&&T.warn(`
============================
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let n={id:this.nextDataId()};return this.data.set(n,{values:e,dtype:a,refCount:1}),n}makeTensorInfo(e,t,a){let n;if(t==="string"&&a!=null&&a.length>0&&v.isString(a[0])){let r=a.map(s=>v.encodeString(s));n=this.write(r,e,t)}else n=this.write(a,e,t);return{dataId:n,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,a,n,r){this.data.set(e,{values:t,dtype:n,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:a}=this.data.get(e);if(t==="complex64"){let n=this.readSync(a.real.dataId),r=this.readSync(a.imag.dataId);return T.mergeRealAndImagArrays(n,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let a=t.map(n=>v.decodeString(n));return Me(e.shape,e.dtype,a)}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return Me(e.shape,e.dtype,t)}makeOutput(e,t,a){return kt().makeTensorFromTensorInfo(this.makeTensorInfo(t,a,e),this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:a}=this.data.get(e);a!=null&&(this.disposeData(a.real.dataId,!0),this.disposeData(a.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ye([e],"where");let t=this.readSync(e.dataId);return kF(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Eh.nextDataId=0;var Rh={};Xe(Rh,{addImpl:()=>G4,bincountImpl:()=>n3,bincountReduceImpl:()=>H4,castImpl:()=>U4,ceilImpl:()=>j4,concatImpl:()=>r3,equalImpl:()=>q4,expImpl:()=>K4,expm1Impl:()=>Y4,floorImpl:()=>J4,gatherNdImpl:()=>Q4,gatherV2Impl:()=>e7,greaterEqualImpl:()=>a7,greaterImpl:()=>t7,lessEqualImpl:()=>r7,lessImpl:()=>n7,linSpaceImpl:()=>s7,logImpl:()=>i7,maxImpl:()=>o7,maximumImpl:()=>l7,minimumImpl:()=>u7,multiplyImpl:()=>s3,negImpl:()=>d7,notEqualImpl:()=>p7,prodImpl:()=>c7,raggedGatherImpl:()=>h7,raggedRangeImpl:()=>f7,raggedTensorToTensorImpl:()=>m7,rangeImpl:()=>o3,rsqrtImpl:()=>g7,scatterImpl:()=>el,sigmoidImpl:()=>xO,simpleAbsImpl:()=>V4,sliceImpl:()=>Rc,sparseFillEmptyRowsImpl:()=>A7,sparseReshapeImpl:()=>y7,sparseSegmentReductionImpl:()=>l3,sqrtImpl:()=>bO,squaredDifferenceImpl:()=>b7,stridedSliceImpl:()=>v7,stringNGramsImpl:()=>u3,stringSplitImpl:()=>d3,stringToHashBucketFastImpl:()=>p3,subImpl:()=>w7,tileImpl:()=>k7,topKImpl:()=>S7,transposeImpl:()=>i3,uniqueImpl:()=>T7});function V4(e){let t=new Float32Array(e.length);for(let a=0;a<e.length;++a)t[a]=Math.abs(e[a]);return t}var IF=e=>{let{x:t}=e.inputs,a=e.backend;ye(t,"abs");let n=new Float32Array(v.sizeFromShape(t.shape)),r=a.data.get(t.dataId).values;return n=V4(r),a.makeOutput(n,t.shape,t.dtype)},SF={kernelName:vl,backendName:"cpu",kernelFunc:IF};function Lt(e){return(t,a,n,r,s)=>{let i=T.assertAndGetBroadcastShape(t,a),o=i.length,l=v.computeStrides(i),u=v.sizeFromShape(i),p=v.getTypedArrayFromDType(s,u),c=t.length,d=a.length,h=v.computeStrides(t),f=v.computeStrides(a),m=T.getBroadcastDims(t,i),g=T.getBroadcastDims(a,i);if(m.length+g.length===0)for(let x=0;x<p.length;++x)p[x]=e(n[x%n.length],r[x%r.length]);else for(let x=0;x<p.length;++x){let A=v.indexToLoc(x,o,l),y=A.slice(-c);m.forEach(C=>y[C]=0);let b=v.locToIndex(y,c,h),w=A.slice(-d);g.forEach(C=>w[C]=0);let S=v.locToIndex(w,d,f);p[x]=e(n[b],r[S])}return[p,i]}}function qa(e){let{inputs:t,backend:a}=e,{real:n,imag:r}=t,s=a.data.get(n.dataId).values,i=a.data.get(r.dataId).values,o=a.makeTensorInfo(n.shape,"complex64"),l=a.data.get(o.dataId);return l.complexTensorInfos={real:a.makeTensorInfo(n.shape,"float32",s),imag:a.makeTensorInfo(r.shape,"float32",i)},o}var TF={kernelName:Sd,backendName:"cpu",kernelFunc:qa};function Ec(e,t,a="float32"){if(a==="complex64"){let r=Ec(e,t,"float32"),s=Ec(e,t,"float32");return qa({inputs:{real:r,imag:s},backend:e})}let n=v.makeZerosTypedArray(v.sizeFromShape(t),a);return e.makeTensorInfo(t,a,n)}function Qn(e){let{inputs:t,backend:a}=e,{x:n}=t;return a.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var CF={kernelName:vi,backendName:"cpu",kernelFunc:Qn};function Ws(e){let{inputs:t,backend:a}=e,{input:n}=t,r=a.data.get(n.dataId).complexTensorInfos.real,s=a.data.get(r.dataId).values;return a.makeTensorInfo(r.shape,r.dtype,s)}var NF={kernelName:Md,backendName:"cpu",kernelFunc:Ws};function U4(e,t,a,n){if(n==="int32"){let r=Int32Array.from(e);return[t,"int32",r]}if(n==="bool"){let r=v.toTypedArray([0],a),[s,i]=Lt((o,l)=>o!==l?1:0)(t,[],e,r,"bool");return[i,"bool",s]}throw new Error(`Error in Cast: failed to cast ${a} to ${n}`)}function Zr(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{dtype:s}=n;if(s==="complex64"){if(r.dtype==="complex64")return Qn({inputs:{x:r},backend:a});let p=Ec(a,r.shape,r.dtype),c=Zr({inputs:{x:r},backend:a,attrs:{dtype:"float32"}}),d=qa({inputs:{real:c,imag:p},backend:a});return a.disposeIntermediateTensorInfo(p),a.disposeIntermediateTensorInfo(c),d}if(r.dtype==="complex64"){let p=Ws({inputs:{input:r},backend:a}),c=Zr({inputs:{x:p},backend:a,attrs:{dtype:s}});return a.disposeIntermediateTensorInfo(p),c}if(!v.hasEncodingLoss(r.dtype,s)){let p=Qn({inputs:{x:r},backend:a});return{dataId:p.dataId,shape:p.shape,dtype:s}}let i=a.data.get(r.dataId).values,[o,l,u]=U4(i,r.shape,r.dtype,s);return a.makeTensorInfo(o,l,u)}var EF={kernelName:Qs,backendName:"cpu",kernelFunc:Zr};function Yt(e,t,a,n){return a==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;ye([i,o],e);let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,c=i.dtype==="string"?T.fromUint8ToStringArray(u):u,d=i.dtype==="string"?T.fromUint8ToStringArray(p):p,h=n||i.dtype,[f,m]=t(i.shape,o.shape,c,d,h);return l.makeTensorInfo(m,h,f)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=Zr({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),p=l.data.get(u.dataId),c=p.complexTensorInfos.real,d=p.complexTensorInfos.imag,h=l.data.get(c.dataId).values,f=l.data.get(d.dataId).values,m=Zr({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),x=g.complexTensorInfos.real,A=g.complexTensorInfos.imag,y=l.data.get(x.dataId).values,b=l.data.get(A.dataId).values,[w,S,C]=a(i.shape,o.shape,h,f,y,b),E=l.makeTensorInfo(C,"float32",w),_=l.makeTensorInfo(C,"float32",S),$=qa({inputs:{real:E,imag:_},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(_),$}else{let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,c=n||i.dtype,[d,h]=t(i.shape,o.shape,u,p,c);return l.makeTensorInfo(h,c,d)}}}function a3(e){return(t,a,n,r,s,i)=>{let o=T.assertAndGetBroadcastShape(t,a),l=v.sizeFromShape(o),u=o.length,p=v.computeStrides(o),c=v.getTypedArrayFromDType("float32",l),d=v.getTypedArrayFromDType("float32",l),h=T.getBroadcastDims(t,o),f=T.getBroadcastDims(a,o),m=T.mergeRealAndImagArrays(n,r),g=T.mergeRealAndImagArrays(s,i),x=t.length,A=v.computeStrides(t),y=a.length,b=v.computeStrides(a);if(h.length+f.length===0)for(let w=0;w<c.length;w++){let S=w%m.length,C=w%g.length,E=e(m[S*2],m[S*2+1],g[C*2],g[C*2+1]);c[w]=E.real,d[w]=E.imag}else for(let w=0;w<c.length;w++){let S=v.indexToLoc(w,u,p),C=S.slice(-x);h.forEach(I=>C[I]=0);let E=v.locToIndex(C,x,A),_=S.slice(-y);f.forEach(I=>_[I]=0);let $=v.locToIndex(_,y,b),M=e(m[E*2],m[E*2+1],g[$*2],g[$*2+1]);c[w]=M.real,d[w]=M.imag}return[c,d,o]}}var G4=Lt((e,t)=>e+t),RF=a3((e,t,a,n)=>({real:e+a,imag:t+n})),fl=Yt(Qr,G4,RF),MF={kernelName:Qr,backendName:"cpu",kernelFunc:fl};function n3(e,t,a,n,r){let s=v.sizeFromShape(n),i=v.makeZerosTypedArray(r,a);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function H4(e,t,a,n=!1){let r=e.shape[0],s=e.shape[1],i=Me([r,a],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=a||(n?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function ss(e){return(t,a,n)=>{let r=v.getTypedArrayFromDType(a,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],n);return r}}function ot(e,t,a){return({inputs:n,attrs:r,backend:s})=>{let{x:i}=n;if(ye(i,e),i.dtype==="string"||a==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=v.sizeFromShape(i.shape),p=a||i.dtype,c=v.getArrayFromDType(p,u);for(let d=0;d<u;++d)c[d]=t(l[d],r);return o.makeTensorInfo(i.shape,p,c)}}function iu(e,t,a){return({inputs:n,attrs:r,backend:s})=>{let{x:i}=n;if(ye(i,e),i.dtype==="string"||a==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=a||i.dtype,p=t(l,u,r);return o.makeTensorInfo(i.shape,u,p)}}var j4=ss(e=>Math.ceil(e)),$F=iu(ei,j4),_F={kernelName:ei,backendName:"cpu",kernelFunc:$F};function r3(e,t,a,n){let r=v.getArrayFromDType(a,v.sizeFromShape(t));if(n&&a!=="string"){let s=0;e.forEach(i=>{let o=v.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=a==="string"?T.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let p=u*t[1]+s;for(let c=0;c<i.shape[1];++c)r[p+c]=o[l++]}s+=i.shape[1]})}return r}var q4=Lt((e,t)=>e===t?1:0),X4=Yt(ci,q4,null,"bool"),PF={kernelName:ci,backendName:"cpu",kernelFunc:X4},K4=ss(e=>Math.exp(e)),Z4=iu(hi,K4,"float32"),FF={kernelName:hi,backendName:"cpu",kernelFunc:Z4},Y4=ss(e=>Math.expm1(e)),OF=iu(_l,Y4),DF={kernelName:_l,backendName:"cpu",kernelFunc:OF},J4=ss(e=>Math.floor(e)),zF=iu(mi,J4),LF={kernelName:mi,backendName:"cpu",kernelFunc:zF};function Q4(e,t,a,n,r,s,i,o,l){let u=Me([n,s],a);for(let p=0;p<n;p++){let c=[],d=0;for(let h=0;h<r;h++){let f=e[p*r+h];d+=f*i[h],c.push(f)}if(d<0||d>=l/s)throw new Error(`Invalid indices: ${c} does not index into ${o}`);for(let h=0;h<s;h++)u.values[p*s+h]=t.get(...t.indexToLoc(d*s+h))}return u}function e7(e,t,a){let n=Me(a,e.dtype);for(let r=0;r<n.size;++r){let s=n.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);0<=u&&u<e.values.length&&(n.values[r]=e.values[u])}return n}var t7=Lt((e,t)=>e>t?1:0),BF=Yt(yi,t7,null,"bool"),WF={kernelName:yi,backendName:"cpu",kernelFunc:BF},a7=Lt((e,t)=>e>=t?1:0),VF=Yt(bi,a7,null,"bool"),UF={kernelName:bi,backendName:"cpu",kernelFunc:VF},n7=Lt((e,t)=>e<t?1:0),GF=Yt(Ii,n7,null,"bool"),HF={kernelName:Ii,backendName:"cpu",kernelFunc:GF},r7=Lt((e,t)=>e<=t?1:0),jF=Yt(Si,r7,null,"bool"),qF={kernelName:Si,backendName:"cpu",kernelFunc:jF};function s7(e,t,a){let n=(t-e)/(a-1),r=v.makeZerosTypedArray(a,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+n;return r}var i7=ss(e=>Math.log(e)),XF=iu(Ti,i7),KF={kernelName:Ti,backendName:"cpu",kernelFunc:XF};function o7(e,t,a,n){let r=v.getTypedArrayFromDType(n,v.sizeFromShape(a));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];(Number.isNaN(u)||u>o)&&(o=u)}r[s]=o}return r}var l7=Lt((e,t)=>Math.max(e,t)),ZF=Yt(Ri,l7),YF={kernelName:Ri,backendName:"cpu",kernelFunc:ZF},u7=Lt((e,t)=>Math.min(e,t)),JF=Yt(Pi,u7),QF={kernelName:Pi,backendName:"cpu",kernelFunc:JF},s3=Lt((e,t)=>e*t),eO=a3((e,t,a,n)=>({real:e*a-t*n,imag:e*n+t*a})),Mh=Yt(Oi,s3,eO),tO={kernelName:Oi,backendName:"cpu",kernelFunc:Mh};function d7(e,t,a){let n=v.createScalarValue(-1,a);return s3([],t,n,e,a)}function aO(e){let{inputs:t,backend:a}=e,{x:n}=t;ye(n,"neg");let r=a.data.get(n.dataId).values,[s,i]=d7(r,n.shape,n.dtype);return a.makeTensorInfo(i,n.dtype,s)}var nO={kernelName:Wl,backendName:"cpu",kernelFunc:aO},p7=Lt((e,t)=>e!==t?1:0),rO=Yt(Di,p7,null,"bool"),sO={kernelName:Di,backendName:"cpu",kernelFunc:rO};function i3(e,t,a,n,r){let s=t.length,i=v.sizeFromShape(t),o=v.computeStrides(t),l=v.computeStrides(r),u=v.getTypedArrayFromDType(a,v.sizeFromShape(r));for(let p=0;p<i;++p){let c=v.indexToLoc(p,s,o),d=new Array(c.length);for(let f=0;f<d.length;f++)d[f]=c[n[f]];let h=v.locToIndex(d,s,l);u[h]=e[p]}return u}function La(e){let{inputs:t,attrs:a,backend:n}=e,{x:r}=t,{perm:s}=a;ye(r,"transpose");let i=r.shape.length,o=new Array(i);for(let p=0;p<o.length;p++)o[p]=r.shape[s[p]];let l=n.data.get(r.dataId).values,u=i3(l,r.shape,r.dtype,s,o);return{dataId:n.write(u,o,r.dtype),shape:o,dtype:r.dtype}}var iO={kernelName:gr,backendName:"cpu",kernelFunc:La};function c7(e,t,a,n){let[r,s]=T.computeOutAndReduceShapes(e,n),i=ca(t,"int32"),o=v.makeZerosTypedArray(v.sizeFromShape(r),i),l=v.sizeFromShape(s);for(let u=0;u<o.length;++u){let p=u*l,c=1;for(let d=0;d<l;++d)c*=a[p+d];o[u]=c}return{outVals:o,outShape:r,outDtype:i}}function oO(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n;ye(r,"prod");let o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=T.getAxesPermutation(l,o),p=l,c=r,d=[];u!=null&&(c=La({inputs:{x:r},backend:a,attrs:{perm:u}}),d.push(c),p=T.getInnerMostAxes(p.length,o));let h=a.data.get(c.dataId).values,{outVals:f,outShape:m,outDtype:g}=c7(c.shape,c.dtype,h,p),x=m;return i&&(x=T.expandShapeToKeepDim(m,l)),d.forEach(A=>a.disposeIntermediateTensorInfo(A)),a.makeTensorInfo(x,g,f)}var lO={kernelName:Gi,backendName:"cpu",kernelFunc:oO};function uO(e,t,a){e.forEach((n,r)=>{if(n<0||n>=a){let s=v.indexToLoc(r,t.length,v.computeStrides(t)).join(",");throw new Error(`indices[${s}] = ${n} is not in [0, ${a})`)}})}function dO(e,t){for(let a=0;a<e.length;++a){let n=e[a],r=a===e.length-1?t:e[a+1].length;if(n.length===0)throw new Error("Ragged splits may not be empty");if(n[0]<0)throw new Error("Ragged splits must be non-negative");if(n[n.length-1]>r)throw new Error("Ragged splits must not point past values");for(let s=1;s<n.length;++s)if(n[s-1]>n[s])throw new Error("Ragged splits must be sorted in ascending order")}}function pO(e,t,a,n){let r=[],s=0,i=t.length-1+a.length,o=new Array(i).fill(null).map(()=>[0]);dO(a,n);let l=1;for(let u=0;u<t.length-1;++u){l*=t[u];let p=t[u+1];for(let c=1;c<l+1;++c)o[u].push(c*p)}for(let u=0;u<e.length;++u){let p=e[u],c=e[u]+1;for(let d=0;d<a.length;++d){let h=a[d],f=d+t.length-1;if(f>=0){let m=o[f],g=m[m.length-1]-h[p];for(let x=p;x<c;++x)o[f].push(h[x+1]+g)}p=h[p],c=h[c]}c!==p&&(r.push([p,c]),s+=c-p)}return{outSplits:o,valueSlices:r,numValues:s}}function cO(e){let t=[];for(let a=0;a<e.length;++a){let n=e[a].length,r=v.getArrayFromDType("int32",n);t.push(r),e[a].forEach((s,i)=>r[i]=s)}return t}function nx(e,t){let a=e.slice(0,t);for(;a.length<t;)a.push(1);for(let n=t;n<e.length;n++)a[t-1]*=e[n];return a}function hO(e,t,a,n,r,s){let i=nx(t,2)[1],o=nx(s,2)[1],l=0;for(let u of a)for(let p=u[0];p<u[1];++p){for(let c=0;c<n;++c)r[l*o+c]=e[p*i+c];++l}}function fO(e,t,a,n,r){let s=t.slice();s[0]=r;let i=v.getArrayFromDType(a,v.sizeFromShape(s)),o=e.length,l=o===0?0:o/t[0];return hO(e,t,n,l,i,s),[i,s]}function h7(e,t,a,n,r,s,i,o){if(e.length===0)throw new Error("paramsNestedSplits must be non empty");if(t[0].length===0)throw new Error("Split tensors must not be scalars");let l=t[0][0]-1;if(uO(s,i,l),n.length===0)throw new Error("params.rank must be nonzero");let u=n[0],{outSplits:p,valueSlices:c,numValues:d}=pO(s,i,e,u),h=cO(p),f=fO(a,n,r,c,d);return[h,f[0],f[1]]}var rx=2147483647;function f7(e,t,a,n,r,s,i){if(t.length>1)throw new Error("starts must be a scalar or vector");if(r.length>1)throw new Error("limits must be a scalar or vector");if(i.length>1)throw new Error("deltas must be a scalar or vector");let o=t.length===0,l=r.length===0,u=i.length===0,p=[];o||p.push(t[0]),l||p.push(r[0]),u||p.push(i[0]);for(let g=1;g<p.length;++g)if(p[g]!==p[g-1])throw new Error("starts, limits, and deltas must have the same shape");let c=p.length===0?1:p[0],d=v.getArrayFromDType("int32",c+1);d[0]=0;for(let g=0;g<c;++g){let x=o?e[0]:e[g],A=l?n[0]:n[g],y=u?s[0]:s[g];if(y===0)throw new Error("Requires delta != 0");let b;if(y>0&&A<x||y<0&&A>x)b=0;else if(b=Math.ceil(Math.abs((A-x)/y)),b>rx)throw new Error(`Requires ((limit - start) / delta) <= ${rx}`);d[g+1]=d[g]+b}let h=d[c],f=v.getArrayFromDType(a,h),m=0;for(let g=0;g<c;++g){let x=d[g+1]-d[g],A=o?e[0]:e[g],y=u?s[0]:s[g];for(let b=0;b<x;++b)f[m++]=A,A+=y}return[d,f]}var bn=T.RowPartitionType,g1=class{constructor(e,t,a,n,r,s,i,o,l,u){this.shape=e,this.shapeShape=t,this.values=a,this.valuesShape=n,this.valuesDType=r,this.defaultValue=s,this.defaultValueShape=i,this.rowPartitionValues=o,this.rowPartitionValuesShapes=l,this.rowPartitionTypes=T.getRowPartitionTypesHelper(u),this.raggedRank=T.getRaggedRank(this.rowPartitionTypes)}getRowPartitionTypeByDimension(e){return this.rowPartitionTypes[0]===bn.FIRST_DIM_SIZE?this.rowPartitionTypes[e+1]:this.rowPartitionTypes[e]}getRowPartitionTensor(e){return this.rowPartitionTypes[0]===bn.FIRST_DIM_SIZE?this.rowPartitionValues[e+1]:this.rowPartitionValues[e]}getMaxWidth(e){let t=this.getRowPartitionTensor(e-1);switch(this.getRowPartitionTypeByDimension(e-1)){case bn.VALUE_ROWIDS:return g1.getMaxWidthValueRowID(t);case bn.ROW_SPLITS:return g1.getMaxWidthRowSplit(t);default:throw new Error(`Cannot handle partition type ${bn[this.getRowPartitionTypeByDimension(e-1)]}`)}}static getMaxWidthRowSplit(e){let t=e.length;if(t===0||t===1)return 0;let a=0;for(let n=0;n<t-1;++n){let r=e[n+1]-e[n];r>a&&(a=r)}return a}static getMaxWidthValueRowID(e){let t=e.length;if(t===0)return 0;let a=0,n=e[0],r=0;for(let s=1;s<t;++s){let i=e[s];i!==n&&(n=i,r=Math.max(s-a,r),a=s)}return Math.max(t-a,r)}tensorShapeFromTensor(e,t,a=!0){if(t.length===0){if(e[0]===-1)return[];throw new Error("The only valid scalar shape tensor is the fully unknown shape specified as -1.")}return ix(e,a)}calculateOutputSize(e){let t=this.valuesShape,a=this.defaultValueShape;T.validateDefaultValueShape(a,t);let n=this.tensorShapeFromTensor(this.shape,this.shapeShape),r=T.combineRaggedTensorToTensorShapes(this.raggedRank,n,t);r[0]<0&&(r[0]=e);for(let s=1;s<=this.raggedRank;++s)r[s]<0&&(r[s]=this.getMaxWidth(s));return r}calculateFirstParentOutputIndex(e,t,a){let n=Math.min(e,a),r=[],s=0;for(let i=0;i<n;++i,s+=t)r.push(s);for(let i=n;i<e;++i)r.push(-1);return v.assert(r.length===e,()=>"Final length of result must be equal to firstDimension."),r}calculateOutputIndexRowSplit(e,t,a,n){let r=e.length,s=[];for(let i=0;i<r-1;++i){let o=e[i+1]-e[i],l=Math.min(n,o),u=t[i];u===-1&&(l=0);for(let p=0;p<l;++p)s.push(u),u+=a;for(let p=0;p<o-l;++p)s.push(-1)}if(r>0&&s.length!==e[r-1])throw new Error("Invalid row split size.");return s}calculateOutputIndexValueRowID(e,t,a,n){let r=e.length,s=[];if(r===0)return[];let i=0,o=e[0];if(o>=t.length)throw new Error(`Got currentValueRowId=${o}, which is not less than ${t.length}`);let l=t[o];s.push(l);for(let u=1;u<r;++u){let p=e[u];if(p===o)l>=0&&(++i,i<n?l+=a:l=-1);else{if(i=0,o=p,p>=t.length)throw new Error(`Got nextValueRowId=${p} which is not less than ${t.length}`);l=t[p]}s.push(l)}if(s.length!==e.length)throw new Error("Invalid row ids.");return s}calculateOutputIndex(e,t,a,n){let r=this.getRowPartitionTensor(e),s=this.getRowPartitionTypeByDimension(e);switch(s){case bn.VALUE_ROWIDS:return this.calculateOutputIndexValueRowID(r,t,a,n);case bn.ROW_SPLITS:if(r.length-1>t.length)throw new Error(`Row partition size is greater than output size: ${r.length-1} > ${t.length}`);return this.calculateOutputIndexRowSplit(r,t,a,n);default:throw new Error(`Unsupported partition type: ${bn[s]}`)}}getFirstDimensionSize(){let e=this.rowPartitionValues[0];if(this.rowPartitionTypes.length===0)throw new Error("No row_partition_types given.");let t=this.rowPartitionTypes[0];switch(t){case bn.FIRST_DIM_SIZE:return e[0];case bn.VALUE_ROWIDS:throw new Error("Cannot handle VALUE_ROWIDS in first dimension.");case bn.ROW_SPLITS:return this.rowPartitionValuesShapes[0][0]-1;default:throw new Error(`Cannot handle type ${bn[t]}`)}}compute(){if(this.rowPartitionValues[0].length<=0)throw new Error("Invalid first partition input. Tensor requires at least one element.");let e=this.getFirstDimensionSize(),t=this.calculateOutputSize(e),a=new Array(this.raggedRank+1);a[a.length-1]=1;for(let s=a.length-2;s>=0;--s)a[s]=a[s+1]*t[s+1];let n=ix(t,!1),r=v.getArrayFromDType(this.valuesDType,v.sizeFromShape(n));if(a[0]*t[0]>0){let s=this.calculateFirstParentOutputIndex(e,a[0],t[0]);for(let i=1;i<=this.raggedRank;++i)s=this.calculateOutputIndex(i-1,s,a[i],t[i]);this.setOutput(this.raggedRank,s,r,n)}return[n,r]}setOutput(e,t,a,n){if(a.length===0)return;let r=this.values,s=a,i=n.slice();i=i.slice(e+1);let o=v.sizeFromShape(i),l=t.length,u=this.defaultValue;if(u.length!==o&&u.length!==1){let h=this.defaultValueShape;$e(()=>{let f=J(u,h);u=rl(f,i).dataSync()})}let p=0,c=0,d=0;for(let h=0;h<=l;++h){let f=h<l?t[h]:-1;if(f===d){++d;continue}if(c<d){let m=r.subarray(p*o),g=s.subarray(c*o),x=(d-c)*o;sx(g,m,x)}if(h>=l){let m=a.length;f=Math.floor(m/o)}if(f>d)if(this.defaultValue.length===1)s.subarray(d*o,f*o).fill(this.defaultValue[0]),d=f;else for(;f>d;){let m=s.slice(d*o);sx(m,u,o),++d}f<0?(p=h+1,c=d):(p=h,c=d,d=c+1)}}};function sx(e,t,a){for(let n=0;n<a;n++)e[n]=t[n]}function ix(e,t){let a=[];for(let n of e){if(n<0){if(!t)throw new Error(`Dimension ${n} must be >= 0`);if(n<-1)throw new Error(`Dimension ${n} must be >= -1`);n=-1}a.push(n)}return a}function m7(e,t,a,n,r,s,i,o,l,u){return new g1(e,t,a,n,r,s,i,o,l,u).compute()}function o3(e,t,a,n){let r=e===t,s=e<t&&a<0,i=t<e&&a>1;if(r||s||i)return v.makeZerosTypedArray(0,n);let o=Math.abs(Math.ceil((t-e)/a)),l=v.makeZerosTypedArray(o,n);t<e&&a===1&&(a=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+a;return l}var g7=ss(e=>1/Math.sqrt(e)),mO=iu(Yi,g7),gO={kernelName:Yi,backendName:"cpu",kernelFunc:mO};function el(e,t,a,n,r,s,i,o,l,u){let p=[n/r,r],c=e.values,d=t.values;if(n===0)return Me(a,t.dtype);let h=Me(p,t.dtype);typeof l=="string"||typeof l=="number"?h.values.fill(l):typeof l=="boolean"&&h.values.fill(+l);for(let f=0;f<s;f++){let m=[],g=0;for(let x=0;x<i;x++){let A=c[f*i+x];m.push(A),g+=A*o[x]}if(g<0||g>=n/r)throw new Error(`Invalid indices: ${m} does not index into ${a}`);for(let x=0;x<r;x++)u?h.values[g*r+x]+=d[f*r+x]:h.values[g*r+x]=t.rank===0?d[0]:d[f*r+x]}return h}var xO=ss(e=>1/(1+Math.exp(-e))),x7=ot(eo,e=>1/(1+Math.exp(-e))),AO={kernelName:eo,backendName:"cpu",kernelFunc:x7};function Rc(e,t,a,n,r){let s=It.isSliceContinous(n,t,a),i=v.sizeFromShape(a),o=v.computeStrides(n);if(s){let c=It.computeFlatOffset(t,o);return r==="string"?e.slice(c,c+i):e.subarray(c,c+i)}let l=r==="string"?T.fromUint8ToStringArray(e):e,u=Me(n,r,l),p=Me(a,r);for(let c=0;c<p.size;++c){let d=p.indexToLoc(c),h=d.map((f,m)=>f+t[m]);p.set(u.get(...h),...d)}return r==="string"?T.fromStringArrayToUint8(p.values):p.values}function Vs(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{begin:s,size:i}=n;ye(r,"slice");let[o,l]=It.parseSliceParams(r,s,i);It.assertParamsValid(r,o,l);let u=a.data.get(r.dataId).values,p=Rc(u,o,l,r.shape,r.dtype);return a.makeTensorInfo(l,r.dtype,p)}var yO={kernelName:Kl,backendName:"cpu",kernelFunc:Vs};function A7(e,t,a,n,r,s,i){let o=t[0],l=s[0],u=new Array(l),p=new Array(o),c=t[1];if(l===0){if(o!==0)throw new Error(T.getSparseFillEmptyRowsIndicesDenseShapeMismatch(o));let g=v.getArrayFromDType(a,0),x=v.getArrayFromDType(r,0);return[g,[0,c],x,u,p]}let d=!0,h=0,f=new Array(l).fill(0);for(let g=0;g<o;++g){let x=e[g*c];if(x<0)throw new Error(T.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,x));if(x>=l)throw new Error(T.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,x,l));++f[x],d=d&&x>=h,h=x}let m=!0;for(let g=0;g<l;++g){let x=f[g]===0;u[g]=x,m=m&&!x,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&d){let g=e,x=n;for(let A=0;A<o;++A)p[A]=A;return[g,[o,c],x,u,p]}else{let g=f[l-1],x=v.getArrayFromDType(a,g*c),A=v.getArrayFromDType(r,g),y=new Array(l).fill(0);for(let b=0;b<o;++b){let w=e[b*c],S=y[w],C=(w===0?0:f[w-1])+S;y[w]++;for(let E=0;E<c;++E)x[C*c+E]=e[b*c+E];A[C]=n[b],p[b]=C}for(let b=0;b<l;++b)if(y[b]===0){let w=b===0?0:f[b-1];x[w*c+0]=b;for(let S=1;S<c;++S)x[w*c+S]=0;A[w]=i}return[x,[g,c],A,u,p]}}function y7(e,t,a,n,r){let s=v.sizeFromShape(n),i=t[0],o=r.length,l=[],u=1,p=-1;for(let m=0;m<o;++m){let g=r[m];if(g===-1){if(p!==-1)throw new Error(T.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(p,m));p=m,l.push(1)}else{if(g<0)throw new Error(T.getSparseReshapeNegativeOutputDimErrorMessage(m,g));u*=g,l.push(g)}}if(p!==-1){if(u<=0)throw new Error(T.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let m=Math.trunc(s/u);if(u*m!==s)throw new Error(T.getSparseReshapeInputOutputMultipleErrorMessage(n,l));l[p]=m}if(v.sizeFromShape(l)!==s)throw new Error(T.getSparseReshapeInputOutputMismatchErrorMessage(n,l));let c=n.length,d=[];if(c>0){d[c-1]=1;for(let m=c-2;m>=0;--m)d[m]=d[m+1]*n[m+1]}let h=[];if(o>0){h[o-1]=1;for(let m=o-2;m>=0;--m)h[m]=h[m+1]*l[m+1]}let f=v.getArrayFromDType(a,i*o);for(let m=0;m<i;++m){let g=0;for(let x=0;x<c;++x)g+=e[m*c+x]*d[x];for(let x=0;x<o;++x)f[m*o+x]=Math.trunc(g/h[x]),g%=h[x]}return[f,[i,o],l]}function l3(e,t,a,n,r,s=!1,i=0){let o=n.length,l=[t[0],e.length/t[0]],u=l[1],p=o>0?r[o-1]+1:0;if(p<0)throw new Error(T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let c=t.slice();c[0]=p;let d=c.reduce((A,y)=>A*y,1),h=v.getArrayFromDType(a,d);if(o===0)return p>0&&h.fill(i),[h,c];if(p<=0)throw new Error(T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let f=0,m=1,g=0,x=r[f];for(;;){let A=0;if(m<o){if(A=r[m],x===A){++m;continue}if(x>=A)throw new Error(T.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(x<0||x>=p)throw new Error(T.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(x,p));x>g&&h.fill(i,g*u,x*u);for(let y=f;y<m;++y){let b=n[y];if(b<0||b>=l[0])throw new Error(T.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(y,n[y],l[0]));for(let w=0;w<u;w++)h[x*u+w]+=e[b*u+w]}if(s)for(let y=0;y<u;y++)h[x*u+y]/=m-f;if(f=m,++m,g=x+1,x=A,m>o)break}return g<p&&h.fill(i,g*u,p*u),[h,c]}var bO=ss(e=>Math.sqrt(e)),vO=ot(to,e=>Math.sqrt(e)),wO={kernelName:to,backendName:"cpu",kernelFunc:vO},b7=Lt((e,t)=>{let a=e-t;return a*a}),kO=Yt(ro,b7),IO={kernelName:ro,backendName:"cpu",kernelFunc:kO};function v7(e,t,a,n){let r=Me(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*a[l]+n[l];r.set(t.get(...o),...i)}return r}var SO=class{constructor(e,t,a,n,r,s){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(a),this.rightPad=v.encodeString(n),this.padWidth=r,this.preserveShort=s}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let a=this.getPadWidth(t);return Math.max(0,e+2*a-t+1)}createNGrams(e,t,a,n,r,s){for(let i=0;i<r;++i){let o=this.getPadWidth(s),l=Math.max(0,o-i),u=Math.max(0,o-(r-(i+1))),p=s-(l+u),c=t+(l>0?0:i-o),d=0;d+=l*this.leftPad.length;for(let x=0;x<p;++x)d+=e[c+x].length;d+=u*this.rightPad.length;let h=l+u+p-1;d+=h*this.separator.length,a[n+i]=new Uint8Array(d);let f=a[n+i],m=0,g=x=>x.forEach(A=>f[m++]=A);for(let x=0;x<l;++x)g(this.leftPad),g(this.separator);for(let x=0;x<p-1;++x)g(e[c+x]),g(this.separator);if(p>0){g(e[c+p-1]);for(let x=0;x<u;++x)g(this.separator),g(this.rightPad)}else{for(let x=0;x<u-1;++x)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let a=e.length,n=t.length;if(n>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let l=1;l<n;++l){let u=t[l]>=o;if(u=u&&t[l]<=a,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${o}, ${a}]`);o=t[l]}if(o!==a)throw new Error(`Last split value must be data size. Expected ${a}, got ${o}`)}let r=n-1,s=v.getArrayFromDType("int32",n);if(a===0||n===0){let o=new Array(a);for(let l=0;l<=r;++l)s[l]=0;return[o,s]}s[0]=0;for(let o=1;o<=r;++o){let l=t[o]-t[o-1],u=0;this.nGramWidths.forEach(p=>{u+=this.getNumNGrams(l,p)}),this.preserveShort&&l>0&&u===0&&(u=1),s[o]=s[o-1]+u}let i=new Array(s[r]);for(let o=0;o<r;++o){let l=t[o],u=s[o];if(this.nGramWidths.forEach(p=>{let c=t[o+1]-t[o],d=this.getNumNGrams(c,p);this.createNGrams(e,l,i,u,d,p),u+=d}),this.preserveShort&&u===s[o]){let p=t[o+1]-t[o];if(p===0)continue;let c=p+2*this.padWidth,d=1;this.createNGrams(e,l,i,u,d,c)}}return[i,s]}};function u3(e,t,a,n,r,s,i,o){return new SO(a,n,r,s,i,o).compute(e,t)}function TO(e,t,a,n){if(!e.length)return;if(t.length===0){for(let s=0;s<e.length;++s)n.push(e.subarray(s,s+1));return}if(t.length===1){let s=t[0],i=e.indexOf(s);for(;i!==-1;){let o=e.subarray(0,i);(!a||o.length!==0)&&n.push(o),e=e.subarray(i+1),i=e.indexOf(s)}(!a||e.length!==0)&&n.push(e);return}let r=0;for(let s=0;s<e.length+1;s++)if(s===e.length||t.indexOf(e[s])!==-1){let i=e.subarray(r,s);(!a||i.length!==0)&&n.push(i),r=s+1}}function d3(e,t,a){let n=e.length,r=[],s=0,i=0,o=new Array(n);for(let d=0;d<n;++d){let h=r.length;TO(e[d],t,a,r);let f=r.length-h;o[d]=f,s+=f,i=Math.max(i,f)}let l=v.getArrayFromDType("int32",s*2),u=new Array(s),p=[n,i],c=0;for(let d=0;d<n;++d)for(let h=0;h<o[d];++h)l[c*2]=d,l[c*2+1]=h,u[c]=r[c],++c;return[l,u,p]}function p3(e,t){let a=v.getArrayFromDType("int32",e.length);for(let n=0;n<e.length;++n)a[n]=v.fingerPrint64(e[n]).modulo(t).getLowBitsUnsigned();return a}var w7=Lt((e,t)=>e-t),CO=a3((e,t,a,n)=>({real:e-a,imag:t-n})),c3=Yt(io,w7,CO),NO={kernelName:io,backendName:"cpu",kernelFunc:c3};function k7(e,t){let a=new Array(e.rank);for(let r=0;r<a.length;r++)a[r]=e.shape[r]*t[r];let n=Me(a,e.dtype);for(let r=0;r<n.values.length;++r){let s=n.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);n.values[r]=e.values[o]}return n}var Hu=(e,t)=>{let a=t.value-e.value;return a===0?e.index-t.index:a};function I7(e,t,a=0,n=e.length-1){for(;n>a;){if(n-a>600){let o=n-a+1,l=t-a+1,u=Math.log(o),p=.5*Math.exp(2*u/3),c=.5*Math.sqrt(u*p*(o-p)/o)*Math.sign(l-o/2),d=Math.max(a,Math.floor(t-l*p/o+c)),h=Math.min(n,Math.floor(t+(o-l)*p/o+c));I7(e,t,d,h)}let r=e[t],s=a,i=n;for(v.swap(e,a,t),Hu(e[n],r)>0&&v.swap(e,a,n);s<i;){for(v.swap(e,s,i),s++,i--;Hu(e[s],r)<0;)s=s+1;for(;Hu(e[i],r)>0;)i=i-1}Hu(e[a],r)===0?v.swap(e,a,i):(i=i+1,v.swap(e,i,n)),i<=t&&(a=i+1),t<=i&&(n=i-1)}}function S7(e,t,a,n,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=v.getTypedArrayFromDType(a,i*n),u=v.getTypedArrayFromDType("int32",i*n);for(let c=0;c<i;c++){let d=c*o,h=e.subarray(d,d+o),f=new Array(h.length);h.forEach((A,y)=>f[y]={value:A,index:y}),n<f.length&&(I7(f,n),f=f.slice(0,n)),r&&f.sort(Hu);let m=c*n,g=l.subarray(m,m+n),x=u.subarray(m,m+n);for(let A=0;A<n;A++)g[A]=f[A].value,x[A]=f[A].index}let p=t.slice();return p[p.length-1]=n,[Me(p,a,l),Me(p,"int32",u)]}function T7(e,t,a,n){let r=v.parseAxisParam(t,a)[0],s=[1,a[0],1];for(let f=0;f<r;f++)s[0]*=a[f];s[1]=a[r];for(let f=r+1;f<a.length;f++)s[2]*=a[f];let i={},o=new Int32Array(a[r]),l=new jt(s,n,e),u=[],p=s[0]===1&&s[2]===1;for(let f=0;f<a[r];f++){let m;if(p)m=e[f].toString();else{let g=[];for(let x=0;x<s[0];x++)for(let A=0;A<s[2];A++)g.push(l.get(x,f,A));m=g.join(",")}if(i[m]!==void 0)o[f]=i[m];else{let g=Object.keys(i).length;i[m]=g,o[f]=g,u.push(f)}}let c=s.slice();c[1]=Object.keys(i).length;let d=new jt(c,n);u.forEach((f,m)=>{for(let g=0;g<s[0];g++)for(let x=0;x<s[2];x++)d.set(l.get(g,f,x),g,m,x)});let h=a.slice();return h[r]=c[1],{outputValues:d.values,outputShape:h,indices:o}}var EO="4.1.0";fo("cpu",()=>new Eh,1);var C7=ot(pi,e=>e>=0?e:Math.exp(e)-1),RO={kernelName:pi,backendName:"cpu",kernelFunc:C7};function N7(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{alpha:s}=n;ye([r],"leakyRelu");let i=v.sizeFromShape(r.shape),o=a.data.get(r.dataId).values,l=v.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return a.makeTensorInfo(r.shape,"float32",l)}var MO={kernelName:ki,backendName:"cpu",kernelFunc:N7},$O=Lt((e,t)=>e<0?t*e:e);function E7(e){let{inputs:t,backend:a}=e,{x:n,alpha:r}=t;ye([n,r],"prelu");let s=a.data.get(n.dataId).values,i=a.data.get(r.dataId).values,[o,l]=$O(n.shape,r.shape,s,i,"float32");return a.makeTensorInfo(l,"float32",o)}var _O={kernelName:Ui,backendName:"cpu",kernelFunc:E7},R7=ot(ji,e=>Math.max(0,e)),PO={kernelName:ji,backendName:"cpu",kernelFunc:R7},M7=ot(Ki,e=>Math.min(Math.max(0,e),6)),FO={kernelName:Ki,backendName:"cpu",kernelFunc:M7};function Mc(e,t,a,n,r){if(a==="linear")return Qn({inputs:{x:t},backend:e});if(a==="relu")return R7({inputs:{x:t},backend:e});if(a==="elu")return C7({inputs:{x:t},backend:e});if(a==="relu6")return M7({inputs:{x:t},backend:e});if(a==="prelu")return E7({inputs:{x:t,alpha:n},backend:e});if(a==="leakyrelu")return N7({inputs:{x:t},backend:e,attrs:{alpha:r}});if(a==="sigmoid")return x7({inputs:{x:t},backend:e});throw new Error(`Activation ${a} has not been implemented for the CPU backend.`)}function mt(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{shape:s}=n,i=v.sizeFromShape(r.shape),o=v.inferFromImplicitShape(s,i),l=v.sizeFromShape(o);v.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),a.incRef(r.dataId);let u=a.data.get(r.dataId);if(u.complexTensorInfos!=null){let p=u.complexTensorInfos.real,c=u.complexTensorInfos.imag;p.shape=o,c.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var OO={kernelName:jl,backendName:"cpu",kernelFunc:mt};function $7(e){let{inputs:t,backend:a,attrs:n}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=n;ye([r,s],"matMul");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],c=o?s.shape[u-1]:s.shape[u-2],d=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],f=r.shape.slice(0,-2),m=s.shape.slice(0,-2),g=v.sizeFromShape(f),x=v.sizeFromShape(m),A=mo.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([d,h]);v.assert(p===c,()=>`Error in matMul: inner shapes (${p}) and (${c}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let y=i?[g,p,d]:[g,d,p],b=o?[x,h,c]:[x,c,h],w=mt({inputs:{x:r},backend:a,attrs:{shape:y}}),S=mt({inputs:{x:s},backend:a,attrs:{shape:b}}),C=i?w.shape[1]:w.shape[2],E=i?w.shape[2]:w.shape[1],_=o?S.shape[1]:S.shape[2],$=Math.max(g,x),M=a.data.get(w.dataId).values,I=a.data.get(S.dataId).values,N=v.computeStrides(w.shape),O=v.computeStrides(S.shape),[L,B,G]=i?[N[0],1,N[1]]:[N[0],N[1],1],[j,U,H]=o?[1,O[1],O[0]]:[O[1],1,O[0]],V=E*_,Q=Me([$,E,_],w.dtype),Z=Q.values,re=a.blockSize;for(let ee=0;ee<$;ee++)for(let he=0;he<E;he+=re)for(let oe=0;oe<_;oe+=re)for(let Ae=0;Ae<C;Ae+=re){let we=Math.min(he+re,E),Re=Math.min(oe+re,_),Ge=Math.min(Ae+re,C);for(let Ke=he;Ke<we;Ke++)for(let nt=oe;nt<Re;nt++){let ut=0;for(let et=Ae;et<Ge;et++){let rt=Math.min(ee,g-1)*L,je=Math.min(ee,x-1)*H,ht=M[rt+Ke*B+et*G],Va=I[et*j+nt*U+je];ut+=ht*Va}Z[ee*V+(Ke*_+nt)]+=ut}}return a.disposeIntermediateTensorInfo(w),a.disposeIntermediateTensorInfo(S),a.makeTensorInfo(A,Q.dtype,Q.values)}var DO={kernelName:Js,backendName:"cpu",kernelFunc:$7};function zO(e){let{inputs:t,backend:a,attrs:n}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:c}=n,d,h,f,m=[];d=$7({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:u},backend:a}),i&&(h=fl({inputs:{a:d,b:i},backend:a}),m.push(d),d=h),p&&(f=Mc(a,d,p,o,c),m.push(d),d=f);for(let g of m)a.disposeIntermediateTensorInfo(g);return d}var LO={kernelName:Gr,backendName:"cpu",kernelFunc:zO},BO=ot(wl,e=>Math.acos(e)),WO={kernelName:wl,backendName:"cpu",kernelFunc:BO},VO=ot(kl,e=>Math.acosh(e)),UO={kernelName:kl,backendName:"cpu",kernelFunc:VO};function GO(e){let{inputs:t,backend:a}=e,n=t;ye(t,"addN");let r=n.map(o=>a.data.get(o.dataId).values),s=Me(n[0].shape,n[0].dtype),i=s.values;for(let o=0;o<n.length;o++){let l=r[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return a.makeTensorInfo(s.shape,s.dtype,s.values)}var HO={kernelName:qs,backendName:"cpu",kernelFunc:GO};function jO(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n;ye(r,"all");let o=v.parseAxisParam(s,r.shape),l=o,u=T.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=La({inputs:{x:r},backend:a,attrs:{perm:u}}),l=T.getInnerMostAxes(l.length,r.shape.length)),T.assertAxesAreInnerMostDims("all",l,p.shape.length);let[c,d]=T.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(c),p.dtype),m=a.data.get(p.dataId).values;for(let x=0;x<f.length;++x){let A=x*h,y=m[A];for(let b=0;b<h;++b){let w=m[A+b];y=y&&w}f[x]=y}u!=null&&a.disposeIntermediateTensorInfo(p);let g=a.makeTensorInfo(c,p.dtype,f);if(i){let x=T.expandShapeToKeepDim(c,o),A=mt({inputs:{x:g},backend:a,attrs:{shape:x}});return a.disposeIntermediateTensorInfo(g),A}return g}var qO={kernelName:Xs,backendName:"cpu",kernelFunc:jO};function XO(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n;ye(r,"any");let o=v.parseAxisParam(s,r.shape),l=o,u=T.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=La({inputs:{x:r},backend:a,attrs:{perm:u}}),l=T.getInnerMostAxes(l.length,r.shape.length)),T.assertAxesAreInnerMostDims("any",l,p.shape.length);let[c,d]=T.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(c),p.dtype),m=a.data.get(p.dataId).values;for(let x=0;x<f.length;++x){let A=x*h,y=m[A];for(let b=0;b<h;++b){let w=m[A+b];y=y||w}f[x]=y}u!=null&&a.disposeIntermediateTensorInfo(p);let g=a.makeTensorInfo(c,p.dtype,f);if(i){let x=T.expandShapeToKeepDim(c,o),A=mt({inputs:{x:g},backend:a,attrs:{shape:x}});return a.disposeIntermediateTensorInfo(g),A}return g}var KO={kernelName:Ks,backendName:"cpu",kernelFunc:XO};function ZO(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s}=n;ye(r,"argMax");let i=v.parseAxisParam(s,r.shape),o=T.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=La({inputs:{x:r},backend:a,attrs:{perm:o}}),u.push(l),i=T.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],T.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[p,c]=T.computeOutAndReduceShapes(l.shape,i),d=v.sizeFromShape(p),h=v.makeZerosTypedArray(d,"int32"),f=v.sizeFromShape(c),m=a.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let x=g*f,A=m[x],y=0;for(let b=0;b<f;++b){let w=m[x+b];w>A&&(A=w,y=b)}h[g]=y}return u.forEach(g=>a.disposeIntermediateTensorInfo(g)),a.makeTensorInfo(p,"int32",h)}var YO={kernelName:Zs,backendName:"cpu",kernelFunc:ZO};function JO(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s}=n;ye(r,"argMin");let i=v.parseAxisParam(s,r.shape),o=T.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=La({inputs:{x:r},backend:a,attrs:{perm:o}}),u.push(l),i=T.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],T.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[p,c]=T.computeOutAndReduceShapes(l.shape,i),d=v.sizeFromShape(p),h=v.makeZerosTypedArray(d,"int32"),f=v.sizeFromShape(c),m=a.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let x=g*f,A=m[x],y=0;for(let b=0;b<f;++b){let w=m[x+b];w<A&&(A=w,y=b)}h[g]=y}return u.forEach(g=>a.disposeIntermediateTensorInfo(g)),a.makeTensorInfo(p,"int32",h)}var QO={kernelName:kd,backendName:"cpu",kernelFunc:JO},eD=ot(Il,e=>Math.asin(e)),tD={kernelName:Il,backendName:"cpu",kernelFunc:eD},aD=ot(Sl,e=>Math.asinh(e)),nD={kernelName:Sl,backendName:"cpu",kernelFunc:aD},rD=ot(Tl,e=>Math.atan(e)),sD={kernelName:Tl,backendName:"cpu",kernelFunc:rD},iD=Lt((e,t)=>Math.atan2(e,t)),oD=Yt(Nl,iD),lD={kernelName:Nl,backendName:"cpu",kernelFunc:oD},uD=ot(Cl,e=>Math.atanh(e)),dD={kernelName:Cl,backendName:"cpu",kernelFunc:uD};function h3(e,t,a,n,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,p=r.effectiveFilterHeight,c=r.effectiveFilterWidth,d=r.padInfo.top,h=r.padInfo.left,f=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=Me(r.outShape,a),g=m.values,x=r.outShape[1]*r.outShape[2]*r.outShape[3],A=r.outShape[2]*r.outShape[3],y=r.outShape[3];for(let b=0;b<r.batchSize;++b){let w=b*x,S=b*n[0];for(let C=0;C<r.inChannels;++C)for(let E=0;E<r.outHeight;++E){let _=E*i-d,$=Math.max(0,_),M=Math.min(r.inHeight,p+_),I=w+E*A;for(let N=0;N<r.outWidth;++N){let O=N*o-h,L=Math.max(0,O),B=Math.min(r.inWidth,c+O),G=f,j=0,U=0;for(let V=$;V<M;V+=l){let Q=S+V*n[1];for(let Z=L;Z<B;Z+=u){let re=Q+Z*n[2],ee=e[re+C];s==="max"&&ee>G?G=ee:s==="avg"&&(j+=ee,U++)}if(isNaN(G))break}let H=I+N*y+C;g[H]=s==="avg"?j/U:G}}}return m}function _7(e,t,a,n,r=!1,s=!1){let i=Me(n.outShape,"int32"),o=n.strideHeight,l=n.strideWidth,u=n.dilationHeight,p=n.dilationWidth,c=n.effectiveFilterHeight,d=n.effectiveFilterWidth,h=n.padInfo.top,f=n.padInfo.left,m=Me(t,a,e);for(let g=0;g<n.batchSize;++g)for(let x=0;x<n.inChannels;++x)for(let A=0;A<n.outHeight;++A){let y=A*o-h,b=y;for(;b<0;)b+=u;let w=Math.min(n.inHeight,c+y);for(let S=0;S<n.outWidth;++S){let C=S*l-f,E=C;for(;E<0;)E+=p;let _=Math.min(n.inWidth,d+C),$=Number.NEGATIVE_INFINITY,M=-1;for(let I=b;I<w;I+=u){let N=I-y;for(let O=E;O<_;O+=p){let L=O-C,B=m.get(g,I,O,x);B>$&&($=B,r?M=s?((g*n.inHeight+I)*n.inWidth+O)*n.inChannels+x:(I*n.inWidth+O)*n.inChannels+x:M=N*d+L)}}i.set(M,g,A,S,x)}}return i}function P7(e,t,a,n,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,p=r.dilationHeight,c=r.dilationWidth,d=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,x=r.padInfo.left,A=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,y=Me(r.outShape,a),b=y.values,w=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],S=r.outShape[2]*r.outShape[3]*r.outShape[4],C=r.outShape[3]*r.outShape[4],E=r.outShape[4];for(let _=0;_<r.batchSize;++_){let $=_*w,M=_*n[0];for(let I=0;I<r.inChannels;++I)for(let N=0;N<r.outDepth;++N){let O=N*i-m,L=O;for(;L<0;)L+=u;let B=Math.min(r.inDepth,d+O),G=$+N*S;for(let j=0;j<r.outHeight;++j){let U=j*o-g,H=U;for(;H<0;)H+=p;let V=Math.min(r.inHeight,h+U),Q=G+j*C;for(let Z=0;Z<r.outWidth;++Z){let re=Z*l-x,ee=re;for(;ee<0;)ee+=c;let he=Math.min(r.inWidth,f+re),oe=Q+Z*E,Ae=A,we=0,Re=0;for(let Ke=L;Ke<B;Ke+=u){let nt=M+Ke*n[1];for(let ut=H;ut<V;ut+=p){let et=nt+ut*n[2];for(let rt=ee;rt<he;rt+=c){let je=et+rt*n[3],ht=e[je+I];if(s==="max"&&ht>Ae?Ae=ht:s==="avg"&&(we+=ht,Re++),isNaN(Ae))break}if(isNaN(Ae))break}if(isNaN(Ae))break}let Ge=oe+I;b[Ge]=s==="avg"?we/Re:Ae}}}}return y}function pD(e,t){let a=Me(t.outShape,"int32"),n=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,p=t.effectiveFilterHeight,c=t.effectiveFilterWidth,d=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let x=0;x<t.outDepth;++x){let A=x*n-d,y=A;for(;y<0;)y+=i;let b=Math.min(t.inDepth,u+A);for(let w=0;w<t.outHeight;++w){let S=w*r-h,C=S;for(;C<0;)C+=o;let E=Math.min(t.inHeight,p+S);for(let _=0;_<t.outWidth;++_){let $=_*s-f,M=$;for(;M<0;)M+=l;let I=Math.min(t.inWidth,c+$),N=Number.NEGATIVE_INFINITY,O=-1;for(let L=y;L<b;L+=i){let B=L-A;for(let G=C;G<E;G+=o){let j=G-S;for(let U=M;U<I;U+=l){let H=U-$,V=e.get(m,L,G,U,g);V>=N&&(N=V,O=B*p*c+j*p+H)}}}a.set(O,m,x,w,_,g)}}}return a}function cD(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t;ye(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;v.assert(T.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=T.computePool2DInfo(r.shape,s,i,u,o,l),c;if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))c=Qn({inputs:{x:r},backend:a});else{let d=a.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=h3(d,r.shape,r.dtype,h,p,"avg");c=a.makeTensorInfo(p.outShape,r.dtype,f.values)}return c}var hD={kernelName:Ys,backendName:"cpu",kernelFunc:cD};function fD(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=n;ye(r,"avgPool3d");let p=T.computePool3DInfo(r.shape,s,i,1,o,l,u),c=a.data.get(r.dataId).values,d=P7(c,r.shape,r.dtype,v.computeStrides(r.shape),p,"avg");return a.makeTensorInfo(d.shape,"float32",d.values)}var mD={kernelName:Vc,backendName:"cpu",kernelFunc:fD};function gD(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n;ye([r,s],"avgPool3DGrad");let p=T.computePool3DInfo(s.shape,i,o,1,l,u),c=p.strideDepth,d=p.strideHeight,h=p.strideWidth,f=p.filterDepth,m=p.filterHeight,g=p.filterWidth,x=p.dilationDepth,A=p.dilationHeight,y=p.dilationWidth,b=p.effectiveFilterDepth,w=p.effectiveFilterHeight,S=p.effectiveFilterWidth,C=b-1-p.padInfo.front,E=S-1-p.padInfo.left,_=w-1-p.padInfo.top,$=Me(s.shape,"float32"),M=1/(f*m*g),I=a.bufferSync(r);for(let N=0;N<p.batchSize;++N)for(let O=0;O<p.inChannels;++O)for(let L=0;L<p.inDepth;++L)for(let B=0;B<p.inHeight;++B)for(let G=0;G<p.inWidth;++G){let j=L-C,U=B-_,H=G-E,V=0;for(let Q=0;Q<b;Q+=x){let Z=(j+Q)/c;if(!(Z<0||Z>=p.outDepth||Math.floor(Z)!==Z))for(let re=0;re<w;re+=A){let ee=(U+re)/d;if(!(ee<0||ee>=p.outHeight||Math.floor(ee)!==ee))for(let he=0;he<S;he+=y){let oe=(H+he)/h;if(oe<0||oe>=p.outWidth||Math.floor(oe)!==oe)continue;let Ae=I.get(N,Z,ee,oe,O);V+=Ae}}}$.set(V*M,N,L,B,G,O)}return a.makeTensorInfo($.shape,$.dtype,$.values)}var xD={kernelName:W1,backendName:"cpu",kernelFunc:gD};function AD(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,input:s}=t,i=s;ye([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=n,p=T.computePool2DInfo(i.shape,o,l,1,u),c=p.strideHeight,d=p.strideWidth,h=p.filterHeight,f=p.filterWidth,m=p.dilationHeight,g=p.dilationWidth,x=p.effectiveFilterHeight,A=p.effectiveFilterWidth,y=A-1-p.padInfo.left,b=x-1-p.padInfo.top,w=Me(i.shape,"float32"),S=1/(h*f),C=a.data.get(r.dataId).values,E=Me(r.shape,"float32",C);for(let _=0;_<p.batchSize;++_)for(let $=0;$<p.inChannels;++$)for(let M=0;M<p.inHeight;++M)for(let I=0;I<p.inWidth;++I){let N=M-b,O=I-y,L=0;for(let B=0;B<x;B+=m){let G=(N+B)/c;if(!(G<0||G>=p.outHeight||Math.floor(G)!==G))for(let j=0;j<A;j+=g){let U=(O+j)/d;if(U<0||U>=p.outWidth||Math.floor(U)!==U)continue;let H=E.get(_,G,U,$);L+=H}}w.set(L*S,_,M,I,$)}return a.makeTensorInfo(w.shape,w.dtype,w.values)}var yD={kernelName:B1,backendName:"cpu",kernelFunc:AD};function bD(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;v.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ye([r,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=n;u==null&&(u=.001);let p=a.data.get(r.dataId).values,c=a.data.get(o.dataId).values,d=a.data.get(l.dataId).values,h=s?a.data.get(s.dataId).values:new Float32Array([1]),f=i?a.data.get(i.dataId).values:new Float32Array([0]),m=new Float32Array(p.length),g=f.length,x=h.length,A=d.length,y=c.length,b=0,w=0,S=0,C=0;for(let E=0;E<p.length;++E)m[E]=f[b++]+(p[E]-c[w++])*h[S++]/Math.sqrt(d[C++]+u),b>=g&&(b=0),w>=y&&(w=0),S>=x&&(S=0),C>=A&&(C=0);return a.makeTensorInfo(r.shape,r.dtype,m)}var vD={kernelName:xi,backendName:"cpu",kernelFunc:bD};function wD(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{blockShape:s,crops:i}=n;ye([r],"batchToSpaceND");let o=s.reduce((x,A)=>x*A),l=T.getReshaped(r.shape,s,o),u=T.getPermuted(l.length,s.length),p=T.getReshapedPermuted(r.shape,s,o),c=T.getSliceBeginCoords(i,s.length),d=T.getSliceSize(p,i,s.length),h=mt({inputs:{x:r},backend:a,attrs:{shape:l}}),f=La({inputs:{x:h},backend:a,attrs:{perm:u}}),m=mt({inputs:{x:f},backend:a,attrs:{shape:p}}),g=Vs({inputs:{x:m},backend:a,attrs:{begin:c,size:d}});return a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(f),a.disposeIntermediateTensorInfo(m),g}var kD={kernelName:El,backendName:"cpu",kernelFunc:wD};function ID(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,weights:s}=t,{size:i}=n,o=a.data.get(r.dataId).values,l=a.data.get(s.dataId).values,u=n3(o,l,s.dtype,s.shape,i);return a.makeTensorInfo([i],s.dtype,u)}var SD={kernelName:Id,backendName:"cpu",kernelFunc:ID};function TD(e){let{inputs:t,backend:a}=e,{s0:n,s1:r}=t,s=a.data.get(n.dataId).values,i=a.data.get(r.dataId).values,o=T.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return a.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var CD={kernelName:Uc,backendName:"cpu",kernelFunc:TD},ND=ot(es,(e,t)=>{let a=t;return e>a.clipValueMax?a.clipValueMax:e<a.clipValueMin?a.clipValueMin:e}),ED={kernelName:es,backendName:"cpu",kernelFunc:ND},RD=e=>{let{x:t}=e.inputs,a=e.backend,n=new Float32Array(v.sizeFromShape(t.shape)),r=a.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=a.data.get(s.dataId).values,l=a.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let p=o[u],c=l[u];n[u]=Math.hypot(p,c)}return a.makeOutput(n,t.shape,"float32")},MD={kernelName:Gc,backendName:"cpu",kernelFunc:RD};function ml(e){let{inputs:t,backend:a}=e,{input:n}=t,r=a.data.get(n.dataId).complexTensorInfos.imag,s=a.data.get(r.dataId).values;return a.makeTensorInfo(r.shape,r.dtype,s)}var $D={kernelName:Rd,backendName:"cpu",kernelFunc:ml};function gl(e){let{inputs:t,backend:a,attrs:n}=e,{axis:r}=n,s=v.parseAxisParam(r,t[0].shape)[0],i=t.map(m=>m.shape);T.assertParamsConsistent(i,s);let o=T.computeOutShape(t.map(m=>m.shape),s);if(v.sizeFromShape(o)===0)return a.makeTensorInfo(o,t[0].dtype,[]);let l=t.filter(m=>v.sizeFromShape(m.shape)>0);if(l.length===1)return Qn({inputs:{x:l[0]},backend:a});if(l[0].dtype==="complex64"){let m=l.map(b=>Ws({inputs:{input:b},backend:a})),g=l.map(b=>ml({inputs:{input:b},backend:a})),x=gl({inputs:m,backend:a,attrs:{axis:s}}),A=gl({inputs:g,backend:a,attrs:{axis:s}}),y=qa({inputs:{real:x,imag:A},backend:a});return m.forEach(b=>a.disposeIntermediateTensorInfo(b)),g.forEach(b=>a.disposeIntermediateTensorInfo(b)),a.disposeIntermediateTensorInfo(x),a.disposeIntermediateTensorInfo(A),y}let u=l.map(m=>{let g=[-1,v.sizeFromShape(m.shape.slice(s))];return mt({inputs:{x:m},backend:a,attrs:{shape:g}})}),p=u.map(m=>({vals:a.data.get(m.dataId).values,shape:m.shape}));o=T.computeOutShape(u.map(m=>m.shape),1);let c=u[0].shape[0]===1,d=r3(p,o,t[0].dtype,c),h=T.computeOutShape(l.map(m=>m.shape),s),f=a.makeTensorInfo(h,t[0].dtype,d);return u.forEach(m=>a.disposeIntermediateTensorInfo(m)),f}var _D={kernelName:Rl,backendName:"cpu",kernelFunc:gl};function F7(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=n;ye([r,s],"conv2d");let c=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,c),h=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,g=d.dilationWidth,x=d.padInfo.left,A=d.padInfo.top,y=d.dataFormat==="channelsLast",b=new jt(d.outShape,r.dtype),w=v.computeStrides(r.shape),S=v.computeStrides(s.shape),C=w[0],E=y?w[1]:w[2],_=y?w[2]:1,$=y?1:w[1],M=b.strides[0],I=y?b.strides[1]:b.strides[2],N=y?b.strides[2]:1,O=y?1:b.strides[1],L=a.data.get(r.dataId).values,B=a.data.get(s.dataId).values,G=b.values;for(let j=0;j<d.batchSize;++j){let U=j*C,H=j*M;for(let V=0;V<d.outHeight;++V){let Q=H+V*I,Z=V*d.strideHeight-A;for(let re=0;re<h;++re){let ee=Z+re*m;if(ee<0||ee>=d.inHeight)continue;let he=re*S[0],oe=U+ee*E;for(let Ae=0;Ae<d.outWidth;++Ae){let we=Q+Ae*N,Re=Ae*d.strideWidth-x;for(let Ge=0;Ge<f;++Ge){let Ke=Re+Ge*g;if(Ke<0||Ke>=d.inWidth)continue;let nt=he+Ge*S[1],ut=oe+Ke*_,et=nt;for(let rt=0;rt<d.inChannels;++rt){let je=L[ut+rt*$];for(let ht=0;ht<d.outChannels;++ht)G[we+ht*O]+=je*B[et+ht];et+=d.outChannels}}}}}}return a.makeTensorInfo(b.shape,b.dtype,G)}var PD={kernelName:ti,backendName:"cpu",kernelFunc:F7};function FD(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=n;ye([r,s],"conv2dBackpropFilter");let c=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,p,i,1,o,u,!1,c),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=d,x=d.dataFormat==="channelsLast",A=new jt(d.filterShape,"float32"),y=d.padInfo.left,b=d.padInfo.top,w=a.data.get(r.dataId).values,S=a.data.get(s.dataId).values,C=new jt(r.shape,r.dtype,w),E=new jt(s.shape,s.dtype,S);for(let _=0;_<m;++_){let $=Math.max(0,Math.ceil((b-_)/h)),M=Math.min(d.outHeight,(d.inHeight+b-_)/h);for(let I=0;I<g;++I){let N=Math.max(0,Math.ceil((y-I)/f)),O=Math.min(d.outWidth,(d.inWidth+y-I)/f);for(let L=0;L<d.inChannels;++L)for(let B=0;B<d.outChannels;++B){let G=0;for(let j=0;j<d.batchSize;++j)for(let U=$;U<M;++U){let H=_+U*h-b;for(let V=N;V<O;++V){let Q=I+V*f-y;x?G+=C.get(j,H,Q,L)*E.get(j,U,V,B):G+=C.get(j,L,H,Q)*E.get(j,B,U,V)}}A.set(G,_,I,L,B)}}}return a.makeTensorInfo(A.shape,A.dtype,A.values)}var OD={kernelName:Hc,backendName:"cpu",kernelFunc:FD};function DD(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=n;ye([r,s],"conv2dBackpropInput");let c=v.computeStrides(s.shape),d=v.computeStrides(r.shape),h=T.convertConv2DDataFormat(u),f=T.computeConv2DInfo(i,s.shape,o,1,l,p,!1,h),m=new jt(f.inShape,"float32"),g=m.values,x=a.data.get(r.dataId).values,A=a.data.get(s.dataId).values,[y,b,w]=c,{batchSize:S,filterHeight:C,filterWidth:E,inChannels:_,inHeight:$,inWidth:M,outChannels:I,outHeight:N,outWidth:O,strideHeight:L,strideWidth:B}=f;h=f.dataFormat;let G=C-1-f.padInfo.top,j=E-1-f.padInfo.left,U=h==="channelsLast",H=m.strides[0],V=U?m.strides[1]:m.strides[2],Q=U?m.strides[2]:1,Z=U?1:m.strides[1],re=d[0],ee=U?d[1]:d[2],he=U?d[2]:1,oe=U?1:d[1];for(let Ae=0;Ae<S;++Ae)for(let we=0;we<_;++we)for(let Re=0;Re<$;++Re){let Ge=Re-G,Ke=Math.max(0,Math.ceil(Ge/L)),nt=Math.min(N,(C+Ge)/L);for(let ut=0;ut<M;++ut){let et=ut-j,rt=Math.max(0,Math.ceil(et/B)),je=Math.min(O,(E+et)/B),ht=0;for(let Ft=Ke;Ft<nt;++Ft){let rn=Ft*L-Ge;for(let aa=rt;aa<je;++aa){let $a=aa*B-et,sn=re*Ae+ee*Ft+he*aa,_a=y*(C-1-rn)+b*(E-1-$a)+w*we;for(let dt=0;dt<I;++dt){let Pa=x[sn+oe*dt],Ua=A[_a+dt];ht+=Pa*Ua}}}let Va=H*Ae+V*Re+Q*ut+Z*we;g[Va]=ht}}return a.makeTensorInfo(m.shape,m.dtype,m.values)}var zD={kernelName:ai,backendName:"cpu",kernelFunc:DD};function LD(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=n;ye([r,s],"conv3d");let u=T.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:p,filterHeight:c,filterWidth:d,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=u,x=g.front,A=g.left,y=g.top,b=new jt(u.outShape,r.dtype),w=a.data.get(r.dataId).values,S=a.data.get(s.dataId).values,C=b.values,E=v.computeStrides(r.shape),_=v.computeStrides(s.shape);for(let $=0;$<u.batchSize;++$){let M=$*E[0],I=$*b.strides[0];for(let N=0;N<u.outDepth;++N){let O=I+N*b.strides[1],L=N*u.strideDepth-x;for(let B=0;B<p;++B){let G=L+B*h;if(G<0||G>=u.inDepth)continue;let j=B*_[0],U=M+G*E[1];for(let H=0;H<u.outHeight;++H){let V=O+H*b.strides[2],Q=H*u.strideHeight-y;for(let Z=0;Z<c;++Z){let re=Q+Z*f;if(re<0||re>=u.inHeight)continue;let ee=j+Z*_[1],he=U+re*E[2];for(let oe=0;oe<u.outWidth;++oe){let Ae=V+oe*u.outChannels,we=oe*u.strideWidth-A;for(let Re=0;Re<d;++Re){let Ge=we+Re*m;if(Ge<0||Ge>=u.inWidth)continue;let Ke=ee+Re*_[2],nt=he+Ge*u.inChannels,ut=Ke;for(let et=0;et<u.inChannels;++et){let rt=w[nt+et];for(let je=0;je<u.outChannels;++je)C[Ae+je]+=rt*S[ut+je];ut+=u.outChannels}}}}}}}}return a.makeTensorInfo(b.shape,b.dtype,b.values)}var BD={kernelName:jc,backendName:"cpu",kernelFunc:LD};function WD(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=n;ye([r,s],"conv3dBackpropFilterV2");let u=v.computeStrides(r.shape),p=v.computeStrides(s.shape),c=T.computeConv3DInfo(r.shape,l,i,1,o),d=c.strideDepth,h=c.strideHeight,f=c.strideWidth,m=c.filterDepth,g=c.filterHeight,x=c.filterWidth,A=new jt(c.filterShape,"float32"),y=A.values,[b,w,S,C]=A.strides,E=a.data.get(s.dataId).values,[_,$,M,I]=p,N=a.data.get(r.dataId).values,[O,L,B,G]=u,j=c.padInfo.front,U=c.padInfo.left,H=c.padInfo.top;for(let V=0;V<m;++V){let Q=Math.max(0,Math.ceil((j-V)/d)),Z=Math.min(c.outDepth,(c.inDepth+j-V)/d),re=V*b;for(let ee=0;ee<g;++ee){let he=Math.max(0,Math.ceil((H-ee)/h)),oe=Math.min(c.outHeight,(c.inHeight+H-ee)/h),Ae=ee*w+re;for(let we=0;we<x;++we){let Re=Math.max(0,Math.ceil((U-we)/f)),Ge=Math.min(c.outWidth,(c.inWidth+U-we)/f),Ke=we*S+Ae;for(let nt=0;nt<c.inChannels;++nt){let ut=nt*C+Ke;for(let et=0;et<c.outChannels;++et){let rt=0;for(let je=0;je<c.batchSize;++je){let ht=je*O,Va=je*_;for(let Ft=Q;Ft<Z;++Ft){let rn=(V+Ft*d-j)*L+ht,aa=Ft*$+Va;for(let $a=he;$a<oe;++$a){let sn=(ee+$a*h-H)*B+rn,_a=$a*M+aa;for(let dt=Re;dt<Ge;++dt){let Pa=(we+dt*f-U)*G+sn,Ua=dt*I+_a;rt+=N[Pa+nt]*E[Ua+et]}}}}y[ut+et]=rt}}}}}return a.makeTensorInfo(A.shape,A.dtype,A.values)}var VD={kernelName:V1,backendName:"cpu",kernelFunc:WD};function UD(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=n;ye([r],"conv3dBackpropInputV2");let u=v.computeStrides(r.shape),p=v.computeStrides(s.shape),c=T.computeConv3DInfo(l,s.shape,o,1,i),d=new jt(c.inShape,"float32"),h=d.values,[f,m,g,x]=d.strides,A=a.data.get(r.dataId).values,[y,b,w,S]=u,C=a.data.get(s.dataId).values,[E,_,$,M]=p,{batchSize:I,filterDepth:N,filterHeight:O,filterWidth:L,inChannels:B,inDepth:G,inHeight:j,inWidth:U,outChannels:H,outDepth:V,outHeight:Q,outWidth:Z,strideDepth:re,strideHeight:ee,strideWidth:he}=c,oe=N-1-c.padInfo.front,Ae=O-1-c.padInfo.top,we=L-1-c.padInfo.left;for(let Re=0;Re<I;++Re)for(let Ge=0;Ge<B;++Ge)for(let Ke=0;Ke<G;++Ke){let nt=Ke-oe,ut=Math.max(0,Math.ceil(nt/re)),et=Math.min(V,(N+nt)/re);for(let rt=0;rt<j;++rt){let je=rt-Ae,ht=Math.max(0,Math.ceil(je/ee)),Va=Math.min(Q,(O+je)/ee);for(let Ft=0;Ft<U;++Ft){let rn=Ft-we,aa=Math.max(0,Math.ceil(rn/he)),$a=Math.min(Z,(L+rn)/he),sn=0;for(let _a=ut;_a<et;++_a){let dt=_a*re-nt;for(let Pa=ht;Pa<Va;++Pa){let Ua=Pa*ee-je;for(let lr=aa;lr<$a;++lr){let zo=lr*he-rn,Vn=y*Re+b*_a+w*Pa+S*lr,Mu=E*(N-1-dt)+_*(O-1-Ua)+$*(L-1-zo)+M*Ge;for(let yn=0;yn<H;++yn){let Lo=A[Vn+yn],Xt=C[Mu+yn];sn+=Lo*Xt}}}}h[f*Re+m*Ke+g*rt+x*Ft+Ge]=sn}}}return a.makeTensorInfo(d.shape,d.dtype,d.values)}var GD={kernelName:qc,backendName:"cpu",kernelFunc:UD},HD=ot(ni,e=>Math.cos(e)),jD={kernelName:ni,backendName:"cpu",kernelFunc:HD},qD=ot(ri,e=>Math.cosh(e)),XD={kernelName:ri,backendName:"cpu",kernelFunc:qD};function KD(e){let{inputs:t,backend:a,attrs:n}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=n,[p,c,d,h]=r.shape,f=s.shape[0],[m,g]=o,x=Me([f,m,g,h],"float32"),A=a.data.get(s.dataId).values,y=a.data.get(i.dataId).values,b=a.data.get(r.dataId).values,w=v.computeStrides(r.shape),S=v.computeStrides(x.shape);for(let C=0;C<f;C++){let E=C*4,_=A[E],$=A[E+1],M=A[E+2],I=A[E+3],N=y[C];if(N>=p)continue;let O=m>1?(M-_)*(c-1)/(m-1):0,L=g>1?(I-$)*(d-1)/(g-1):0;for(let B=0;B<m;B++){let G=m>1?_*(c-1)+B*O:.5*(_+M)*(c-1);if(G<0||G>c-1){for(let j=0;j<g;j++)for(let U=0;U<h;U++){let H=U+j*S[2]+B*S[1]+C*S[0];x.values[H]=u}continue}if(l==="bilinear"){let j=Math.floor(G),U=Math.ceil(G),H=G-j;for(let V=0;V<g;V++){let Q=g>1?$*(d-1)+V*L:.5*($+I)*(d-1);if(Q<0||Q>d-1){for(let he=0;he<h;he++){let oe=he+V*S[2]+B*S[1]+C*S[0];x.values[oe]=u}continue}let Z=Math.floor(Q),re=Math.ceil(Q),ee=Q-Z;for(let he=0;he<h;he++){let oe=he+Z*w[2]+j*w[1]+N*w[0],Ae=b[oe];oe=he+re*w[2]+j*w[1]+N*w[0];let we=b[oe];oe=he+Z*w[2]+U*w[1]+N*w[0];let Re=b[oe];oe=he+re*w[2]+U*w[1]+N*w[0];let Ge=b[oe],Ke=Ae+(we-Ae)*ee,nt=Re+(Ge-Re)*ee;oe=he+V*S[2]+B*S[1]+C*S[0],x.values[oe]=Ke+(nt-Ke)*H}}}else for(let j=0;j<g;++j){let U=g>1?$*(d-1)+j*L:.5*($+I)*(d-1);if(U<0||U>d-1){for(let Q=0;Q<h;Q++){let Z=Q+j*S[2]+B*S[1]+C*S[0];x.values[Z]=u}continue}let H=Math.round(U),V=Math.round(G);for(let Q=0;Q<h;Q++){let Z=Q+H*w[2]+V*w[1]+N*w[0],re=Q+j*S[2]+B*S[1]+C*S[0];x.values[re]=b[Z]}}}}return a.makeTensorInfo(x.shape,x.dtype,x.values)}var ZD={kernelName:oi,backendName:"cpu",kernelFunc:KD};function YD(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=n;ye(r,"cumprod");let l=T.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=La({inputs:{x:r},backend:a,attrs:{perm:l}}));let p=T.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let c=ca(u.dtype,"int32"),d=v.makeOnesTypedArray(v.sizeFromShape(u.shape),c),h=a.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=o?(x,A)=>x+f-A-1:(x,A)=>x+A;for(let x=0;x<h.length;x+=f)for(let A=0;A<f;A++){let y=m(x,A);if(A===0)d[y]=i?1:h[y];else{let b=m(x,A-1);d[y]=i?h[b]*d[b]:h[y]*d[b]}}let g=a.makeTensorInfo(u.shape,c,d);if(l!=null){let x=T.getUndoAxesPermutation(l),A=La({inputs:{x:g},backend:a,attrs:{perm:x}});return a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(u),A}return g}var JD={kernelName:si,backendName:"cpu",kernelFunc:YD};function QD(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=n;ye(r,"cumsum");let l=T.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=La({inputs:{x:r},backend:a,attrs:{perm:l}}));let p=T.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let c=ca(u.dtype,"int32"),d=v.makeZerosTypedArray(v.sizeFromShape(u.shape),c),h=a.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=o?(x,A)=>x+f-A-1:(x,A)=>x+A;for(let x=0;x<h.length;x+=f)for(let A=0;A<f;A++){let y=m(x,A);if(A===0)d[y]=i?0:h[y];else{let b=m(x,A-1);d[y]=i?h[b]+d[b]:h[y]+d[b]}}let g=a.makeTensorInfo(u.shape,c,d);if(l!=null){let x=T.getUndoAxesPermutation(l),A=La({inputs:{x:g},backend:a,attrs:{perm:x}});return a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(u),A}return g}var ez={kernelName:ii,backendName:"cpu",kernelFunc:QD};function tz(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=n;if(r.shape.length===1){let l=a.data.get(r.dataId).values,u=a.data.get(s.dataId).values,p=n3(l,u,s.dtype,s.shape,i);return a.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=a.bufferSync(r),u=a.bufferSync(s),p=H4(l,u,i,o);return a.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var az={kernelName:Td,backendName:"cpu",kernelFunc:tz};function nz(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{blockSize:s,dataFormat:i}=n;v.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let o=r.shape[0],l=r.shape[1],u=r.shape[2],p=r.shape[3],c=l*s,d=u*s,h=p/(s*s),f=a.data.get(r.dataId).values,m=new Float32Array(o*c*d*h),g=0;for(let x=0;x<o;++x)for(let A=0;A<c;++A){let y=Math.floor(A/s),b=A%s;for(let w=0;w<d;++w){let S=Math.floor(w/s),C=w%s,E=(b*s+C)*h;for(let _=0;_<h;++_){let $=_+E+p*(S+u*(y+l*x));m[g++]=f[$]}}}return a.makeTensorInfo([o,c,d,h],r.dtype,m)}var rz={kernelName:li,backendName:"cpu",kernelFunc:nz};function O7(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=n;ye([r,s],"depthwiseConv2DNative");let p=v.computeStrides(r.shape),c=v.computeStrides(s.shape),d=l;d==null&&(d=[1,1]),v.assert(T.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let h=T.computeConv2DInfo(r.shape,s.shape,i,d,o,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:x,padInfo:A}=h,y=A.left,b=A.top,w=h.outChannels/h.inChannels,S=new jt(h.outShape,r.dtype),C=a.data.get(r.dataId).values,E=a.data.get(s.dataId).values,_=S.values;for(let $=0;$<h.batchSize;++$){let M=$*p[0],I=$*S.strides[0];for(let N=0;N<h.outHeight;++N){let O=I+N*S.strides[1],L=N*h.strideHeight-b;for(let B=0;B<f;++B){let G=L+B*g;if(G<0||G>=h.inHeight)continue;let j=B*c[0],U=M+G*p[1];for(let H=0;H<h.outWidth;++H){let V=O+H*S.strides[2],Q=H*h.strideWidth-y;for(let Z=0;Z<m;++Z){let re=Q+Z*x;if(re<0||re>=h.inWidth)continue;let ee=j+Z*c[1],he=U+re*h.inChannels,oe=V,Ae=ee;for(let we=0;we<h.inChannels;++we){let Re=C[he+we];for(let Ge=0;Ge<w;++Ge)_[oe+Ge]+=Re*E[Ae+Ge];oe+=w,Ae+=w}}}}}}return a.makeTensorInfo(S.shape,S.dtype,S.values)}var sz={kernelName:ui,backendName:"cpu",kernelFunc:O7};function iz(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=n;ye([r,s],"depthwiseConv2dNativeBackpropFilter");let c=T.computeConv2DInfo(r.shape,p,i,o,l,u,!0),{strideHeight:d,strideWidth:h,filterHeight:f,filterWidth:m}=c,g=new jt(c.filterShape,"float32"),x=c.padInfo.left,A=c.padInfo.top,y=c.outChannels/c.inChannels,b=a.data.get(r.dataId).values,w=new jt(r.shape,r.dtype,b),S=a.data.get(s.dataId).values,C=new jt(s.shape,s.dtype,S);for(let E=0;E<f;++E){let _=Math.max(0,Math.ceil((A-E)/d)),$=Math.min(c.outHeight,(c.inHeight+A-E)/d);for(let M=0;M<m;++M){let I=Math.max(0,Math.ceil((x-M)/h)),N=Math.min(c.outWidth,(c.inWidth+x-M)/h);for(let O=0;O<c.outChannels;++O){let L=Math.trunc(O/y),B=O%y,G=0;for(let j=0;j<c.batchSize;++j)for(let U=_;U<$;++U){let H=E+U*d-A;for(let V=I;V<N;++V){let Q=M+V*h-x;G+=w.get(j,H,Q,L)*C.get(j,U,V,O)}}g.set(G,E,M,L,B)}}}return a.makeTensorInfo(g.shape,g.dtype,g.values)}var oz={kernelName:Xc,backendName:"cpu",kernelFunc:iz};function lz(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=n;ye([r,s],"depthwiseConv2DNativeBackpropInput");let c=v.computeStrides(r.shape),d=v.computeStrides(s.shape),h=T.computeConv2DInfo(p,s.shape,i,o,l,u,!0),f=new jt(h.inShape,"float32"),m=f.values,[g,x,A]=f.strides,y=a.data.get(r.dataId).values,[b,w,S]=c,C=a.data.get(s.dataId).values,[E,_,$]=d,{batchSize:M,filterHeight:I,filterWidth:N,inChannels:O,inHeight:L,inWidth:B,outChannels:G,outHeight:j,outWidth:U,strideHeight:H,strideWidth:V}=h,Q=I-1-h.padInfo.top,Z=N-1-h.padInfo.left,re=G/O;for(let ee=0;ee<M;++ee)for(let he=0;he<O;++he)for(let oe=0;oe<L;++oe){let Ae=oe-Q,we=Math.max(0,Math.ceil(Ae/H)),Re=Math.min(j,(I+Ae)/H);for(let Ge=0;Ge<B;++Ge){let Ke=Ge-Z,nt=Math.max(0,Math.ceil(Ke/V)),ut=Math.min(U,(N+Ke)/V),et=0;for(let rt=we;rt<Re;++rt){let je=rt*H-Ae;for(let ht=nt;ht<ut;++ht){let Va=ht*V-Ke,Ft=b*ee+w*rt+S*ht,rn=E*(I-1-je)+_*(N-1-Va)+$*he;for(let aa=0;aa<re;++aa){let $a=he*re+aa,sn=y[Ft+$a],_a=C[rn+aa];et+=sn*_a}}}m[g*ee+x*oe+A*Ge+he]=et}}return a.makeTensorInfo(f.shape,f.dtype,f.values)}var uz={kernelName:Kc,backendName:"cpu",kernelFunc:lz};function dz(e){let{inputs:t,backend:a}=e,{x:n}=t,r=v.sizeFromShape(n.shape),s=a.data.get(n.dataId).values,i=Me([r,r],n.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*r+u]=s[u];let l=[...n.shape,...n.shape];return a.makeTensorInfo(l,i.dtype,i.values)}var pz={kernelName:Zc,backendName:"cpu",kernelFunc:dz},cz={kernelName:Yc,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:a})=>{let{x:n,filter:r}=e,{strides:s,pad:i,dilations:o}=a,l=t,u=l.data.get(n.dataId).values,p=n.shape.length,c=l.data.get(r.dataId).values,d=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:x,outWidth:A,padInfo:y,strideHeight:b,strideWidth:w,filterHeight:S,filterWidth:C,dilationHeight:E,dilationWidth:_,outShape:$}=T.computeDilation2DInfo(n.shape,r.shape,s,i,"NHWC",o),M=v.sizeFromShape($),I=$.length,N=v.getArrayFromDType(n.dtype,M);for(let O=0;O<h;++O)for(let L=0;L<x;++L){let B=L*b-y.top;for(let G=0;G<A;++G){let j=G*w-y.left;for(let U=0;U<g;++U){let H=Number.MIN_SAFE_INTEGER;for(let Q=0;Q<S;++Q){let Z=B+Q*E;if(Z>=0&&Z<f)for(let re=0;re<C;++re){let ee=j+re*_;if(ee>=0&&ee<m){let he=v.locToIndex([O,Z,ee,U],p,v.computeStrides(n.shape)),oe=v.locToIndex([Q,re,U],d,v.computeStrides(r.shape)),Ae=u[he]+c[oe];Ae>H&&(H=Ae)}}}let V=v.locToIndex([O,L,G,U],I,v.computeStrides($));N[V]=H}}}return{dataId:l.write(v.toTypedArray(N,n.dtype),$,n.dtype),shape:$,dtype:n.dtype}}},hz={kernelName:Wm,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:a})=>{let{x:n,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=a,u=t,p=v.toNestedArray(n.shape,u.data.get(n.dataId).values),c=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:x,padInfo:A,strideHeight:y,strideWidth:b,filterHeight:w,filterWidth:S,dilationHeight:C,dilationWidth:E,outShape:_}=T.computeDilation2DInfo(n.shape,r.shape,i,o,"NHWC",l);v.assert(s.rank===_.length,()=>`Error in ${Wm}, dy must have the same rank as output ${_.length}, but got ${s.rank}`);let $=v.toNestedArray(_,u.data.get(s.dataId).values),M=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let I=0;I<d;++I)for(let N=0;N<g;++N){let O=N*y-A.top;for(let L=0;L<x;++L){let B=L*b-A.left;for(let G=0;G<m;++G){let j=Number.MIN_SAFE_INTEGER,U=0,H=0;for(let V=0;V<w;++V){let Q=O+V*C;if(Q>=0&&Q<h)for(let Z=0;Z<S;++Z){let re=B+Z*E;if(re>=0&&re<f){let ee=p[I][Q][re][G]+c[V][Z][G];ee>j&&(j=ee,U=V,H=Z)}}}M[U][H][G]+=$[I][N][L][G]}}}return{dataId:u.write(v.toTypedArray(M,n.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},fz={kernelName:Bm,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:a})=>{let{x:n,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=a,u=t,p=v.toNestedArray(n.shape,u.data.get(n.dataId).values),c=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:x,padInfo:A,strideHeight:y,strideWidth:b,filterHeight:w,filterWidth:S,dilationHeight:C,dilationWidth:E,outShape:_}=T.computeDilation2DInfo(n.shape,r.shape,i,o,"NHWC",l);v.assert(s.rank===_.length,()=>`Error in ${Bm}, dy must have the same rank as output ${_.length}, but got ${s.rank}`);let $=v.toNestedArray(_,u.data.get(s.dataId).values),M=v.makeZerosNestedTypedArray(n.shape,n.dtype);for(let I=0;I<d;++I)for(let N=0;N<g;++N){let O=N*y-A.top;for(let L=0;L<x;++L){let B=L*b-A.left;for(let G=0;G<m;++G){let j=Number.MIN_SAFE_INTEGER,U=O<0?0:O,H=B<0?0:B;for(let V=0;V<w;++V){let Q=O+V*C;if(Q>=0&&Q<h)for(let Z=0;Z<S;++Z){let re=B+Z*E;if(re>=0&&re<f){let ee=p[I][Q][re][G]+c[V][Z][G];ee>j&&(j=ee,U=Q,H=re)}}}M[I][U][H][G]+=$[I][N][L][G]}}}return{dataId:u.write(v.toTypedArray(M,n.dtype),n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};function lp(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n;ye(r,"sum");let o;r.dtype==="bool"?o=Zr({inputs:{x:r},backend:a,attrs:{dtype:"int32"}}):o=Qn({inputs:{x:r},backend:a});let l=o.shape.length,u=v.parseAxisParam(s,o.shape),p=T.getAxesPermutation(u,l),c=u,d=o;p!=null&&(d=La({inputs:{x:o},backend:a,attrs:{perm:p}}),c=T.getInnerMostAxes(c.length,l)),T.assertAxesAreInnerMostDims("sum",c,d.shape.length);let[h,f]=T.computeOutAndReduceShapes(d.shape,c),m=T.upcastType(d.dtype,"int32"),g=Ec(a,h,m),x=v.sizeFromShape(f),A=a.data.get(g.dataId).values,y=a.data.get(d.dataId).values;for(let b=0;b<A.length;++b){let w=b*x,S=0;for(let C=0;C<x;++C)S+=y[w+C];A[b]=S}if(i){let b=T.expandShapeToKeepDim(g.shape,u),w=g;g=mt({inputs:{x:g},backend:a,attrs:{shape:b}}),a.disposeIntermediateTensorInfo(w)}return a.disposeIntermediateTensorInfo(o),p!=null&&a.disposeIntermediateTensorInfo(d),g}var mz={kernelName:ao,backendName:"cpu",kernelFunc:lp};function gz(e){let{inputs:t,backend:a,attrs:n}=e,{equation:r}=n,s=t,{allDims:i,summedDims:o,idDims:l}=T.decodeEinsumEquation(r,s.length);T.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=T.getEinsumComputePath(o,l),c=p.length,d=null,h=i.length,f=[];for(let m=0;m<c;++m){for(let g of p[m]){let{permutationIndices:x,expandDims:A}=T.getEinsumPermutation(h,l[g]),y;T.isIdentityPermutation(x)?y=s[g]:(y=La({inputs:{x:s[g]},backend:a,attrs:{perm:x}}),f.push(y));let b=y.shape.slice();for(let w=0;w<A.length;++w)b.splice(A[w],0,1);v.arraysEqual(y.shape,b)||(y=mt({inputs:{x:y},backend:a,attrs:{shape:b}}),f.push(y)),d===null?d=y:(d=Mh({inputs:{a:y,b:d},backend:a}),f.push(d))}m<c-1&&(u[m]>=0&&(d=lp({inputs:{x:d},backend:a,attrs:{axis:u[m]-(i.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&a.disposeIntermediateTensorInfo(m);return d}var xz={kernelName:Cd,backendName:"cpu",kernelFunc:gz};function Az(e){let{inputs:t,backend:a}=e,{dy:n,y:r}=t;ye([n,r],"eluGrad");let s=new Float32Array(v.sizeFromShape(r.shape)),i=a.data.get(r.dataId).values,o=a.data.get(n.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return a.makeTensorInfo(r.shape,"float32",s)}var yz={kernelName:U1,backendName:"cpu",kernelFunc:Az},bz=T.ERF_P,vz=T.ERF_A1,wz=T.ERF_A2,kz=T.ERF_A3,Iz=T.ERF_A4,Sz=T.ERF_A5,Tz=ot(Ml,e=>{let t=Math.sign(e),a=Math.abs(e),n=1/(1+bz*a);return t*(1-((((Sz*n+Iz)*n+kz)*n+wz)*n+vz)*n*Math.exp(-a*a))}),Cz={kernelName:Ml,backendName:"cpu",kernelFunc:Tz};function $c(e){let{inputs:t,backend:a,attrs:n}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),mt({inputs:{x:r},backend:a,attrs:{shape:o}})}var Nz={kernelName:$l,backendName:"cpu",kernelFunc:$c},Ez=Lt((e,t)=>e/t),f3=Yt(di,Ez),x1={kernelName:di,backendName:"cpu",kernelFunc:f3};function D7(e,t,a){let n=e.shape,r=n[0],s=n[1],i=a.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[r,s],p=v.sizeFromShape(u),c=v.getTypedArrayFromDType("float32",p),d=v.getTypedArrayFromDType("float32",p);for(let g=0;g<r;g++){let x=Vs({inputs:{x:o},backend:a,attrs:{begin:[g,0],size:[1,s]}}),A=Vs({inputs:{x:l},backend:a,attrs:{begin:[g,0],size:[1,s]}}),y=qa({inputs:{real:x,imag:A},backend:a}),{real:b,imag:w}=Rz(y,t,a),S=T.mergeRealAndImagArrays(b,w);for(let C=0;C<s;C++){let E=T.getComplexWithIndex(S,C);c[g*s+C]=E.real,d[g*s+C]=E.imag}a.disposeIntermediateTensorInfo(x),a.disposeIntermediateTensorInfo(A),a.disposeIntermediateTensorInfo(y)}let h=a.makeTensorInfo(u,"float32",c),f=a.makeTensorInfo(u,"float32",d),m=qa({inputs:{real:h,imag:f},backend:a});return a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(f),m}function Rz(e,t,a){let n=v.sizeFromShape(e.shape),r=a.data.get(e.dataId),s=a.data.get(r.complexTensorInfos.real.dataId).values,i=a.data.get(r.complexTensorInfos.imag.dataId).values;if(Mz(n)){let o=A1(s,i,n,t,a),l=[e.shape[0],e.shape[1]];if(t){let u=a.makeTensorInfo(l,"float32",o.real),p=a.makeTensorInfo(l,"float32",o.imag),c=a.makeTensorInfo([],"float32",v.createScalarValue(n,"float32")),d=Qn({inputs:{x:c},backend:a}),h=x1.kernelFunc({inputs:{a:u,b:c},backend:a}),f=x1.kernelFunc({inputs:{a:p,b:d},backend:a}),m=a.data.get(h.dataId).values,g=a.data.get(f.dataId).values;return a.disposeIntermediateTensorInfo(u),a.disposeIntermediateTensorInfo(p),a.disposeIntermediateTensorInfo(c),a.disposeIntermediateTensorInfo(d),a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return o}else{let o=T.mergeRealAndImagArrays(s,i),l=$z(o,n,t);return T.splitRealAndImagArrays(l)}}function Mz(e){return(e&e-1)===0}function A1(e,t,a,n,r){if(a===1)return{real:e,imag:t};let s=T.mergeRealAndImagArrays(e,t),i=a/2,o=T.complexWithEvenIndex(s),l=o.real,u=o.imag,p=[l.length],c=r.makeTensorInfo(p,"float32",l),d=r.makeTensorInfo(p,"float32",u),h=qa({inputs:{real:c,imag:d},backend:r}),f=T.complexWithOddIndex(s),m=f.real,g=f.imag,x=[m.length],A=r.makeTensorInfo(x,"float32",m),y=r.makeTensorInfo(x,"float32",g),b=qa({inputs:{real:A,imag:y},backend:r}),w=A1(l,u,i,n,r),S=w.real,C=w.imag,E=[S.length],_=r.makeTensorInfo(E,"float32",S),$=r.makeTensorInfo(E,"float32",C),M=qa({inputs:{real:_,imag:$},backend:r}),I=A1(m,g,i,n,r),N=I.real,O=I.imag,L=[N.length],B=r.makeTensorInfo(L,"float32",N),G=r.makeTensorInfo(L,"float32",O),j=qa({inputs:{real:B,imag:G},backend:r}),U=T.exponents(a,n),H=[U.real.length],V=r.makeTensorInfo(H,"float32",U.real),Q=r.makeTensorInfo(H,"float32",U.imag),Z=qa({inputs:{real:V,imag:Q},backend:r}),re=Mh({inputs:{a:Z,b:j},backend:r}),ee=fl({inputs:{a:M,b:re},backend:r}),he=c3({inputs:{a:M,b:re},backend:r}),oe=Ws({inputs:{input:ee},backend:r}),Ae=Ws({inputs:{input:he},backend:r}),we=ml({inputs:{input:ee},backend:r}),Re=ml({inputs:{input:he},backend:r}),Ge=gl({inputs:[oe,Ae],backend:r,attrs:{axis:0}}),Ke=gl({inputs:[we,Re],backend:r,attrs:{axis:0}}),nt=r.data.get(Ge.dataId).values,ut=r.data.get(Ke.dataId).values;return r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(_),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(M),r.disposeIntermediateTensorInfo(B),r.disposeIntermediateTensorInfo(G),r.disposeIntermediateTensorInfo(j),r.disposeIntermediateTensorInfo(V),r.disposeIntermediateTensorInfo(Q),r.disposeIntermediateTensorInfo(Z),r.disposeIntermediateTensorInfo(re),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(he),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(we),r.disposeIntermediateTensorInfo(Ae),r.disposeIntermediateTensorInfo(Re),r.disposeIntermediateTensorInfo(Ge),r.disposeIntermediateTensorInfo(Ke),{real:nt,imag:ut}}function $z(e,t,a){let n=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=T.exponent(r*o,t,a),u=T.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}a&&(s/=t,i/=t),T.assignToTypedArray(n,s,i,r)}return n}function _z(e){let{inputs:t,backend:a}=e,{input:n}=t,r=v.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=r/s,o=mt({inputs:{x:n},backend:a,attrs:{shape:[i,s]}}),l=D7(o,!1,a),u=mt({inputs:{x:l},backend:a,attrs:{shape:n.shape}});return a.disposeIntermediateTensorInfo(o),a.disposeIntermediateTensorInfo(l),u}var Pz={kernelName:Nd,backendName:"cpu",kernelFunc:_z};function m3(e){let{backend:t,attrs:a}=e,{shape:n,value:r,dtype:s}=a,i=s||v.inferDtype(r),o=v.getArrayFromDType(i,v.sizeFromShape(n));return Oz(o,r,i),t.makeTensorInfo(n,i,o)}var Fz={kernelName:Pl,backendName:"cpu",kernelFunc:m3};function Oz(e,t,a){e.fill(t)}var Dz={kernelName:fi,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:a})=>{let{image:n}=e,r=a,s=v.getTypedArrayFromDType(n.dtype,v.sizeFromShape(n.shape)),[i,o,l,u]=n.shape,p=r.data.get(n.dataId).values;for(let c=0;c<i;c++){let d=c*l*o*u;for(let h=0;h<o;h++){let f=h*(l*u);for(let m=0;m<l;m++){let g=m*u;for(let x=0;x<u;x++){let A=Math.round(l-m-1),y=d+f+g+x,b=p[y];if(A>=0&&A<l){let w=A*u,S=d+f+w+x;b=p[S]}s[y]=b}}}}return{dataId:r.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},zz=Lt((e,t)=>Math.floor(e/t)),Lz=Yt(gi,zz,null,"int32"),Bz={kernelName:gi,backendName:"cpu",kernelFunc:Lz};function Wz(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:c,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=F7({inputs:{x:r,filter:s},backend:a,attrs:{strides:l,pad:u,dataFormat:p,dilations:c,dimRoundingMode:d}});if(i){let g=m;if(p==="NCHW"&&i.shape.length===1&&i.shape[0]!==1){let x=mt({inputs:{x:i},backend:a,attrs:{shape:[i.shape[0],1,1]}});m=fl({inputs:{a:m,b:x},backend:a}),a.disposeIntermediateTensorInfo(x)}else m=fl({inputs:{a:m,b:i},backend:a});a.disposeIntermediateTensorInfo(g)}if(h){let g=m;if(p==="NCHW"&&h==="prelu"&&o.shape.length===1&&o.shape[0]!==1){let x=mt({inputs:{x:o},backend:a,attrs:{shape:[o.shape[0],1,1]}});m=Mc(a,m,h,x,f),a.disposeIntermediateTensorInfo(x)}else m=Mc(a,m,h,o,f);a.disposeIntermediateTensorInfo(g)}return m}var Vz={kernelName:Hr,backendName:"cpu",kernelFunc:Wz};function Uz(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:c,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=O7({inputs:{x:r,filter:s},backend:a,attrs:{strides:l,pad:u,dataFormat:p,dilations:c,dimRoundingMode:d}});if(i){let g=m;m=fl({inputs:{a:m,b:i},backend:a}),a.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Mc(a,m,h,o,f),a.disposeIntermediateTensorInfo(g)}return m}var Gz={kernelName:jr,backendName:"cpu",kernelFunc:Uz};function Hz(e){let{inputs:t,backend:a}=e,{params:n,indices:r}=t,s=v.sizeFromShape(n.shape),i=r.shape,o=i[i.length-1],[l,u,p,c]=T.prepareAndValidate(n,r);if(u===0)return a.makeTensorInfo(l,n.dtype,[]);let d=a.data.get(r.dataId).values,h=a.bufferSync(n),f=Q4(d,h,n.dtype,u,o,p,c,n.shape,s);return a.makeTensorInfo(l,n.dtype,f.values)}var jz={kernelName:Ai,backendName:"cpu",kernelFunc:Hz};function qz(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=n;ye([r,s],"gatherV2");let l=v.parseAxisParam(i,r.shape)[0],u=a.data.get(s.dataId).values,p=r.shape[l];for(let b=0;b<u.length;++b){let w=u[b];v.assert(w<=p-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${p-1}]`)}let c=o;o==null&&(c=0);let d=v.sizeFromShape(s.shape),h=T.segment_util.collectGatherOpShapeInfo(r,s,l,c),f=mt({inputs:{x:r},backend:a,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),m=mt({inputs:{x:s},backend:a,attrs:{shape:[h.batchSize,d/h.batchSize]}}),g=[h.batchSize,h.outerSize,d/h.batchSize,h.sliceSize],x=a.bufferSync(m),A=a.bufferSync(f),y=e7(A,x,g);return a.disposeIntermediateTensorInfo(f),a.disposeIntermediateTensorInfo(m),a.makeTensorInfo(h.outputShape,y.dtype,y.values)}var Xz={kernelName:Fl,backendName:"cpu",kernelFunc:qz};function Kz(e){let{inputs:t,backend:a}=e,{input:n}=t,r=v.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=r/s,o=mt({inputs:{x:n},backend:a,attrs:{shape:[i,s]}}),l=D7(o,!0,a),u=mt({inputs:{x:l},backend:a,attrs:{shape:n.shape}});return a.disposeIntermediateTensorInfo(o),a.disposeIntermediateTensorInfo(l),u}var Zz={kernelName:Ed,backendName:"cpu",kernelFunc:Kz},Yz=ot(Ol,e=>Number.isFinite(e)?1:0,"bool"),Jz={kernelName:Ol,backendName:"cpu",kernelFunc:Yz},Qz=ot(Dl,e=>Math.abs(e)===1/0?1:0,"bool"),eL={kernelName:Dl,backendName:"cpu",kernelFunc:Qz},tL=ot(wi,e=>Number.isNaN(e)?1:0,"bool"),aL={kernelName:wi,backendName:"cpu",kernelFunc:tL};function nL(e){let{backend:t,attrs:a}=e,{start:n,stop:r,num:s}=a,i=s7(n,r,s);return t.makeTensorInfo([i.length],"float32",i)}var rL={kernelName:Jc,backendName:"cpu",kernelFunc:nL},sL=ot(zl,e=>Math.log1p(e)),iL={kernelName:zl,backendName:"cpu",kernelFunc:sL},oL=Lt((e,t)=>e&&t),lL=Yt(Ci,oL,null,"bool"),uL={kernelName:Ci,backendName:"cpu",kernelFunc:lL},dL=ot(Ni,e=>e?0:1,"bool"),pL={kernelName:Ni,backendName:"cpu",kernelFunc:dL},cL=Lt((e,t)=>e||t),hL=Yt(Ll,cL,null,"bool"),fL={kernelName:Ll,backendName:"cpu",kernelFunc:hL};function mL(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;ye(r,"LRN");let u=r.shape[3],p=u-1,c=a.data.get(r.dataId).values,d=v.sizeFromShape(r.shape),h=new Float32Array(d);function f(m){let g=m%u,x=m-g+Math.max(0,g-s),A=m-g+Math.min(g+s,p),y=0;for(;x<=A;x++){let b=c[x];y+=b*b}return y}for(let m=0;m<d;m++){let g=f(m),x=c[m]*Math.pow(i+o*g,-l);h[m]=x}return a.makeTensorInfo(r.shape,r.dtype,h)}var gL={kernelName:Qc,backendName:"cpu",kernelFunc:mL};function xL(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=n;ye(i,"LRNGrad");let c=v.sizeFromShape(i.shape),d=i.shape[3],h=a.data.get(i.dataId).values,f=a.data.get(r.dataId).values,m=a.data.get(s.dataId).values,g=new Float32Array(c),x=c;for(let A=0;A<x;A++){let y=A%d,b=A-y+Math.max(0,y-o),w=A-y+Math.min(d,y+o+1),S=0;for(let C=b;C<w;C++)S+=Math.pow(f[C],2);S=u*S+l;for(let C=b;C<w;C++){let E=-2*u*p*f[C]*m[A]/S;A===C&&(E+=Math.pow(S,-p)),E*=h[A],g[C]+=E}}return a.makeTensorInfo(i.shape,r.dtype,g)}var AL={kernelName:G1,backendName:"cpu",kernelFunc:xL};function z7(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=n,o=a,l=r.shape,u=l.length,p=v.parseAxisParam(s,l),c=p,d=T.getAxesPermutation(c,u),h=o.data.get(r.dataId).values;if(d!=null){let b=new Array(u);for(let w=0;w<b.length;w++)b[w]=l[d[w]];h=i3(h,l,r.dtype,d,b),c=T.getInnerMostAxes(c.length,u),l=b}ye(r,"max"),T.assertAxesAreInnerMostDims("max",c,u);let[f,m]=T.computeOutAndReduceShapes(l,c),g=v.sizeFromShape(m),x=o7(h,g,f,r.dtype),A=o.write(x,f,r.dtype),y=f;return i&&(y=T.expandShapeToKeepDim(f,p)),{dataId:A,shape:y,dtype:r.dtype}}var yL={kernelName:Ei,backendName:"cpu",kernelFunc:z7};function bL(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t;ye(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;v.assert(T.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=T.computePool2DInfo(r.shape,s,i,u,o,l),c;if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))c=Qn({inputs:{x:r},backend:a});else{let d=a.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=h3(d,r.shape,r.dtype,h,p,"max");c=a.makeTensorInfo(p.outShape,r.dtype,f.values)}return c}var vL={kernelName:Mi,backendName:"cpu",kernelFunc:bL};function wL(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=n;ye(r,"maxPool3d");let p=T.computePool3DInfo(r.shape,s,i,1,o,l,u),c=a.data.get(r.dataId).values,d=P7(c,r.shape,r.dtype,v.computeStrides(r.shape),p,"max");return a.makeTensorInfo(d.shape,"float32",d.values)}var kL={kernelName:eh,backendName:"cpu",kernelFunc:wL};function IL(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n;ye([r,s],"maxPool3DGrad");let p=T.computePool3DInfo(s.shape,i,o,1,l,u),c=a.bufferSync(s),d=pD(c,p),h=p.strideDepth,f=p.strideHeight,m=p.strideWidth,g=p.dilationDepth,x=p.dilationHeight,A=p.dilationWidth,y=p.effectiveFilterDepth,b=p.effectiveFilterHeight,w=p.effectiveFilterWidth,S=y-1-p.padInfo.front,C=w-1-p.padInfo.left,E=b-1-p.padInfo.top,_=Me(s.shape,"float32"),$=a.bufferSync(r);for(let M=0;M<p.batchSize;++M)for(let I=0;I<p.inChannels;++I)for(let N=0;N<p.inDepth;++N)for(let O=0;O<p.inHeight;++O)for(let L=0;L<p.inWidth;++L){let B=N-S,G=O-E,j=L-C,U=0;for(let H=0;H<y;H+=g){let V=(B+H)/h;if(!(V<0||V>=p.outDepth||Math.floor(V)!==V))for(let Q=0;Q<b;Q+=x){let Z=(G+Q)/f;if(!(Z<0||Z>=p.outHeight||Math.floor(Z)!==Z))for(let re=0;re<w;re+=A){let ee=(j+re)/m;if(ee<0||ee>=p.outWidth||Math.floor(ee)!==ee)continue;let he=y*b*w-1-d.get(M,V,Z,ee,I),oe=H*b*w+Q*w+re,Ae=he===oe?1:0;if(Ae===0)continue;let we=$.get(M,V,Z,ee,I);U+=we*Ae}}}_.set(U,M,N,O,L,I)}return a.makeTensorInfo(_.shape,_.dtype,_.values)}var SL={kernelName:j1,backendName:"cpu",kernelFunc:IL};function TL(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,input:s,output:i}=t,o=s;ye([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:c}=n,d=T.computePool2DInfo(o.shape,l,u,1,p,c),h=a.data.get(o.dataId).values,f=Me(d.outShape,o.dtype,_7(h,o.shape,o.dtype,d).values),m=d.strideHeight,g=d.strideWidth,x=d.dilationHeight,A=d.dilationWidth,y=d.effectiveFilterHeight,b=d.effectiveFilterWidth,w=b-1-d.padInfo.left,S=y-1-d.padInfo.top,C=Me(o.shape,"float32"),E=a.data.get(r.dataId).values,_=Me(r.shape,"float32",E);for(let $=0;$<d.batchSize;++$)for(let M=0;M<d.inChannels;++M)for(let I=0;I<d.inHeight;++I)for(let N=0;N<d.inWidth;++N){let O=I-S,L=N-w,B=0;for(let G=0;G<y;G+=x){let j=(O+G)/m;if(!(j<0||j>=d.outHeight||Math.floor(j)!==j))for(let U=0;U<b;U+=A){let H=(L+U)/g;if(H<0||H>=d.outWidth||Math.floor(H)!==H)continue;let V=y*b-1-f.get($,j,H,M),Q=G*b+U,Z=V===Q?1:0;if(Z===0)continue;let re=_.get($,j,H,M);B+=re*Z}}C.set(B,$,I,N,M)}return a.makeTensorInfo(C.shape,C.dtype,C.values)}var CL={kernelName:H1,backendName:"cpu",kernelFunc:TL};function NL(e,t,a,n,r){let s=v.computeStrides(t),i=h3(e,t,a,s,r,"max"),o=_7(e,t,a,r,!0,n);return[i.values,o.values]}var EL={kernelName:th,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:a})=>{let{x:n}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=a;ye(n,"MaxPoolWithArgmax");let u=l.data.get(n.dataId).values,p=T.computePool2DInfo(n.shape,r,s,[1,1],i),[c,d]=NL(u,n.shape,n.dtype,o,p),h=l.write(c,p.outShape,n.dtype),f=l.write(d,p.outShape,n.dtype);return[{dataId:h,shape:p.outShape,dtype:n.dtype},{dataId:f,shape:p.outShape,dtype:"int32"}]}};function RL(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n,o=v.parseAxisParam(s,r.shape),l=T.computeOutAndReduceShapes(r.shape,o)[1],u=v.sizeFromShape(l),p=[],c=a.makeTensorInfo([],"float32",new Float32Array([u]));p.push(c);let d=Zr({inputs:{x:r},backend:a,attrs:{dtype:"float32"}});p.push(d);let h=f3({inputs:{a:d,b:c},backend:a});p.push(h);let f=lp({inputs:{x:h},backend:a,attrs:{axis:s,keepDims:i}});return p.forEach(m=>a.disposeIntermediateTensorInfo(m)),f}var ML={kernelName:$i,backendName:"cpu",kernelFunc:RL};function $L(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n;ye(r,"min");let o=v.parseAxisParam(s,r.shape),l=o,u=T.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=La({inputs:{x:r},backend:a,attrs:{perm:u}}),l=T.getInnerMostAxes(l.length,r.shape.length)),T.assertAxesAreInnerMostDims("min",l,p.shape.length);let[c,d]=T.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(c),p.dtype),m=a.data.get(p.dataId).values;for(let x=0;x<f.length;++x){let A=x*h,y=m[A];for(let b=0;b<h;++b){let w=m[A+b];(Number.isNaN(w)||w<y)&&(y=w)}f[x]=y}u!=null&&a.disposeIntermediateTensorInfo(p);let g=a.makeTensorInfo(c,p.dtype,f);if(i){let x=T.expandShapeToKeepDim(c,o),A=mt({inputs:{x:g},backend:a,attrs:{shape:x}});return a.disposeIntermediateTensorInfo(g),A}return g}var _L={kernelName:_i,backendName:"cpu",kernelFunc:$L};function PL(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{paddings:s,mode:i}=n;ye(r,"mirrorPad");let o=s.map((A,y)=>A[0]+r.shape[y]+A[1]),l=s.map(A=>A[0]),u=s.map((A,y)=>A[0]+r.shape[y]),p=i==="reflect"?0:1,c=a.data.get(r.dataId).values,d=r.shape.length,h=v.computeStrides(r.shape),f=v.sizeFromShape(o),m=o.length,g=v.computeStrides(o),x=v.getTypedArrayFromDType(r.dtype,f);for(let A=0;A<f;A++){let y=v.indexToLoc(A,m,g);for(let w=0;w<m;w++)y[w]<l[w]?y[w]=l[w]*2-y[w]-p:y[w]>=u[w]&&(y[w]=(u[w]-1)*2-y[w]+p);y=y.map((w,S)=>w-l[S]);let b=v.locToIndex(y,d,h);x[A]=c[b]}return{dataId:a.write(x,o,r.dtype),shape:o,dtype:r.dtype}}var FL={kernelName:Fi,backendName:"cpu",kernelFunc:PL},OL=Lt((e,t)=>{let a=e%t;return e<0&&t<0||e>=0&&t>=0?a:(a+t)%t}),DL=Yt(Bl,OL),zL={kernelName:Bl,backendName:"cpu",kernelFunc:DL},LL=Al(eA());function L7(e){let{inputs:t,backend:a,attrs:n}=e,{logits:r}=t,{dim:s}=n,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=v.parseAxisParam([o],r.shape),u=z7({inputs:{x:r},backend:a,attrs:{reductionIndices:l,keepDims:!1}}),p=T.expandShapeToKeepDim(u.shape,l),c=mt({inputs:{x:u},backend:a,attrs:{shape:p}}),d=c3({inputs:{a:r,b:c},backend:a}),h=Z4({inputs:{x:d},backend:a}),f=lp({inputs:{x:h},backend:a,attrs:{axis:l,keepDims:!1}}),m=mt({inputs:{x:f},backend:a,attrs:{shape:p}}),g=f3({inputs:{a:h,b:m},backend:a});return a.disposeIntermediateTensorInfo(u),a.disposeIntermediateTensorInfo(c),a.disposeIntermediateTensorInfo(d),a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(f),a.disposeIntermediateTensorInfo(m),g}var BL={kernelName:no,backendName:"cpu",kernelFunc:L7};function WL(e){let{inputs:t,backend:a,attrs:n}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=n;ye(r,"multinomial");let l=o?r:L7({inputs:{logits:r},backend:a,attrs:{dim:-1}}),u=l.shape[0],p=l.shape[1],c=a.data.get(l.dataId).values,d=[u,s],h=v.makeZerosTypedArray(v.sizeFromShape(d),"int32");for(let f=0;f<u;++f){let m=f*p,g=new Float32Array(p-1);g[0]=c[m];for(let y=1;y<g.length;++y)g[y]=g[y-1]+c[m+y];let x=LL.alea(i.toString()),A=f*s;for(let y=0;y<s;++y){let b=x();h[A+y]=g.length;for(let w=0;w<g.length;w++)if(b<g[w]){h[A+y]=w;break}}}return o||a.disposeIntermediateTensorInfo(l),a.makeTensorInfo(d,"int32",h)}var VL={kernelName:ah,backendName:"cpu",kernelFunc:WL},UL=Sn.nonMaxSuppressionV3Impl;function GL(e){let{inputs:t,backend:a,attrs:n}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=n;ye(r,"NonMaxSuppression");let u=a.data.get(r.dataId).values,p=a.data.get(s.dataId).values,{selectedIndices:c}=UL(u,p,i,o,l);return a.makeTensorInfo([c.length],"int32",new Int32Array(c))}var HL={kernelName:zi,backendName:"cpu",kernelFunc:GL},jL=Sn.nonMaxSuppressionV4Impl;function qL(e){let{inputs:t,backend:a,attrs:n}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=n;ye(r,"NonMaxSuppressionPadded");let p=a.data.get(r.dataId).values,c=a.data.get(s.dataId).values,{selectedIndices:d,validOutputs:h}=jL(p,c,i,o,l,u);return[a.makeTensorInfo([d.length],"int32",new Int32Array(d)),a.makeTensorInfo([],"int32",new Int32Array([h]))]}var XL={kernelName:Vl,backendName:"cpu",kernelFunc:qL},KL=Sn.nonMaxSuppressionV5Impl;function ZL(e){let{inputs:t,backend:a,attrs:n}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=n;ye(r,"NonMaxSuppressionWithScore");let p=a.data.get(r.dataId).values,c=a.data.get(s.dataId).values,d=i,h=o,f=l,m=u,{selectedIndices:g,selectedScores:x}=KL(p,c,d,h,f,m);return[a.makeTensorInfo([g.length],"int32",new Int32Array(g)),a.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var YL={kernelName:Li,backendName:"cpu",kernelFunc:ZL};function JL(e){let{inputs:t,backend:a,attrs:n}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=n;ye(r,"oneHot");let u=v.sizeFromShape(r.shape),p=new Float32Array(u*i);p.fill(l);let c=a.data.get(r.dataId).values;for(let d=0;d<u;++d)c[d]>=0&&c[d]<i&&(p[d*i+c[d]]=o);return a.makeTensorInfo([...r.shape,i],s,p)}var QL={kernelName:Bi,backendName:"cpu",kernelFunc:JL};function _c(e){let{inputs:t,backend:a}=e,{x:n}=t;if(n.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(n.dtype==="complex64"){let r=Ws({inputs:{input:n},backend:a}),s=_c({inputs:{x:r},backend:a}),i=ml({inputs:{input:n},backend:a}),o=_c({inputs:{x:i},backend:a}),l=qa({inputs:{real:s,imag:o},backend:a});return a.disposeIntermediateTensorInfo(r),a.disposeIntermediateTensorInfo(s),a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}else return m3({backend:a,attrs:{shape:n.shape,value:0,dtype:n.dtype}})}var eB={kernelName:au,backendName:"cpu",kernelFunc:_c};function B7(e){let{inputs:t,backend:a}=e,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(n.dtype==="complex64"){let r=Ws({inputs:{input:n},backend:a}),s=B7({inputs:{x:r},backend:a}),i=ml({inputs:{input:n},backend:a}),o=_c({inputs:{x:i},backend:a}),l=qa({inputs:{real:s,imag:o},backend:a});return a.disposeIntermediateTensorInfo(r),a.disposeIntermediateTensorInfo(s),a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}else return m3({backend:a,attrs:{shape:n.shape,value:1,dtype:n.dtype}})}var tB={kernelName:Ul,backendName:"cpu",kernelFunc:B7};function W7(e){let{inputs:t,backend:a,attrs:n}=e,{axis:r}=n;if(t.length===1)return $c({inputs:{input:t[0]},backend:a,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let c=$c({inputs:{input:p},backend:a,attrs:{dim:r}});return o.push(c),c}),u=gl({inputs:l,backend:a,attrs:{axis:r}});return o.forEach(p=>a.disposeIntermediateTensorInfo(p)),u}var aB={kernelName:Gl,backendName:"cpu",kernelFunc:W7};function nB(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{paddings:s,constantValue:i}=n;ye(r,"pad");let o=s.map((x,A)=>x[0]+r.shape[A]+x[1]),l=s.map(x=>x[0]),u=a.data.get(r.dataId).values,p=v.sizeFromShape(r.shape),c=r.shape.length,d=v.computeStrides(r.shape),h=v.sizeFromShape(o),f=o.length,m=v.computeStrides(o),g=v.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let x=0;x<p;x++){let A=v.indexToLoc(x,c,d).map((b,w)=>b+l[w]),y=v.locToIndex(A,f,m);g[y]=u[x]}return{dataId:a.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var V7={kernelName:Wi,backendName:"cpu",kernelFunc:nB},rB=Lt((e,t)=>Math.pow(e,t)),sB=Yt(Vi,rB),iB={kernelName:Vi,backendName:"cpu",kernelFunc:sB};function oB(e){let{inputs:t,backend:a,attrs:n}=e,{paramsNestedSplits:r,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:o}=n,l=r.map(x=>a.data.get(x.dataId).values),u=r.map(x=>x.shape),p=a.data.get(s.dataId).values,c=a.data.get(i.dataId).values,[d,h,f]=h7(l,u,p,s.shape,s.dtype,c,i.shape,o),m=d.map(x=>a.makeTensorInfo([x.length],"int32",x)),g=a.makeTensorInfo(f,s.dtype,h);return m.concat([g])}var lB={kernelName:nh,backendName:"cpu",kernelFunc:oB};function uB(e){let{inputs:t,backend:a}=e,{starts:n,limits:r,deltas:s}=t,i=a.data.get(n.dataId).values,o=a.data.get(r.dataId).values,l=a.data.get(s.dataId).values,[u,p]=f7(i,n.shape,n.dtype,o,r.shape,l,s.shape),c=a.makeTensorInfo([u.length],"int32",u),d=a.makeTensorInfo([p.length],n.dtype,p);return[c,d]}var dB={kernelName:rh,backendName:"cpu",kernelFunc:uB};function pB(e){let{inputs:t,backend:a,attrs:n}=e,{shape:r,values:s,defaultValue:i,rowPartitionTensors:o}=t,{rowPartitionTypes:l}=n,u=a.data.get(r.dataId).values,p=a.data.get(s.dataId).values,c=a.data.get(i.dataId).values,d=o.map(g=>a.data.get(g.dataId).values),h=o.map(g=>g.shape),[f,m]=m7(u,r.shape,p,s.shape,s.dtype,c,i.shape,d,h,l);return a.makeTensorInfo(f,s.dtype,m)}var cB={kernelName:sh,backendName:"cpu",kernelFunc:pB};function hB(e){let{backend:t,attrs:a}=e,{start:n,stop:r,dtype:s,step:i}=a,o=o3(n,r,i,s);return t.makeTensorInfo([o.length],s,o)}var fB={kernelName:Hl,backendName:"cpu",kernelFunc:hB},mB=ot(Hi,e=>1/e),gB={kernelName:Hi,backendName:"cpu",kernelFunc:mB};function xB(e){let{inputs:t,backend:a,attrs:n}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n;ye(r,"resizeBilinear");let l=v.computeStrides(r.shape),[u,p]=o,[c,d,h,f]=r.shape,m=a.data.get(r.dataId).values,g=new Float32Array(v.sizeFromShape([c,u,p,f])),x=[s&&u>1?d-1:d,s&&p>1?h-1:h],A=[s&&u>1?u-1:u,s&&p>1?p-1:p],y=0,b=x[0]/A[0],w=x[1]/A[1];for(let S=0;S<c;S++)for(let C=0;C<u;C++){let E;i?E=b*(C+.5)-.5:E=b*C;let _=Math.max(0,Math.floor(E)),$=E-_,M=Math.min(d-1,Math.ceil(E)),I=S*l[0]+_*l[1],N=S*l[0]+M*l[1];for(let O=0;O<p;O++){let L;i?L=w*(O+.5)-.5:L=w*O;let B=Math.max(0,Math.floor(L)),G=L-B,j=Math.min(h-1,Math.ceil(L)),U=I+B*l[2],H=N+B*l[2],V=I+j*l[2],Q=N+j*l[2];for(let Z=0;Z<f;Z++){let re=m[U+Z],ee=m[H+Z],he=m[V+Z],oe=m[Q+Z],Ae=re+(he-re)*G,we=ee+(oe-ee)*G,Re=Ae+(we-Ae)*$;g[y++]=Re}}}return a.makeTensorInfo([c,u,p,f],"float32",g)}var AB={kernelName:Xi,backendName:"cpu",kernelFunc:xB};function yB(e){let{inputs:t,backend:a,attrs:n}=e,{images:r,dy:s}=t,{alignCorners:i}=n;ye([s,r],"resizeBilinearGrad");let o=v.computeStrides(r.shape),[l,u,p,c]=r.shape,[,d,h]=s.shape,f=new Float32Array(l*u*p*c),m=[i&&d>1?u-1:u,i&&h>1?p-1:p],g=[i&&d>1?d-1:d,i&&h>1?h-1:h],x=m[0]/g[0],A=m[1]/g[1],y=a.data.get(s.dataId).values,b=0;for(let w=0;w<l;w++){let S=w*o[0];for(let C=0;C<d;C++){let E=C*x,_=Math.floor(E),$=Math.min(Math.ceil(E),u-1),M=S+_*o[1],I=S+$*o[1],N=E-_,O=1-N;for(let L=0;L<h;L++){let B=L*A,G=Math.floor(B),j=Math.min(Math.ceil(B),p-1),U=B-G,H=1-U,V=M+G*o[2],Q=M+j*o[2],Z=I+G*o[2],re=I+j*o[2],ee=O*H,he=O*U,oe=N*H,Ae=N*U;for(let we=0;we<c;we++){let Re=y[b++];f[V+we]+=Re*ee,f[Q+we]+=Re*he,f[Z+we]+=Re*oe,f[re+we]+=Re*Ae}}}}return a.makeTensorInfo([l,p,u,c],"float32",f)}var bB={kernelName:X1,backendName:"cpu",kernelFunc:yB};function vB(e){let{inputs:t,backend:a,attrs:n}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n;ye(r,"resizeNearestNeighbor");let l=v.computeStrides(r.shape),[u,p]=o,[c,d,h,f]=r.shape,m=a.data.get(r.dataId).values,g=new Float32Array(c*u*p*f),x=[s&&u>1?d-1:d,s&&p>1?h-1:h],A=[s&&u>1?u-1:u,s&&p>1?p-1:p],y=x[0]/A[0],b=x[1]/A[1],w=0;for(let S=0;S<c;S++){let C=S*l[0];for(let E=0;E<u;E++){let _=i?y*(E+.5):y*E,$=Math.min(d-1,s?Math.round(_):Math.floor(_));i&&($=Math.max(0,$));let M=C+$*l[1];for(let I=0;I<p;I++){let N=i?b*(I+.5):b*I,O=Math.min(h-1,s?Math.round(N):Math.floor(N));i&&(O=Math.max(0,O));let L=M+O*l[2];for(let B=0;B<f;B++){let G=m[L+B];g[w++]=G}}}}return a.makeTensorInfo([c,u,p,f],r.dtype,g)}var wB={kernelName:qi,backendName:"cpu",kernelFunc:vB};function kB(e){let{inputs:t,backend:a,attrs:n}=e,{images:r,dy:s}=t,{alignCorners:i}=n;ye([s,r],"resizeNearestNeighborGrad");let o=v.computeStrides(r.shape),l=v.computeStrides(s.shape),[u,p,c,d]=r.shape,[,h,f]=s.shape,m=new Float32Array(u*p*c*d),g=a.data.get(s.dataId).values,x=[i&&h>1?p-1:p,i&&f>1?c-1:c],A=[i&&h>1?h-1:h,i&&f>1?f-1:f],y=x[0]/A[0],b=x[1]/A[1],w=1/y,S=1/b,C=Math.ceil(w)*2+2,E=Math.ceil(S)*2+2;for(let _=0;_<u;_++){let $=_*o[0];for(let M=0;M<p;M++){let I=$+M*o[1],N=Math.floor(M*w),O=Math.floor(N-C/2);for(let L=0;L<c;L++){let B=I+L*o[2],G=Math.floor(L*S),j=Math.floor(G-E/2);for(let U=0;U<d;U++){let H=0;for(let V=0;V<C;V++){let Q=V+O;if(Q<0||Q>=h)continue;let Z=$+Q*l[1],re=Q*y,ee=Math.min(p-1,i?Math.round(re):Math.floor(re));if(M===ee)for(let he=0;he<E;he++){let oe=he+j;if(oe<0||oe>=f)continue;let Ae=Z+oe*l[2],we=oe*b,Re=Math.min(c-1,i?Math.round(we):Math.floor(we));L===Re&&(H+=g[Ae+U])}}m[B+U]=H}}}}return a.makeTensorInfo(r.shape,r.dtype,m)}var IB={kernelName:q1,backendName:"cpu",kernelFunc:kB};function SB(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{dims:s}=n;ye(r,"reverse");let i=r.shape.length,o=v.parseAxisParam(s,r.shape);if(i===0)return Qn({inputs:{x:r},backend:a});let l=new jt(r.shape,r.dtype),u=a.bufferSync(r);for(let p=0;p<l.size;p++){let c=l.indexToLoc(p),d=c.slice();o.forEach(h=>d[h]=r.shape[h]-1-d[h]),l.set(u.get(...d),...c)}return a.makeTensorInfo(l.shape,l.dtype,l.values)}var TB={kernelName:Zi,backendName:"cpu",kernelFunc:SB},CB={kernelName:ho,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:a})=>{let{image:n}=e,{radians:r,fillValue:s,center:i}=t,o=a,l=v.getTypedArrayFromDType(n.dtype,v.sizeFromShape(n.shape)),[u,p,c,d]=n.shape,[h,f]=T.getImageCenter(i,p,c),m=255,g=Math.sin(r),x=Math.cos(r),A=o.data.get(n.dataId).values;for(let y=0;y<u;y++){let b=y*c*p*d;for(let w=0;w<p;w++){let S=w*(c*d);for(let C=0;C<c;C++){let E=C*d;for(let _=0;_<d;_++){let $=[u,w,C,_],M=$[2],I=$[1],N=(M-h)*x-(I-f)*g,O=(M-h)*g+(I-f)*x;N=Math.round(N+h),O=Math.round(O+f);let L=s;if(typeof s!="number"&&(_===3?L=m:L=s[_]),N>=0&&N<c&&O>=0&&O<p){let G=O*(c*d),j=N*d,U=b+G+j+_;L=A[U]}let B=b+S+E+_;l[B]=L}}}}return{dataId:o.write(l,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},NB=ot(ql,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),EB={kernelName:ql,backendName:"cpu",kernelFunc:NB};function RB(e){let{inputs:t,backend:a,attrs:n}=e,{indices:r,updates:s}=t,{shape:i}=n,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:c}=T.calculateShapes(s,r,i),d=!0,h=a.bufferSync(r),f=a.bufferSync(s),m=el(h,f,i,c,u,l,o,p,0,d);return a.makeTensorInfo(i,m.dtype,m.values)}var MB={kernelName:Ji,backendName:"cpu",kernelFunc:RB};function $B(e,t){let a=0,n=e.length,r=0;for(;a<n;)r=Math.floor((a+n)/2),e[r]<t?a=r+1:n=r;return n}function _B(e,t){let a=0,n=e.length,r=0;for(;a<n;)r=Math.floor((a+n)/2),e[r]<=t?a=r+1:n=r;return n}function PB(e,t,a,n,r,s){let i=v.getArrayFromDType("int32",a*r);for(let o=0;o<a;++o){let l=e.slice(o*n,(o+1)*n),u=o*r;for(let p=0;p<r;++p)i[u+p]=s==="left"?$B(l,t[p+u]):_B(l,t[p+u])}return i}function FB(e){let{inputs:t,backend:a,attrs:n}=e,{sortedSequence:r,values:s}=t,{side:i}=n,o=a.data.get(r.dataId).values,l=a.data.get(s.dataId).values,u=PB(o,l,r.shape[0],r.shape[1],s.shape[1],i);return a.makeTensorInfo(s.shape,"int32",u)}var OB={kernelName:$d,backendName:"cpu",kernelFunc:FB};function DB(e){let{inputs:t,backend:a}=e,{condition:n,t:r,e:s}=t;ye([n,r,s],"select");let i=n.shape.length,o=a.data.get(n.dataId).values,l=a.data.get(r.dataId).values,u=a.data.get(s.dataId).values,p=ca(r.dtype,s.dtype),c=v.makeZerosTypedArray(v.sizeFromShape(r.shape),p),d=0,h=i===0||i>1||r.shape.length===1?1:v.sizeFromShape(r.shape.slice(1));for(let f=0;f<o.length;f++)for(let m=0;m<h;m++)o[f]===1?c[d++]=l[f]:c[d++]=u[f];return a.makeTensorInfo(r.shape,p,c)}var zB={kernelName:Xl,backendName:"cpu",kernelFunc:DB},LB=T.SELU_SCALEALPHA,BB=T.SELU_SCALE,WB=ot(_d,e=>e>=0?BB*e:LB*(Math.exp(e)-1)),VB={kernelName:_d,backendName:"cpu",kernelFunc:WB},UB=ot(Pd,e=>e<0?-1:e>0?1:0),GB={kernelName:Pd,backendName:"cpu",kernelFunc:UB},HB=ot(Qi,e=>Math.sin(e)),jB={kernelName:Qi,backendName:"cpu",kernelFunc:HB},qB=ot(Zl,e=>Math.sinh(e)),XB={kernelName:Zl,backendName:"cpu",kernelFunc:qB},KB=11920928955078125e-23,ox=Math.log(KB)+2,ZB=ot(Fd,e=>{let t=e>-ox,a=e<ox,n=Math.exp(e),r;return a?r=n:t?r=e:r=Math.log(1+n),r}),YB={kernelName:Fd,backendName:"cpu",kernelFunc:ZB};function JB(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{blockShape:s,paddings:i}=n;ye([r],"spaceToBatchND");let o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=V7.kernelFunc({inputs:{x:r},backend:a,attrs:{paddings:l,constantValue:0}}),p=T.getReshaped(u.shape,s,o,!1),c=T.getPermuted(p.length,s.length,!1),d=T.getReshapedPermuted(u.shape,s,o,!1),h=mt({inputs:{x:u},backend:a,attrs:{shape:p}}),f=La({inputs:{x:h},backend:a,attrs:{perm:c}}),m=mt({inputs:{x:f},backend:a,attrs:{shape:d}});return a.disposeIntermediateTensorInfo(u),a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(f),m}var QB={kernelName:Yl,backendName:"cpu",kernelFunc:JB};function eW(e){let{inputs:t,backend:a}=e,{indices:n,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${n.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let o=a.data.get(n.dataId).values,l=a.data.get(r.dataId).values,u=a.data.get(s.dataId).values,p=a.data.get(i.dataId).values[0],[c,d,h,f,m]=A7(o,n.shape,n.dtype,l,r.dtype,u,p);return[a.makeTensorInfo(d,n.dtype,c),a.makeTensorInfo([d[0]],r.dtype,h),a.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),a.makeTensorInfo([m.length],n.dtype,new Int32Array(m))]}var tW={kernelName:Od,backendName:"cpu",kernelFunc:eW};function aW(e){let{inputs:t,backend:a}=e,{inputIndices:n,inputShape:r,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${n.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(a.data.get(r.dataId).values),o=a.data.get(n.dataId).values,l=Array.from(a.data.get(s.dataId).values),[u,p,c]=y7(o,n.shape,n.dtype,i,l);return[a.makeTensorInfo(p,n.dtype,u),a.makeTensorInfo([c.length],s.dtype,new Int32Array(c))]}var nW={kernelName:Ql,backendName:"cpu",kernelFunc:aW};function rW(e){let{inputs:t,backend:a}=e,{data:n,indices:r,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=a.data.get(n.dataId).values,o=a.data.get(r.dataId).values,l=a.data.get(s.dataId).values,[u,p]=l3(i,n.shape,n.dtype,o,l,!0);return a.makeTensorInfo(p,n.dtype,u)}var sW={kernelName:Dd,backendName:"cpu",kernelFunc:rW};function iW(e){let{inputs:t,backend:a}=e,{data:n,indices:r,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=a.data.get(n.dataId).values,o=a.data.get(r.dataId).values,l=a.data.get(s.dataId).values,[u,p]=l3(i,n.shape,n.dtype,o,l);return a.makeTensorInfo(p,n.dtype,u)}var oW={kernelName:zd,backendName:"cpu",kernelFunc:iW};function lW(e){let{inputs:t,backend:a,attrs:n}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=n,{sliceRank:l,numUpdates:u,sliceSize:p,strides:c,outputSize:d}=T.calculateShapes(s,r,o),h=!1,f=a.bufferSync(r),m;switch(s.dtype){case"bool":{let g=a.bufferSync(s),x=Boolean(a.data.get(i.dataId).values[0]);m=el(f,g,o,d,p,u,l,c,x,h);break}case"float32":{let g=a.bufferSync(s),x=a.data.get(i.dataId).values[0];m=el(f,g,o,d,p,u,l,c,x,h);break}case"int32":{let g=a.bufferSync(s),x=a.data.get(i.dataId).values[0];m=el(f,g,o,d,p,u,l,c,x,h);break}case"string":{let g=a.bufferSync(s),x=v.decodeString(a.data.get(i.dataId).values[0]);m=el(f,g,o,d,p,u,l,c,x,h);break}default:throw new Error(`Unsupported type ${s.dtype}`)}return a.makeTensorInfo(o,m.dtype,m.values)}var uW={kernelName:Ld,backendName:"cpu",kernelFunc:lW};function dW(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,r.shape)[0],l=T.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(c=>{let d=[...p];d[o]=c;let h=Vs({inputs:{x:r},backend:a,attrs:{begin:u,size:d}});return u[o]+=c,h})}var pW={kernelName:Jl,backendName:"cpu",kernelFunc:dW},cW={kernelName:Bd,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:a}=e,n=t;ye(a,"square");let r=n.data.get(a.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:n.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},hW=ot(co,(e,t)=>{let a=t;return isNaN(e)?NaN:e>0?1:a.alpha}),fW={kernelName:co,backendName:"cpu",kernelFunc:hW};function mW(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:c,shrinkAxisMask:d}=n;ye(r,"stridedSlice");let{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:x,begin:A,end:y,strides:b}=It.sliceInfo(r.shape,s,i,o,l,u,p,c,d),w;if(m)w=mt({inputs:{x:r},backend:a,attrs:{shape:f}});else if(g||x){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let S=It.computeOutShape(A,y,b),C=Vs({inputs:{x:r},backend:a,attrs:{begin:A,size:S}});w=mt({inputs:{x:C},backend:a,attrs:{shape:f}}),a.disposeIntermediateTensorInfo(C)}else{let S=a.bufferSync(r),C=v7(h,S,b,A);w=a.makeTensorInfo(f,C.dtype,C.values)}return w}var gW={kernelName:so,backendName:"cpu",kernelFunc:mW};function xW(e){let{inputs:t,backend:a,attrs:n}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=n,{data:p,dataSplits:c}=t,d=a.data.get(p.dataId).values,h=a.data.get(c.dataId).values,[f,m]=u3(d,h,r,s,i,o,l,u);return[a.makeTensorInfo([f.length],"string",f),a.makeTensorInfo(c.shape,"int32",m)]}var AW={kernelName:eu,backendName:"cpu",kernelFunc:xW};function yW(e){let{inputs:t,backend:a,attrs:n}=e,{skipEmpty:r}=n,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=a.data.get(s.dataId).values,l=a.data.get(i.dataId).values[0],[u,p,c]=d3(o,l,r),d=p.length;return[a.makeTensorInfo([d,2],"int32",u),a.makeTensorInfo([d],"string",p),a.makeTensorInfo([2],"int32",new Int32Array(c))]}var bW={kernelName:Wd,backendName:"cpu",kernelFunc:yW};function vW(e){let{inputs:t,backend:a,attrs:n}=e,{numBuckets:r}=n,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=a.data.get(s.dataId).values,o=p3(i,r);return a.makeTensorInfo(s.shape,"int32",o)}var wW={kernelName:Vd,backendName:"cpu",kernelFunc:vW},kW=ot(oo,e=>Math.tan(e)),IW={kernelName:oo,backendName:"cpu",kernelFunc:kW},SW=ot(lo,e=>Math.tanh(e)),TW={kernelName:lo,backendName:"cpu",kernelFunc:SW};function CW(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{reps:s}=n;ye(r,"tile");let i=k7(a.bufferSync(r),s);return a.makeTensorInfo(i.shape,i.dtype,i.values)}var NW={kernelName:ts,backendName:"cpu",kernelFunc:CW};function EW(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{k:s,sorted:i}=n;ye(r,"topk");let o=a.data.get(r.dataId).values,[l,u]=S7(o,r.shape,r.dtype,s,i);return[a.makeTensorInfo(l.shape,l.dtype,l.values),a.makeTensorInfo(u.shape,u.dtype,u.values)]}var RW={kernelName:uo,backendName:"cpu",kernelFunc:EW};function MW(e){let{inputs:t,attrs:a,backend:n}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,c,d,h]=r.shape,[f,m]=u!=null?u:[c,d],g=[p,f,m,h],x=v.computeStrides(r.shape),A=x[0],y=x[1],b=x[2],w=v.computeStrides(g),S=w[0],C=w[1],E=w[2],_=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(g));_.fill(l);let $=n.data.get(r.dataId).values,M=n.data.get(s.dataId).values;for(let I=0;I<p;++I){let N=s.shape[0]===1?M:M.subarray(I*8,I*8+8);for(let O=0;O<f;++O)for(let L=0;L<m;++L)for(let B=0;B<h;++B){let G,j=N[6]*L+N[7]*O+1;if(j===0)continue;let U=(N[0]*L+N[1]*O+N[2])/j,H=(N[3]*L+N[4]*O+N[5])/j,V=lx(U,d,o),Q=lx(H,c,o);switch(i){case"nearest":G=DW($,c,d,A,y,b,I,Q,V,B,l);break;case"bilinear":G=zW($,c,d,A,y,b,I,Q,V,B,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let Z=I*S+O*C+L*E+B;_[Z]=G}return n.makeTensorInfo(g,r.dtype,_)}return{dataId:n.write(_,g,r.dtype),shape:r.shape,dtype:r.dtype}}var $W={kernelName:po,backendName:"cpu",kernelFunc:MW};function lx(e,t,a){switch(a){case"reflect":return _W(e,t);case"wrap":return PW(e,t);case"nearest":return OW(e,t);case"constant":default:return FW(e,t)}}function _W(e,t){let a=e;if(a<0)if(t<=1)a=0;else{let n=2*t;a<n&&(a=n*Math.trunc(-a/n)+a),a=a<-t?a+n:-a-1}else if(a>t-1)if(t<=1)a=0;else{let n=2*t;a-=n*Math.trunc(a/n),a>=t&&(a=n-a-1)}return v.clamp(0,a,t-1)}function PW(e,t){let a=e;if(a<0)if(t<=1)a=0;else{let n=t-1;a+=t*(Math.trunc(-a/n)+1)}else if(a>t-1)if(t<=1)a=0;else{let n=t-1;a-=t*Math.trunc(a/n)}return v.clamp(0,a,t-1)}function FW(e,t){return e}function OW(e,t){return v.clamp(0,e,t-1)}function ju(e,t,a,n,r,s,i,o,l,u,p){let c=i*n+o*r+l*s+u;return 0<=o&&o<t&&0<=l&&l<a?e[c]:p}function DW(e,t,a,n,r,s,i,o,l,u,p){let c=Math.round(o),d=Math.round(l);return ju(e,t,a,n,r,s,i,c,d,u,p)}function zW(e,t,a,n,r,s,i,o,l,u,p){let c=Math.floor(o),d=Math.floor(l),h=c+1,f=d+1,m=(f-l)*ju(e,t,a,n,r,s,i,c,d,u,p)+(l-d)*ju(e,t,a,n,r,s,i,c,f,u,p),g=(f-l)*ju(e,t,a,n,r,s,i,h,d,u,p)+(l-d)*ju(e,t,a,n,r,s,i,h,f,u,p);return(h-o)*m+(o-c)*g}function LW(e){let{inputs:t,attrs:a,backend:n}=e,{axis:r}=a,{x:s}=t;ye(s,"unique");let i=n.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=T7(i,r,s.shape,s.dtype);return[n.makeTensorInfo(l,s.dtype,o),n.makeTensorInfo([u.length],"int32",u)]}var BW={kernelName:ih,backendName:"cpu",kernelFunc:LW};function WW(e){let{inputs:t,backend:a,attrs:n}=e,{value:r}=t,{axis:s}=n;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i).fill(0),c=r.shape.slice();c[s]=1;let d=new Array(o);for(let h=0;h<d.length;h++){p[s]=h;let f=Vs({inputs:{x:r},backend:a,attrs:{begin:p,size:c}});d[h]=mt({inputs:{x:f},backend:a,attrs:{shape:l}}),a.disposeIntermediateTensorInfo(f)}return d}var VW={kernelName:tu,backendName:"cpu",kernelFunc:WW};function UW(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,segmentIds:s}=t,{numSegments:i}=n;ye(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,u=[],p=[],c=o-l,d=s;for(let f=0;f<c;++f){let m=$c({inputs:{input:d},backend:a,attrs:{dim:f+1}});d=m,p.push(m)}for(let f=0;f<i;++f){let m=v.createScalarValue(f,"int32"),g=a.makeTensorInfo([],"int32",m),x=X4({inputs:{a:g,b:d},backend:a}),A=Zr({inputs:{x},backend:a,attrs:{dtype:"float32"}}),y=Mh({inputs:{a:A,b:r},backend:a}),b=lp({inputs:{x:y},backend:a,attrs:{axis:0,keepDims:!1}});u.push(b),p.push(g),p.push(x),p.push(A),p.push(y),p.push(b)}let h=W7({inputs:u,backend:a,attrs:{axis:0}});return p.forEach(f=>a.disposeIntermediateTensorInfo(f)),h}var GW={kernelName:oh,backendName:"cpu",kernelFunc:UW},HW=[LO,SF,WO,UO,MF,HO,qO,KO,YO,QO,tD,nD,sD,lD,dD,hD,mD,xD,yD,DO,vD,kD,SD,CD,EF,_F,ED,TF,MD,_D,PD,OD,zD,BD,VD,GD,jD,XD,ZD,JD,ez,az,rz,sz,oz,uz,pz,cz,hz,fz,xz,RO,yz,PF,Cz,FF,Nz,DF,Pz,Fz,Dz,LF,Bz,Vz,Gz,jz,Xz,WF,UF,CF,Zz,$D,Jz,eL,aL,MO,HF,qF,rL,KF,iL,uL,pL,fL,gL,AL,yL,YF,vL,kL,SL,CL,EL,ML,_L,QF,FL,zL,VL,tO,nO,HL,XL,YL,sO,QL,tB,aB,V7,iB,_O,lO,lB,dB,cB,fB,NF,x1,gB,PO,FO,OO,AB,bB,wB,IB,TB,CB,EB,gO,MB,OB,zB,VB,AO,GB,jB,XB,yO,BL,YB,QB,tW,nW,sW,oW,uW,pW,wO,cW,IO,fW,gW,AW,bW,wW,NO,mz,IW,TW,NW,RW,$W,iO,BW,VW,GW,eB];for(let e of HW)fn(e);var U7={};Xe(U7,{assertNotComplex:()=>lu,bindCanvasToFramebuffer:()=>aV,bindColorTextureToFramebuffer:()=>fc,bindTextureToProgramUniformSampler:()=>r6,bindTextureUnit:()=>t6,bindVertexBufferToProgramAttribute:()=>y1,callAndCheck:()=>ue,canBeRepresented:()=>G7,createFragmentShader:()=>q7,createFramebuffer:()=>e6,createProgram:()=>X7,createStaticIndexBuffer:()=>Y7,createStaticVertexBuffer:()=>Z7,createTexture:()=>J7,createVertexShader:()=>j7,getBatchDim:()=>Us,getExtensionOrThrow:()=>qu,getFramebufferErrorMessage:()=>s6,getMaxTexturesInShader:()=>u6,getNumChannels:()=>eV,getProgramUniformLocation:()=>n6,getProgramUniformLocationOrThrow:()=>a6,getRowsCols:()=>Gs,getShapeAs3D:()=>Ku,getTextureShapeFromLogicalShape:()=>o6,getWebGLDisjointQueryTimerVersion:()=>d6,getWebGLErrorMessage:()=>H7,getWebGLMaxTextureSize:()=>l6,hasExtension:()=>pn,isCapableOfRenderingToFloatTexture:()=>p6,isDownloadFloatTextureEnabled:()=>c6,isReshapeFree:()=>md,isWebGLFenceEnabled:()=>h6,isWebGLVersionEnabled:()=>v1,linkProgram:()=>K7,logShaderSourceAndInfoLog:()=>x3,resetMaxTextureSize:()=>nV,resetMaxTexturesInShader:()=>rV,unbindColorTextureFromFramebuffer:()=>b1,unbindTextureUnit:()=>tV,validateFramebuffer:()=>Xu,validateProgram:()=>hc,validateTextureSize:()=>Q7});var $s={},sc={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function $h(e,t){$s[e]=t}function On(e,t){if(!(e in $s)||t!=null){let n=qW(e,t);if(n!==null)$s[e]=n;else return console.log("Could not get context for WebGL version",e),null}let a=$s[e];return a==null||a.isContextLost()?(delete $s[e],On(e)):(a.disable(a.DEPTH_TEST),a.disable(a.STENCIL_TEST),a.disable(a.BLEND),a.disable(a.DITHER),a.disable(a.POLYGON_OFFSET_FILL),a.disable(a.SAMPLE_COVERAGE),a.enable(a.SCISSOR_TEST),a.enable(a.CULL_FACE),a.cullFace(a.BACK),$s[e])}function jW(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function qW(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let a=t==null?jW(e):t;return a.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete $s[e]},!1),W().getBool("SOFTWARE_WEBGL_ENABLED")&&(sc.failIfMajorPerformanceCaveat=!1),e===1?a.getContext("webgl",sc)||a.getContext("experimental-webgl",sc):a.getContext("webgl2",sc)}var fd;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(fd||(fd={}));var dn;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(dn||(dn={}));var na;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(na||(na={}));function up(e,t){return[t,e]}function XW(e,t){return e*t}function ic(e){let t=v.sizeFromShape(e),a=Math.ceil(t/4);return v.sizeToSquarishShape(a)}function ou(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function KW(e,t){let[a,n]=ou(e,t);return a*n*4}function g3(e,t){let a=e,n,r,s,i,o,l,u,p,c,d;return W().getNumber("WEBGL_VERSION")===2?(n=a.R32F,r=a.R16F,s=a.RGBA16F,i=a.RGBA32F,o=a.RED,u=4,p=1,c=a.HALF_FLOAT,d=a.FLOAT,l=a.RGBA8):(n=e.RGBA,r=e.RGBA,s=e.RGBA,i=a.RGBA,o=e.RGBA,u=4,p=4,c=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT,l=e.RGBA),{internalFormatFloat:n,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:p,textureTypeHalfFloat:c,textureTypeFloat:d}}function ue(e,t){let a=t();return W().getBool("DEBUG")&&ZW(e),a}function ZW(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+H7(e,t))}var YW=596e-10,JW=65504;function G7(e){return!!(W().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||YW<Math.abs(e)&&Math.abs(e)<JW)}function H7(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function qu(e,t){return kr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function j7(e,t){let a=kr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(ue(e,()=>e.shaderSource(a,t)),ue(e,()=>e.compileShader(a)),e.getShaderParameter(a,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(a)),new Error("Failed to compile vertex shader.");return a}function q7(e,t){let a=kr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(ue(e,()=>e.shaderSource(a,t)),ue(e,()=>e.compileShader(a)),W().get("ENGINE_COMPILE_ONLY"))return a;if(e.getShaderParameter(a,e.COMPILE_STATUS)===!1)throw x3(t,e.getShaderInfoLog(a)),new Error("Failed to compile fragment shader.");return a}var QW=/ERROR: [0-9]+:([0-9]+):/g;function x3(e,t){let a=QW.exec(t);if(a==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let n=+a[1],r=e.split(`
`),s=r.length.toString().length+2,i=r.map((c,d)=>v.rightPad((d+1).toString(),s)+c),o=0;for(let c=0;c<i.length;c++)o=Math.max(i[c].length,o);let l=i.slice(0,n-1),u=i.slice(n-1,n),p=i.slice(n);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${v.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(p.join(`
`))}function X7(e){return kr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function K7(e,t){if(ue(e,()=>e.linkProgram(t)),!W().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function hc(e,t){if(ue(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function Z7(e,t){let a=kr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ue(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),ue(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),a}function Y7(e,t){let a=kr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ue(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,a)),ue(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),a}function eV(){return W().getNumber("WEBGL_VERSION")===2?1:4}function J7(e){return kr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function Q7(e,t){let a=W().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let n=`[${e}x${t}]`;throw new Error("Requested texture size "+n+" is invalid.")}if(e>a||t>a){let n=`[${e}x${t}]`,r=`[${a}x${a}]`;throw new Error("Requested texture size "+n+" greater than WebGL maximum on this browser / GPU "+r+".")}}function e6(e){return kr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function y1(e,t,a,n,r,s,i){let o=e.getAttribLocation(t,a);return o===-1?!1:(ue(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ue(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),ue(e,()=>e.enableVertexAttribArray(o)),!0)}function t6(e,t,a){i6(e,a),ue(e,()=>e.activeTexture(e.TEXTURE0+a)),ue(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function tV(e,t){i6(e,t),ue(e,()=>e.activeTexture(e.TEXTURE0+t)),ue(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function a6(e,t,a){return kr(e,()=>e.getUniformLocation(t,a),'uniform "'+a+'" not present in program.')}function n6(e,t,a){return e.getUniformLocation(t,a)}function r6(e,t,a,n){ue(e,()=>t6(e,t,n)),ue(e,()=>e.uniform1i(a,n))}function aV(e){ue(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ue(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),ue(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function fc(e,t,a){ue(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,a)),ue(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function b1(e,t){ue(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),ue(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Xu(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+s6(e,t))}function s6(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function kr(e,t,a){let n=ue(e,()=>t());if(n==null)throw new Error(a);return n}function i6(e,t){let a=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,n=t+e.TEXTURE0;if(n<e.TEXTURE0||n>a){let r=`[gl.TEXTURE0, gl.TEXTURE${a}]`;throw new Error(`textureUnit must be in ${r}.`)}}function Us(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function Gs(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Ku(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Us(e),...Gs(e)]),t}function o6(e,t=!1){let a=W().getNumber("WEBGL_MAX_TEXTURE_SIZE"),n=W().getNumber("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE");n===1/0&&W().getBool("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE")&&(n=a/2),t&&(a=a*2,n=n*2,e=e.map((o,l)=>l>=e.length-2?v.nearestLargerEven(e[l]):e[l]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let r=v.sizeFromShape(e),s=null;e.length<=1&&r<=a?s=[1,r]:e.length===2&&e[0]<=a&&e[1]<=a?s=e:e.length===3&&e[0]*e[1]<=a&&e[2]<=a?s=[e[0]*e[1],e[2]]:e.length===3&&e[0]<=a&&e[1]*e[2]<=a?s=[e[0],e[1]*e[2]]:e.length===4&&e[0]*e[1]*e[2]<=a&&e[3]<=a?s=[e[0]*e[1]*e[2],e[3]]:e.length===4&&e[0]<=a&&e[1]*e[2]*e[3]<=a&&(s=[e[0],e[1]*e[2]*e[3]]);let i=s!=null&&Math.max(...s)>n&&Math.min(...s)<=(t?2:1)&&Math.min(...s)>0;if(s==null||i)if(t){let o=Us(e),l=2,u=2;e.length&&([l,u]=Gs(e)),r=o*(l/2)*(u/2),s=v.sizeToSquarishShape(r).map(p=>p*2)}else s=v.sizeToSquarishShape(r);return s}function oc(e){return e%2===0}function md(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let a=e.slice(-1)[0],n=t.slice(-1)[0];if(a===n||oc(a)&&oc(n)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&oc(e[0])&&oc(t[0])}var mc,gc;function l6(e){if(mc==null){let t=On(e);mc=t.getParameter(t.MAX_TEXTURE_SIZE)}return mc}function nV(){mc=null}function rV(){gc=null}function u6(e){if(gc==null){let t=On(e);gc=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,gc)}function d6(e){if(e===0)return 0;let t,a=On(e);return pn(a,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:pn(a,"EXT_disjoint_timer_query")?t=1:t=0,t}function pn(e,t){return e.getExtension(t)!=null}function v1(e){try{if(On(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function p6(e){if(e===0)return!1;let t=On(e);if(e===1){if(!pn(t,"OES_texture_float"))return!1}else if(!pn(t,"EXT_color_buffer_float"))return!1;return w1(t)}function c6(e){if(e===0)return!1;let t=On(e);if(e===1){if(!pn(t,"OES_texture_float")||!pn(t,"WEBGL_color_buffer_float"))return!1}else{if(pn(t,"EXT_color_buffer_float"))return w1(t);let a="EXT_color_buffer_half_float";if(pn(t,a)){let n=t.getExtension(a);return sV(t,n)}return!1}return w1(t)}function w1(e){let t=g3(e),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let n=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,n,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(s),i}function sV(e,t){let a=g3(e,t),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,a.internalFormatHalfFloat,r,s,0,a.textureFormatFloat,a.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(i),o}function h6(e){return e!==2?!1:On(e).fenceSync!=null}function lu(e,t){Array.isArray(e)||(e=[e]),e.forEach(a=>{a!=null&&v.assert(a.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var ve=W();ve.registerFlag("HAS_WEBGL",()=>ve.getNumber("WEBGL_VERSION")>0);ve.registerFlag("WEBGL_VERSION",()=>v1(2)?2:v1(1)?1:0);ve.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);ve.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>ve.get("WEBGL_VERSION")===2);ve.registerFlag("WEBGL_CPU_FORWARD",()=>!0);ve.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);ve.registerFlag("WEBGL_PACK",()=>ve.getBool("HAS_WEBGL"));ve.registerFlag("WEBGL_PACK_NORMALIZATION",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_CLIP",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_REDUCE",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_LAZILY_UNPACK",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_CONV_IM2COL",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>l6(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>u6(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=ve.getNumber("WEBGL_VERSION");return e===0?0:d6(e)});ve.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>ve.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!jd.isMobile());ve.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>p6(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>ve.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:ve.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));ve.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>c6(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_FENCE_API_ENABLED",()=>h6(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>ve.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);ve.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});ve.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>jd.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});ve.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);ve.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);ve.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);ve.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);ve.registerFlag("WEBGL_EXP_CONV",()=>!1);ve.registerFlag("SOFTWARE_WEBGL_ENABLED",()=>ve.getBool("IS_TEST"));ve.registerFlag("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE",()=>1/0);ve.registerFlag("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE",()=>!1);ve.registerFlag("WEBGL2_ISNAN_CUSTOM",()=>!1);ve.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);function Ca(){let e,t,a,n,r,s,i,o,l,u;return W().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",a="out",n="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=W().getBool("WEBGL2_ISNAN_CUSTOM")?`
bool isnan_custom(float val) {
uint floatToUint = floatBitsToUint(val);
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`:"",l="",u=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",a="varying",n="varying",r="texture2D",s="gl_FragColor",i="",o=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,u=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:a,varyingFs:n,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function go(e,t,a="index"){let n=v.computeStrides(t);return n.map((r,s)=>{let i=`int ${e[s]} = ${a} / ${r}`,o=s===n.length-1?`int ${e[s+1]} = ${a} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function _h(e,t,a="index"){let n=v.computeStrides(t);return n.map((r,s)=>{let i=`int ${e[s]} = ${a} / outShapeStrides[${s}]`,o=s===n.length-1?`int ${e[s+1]} = ${a} - ${e[s]} * outShapeStrides[${s}]`:`index -= ${e[s]} * outShapeStrides[${s}]`;return`${i}; ${o};`}).join("")}function iV(e,t){let a=e.length,n=e.map(s=>`${t}[${s}]`),r=new Array(a-1);r[a-2]=n[a-1];for(let s=a-3;s>=0;--s)r[s]=`(${r[s+1]} * ${n[s+1]})`;return r}function oV(e,t,a="index"){let n=e.map((s,i)=>i),r=iV(n,t);return r.map((s,i)=>{let o=`int ${e[i]} = ${a} / ${r[i]}`,l=i===r.length-1?`int ${e[i+1]} = ${a} - ${e[i]} * ${r[i]}`:`index -= ${e[i]} * ${r[i]}`;return`${o}; ${l};`}).join("")}function A3(e){let t=v.computeStrides(e).map(a=>a.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}function y3(){return`
int getFlatIndex(ivec3 coords) {
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
}
`}var f6=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,{getBroadcastDims:m6}=T;function lV(e,t,a){let n=[];if(e.forEach(d=>{let h=v.sizeFromShape(d.shapeInfo.logicalShape);if(d.shapeInfo.isUniform?n.push(`uniform float ${d.name}${h>1?`[${h}]`:""};`):(n.push(`uniform sampler2D ${d.name};`),n.push(`uniform int offset${d.name};`)),a.enableShapeUniforms){let{uniformShape:f}=b3(a.packedInputs,d.shapeInfo.logicalShape,d.shapeInfo.texShape);switch(f.length){case 1:n.push(`uniform int ${d.name}Shape;`);break;case 2:n.push(`uniform ivec2 ${d.name}Shape;`);break;case 3:n.push(`uniform ivec3 ${d.name}Shape;`);break;case 4:n.push(`uniform ivec4 ${d.name}Shape;`);break;default:break}n.push(`uniform ivec2 ${d.name}TexShape;`)}}),a.enableShapeUniforms){switch(t.logicalShape.length){case 1:n.push("uniform int outShape;");break;case 2:n.push("uniform ivec2 outShape;"),n.push("uniform int outShapeStrides;");break;case 3:n.push("uniform ivec3 outShape;"),n.push("uniform ivec2 outShapeStrides;");break;case 4:n.push("uniform ivec4 outShape;"),n.push("uniform ivec3 outShapeStrides;");break;default:break}n.push("uniform ivec2 outTexShape;")}a.customUniforms&&a.customUniforms.forEach(d=>{n.push(`uniform ${d.type} ${d.name}${d.arrayIndex?`[${d.arrayIndex}]`:""};`)});let r=n.join(`
`),s=e.map(d=>uV(d,t,a.packedInputs,a.enableShapeUniforms)).join(`
`),i=t.texShape,o=Ca(),l=cV(o),u,p,c=mV(o);return t.isPacked?(u=dV(t.logicalShape,i,a.enableShapeUniforms),p=fV(o)):(u=pV(t.logicalShape,i,a.enableShapeUniforms),p=hV(o)),a.packedInputs&&(c+=yV),[c,l,p,r,u,s,a.userCode].join(`
`)}function uu(e,t=!1){let a=e.shapeInfo.logicalShape;switch(a.length){case 0:return MV(e,t);case 1:return _V(e,t);case 2:return FV(e,t);case 3:return DV(e,t);case 4:return LV(e,t);case 5:return BV(e);case 6:return WV(e);default:throw new Error(`${a.length}-D input sampling is not yet supported`)}}function g6(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return RV(e);case 1:return $V(e,t);case 2:return PV(e,t);case 3:return OV(e,t);default:return zV(e,t)}}function uV(e,t,a=!1,n){let r="";a?r+=g6(e,n):r+=uu(e,n);let s=e.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(a?r+=VV(e,t):r+=UV(e,t)),r}function dV(e,t,a){switch(e.length){case 0:return x6();case 1:return bV(e,t,a);case 2:return NV(e,t,a);case 3:return wV(e,t,a);default:return IV(e,t,a)}}function pV(e,t,a){switch(e.length){case 0:return x6();case 1:return vV(e,t,a);case 2:return EV(e,t,a);case 3:return kV(e,t,a);case 4:return SV(e,t,a);case 5:return TV(e,t);case 6:return CV(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function cV(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function hV(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function fV(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function mV(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${gV}
${xV}
${AV}
`}var gV=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,xV=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,AV=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,yV=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function x6(){return`
int getOutputCoords() {
return 0;
}
`}function bV(e,t,a){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?a?`
int getOutputCoords() {
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.x * ${n[1]}.0);
}
`:n[1]===1?a?`
int getOutputCoords() {
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.y * ${n[0]}.0);
}
`:a?`
int getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
}
`}function vV(e,t,a){return t[0]===1?a?`
int getOutputCoords() {
return int(resultUV.x * float(outTexShape[1]));
}
`:`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?a?`
int getOutputCoords() {
return int(resultUV.y * float(outTexShape[0]));
}
`:`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:a?`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
return resTexRC.x * outTexShape[1] + resTexRC.y;
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function wV(e,t,a){if(a)return`
ivec3 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec3(b, r, c);
}
`;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),s=r*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec3(b, r, c);
}
`}function kV(e,t,a){if(a)return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${_h(["r","c","d"],e)}
return ivec3(r, c, d);
}
`;let n=go(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec3(r, c, d);
}
`}function IV(e,t,a){if(a)return`
ivec4 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
int texelsInBatchN = texelsInBatch * outShape[1];
int b2 = index / texelsInBatchN;
index -= b2 * texelsInBatchN;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec4(b2, b, r, c);
}
`;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),s=r*Math.ceil(e[e.length-2]/2),i=s,o="",l="b, r, c";for(let u=2;u<e.length-1;u++)i*=e[e.length-u-1],o=`
int b${u} = index / ${i};
index -= b${u} * ${i};
`+o,l=`b${u}, `+l;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
${o}
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec${e.length}(${l});
}
`}function SV(e,t,a){if(a)return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${_h(["r","c","d","d2"],e)}
return ivec4(r, c, d, d2);
}
`;let n=go(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec4(r, c, d, d2);
}
`}function TV(e,t){let a=go(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${a}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function CV(e,t){let a=go(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${a}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function NV(e,t,a){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return a?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
}
`;let r=Math.ceil(e[1]/2);return a?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec2(r, c);
}
`}function EV(e,t,a){return v.arraysEqual(e,t)?a?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?a?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(index, 0);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?a?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:a?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
int r = index / outShape[1];
int c = index - r * outShape[1];
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function xo(e){return`offset${e}`}function RV(e){let t=e.name,a="get"+t.charAt(0).toUpperCase()+t.slice(1),n=Ca();return`
vec4 ${a}() {
return ${n.texture2D}(${t}, halfCR);
}
`}function MV(e,t){let a=e.name,n="get"+a.charAt(0).toUpperCase()+a.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${a};}`;let[r,s]=e.shapeInfo.texShape;if(r===1&&s===1)return`
float ${n}() {
return sampleTexture(${a}, halfCR);
}
`;let i=xo(a);if(t)return`
float ${n}() {
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], ${i});
return sampleTexture(${a}, uv);
}
`;let[o,l]=e.shapeInfo.texShape;return`
float ${n}() {
vec2 uv = uvFromFlat(${o}, ${l}, ${i});
return sampleTexture(${a}, uv);
}
`}function $V(e,t){let a=e.name,n="get"+a.charAt(0).toUpperCase()+a.slice(1),r=e.shapeInfo.texShape,s=Ca();if(t)return`
vec4 ${n}(int index) {
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
vec2 uv = packedUVfrom1D(
packedTexShape[0], packedTexShape[1], index);
return ${s.texture2D}(${a}, uv);
}
`;let i=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
vec4 ${n}(int index) {
vec2 uv = packedUVfrom1D(
${i[0]}, ${i[1]}, index);
return ${s.texture2D}(${a}, uv);
}
`}function _V(e,t){let a=e.name,n="get"+a.charAt(0).toUpperCase()+a.slice(1);if(e.shapeInfo.isUniform)return`
float ${n}(int index) {
${du(e)}
}
`;let r=e.shapeInfo.texShape,s=r[0],i=r[1];if(i===1&&s===1)return`
float ${n}(int index) {
return sampleTexture(${a}, halfCR);
}
`;let o=xo(a);return i===1?t?`
float ${n}(int index) {
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / float(${a}TexShape[0]));
return sampleTexture(${a}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / ${s}.0);
return sampleTexture(${a}, uv);
}
`:s===1?t?`
float ${n}(int index) {
vec2 uv = vec2((float(index + ${o}) + 0.5) / float(${a}TexShape[1]), 0.5);
return sampleTexture(${a}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = vec2((float(index + ${o}) + 0.5) / ${i}.0, 0.5);
return sampleTexture(${a}, uv);
}
`:t?`
float ${n}(int index) {
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index + ${o});
return sampleTexture(${a}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = uvFromFlat(${s}, ${i}, index + ${o});
return sampleTexture(${a}, uv);
}
`}function PV(e,t){let a=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e.shapeInfo.texShape,i=s[0],o=s[1],l=Ca();if(s!=null&&v.arraysEqual(a,s))return t?`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
return ${l.texture2D}(${n}, uv);
}
`:`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}.0, ${i}.0);
return ${l.texture2D}(${n}, uv);
}
`;if(t)return`
vec4 ${r}(int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${n}Shape[1]) / 2.0));
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
return ${l.texture2D}(${n}, uv);
}
`;let u=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],p=Math.ceil(a[1]/2);return`
vec4 ${r}(int row, int col) {
vec2 uv = packedUVfrom2D(${p}, ${u[0]}, ${u[1]}, row, col);
return ${l.texture2D}(${n}, uv);
}
`}function FV(e,t){let a=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e.shapeInfo.texShape;if(s!=null&&v.arraysEqual(a,s)){if(t)return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`;let d=s[0],h=s[1];return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`}let{newShape:i,keptDims:o}=v.squeezeShape(a),l=i;if(l.length<a.length){let d=pu(e,l),h=["row","col"];return`
${uu(d,t)}
float ${r}(int row, int col) {
return ${r}(${cu(h,o)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${a[1]}, 1)));
${du(e)}
}
`;let u=s[0],p=s[1],c=xo(n);return p===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${c}), vec3(${n}Shape[1], 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / float(${n}TexShape[0]));
return sampleTexture(${n}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${c}), vec3(${a[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
return sampleTexture(${n}, uv);
}
`:u===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${c}), vec3(${n}Shape[1], 1, 1));
vec2 uv = vec2((index + 0.5) / float(${n}TexShape[1]), 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${c}), vec3(${a[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${p}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:t?`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n}Shape[1] + col + ${c};
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index);
return sampleTexture(${n}, uv);
}
`:`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a[1]} + col + ${c};
vec2 uv = uvFromFlat(${u}, ${p}, index);
return sampleTexture(${n}, uv);
}
`}function OV(e,t){let a=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(a[0]===1){let d=a.slice(1),h=[1,2],f=pu(e,d),m=["b","row","col"];return`
${g6(f,t)}
vec4 ${r}(int b, int row, int col) {
return ${r}(${cu(m,h)});
}
`}let o=Ca();if(t)return`
vec4 ${r}(int b, int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${n}Shape[2]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[1]) / 2.0));
vec2 uv = packedUVfrom3D(
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
return ${o.texture2D}(${n}, uv);
}
`;let l=i[0],u=i[1],p=Math.ceil(a[2]/2),c=p*Math.ceil(a[1]/2);return`
vec4 ${r}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${l}, ${u}, ${c}, ${p}, b, row, col);
return ${o.texture2D}(${n}, uv);
}
`}function DV(e,t){let a=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),s=a[1]*a[2],i=a[2],{newShape:o,keptDims:l}=v.squeezeShape(a),u=o;if(u.length<a.length){let m=pu(e,u),g=["row","col","depth"];return`
${uu(m,t)}
float ${r}(int row, int col, int depth) {
return ${r}(${cu(g,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${s}, ${i}, 1)));
${du(e)}
}
`;let p=e.shapeInfo.texShape,c=p[0],d=p[1],h=e.shapeInfo.flatOffset;if(d===s&&h==null)return t?`
float ${r}(int row, int col, int depth) {
int stride1 = ${n}Shape[2];
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(stride1, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${i}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${c}.0);
return sampleTexture(${n}, uv);
}
`;if(d===i&&h==null)return t?`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${n}Shape[1], 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${a[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${d}.0, ${c}.0);
return sampleTexture(${n}, uv);
}
`;let f=xo(n);return t?`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int stride0 = ${n}Shape[1] * ${n}Shape[2];
int stride1 = ${n}Shape[2];
int index = row * stride0 + col * stride1 + depth + ${f};
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index);
return sampleTexture(${n}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${s} + col * ${i} + depth + ${f};
vec2 uv = uvFromFlat(${c}, ${d}, index);
return sampleTexture(${n}, uv);
}
`}function zV(e,t){let a=e.name,n="get"+a.charAt(0).toUpperCase()+a.slice(1),r=Ca();if(t)return`
vec4 ${n}(int b2, int b, int row, int col) {
int valuesPerRow = int(ceil(float(${a}Shape[3]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${a}Shape[2]) / 2.0));
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
texelsInBatch *= ${a}Shape[1];
index = b2 * texelsInBatch + index;
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
int texR = index / packedTexShape[1];
int texC = index - texR * packedTexShape[1];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${a}, uv);
}
`;let s=e.shapeInfo.logicalShape,i=s.length,o=e.shapeInfo.texShape,l=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],u=l[0],p=l[1],c=Math.ceil(s[i-1]/2),d=c*Math.ceil(s[i-2]/2),h="int b, int row, int col",f=`b * ${d} + (row / 2) * ${c} + (col / 2)`;for(let m=2;m<i-1;m++)h=`int b${m}, `+h,d*=s[i-m-1],f=`b${m} * ${d} + `+f;return`
vec4 ${n}(${h}) {
int index = ${f};
int texR = index / ${p};
int texC = index - texR * ${p};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}, ${u});
return ${r.texture2D}(${a}, uv);
}
`}function LV(e,t){let a=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),s=a[3],i=a[2]*s,o=a[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(a);if(l.length<a.length){let A=pu(e,l),y=["row","col","depth","depth2"];return`
${uu(A,t)}
float ${r}(int row, int col, int depth, int depth2) {
return ${r}(${cu(y,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, 1)));
${du(e)}
}
`;let p=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,d=c[0],h=c[1],f=`int stride2 = ${n}Shape[3];`,m=`int stride1 = ${n}Shape[2] * stride2;`,g=`int stride0 = ${n}Shape[1] * stride1;`;if(h===o&&p==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
${f}
${m}
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(stride1, stride2, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${i}, ${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;if(h===s&&p==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${n}Shape[1] * ${n}Shape[2], ${n}Shape[2], 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${a[1]*a[2]}, ${a[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;let x=xo(n);return t?`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
${f}
${m}
${g}
int index = row * stride0 + col * stride1 +
depth * stride2 + depth2;
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${x});
return sampleTexture(${n}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} +
depth * ${s} + depth2;
vec2 uv = uvFromFlat(${d}, ${h}, index + ${x});
return sampleTexture(${n}, uv);
}
`}function BV(e){let t=e.shapeInfo.logicalShape,a=e.name,n="get"+a.charAt(0).toUpperCase()+a.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(t);if(l.length<t.length){let m=pu(e,l),g=["row","col","depth","depth2","depth3"];return`
${uu(m)}
float ${n}(int row, int col, int depth, int depth2, int depth3) {
return ${n}(${cu(g,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, ${r})) +
depth3;
${du(e)}
}
`;let p=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,d=c[0],h=c[1];if(h===o&&p==null)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${i}, ${s}, ${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${d}.0);
return sampleTexture(${a}, uv);
}
`;if(h===r&&p==null)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${d}.0);
return sampleTexture(${a}, uv);
}
`;let f=xo(a);return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} + depth * ${s} +
depth2 * ${r} + depth3 + ${f};
vec2 uv = uvFromFlat(${d}, ${h}, index);
return sampleTexture(${a}, uv);
}
`}function WV(e){let t=e.shapeInfo.logicalShape,a=e.name,n="get"+a.charAt(0).toUpperCase()+a.slice(1),{newShape:r,keptDims:s}=v.squeezeShape(t);if(r.length<t.length){let g=pu(e,r),x=["row","col","depth","depth2","depth3","depth4"];return`
${uu(g)}
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${n}(${cu(x,s)});
}
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,p=t[1]*u;if(e.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${p}, ${u}, ${l}, ${o})) +
dot(
vec2(depth3, depth4),
vec2(${i}, 1)));
${du(e)}
}
`;let c=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,h=d[0],f=d[1];if(f===p&&c==null)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${u}, ${l}, ${o}, ${i})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${h}.0);
return sampleTexture(${a}, uv);
}
`;if(f===i&&c==null)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${h}.0);
return sampleTexture(${a}, uv);
}
`;let m=xo(a);return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${p} + col * ${u} + depth * ${l} +
depth2 * ${o} + depth3 * ${i} + depth4 + ${m};
vec2 uv = uvFromFlat(${h}, ${f}, index);
return sampleTexture(${a}, uv);
}
`}function du(e){let t=e.name,a=v.sizeFromShape(e.shapeInfo.logicalShape);return a<2?`return ${t};`:`
for (int i = 0; i < ${a}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function VV(e,t){let a=e.name,n=a.charAt(0).toUpperCase()+a.slice(1),r="get"+n+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=m6(e.shapeInfo.logicalShape,t.logicalShape),l=gt(i),u=i-s,p,c=["x","y","z","w","u","v"];s===0?p="":i<2&&o.length>=1?p="coords = 0;":p=o.map(g=>`coords.${c[g+u]} = 0;`).join(`
`);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((g,x)=>`coords.${c[x+u]}`).join(", ");let h="return outputValue;",f=v.sizeFromShape(e.shapeInfo.logicalShape)===1,m=v.sizeFromShape(t.logicalShape)===1;if(s===1&&!f&&!m)h=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(f&&!m)i===1?h=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:h=`
return vec4(outputValue.x);
`;else if(o.length){let g=s-2,x=s-1;o.indexOf(g)>-1&&o.indexOf(x)>-1?h="return vec4(outputValue.x);":o.indexOf(g)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(x)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${r}() {
${l} coords = getOutputCoords();
${p}
vec4 outputValue = get${n}(${d});
${h}
}
`}function UV(e,t){let a=e.name,n=a.charAt(0).toUpperCase()+a.slice(1),r="get"+n+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(i,s))return`
float ${r}() {
return sampleTexture(${a}, resultUV);
}
`;let u=gt(l),p=m6(e.shapeInfo.logicalShape,t.logicalShape),c=l-o,d,h=["x","y","z","w","u","v"];o===0?d="":l<2&&p.length>=1?d="coords = 0;":d=p.map(m=>`coords.${h[m+c]} = 0;`).join(`
`);let f="";return l<2&&o>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+c]}`).join(", "),`
float ${r}() {
${u} coords = getOutputCoords();
${d}
return get${n}(${f});
}
`}function gt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function b3(e,t,a){let{newShape:n,keptDims:r}=v.squeezeShape(t),s=t.length,i=e&&s===3&&t[0]===1,o=i?t.slice(1):n,l=!e&&s>1&&!v.arraysEqual(t,a)&&n.length<s||i;return{useSqueezeShape:l,uniformShape:l?o:t,keptDims:r}}function pu(e,t){let a=JSON.parse(JSON.stringify(e));return a.shapeInfo.logicalShape=t,a}function cu(e,t){return t.map(a=>e[a]).join(", ")}function GV(e,t,a,n){let r=a.map((p,c)=>{let d={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(d.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[c],shapeInfo:d}}),s=r.map(p=>p.shapeInfo),i={logicalShape:n.shape,texShape:n.texData.texShape,isUniform:!1,isPacked:n.texData.isPacked,flatOffset:null},o=lV(r,i,t),l=q7(e.gl,o),u=e.createProgram(l);return W().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:Object.assign({program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i},A6(e,t,u))}function A6(e,t,a){let n={},r={},s={},i=[],o,l,u,p=null,c=null;c=e.getUniformLocation(a,"NAN",!1),W().getNumber("WEBGL_VERSION")===1&&(p=e.getUniformLocation(a,"INFINITY",!1));let d=!1;for(let h=0;h<t.variableNames.length;h++){let f=t.variableNames[h];n[f]=e.getUniformLocation(a,f,d),n[`offset${f}`]=e.getUniformLocation(a,`offset${f}`,d),t.enableShapeUniforms&&(r[`${f}Shape`]=e.getUniformLocation(a,`${f}Shape`,d),s[`${f}TexShape`]=e.getUniformLocation(a,`${f}TexShape`,d))}return t.enableShapeUniforms&&(o=e.getUniformLocation(a,"outShape",d),u=e.getUniformLocation(a,"outShapeStrides",d),l=e.getUniformLocation(a,"outTexShape",d)),t.customUniforms&&t.customUniforms.forEach((h,f)=>{i[f]=e.getUniformLocation(a,h.name,d)}),{uniformLocations:n,customUniformLocations:i,infLoc:p,nanLoc:c,inShapesLocations:r,inTexShapesLocations:s,outShapeLocation:o,outShapeStridesLocation:u,outTexShapeLocation:l}}function ux(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((a,n)=>{let r=a.logicalShape,s=t[n],i=s.shape;if(!v.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(a.isUniform&&s.isUniform)return;let o=a.texShape,l=s.isUniform?null:s.texData.texShape;if(!v.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function HV(e,t,a,n,r){t.program.enableShapeUniforms||(ux(t.inShapeInfos,a),ux([t.outShapeInfo],[n]));let s=n.texData.texture,i=n.texData.texShape;n.texData.isPacked?e.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):e.setOutputMatrixTexture(s.texture,i[0],i[1]),e.setProgram(t.webGLProgram),W().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),a.forEach((l,u)=>{let p=t.program.variableNames[u],c=t.uniformLocations[p],d=t.uniformLocations[`offset${p}`],h=t.inShapesLocations[`${p}Shape`],f=t.inTexShapesLocations[`${p}TexShape`];if(h){let{uniformShape:m}=b3(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),c!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(c,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(c,m)}return}l.texData.slice!=null&&d!=null&&e.gl.uniform1i(d,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture.texture,c,u)}});let o=t.outShapeLocation;if(o)switch(n.shape.length){case 1:e.gl.uniform1iv(o,new Int32Array(n.shape));break;case 2:e.gl.uniform2iv(o,new Int32Array(n.shape));break;case 3:e.gl.uniform3iv(o,new Int32Array(n.shape));break;case 4:e.gl.uniform4iv(o,new Int32Array(n.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(n.shape);switch(n.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,n.texData.texShape[0],n.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let p=t.customUniformLocations[u],c=r[u];if(l.type==="float")e.gl.uniform1fv(p,c);else if(l.type==="vec2")e.gl.uniform2fv(p,c);else if(l.type==="vec3")e.gl.uniform3fv(p,c);else if(l.type==="vec4")e.gl.uniform4fv(p,c);else if(l.type==="int")e.gl.uniform1iv(p,c);else if(l.type==="ivec2")e.gl.uniform2iv(p,c);else if(l.type==="ivec3")e.gl.uniform3iv(p,c);else if(l.type==="ivec4")e.gl.uniform4iv(p,c);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function jV(e,t,a){let n="";t.concat(a).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!i.isUniform){let l=i.texData.texShape,{useSqueezeShape:u,uniformShape:p,keptDims:c}=b3(e.packedInputs,i.shape,l),d="",h="",f="";if(p.length===1&&e.packedInputs){let w=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];d=`${w[0]>1}_${w[1]>1}`}else if(p.length===2&&!e.packedInputs)h=`${p[0]>1}_${p[1]>1}`;else if(p.length>2&&!e.packedInputs){let w=v.computeStrides(p);f=`${w[0]===l[1]}_${w[w.length-1]===l[1]}`}let m=i.shape.length,g=p.length===2&&v.arraysEqual(i.shape,l),x=v.sizeFromShape(i.shape)===1,A=T.getBroadcastDims(i.shape,a.shape),y=!e.packedInputs&&m===a.shape.length&&v.arraysEqual(l,a.texData.texShape),b=e.packedInputs||p.length>2?"":`${l[0]>1}_${l[1]>1}`;n+=`${m}_${y}_${u?c:""}_${p.length}_${x}_${A}_${g}_${d}_${h}_${f}_${b}_${o}`}else{let l=i.isUniform?"uniform":i.texData.texShape;n+=`${i.shape}_${l}_${o}`}});let r=e.userCode,s=e.constructor.name;return s+="_"+n+"_"+r+`${W().getNumber("WEBGL_VERSION")}`,s}function Na(e){return W().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var qV=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=fd.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Ca();this.outputShape=e,this.enableShapeUniforms=Na(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?_h(["r","c","d"],e):go(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${t.output} = result;
}
`}},XV=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=fd.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Ca();this.outputShape=e,this.enableShapeUniforms=Na(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?_h(["r","c","d"],e):go(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${t.output} = result;
}
`}},KV=class{constructor(e){this.variableNames=["A"],this.outTexUsage=dn.DOWNLOAD;let t=Ca();this.outputShape=e,this.userCode=`
${f6}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},ZV=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=dn.DOWNLOAD;let t=Ca();this.outputShape=e,this.userCode=`
${f6}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},YV={R:0,G:1,B:2,A:3},dx=class{constructor(e,t=!1,a="RGBA"){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Ca();this.outputShape=e,this.enableShapeUniforms=Na(this.outputShape.length);let r="result";t&&(r="floor(result * 255. + 0.5)");let s="";for(let i=0;i<a.length;i++){let o=a[i];s+=`
if(offset == ${i}) {
result = values[${YV[o]}];
}`}this.userCode=`
${this.enableShapeUniforms?y3():A3(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
float result = 0.;
int offset = imod(flatIndex, ${a.length});
flatIndex = idiv(flatIndex, ${a.length}, 1.);
int r = flatIndex / texShape[1];
if (r < texShape[0]) {
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
vec4 values = ${n.texture2D}(A, uv);
${s}
}
${n.output} = vec4(${r}, 0., 0., 0.);
}
`}},JV=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let a=Ca();this.outputShape=e,this.enableShapeUniforms=Na(this.outputShape.length);let n="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let s=0;s<=1;s++)for(let i=0;i<=1;i++){let o=s*2+i;n+=`
localCoords = coords;
if(localCoords[2] + ${i} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
localCoords[2] += ${i};
if (localCoords[1] + ${s} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
localCoords[1] += ${s};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
values = ${a.texture2D}(A, uv);
if (offset == 0) {
result[${o}] = values[0];
} else if (offset == 1) {
result[${o}] = values[1];
} else if (offset == 2) {
result[${o}] = values[2];
} else {
result[${o}] = values[3];
}
}
}
`}this.userCode=`
${this.enableShapeUniforms?y3():A3(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${n}
${a.output} = ${r};
}
`}},y6={};Xe(y6,{bindVertexProgramAttributeStreams:()=>N6,createBufferFromOutputTexture:()=>M6,createFloat16MatrixTexture:()=>I6,createFloat16PackedMatrixTexture:()=>C6,createFloat32MatrixTexture:()=>k6,createIndexBuffer:()=>w6,createPackedMatrixTexture:()=>T6,createUnsignedBytesMatrixTexture:()=>S6,createVertexBuffer:()=>v6,createVertexShader:()=>b6,downloadByteEncodedFloatMatrixFromOutputTexture:()=>_6,downloadFloat32MatrixFromBuffer:()=>$6,downloadMatrixFromPackedOutputTexture:()=>F6,downloadPackedMatrixFromBuffer:()=>P6,getInternalFormatForFloat16MatrixTexture:()=>w3,getInternalFormatForFloat16PackedMatrixTexture:()=>S3,getInternalFormatForFloat32MatrixTexture:()=>v3,getInternalFormatForPackedMatrixTexture:()=>I3,getInternalFormatForUnsignedBytesMatrixTexture:()=>k3,uploadDenseMatrixToTexture:()=>E6,uploadPixelDataToTexture:()=>R6});function b6(e){let t=Ca(),a=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return j7(e,a)}function v6(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return Z7(e,t)}function w6(e){let t=new Uint16Array([0,1,2,2,1,3]);return Y7(e,t)}function dp(e,t,a,n,r,s){Q7(t,a);let i=J7(e),o=e.TEXTURE_2D;return ue(e,()=>e.bindTexture(o,i)),ue(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),ue(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),ue(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),ue(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),W().getNumber("WEBGL_VERSION")===1?ue(e,()=>e.texImage2D(o,0,n,t,a,0,r,s,null)):ue(e,()=>e.texStorage2D(o,1,n,t,a)),ue(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:i,texShape:[a,t]}}function v3(e){return e.internalFormatFloat}function k6(e,t,a,n){let[r,s]=up(t,a);return dp(e,r,s,v3(n),n.textureFormatFloat,e.FLOAT)}function w3(e){return e.internalFormatHalfFloat}function I6(e,t,a,n){let[r,s]=up(t,a);return dp(e,r,s,w3(n),n.textureFormatFloat,n.textureTypeHalfFloat)}function k3(e){return e.downloadTextureFormat}function S6(e,t,a,n){let[r,s]=up(t,a);return dp(e,r,s,k3(n),e.RGBA,e.UNSIGNED_BYTE)}function I3(e){return e.internalFormatPackedFloat}function T6(e,t,a,n){let[r,s]=ou(t,a);return dp(e,r,s,I3(n),e.RGBA,e.FLOAT)}function S3(e){return e.internalFormatPackedHalfFloat}function C6(e,t,a,n){let[r,s]=ou(t,a);return dp(e,r,s,S3(n),e.RGBA,n.textureTypeHalfFloat)}function N6(e,t,a){return ue(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),y1(e,t,"clipSpacePos",a,3,20,0)&&y1(e,t,"uv",a,2,20,12)}function E6(e,t,a,n,r,s){ue(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(a*n*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(a*n*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),W().getNumber("WEBGL_VERSION")===2?ue(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,a,n,e.RGBA,o,i)):ue(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,a,n,0,e.RGBA,o,i)),ue(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function R6(e,t,a){ue(e,()=>e.bindTexture(e.TEXTURE_2D,t)),a.data instanceof Uint8Array?W().getNumber("WEBGL_VERSION")===2?ue(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,a.width,a.height,e.RGBA,e.UNSIGNED_BYTE,a.data)):ue(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,a.width,a.height,0,e.RGBA,e.UNSIGNED_BYTE,a.data)):W().getNumber("WEBGL_VERSION")===2?ue(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,a)):ue(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,a)),ue(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function M6(e,t,a,n){let r=e.createBuffer();ue(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*a;return ue(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),ue(e,()=>e.readPixels(0,0,a,t,e.RGBA,e.FLOAT,0)),ue(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function $6(e,t,a){let n=e,r=new Float32Array(a);return n.bindBuffer(n.PIXEL_PACK_BUFFER,t),n.getBufferSubData(n.PIXEL_PACK_BUFFER,0,r),n.bindBuffer(n.PIXEL_PACK_BUFFER,null),r}function _6(e,t,a,n){let[r,s]=up(t,a),i=4,o=new Uint8Array(XW(t*a,i));return ue(e,()=>e.readPixels(0,0,r,s,n.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function P6(e,t,a,n,r,s,i,o){let l=e,u=new Float32Array(KW(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function F6(e,t,a){let n=new Float32Array(t*a*4);return ue(e,()=>e.readPixels(0,0,a,t,e.RGBA,e.FLOAT,n)),n}var sl=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.itemsToPoll=[];let t=W().getNumber("WEBGL_VERSION");if(e!=null?(this.gl=e,$h(t,e)):this.gl=On(t),e=this.gl,W().getNumber("WEBGL_VERSION")===2){let r=e;this.createVertexArray=()=>ue(r,()=>r.createVertexArray()),this.bindVertexArray=s=>ue(r,()=>r.bindVertexArray(s)),this.deleteVertexArray=s=>ue(r,()=>r.deleteVertexArray(s)),this.getVertexArray=()=>ue(r,()=>r.getParameter(r.VERTEX_ARRAY_BINDING))}else if(e!=null){let r=e.getExtension("OES_vertex_array_object");if(r==null)throw new Error("All WebGL1 implementations are expected to offer OES_vertex_array_object.");this.createVertexArray=()=>ue(e,()=>r.createVertexArrayOES()),this.bindVertexArray=s=>ue(e,()=>r.bindVertexArrayOES(s)),this.deleteVertexArray=s=>ue(e,()=>r.deleteVertexArrayOES(s)),this.getVertexArray=()=>ue(e,()=>e.getParameter(r.VERTEX_ARRAY_BINDING_OES))}let a="WEBGL_color_buffer_float",n="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),W().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=qu(this.gl,r),pn(this.gl,s))this.textureHalfFloatExtension=qu(this.gl,s);else if(W().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(a),pn(this.gl,n))this.colorBufferHalfFloatExtension=qu(this.gl,n);else if(W().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(a="EXT_color_buffer_float",pn(this.gl,a))this.colorBufferFloatExtension=this.gl.getExtension(a);else if(pn(this.gl,n))this.colorBufferHalfFloatExtension=this.gl.getExtension(n);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=v6(this.gl),this.indexBuffer=w6(this.gl),this.framebuffer=e6(this.gl),this.textureConfig=g3(this.gl,this.textureHalfFloatExtension)}get debug(){return W().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;ue(e,()=>e.finish()),ue(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ue(e,()=>e.deleteFramebuffer(this.framebuffer)),ue(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),ue(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),ue(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),k6(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),I6(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),S6(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),R6(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,a,n){this.throwIfDisposed(),E6(this.gl,e,t,a,n,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),C6(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),T6(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(b1(this.gl,this.framebuffer),this.outputTexture=null),ue(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,a){return this.downloadMatrixDriver(e,()=>_6(this.gl,t,a,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,a,n,r,s){return P6(this.gl,e,t,a,n,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return $6(this.gl,e,t)}createBufferFromTexture(e,t,a){this.bindTextureToFrameBuffer(e);let n=M6(this.gl,t,a,this.textureConfig);return this.unbindTextureToFrameBuffer(),n}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,a;if(W().getBool("WEBGL_FENCE_API_ENABLED")){let n=e,r=n.fenceSync(n.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),a=()=>{let s=n.clientWaitSync(r,0,0);return s===n.ALREADY_SIGNALED||s===n.CONDITION_SATISFIED},t=r}else W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),a=()=>this.isQueryAvailable(t,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):a=()=>!0;return{query:t,isFencePassed:a}}downloadMatrixFromPackedTexture(e,t,a){return this.downloadMatrixDriver(e,()=>F6(this.gl,t,a))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=b6(t));let a=X7(t);ue(t,()=>t.attachShader(a,this.vertexShader)),ue(t,()=>t.attachShader(a,e)),K7(t,a);let n;return n=Object.assign(a,{vao:this.createVertexArray()}),this.bindVertexArray(n.vao),ue(t,()=>t.bindBuffer(t.ELEMENT_ARRAY_BUFFER,this.indexBuffer)),console.assert(N6(t,n,this.vertexBuffer),"gpgpu_util.bindVertexProgramAttributeStreams not fully successful."),this.debug&&hc(t,n),this.setProgram(n),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&(ue(this.gl,()=>this.gl.deleteProgram(e)),this.deleteVertexArray(e.vao))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&(this.bindVertexArray(this.program.vao),this.debug&&hc(this.gl,this.program)),ue(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,a=!0){return this.throwIfDisposed(),a?a6(this.gl,e,t):n6(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),ue(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,a){this.throwIfDisposed(),this.throwIfNoProgram(),r6(this.gl,e,t,a)}setOutputMatrixTexture(e,t,a){this.setOutputMatrixTextureDriver(e,a,t)}setOutputPackedMatrixTexture(e,t,a){this.throwIfDisposed();let[n,r]=ou(t,a);this.setOutputMatrixTextureDriver(e,n,r)}setOutputMatrixWriteRegion(e,t,a,n){this.setOutputMatrixWriteRegionDriver(a,e,n,t)}setOutputPackedMatrixWriteRegion(e,t,a,n){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&hc(this.gl,this.program),Xu(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;if(this.debug){let t=this.getVertexArray();console.assert(t===this.program.vao,"VAO changed between setProgram and executeProgram!"),this.debugValidate()}ue(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),ue(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=qu(this.gl,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let a=this.gl,n=this.getQueryTimerExtensionWebGL2(),r=a.createQuery();return a.beginQuery(n.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,a=this.getQueryTimerExtensionWebGL2();t.endQuery(a.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let a=this.gl;return a.getQueryParameter(e,a.QUERY_RESULT)/1e6}else{let a=this.getQueryTimerExtensionWebGL1();return a.getQueryObjectEXT(e,a.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let a=this.gl,n=this.getQueryTimerExtensionWebGL2(),r=a.getQueryParameter(e,a.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let a=this.getQueryTimerExtensionWebGL1(),n=a.getQueryObjectEXT(e,a.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),n&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=QV(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:a}=this.itemsToPoll[t];a()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){if(this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),this.itemsToPoll.length>1)return;let a;"setTimeoutCustom"in W().platform&&(a=W().platform.setTimeoutCustom.bind(W().platform)),v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0),()=>0,null,a)}bindTextureToFrameBuffer(e){this.throwIfDisposed(),fc(this.gl,e,this.framebuffer),this.debug&&Xu(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(fc(this.gl,this.outputTexture,this.framebuffer),this.debug&&Xu(this.gl)):b1(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let a=t();return this.unbindTextureToFrameBuffer(),a}setOutputMatrixTextureDriver(e,t,a){this.throwIfDisposed();let n=this.gl;fc(n,e,this.framebuffer),this.debug&&Xu(n),this.outputTexture=e,ue(n,()=>n.viewport(0,0,t,a)),ue(n,()=>n.scissor(0,0,t,a))}setOutputMatrixWriteRegionDriver(e,t,a,n){this.throwIfDisposed(),ue(this.gl,()=>this.gl.scissor(e,t,a,n))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function QV(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:eU,bincountImpl:O6,bincountReduceImpl:tU,castImpl:aU,ceilImpl:nU,concatImpl:rU,equalImpl:sU,expImpl:iU,expm1Impl:oU,floorImpl:lU,gatherNdImpl:uU,gatherV2Impl:dU,greaterImpl:pU,greaterEqualImpl:cU,lessImpl:hU,lessEqualImpl:fU,linSpaceImpl:mU,logImpl:gU,maxImpl:xU,maximumImpl:AU,minimumImpl:yU,multiplyImpl:bU,negImpl:vU,notEqualImpl:wU,prodImpl:kU,raggedGatherImpl:IU,raggedRangeImpl:SU,raggedTensorToTensorImpl:TU,rangeImpl:CU,rsqrtImpl:NU,scatterImpl:EU,sigmoidImpl:RU,simpleAbsImpl:D6,sliceImpl:MU,sparseFillEmptyRowsImpl:$U,sparseReshapeImpl:_U,sparseSegmentReductionImpl:z6,sqrtImpl:PU,stridedSliceImpl:FU,stringNGramsImpl:OU,stringSplitImpl:DU,stringToHashBucketFastImpl:zU,subImpl:LU,tileImpl:BU,topKImpl:WU,transposeImpl:T3,uniqueImpl:VU}=Rh;function L6(e,t){return["x","y","z","w","u","v"].slice(0,t).map(a=>`${e}.${a}`)}function va(e,t){return t===1?[e]:L6(e,t)}function UU(e,t){if(e===1)return"rc";let a="";for(let n=0;n<e;n++)a+=t[n],n<e-1&&(a+=",");return a}var GU=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=Na(this.outputShape.length),this.rank===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let t=va("rc",this.rank),a=gt(this.rank),n=this.getOutOfBoundsCondition(t),r=this.getSetup(t),s=this.getOutput(t);this.userCode=`
void main() {
${a} rc = getOutputCoords();
if(${n}) {
setOutput(vec4(0));
} else {
${r}
setOutput(vec4(${s}));
}
}
`}}getSourceCoordsArr(e){let t=[];for(let a=0;a<=1;a++)for(let n=0;n<=1;n++){let r=`${a===0?"r":"rp1"}, ${n===0?"c":"cp1"}`;for(let s=2;s<this.rank;s++)r=`${e[e.length-1-s]},`+r;t.push(r)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let a=this.rank-2;a<this.rank;a++)t+=`${e[a]} >= ${this.enableShapeUniforms?`outShape[${a}]`:this.outputShape[a]}`,a<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),a=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],n=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
int r = ${t[0]};
int c = ${t[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${a};
bool rEdge = rp1 >= ${n};
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
cEdge ? 0. : getA(${t[1]}),
rEdge ? 0. : getA(${t[2]}),
rEdge || cEdge ? 0. : getA(${t[3]})`}},B6=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=Na(this.outputShape.length);let a="";for(let n=0;n<4;n++){let r="thisRC = rc;";n%2===1&&(r+="thisRC.z += 1;"),n>1&&(r+="thisRC.y += 1;"),a+=`
${r}
${n>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${n}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${n>0?"}":""}
`}this.userCode=`
${HU(t,this.enableShapeUniforms)}
${this.enableShapeUniforms?y3():A3(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
${a}
setOutput(result);
}
`}};function HU(e,t){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${t?oV(["r","c","d"],"inputShape"):go(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var jU=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,a){let n=cx(t,a),r=hx(e,n,a);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=px(e,n,this.gpgpu.gl,this.gpgpu.textureConfig,a);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return n===na.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):n===na.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):n===na.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):n===na.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):n===na.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,a,n){if(this.freeTextures==null)return;let r=cx(a,n),s=hx(t,r,n);s in this.freeTextures||(this.freeTextures[s]=[]);let i=px(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,n),o=W().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function qU(e,t){let a=e;if(t===a.R32F)return 4;if(t===a.R16F)return 2;if(t===a.RGBA32F||t===e.RGBA)return 16;if(t===a.RGBA16F)return 8;if(t===a.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function px(e,t,a,n,r){let s=XU(t,n),i;if(r){let[l,u]=ou(e[0],e[1]);i=l*u}else{let[l,u]=up(e[0],e[1]);i=l*u}let o=qU(a,s);return i*o}function XU(e,t){switch(e){case na.PACKED_2X2_FLOAT32:return I3(t);case na.PACKED_2X2_FLOAT16:return S3(t);case na.UNPACKED_FLOAT32:return v3(t);case na.UNPACKED_FLOAT16:return w3(t);case na.PACKED_4X1_UNSIGNED_BYTE:return k3(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function KU(e){return W().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?na.PACKED_2X2_FLOAT32:na.UNPACKED_FLOAT32:e?na.PACKED_2X2_FLOAT16:na.UNPACKED_FLOAT16}function cx(e,t){if(e===dn.UPLOAD)return na.PACKED_2X2_FLOAT32;if(e===dn.RENDER||e==null)return KU(t);if(e===dn.DOWNLOAD||e===dn.PIXELS)return na.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function hx(e,t,a){return`${e[0]}_${e[1]}_${t}_${a}`}var jn=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=Na(this.outputShape.length),this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},Tn="if (isnan(x)) return x;",ZU="return x;",fx="return abs(x);",YU="return (x >= 0.0) ? x : (exp(x) - 1.0);",JU=Tn+`
return (x < 0.0) ? 0.0 : x;
`,QU=Tn+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Fr="return x;",eG="return 1.0 / (1.0 + exp(-1.0 * x));",tG="return x;",aG=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,nG=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,rG=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,sG="return 1.0 / (1.0 + exp(-1.0 * x));",Br=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=Na(this.outputShape.length),this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},iG=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=Na(this.outputShape.length);let t=e.length,a=va("rc",t),n=gt(t),r=UU(t,a),s=a.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
void main() {
${n} rc = getOutputCoords();
vec4 packedInput = getA(${r});
setOutput(getChannel(packedInput, ${i}));
}
`}},oG=Sn.whereImpl,lG=1e-7,uG=1e-4,Fm={};function dG(e){return e in Fm||(Fm[e]={}),Fm[e]}var pG=W().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),cG=600;function hG(){return W().global.screen==null?1024:W().global.screen.height*W().global.screen.width*window.devicePixelRatio*cG/1024/1024}var hu=class extends yl{constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!W().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof sl)t=e;else{let a=On(W().getNumber("WEBGL_VERSION"),e);t=new sl(a)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let a=On(W().getNumber("WEBGL_VERSION"));t=new sl(a),this.binaryCache=dG(W().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new jU(this.gpgpu),this.numMBBeforeWarning=hG(),this.texData=new vd(this,kt())}nextDataId(){return hu.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}writeTexture(e,t,a,n,r,s){let i=this.makeTensorInfo(t,a),o=this.texData.get(i.dataId);o.isPacked=!1,o.texture={texture:e,texShape:[n,r]},o.texShape=[n,r];let l=Ku(t),u=new dx(l,!1,s),p=this.runWebGLProgram(u,[i],a,[[n,r]]);return p.shape=t,o.texture=null,this.disposeIntermediateTensorInfo(i),p.dataId}write(e,t,a){if((W().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||W().getBool("DEBUG"))&&this.checkNumericalProblems(e),a==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let n={id:this.nextDataId()};return this.texData.set(n,{shape:t,dtype:a,values:e,usage:dn.UPLOAD,refCount:1}),n}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,a,n,r){if(W().getBool("DEBUG")&&this.checkNumericalProblems(t),n==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:a,dtype:n,values:t,usage:dn.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:a,dtype:n,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let c;o?c=new Br(i,Fr):c=new jn(i,Fr);let d=this.runWebGLProgram(c,[{dataId:e,shape:i,dtype:n}],n),h=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),h}if(a!=null)return this.convertAndCacheOnCPU(e);if(n==="string")return a;let l=this.activeTimers!=null,u;l&&(u=v.now());let p;if(n==="complex64"){let c=this.readSync(r.real.dataId),d=this.readSync(r.imag.dataId);p=T.mergeRealAndImagArrays(c,d)}else p=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:a,shape:n,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new Br(n,Fr):h=new jn(n,Fr);let f=this.runWebGLProgram(h,[{dataId:e,shape:n,dtype:s}],s),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(a!=null)return this.convertAndCacheOnCPU(e);if(W().getBool("DEBUG")&&!W().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&W().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&W().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture.texture,...ic(n))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),f=h[0],m=h[1];p=T.mergeRealAndImagArrays(f,m)}else if(l==null)p=this.getValuesFromTexture(e);else{let h=v.sizeFromShape(n);p=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;ue(h,()=>h.deleteBuffer(l))}let c=this.convertAndCacheOnCPU(e,p),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(h=>h(c)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&kt().removeDataId(e,this),this.pendingDeletes--),c}readToGPU(e,t={}){let a=this.texData.get(e),{values:n,shape:r,slice:s,dtype:i,isPacked:o,texture:l}=a;if(i==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(s!=null){let d;o?d=new Br(r,Fr):d=new jn(r,Fr);let h=this.runWebGLProgram(d,[{dataId:e,shape:r,dtype:i}],i),f=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),f}if(l==null)throw n!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),p=kt().makeTensorFromTensorInfo(u),c=this.texData.get(u.dataId);return Object.assign({tensorRef:p},c.texture)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let a=t.map(n=>v.decodeString(n));return Me(e.shape,e.dtype,a)}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return Me(e.shape,e.dtype,t)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let a=e[t];if(!G7(a))throw W().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${a} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${a} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:a,isPacked:n}=this.texData.get(e),r=v.sizeFromShape(t);if(W().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let c=this.decode(e),d=this.texData.get(c.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(d.texture.texture,...ic(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(c),h}let s=W().getBool("WEBGL_PACK")&&n===!0,i=s?Ku(t):t,o=s?new ZV(i):new KV(i),l=this.runWebGLProgram(o,[{shape:i,dtype:a,dataId:e}],"float32"),u=this.texData.get(l.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),p}timerAvailable(){return W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,a=[],n=!1;this.programTimersStack==null?(this.programTimersStack=a,n=!0):this.activeTimers.push(a),this.activeTimers=a,e();let r=v.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=v.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,n&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:a}=this.texData.get(e);return a!=null&&(this.disposeData(a.real.dataId,t),this.disposeData(a.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:a,texShape:n,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(n,a),this.textureManager.releaseTexture(t,n,r,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=pG){return W().getBool("WEBGL_CPU_FORWARD")&&e.every(a=>this.texData.get(a.dataId).texture==null&&v.sizeFromShape(a.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){T.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return oG(e.shape,t)}packedUnaryOp(e,t,a){let n=new Br(e.shape,t),r=this.compileAndRun(n,[e],a);return kt().makeTensorFromTensorInfo(r)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let n=D6(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,n)}if(W().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,fx,e.dtype);let t=new jn(e.shape,fx),a=this.compileAndRun(t,[e]);return kt().makeTensorFromTensorInfo(a)}makeTensorInfo(e,t,a){let n;if(t==="string"&&a!=null&&a.length>0&&v.isString(a[0])){let r=a.map(s=>v.encodeString(s));n=this.write(r,e,t)}else n=this.write(a,e,t);return this.texData.get(n).usage=null,{dataId:n,shape:e,dtype:t}}makeOutput(e,t,a){return kt().makeTensorFromTensorInfo(this.makeTensorInfo(e,t,a),this)}unpackTensor(e){let t=new iG(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new GU(e.shape),a=!0;return this.runWebGLProgram(t,[e],e.dtype,null,a)}packedReshape(e,t){let a=[Us(e.shape),...Gs(e.shape)],n={dtype:e.dtype,shape:a,dataId:e.dataId},r=[Us(t),...Gs(t)],s=new B6(r,a),i=!0,o=[a],l=this.runWebGLProgram(s,[n],e.dtype,o,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let a=this.texData.get(e),{isPacked:n,shape:r,dtype:s}=a;if(t!=null){let c=v.sizeFromShape(r),d=t[0]*t[1]*4;v.assert(c<=d,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let i=Ku(r),o;n?o=new XV(i):o=new qV(i);let l=!0,u=[t!=null?t:ic(i)],p=this.runWebGLProgram(o,[{shape:i,dtype:s,dataId:e}],s,u,l,t);return{dtype:s,shape:r,dataId:p.dataId}}runWebGLProgram(e,t,a,n,r=!1,s){let i=this.makeTensorInfo(e.outputShape,a),o=this.texData.get(i.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===fd.DENSE){let g=s!=null?s:ic(e.outputShape);o.texShape=g.map(x=>x*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),v.sizeFromShape(i.shape)===0)return o.values=v.getTypedArrayFromDType(i.dtype,0),i;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let x=this.texData.get(g.dataId);if(x.texture==null){if(!e.packedInputs&&v.sizeFromShape(g.shape)<=W().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:x.values};e.packedInputs&&(x.isPacked=!0,x.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!x.isPacked!=!!e.packedInputs)g=x.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),x=this.texData.get(g.dataId);else if(x.isPacked&&!md(x.shape,g.shape)){let A=g,y=g.shape;g.shape=x.shape,g=this.packedReshape(g,y),l.push(g),x=this.texData.get(g.dataId),A.shape=y}return{shape:g.shape,texData:x,isUniform:!1}});this.uploadToGPU(i.dataId);let p={shape:i.shape,texData:o,isUniform:!1},c=jV(e,u,p),d=this.getAndSaveBinary(c,()=>GV(this.gpgpu,e,u,p)),h=this.activeTimers!=null,f;h&&(f=this.startTimer()),W().get("ENGINE_COMPILE_ONLY")||HV(this.gpgpu,d,u,p,n),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(f=this.endTimer(f),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(f)}));let m=W().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let g=v.now();g-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!W().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let g=this.unpackTensor(i);return this.disposeIntermediateTensorInfo(i),g}return i}compileAndRun(e,t,a,n,r=!1){return a=a||t[0].dtype,this.runWebGLProgram(e,t,a,n,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(W().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=$e(()=>{if(!W().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=W().getBool("DEBUG");W().set("DEBUG",!1);let t=this.abs(Fe(1e-8)).dataSync()[0];if(W().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?lG:uG}uploadToGPU(e){let t=this.texData.get(e),{shape:a,dtype:n,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let p=t.texShape;if(p==null&&(p=o6(a,o),t.texShape=p),r!=null){let c=Ku(a),d,h=p[1],f=p[0],m=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(o||!m)&&([h,f]=ou(p[0],p[1])),o?d=new JV(c,m):d=new dx(c,m);let g=m?[f,h]:p,x=this.makeTensorInfo(g,n),A=this.texData.get(x.dataId);m?A.usage=dn.PIXELS:A.usage=dn.UPLOAD,A.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(x.dataId),h,f,r);let y=[[f,h]],b=!0,w=this.runWebGLProgram(d,[x],n,y,b),S=this.texData.get(w.dataId);t.texShape=S.texShape,t.isPacked=S.isPacked,t.usage=S.usage,W().get("ENGINE_COMPILE_ONLY")?this.disposeData(w.dataId):(t.texture=S.texture,t.values=null,this.texData.delete(w.dataId)),this.disposeIntermediateTensorInfo(x),l&&(this.uploadWaitMs+=v.now()-u)}else{let c=this.acquireTexture(p,i,n,o);t.texture=c}}convertAndCacheOnCPU(e,t){let a=this.texData.get(e),{dtype:n}=a;return t!=null&&(a.values=fG(t,n)),a.values}acquireTexture(e,t,a,n){if(this.numBytesInGPU+=this.computeBytes(e,a),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,n)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let a=new Promise(n=>{try{this.checkCompletion_(t),n(!0)}catch(r){throw r}});e.push(a)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await x4(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(x3(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:a,infLoc:n,nanLoc:r,inShapesLocations:s,inTexShapesLocations:i,outShapeLocation:o,outShapeStridesLocation:l,outTexShapeLocation:u}=A6(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=a,e.infLoc=n,e.nanLoc=r,e.inShapesLocations=s,e.inTexShapesLocations=i,e.outShapeLocation=o,e.outShapeStridesLocation=l,e.outTexShapeLocation=u}}createTensorFromTexture(e,t,a){let{texture:n,height:r,width:s,channels:i}=e,o=kt().backend;if(!o.gpgpu.gl.isTexture(n))throw new Error("The texture is invalid. Also, please make sure the texture and the TFJS WebGL backend are using the same canvas. If you want to use your own custom canvas, you have to create and use the custom TFJS WebGL backend created from the canvas through 'new tf.MathBackendWebGL(customCanvas)'.");let l=o.writeTexture(n,t,a,r,s,i);return kt().makeTensorFromDataId(l,t,a,o)}};hu.nextDataId=0;function fG(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let a=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let n=0;n<a.length;++n)a[n]=Math.round(e[n]);return a}else throw new Error(`Unknown dtype ${t}`)}var mG="4.1.0";function W6(){W().set("WEBGL_FORCE_F16_TEXTURES",!0)}jd.isBrowser()&&fo("webgl",()=>new hu,2);var gG={forceHalfFloat:W6},C3=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,xl=class{constructor(e,t,a){this.variableNames=["A","B"],this.outputShape=T.assertAndGetBroadcastShape(t,a),this.enableShapeUniforms=Na(this.outputShape.length),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},pp=`
result.r = isNaN.r ? NAN : result.r;
result.g = isNaN.g ? NAN : result.g;
result.b = isNaN.b ? NAN : result.b;
result.a = isNaN.a ? NAN : result.a;
`,cp=class{constructor(e,t,a,n=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=T.assertAndGetBroadcastShape(t,a);let r=this.outputShape.length;this.enableShapeUniforms=Na(r);let s="";if(n)if(r===0||v.sizeFromShape(this.outputShape)===1)s=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(s=`
${gt(r)} coords = getOutputCoords();
`,r===1)this.enableShapeUniforms?s+=`
result.y = (coords + 1) >= outShape ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`:s+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=va("coords",r);this.enableShapeUniforms?s+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= outShape[${r} - 2];
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= outShape[${r} - 1];
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`:s+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${s}
setOutput(result);
}
`}};function Ka(e){let{inputs:t,backend:a}=e,{x:n}=t;return a.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var xG={kernelName:vi,backendName:"webgl",kernelFunc:Ka};function is(e){let{inputs:t,backend:a}=e,{real:n,imag:r}=t,s=a.makeTensorInfo(n.shape,"complex64"),i=a.texData.get(s.dataId),o=Ka({inputs:{x:n},backend:a}),l=Ka({inputs:{x:r},backend:a});return i.complexTensorInfos={real:o,imag:l},s}var AG={kernelName:Sd,backendName:"webgl",kernelFunc:is},V6="return (a < 0.) ? b * a : a;",U6=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function yG(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{alpha:s}=n,i=a.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),o=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new cp(U6,r.shape,i.shape):new xl(V6,r.shape,i.shape),l=a.runWebGLProgram(o,[r,i],"float32");return a.disposeIntermediateTensorInfo(i),l}var bG={kernelName:ki,backendName:"webgl",kernelFunc:yG},G6="return (a < 0.) ? b * a : a;",H6=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function vG(e){let{inputs:t,backend:a}=e,{x:n,alpha:r}=t,s=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new cp(H6,n.shape,r.shape):new xl(G6,n.shape,r.shape);return a.runWebGLProgram(s,[n,r],"float32")}var wG={kernelName:Ui,backendName:"webgl",kernelFunc:vG},fu="if (isnan(x)) return x;";function Qe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:a,dtype:n}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=n||i.dtype;if(o.shouldExecuteOnCPU([i])&&a!=null){let c=o.texData.get(i.dataId),d=a(c.values,l);return o.makeTensorInfo(i.shape,l,d)}let u=W().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,p;return u?p=new Br(i.shape,t):p=new jn(i.shape,e),o.runWebGLProgram(p,[i],l)}}function oa({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:a=!1,supportsComplex:n=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,p=o;if(n&&l.dtype==="complex64"){let f=p.texData.get(l.dataId),m=p.texData.get(u.dataId),[g,x]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(y=>{let[b,w]=y,S={dataId:b.dataId,dtype:b.dtype,shape:l.shape},C={dataId:w.dataId,dtype:w.dtype,shape:u.shape},E=new xl(e,l.shape,u.shape);return p.runWebGLProgram(E,[S,C],ca(b.dtype,w.dtype))}),A=is({inputs:{real:g,imag:x},backend:p});return p.disposeIntermediateTensorInfo(g),p.disposeIntermediateTensorInfo(x),A}let c=s||ca(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||p.shouldExecuteOnCPU([l,u]))&&r!=null){let f=p.texData.get(l.dataId).values,m=p.texData.get(u.dataId).values,g=l.dtype==="string"?T.fromUint8ToStringArray(f):f,x=l.dtype==="string"?T.fromUint8ToStringArray(m):m,[A,y]=r(l.shape,u.shape,g,x,c),b=p.makeTensorInfo(y,c),w=p.texData.get(b.dataId);return w.values=A,b}let d=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return d?h=new cp(t,l.shape,u.shape,a):h=new xl(e,l.shape,u.shape),p.runWebGLProgram(h,[l,u],c)}}function gd(e,t=!1){if(e==="linear")return t?tG:ZU;if(e==="relu")return t?nG:JU;if(e==="elu")return t?aG:YU;if(e==="relu6")return t?rG:QU;if(e==="prelu")return t?H6:G6;if(e==="leakyrelu")return t?U6:V6;if(e==="sigmoid")return t?sG:eG;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var j6=class{constructor(e,t,a,n=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=a,this.enableShapeUniforms=Na(this.outputShape.length);let u=n?e[1]:e[2],p=Math.ceil(u/2),c=n?"i * 2, rc.y":"rc.y, i * 2",d=r?"rc.z, i * 2":"i * 2, rc.z",h=n?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";i&&(o?m=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:l?m=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:m=`vec4 activation(vec4 x) {
${i}
}`,g="result = activation(result);");let x=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let A="rc.x",y="rc.x";e[0]<t[0]?A=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(y=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${m}
// Don't use uniform for sharedDimensionPacked for performance.
const float sharedDimension = ${p}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${p}; i++) {
int batchA = ${A};
int batchB = ${y};
vec4 a = getMatrixA(batchA, ${c});
vec4 b = getMatrixB(batchB, ${d});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${h[0]} * ${f[0]});
result += (${h[1]} * ${f[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${x}
${g}
setOutput(result);
}
`}},mx={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},gx=class{constructor(e,t,a){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=T.assertAndGetBroadcastShape(t,a),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},xx="return a * b;";function N3(e){let{inputs:t,backend:a}=e,{a:n,b:r}=t,s=T.upcastType(n.dtype,r.dtype);if(n.dtype==="complex64"){let o=a.texData.get(n.dataId),l=a.texData.get(r.dataId),u=new gx(mx.REAL,n.shape,r.shape),p=new gx(mx.IMAG,n.shape,r.shape),c=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:n.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:n.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],d=a.runWebGLProgram(u,c,"float32"),h=a.runWebGLProgram(p,c,"float32"),f=is({inputs:{real:d,imag:h},backend:a});return a.disposeIntermediateTensorInfo(d),a.disposeIntermediateTensorInfo(h),f}if(a.shouldExecuteOnCPU([n,r])){let o=a.texData.get(n.dataId),l=a.texData.get(r.dataId),[u,p]=bU(n.shape,r.shape,o.values,l.values,s),c=a.makeTensorInfo(p,s),d=a.texData.get(c.dataId);return d.values=u,c}let i;return W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new cp(xx,n.shape,r.shape):i=new xl(xx,n.shape,r.shape),a.runWebGLProgram(i,[n,r],s)}var kG={kernelName:Oi,backendName:"webgl",kernelFunc:N3};function IG(e,t,a){let n=[Us(e.shape),...Gs(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},s=[Us(t),...Gs(t)],i=new B6(s,n),o=!0,l=[n],u=a.runWebGLProgram(i,[r],e.dtype,l,o);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function ce(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{shape:s}=n,i=a,o=v.sizeFromShape(r.shape),l=v.inferFromImplicitShape(s,o),u=v.sizeFromShape(l);v.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let p=i.texData.get(r.dataId);return p.isPacked&&!md(r.shape,l)&&!(p.texture!==null&&md(p.shape,l))?IG(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var SG={kernelName:jl,backendName:"webgl",kernelFunc:ce},Ax=class{constructor(e,t){this.variableNames=["x"];let{windowSize:a,batchSize:n,inSize:r,outSize:s}=e;this.outputShape=[n,s];let i=Math.floor(a/4)*4,o=a%4,l="sumValue += dot(values, ones);";if(t!=null){let p=1/t;l=`sumValue += dot(values * ${v.isInt(p)?p.toPrecision(2):p}, ones);`}let u="";r%a>0&&(u=`
if (inIdx < 0 || inIdx >= ${r}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${u}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${a};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${i};
if (${o===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${o===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${o===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},TG=class{constructor(e,t){this.variableNames=["x"];let{windowSize:a,batchSize:n,inSize:r,outSize:s}=e;this.outputShape=[n,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(a/4)*4,p=a%4,c=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${o}(values, minMaxValue);
if (${t==="min"} || ${t==="max"}) {
minMaxValue = ${o}(values, minMaxValue);
bvec4 isNaN = isnan(values);
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
minMaxValue = vec4(NAN);
}
}
}
`,d="vec4";t==="all"?(i="1.0",c=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,d="bvec4"):t==="any"&&(i="0.0",c=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,d="bvec4");let h="";r%a>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${h}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${a};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${c}
}
int inIdx = inOffset + ${u};
if (${p===1}) {
${d} values = ${d}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${c}
} else if (${p===2}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${c}
} else if (${p===3}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${c}
}
setOutput(${l});
}
`}};function CG(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let a=t.length?t[t.length-1].outSize:e[1],n=T.computeOptimalWindowSize(a);t.push({inSize:a,windowSize:n,outSize:Math.ceil(a/n)})}return t}function Ao(e,t,a,n){let r=CG(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:u}=r[i],p,c;a==="mean"?p=i===0?new Ax({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new Ax({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):p=new TG({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},a),c=s,s=n.runWebGLProgram(p,[s],t),c.dataId!==e.dataId&&n.disposeIntermediateTensorInfo(c)}return s}var NG=class{constructor(e,t){this.variableNames=["A"];let a=new Array(e.length);for(let s=0;s<a.length;s++)a[s]=e[t[s]];this.outputShape=a,this.rank=a.length;let n=gt(this.rank),r=EG(t);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function EG(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let a=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],n=new Array(t);for(let r=0;r<e.length;r++)n[e[r]]=a[r];return n.join()}var RG=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let a=new Array(e.length);for(let u=0;u<a.length;u++)a[u]=e[t[u]];if(this.outputShape=a,this.rank=a.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let n=gt(this.rank),r=L6("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=r[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${a[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
void main() {
${n} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${o}) {
result[1] = ${l};
}
--${r[this.rank-1]};
if(++${r[this.rank-2]} < ${a[this.rank-2]}) {
result[2] = ${l};
if(${o}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function Ph(e,t,a){let n=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new RG(e.shape,t):new NG(e.shape,t);return a.runWebGLProgram(n,[e],e.dtype)}function MG(e,t,a,n){let r=t,s=e.shape.length,i=v.parseAxisParam(r,e.shape),o=i,l=T.getAxesPermutation(o,s),u=l!=null,p=e;u&&(p=Ph(e,l,n),o=T.getInnerMostAxes(o.length,s)),T.assertAxesAreInnerMostDims("sum",o,s);let[c,d]=T.computeOutAndReduceShapes(p.shape,o),h=c;a&&(h=T.expandShapeToKeepDim(c,i));let f=v.sizeFromShape(d),m=v.sizeFromShape(e.shape)/f,g=ce({inputs:{x:p},attrs:{shape:[m,f]},backend:n}),x=Hd(e.dtype),A=Ao(g,x,"sum",n),y=ce({inputs:{x:A},attrs:{shape:h},backend:n});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(A),u&&n.disposeIntermediateTensorInfo(p),y}function Fh(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n;return MG(r,s,i,a)}var $G={kernelName:ao,backendName:"webgl",kernelFunc:Fh};function Ia(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{perm:s}=n,i=a,o=r.shape.length,l=new Array(o);for(let p=0;p<l.length;p++)l[p]=r.shape[s[p]];let u;if(i.shouldExecuteOnCPU([r])){let p=i.texData.get(r.dataId).values,c=T3(p,r.shape,r.dtype,s,l);u=i.makeTensorInfo(l,r.dtype);let d=i.texData.get(u.dataId);d.values=c}else u=Ph(r,s,i);return u}var _G={kernelName:gr,backendName:"webgl",kernelFunc:Ia},q6=1e3;function Pc({a:e,b:t,transposeA:a,transposeB:n,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,p=t.shape.length,c=a?e.shape[u-2]:e.shape[u-1],d=n?t.shape[p-1]:t.shape[p-2],h=a?e.shape[u-1]:e.shape[u-2],f=n?t.shape[p-2]:t.shape[p-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),x=v.sizeFromShape(m),A=v.sizeFromShape(g),y=mo.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${a} and transposeB=${n} must match.`);let b=a?[x,c,h]:[x,h,c],w=n?[A,f,d]:[A,d,f],S=ce({inputs:{x:e},backend:r,attrs:{shape:b}}),C=ce({inputs:{x:t},backend:r,attrs:{shape:w}}),E=[S,C],_=Math.max(x,A),$=a?S.shape[1]:S.shape[2],M=s!=null,I=i!=null,N=l==="leakyrelu",O=l!=null?gd(l,!0):null,L=M||I||N||O!=null,B;if((h===1||f===1)&&$>q6&&L===!1){let j=S,U=C;a&&(j=Ia({inputs:{x:S},backend:r,attrs:{perm:[0,2,1]}}),E.push(j)),n&&(U=Ia({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),E.push(U));let H=f!==1,V=f===1,Q=j;H&&(Q=ce({inputs:{x:j},backend:r,attrs:{shape:[_,$,1]}}),E.push(Q));let Z=f===1?2:1,re=U;V&&(re=ce({inputs:{x:U},backend:r,attrs:{shape:[_,1,$]}}),E.push(re));let ee=N3({inputs:{a:Q,b:re},backend:r});B=Fh({inputs:{x:ee},backend:r,attrs:{axis:Z,keepDims:!0}}),E.push(ee)}else{let j=ca(e.dtype,t.dtype),U=new j6(b,w,[_,h,f],a,n,M,O,I,N),H=[S,C];if(s!=null&&H.push(s),I&&H.push(i),N){let V=r.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));H.push(V),E.push(V)}B=r.runWebGLProgram(U,H,j)}let G=ce({inputs:{x:B},backend:r,attrs:{shape:y}});E.push(B);for(let j of E)r.disposeIntermediateTensorInfo(j);return G}function PG(e){let{inputs:t,backend:a,attrs:n}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:c}=n;return Pc({a:r,b:s,transposeA:l,transposeB:u,backend:a,bias:i,preluActivationWeights:o,leakyreluAlpha:c,activation:p})}var FG={kernelName:Gr,backendName:"webgl",kernelFunc:PG},yx="return abs(x);";function OG(e){let{inputs:t,backend:a}=e,{x:n}=t;if(a.shouldExecuteOnCPU([n])&&n.dtype!=="complex64"){let s=a.texData.get(n.dataId),i=D6(s.values);return a.makeTensorInfo(n.shape,n.dtype,i)}let r;return W().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Br(n.shape,yx):r=new jn(n.shape,yx),a.runWebGLProgram(r,[n],n.dtype)}var DG={kernelName:vl,backendName:"webgl",kernelFunc:OG},zG=Tn+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,LG=Qe({opSnippet:zG}),BG={kernelName:wl,backendName:"webgl",kernelFunc:LG},WG=Tn+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,VG=Qe({opSnippet:WG}),UG={kernelName:kl,backendName:"webgl",kernelFunc:VG},bx="return a + b;",GG=oa({opSnippet:bx,packedOpSnippet:bx,supportsComplex:!0,cpuKernelImpl:eU}),HG={kernelName:Qr,backendName:"webgl",kernelFunc:GG},jG=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let a=[];this.variableNames.forEach(r=>{a.push(`float v${r} = get${r}AtOutCoords();`)});let n=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${a.join(`
`)}
float result = ${n};
setOutput(result);
}
`}},qG=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let a=[];this.variableNames.forEach(r=>{a.push(`vec4 v${r} = get${r}AtOutCoords();`)});let n=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${a.join(`
`)}
vec4 result = ${n};
setOutput(result);
}
`}};function xc(e){let{inputs:t,backend:a}=e,n=t;if(n.length===1)return Ka({inputs:{x:n[0]},backend:a});if(n.length>W().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(n.length/2),l=xc({inputs:n.slice(0,o),backend:a}),u=xc({inputs:n.slice(o),backend:a});return xc({inputs:[l,u],backend:a})}let r=n.map(o=>o.dtype).reduce((o,l)=>ca(o,l)),s=n.map(o=>o.shape),i=W().getBool("WEBGL_PACK")?new qG(n[0].shape,s):new jG(n[0].shape,s);return a.runWebGLProgram(i,n,r)}var XG={kernelName:qs,backendName:"webgl",kernelFunc:xc};function KG(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=T.getAxesPermutation(u,o),c=r;p!=null&&(c=Ia({inputs:{x:r},backend:a,attrs:{perm:p}}),u=T.getInnerMostAxes(u.length,o)),T.assertAxesAreInnerMostDims("all",u,o);let[d,h]=T.computeOutAndReduceShapes(c.shape,u),f=v.sizeFromShape(h),m=ce({inputs:{x:c},backend:a,attrs:{shape:[-1,f]}}),g=Ao(m,m.dtype,"all",a),x;if(i){let A=T.expandShapeToKeepDim(d,l);x=ce({inputs:{x:g},backend:a,attrs:{shape:A}})}else x=ce({inputs:{x:g},backend:a,attrs:{shape:d}});return a.disposeIntermediateTensorInfo(m),a.disposeIntermediateTensorInfo(g),p!=null&&a.disposeIntermediateTensorInfo(c),x}var ZG={kernelName:Xs,backendName:"webgl",kernelFunc:KG};function YG(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=T.getAxesPermutation(u,o),c=r;p!=null&&(c=Ia({inputs:{x:r},backend:a,attrs:{perm:p}}),u=T.getInnerMostAxes(u.length,o)),T.assertAxesAreInnerMostDims("any",u,o);let[d,h]=T.computeOutAndReduceShapes(c.shape,u),f=v.sizeFromShape(h),m=ce({inputs:{x:c},backend:a,attrs:{shape:[-1,f]}}),g=Ao(m,m.dtype,"any",a),x;if(i){let A=T.expandShapeToKeepDim(d,l);x=ce({inputs:{x:g},backend:a,attrs:{shape:A}})}else x=ce({inputs:{x:g},backend:a,attrs:{shape:d}});return a.disposeIntermediateTensorInfo(m),a.disposeIntermediateTensorInfo(g),p!=null&&a.disposeIntermediateTensorInfo(c),x}var JG={kernelName:Ks,backendName:"webgl",kernelFunc:YG},QG=class{constructor(e,t,a){this.variableNames=["A"];let{windowSize:n,batchSize:r,outSize:s}=e;a||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=a?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${n}; i++) {
int inIdx = ${o};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},eH=class{constructor(e,t,a,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${a.charAt(0).toUpperCase()+a.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),n||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=gt(o),u=va("coords",o),p,c;if(s===1){c=o+1;let C=gt(c);p=`
${C} sourceLocR = ${C}(${u.join()}, 0);
++${u[o-1]};
${C} sourceLocG = ${C}(${u.join()}, 0);
++${u[o-2]};
${C} sourceLocA = ${C}(${u.join()}, 0);
--${u[o-1]};
${C} sourceLocB = ${C}(${u.join()}, 0);
--${u[o-2]};`}else c=o,p=`
${l} sourceLocR = coords;
++${u[o-1]};
${l} sourceLocG = coords;
++${u[o-2]};
${l} sourceLocA = coords;
--${u[o-1]};
${l} sourceLocB = coords;
--${u[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,c),h="."+d[c-1],f=d.map(C=>"int "+C),m=va("sourceLocR",c-1).concat("inIdx.r"),g=va("sourceLocG",c-1).concat("inIdx.g"),x=va("sourceLocB",c-1).concat("inIdx.b"),A=va("sourceLocA",c-1).concat("inIdx.a"),y=a==="max"?"greaterThan":"lessThan",b=n?"":`
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${x.join()}),
getBestIndicesAChannel(${A.join()})));`,w=`vec4(
getAChannel(${m.join()}),
hasNextCol ? getAChannel(${g.join()}) : 0.,
hasNextRow ? getAChannel(${x.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${A.join()}) : 0.)`,S=n?"":`
float getBestIndicesAChannel(${f.join()}) {
return getChannel(getBestIndicesA(${d.join()}),
vec2(${d.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${f.join()}) {
return getChannel(getA(${d.join()}),
vec2(${d.slice(-2).join()}));
}
${S}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
${p}
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
sourceLocB${h}, sourceLocA${h}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${w};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${b}
vec4 candidate = ${w};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${y}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function X6(e,t,a,n=null){let r=t.shape[0],s=t.shape[1];n!=null&&(r=n.shape[0],s=n.shape[1]);let i=T.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new QG(o,a,n==null),u=[t];n!=null&&u.push(n);let p=e.runWebGLProgram(l,u,"int32");if(p.shape[1]===1)return p;let c=X6(e,t,a,p);return e.disposeIntermediateTensorInfo(p),c}function K6(e,t,a,n=null){let r=n!=null?n.shape:t.shape,s=r[r.length-1],i=T.computeOptimalWindowSize(s),o=new eH(r,i,a,n==null),l=n==null?[t]:[t,n],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let p=K6(e,t,a,u);return e.disposeIntermediateTensorInfo(u),p}return u}function Z6(e,t,a,n){let r=[a];if(T.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),r,t.shape.length),!W().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=e.texData.get(t.dataId),o=i!==null&&i.isPacked,l=t;o&&(l=e.unpackTensor(t),s.push(l));let[u,p]=T.computeOutAndReduceShapes(l.shape,r),c=v.sizeFromShape(p),d=ce({inputs:{x:l},backend:e,attrs:{shape:[-1,c]}});s.push(d);let h=X6(e,d,n);s.push(h);let f=ce({inputs:{x:h},backend:e,attrs:{shape:u}});return s.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return K6(e,t,n)}function tH(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s}=n,i=v.parseAxisParam(s,r.shape),o=T.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Ia({inputs:{x:r},backend:a,attrs:{perm:o}}),u.push(l),i=T.getInnerMostAxes(i.length,l.shape.length)),T.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let p=Z6(a,l,i[0],"max");return u.forEach(c=>a.disposeIntermediateTensorInfo(c)),p}var aH={kernelName:Zs,backendName:"webgl",kernelFunc:tH};function nH(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s}=n,i=v.parseAxisParam(s,r.shape),o=T.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Ia({inputs:{x:r},backend:a,attrs:{perm:o}}),u.push(l),i=T.getInnerMostAxes(i.length,l.shape.length)),T.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let p=Z6(a,l,i[0],"min");return u.forEach(c=>a.disposeIntermediateTensorInfo(c)),p}var rH={kernelName:kd,backendName:"webgl",kernelFunc:nH},sH=Tn+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,iH=Qe({opSnippet:sH}),oH={kernelName:Il,backendName:"webgl",kernelFunc:iH},lH=Tn+"return log(x + sqrt(x * x + 1.0));",uH=Qe({opSnippet:lH}),dH={kernelName:Sl,backendName:"webgl",kernelFunc:uH},pH=Tn+`
return atan(x);
`,cH=Qe({opSnippet:pH}),hH={kernelName:Tl,backendName:"webgl",kernelFunc:cH},fH=C3+`
return atan(a, b);
`,mH=`
vec4 result = atan(a, b);
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+pp+`
return result;
`,gH=oa({opSnippet:fH,packedOpSnippet:mH}),xH={kernelName:Nl,backendName:"webgl",kernelFunc:gH},AH=Tn+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,yH=Qe({opSnippet:AH}),bH={kernelName:Cl,backendName:"webgl",kernelFunc:yH},xd=class{constructor(e,t,a,n=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&a)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterHeight,c=e.effectiveFilterWidth,d=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,x="0.0";if(f||(x="-1.0 / 1e-20"),a){let C=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${d}, ${h});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${p};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${c};
wC += ${u}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${C} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${n?r?m:g:`wR * ${c} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let A="max",y=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(y="avgValue / count");let b=Math.floor(s/4)*4,w=s%4,S=`
if (${f}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${A}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${d}, ${h});
const float initializationValue = ${x};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${x});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${p};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${b}; wC += 4) {
int xC = xCCorner + wC * ${u};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
getValue(batch, xR, xC + 3 * ${u}, d)
);
${S}
}
int xC = xCCorner + ${b};
if (${w===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${S}
} else if (${w===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
initializationValue,
initializationValue
);
${S}
} else if (${w===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
initializationValue
);
${S}
}
}
setOutput(${y});
}
`}},E3=class{constructor(e,t,a,n=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&a)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,p=e.dilationHeight,c=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,x=e.padInfo.left;this.outputShape=e.outShape;let A=t==="avg",y="0.0";if(A||(y="-1.0 / 1e-20"),a){let _=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${m}, ${g}, ${x});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${d};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f};
wC += ${c}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${_} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${n?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
wR * ${f} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let b="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let S=Math.floor(s/4)*4,C=s%4,E=`
if (${A}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${b}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${m}, ${g}, ${x});
const float initializationValue = ${y};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${y});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${d};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${S}; wC += 4) {
int xC = xCCorner + wC * ${c};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${c}, ch),
getValue(batch, xD, xR, xC + 2 * ${c}, ch),
getValue(batch, xD, xR, xC + 3 * ${c}, ch)
);
${E}
}
int xC = xCCorner + ${S};
if (${C===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${E}
} else if (${C===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${c}, ch),
initializationValue,
initializationValue
);
${E}
} else if (${C===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${c}, ch),
getValue(batch, xD, xR, xC + 2 * ${c}, ch),
initializationValue
);
${E}
}
}
setOutput(${w});
}
}
`}};function vH(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t;lu(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;v.assert(T.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=T.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))return Ka({inputs:{x:r},backend:a});let c=new xd(p,"avg",!1);return a.runWebGLProgram(c,[r],"float32")}var wH={kernelName:Ys,backendName:"webgl",kernelFunc:vH};function kH(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=n,p=[1,1,1],c=T.computePool3DInfo(r.shape,s,i,p,o,l,u),d=new E3(c,"avg",!1);return a.runWebGLProgram(d,[r],"float32")}var IH={kernelName:Vc,backendName:"webgl",kernelFunc:kH},SH=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,a=e.filterWidth,n=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,p=l-1-e.padInfo.left,c=1/(t*a);this.userCode=`
const ivec2 pads = ivec2(${u}, ${p});
const float avgMultiplier = float(${c});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${o};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},TH=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,a=e.filterHeight,n=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterDepth,c=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=p-1-e.padInfo.front,f=c-1-e.padInfo.top,m=d-1-e.padInfo.left,g=1/(t*a*n);this.userCode=`
const ivec3 pads = ivec3(${h}, ${f}, ${m});
const float avgMultiplier = float(${g});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${p};
wD += ${o}) {
float dyD = float(dyDCorner + wD) / ${r}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${c};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${d};
wC += ${u}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function CH(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=n,c=[1,1,1],d=T.computePool3DInfo(i.shape,o,l,c,u,p),h=new TH(d);return a.runWebGLProgram(h,[r],i.dtype)}var NH={kernelName:W1,backendName:"webgl",kernelFunc:CH};function EH(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,input:s}=t,i=s;lu([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=n,p=T.computePool2DInfo(i.shape,o,l,1,u),c=new SH(p);return a.runWebGLProgram(c,[r],i.dtype)}var RH={kernelName:B1,backendName:"webgl",kernelFunc:EH};function MH(e){let{inputs:t,backend:a,attrs:n}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=n;return Pc({a:r,b:s,transposeA:i,transposeB:o,backend:a})}var $H={kernelName:Js,backendName:"webgl",kernelFunc:MH},_H=class{constructor(e,t,a,n,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],T.assertAndGetBroadcastShape(e,t),T.assertAndGetBroadcastShape(e,a);let i="0.0";n!=null&&(T.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(T.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${o};
float inv = scale * inversesqrt(variance + float(${s}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},PH=class{constructor(e,t,a,n,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],T.assertAndGetBroadcastShape(e,t),T.assertAndGetBroadcastShape(e,a);let i="vec4(0.0)";n!=null&&(T.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(T.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${o};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
setOutput((x - mean) * inv + offset);
}
`}},FH=({inputs:e,backend:t,attrs:a})=>{let{x:n,mean:r,variance:s,offset:i,scale:o}=e;v.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=a;l==null&&(l=.001);let u=[n,r,s],p=null;i!=null&&(p=i.shape,u.push(i));let c=null;o!=null&&(c=o.shape,u.push(o));let d=W().getBool("WEBGL_PACK_NORMALIZATION")?new PH(n.shape,r.shape,s.shape,p,c,l):new _H(n.shape,r.shape,s.shape,p,c,l);return t.runWebGLProgram(d,u,u[0].dtype)},OH={kernelName:xi,backendName:"webgl",kernelFunc:FH},DH=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=gt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let a=zH(this.rank),n,r=e.map((s,i)=>`sourceLoc.${k1[i]} = start[${i}] + coords.${k1[i]};`);n=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${r.join(`
`)}
`,this.userCode=`
void main() {
${n}
setOutput(getSource(${a}));
}
`}},k1=["x","y","z","w","u","v"];function zH(e){if(e===1)return"sourceLoc";if(e<=6)return k1.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var LH=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=gt(this.rank),a=va("coords",this.rank),n=va("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${n.slice(-2).join()})`,s=`getChannel(getSource(${n.join()}), ${r})`,i=`
result.x = ${s};
if (++${a[this.rank-1]} < ${e[this.rank-1]}) {
++${n[this.rank-1]};
result.y = ${s};
--${n[this.rank-1]};
}
`,o=this.rank===1?"":`
--${a[this.rank-1]};
if (++${a[this.rank-2]} < ${e[this.rank-2]}) {
++${n[this.rank-2]};
result.z = ${s};
if (++${a[this.rank-1]} < ${e[this.rank-1]}) {
++${n[this.rank-1]};
result.w = ${s};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((u,p)=>`start[${p}]`).join()});`:e.map((u,p)=>`${n[p]} = ${a[p]} + start[${p}];`).join(`
`);this.userCode=`
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${i}
${o}
setOutput(result);
}
`}};function BH(e,t,a,n){let r=n.texData.get(e.dataId),s=n.makeTensorInfo(a,e.dtype),i=n.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=a,i.dtype=e.dtype;let o=It.computeFlatOffset(t,v.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=n.dataRefCount.get(i.slice.origDataId)||1;return n.dataRefCount.set(i.slice.origDataId,l+1),s}function mu(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{begin:s,size:i}=n,[o,l]=It.parseSliceParams(r,s,i);if(It.assertParamsValid(r,o,l),v.sizeFromShape(l)===0)return a.makeTensorInfo(l,r.dtype,[]);if(a.shouldExecuteOnCPU([r])||r.dtype==="string"){let c=a.texData.get(r.dataId),d=MU(c.values,o,l,r.shape,r.dtype);return a.makeTensorInfo(l,r.dtype,d)}let{isPacked:u}=a.texData.get(r.dataId),p=It.isSliceContinous(r.shape,o,l);if(u||!p){let c=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new LH(l):new DH(l),d=[o];return a.runWebGLProgram(c,[r],r.dtype,d)}return a.uploadToGPU(r.dataId),BH(r,o,l,a)}var WH={kernelName:Kl,backendName:"webgl",kernelFunc:mu},VH=e=>{let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{blockShape:s,crops:i}=n;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((A,y)=>A*y),l=T.getReshaped(r.shape,s,o),u=T.getPermuted(l.length,s.length),p=T.getReshapedPermuted(r.shape,s,o),c=T.getSliceBeginCoords(i,s.length),d=T.getSliceSize(p,i,s.length),h=[],f=ce({inputs:{x:r},backend:a,attrs:{shape:l}}),m=Ia({inputs:{x:f},backend:a,attrs:{perm:u}}),g=ce({inputs:{x:m},backend:a,attrs:{shape:p}}),x=mu({inputs:{x:g},backend:a,attrs:{begin:c,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(A=>a.disposeIntermediateTensorInfo(A)),x},UH={kernelName:El,backendName:"webgl",kernelFunc:VH};function GH(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,weights:s}=t,{size:i}=n,o=a.readSync(r.dataId),l=a.readSync(s.dataId),u=O6(o,l,s.dtype,s.shape,i);return a.makeTensorInfo([i],s.dtype,u)}var HH={kernelName:Id,backendName:"webgl",kernelFunc:GH};function jH(e){let{inputs:t,backend:a}=e,{s0:n,s1:r}=t,s=a.readSync(n.dataId),i=a.readSync(r.dataId),o=T.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return a.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var qH={kernelName:Uc,backendName:"webgl",kernelFunc:jH},XH="return float(a != b);",Y6=oa({opSnippet:XH,cpuKernelImpl:wU,dtype:"bool"}),KH={kernelName:Di,backendName:"webgl",kernelFunc:Y6};function hp(e){let{inputs:t,backend:a}=e,{input:n}=t,r=a.texData.get(n.dataId);return Ka({inputs:{x:r.complexTensorInfos.real},backend:a})}var ZH={kernelName:Md,backendName:"webgl",kernelFunc:hp},YH="return float(int(x));";function JH(e,t){let a=new jn(e.shape,YH),n=t.runWebGLProgram(a,[e],"int32");return{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}function I1(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{dtype:s}=n;if(s==="complex64"){if(r.dtype==="complex64")return Ka({inputs:{x:r},backend:a});let i=hn(r.shape),o=I1({inputs:{x:r},backend:a,attrs:{dtype:"float32"}}),l=is({inputs:{real:o,imag:i},backend:a});return i.dispose(),a.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=hp({inputs:{input:r},backend:a}),o=I1({inputs:{x:i},backend:a,attrs:{dtype:s}});return a.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(r.dtype,s)){let i=Ka({inputs:{x:r},backend:a});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(a.shouldExecuteOnCPU([r])){let i=a.texData.get(r.dataId).values,[o,l,u]=aU(i,r.shape,r.dtype,s);return a.makeTensorInfo(o,l,u)}if(s==="int32")return JH(r,a);if(s==="bool"){let i=a.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=Y6({inputs:{a:r,b:i},backend:a});return a.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var QH={kernelName:Qs,backendName:"webgl",kernelFunc:I1},vx="return ceil(x);",ej=Qe({opSnippet:vx,packedOpSnippet:vx,cpuKernelImpl:nU}),tj={kernelName:ei,backendName:"webgl",kernelFunc:ej},aj=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}},nj=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}};function rj(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=n,o;W().getBool("WEBGL_PACK_CLIP")?o=new nj(r.shape):o=new aj(r.shape);let l=[[s],[i]];return a.runWebGLProgram(o,[r],r.dtype,l)}var sj={kernelName:es,backendName:"webgl",kernelFunc:rj},ij=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function wx(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function oj(e){let{inputs:t,backend:a}=e,{x:n}=t,r=a.texData.get(n.dataId),s=new ij(n.shape),i=[wx(n,r.complexTensorInfos.real),wx(n,r.complexTensorInfos.imag)];return a.runWebGLProgram(s,i,i[0].dtype)}var lj={kernelName:Gc,backendName:"webgl",kernelFunc:oj},uj=class{constructor(e){this.outputShape=[],this.outputShape=T.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let a=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];a.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let n=t.length,r=t[t.length-1];a.push(`else setOutput(getT${n}(yR, yC-${r}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${a.join(`
`)}
}
`}},dj=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=T.computeOutShape(e,t);let a=this.outputShape,n=a.length,r=gt(n),s=va("coords",n),i=["x","y","z","w","u","v"].slice(0,n);this.variableNames=e.map((f,m)=>`T${m}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let f=1;f<o.length;f++)o[f]=o[f-1]+e[f][t];let l=i[t],u=i.slice(-2),p=i.join(),c=`if (${l} < ${o[0]}) {
return getChannel(
getT0(${p}), vec2(${u.join()}));
}`;for(let f=1;f<o.length;f++){let m=o[f-1];c+=`
if (${l} < ${o[f]} && ${l} >= ${o[f-1]}) {
return getChannel(
getT${f}(${lc(i,l,m)}),
vec2(${lc(u,l,m)}));
}`}let d=o.length,h=o[o.length-1];c+=`
return getChannel(
getT${d}(${lc(i,l,h)}),
vec2(${lc(u,l,h)}));`,this.userCode=`
float getValue(${i.map(f=>"int "+f)}) {
${c}
}
void main() {
${r} coords = getOutputCoords();
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
${s[n-1]} = ${s[n-1]} + 1;
if (${s[n-1]} < ${a[n-1]}) {
result.g = getValue(${s});
}
${s[n-2]} = ${s[n-2]} + 1;
if (${s[n-2]} < ${a[n-2]}) {
result.a = getValue(${s});
}
${s[n-1]} = ${s[n-1]} - 1;
if (${s[n-2]} < ${a[n-2]} &&
${s[n-1]} < ${a[n-1]}) {
result.b = getValue(${s});
}
setOutput(result);
}
`}};function lc(e,t,a){let n=e.indexOf(t);return e.map((r,s)=>s===n?`${r} - ${a}`:r).join()}function Oh(e){let{inputs:t,backend:a}=e,{input:n}=t,r=a.texData.get(n.dataId);return Ka({inputs:{x:r.complexTensorInfos.imag},backend:a})}var pj={kernelName:Rd,backendName:"webgl",kernelFunc:Oh};function Zu(e,t,a){let n=e[0].dtype;if(n==="complex64"){let h=e.map(A=>hp({inputs:{input:A},backend:a})),f=e.map(A=>Oh({inputs:{input:A},backend:a})),m=Zu(h,t,a),g=Zu(f,t,a),x=is({inputs:{real:m,imag:g},backend:a});return h.forEach(A=>a.disposeIntermediateTensorInfo(A)),f.forEach(A=>a.disposeIntermediateTensorInfo(A)),a.disposeIntermediateTensorInfo(m),a.disposeIntermediateTensorInfo(g),x}let r=a.shouldExecuteOnCPU(e);if(n==="string"&&(r=!0),r){let h=e.map(b=>{let w=[-1,v.sizeFromShape(b.shape.slice(t))];return ce({inputs:{x:b},backend:a,attrs:{shape:w}})}),f=h.map(b=>({vals:a.readSync(b.dataId),shape:b.shape})),m=T.computeOutShape(h.map(b=>b.shape),1),g=h[0].shape[0]===1,x=rU(f,m,n,g),A=T.computeOutShape(e.map(b=>b.shape),t),y=a.makeTensorInfo(A,n,x);return h.forEach(b=>a.disposeIntermediateTensorInfo(b)),y}let s=e.filter(h=>v.sizeFromShape(h.shape)>0),i=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&s[0].shape.length>1;if(s.length===1){let h=i?new jn(e[0].shape,Fr):new Br(e[0].shape,Fr);return a.runWebGLProgram(h,e,n)}let o=W().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER");if(s.length>o){let h=[];for(let m=0;m<s.length;m+=o){let g=s.slice(m,m+o);h.push(Zu(g,t,a))}let f=Zu(h,t,a);for(let m of h)a.disposeIntermediateTensorInfo(m);return f}if(i){let h=new dj(s.map(f=>f.shape),t);return a.runWebGLProgram(h,s,n)}let{tensors2D:l,outShape:u}=cj(s,t,a),p=new uj(l.map(h=>h.shape)),c=a.runWebGLProgram(p,l,n);l.forEach(h=>a.disposeIntermediateTensorInfo(h));let d=ce({inputs:{x:c},attrs:{shape:u},backend:a});return a.disposeIntermediateTensorInfo(c),d}function cj(e,t,a){let n=T.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>ce({inputs:{x:r},attrs:{shape:[-1,v.sizeFromShape(r.shape.slice(t))]},backend:a})),outShape:n}}function J6(e){let{inputs:t,backend:a,attrs:n}=e,{axis:r}=n,s=v.parseAxisParam(r,t[0].shape)[0],i=t.map(u=>u.shape);T.assertParamsConsistent(i,s);let o=T.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(o)===0)return a.makeTensorInfo(o,t[0].dtype,[]);let l=t.filter(u=>v.sizeFromShape(u.shape)>0);return l.length===1?Ka({inputs:{x:l[0]},backend:a}):Zu(l,s,a)}var hj={kernelName:Rl,backendName:"webgl",kernelFunc:J6},Q6=class{constructor(e,t=!1,a=null,n=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,p=e.dilationWidth,c=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,x=m?2:3,A=m?3:1,y="",b="";a&&(n?y=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${a}
}`:r?y=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${a}
}`:y=`
float activation(float x) {
${a}
}
`,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${y}
const ivec2 strides = ivec2(${o}, ${l});
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${A}];
ivec2 xRCCorner =
ivec2(coords[${g}], coords[${x}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${c}; wR++) {
int xR = xRCorner + wR * ${u};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${p};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${m}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${f===1}) {
if (${m}) {
dotProd +=
getX(batch, xR, xC, ${h}) *
getW(wR, wC, ${h}, d2);
} else {
dotProd +=
getX(batch, ${h}, xR, xC) *
getW(wR, wC, ${h}, d2);
}
} else if (${f===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2)
);
if (${m}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${f===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2),
getW(wR, wC, ${h} + 2, d2)
);
if (${m}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1),
getX(batch, xR, xC, ${h} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC),
getX(batch, ${h} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${w}
${b}
setOutput(result);
}
`}},fj=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,a=e.padInfo.top,n=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.filterDepth,c=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${r}, ${s}, ${i});
const ivec3 pads = ivec3(${t}, ${a}, ${n});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${p}; wF++) {
int xF = xFCorner + wF * ${o};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${c}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${f===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${h}) *
getW(wF, wR, wC, ${h}, d2);
} else if (${f===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${f===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1),
getX(batch, xF, xR, xC, ${h} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2),
getW(wF, wR, wC, ${h} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},ev=class{constructor(e,t=!1,a=null,n=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Na(this.outputShape.length);let s=e.padInfo.left,i=e.strideWidth,o=e.dilationWidth,l=e.filterHeight,u=e.filterWidth,p=u,c=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let m=0;m<u;m++)c+=`
vec4 xTexelC${m*2};
int xTexelC${m*2}Ready;
vec4 xTexelC${m*2+1};
int xTexelC${m*2+1}Ready;
vec4 xC${m};`;c+=`
for (int r = 0; r < ${l}; r++) {
for (int d1 = 0; d1 < ${e.inChannels}; d1 += 2) {
`;for(let m=0;m<u;m++)c+=`
xTexelC${m*2} = vec4(0.0);
xTexelC${m*2}Ready = 0;
xTexelC${m*2+1} = vec4(0.0);
xTexelC${m*2+1}Ready = 0;
xC${m} = vec4(0.0);`;c+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let m=0;m<(p+1)/2;m++){let g=m*2;if(c+=`
xC = xCCorner + ${g*o};
`,i===1){if(g<u&&(s%2===1?(c+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
`,o===1&&g>0?c+=`
xC${g} = vec4(xTexelC${g-2}.zw, xTexelC${g}.xy);
`:c+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${g} = vec4(previous.zw, xTexelC${g}.xy);
} else {
xC${g} = vec4(0.0, 0.0, xTexelC${g}.xy);
}
`):c+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
xC${g} = xTexelC${g};
`,g+1<u)){let x=s%2===0?v.nearestLargerEven(o):o;o%2===0&&s%2===1||o%2!==0&&s%2!==1?(c+=`
xCOffset = xC + imod(pads[1], 2) + ${x};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.0);
}
xTexelC${g+1}Ready = 1;
}
`,o>1?c+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
xC${g+1} = vec4(previous.zw, xTexelC${g+1}.xy);
} else {
xC${g+1} = vec4(0.0, 0.0, xTexelC${g+1}.xy);
}
`:c+=`
xC${g+1} = vec4(xTexelC${g}.zw, xTexelC${g+1}.xy);
`):x===1?c+=`
xC${g+1} = xTexelC${g};
`:c+=`
xCOffset = xC + ${x};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.0);
}
xTexelC${g+1}Ready = 1;
}
xC${g+1} = xTexelC${g+1};
`}}else g<u&&(s%2===1?(c+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.0);
}
xTexelC${g+1}Ready = 1;
}
xC${g} = vec4(xTexelC${g}.zw, xTexelC${g+1}.zw);
`,g+1<u&&(c+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${g+1} = vec4(xTexelC${g+1}.xy, final.xy);
`)):(c+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.);
}
xTexelC${g+1}Ready = 1;
}
xC${g} = vec4(
xTexelC${g}.xy, xTexelC${g+1}.xy);
`,g+1<u&&(c+=`
xC${g+1} = vec4(xTexelC${g}.zw, xTexelC${g+1}.zw);
`)));g<u&&(c+=`
wTexel = getW(r, ${g}, d1, d2);
dotProd += xC${g}.xxzz * vec4(wTexel.xy, wTexel.xy);
if(d1 + 1 < ${e.inChannels}) {
dotProd += xC${g}.yyww * vec4(wTexel.zw, wTexel.zw);
}
`,g+1<u&&(c+=`
wTexel = getW(r, ${g+1}, d1, d2);
dotProd += xC${g+1}.xxzz * vec4(wTexel.xy, wTexel.xy);
if(d1 + 1 < ${e.inChannels}) {
dotProd += xC${g+1}.yyww * vec4(wTexel.zw, wTexel.zw);
}
`))}c+=`
}
`,c+=`
}
`,c+=`
}
`;let d="",h="";a&&(n?d=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${a}
}`:r?d=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${a}
}`:d=`vec4 activation(vec4 x) {
${a}
}`,h="result = activation(result);");let f=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${d}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${c}
vec4 result = dotProd - vec4(0.000000000000001);
${f}
${h}
setOutput(result);
}
`}},mj=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec4"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=Na(this.outputShape.length);let{dataFormat:a}=t,n=Ca(),r=a==="channelsLast",s=r?1:2,i=r?2:3,o=this.enableShapeUniforms?"if(blockIndex < outShape[2] && pos < outShape[1]) {":`if(blockIndex < ${e[2]} && pos < ${e[1]}) {`,l="";for(let u=0;u<=1;u++)for(let p=0;p<=1;p++)l+=`
blockIndex = rc.z + ${p};
pos = rc.y + ${u};
${o}
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
if(d0 < inputShape[${s}] && d0 >= 0) {
// Use custom imod instead mod. On Intel GPU, mod may generate
// unexpected value.
// https://github.com/tensorflow/tfjs/issues/5447
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
inChannels);
if(d1 < inputShape[${i}] && d1 >= 0) {
ch = imod(pos, inChannels);
if (${r}) {
innerDims = vec2(d1, ch);
result[${u*2+p}] = getChannel(
getA(rc.x, d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${u*2+p}] = getChannel(
getA(rc.x, ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${l}
${n.output} = result;
}
`}};function Fc(e,t){let a=e.length;return a>=3?t?[...e.slice(0,-3),e[a-3]*e[a-2],e[a-1]]:[...e.slice(0,-3),e[a-3],e[a-2]*e[a-1]]:!t&&a===1&&e[0]>1?[e[0],1]:null}function tv({x:e,filter:t,convInfo:a,backend:n,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=n.texData.get(e.dataId),p=a.inChannels,c=l[0]*l[1]*l[2],d=a.outChannels,h=a.dataFormat==="channelsLast",f=!1,m=!1,g,x=[];if(s!=null){let A=Fc(s.shape,h);A!=null&&(s=ce({inputs:{x:s},backend:n,attrs:{shape:A}}),x.push(s))}if(r!=null){let A=Fc(r.shape,h);A!=null&&(r=ce({inputs:{x:r},backend:n,attrs:{shape:A}}),x.push(r))}if(!((c===1||d===1)&&p>q6)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!==0&&v.arraysEqual(u.shape.slice(-3),l.slice(-3))){let A=l[0]*l[1]*(l[2]+1),y={dataId:e.dataId,shape:[1,A,a.inChannels],dtype:e.dtype},b=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(md(u.shape,y.shape),()=>`packed reshape ${u.shape} to ${y.shape} isn't free`);let w=ce({inputs:{x:t},backend:n,attrs:{shape:[1,a.inChannels,a.outChannels]}});x.push(w);let S=Pc({a:y,b:w,backend:n,transposeA:f,transposeB:m,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),C=n.texData.get(S.dataId);v.assert(C.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=b,C.shape=a.outShape,g=Ka({inputs:{x:S},backend:n}),g.shape=a.outShape,x.push(S)}else{let A=a.outHeight*a.outWidth,y=ce({inputs:{x:e},backend:n,attrs:{shape:h?[a.batchSize,A,a.inChannels]:[a.batchSize,a.inChannels,A]}}),b=ce({inputs:{x:t},backend:n,attrs:{shape:[1,a.inChannels,a.outChannels]}}),w=Pc({a:h?y:b,b:h?b:y,transposeA:!h,transposeB:m,backend:n,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=ce({inputs:{x:w},backend:n,attrs:{shape:a.outShape}}),x.push(y),x.push(b),x.push(w)}for(let A of x)n.disposeIntermediateTensorInfo(A);return g}function av({x:e,filter:t,convInfo:a,backend:n,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:p,outWidth:c,outHeight:d,dataFormat:h}=a,f=h==="channelsLast",m=l*u*p,g=d*c,x=[a.batchSize,m,g],A=!0,y=!1,b=[];if(s!=null){let j=Fc(s.shape,f);j!=null&&(s=ce({inputs:{x:s},backend:n,attrs:{shape:j}}),b.push(s))}if(r!=null){let j=Fc(r.shape,f);j!=null&&(r=ce({inputs:{x:r},backend:n,attrs:{shape:j}}),b.push(r))}let w=ce({inputs:{x:t},backend:n,attrs:{shape:[1,m,v.sizeFromShape(t.shape)/m]}});b.push(w);let S=new mj(x,a),C=[e.shape,[a.padInfo.top,a.padInfo.left],[a.strideHeight,a.strideWidth],[a.dilationHeight,a.dilationWidth],[a.inChannels],[a.filterWidth*a.inChannels],[a.outWidth]],E=n.runWebGLProgram(S,[e],"float32",C),_=ce({inputs:{x:E},backend:n,attrs:{shape:x}});b.push(E),b.push(_);let $=r!=null,M=s!=null,I=o==="leakyrelu",N=o?gd(o,!0):null,O=new j6(f?_.shape:w.shape,f?w.shape:_.shape,f?[a.batchSize,g,a.outChannels]:[a.batchSize,a.outChannels,g],A,y,$,N,M,I),L=f?[_,w]:[w,_];if(r&&L.push(r),M&&L.push(s),I){let j=n.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));L.push(j),b.push(j)}let B=n.runWebGLProgram(O,L,"float32"),G=ce({inputs:{x:B},backend:n,attrs:{shape:a.outShape}});b.push(B);for(let j of b)n.disposeIntermediateTensorInfo(j);return G}function gj(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=n,c=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,c),h;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))h=tv({x:r,filter:s,convInfo:d,backend:a});else if(d.strideWidth<=2&&c==="channelsLast"&&W().getBool("WEBGL_EXP_CONV")){let m=new ev(d),g=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];h=a.runWebGLProgram(m,[r,s],"float32",g)}else if(W().getBool("WEBGL_CONV_IM2COL"))h=av({x:r,filter:s,convInfo:d,backend:a});else{let m=new Q6(d);h=a.runWebGLProgram(m,[r,s],"float32")}let f=ce({inputs:{x:h},backend:a,attrs:{shape:d.outShape}});return a.disposeIntermediateTensorInfo(h),f}var xj={kernelName:ti,backendName:"webgl",kernelFunc:gj},Aj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,a=e.strideWidth,n=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${n};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${a} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${s}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},yj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,a=e.filterWidth,n=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=a-1-e.padInfo.left,l=s?1:2,u=s?2:3,p=s?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${p}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${a} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${s}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},bj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,a=e.strideHeight,n=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${r};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${a} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},vj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,a=e.filterHeight,n=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=a-1-e.padInfo.top,u=n-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${o}, ${l}, ${u});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${r}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${a}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${a} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function wj(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=n,c=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,p,i,1,o,u,!1,c),h=new Aj(d);return a.runWebGLProgram(h,[r,s],"float32")}var kj={kernelName:Hc,backendName:"webgl",kernelFunc:wj};function Ij(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=n,c=T.convertConv2DDataFormat(u),d=T.computeConv2DInfo(i,s.shape,o,1,l,p,!1,c),h=new yj(d);return a.runWebGLProgram(h,[r,s],"float32")}var Sj={kernelName:ai,backendName:"webgl",kernelFunc:Ij};function Tj(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=n,u=T.computeConv3DInfo(r.shape,s.shape,i,l,o),p=new fj(u);return a.runWebGLProgram(p,[r,s],"float32")}var Cj={kernelName:jc,backendName:"webgl",kernelFunc:Tj};function Nj(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=n,u=T.computeConv3DInfo(r.shape,l,i,1,o),p=new bj(u);return a.runWebGLProgram(p,[r,s],"float32")}var Ej={kernelName:V1,backendName:"webgl",kernelFunc:Nj};function Rj(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=n,u=T.computeConv3DInfo(l,s.shape,o,1,i),p=new vj(u);return a.runWebGLProgram(p,[r,s],"float32")}var Mj={kernelName:qc,backendName:"webgl",kernelFunc:Rj},$j=fu+`
return cos(x);
`,_j=Qe({opSnippet:$j}),Pj={kernelName:ni,backendName:"webgl",kernelFunc:_j},Fj=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,Oj=Qe({opSnippet:Fj}),Dj={kernelName:ri,backendName:"webgl",kernelFunc:Oj},zj=class{constructor(e,t,a,n,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[p,c]=a;this.outputShape=[u,p,c,l];let d=n==="bilinear"?1:0,[h,f]=[`${i-1}.0`,`${o-1}.0`],[m,g,x]=p>1?[`${(i-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[A,y,b]=c>1?[`${(o-1)/(c-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
const float height_ratio = float(${m});
const float width_ratio = float(${A});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${s}) {
return;
}
float height_scale = ${g};
float width_scale = ${y};
float in_y = ${x};
if( in_y < 0.0 || in_y > ${h} ) {
setOutput(float(${r}));
return;
}
float in_x = ${b};
if( in_x < 0.0 || in_x > ${f} ) {
setOutput(float(${r}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${d} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},Lj=e=>{let{inputs:t,backend:a,attrs:n}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=n,p=new zj(r.shape,s.shape,o,l,u);return a.runWebGLProgram(p,[r,s,i],"float32")},Bj={kernelName:oi,backendName:"webgl",kernelFunc:Lj},Ad;(function(e){e.Prod="*",e.Sum="+"})(Ad||(Ad={}));var kx=class{constructor(e,t,a,n){this.op=e,this.outputShape=t,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let r=this.outputShape.length,s=this.op===Ad.Prod?"1.0":"0.0",i=a?s:`getX(${Ix(r,"coords",this.op)})`,o=this.outputShape[this.outputShape.length-1],l="",u="";a?(l=n?`end != ${o-1}`:"end != 0",u=n?"end + 1":"end - 1"):(l=n?`end + pow2 < ${o}`:"end >= pow2",u=n?"end + pow2":"end - pow2"),this.userCode=`
void main() {
${gt(r)} coords = getOutputCoords();
int end = ${Sx(r,"coords",this.op)};
float val = ${i};
int pow2 = int(pow(2.0, index));
if (${l}) {
int idx = ${u};
${Sx(r,"coords",this.op)} = idx;
val ${this.op}= getX(${Ix(r,"coords",this.op)});
}
setOutput(val);
}
`}};function Ix(e,t,a){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${a} for rank ${e} is not yet supported`)}function Sx(e,t,a){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw new Error(`Cumulative ${a} for rank ${e} is not yet supported`)}function nv(e,t,a,n,r,s){let i=t.shape.length,o=T.getAxesPermutation([n],i),l=t;o!=null&&(l=Ia({inputs:{x:t},backend:a,attrs:{perm:o}}));let u=T.getInnerMostAxes(1,i)[0];if(u!==i-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${n}`);let p=l.shape[u],c=Ka({inputs:{x:l},backend:a});for(let d=0;d<=Math.ceil(Math.log2(p))-1;d++){let h=new kx(e,l.shape,!1,s),f=[[d]],m=c;c=a.runWebGLProgram(h,[c],c.dtype,f),a.disposeIntermediateTensorInfo(m)}if(r){let d=new kx(e,l.shape,r,s),h=c;c=a.runWebGLProgram(d,[c],c.dtype),a.disposeIntermediateTensorInfo(h)}if(o!=null){let d=T.getUndoAxesPermutation(o),h=Ia({inputs:{x:c},backend:a,attrs:{perm:d}});return a.disposeIntermediateTensorInfo(c),a.disposeIntermediateTensorInfo(l),h}return c}function Wj(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=n;return nv(Ad.Prod,r,a,s,i,o)}var Vj={kernelName:si,backendName:"webgl",kernelFunc:Wj};function Uj(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=n;return nv(Ad.Sum,r,a,s,i,o)}var Gj={kernelName:ii,backendName:"webgl",kernelFunc:Uj};function Hj(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=n;if(r.shape.length===1){let l=a.readSync(r.dataId),u=a.readSync(s.dataId),p=O6(l,u,s.dtype,s.shape,i);return a.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=a.bufferSync(r),u=a.bufferSync(s),p=tU(l,u,i,o);return a.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var jj={kernelName:Td,backendName:"webgl",kernelFunc:Hj},qj=class{constructor(e,t,a){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=a,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Xj(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{blockSize:s,dataFormat:i}=n,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],c=l*s,d=u*s,h=p/(s*s),f=i==="NHWC"?[o,c,d,h]:[o,h,c,d],m=new qj(f,s,i);return a.runWebGLProgram(m,[r],r.dtype)}var Kj={kernelName:li,backendName:"webgl",kernelFunc:Xj},rv=class{constructor(e,t=!1,a=null,n=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Na(this.outputShape.length);let s=e.filterHeight,i=e.filterWidth,o=e.outChannels/e.inChannels,l="",u="";a&&(n?l=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${a}
}`:r?l=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${a}
}`:l=`
float activation(float x) {
${a}
}
`,u="result = activation(result);");let p=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${l}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${o};
int q = d2 - d1 * ${o};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${s}; wR++) {
int xR = xRCorner + wR * dilations[0];
if (xR < 0 || xR >= inDims[0]) {
continue;
}
for (int wC = 0; wC < ${i}; wC++) {
int xC = xCCorner + wC * dilations[1];
if (xC < 0 || xC >= inDims[1]) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${p}
${u}
setOutput(result);
}
`}},sv=class{constructor(e,t=!1,a=null,n=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Na(this.outputShape.length);let s=e.outChannels/e.inChannels,i=e.padInfo.left,o=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,p=e.filterWidth,c=p,d=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<p;g++)d+=`
vec4 xTexelC${g*2};
int xTexelC${g*2}Ready;
vec4 xTexelC${g*2+1};
int xTexelC${g*2+1}Ready;
vec4 xC${g};`;d+=`
for (int r = 0; r < ${u}; r++) {
`;for(let g=0;g<p;g++)d+=`
xTexelC${g*2} = vec4(0.0);
xTexelC${g*2}Ready = 0;
xTexelC${g*2+1} = vec4(0.0);
xTexelC${g*2+1}Ready = 0;
xC${g} = vec4(0.0);`;d+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let g=0;g<(c+1)/2;g++){let x=g*2;if(d+=`
xC = xCCorner + ${x*l};
`,o===1){if(x<p&&(i%2===1?(d+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x}Ready == 0) {
xTexelC${x} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${x}.zw = vec2(0.0);
}
xTexelC${x}Ready = 1;
}
`,l===1&&x>0?d+=`
xC${x} = vec4(xTexelC${x-2}.zw, xTexelC${x}.xy);
`:d+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${x} = vec4(previous.zw, xTexelC${x}.xy);
} else {
xC${x} = vec4(0.0, 0.0, xTexelC${x}.xy);
}
`):d+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${x}Ready == 0) {
xTexelC${x} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${x}.zw = vec2(0.0);
}
xTexelC${x}Ready = 1;
}
xC${x} = xTexelC${x};
`,x+1<p)){let A=i%2===0?v.nearestLargerEven(l):l;l%2===0&&i%2===1||l%2!==0&&i%2!==1?(d+=`
xCOffset = xC + imod(pads[1], 2) + ${A};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x+1}Ready == 0) {
xTexelC${x+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${x+1}.zw = vec2(0.0);
}
xTexelC${x+1}Ready = 1;
}
`,l>1?d+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
xC${x+1} = vec4(previous.zw, xTexelC${x+1}.xy);
} else {
xC${x+1} = vec4(0.0, 0.0, xTexelC${x+1}.xy);
}
`:d+=`
xC${x+1} = vec4(xTexelC${x}.zw, xTexelC${x+1}.xy);
`):A===1?d+=`
xC${x+1} = xTexelC${x};
`:d+=`
xCOffset = xC + ${A};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x+1}Ready == 0) {
xTexelC${x+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${x+1}.zw = vec2(0.0);
}
xTexelC${x+1}Ready = 1;
}
xC${x+1} = xTexelC${x+1};
`}}else x<p&&(i%2===1?(d+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x}Ready == 0) {
xTexelC${x} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${x}.zw = vec2(0.0);
}
xTexelC${x}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${x+1}Ready == 0) {
xTexelC${x+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${x+1}.zw = vec2(0.0);
}
xTexelC${x+1}Ready = 1;
}
xC${x} = vec4(xTexelC${x}.zw, xTexelC${x+1}.zw);
`,x+1<p&&(d+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${x+1} = vec4(xTexelC${x+1}.xy, final.xy);
`)):(d+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${x}Ready == 0) {
xTexelC${x} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${x}.zw = vec2(0.0);
}
xTexelC${x}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x+1}Ready == 0) {
xTexelC${x+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${x+1}.zw = vec2(0.);
}
xTexelC${x+1}Ready = 1;
}
xC${x} = vec4(
xTexelC${x}.xy, xTexelC${x+1}.xy);
`,x+1<p&&(d+=`
xC${x+1} = vec4(xTexelC${x}.zw, xTexelC${x+1}.zw);
`)));x<p&&(d+=`
wTexel = getW(r, ${x}, d1, q);
dotProd += xC${x} * vec4(wTexel.xz, wTexel.xz);
`,x+1<p&&(d+=`
wTexel = getW(r, ${x+1}, d1, q);
dotProd += xC${x+1} * vec4(wTexel.xz, wTexel.xz);
`))}d+=`
}
`,d+=`
}
`;let h="",f="";a&&(n?h=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${a}
}`:r?h=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${a}
}`:h=`vec4 activation(vec4 x) {
${a}
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${h}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${s};
int q = d2 - d1 * ${s};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${d}
vec4 result = dotProd - vec4(0.000000000000001);
${m}
${f}
setOutput(result);
}
`}};function Zj(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=n,p=l;p==null&&(p=[1,1]),v.assert(T.eitherStridesOrDilationsAreOne(i,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${p}'`);let c=T.computeConv2DInfo(r.shape,s.shape,i,p,o,u,!0),d;W().getBool("WEBGL_PACK_DEPTHWISECONV")&&c.strideWidth<=2&&c.outChannels/c.inChannels===1?d=new sv(c):d=new rv(c);let h=[[c.padInfo.top,c.padInfo.left],[c.strideHeight,c.strideWidth],[c.dilationHeight,c.dilationWidth],[c.inHeight,c.inWidth]];return a.runWebGLProgram(d,[r,s],"float32",h)}var Yj={kernelName:ui,backendName:"webgl",kernelFunc:Zj},Jj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,a=e.strideWidth,n=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${s} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${n};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${a} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},Qj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,a=e.filterWidth,n=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=a-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${a} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${o}; dm++) {
int d2 = d1 * ${o} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function eq(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=n,c=T.computeConv2DInfo(r.shape,p,i,o,l,u,!0),d=new Jj(c);return a.runWebGLProgram(d,[r,s],"float32")}var tq={kernelName:Xc,backendName:"webgl",kernelFunc:eq};function aq(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=n,c=T.computeConv2DInfo(p,s.shape,i,o,l,u,!0),d=new Qj(c);return a.runWebGLProgram(d,[r,s],"float32")}var nq={kernelName:Kc,backendName:"webgl",kernelFunc:aq},rq=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function sq(e){let{inputs:t,backend:a}=e,{x:n}=t,r=[...n.shape,...n.shape],s=v.sizeFromShape(n.shape),i=ce({inputs:{x:n},backend:a,attrs:{shape:[s]}}),o=new rq(s),l=a.runWebGLProgram(o,[i],i.dtype),u=ce({inputs:{x:l},backend:a,attrs:{shape:r}});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(l),u}var iq={kernelName:Zc,backendName:"webgl",kernelFunc:sq},oq=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:a,padInfo:n,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:p,left:c}=n;this.userCode=`
const ivec2 strides = ivec2(${r}, ${s});
const ivec2 pads = ivec2(${p}, ${c});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${o}; w++) {
int wIn = wBeg + w * ${u};
if (wIn >= 0 && wIn < ${a}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function lq(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=n,u=T.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),p,c=new oq(u);p=a.runWebGLProgram(c,[r,s],"float32");let d=ce({inputs:{x:p},backend:a,attrs:{shape:u.outShape}});return a.disposeIntermediateTensorInfo(p),d}var uq={kernelName:Yc,backendName:"webgl",kernelFunc:lq};function dq(e){let{inputs:t,backend:a,attrs:n}=e,{equation:r}=n,s=t,{allDims:i,summedDims:o,idDims:l}=T.decodeEinsumEquation(r,s.length);T.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=T.getEinsumComputePath(o,l),c=p.length,d=null,h=i.length,f=[];for(let m=0;m<c;++m){for(let g of p[m]){let{permutationIndices:x,expandDims:A}=T.getEinsumPermutation(h,l[g]),y;T.isIdentityPermutation(x)?y=s[g]:(y=Ia({inputs:{x:s[g]},backend:a,attrs:{perm:x}}),f.push(y));let b=y.shape.slice();for(let w=0;w<A.length;++w)b.splice(A[w],0,1);v.arraysEqual(y.shape,b)||(y=ce({inputs:{x:y},backend:a,attrs:{shape:b}}),f.push(y)),d===null?d=y:(d=N3({inputs:{a:y,b:d},backend:a}),f.push(d))}m<c-1&&(u[m]>=0&&(d=Fh({inputs:{x:d},backend:a,attrs:{axis:u[m]-(i.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&a.disposeIntermediateTensorInfo(m);return d}var pq={kernelName:Cd,backendName:"webgl",kernelFunc:dq},cq="return (x >= 0.0) ? x : (exp(x) - 1.0);",hq=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,fq=Qe({opSnippet:cq,packedOpSnippet:hq}),mq={kernelName:pi,backendName:"webgl",kernelFunc:fq},gq="return (b >= 1.0) ? a : a * (b + 1.0);",xq=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,Aq=e=>{let{inputs:t,backend:a}=e,{dy:n,y:r}=t,s=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new cp(xq,n.shape,r.shape):new xl(gq,n.shape,r.shape);return a.runWebGLProgram(s,[n,r],n.dtype)},yq={kernelName:U1,backendName:"webgl",kernelFunc:Aq},bq=`
return vec4(equal(a, b));
`,vq="return float(a == b);",wq=oa({opSnippet:vq,packedOpSnippet:bq,dtype:"bool",cpuKernelImpl:sU}),kq={kernelName:ci,backendName:"webgl",kernelFunc:wq},Iq=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${T.ERF_P};
float a1 = ${T.ERF_A1};
float a2 = ${T.ERF_A2};
float a3 = ${T.ERF_A3};
float a4 = ${T.ERF_A4};
float a5 = ${T.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,Sq=Qe({opSnippet:Iq}),Tq={kernelName:Ml,backendName:"webgl",kernelFunc:Sq},Cq=fu+`
return exp(x);
`,Nq=`
vec4 result = exp(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,iv=Qe({opSnippet:Cq,packedOpSnippet:Nq,cpuKernelImpl:iU,dtype:"float32"}),Eq={kernelName:hi,backendName:"webgl",kernelFunc:iv};function S1(e){let{inputs:t,attrs:a,backend:n}=e,{dim:r}=a,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(v.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),ce({inputs:{x:s},backend:n,attrs:{shape:o}})}var Rq={kernelName:$l,backendName:"webgl",kernelFunc:S1},Tx="return exp(x) - 1.0;",Mq=Qe({opSnippet:Tx,packedOpSnippet:Tx,cpuKernelImpl:oU}),$q={kernelName:_l,backendName:"webgl",kernelFunc:Mq},Cx=class{constructor(e,t,a){this.variableNames=["real","imag"];let n=t[1];this.outputShape=t;let r=a?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=a?`${n}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${r};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${n});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${n}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${s};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function ov(e,t,a){let n=a.texData.get(e.dataId),r=v.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=ce({inputs:{x:e},backend:a,attrs:{shape:[i,s]}}),l=o.shape,u=new Cx("real",l,t),p=new Cx("imag",l,t),c=[{dataId:n.complexTensorInfos.real.dataId,dtype:n.complexTensorInfos.real.dtype,shape:l},{dataId:n.complexTensorInfos.imag.dataId,dtype:n.complexTensorInfos.imag.dtype,shape:l}],d=a.runWebGLProgram(u,c,"float32"),h=a.runWebGLProgram(p,c,"float32"),f=is({inputs:{real:d,imag:h},backend:a});a.disposeIntermediateTensorInfo(d),a.disposeIntermediateTensorInfo(h);let m=ce({inputs:{x:f},backend:a,attrs:{shape:e.shape}});return a.disposeIntermediateTensorInfo(o),a.disposeIntermediateTensorInfo(f),m}function _q(e){let{inputs:t,backend:a}=e,{input:n}=t;return ov(n,!1,a)}var Pq={kernelName:Nd,backendName:"webgl",kernelFunc:_q},Fq=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}};function fp(e){let{backend:t,attrs:a}=e,{shape:n,value:r}=a,{dtype:s}=a;if(s=s||v.inferDtype(r),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(n));return i.fill(r),t.makeTensorInfo(n,s,i)}else{let i=new Fq(n,r),o=[[r]];return t.runWebGLProgram(i,[],s,o)}}var Oq={kernelName:Pl,backendName:"webgl",kernelFunc:fp},Dq=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x - 1;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},zq={kernelName:fi,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:a}=e,n=t,r=new Dq(a.shape);return n.runWebGLProgram(r,[a],a.dtype)}},Nx="return floor(x);",Lq=Qe({opSnippet:Nx,packedOpSnippet:Nx,cpuKernelImpl:lU}),Bq={kernelName:mi,backendName:"webgl",kernelFunc:Lq},Wq=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,Vq=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,Uq=oa({opSnippet:Wq,packedOpSnippet:Vq,dtype:"int32"}),Gq={kernelName:gi,backendName:"webgl",kernelFunc:Uq},Hq=class{constructor(e){this.variableNames=["A"];let t=Ca(),[a,n]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}.0, ${a}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},jq=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Ca(),[a,n]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}.0, ${a}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},qq={kernelName:rd,backendName:"webgl",kernelFunc:Xq},Ko,Om=W().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");function Xq(e){let{inputs:t,backend:a,attrs:n}=e,{pixels:r}=t,{numChannels:s}=n,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],p=[u,l],c=[u,l,s];if(o||i){let m=W().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");(Ko==null||m!==Om)&&(Om=m,Ko=document.createElement("canvas").getContext("2d",{willReadFrequently:Om})),Ko.canvas.width=l,Ko.canvas.height=u,Ko.drawImage(r,0,0,l,u),r=Ko.canvas}let d=a.makeTensorInfo(p,"int32");a.texData.get(d.dataId).usage=dn.PIXELS,a.gpgpu.uploadPixelDataToTexture(a.getTexture(d.dataId),r);let h=W().getBool("WEBGL_PACK")?new jq(c):new Hq(c),f=a.runWebGLProgram(h,[d],"int32");return a.disposeData(d.dataId),f}function Kq(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:c,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=T.convertConv2DDataFormat(p),g=T.computeConv2DInfo(r.shape,s.shape,l,c,u,d,!1,m),x,A=[],y=i!=null,b=o!=null,w=h==="leakyrelu",S=()=>{let E=[r,s],_=($,M)=>{if(M==="NCHW"&&$.shape.length===1&&$.shape[0]!==1){let I=ce({inputs:{x:$},backend:a,attrs:{shape:[$.shape[0],1,1]}});return A.push(I),I}return $};if(y&&E.push(_(i,p)),b&&E.push(_(o,p)),w){let $=a.makeTensorInfo([],"float32",v.createScalarValue(f,"float32"));E.push($),A.push($)}return E};if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))x=tv({x:r,filter:s,convInfo:g,backend:a,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:f});else if(g.strideWidth<=2&&m==="channelsLast"&&W().getBool("WEBGL_EXP_CONV")){let E=h?gd(h,!0):null,_=new ev(g,y,E,b,w),$=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],M=S();x=a.runWebGLProgram(_,M,"float32",$)}else if(W().getBool("WEBGL_CONV_IM2COL"))x=av({x:r,filter:s,convInfo:g,backend:a,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:f});else{let E=h?gd(h,!1):null,_=new Q6(g,y,E,b,w),$=S();x=a.runWebGLProgram(_,$,"float32")}let C=ce({inputs:{x},backend:a,attrs:{shape:g.outShape}});return A.push(x),A.forEach(E=>a.disposeIntermediateTensorInfo(E)),C}var Zq={kernelName:Hr,backendName:"webgl",kernelFunc:Kq};function Yq(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dimRoundingMode:c,activation:d,leakyreluAlpha:h}=n,f=[],m=p;m==null&&(m=[1,1]),v.assert(T.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=T.computeConv2DInfo(r.shape,s.shape,l,m,u,c,!0),x=W().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,A=d?gd(d,x):null,y=[r,s],b=i!=null,w=o!=null,S=d==="leakyrelu";if(b&&y.push(i),w&&y.push(o),S){let $=a.makeTensorInfo([],"float32",v.createScalarValue(h,"float32"));y.push($),f.push($)}let C;x?C=new sv(g,b,A,w,S):C=new rv(g,b,A,w,S);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],_=a.runWebGLProgram(C,y,"float32",E);return f.forEach($=>a.disposeIntermediateTensorInfo($)),_}var Jq={kernelName:jr,backendName:"webgl",kernelFunc:Yq},Qq=class{constructor(e,t,a,n){this.sliceDim=e,this.strides=t,this.paramsShape=n,this.variableNames=["x","indices"],this.outputShape=a;let r=gt(a.length),s=`
int index;`;for(let i=0;i<this.sliceDim;i++)s+=`
index = round(getIndices(coords[0], ${i}));
out_of_bounds = out_of_bounds || index < 0;
out_of_bounds = out_of_bounds || index >= ${this.paramsShape[i]};
flattenIndex += index * ${this.strides[i]};`;this.userCode=`
void main() {
${r} coords = getOutputCoords();
int flattenIndex = 0;
bool out_of_bounds = false;
${s}
setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1]));
}
`}};function eX(e){let{inputs:t,backend:a}=e,{params:n,indices:r}=t,s=r.shape,i=s[s.length-1],o=v.sizeFromShape(n.shape),[l,u,p,c]=T.prepareAndValidate(n,r),d=ce({inputs:{x:r},backend:a,attrs:{shape:[u,i]}}),h=ce({inputs:{x:n},backend:a,attrs:{shape:[v.sizeFromShape(n.shape)/p,p]}});if(a.shouldExecuteOnCPU([n,r])||n.dtype==="string"){let x=a.readSync(r.dataId),A=a.bufferSync(n),y=uU(x,A,n.dtype,u,i,p,c,n.shape,o);return a.makeTensorInfo(l,n.dtype,y.values)}let f=new Qq(i,c,[u,p],n.shape),m=a.runWebGLProgram(f,[h,d],h.dtype),g=ce({inputs:{x:m},backend:a,attrs:{shape:l}});return a.disposeIntermediateTensorInfo(d),a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(m),g}var tX={kernelName:Ai,backendName:"webgl",kernelFunc:eX},aX=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let a=gt(this.rank),n=nX(e,2);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
int index = int(getIndices(resRC.x, resRC.z));
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
setOutput(inBounds * getA(${n}));
}
`}};function nX(e,t){let a=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let r=0;r<e.length;r++)r===2?n.push("index"):n.push(`${a[r]}`);return n.join()}function lv(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=n,l=v.parseAxisParam(i,r.shape)[0];if(W().get("DEBUG")){let A=a.readSync(s.dataId),y=r.shape[l];for(let b=0;b<A.length;++b){let w=A[b];v.assert(w<=y-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${y-1}]`)}}let u=T.segment_util.collectGatherOpShapeInfo(r,s,l,o),p=v.sizeFromShape(s.shape),c=[],d=ce({inputs:{x:r},backend:a,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=ce({inputs:{x:s},backend:a,attrs:{shape:[u.batchSize,p/u.batchSize]}});c.push(d),c.push(h);let f=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize];if(a.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let A=a.bufferSync(h),y=a.bufferSync(d),b=dU(y,A,f);return c.forEach(w=>a.disposeIntermediateTensorInfo(w)),a.makeTensorInfo(u.outputShape,b.dtype,b.values)}let m=new aX(d.shape,f),g=a.runWebGLProgram(m,[d,h],d.dtype);c.push(g);let x=ce({inputs:{x:g},backend:a,attrs:{shape:u.outputShape}});return c.forEach(A=>a.disposeIntermediateTensorInfo(A)),x}var rX={kernelName:Fl,backendName:"webgl",kernelFunc:lv},sX="return float(a > b);",iX=`
return vec4(greaterThan(a, b));
`,oX=oa({opSnippet:sX,packedOpSnippet:iX,cpuKernelImpl:pU,dtype:"bool"}),lX={kernelName:yi,backendName:"webgl",kernelFunc:oX},uX="return float(a >= b);",dX=`
return vec4(greaterThanEqual(a, b));
`,pX=oa({opSnippet:uX,packedOpSnippet:dX,dtype:"bool",cpuKernelImpl:cU}),cX={kernelName:bi,backendName:"webgl",kernelFunc:pX};function hX(e){let{inputs:t,backend:a}=e,{input:n}=t;return ov(n,!0,a)}var fX={kernelName:Ed,backendName:"webgl",kernelFunc:hX},mX="return float(!isnan(x) && !isinf(x));",gX=Qe({opSnippet:mX,dtype:"bool"}),xX={kernelName:Ol,backendName:"webgl",kernelFunc:gX},AX="return float(isinf(x));",yX=Qe({opSnippet:AX,dtype:"bool"}),bX={kernelName:Dl,backendName:"webgl",kernelFunc:yX},vX="return float(isnan(x));",wX=Qe({opSnippet:vX,dtype:"bool"}),kX={kernelName:wi,backendName:"webgl",kernelFunc:wX},IX="return float(a < b);",SX=`
return vec4(lessThan(a, b));
`,TX=oa({opSnippet:IX,packedOpSnippet:SX,cpuKernelImpl:hU,dtype:"bool"}),CX={kernelName:Ii,backendName:"webgl",kernelFunc:TX},NX="return float(a <= b);",EX=`
return vec4(lessThanEqual(a, b));
`,RX=oa({opSnippet:NX,packedOpSnippet:EX,cpuKernelImpl:fU,dtype:"bool"}),MX={kernelName:Si,backendName:"webgl",kernelFunc:RX};function $X(e){let{backend:t,attrs:a}=e,{start:n,stop:r,num:s}=a,i=mU(n,r,s);return t.makeTensorInfo([i.length],"float32",i)}var _X={kernelName:Jc,backendName:"webgl",kernelFunc:$X},PX=fu+`
return x < 0.0 ? 0./0. : log(x);
`,FX=`
vec4 result = log(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
return result;
`,OX=Qe({opSnippet:PX,packedOpSnippet:FX,cpuKernelImpl:gU}),DX={kernelName:Ti,backendName:"webgl",kernelFunc:OX},zX=fu+`
return log(1.0 + x);
`,LX=Qe({opSnippet:zX}),BX={kernelName:zl,backendName:"webgl",kernelFunc:LX},WX="return float(a >= 1.0 && b >= 1.0);",VX=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,UX=oa({opSnippet:WX,packedOpSnippet:VX,dtype:"bool"}),GX={kernelName:Ci,backendName:"webgl",kernelFunc:UX},HX="return float(!(x >= 1.0));",jX=Qe({opSnippet:HX}),qX={kernelName:Ni,backendName:"webgl",kernelFunc:jX},XX="return float(a >= 1.0 || b >= 1.0);",KX=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,ZX=oa({opSnippet:XX,packedOpSnippet:KX,dtype:"bool"}),YX={kernelName:Ll,backendName:"webgl",kernelFunc:ZX},JX=class{constructor(e,t,a,n,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${a}) + float(${n}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${s}; j <= ${s}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${o};
setOutput(val);
}
`}},QX=class{constructor(e,t,a,n,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${a}) + float(${n}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${s};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${s}; j <= ${s}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${o};
setOutput(result);
}
`}},eK=e=>{let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n,u=W().getBool("WEBGL_PACK_NORMALIZATION")?new QX(r.shape,s,i,o,l):new JX(r.shape,s,i,o,l);return a.runWebGLProgram(u,[r],r.dtype)},tK={kernelName:Qc,backendName:"webgl",kernelFunc:eK},aK=class{constructor(e,t,a,n,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=a,this.alpha=n,this.beta=r,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${n}) * norm + float(${a});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${n})
* float(${r})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${r});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},nK=e=>{let{inputs:t,backend:a,attrs:n}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=n,c=new aK(r.shape,o,l,u,p);return a.runWebGLProgram(c,[r,s,i],r.dtype)},rK={kernelName:G1,backendName:"webgl",kernelFunc:nK};function sK(e,t,a,n){let r=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/r,i=ce({inputs:{x:e},attrs:{shape:[s,r]},backend:n}),o=Ao(i,e.dtype,"max",n),l=ce({inputs:{x:o},attrs:{shape:a},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}function uv(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=n,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=T.getAxesPermutation(u,o),c=p!=null,d=a.shouldExecuteOnCPU([r]),h=r;if(c){if(d){let A=a.texData.get(h.dataId).values,y=new Array(o);for(let S=0;S<y.length;S++)y[S]=r.shape[p[S]];let b=T3(A,r.shape,r.dtype,p,y);h=a.makeTensorInfo(y,r.dtype);let w=a.texData.get(h.dataId);w.values=b}else h=Ph(r,p,a);u=T.getInnerMostAxes(u.length,o)}T.assertAxesAreInnerMostDims("max",u,o);let[f,m]=T.computeOutAndReduceShapes(h.shape,u),g=f;i&&(g=T.expandShapeToKeepDim(f,l));let x;if(d){let A=a.texData.get(h.dataId).values,y=xU(A,v.sizeFromShape(m),g,r.dtype);x=a.makeTensorInfo(g,r.dtype);let b=a.texData.get(x.dataId);b.values=y}else x=sK(h,m,g,a);return c&&a.disposeIntermediateTensorInfo(h),x}var iK={kernelName:Ei,backendName:"webgl",kernelFunc:uv},oK=C3+`
return max(a, b);
`,lK=`
vec4 result = vec4(max(a, b));
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+pp+`
return result;
`,uK=oa({opSnippet:oK,packedOpSnippet:lK,cpuKernelImpl:AU}),dK={kernelName:Ri,backendName:"webgl",kernelFunc:uK};function pK(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t;lu(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;v.assert(T.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=T.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))return Ka({inputs:{x:r},backend:a});let c=new xd(p,"max",!1);return a.runWebGLProgram(c,[r],r.dtype)}var cK={kernelName:Mi,backendName:"webgl",kernelFunc:pK};function hK(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=n,p=[1,1,1],c=T.computePool3DInfo(r.shape,s,i,p,o,u,l),d=new E3(c,"max",!1);return a.runWebGLProgram(d,[r],r.dtype)}var fK={kernelName:eh,backendName:"webgl",kernelFunc:hK},mK=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,a=e.strideWidth,n=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${r};
wR += ${n}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${s} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},gK=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,a=e.strideHeight,n=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,p=o-1-e.padInfo.front,c=l-1-e.padInfo.top,d=u-1-e.padInfo.left,h=o*l*u-1;this.userCode=`
const ivec3 pads = ivec3(${p}, ${c}, ${d});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${o};
wD += ${r}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${u};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${h} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${u} +
wR * ${u} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function xK(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=n,c=[1,1,1],d=T.computePool3DInfo(i.shape,o,l,c,u,p),h=new E3(d,"max",!0),f=a.runWebGLProgram(h,[i],i.dtype),m=new gK(d),g=a.runWebGLProgram(m,[r,f],i.dtype);return a.disposeIntermediateTensorInfo(f),g}var AK={kernelName:j1,backendName:"webgl",kernelFunc:xK};function yK(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,input:s,output:i}=t,o=s;lu([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:c}=n,d=T.computePool2DInfo(o.shape,l,u,1,p,c),h=!0,f=new xd(d,"max",h),m=a.runWebGLProgram(f,[o],o.dtype),g=new mK(d),x=a.runWebGLProgram(g,[r,m],o.dtype);return a.disposeIntermediateTensorInfo(m),x}var bK={kernelName:H1,backendName:"webgl",kernelFunc:yK};function vK(e,t,a,n){let r=new xd(a,"max",!1),s=n.runWebGLProgram(r,[e],"float32");r=new xd(a,"max",!0,!0,t);let i=n.runWebGLProgram(r,[e],"float32");return[s,i]}var wK={kernelName:th,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:a})=>{let{x:n}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=a;v.assert(n.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${n.shape.length}.`);let u=[1,1];v.assert(T.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let p=T.computePool2DInfo(n.shape,r,s,u,i),[c,d]=vK(n,o,p,l);return[c,d]}};function kK(e,t,a,n){let r=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/r,i=ce({inputs:{x:e},attrs:{shape:[s,r]},backend:n}),o=Ao(i,"float32","mean",n),l=ce({inputs:{x:o},attrs:{shape:a},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}var IK={kernelName:$i,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:a})=>{let{x:n}=e,{keepDims:r,axis:s}=t,i=a,o=n.shape.length,l=v.parseAxisParam(s,n.shape),u=l,p=T.getAxesPermutation(u,o),c=p!=null,d=i.shouldExecuteOnCPU([n]),h=[],f=n;if(c){if(d){let y=i.texData.get(f.dataId).values,b=new Array(o);for(let C=0;C<b.length;C++)b[C]=n.shape[p[C]];let w=T3(y,n.shape,n.dtype,p,b);f=i.makeTensorInfo(b,n.dtype);let S=i.texData.get(f.dataId);S.values=w}else f=Ph(n,p,i);h.push(f),u=T.getInnerMostAxes(u.length,o)}T.assertAxesAreInnerMostDims("sum",u,o);let[m,g]=T.computeOutAndReduceShapes(f.shape,u),x=m;r&&(x=T.expandShapeToKeepDim(m,l));let A=kK(f,g,x,i);for(let y of h)i.disposeIntermediateTensorInfo(y);return A}};function SK(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=T.getAxesPermutation(u,o),c=r;p!=null&&(c=Ia({inputs:{x:r},backend:a,attrs:{perm:p}}),u=T.getInnerMostAxes(u.length,r.shape.length)),T.assertAxesAreInnerMostDims("min",u,o);let[d,h]=T.computeOutAndReduceShapes(c.shape,u),f=v.sizeFromShape(h),m=ce({inputs:{x:c},backend:a,attrs:{shape:[-1,f]}}),g=Ao(m,m.dtype,"min",a),x;if(i){let A=T.expandShapeToKeepDim(d,l);x=ce({inputs:{x:g},backend:a,attrs:{shape:A}})}else x=ce({inputs:{x:g},backend:a,attrs:{shape:d}});return a.disposeIntermediateTensorInfo(m),a.disposeIntermediateTensorInfo(g),p!=null&&a.disposeIntermediateTensorInfo(c),x}var TK={kernelName:_i,backendName:"webgl",kernelFunc:SK},CK=C3+`
return min(a, b);
`,NK=`
vec4 result = vec4(min(a, b));
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+pp+`
return result;
`,EK=oa({opSnippet:CK,packedOpSnippet:NK,cpuKernelImpl:yU}),RK={kernelName:Pi,backendName:"webgl",kernelFunc:EK},MK=class{constructor(e,t,a){this.variableNames=["x"],this.outputShape=t.map((u,p)=>u[0]+e[p]+u[1]);let n=e.length,r=gt(n),s=t.map(u=>u[0]).join(","),i=t.map((u,p)=>u[0]+e[p]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n),l=a==="reflect"?0:1;if(n===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
void main() {
${r} outC = getOutputCoords();
for (int i = 0; i < ${n}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${r} coords = outC - start;
setOutput(getX(${o}));
}
`}},$K=class{constructor(e,t,a){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let n=e.length,r=gt(n),s=t.map(h=>h[0]).join(","),i=t.map((h,f)=>h[0]+e[f]).join(","),o=va("rc",n),l=va("source",n),u=`${o[n-1]} < ${this.outputShape[n-1]}`,p=n===1?"source":`vec2(${l.slice(-2).join()})`,c=a==="reflect"?0:1,d="";if(n===1){let h=`
${r} source = rc;
if (source < start) {
source = start * 2 - source - ${c};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${c};
}
source -= start;
`;d=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${p});
${o[n-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${p});
}
`}else{let h=`
${r} source = rc;
${r} lt = ${r}(lessThan(source, start));
${r} gte = ${r}(greaterThanEqual(source, end));
${r} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${c}) +
gte * ((end - 1) * 2 - source + ${c});
source -= start;
`;d=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${p});
${o[n-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${p});
}
rc = outputLoc;
${o[n-2]} += 1;
if(${o[n-2]} < ${this.outputShape[n-2]}) {
${h}
result[2] = getChannel(getX(${l.join()}), ${p});
${o[n-1]} += 1;
if(${u}) {
${h}
result[3] = getChannel(getX(${l.join()}), ${p});
}
}
`}this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${d}
setOutput(result);
}
`}},_K=({inputs:e,backend:t,attrs:a})=>{let{x:n}=e,{paddings:r,mode:s}=a,i=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new $K(n.shape,r,s):new MK(n.shape,r,s);return t.runWebGLProgram(i,[n],n.dtype)},PK={kernelName:Fi,backendName:"webgl",kernelFunc:_K},FK=`if (b == 0.0) return NAN;
return mod(a, b);`,OK=`
vec4 result = mod(a, b);
bvec4 isNaN = equal(b, vec4(0.0));
`+pp+`
return result;
`,DK=oa({opSnippet:FK,packedOpSnippet:OK}),zK={kernelName:Bl,backendName:"webgl",kernelFunc:DK},LK=class{constructor(e,t,a){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,a],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}},BK=`
if (a == b) {
return 1.0;
};
return a / b;`,WK=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,dv=oa({opSnippet:BK,packedOpSnippet:WK,checkOutOfBounds:!0}),VK={kernelName:di,backendName:"webgl",kernelFunc:dv},Ex="return a - b;",pv=oa({opSnippet:Ex,packedOpSnippet:Ex,supportsComplex:!0,cpuKernelImpl:LU}),UK={kernelName:io,backendName:"webgl",kernelFunc:pv};function cv(e){let{inputs:t,backend:a,attrs:n}=e,{logits:r}=t,{dim:s}=n,i=v.parseAxisParam([s],r.shape),o=uv({inputs:{x:r},backend:a,attrs:{reductionIndices:i,keepDims:!1}}),l=T.expandShapeToKeepDim(o.shape,i),u=ce({inputs:{x:o},backend:a,attrs:{shape:l}}),p=pv({inputs:{a:r,b:u},backend:a}),c=iv({inputs:{x:p},backend:a}),d=Fh({inputs:{x:c},backend:a,attrs:{axis:i,keepDims:!1}}),h=ce({inputs:{x:d},backend:a,attrs:{shape:l}}),f=dv({inputs:{a:c,b:h},backend:a});return a.disposeIntermediateTensorInfo(o),a.disposeIntermediateTensorInfo(u),a.disposeIntermediateTensorInfo(p),a.disposeIntermediateTensorInfo(c),a.disposeIntermediateTensorInfo(d),a.disposeIntermediateTensorInfo(h),f}var GK={kernelName:no,backendName:"webgl",kernelFunc:cv};function HK(e){let{inputs:t,backend:a,attrs:n}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=n,l=o?r:cv({inputs:{logits:r},backend:a,attrs:{dim:r.shape.length-1}}),u=l.shape[0],p=l.shape[1],c=new LK(u,p,s),d=[[i]],h=a.runWebGLProgram(c,[l],"int32",d);return o||a.disposeIntermediateTensorInfo(l),h}var jK={kernelName:ah,backendName:"webgl",kernelFunc:HK},qK=Tn+`
return -x;
`,XK=`
vec4 result = -x;
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`;function KK(e){let{inputs:t,backend:a}=e,{x:n}=t;if(a.shouldExecuteOnCPU([n])){let s=a.texData.get(n.dataId),[i,o]=vU(s.values,n.shape,n.dtype);return a.makeTensorInfo(o,n.dtype,i)}let r;return W().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Br(n.shape,XK):r=new jn(n.shape,qK),a.runWebGLProgram(r,[n],n.dtype)}var ZK={kernelName:Wl,backendName:"webgl",kernelFunc:KK},YK=Sn.nonMaxSuppressionV3Impl;function JK(e){T.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:a,attrs:n}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=n,u=a.readSync(r.dataId),p=a.readSync(s.dataId),{selectedIndices:c}=YK(u,p,i,o,l);return a.makeTensorInfo([c.length],"int32",new Int32Array(c))}var QK={kernelName:zi,backendName:"webgl",kernelFunc:JK},eZ=Sn.nonMaxSuppressionV4Impl;function tZ(e){T.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:a,attrs:n}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=n,p=a.readSync(r.dataId),c=a.readSync(s.dataId),{selectedIndices:d,validOutputs:h}=eZ(p,c,i,o,l,u);return[a.makeTensorInfo([d.length],"int32",new Int32Array(d)),a.makeTensorInfo([],"int32",new Int32Array([h]))]}var aZ={kernelName:Vl,backendName:"webgl",kernelFunc:tZ},nZ=Sn.nonMaxSuppressionV5Impl;function rZ(e){T.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:a,attrs:n}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=n,p=a.readSync(r.dataId),c=a.readSync(s.dataId),d=i,h=o,f=l,m=u,{selectedIndices:g,selectedScores:x}=nZ(p,c,d,h,f,m);return[a.makeTensorInfo([g.length],"int32",new Int32Array(g)),a.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var sZ={kernelName:Li,backendName:"webgl",kernelFunc:rZ},iZ=class{constructor(e,t,a,n){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${n}), float(${a}),
float(index == coords.y)));
}
`}},oZ=e=>{let{inputs:t,backend:a,attrs:n}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=n,u=v.sizeFromShape(r.shape),p=new iZ(u,i,o,l),c=ce({inputs:{x:r},backend:a,attrs:{shape:[u]}}),d=a.runWebGLProgram(p,[c],s);a.disposeIntermediateTensorInfo(c);let h=[...r.shape,i],f=ce({inputs:{x:d},backend:a,attrs:{shape:h}});return a.disposeIntermediateTensorInfo(d),f},lZ={kernelName:Bi,backendName:"webgl",kernelFunc:oZ};function Oc(e){let{inputs:t,backend:a}=e,{x:n}=t;if(n.dtype==="complex64"){let r=hp({inputs:{input:n},backend:a}),s=Oc({inputs:{x:r},backend:a}),i=Oh({inputs:{input:n},backend:a}),o=Oc({inputs:{x:i},backend:a}),l=is({inputs:{real:s,imag:o},backend:a});return a.disposeIntermediateTensorInfo(r),a.disposeIntermediateTensorInfo(s),a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}else return fp({attrs:{shape:n.shape,dtype:n.dtype,value:n.dtype==="string"?"":0},backend:a})}var uZ={kernelName:au,backendName:"webgl",kernelFunc:Oc};function hv(e){let{inputs:t,backend:a}=e,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(n.dtype==="complex64"){let r=hp({inputs:{input:n},backend:a}),s=hv({inputs:{x:r},backend:a}),i=Oh({inputs:{input:n},backend:a}),o=Oc({inputs:{x:i},backend:a}),l=is({inputs:{real:s,imag:o},backend:a});return a.disposeIntermediateTensorInfo(r),a.disposeIntermediateTensorInfo(s),a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}else return fp({attrs:{shape:n.shape,dtype:n.dtype,value:1},backend:a})}var dZ={kernelName:Ul,backendName:"webgl",kernelFunc:hv};function pZ(e){let{inputs:t,backend:a,attrs:n}=e,{axis:r}=n;if(t.length===1)return S1({inputs:{input:t[0]},backend:a,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let c=S1({inputs:{input:p},backend:a,attrs:{dim:r}});return o.push(c),c}),u=J6({inputs:l,backend:a,attrs:{axis:r}});return o.forEach(p=>a.disposeIntermediateTensorInfo(p)),u}var cZ={kernelName:Gl,backendName:"webgl",kernelFunc:pZ},hZ=class{constructor(e,t,a){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let n=e.length,r=gt(n),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n);if(n===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
void main() {
${r} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${r} coords = outC - start;
setOutput(getX(${o}));
}
}
`}},fZ=class{constructor(e,t,a){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let n=e.length,r=gt(n),s=t.map(f=>f[0]).join(","),i=t.map((f,m)=>f[0]+e[m]).join(","),o=va("rc",n),l=va("source",n),u=`${o[n-1]} < ${this.outputShape[n-1]}`,p=n===1?"source":`vec2(${l.slice(-2).join()})`,c=[`${r} rc = outputLoc;`,`${o[n-1]} += 1;
if(${u}) {
`,n===1?"":`}
rc = outputLoc;
${o[n-2]} += 1;
if(${o[n-2]} < ${this.outputShape[n-2]}) {`,n===1?"":` ${o[n-1]} += 1;
if(${u}) {`],d=n===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=n===1?2:4;f<m;f++)h+=`
${c[f]}
if (${d}) {
result[${f}] = float(value);
} else {
${r} source = rc - start;
result[${f}] = getChannel(getX(${l.join()}), ${p});
}
`;h+=n===1?"} ":"}}",this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${h}
setOutput(result);
}
`}},fv=e=>{let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{paddings:s,constantValue:i}=n;if(v.sizeFromShape(r.shape)===0){let u=s.map((p,c)=>p[0]+r.shape[c]+p[1]);return fp({backend:a,attrs:{shape:u,value:i,dtype:r.dtype}})}let o=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new fZ(r.shape,s,i):new hZ(r.shape,s,i),l=[[i]];return a.runWebGLProgram(o,[r],r.dtype,l)},mZ={kernelName:Wi,backendName:"webgl",kernelFunc:fv},gZ=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,xZ=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
bvec4 isNaN1 = lessThan(a, vec4(0.0));
bvec4 isNaN2 = lessThan(floor(b), b);
bvec4 isNaN = bvec4(isNaN1.x && isNaN2.x, isNaN1.y && isNaN2.y, isNaN1.z && isNaN2.z, isNaN1.w && isNaN2.w);
`+pp+`
return result;
`,AZ=oa({opSnippet:gZ,packedOpSnippet:xZ}),yZ={kernelName:Vi,backendName:"webgl",kernelFunc:AZ};function bZ(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n,o=r.shape.length,l=[],u=v.parseAxisParam(s,r.shape),p=u,c=T.getAxesPermutation(p,o),d=r;c!=null&&(d=Ia({inputs:{x:r},backend:a,attrs:{perm:c}}),p=T.getInnerMostAxes(p.length,o),l.push(d)),T.assertAxesAreInnerMostDims("prod",p,o);let h;if(a.shouldExecuteOnCPU([d])){let f=a.texData.get(d.dataId).values,{outVals:m,outShape:g,outDtype:x}=kU(d.shape,d.dtype,f,p);h=a.makeTensorInfo(g,x,m)}else{let[f,m]=T.computeOutAndReduceShapes(d.shape,p),g=v.sizeFromShape(m),x=ce({inputs:{x:d},backend:a,attrs:{shape:[-1,g]}}),A=Hd(r.dtype),y=Ao(x,A,"prod",a);h=ce({inputs:{x:y},backend:a,attrs:{shape:f}}),l.push(x),l.push(y)}if(i){l.push(h);let f=T.expandShapeToKeepDim(h.shape,u);h=ce({inputs:{x:h},backend:a,attrs:{shape:f}})}return l.forEach(f=>a.disposeIntermediateTensorInfo(f)),h}var vZ={kernelName:Gi,backendName:"webgl",kernelFunc:bZ};function wZ(e){let{inputs:t,backend:a,attrs:n}=e,{paramsNestedSplits:r,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:o}=n,l=r.map(x=>a.readSync(x.dataId)),u=r.map(x=>x.shape),p=a.readSync(s.dataId),c=a.readSync(i.dataId),[d,h,f]=IU(l,u,p,s.shape,s.dtype,c,i.shape,o),m=d.map(x=>a.makeTensorInfo([x.length],"int32",x)),g=a.makeTensorInfo(f,s.dtype,h);return m.concat([g])}var kZ={kernelName:nh,backendName:"webgl",kernelFunc:wZ};function IZ(e){let{inputs:t,backend:a}=e,{starts:n,limits:r,deltas:s}=t,i=a.readSync(n.dataId),o=a.readSync(r.dataId),l=a.readSync(s.dataId),[u,p]=SU(i,n.shape,n.dtype,o,r.shape,l,s.shape),c=a.makeTensorInfo([u.length],"int32",u),d=a.makeTensorInfo([p.length],n.dtype,p);return[c,d]}var SZ={kernelName:rh,backendName:"webgl",kernelFunc:IZ};function TZ(e){let{inputs:t,backend:a,attrs:n}=e,{shape:r,values:s,defaultValue:i,rowPartitionTensors:o}=t,{rowPartitionTypes:l}=n,u=a.readSync(r.dataId),p=a.readSync(s.dataId),c=a.readSync(i.dataId),d=o.map(g=>a.readSync(g.dataId)),h=o.map(g=>g.shape),[f,m]=TU(u,r.shape,p,s.shape,s.dtype,c,i.shape,d,h,l);return a.makeTensorInfo(f,s.dtype,m)}var CZ={kernelName:sh,backendName:"webgl",kernelFunc:TZ},mv=e=>{let{backend:t,attrs:a}=e,{start:n,stop:r,step:s,dtype:i}=a,o=CU(n,r,s,i);return t.makeTensorInfo([o.length],i,o)},NZ={kernelName:Hl,backendName:"webgl",kernelFunc:mv},EZ="return 1.0 / x;",RZ=Qe({opSnippet:EZ}),MZ={kernelName:Hi,backendName:"webgl",kernelFunc:RZ},$Z=Tn+`
return (x < 0.0) ? 0.0 : x;
`,_Z=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,PZ=Qe({opSnippet:$Z,packedOpSnippet:_Z}),FZ={kernelName:ji,backendName:"webgl",kernelFunc:PZ},OZ=Tn+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,DZ=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,zZ=Qe({opSnippet:OZ,packedOpSnippet:DZ}),LZ={kernelName:Ki,backendName:"webgl",kernelFunc:zZ},BZ=class{constructor(e,t,a,n,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,a,l];let u=[n&&t>1?i-1:i,n&&a>1?o-1:o],p=[n&&t>1?t-1:t,n&&a>1?a-1:a],c;r?c="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":c="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/p[0]},
${u[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${c};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},WZ=class{constructor(e,t,a,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,a,l];let u=[n&&t>1?i-1:i,n&&a>1?o-1:o],p=[n&&t>1?t-1:t,n&&a>1?a-1:a],c;r?c="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":c="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/p[0]},
${u[1]/p[1]},
${u[1]/p[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${c};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${a-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function VZ(e){let{inputs:t,backend:a,attrs:n}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,p=W().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new WZ(r.shape,l,u,s,i):new BZ(r.shape,l,u,s,i);return a.runWebGLProgram(p,[r],"float32")}var UZ={kernelName:Xi,backendName:"webgl",kernelFunc:VZ},GZ=class{constructor(e,t,a){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,r]=t,[,s,i]=e,o=[a&&s>1?n-1:n,a&&i>1?r-1:r],l=[a&&s>1?s-1:s,a&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],c=1/u,d=1/p,h=Math.ceil(c)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${p});
const float invHeightScale = float(${c});
const float invWidthScale = float(${d});
const int winHeight = int(${h});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${n-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function HZ(e){let{inputs:t,backend:a,attrs:n}=e,{images:r,dy:s}=t,{alignCorners:i}=n,o=new GZ(s.shape,r.shape,i);return a.runWebGLProgram(o,[s],s.dtype)}var jZ={kernelName:X1,backendName:"webgl",kernelFunc:HZ},qZ=class{constructor(e,t,a,n,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,a,l];let u=[n&&t>1?i-1:i,n&&a>1?o-1:o],p=[n&&t>1?t-1:t,n&&a>1?a-1:a],c=n?"0.5":"0.0",d;r?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/p[0]},
${u[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${c})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}},XZ=class{constructor(e,t,a,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,a,l];let u=[n&&t>1?i-1:i,n&&a>1?o-1:o],p=[n&&t>1?t-1:t,n&&a>1?a-1:a],c=n?"0.5":"0.0",d;r?d="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/p[0]},
${u[1]/p[1]},
${u[1]/p[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${d};
// Compute the coordinators of nearest neighbor point.
ivec3 sourceNearestRC = ivec3(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${c})));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${a-1};
vec4 newValue = vec4(
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
setOutput(newValue);
}
`}};function KZ(e){let{inputs:t,backend:a,attrs:n}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,p=W().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new XZ(r.shape,l,u,s,i):new qZ(r.shape,l,u,s,i);return a.runWebGLProgram(p,[r],r.dtype)}var ZZ={kernelName:qi,backendName:"webgl",kernelFunc:KZ},YZ=class{constructor(e,t,a){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,r]=t,[,s,i]=e,o=[a&&s>1?n-1:n,a&&i>1?r-1:r],l=[a&&s>1?s-1:s,a&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],c=1/u,d=1/p,h=Math.ceil(c)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${p});
const float invHeightScale = float(${c});
const float invWidthScale = float(${d});
const int winHeight = int(${h});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${o[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${o[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${n}) - 1),
${a} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${r}) - 1),
${a} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function JZ(e){let{inputs:t,backend:a,attrs:n}=e,{images:r,dy:s}=t,{alignCorners:i}=n,o=new YZ(s.shape,r.shape,i);return a.runWebGLProgram(o,[s],s.dtype)}var QZ={kernelName:q1,backendName:"webgl",kernelFunc:JZ},eY=class{constructor(e,t){this.variableNames=["x"];let a=e.length;if(a>4)throw new Error(`WebGL backend: Reverse of rank-${a} tensor is not yet supported`);if(this.outputShape=e,a===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let n=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>n(o)).join(","),s=gt(a);this.userCode=`
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${r}));
}
`}},tY=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let a=e.length;if(a>4)throw new Error(`WebGL backend: Reverse of rank-${a} tensor is not yet supported`);this.outputShape=e;let n=va("rc",a),r=`${n[a-1]} + 1 < ${this.outputShape[a-1]}`,s=`${n[a-2]} + 1 < ${this.outputShape[a-2]}`,i=gt(a);a===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${r}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${o(n.slice())};
if(${r}){
result.g = ${l(n.slice())};
}
if(${s}) {
result.b = ${u(n.slice())};
if(${r}) {
result.a = ${p(n.slice())};
}
}
setOutput(result);
}
`;function o(h){return c(h)}function l(h){return h[a-1]="("+h[a-1]+" + 1)",c(h)}function u(h){return h[a-2]="("+h[a-2]+" + 1)",c(h)}function p(h){return h[a-1]="("+h[a-1]+" + 1)",h[a-2]="("+h[a-2]+" + 1)",c(h)}function c(h){let f=e.map((x,A)=>d(A,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function d(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function aY(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{dims:s}=n,i=r.shape.length,o=v.parseAxisParam(s,r.shape);if(i===0)return Ka({inputs:{x:r},backend:a});let l=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new tY(r.shape,o):new eY(r.shape,o);return a.runWebGLProgram(l,[r],r.dtype)}var nY={kernelName:Zi,backendName:"webgl",kernelFunc:aY},rY=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let a=e[1],n=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${r}
if(coordX >= 0 && coordX < ${n} && coordY >= 0 && coordY < ${a}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}},sY={kernelName:ho,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:a})=>{let{image:n}=e,{radians:r,fillValue:s,center:i}=t,o=a,l=new rY(n.shape,s),[u,p]=T.getImageCenter(i,n.shape[1],n.shape[2]),c=[[u,p,Math.sin(r),Math.cos(r)]];return o.runWebGLProgram(l,[n],n.dtype,c)}},iY=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,oY=Qe({opSnippet:iY}),lY={kernelName:ql,backendName:"webgl",kernelFunc:oY},uY="return inversesqrt(x);",dY=Qe({opSnippet:uY,cpuKernelImpl:NU}),pY={kernelName:Yi,backendName:"webgl",kernelFunc:dY},gv=class{constructor(e,t,a,n,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=gt(r.length),l=gt(s.length),u="";a===1?u="i":a===2&&(u="i, j");let p=`getIndices(${u})`,c="";n===1?c="i":n===2&&(c="i, coords[1]");let d=`getUpdates(${c})`,h=t>1?"strides[j]":"strides";this.userCode=`
${o} strides = ${o}(${r});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${p});
flattenedIndex += index * ${h};
}
if (flattenedIndex == coords[0]) {
sum += ${d};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function cY(e){let{inputs:t,backend:a,attrs:n}=e,{indices:r,updates:s}=t,{shape:i}=n,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:c}=T.calculateShapes(s,r,i),d=[c/u,u];if(c===0)return a.makeTensorInfo(i,r.dtype);let h=ce({inputs:{x:r},backend:a,attrs:{shape:[l,o]}}),f=ce({inputs:{x:s},backend:a,attrs:{shape:[l,u]}}),m=a.makeTensorInfo([],"float32",new Float32Array([0])),g=new gv(l,o,h.shape.length,f.shape.length,p,d),x=a.runWebGLProgram(g,[f,h,m],f.dtype),A=ce({inputs:{x},backend:a,attrs:{shape:i}});return a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(f),a.disposeIntermediateTensorInfo(x),a.disposeIntermediateTensorInfo(m),A}var hY={kernelName:Ji,backendName:"webgl",kernelFunc:cY},fY=class{constructor(e,t,a,n){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[e,a];let r="while (left < right) {",s=`for (int i = 0; i < ${Math.ceil(Math.log2(t+1))}; ++i) { if (left >= right) break;`,i=W().getNumber("WEBGL_VERSION")===2?r:s,o=n==="left"?"<":"<=";this.userCode=`
int findBound(int batch, float value) {
int left = 0;
int right = numInputs;
int mid;
${i}
mid = (left + right) / 2;
if (getSortedSequence(batch, mid) ${o} value) {
left = mid + 1;
} else {
right = mid;
}
}
return right;
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int valueIndex = coords[1];
float value = getValues(batch, valueIndex);
setOutput(float(findBound(batch, value)));
}
`}};function mY(e){let{inputs:t,backend:a,attrs:n}=e,{sortedSequence:r,values:s}=t,{side:i}=n,o=new fY(r.shape[0],r.shape[1],s.shape[1],i),l=[[r.shape[1]]];return a.runWebGLProgram(o,[r,s],"int32",l)}var gY={kernelName:$d,backendName:"webgl",kernelFunc:mY},xY=class{constructor(e,t,a){this.variableNames=["c","a","b"],this.outputShape=t;let n,r;if(a>4)throw Error(`Where for rank ${a} is not yet supported`);if(a===1)r="resRC",n="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);n=o.join(),r=l.join()}let s=gt(a);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
float cVal = getC(${n});
if (cVal >= 1.0) {
setOutput(getA(${r}));
} else {
setOutput(getB(${r}));
}
}
`}};function AY(e){let{inputs:t,backend:a}=e,{condition:n,t:r,e:s}=t,i=new xY(n.shape.length,r.shape,r.shape.length);return a.runWebGLProgram(i,[n,r,s],ca(r.dtype,s.dtype))}var yY={kernelName:Xl,backendName:"webgl",kernelFunc:AY},bY=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${T.SELU_SCALEALPHA};
float scale = ${T.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,vY=Qe({opSnippet:bY}),wY={kernelName:_d,backendName:"webgl",kernelFunc:vY},kY=fu+`
return 1.0 / (1.0 + exp(-1.0 * x));
`,IY=`
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,SY=Qe({opSnippet:kY,packedOpSnippet:IY,cpuKernelImpl:RU}),TY={kernelName:eo,backendName:"webgl",kernelFunc:SY},CY=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,NY=Qe({opSnippet:CY}),EY={kernelName:Pd,backendName:"webgl",kernelFunc:NY},RY=fu+`
return sin(x);
`,MY=Qe({opSnippet:RY}),$Y={kernelName:Qi,backendName:"webgl",kernelFunc:MY},_Y=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,PY=Qe({opSnippet:_Y}),FY={kernelName:Zl,backendName:"webgl",kernelFunc:PY},OY=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,DY=Qe({opSnippet:OY}),zY={kernelName:Fd,backendName:"webgl",kernelFunc:DY},LY=e=>{let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{blockShape:s,paddings:i}=n;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((x,A)=>x*A),l=[[0,0]];l.push(...i);for(let x=1+s.length;x<r.shape.length;++x)l.push([0,0]);let u=[],p=fv({inputs:{x:r},backend:a,attrs:{paddings:l,constantValue:0}}),c=T.getReshaped(p.shape,s,o,!1),d=T.getPermuted(c.length,s.length,!1),h=T.getReshapedPermuted(p.shape,s,o,!1),f=ce({inputs:{x:p},backend:a,attrs:{shape:c}}),m=Ia({inputs:{x:f},backend:a,attrs:{perm:d}}),g=ce({inputs:{x:m},backend:a,attrs:{shape:h}});return u.push(p),u.push(f),u.push(m),u.forEach(x=>a.disposeIntermediateTensorInfo(x)),g},BY={kernelName:Yl,backendName:"webgl",kernelFunc:LY};function WY(e){let{inputs:t,backend:a}=e,{indices:n,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${n.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let o=a.readSync(n.dataId),l=a.readSync(r.dataId),u=a.readSync(s.dataId),p=a.readSync(i.dataId)[0],[c,d,h,f,m]=$U(o,n.shape,n.dtype,l,r.dtype,u,p);return[a.makeTensorInfo(d,n.dtype,c),a.makeTensorInfo([d[0]],r.dtype,h),a.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),a.makeTensorInfo([m.length],n.dtype,new Int32Array(m))]}var VY={kernelName:Od,backendName:"webgl",kernelFunc:WY};function UY(e){let{inputs:t,backend:a}=e,{inputIndices:n,inputShape:r,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${n.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(a.readSync(r.dataId)),o=a.readSync(n.dataId),l=Array.from(a.readSync(s.dataId)),[u,p,c]=_U(o,n.shape,n.dtype,i,l);return[a.makeTensorInfo(p,n.dtype,u),a.makeTensorInfo([c.length],s.dtype,new Int32Array(c))]}var GY={kernelName:Ql,backendName:"webgl",kernelFunc:UY};function HY(e){let{inputs:t,backend:a}=e,{data:n,indices:r,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=a.readSync(n.dataId),o=a.readSync(r.dataId),l=a.readSync(s.dataId),[u,p]=z6(i,n.shape,n.dtype,o,l,!0);return a.makeTensorInfo(p,n.dtype,u)}var jY={kernelName:Dd,backendName:"webgl",kernelFunc:HY};function qY(e){let{inputs:t,backend:a}=e,{data:n,indices:r,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=a.readSync(n.dataId),o=a.readSync(r.dataId),l=a.readSync(s.dataId),[u,p]=z6(i,n.shape,n.dtype,o,l);return a.makeTensorInfo(p,n.dtype,u)}var XY={kernelName:zd,backendName:"webgl",kernelFunc:qY};function KY(e){let{inputs:t,backend:a,attrs:n}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=n,{sliceRank:l,numUpdates:u,sliceSize:p,strides:c,outputSize:d}=T.calculateShapes(s,r,o),h=!1;if(s.dtype==="string"){let x=a.bufferSync(r),A=a.bufferSync(s),y=v.decodeString(a.readSync(i.dataId)[0]),b=EU(x,A,o,d,p,u,l,c,y,h);return a.makeTensorInfo(o,b.dtype,b.values)}let f=new gv(u,l,r.shape.length,s.shape.length,c,[d,1],h),m=a.runWebGLProgram(f,[s,r,i],s.dtype),g=ce({inputs:{x:m},backend:a,attrs:{shape:o}});return a.disposeIntermediateTensorInfo(m),g}var ZY={kernelName:Ld,backendName:"webgl",kernelFunc:KY};function YY(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,r.shape)[0],l=T.prepareSplitSize(r,s,o),u=r.shape.length,p=new Array(u).fill(0),c=r.shape.slice();return l.map(d=>{let h=[...c];h[o]=d;let f=mu({inputs:{x:r},backend:a,attrs:{begin:p,size:h}});return p[o]+=d,f})}var JY={kernelName:Jl,backendName:"webgl",kernelFunc:YY},Rx="return sqrt(x);",QY=Qe({opSnippet:Rx,packedOpSnippet:Rx,cpuKernelImpl:PU}),eJ={kernelName:to,backendName:"webgl",kernelFunc:QY},tJ="return x * x;",aJ=Qe({opSnippet:tJ}),nJ={kernelName:Bd,backendName:"webgl",kernelFunc:aJ},Mx="return (a - b) * (a - b);",rJ=oa({opSnippet:Mx,packedOpSnippet:Mx}),sJ={kernelName:ro,backendName:"webgl",kernelFunc:rJ};function iJ({inputs:e,attrs:t,backend:a}){let{x:n}=e,r=Tn+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,s=new jn(n.shape,r);return a.runWebGLProgram(s,[n],n.dtype)}var oJ={kernelName:co,backendName:"webgl",kernelFunc:iJ},lJ=class{constructor(e,t,a){this.variableNames=["x"],this.outputShape=a;let n=a.length,r=gt(a.length),s=gt(a.length),i="";if(n===1)i="coords * strides + begin";else{let o=0;i=a.map((l,u)=>(o++,a.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
${r} begin = ${r}(${e});
${r} strides = ${r}(${t});
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function uJ(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:c,shrinkAxisMask:d}=n,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:x,begin:A,end:y,strides:b}=It.sliceInfo(r.shape,s,i,o,l,u,p,c,d),w;if(m)w=ce({inputs:{x:r},backend:a,attrs:{shape:f}});else if(g||x){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let C=It.computeOutShape(A,y,b),E=mu({inputs:{x:r},backend:a,attrs:{begin:A,size:C}});w=ce({inputs:{x:E},backend:a,attrs:{shape:f}}),a.disposeIntermediateTensorInfo(E)}else if(a.shouldExecuteOnCPU([r])){let C=a.readSync(r.dataId),E=Me(r.shape,r.dtype,C),_=FU(h,E,b,A);w=a.makeTensorInfo(f,r.dtype,_.values)}else{let C=new lJ(A,b,h);w=a.runWebGLProgram(C,[r],r.dtype)}let S=ce({inputs:{x:w},backend:a,attrs:{shape:f}});return a.disposeIntermediateTensorInfo(w),S}var dJ={kernelName:so,backendName:"webgl",kernelFunc:uJ};function pJ(e){let{inputs:t,backend:a,attrs:n}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=n,{data:p,dataSplits:c}=t,d=a.readSync(p.dataId),h=a.readSync(c.dataId),[f,m]=OU(d,h,r,s,i,o,l,u);return[a.makeTensorInfo([f.length],"string",f),a.makeTensorInfo(c.shape,"int32",m)]}var cJ={kernelName:eu,backendName:"webgl",kernelFunc:pJ};function hJ(e){let{inputs:t,backend:a,attrs:n}=e,{skipEmpty:r}=n,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=a.readSync(s.dataId),l=a.readSync(i.dataId)[0],[u,p,c]=DU(o,l,r),d=p.length;return[a.makeTensorInfo([d,2],"int32",u),a.makeTensorInfo([d],"string",p),a.makeTensorInfo([2],"int32",new Int32Array(c))]}var fJ={kernelName:Wd,backendName:"webgl",kernelFunc:hJ};function mJ(e){let{inputs:t,backend:a,attrs:n}=e,{numBuckets:r}=n,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=a.readSync(s.dataId),o=zU(i,r);return a.makeTensorInfo(s.shape,"int32",o)}var gJ={kernelName:Vd,backendName:"webgl",kernelFunc:mJ},xJ="return tan(x);",AJ=Qe({opSnippet:xJ}),yJ={kernelName:oo,backendName:"webgl",kernelFunc:AJ},bJ=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,vJ=Qe({opSnippet:bJ}),wJ={kernelName:lo,backendName:"webgl",kernelFunc:vJ},kJ=class{constructor(e,t){this.variableNames=["A"];let a=new Array(e.length);for(let s=0;s<a.length;s++)a[s]=e[s]*t[s];this.outputShape=a,this.rank=a.length;let n=gt(this.rank),r=IJ(e);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function IJ(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let a=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],n=[];for(let r=0;r<e.length;r++)n.push(`imod(${a[r]}, ${e[r]})`);return n.join()}function xv(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{reps:s}=n;if(r.dtype==="string"||r.shape.length>5){let o=a.readSync(r.dataId),l=r.dtype==="string"?o.map(c=>v.decodeString(c)):o,u=Me(r.shape,r.dtype,l),p=BU(u,s);return a.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new kJ(r.shape,s);return a.runWebGLProgram(i,[r],r.dtype)}var SJ={kernelName:ts,backendName:"webgl",kernelFunc:xv},TJ=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced above,
// Figure5(a) shows that element[1] is in the
// second half of the group when group size is 2, but it is in the
// first half of the group when group size is 4.
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
int i = isFirstInPair ? elemIdx : elemIdx - inc;
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
// Denotes which direction indices are in (ascending or descending).
bool reverse = imod(elemIdx, 2 * dir) >= dir;
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) { // Elements in opposite order of direction
int iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutput(float(i0));
} else {
setOutput(float(i1));
}
}
`}},CJ=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
// we only need to output the indices at positions |, the indices at
// positions _ can be thrown away, see Figure5(b) After Phase 2
// (Merge phase) in the Bitonic Top K paper referenced above.
// For example, the paper shows we only need to output the orange bars.
// The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back
// to the previous sequence to find the corresponding value,
// we need to double the index. When we double the index,
// we basically interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
// of each 2k positions by - elemIdx % k. E.g. for output at
// index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
float x0 = getX(batch, i0);
float x1 = i1 < n ? getX(batch, i1) : x0;
setOutput(x0 >= x1 ? float(i0) : float(i1));
}
`}};function Cs(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function $x(e){let t=1;for(;t<e;)t*=2;return t}function NJ(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{k:s,sorted:i}=n,o=W().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=W().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,p=u[u.length-1];if(a.shouldExecuteOnCPU([r])||p<o||s>l){let _=a.readSync(r.dataId),[$,M]=WU(_,u,r.dtype,s,i);return[a.makeTensorInfo($.shape,$.dtype,$.values),a.makeTensorInfo(M.shape,M.dtype,M.values)]}if(s===0)return u[u.length-1]=0,[a.makeTensorInfo(u,r.dtype,[]),a.makeTensorInfo(u,"int32",[])];if(p===1)return[r,fp({attrs:{shape:u,dtype:"int32",value:0},backend:a})];let c=a.texData.get(r.dataId),d=c!==null&&c.isPacked,h=d?a.unpackTensor(r):r,f=v.sizeFromShape(u)/p,m=ce({inputs:{x:h},attrs:{shape:[f,p]},backend:a});d&&Cs(a,h);let g=$x(s),x=$x(p),A=null,y=()=>A===null?[m,m]:[m,A],b=(_,$,M)=>{let I=y(),N=new TJ(M),O=[[p],[A===null?1:0],[Number.NEGATIVE_INFINITY],[_],[$]],L=A;A=a.runWebGLProgram(N,I,"int32",O),Cs(a,L)};for(let _=1;_<g;_*=2){let $=_*2;for(let M=_;M>=1;M/=2)b($,M,[f,x])}for(let _=x;_>g;_/=2){let $=y(),M=new CJ([f,_/2]),I=[[p],[A===null?1:0],[g]],N=A;A=a.runWebGLProgram(M,$,"int32",I),Cs(a,N);let O=g/2,L=O*2;for(let B=O;B>=1;B/=2)b(L,B,A.shape)}let w=A;A=mu({inputs:{x:A},backend:a,attrs:{begin:0,size:[f,s]}}),Cs(a,w);let S=lv({inputs:{x:m,indices:A},backend:a,attrs:{axis:1,batchDims:1}});Cs(a,m);let C=u.slice(0,-1);C.push(s),w=A,A=ce({inputs:{x:A},attrs:{shape:C},backend:a}),Cs(a,w);let E=S;return S=ce({inputs:{x:S},attrs:{shape:C},backend:a}),Cs(a,E),[S,A]}var EJ={kernelName:uo,backendName:"webgl",kernelFunc:NJ},RJ=class{constructor(e,t,a,n,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=a==="nearest"?1:2,o;switch(n){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${o} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${r});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${r});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${i} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function MJ(e){let{inputs:t,backend:a,attrs:n}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[p,c,d,h]=r.shape,[f,m]=u!=null?u:[c,d],g=[p,f,m,h],x=new RJ(c,d,i,o,l,g);return a.runWebGLProgram(x,[r,s],"float32")}var $J={kernelName:po,backendName:"webgl",kernelFunc:MJ};function _J(e){let{inputs:t,attrs:a,backend:n}=e,{axis:r}=a,{x:s}=t;lu(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=n.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=VU(i,r,s.shape,s.dtype);return[n.makeTensorInfo(l,s.dtype,o),n.makeTensorInfo([u.length],"int32",u)]}var PJ={kernelName:ih,backendName:"webgl",kernelFunc:_J};function FJ(e){let{inputs:t,backend:a,attrs:n}=e,{value:r}=t,{axis:s}=n;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],u=new Array(o-1),p=0;for(let m=0;m<o;m++)m!==s&&(u[p++]=i.shape[m]);let c=[],d=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let f=new Array(l);for(let m=0;m<f.length;m++){d[s]=m;let g=mu({inputs:{x:i},backend:a,attrs:{begin:d,size:h}}),x=ce({inputs:{x:g},backend:a,attrs:{shape:u}});f[m]=x,c.push(g)}return c.forEach(m=>a.disposeIntermediateTensorInfo(m)),f}var OJ={kernelName:tu,backendName:"webgl",kernelFunc:FJ},DJ=class{constructor(e,t){this.variableNames=["x","segmentIds"];let a=e.windowSize,n=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/a);this.outputShape=[n,i];let o="0.0",l="sumValue",u=Math.floor(a/4)*4,p=a%4,c=`
sumValue += dot(values, segFilter);
`,d="";r%a>0&&(d=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`);let h="";r%a>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${o};
float getValue(int batch, int inIdx) {
${d}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${h}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${s})) * float(${a}));
int currentSeg = int(mod(float(outIdx), float(${s})));
float sumValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${c}
}
int inIdx = inOffset + ${u};
if (${p===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${c}
} else if (${p===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${c}
} else if (${p===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${c}
}
setOutput(${l});
}
`}};function zJ(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,segmentIds:s}=t,{numSegments:i}=n,o=r.shape.length,l=[],u=0,p=T.getAxesPermutation([u],o),c=r;p!=null&&(c=Ia({inputs:{x:r},backend:a,attrs:{perm:p}}),l.push(c),u=T.getInnerMostAxes(1,o)[0]);let d=T.segment_util.computeOutShape(c.shape,u,i),h=v.sizeFromShape([c.shape[u]]),f=ce({inputs:{x:c},backend:a,attrs:{shape:[-1,h]}});l.push(f);let m=Hd(r.dtype),g=(b,w,S,C,E)=>{let _=b.shape[0],$=b.shape[1],M=T.segment_util.segOpComputeOptimalWindowSize($,E),I={windowSize:M,inSize:$,batchSize:_,numSegments:E},N=new DJ(I,w),O=a.compileAndRun(N,[b,S],C);if(l.push(O),O.shape[1]===E)return O;let L=mv({backend:a,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),B=xv({inputs:{x:L},backend:a,attrs:{reps:[$/M]}});return l.push(L),l.push(B),g(O,w,B,C,E)},x=g(f,"unsortedSegmentSum",s,m,i),A=ce({inputs:{x},backend:a,attrs:{shape:d}}),y=A;if(p!=null){l.push(A);let b=T.getUndoAxesPermutation(p);y=Ia({inputs:{x:y},backend:a,attrs:{perm:b}})}return l.forEach(b=>a.disposeIntermediateTensorInfo(b)),y}var LJ={kernelName:oh,backendName:"webgl",kernelFunc:zJ},BJ=[FG,DG,BG,UG,HG,XG,ZG,JG,aH,rH,oH,dH,hH,xH,bH,wH,IH,NH,RH,$H,OH,UH,HH,qH,QH,tj,sj,AG,lj,hj,xj,kj,Sj,Cj,Ej,Mj,Pj,Dj,Bj,Vj,Gj,jj,Kj,Yj,tq,nq,iq,uq,pq,mq,yq,kq,Tq,Eq,Rq,$q,Pq,Oq,zq,Bq,Gq,qq,Zq,Jq,tX,rX,lX,cX,xG,fX,pj,xX,bX,kX,bG,CX,MX,_X,DX,BX,GX,qX,YX,tK,rK,iK,dK,cK,fK,AK,bK,wK,IK,TK,RK,PK,zK,jK,kG,ZK,QK,aZ,sZ,KH,lZ,dZ,cZ,mZ,yZ,wG,vZ,kZ,SZ,CZ,NZ,ZH,VK,MZ,FZ,LZ,SG,UZ,jZ,ZZ,QZ,nY,sY,lY,pY,hY,gY,yY,wY,TY,EY,$Y,FY,WH,GK,zY,BY,VY,GY,jY,XY,ZY,JY,eJ,nJ,sJ,oJ,dJ,cJ,fJ,gJ,UK,$G,yJ,wJ,SJ,EJ,$J,_G,PJ,OJ,LJ,uZ];for(let e of BJ)fn(e);var Tt;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Tt||(Tt={}));var yd;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(yd||(yd={}));var Av;function WJ(e){Av=e.wasm.cwrap(Gr,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function VJ(e){let{inputs:t,backend:a,attrs:n}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:c}=n,d=a.dataIdMap.get(r.dataId).id,h=a.dataIdMap.get(s.dataId).id,f=0;if(i!=null){let E=a.dataIdMap.get(i.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);f=E.id}let m=o==null?0:a.dataIdMap.get(o.dataId).id,g=yd[p];if(g==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let x=l?r.shape[2]:r.shape[1],A=u?s.shape[1]:s.shape[2],y=mo.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)),b=a.makeOutput([...y,x,A],r.dtype),w=a.dataIdMap.get(b.dataId).id,S=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(s.shape).buffer);return Av(d,S,r.shape.length,h,C,s.shape.length,l,u,g,f,m,c||0,w),b}var UJ={kernelName:Gr,backendName:"wasm",setupFunc:WJ,kernelFunc:VJ};function Bt(e,t){let a;function n(s){a=s.wasm.cwrap(e,null,["number","number","number"])}function r(s){let{backend:i,inputs:{x:o}}=s,l=i.dataIdMap.get(o.dataId).id,u=i.makeOutput(o.shape,t||o.dtype),p=i.dataIdMap.get(u.dataId).id;return v.sizeFromShape(u.shape)===0||a(l,Tt[o.dtype],p),u}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var GJ=Bt(vl);function la(e,t,a){let n;function r(i){n=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:p}=l,c=o.dataIdMap.get(u.dataId).id,d=o.dataIdMap.get(p.dataId).id,h=a!=null?a:u.dtype,f=T.assertAndGetBroadcastShape(u.shape,p.shape),m=o.makeOutput(f,h);if(v.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(u.shape).buffer),x=new Uint8Array(new Int32Array(p.shape).buffer),A=o.dataIdMap.get(m.dataId).id;return n(c,g,u.shape.length,d,x,p.shape.length,Tt[u.dtype],A),m}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var HJ=!0,jJ=la(Qr,HJ),yv;function qJ(e){yv=e.wasm.cwrap(qs,null,["array","number","number","number"])}function XJ(e){let{inputs:t,backend:a}=e,n=a.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(n.shape)===0)return n;let r=t.map(o=>a.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=a.dataIdMap.get(n.dataId).id;return yv(s,r.length,Tt[n.dtype],i),n}var KJ={kernelName:qs,backendName:"wasm",setupFunc:qJ,kernelFunc:XJ};function Dh(e){let{inputs:{x:t},backend:a}=e;if(t.dtype==="string")return Be(a.readSync(t.dataId),t.shape,t.dtype);let n=a.makeOutput(t.shape,t.dtype),r=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(n).set(r),n}var ZJ={kernelName:vi,backendName:"wasm",kernelFunc:Dh},bv;function YJ(e){bv=e.wasm.cwrap(gr,null,["number","array","number","number","number","array","number"])}function Yr(e){let{inputs:t,backend:a,attrs:n}=e,[r,s]=QJ(t.x.shape,n.perm),i=!0;for(let f=0;f<s.length;f++)s[f]!==f&&(i=!1);let o=JJ(t.x.shape,n.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let f=Dh({inputs:t,backend:a});return f.shape=o,f}let u=a.makeOutput(o,l.dtype),p=a.dataIdMap.get(l.dataId).id,c=a.dataIdMap.get(u.dataId).id,d=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return bv(p,h,l.shape.length,Tt[l.dtype],c,d,s.length),u}function JJ(e,t){let a=new Array(e.length);for(let n=0;n<a.length;n++)a[n]=e[t[n]];return a}function QJ(e,t){let a=[],n=[];for(let r=0;r<e.length;++r)e[r]!==1&&a.push(e[r]),e[t[r]]!==1&&n.push(t[r]);for(let r=0;r<n.length;++r){let s=-1;for(let i=0;i<n.length;++i)n[i]>=r&&(s===-1||n[s]>n[i])&&(s=i);n[s]=r}return[a,n]}var eQ={kernelName:gr,backendName:"wasm",kernelFunc:Yr,setupFunc:YJ};function os(e,t,a){let n=e.shape,r=e.shape.length,s=v.parseAxisParam(t,n),i=s,o=T.getAxesPermutation(i,r),l=null,u=!1;if(o!=null){let p=new Array(r);for(let d=0;d<p.length;d++)p[d]=n[o[d]];i=T.getInnerMostAxes(i.length,r),l=Yr({inputs:{x:e},attrs:{perm:o},backend:a});let c=a.dataIdMap.get(e.dataId).id;a.dataIdMap.get(l.dataId).id!==c&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var vv;function tQ(e){vv=e.wasm.cwrap(Xs,null,["number, number, number"])}function aQ(e){let{backend:t,inputs:a,attrs:n}=e,{axis:r,keepDims:s}=n,{x:i}=a,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:c,inputWasTransposed:d}=os(i,r,t);if(d){let A=t.dataIdMap.get(u.dataId).id;l=u,o=A}let h=l.shape.length;T.assertAxesAreInnerMostDims("all",p,h);let[f,m]=T.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(m),x=t.makeOutput(f,i.dtype);if(v.sizeFromShape(l.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;vv(o,g,A)}if(d&&t.disposeData(u.dataId),s){let A=T.expandShapeToKeepDim(x.shape,c);x.shape=A}return x}var nQ={kernelName:Xs,backendName:"wasm",setupFunc:tQ,kernelFunc:aQ},wv;function rQ(e){wv=e.wasm.cwrap(Ks,null,["number, number, number"])}function sQ(e){let{backend:t,inputs:a,attrs:n}=e,{axis:r,keepDims:s}=n,{x:i}=a,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:c,inputWasTransposed:d}=os(i,r,t);if(d){let A=t.dataIdMap.get(u.dataId).id;l=u,o=A}let h=l.shape.length;T.assertAxesAreInnerMostDims("any",p,h);let[f,m]=T.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(m),x=t.makeOutput(f,i.dtype);if(v.sizeFromShape(l.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;wv(o,g,A)}if(d&&t.disposeData(u.dataId),s){let A=T.expandShapeToKeepDim(x.shape,c);x.shape=A}return x}var iQ={kernelName:Ks,backendName:"wasm",setupFunc:rQ,kernelFunc:sQ},kv;function oQ(e){kv=e.wasm.cwrap(Zs,null,["number","number","number","number","number"])}function lQ(e){let{backend:t,inputs:a,attrs:n}=e,{axis:r}=n,{x:s}=a,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:p,inputWasTransposed:c}=os(s,r,t);if(c){let x=t.dataIdMap.get(u.dataId).id;x!==i&&(l=u,o=x)}let d=l.shape.slice(0,-1),h=t.makeOutput(d,"int32"),f=t.dataIdMap.get(h.dataId).id,m=v.sizeFromShape(h.shape),g=l.shape[p[0]];return kv(o,Tt[l.dtype],m,g,f),c&&t.disposeData(u.dataId),h}var uQ={kernelName:Zs,backendName:"wasm",kernelFunc:lQ,setupFunc:oQ},Iv;function dQ(e){Iv=e.wasm.cwrap(Ys,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function pQ(e){let{inputs:t,attrs:a,backend:n}=e,r=t.x,s=n.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a,p=T.computePool2DInfo(r.shape,i,o,1,l,u),c=p.filterHeight,d=p.filterWidth,h=p.padInfo.top,f=p.padInfo.right,m=p.padInfo.bottom,g=p.padInfo.left,x=p.strideHeight,A=p.strideWidth,y=p.inChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);if(p.dilationWidth!==1||p.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${p.dilationHeight}, ${p.dilationWidth}].`);let b=n.makeOutput(p.outShape,"float32"),w=n.dataIdMap.get(b.dataId).id;return Iv(s,r.shape[0],r.shape[1],r.shape[2],c,d,h,f,m,g,x,A,y,w),b}var cQ={kernelName:Ys,backendName:"wasm",setupFunc:dQ,kernelFunc:pQ};function za(e){let{inputs:t,attrs:a}=e,{x:n}=t,{shape:r}=a,s=v.sizeFromShape(n.shape),i=v.inferFromImplicitShape(r,s);return v.assert(s===v.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${n.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(n.dataId),{dataId:n.dataId,shape:i,dtype:n.dtype}}var hQ={kernelName:jl,backendName:"wasm",kernelFunc:za},Sv;function fQ(e){Sv=e.wasm.cwrap(Js,null,["number","array","number","number","array","number","number","number","number"])}function mQ(e){let{inputs:t,backend:a,attrs:n}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=n;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],c=o?s.shape[u-1]:s.shape[u-2],d=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],f=r.shape.slice(0,-2),m=s.shape.slice(0,-2),g=v.sizeFromShape(f),x=v.sizeFromShape(m),A=mo.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([d,h]);v.assert(p===c,()=>`Error in matMul: inner shapes (${p}) and (${c}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let y=i?[g,p,d]:[g,d,p],b=o?[x,h,c]:[x,c,h],w=za({inputs:{x:r},backend:a,attrs:{shape:y}}),S=za({inputs:{x:s},backend:a,attrs:{shape:b}}),C=a.dataIdMap.get(w.dataId).id,E=a.dataIdMap.get(S.dataId).id,_=i?w.shape[2]:w.shape[1],$=o?S.shape[1]:S.shape[2],M=Math.max(g,x),I=a.makeOutput([M,_,$],w.dtype),N=a.dataIdMap.get(I.dataId).id,O=new Uint8Array(new Int32Array(w.shape).buffer),L=new Uint8Array(new Int32Array(S.shape).buffer);return Sv(C,O,w.shape.length,E,L,S.shape.length,i,o,N),a.disposeData(w.dataId),a.disposeData(S.dataId),I.shape=A,I}var gQ={kernelName:Js,backendName:"wasm",setupFunc:fQ,kernelFunc:mQ};function Hs(e){let{inputs:{x:t},attrs:{begin:a,size:n},backend:r}=e,[s,i]=It.parseSliceParams(t,a,n),o=It.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),u=r.makeOutput(i,t.dtype),p=v.computeStrides(t.shape),c=r.dataIdMap.get(u.dataId);if(o){let f=It.computeFlatOffset(s,p);return t.dtype==="string"?c.stringBytes=l.slice(f,f+v.sizeFromShape(i)):r.typedArrayFromHeap(u).set(l.subarray(f,f+v.sizeFromShape(i))),u}if(t.dtype==="string"){let f=Rc(l,s,i,t.shape,t.dtype);return c.stringBytes=f,u}let d=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)xQ(l,p[0],d,s,i);else if(h===3)AQ(l,p[0],p[1],d,s,i);else if(h===4)yQ(l,p[0],p[1],p[2],d,s,i);else{let f=Rc(l,s,i,t.shape,t.dtype);d.set(f)}return u}function xQ(e,t,a,n,r){let s=0,i=n[0],o=n[1],l=i+r[0];for(let u=i;u<l;u++){let p=u*t+o;a.set(e.subarray(p,p+r[1]),s),s+=r[1]}}function AQ(e,t,a,n,r,s){let i=0,o=r[0],l=r[1],u=r[2],p=o+s[0],c=l+s[1];for(let d=o;d<p;d++)for(let h=l;h<c;h++){let f=d*t+h*a+u;n.set(e.subarray(f,f+s[2]),i),i+=s[2]}}function yQ(e,t,a,n,r,s,i){let o=0,l=s[0],u=s[1],p=s[2],c=l+i[0],d=u+i[1],h=p+i[2],f=s[3];for(let m=l;m<c;m++)for(let g=u;g<d;g++)for(let x=p;x<h;x++){let A=m*t+g*a+x*n+f;r.set(e.subarray(A,A+i[3]),o),o+=i[3]}}var bQ={kernelName:Kl,backendName:"wasm",kernelFunc:Hs};function vQ(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{blockShape:s,crops:i}=n,o=s.reduce((x,A)=>x*A),l=T.getReshaped(r.shape,s,o),u=T.getPermuted(l.length,s.length),p=T.getReshapedPermuted(r.shape,s,o),c=T.getSliceBeginCoords(i,s.length),d=T.getSliceSize(p,i,s.length),h=za({inputs:{x:r},backend:a,attrs:{shape:l}}),f=Yr({inputs:{x:h},backend:a,attrs:{perm:u}}),m=za({inputs:{x:f},backend:a,attrs:{shape:p}}),g=Hs({inputs:{x:m},backend:a,attrs:{begin:c,size:d}});return a.disposeData(h.dataId),a.disposeData(f.dataId),a.disposeData(h.dataId),g}var wQ={kernelName:El,backendName:"wasm",kernelFunc:vQ};function gu(e){let{inputs:{x:t},attrs:{dtype:a},backend:n}=e,r=n.makeOutput(t.shape,a),s=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(s),r}var kQ={kernelName:Qs,backendName:"wasm",kernelFunc:gu},IQ=Bt(ei),Tv;function SQ(e){Tv=e.wasm.cwrap(es,null,["number","number","number","number"])}function TQ(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=n,o=a.dataIdMap.get(r.dataId).id,l=a.makeOutput(r.shape,r.dtype),u=a.dataIdMap.get(l.dataId).id;return Tv(o,s,i,u),l}var CQ={kernelName:es,backendName:"wasm",setupFunc:SQ,kernelFunc:TQ};function Cv(e){let{inputs:t,backend:a}=e,n=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=t.map(h=>h.shape);T.assertParamsConsistent(r,n);let s=T.computeOutShape(t.map(h=>h.shape),n),i=t.filter(h=>v.sizeFromShape(h.shape)>0);if(i.length===1)return Dh({inputs:{x:i[0]},backend:a});let o=a.makeOutput(s,t[0].dtype);if(v.sizeFromShape(s)===0)return o;if(i[0].dtype==="string"){let h=i.map(y=>{let b=[-1,v.sizeFromShape(y.shape.slice(n))];return za({inputs:{x:y},backend:a,attrs:{shape:b}})}),f=h.map(y=>({vals:a.readSync(y.dataId),shape:y.shape}));s=T.computeOutShape(h.map(y=>y.shape),1);let m=h[0].shape[0]===1,g=r3(f,s,t[0].dtype,m),x=T.computeOutShape(i.map(y=>y.shape),n);o.shape=x;let A=a.dataIdMap.get(o.dataId);return A.stringBytes=T.fromStringArrayToUint8(g),h.forEach(y=>a.disposeData(y.dataId)),o}let l=v.sizeFromShape(i[0].shape.slice(0,n)),u=0,p=i.map(h=>{let f=v.sizeFromShape(h.shape.slice(n));return u+=f,f}),c=i.map(h=>a.typedArrayFromHeap(h)),d=a.typedArrayFromHeap(o);for(let h=0;h<l;h++){let f=h*u;for(let m=0;m<c.length;m++){let g=p[m],x=h*g,A=c[m].subarray(x,x+g);d.set(A,f),f+=g}}return o}var NQ={kernelName:Rl,backendName:"wasm",kernelFunc:Cv},Nv;function EQ(e){Nv=e.wasm.cwrap(ti,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function RQ(e){let{inputs:t,attrs:a,backend:n}=e,{x:r,filter:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:c,dataFormat:d}=a,h=T.convertConv2DDataFormat(d),f=T.computeConv2DInfo(r.shape,s.shape,l,u,p,c,!1,h),m=f.filterHeight,g=f.filterWidth,x=f.padInfo.top,A=f.padInfo.right,y=f.padInfo.bottom,b=f.padInfo.left,w=f.dilationHeight,S=f.dilationWidth,C=f.strideHeight,E=f.strideWidth,_=f.inChannels,$=f.outChannels,M=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let I=n.makeOutput(f.outShape,"float32"),N=n.dataIdMap.get(I.dataId).id;return Nv(i,r.shape[0],r.shape[1],r.shape[2],o,m,g,x,A,y,b,M,w,S,C,E,_,$,N),I}var MQ={kernelName:ti,backendName:"wasm",setupFunc:EQ,kernelFunc:RQ},Ev;function $Q(e){Ev=e.wasm.cwrap(ai,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function _Q(e){let{backend:t,inputs:a,attrs:n}=e,{dy:r,filter:s}=a,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:p}=n,c=1,d=T.convertConv2DDataFormat(l),h=T.computeConv2DInfo(p,s.shape,i,c,o,u,!1,d),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:x,inHeight:A,inWidth:y,outChannels:b,outHeight:w,outWidth:S,strideHeight:C,strideWidth:E}=h,_=m-1-h.padInfo.top,$=g-1-h.padInfo.left,M=h.dataFormat==="channelsLast",I=v.computeStrides(h.inShape),N=v.computeStrides(r.shape),[O,L,B]=v.computeStrides(s.shape),G=I[0],j=M?I[1]:I[2],U=M?I[2]:1,H=M?1:I[1],V=N[0],Q=M?N[1]:N[2],Z=M?N[2]:1,re=M?1:N[1],ee=t.makeOutput(h.inShape,"float32"),he=t.dataIdMap.get(ee.dataId).id,oe=t.dataIdMap.get(r.dataId).id,Ae=t.dataIdMap.get(s.dataId).id;return Ev(oe,Ae,f,m,g,A,y,x,w,S,b,C,E,_,$,O,L,B,G,j,U,H,V,Q,Z,re,he),ee}var PQ={kernelName:ai,backendName:"wasm",setupFunc:$Q,kernelFunc:_Q},FQ=Bt(ni),OQ=Bt(ri),T1;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(T1||(T1={}));var Rv;function DQ(e){Rv=e.wasm.cwrap(oi,null,["number","number","number","number","array","number","number","number","number","number"])}function zQ(e){let{backend:t,inputs:a,attrs:n}=e,{method:r,extrapolationValue:s,cropSize:i}=n,{image:o,boxes:l,boxInd:u}=a,p=l.shape[0],[c,d]=i,h=[p,c,d,o.shape[3]],f=t.dataIdMap.get(o.dataId),m;o.dtype!=="float32"&&(m=gu({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,x=t.dataIdMap.get(l.dataId).id,A=t.dataIdMap.get(u.dataId).id,y=t.makeOutput(h,"float32"),b=t.dataIdMap.get(y.dataId).id,w=new Uint8Array(new Int32Array(o.shape).buffer);return Rv(g,x,A,p,w,c,d,T1[r],s,b),m!=null&&t.disposeData(m.dataId),y}var LQ={kernelName:oi,backendName:"wasm",setupFunc:DQ,kernelFunc:zQ},Mv;function BQ(e){Mv=e.wasm.cwrap(si,null,["number","number","number","number","number","number"])}function WQ(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=n,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumprod does not support ${r.dtype} tensors in the WASM backend`);let u=T.getAxesPermutation([s],l),p=r;u!==null&&(p=Yr({inputs:{x:r},attrs:{perm:u},backend:a}));let c=T.getInnerMostAxes(1,l)[0];T.assertAxesAreInnerMostDims("cumprod",[c],l);let d=a.makeOutput(p.shape,p.dtype),h=p.shape[c],f=a.dataIdMap.get(p.dataId).id,m=a.dataIdMap.get(d.dataId).id;Mv(f,i?1:0,o?1:0,h,m,Tt[r.dtype]);let g=d;if(u!==null){let x=T.getUndoAxesPermutation(u);g=Yr({inputs:{x:d},attrs:{perm:x},backend:a}),a.disposeData(p.dataId),a.disposeData(d.dataId)}return g}var VQ={kernelName:si,backendName:"wasm",setupFunc:BQ,kernelFunc:WQ},$v;function UQ(e){$v=e.wasm.cwrap(ii,null,["number","number","number","number","number","number"])}function GQ(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=n,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=T.getAxesPermutation([s],l),p=r;u!==null&&(p=Yr({inputs:{x:r},attrs:{perm:u},backend:a}));let c=T.getInnerMostAxes(1,l)[0];T.assertAxesAreInnerMostDims("cumsum",[c],l);let d=a.makeOutput(p.shape,p.dtype),h=p.shape[c],f=a.dataIdMap.get(p.dataId).id,m=a.dataIdMap.get(d.dataId).id;$v(f,i?1:0,o?1:0,h,m,Tt[r.dtype]);let g=d;if(u!==null){let x=T.getUndoAxesPermutation(u);g=Yr({inputs:{x:d},attrs:{perm:x},backend:a}),a.disposeData(p.dataId),a.disposeData(d.dataId)}return g}var HQ={kernelName:ii,backendName:"wasm",setupFunc:UQ,kernelFunc:GQ},_v;function jQ(e){_v=e.wasm.cwrap(li,null,["number","number","number","array","number","array","array","number","number"])}function qQ(e){let{backend:t,inputs:a,attrs:n}=e,{x:r}=a,{blockSize:s,dataFormat:i}=n,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],c=l*s,d=u*s,h=p/(s*s),f=i==="NHWC"?[o,c,d,h]:[o,h,c,d],m=t.makeOutput(f,"float32"),g=t.dataIdMap.get(r.dataId).id,x=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),A=new Uint8Array(new Int32Array(f).buffer),y=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer),b=t.dataIdMap.get(m.dataId).id;return _v(g,s,i==="NHWC"?1:0,x,r.shape.length-1,A,y,f.length,b),m}var XQ={kernelName:li,backendName:"wasm",setupFunc:jQ,kernelFunc:qQ},Pv;function KQ(e){Pv=e.wasm.cwrap(ui,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ZQ(e){let{inputs:t,attrs:a,backend:n}=e,{x:r,filter:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:c}=a,d=u==null?[1,1]:u,h=T.computeConv2DInfo(r.shape,s.shape,l,d,p,c,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,x=h.padInfo.right,A=h.padInfo.bottom,y=h.padInfo.left,b=h.dilationHeight,w=h.dilationWidth,S=h.strideHeight,C=h.strideWidth,E=h.inChannels,_=h.outChannels,$=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let M=n.makeOutput(h.outShape,"float32"),I=n.dataIdMap.get(M.dataId).id;return Pv(i,r.shape[0],r.shape[1],r.shape[2],o,f,m,g,x,A,y,$,b,w,S,C,E,_,I),M}var YQ={kernelName:ui,backendName:"wasm",setupFunc:KQ,kernelFunc:ZQ},JQ=Bt(pi),QQ=!1,eee=la(ci,QQ,"bool"),tee=Bt(hi,"float32");function C1(e){let{inputs:t,attrs:a,backend:n}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),za({inputs:{x:r},backend:n,attrs:{shape:o}})}var aee={kernelName:$l,backendName:"wasm",kernelFunc:C1};function Fv(e){let{attrs:{shape:t,value:a,dtype:n},backend:r}=e,s=r.makeOutput(t,n);return r.typedArrayFromHeap(s).fill(a),s}var nee={kernelName:Pl,backendName:"wasm",kernelFunc:Fv},Ov;function ree(e){Ov=e.wasm.cwrap(fi,null,["number","number","number","number","number","number"])}function see(e){let{inputs:t,backend:a}=e,{image:n}=t,r=a.makeOutput(n.shape,n.dtype),s=a.dataIdMap.get(n.dataId).id,i=a.dataIdMap.get(r.dataId).id,[o,l,u,p]=n.shape;return Ov(s,o,l,u,p,i),r}var iee={kernelName:fi,backendName:"wasm",kernelFunc:see,setupFunc:ree},oee=Bt(mi),lee=!1,uee=la(gi,lee),Dv;function dee(e){Dv=e.wasm.cwrap(xi,null,["number","number","number","number","number","number","number"])}function pee(e){let{backend:t,inputs:a,attrs:n}=e,{varianceEpsilon:r}=n,{x:s,mean:i,variance:o,offset:l,scale:u}=a,p=t.dataIdMap.get(s.dataId).id,c=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(s.shape,s.dtype);if(v.sizeFromShape(s.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return Dv(p,c,d,h,f,r,g),m}var cee={kernelName:xi,backendName:"wasm",setupFunc:dee,kernelFunc:pee},zv;function hee(e){zv=e.wasm.cwrap(Hr,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function fee(e){let{inputs:t,attrs:a,backend:n}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:c,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=a,m=T.computeConv2DInfo(r.shape,s.shape,l,p,u,d),g=yd[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let x=n.dataIdMap.get(r.dataId).id,A=n.dataIdMap.get(s.dataId).id,y=m.outChannels,b=0;if(i!=null){let Z=n.dataIdMap.get(i.dataId);if(Z.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Z.shape.length}.`);if(Z.shape[0]!==y)throw new Error(`FusedConv2D bias shape (${Z.shape}) does not match the number of output channels (${y})`);b=Z.id}let w=m.filterHeight,S=m.filterWidth,C=m.padInfo.top,E=m.padInfo.right,_=m.padInfo.bottom,$=m.padInfo.left,M=m.dilationHeight,I=m.dilationWidth,N=m.strideHeight,O=m.strideWidth,L=m.inChannels,B=m.padInfo.type==="SAME"?1:0,G=m.batchSize,j=m.inHeight,U=m.inWidth;if(c!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${c}'. Please use 'NHWC'.`);let H=n.makeOutput(m.outShape,"float32"),V=n.dataIdMap.get(H.dataId).id,Q=o==null?0:n.dataIdMap.get(o.dataId).id;return zv(x,G,j,U,A,w,S,b,C,E,_,$,B,M,I,N,O,L,y,g,Q,f||0,V),H}var mee={kernelName:Hr,backendName:"wasm",setupFunc:hee,kernelFunc:fee},Lv;function gee(e){Lv=e.wasm.cwrap(jr,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function xee(e){let{inputs:t,attrs:a,backend:n}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:c,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=a,m=T.computeConv2DInfo(r.shape,s.shape,l,p,u,d,!0),g=yd[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let x=n.dataIdMap.get(r.dataId).id,A=n.dataIdMap.get(s.dataId).id,y=m.outChannels,b=0;if(i!=null){let Z=n.dataIdMap.get(i.dataId);if(Z.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Z.shape.length}.`);if(Z.shape[0]!==y)throw new Error(`FusedDepthwiseConv2D bias shape (${Z.shape}) does not match the number of output channels (${y})`);b=Z.id}let w=m.filterHeight,S=m.filterWidth,C=m.padInfo.top,E=m.padInfo.right,_=m.padInfo.bottom,$=m.padInfo.left,M=m.dilationHeight,I=m.dilationWidth,N=m.strideHeight,O=m.strideWidth,L=m.inChannels,B=m.padInfo.type==="SAME"?1:0,G=m.batchSize,j=m.inHeight,U=m.inWidth;if(c!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${c}'. Please use 'NHWC'.`);let H=n.makeOutput(m.outShape,"float32"),V=n.dataIdMap.get(H.dataId).id,Q=o==null?0:n.dataIdMap.get(o.dataId).id;return Lv(x,G,j,U,A,w,S,b,C,E,_,$,B,M,I,N,O,L,y,g,Q,f||0,V),H}var Aee={kernelName:jr,backendName:"wasm",setupFunc:gee,kernelFunc:xee},Bv;function yee(e){Bv=e.wasm.cwrap(Ai,null,["number","number","number","number","number","number","array","number"])}function bee(e){let{backend:t,inputs:a}=e,{params:n,indices:r}=a,[s,i,o,l]=u2.prepareAndValidate(n,r),u=t.makeOutput(s,n.dtype);if(i===0)return u;let p=r.shape,c=p[p.length-1],d=t.dataIdMap.get(n.dataId).id,h=t.dataIdMap.get(r.dataId).id,f=new Uint8Array(new Int32Array(l).buffer),m=t.dataIdMap.get(u.dataId).id;return Bv(d,Tt[n.dtype],h,i,c,o,f,m),u}var vee={kernelName:Ai,backendName:"wasm",setupFunc:yee,kernelFunc:bee},Wv;function wee(e){Wv=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function kee(e){let{backend:t,inputs:a,attrs:n}=e,{x:r,indices:s}=a,{axis:i,batchDims:o}=n,l=v.parseAxisParam(i,r.shape)[0],u=t.readSync(s.dataId),p=r.shape[l];for(let C=0;C<u.length;++C){let E=u[C];v.assert(E<=p-1&&E>=0,()=>`GatherV2: the index value ${E} is not in [0, ${p-1}]`)}let c=T.segment_util.collectGatherOpShapeInfo(r,s,l,o),d=za({inputs:{x:r},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),h=v.sizeFromShape(s.shape),f=za({inputs:{x:s},attrs:{shape:[c.batchSize,h/c.batchSize]},backend:t}),m=[c.batchSize,c.outerSize,h/c.batchSize,c.sliceSize],g=t.makeOutput(m,r.dtype);if(v.sizeFromShape(r.shape)===0)return g;let x=d.shape.length-1,A=t.dataIdMap.get(d.dataId).id,y=t.dataIdMap.get(f.dataId).id,b=t.dataIdMap.get(g.dataId).id,w=new Uint8Array(new Int32Array(v.computeStrides(d.shape)).buffer),S=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer);return Wv(A,Tt[r.dtype],w,x,y,c.batchSize,S,b),t.disposeData(d.dataId),t.disposeData(f.dataId),g.shape=c.outputShape,g}var Iee={kernelName:Fl,backendName:"wasm",setupFunc:wee,kernelFunc:kee},See=!1,Tee=la(yi,See,"bool"),Cee=!1,Nee=la(bi,Cee,"bool"),Eee=Bt(wi,"bool"),Vv;function Ree(e){Vv=e.wasm.cwrap(ki,null,["number","number","number","number"])}function Mee(e){let{inputs:{x:t},attrs:{alpha:a},backend:n}=e,r=n.dataIdMap.get(t.dataId).id,s=n.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let i=n.dataIdMap.get(s.dataId).id;Vv(r,Tt[t.dtype],a,i)}return s}var $ee={kernelName:ki,backendName:"wasm",setupFunc:Ree,kernelFunc:Mee},_ee=!1,Pee=la(Ii,_ee,"bool"),Fee=!1,Oee=la(Si,Fee,"bool"),Dee=Bt(Ti),zee=!1,Lee=la(Ci,zee,"bool"),Bee=Bt(Ni),Wee=!1,Vee=la(Ll,Wee,"bool"),Uee=!1,Gee=la(fA,Uee,"bool"),Uv;function Hee(e){Uv=e.wasm.cwrap(Ei,null,["number","number","number","number"])}function jee(e){let{backend:t,inputs:a,attrs:n}=e,{reductionIndices:r,keepDims:s}=n,{x:i}=a,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:c,inputWasTransposed:d}=os(i,r,t);if(d){let A=t.dataIdMap.get(u.dataId).id;l=u,o=A}let h=l.shape.length;T.assertAxesAreInnerMostDims("max",p,h);let[f,m]=T.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(m),x=t.makeOutput(f,i.dtype);if(v.sizeFromShape(l.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;Uv(o,Tt[i.dtype],g,A)}if(d&&t.disposeData(u.dataId),s){let A=T.expandShapeToKeepDim(x.shape,c);x.shape=A}return x}var qee={kernelName:Ei,backendName:"wasm",setupFunc:Hee,kernelFunc:jee},Xee=!1,Kee=la(Ri,Xee),Gv;function Zee(e){Gv=e.wasm.cwrap(Mi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Yee(e){let{inputs:t,attrs:a,backend:n}=e,r=t.x,s=n.dataIdMap.get(r.dataId).id;v.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a,p=T.computePool2DInfo(r.shape,i,o,1,l,u),c=p.filterHeight,d=p.filterWidth,h=p.padInfo.top,f=p.padInfo.right,m=p.padInfo.bottom,g=p.padInfo.left,x=p.dilationHeight,A=p.dilationWidth,y=p.strideHeight,b=p.strideWidth,w=p.inChannels,S=p.outChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let C=n.makeOutput(p.outShape,"float32"),E=n.dataIdMap.get(C.dataId).id;return Gv(s,r.shape[0],r.shape[1],r.shape[2],c,d,h,f,m,g,x,A,y,b,w,S,E),C}var Jee={kernelName:Mi,backendName:"wasm",setupFunc:Zee,kernelFunc:Yee},Hv;function Qee(e){Hv=e.wasm.cwrap($i,null,["number, number, number"])}function ete(e){let{backend:t,inputs:a,attrs:n}=e,{axis:r,keepDims:s}=n,{x:i}=a,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:c,originalAxes:d,inputWasTransposed:h}=os(i,r,t),f=c;if(h){let b=t.dataIdMap.get(p.dataId).id;b!==o&&(u=p,l=b,f=T.getInnerMostAxes(f.length,u.shape.length))}T.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,g]=T.computeOutAndReduceShapes(u.shape,f),x=v.sizeFromShape(g),A=u;u.dtype!=="float32"&&(A=gu({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(A.dataId).id);let y=t.makeOutput(m,"float32");if(v.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;Hv(l,x,b)}if(h&&t.disposeData(p.dataId),s){let b=T.expandShapeToKeepDim(y.shape,d);y.shape=b}return u.dtype!=="float32"&&t.disposeData(A.dataId),y}var tte={kernelName:$i,backendName:"wasm",setupFunc:Qee,kernelFunc:ete},jv;function ate(e){jv=e.wasm.cwrap(_i,null,["number","number","number","number"])}function nte(e){let{backend:t,inputs:a,attrs:n}=e,{axis:r,keepDims:s}=n,{x:i}=a,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:c,originalAxes:d,inputWasTransposed:h}=os(i,r,t);if(h){let y=t.dataIdMap.get(p.dataId).id;y!==o&&(u=p,l=y)}let f=u.shape.length;T.assertAxesAreInnerMostDims("min",c,f);let[m,g]=T.computeOutAndReduceShapes(u.shape,c),x=v.sizeFromShape(g),A=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let y=t.dataIdMap.get(A.dataId).id;jv(l,Tt[i.dtype],x,y)}if(h&&t.disposeData(p.dataId),s){let y=T.expandShapeToKeepDim(A.shape,d);A.shape=y}return A}var rte={kernelName:_i,backendName:"wasm",setupFunc:ate,kernelFunc:nte},ste=!1,ite=la(Pi,ste),N1;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(N1||(N1={}));var qv;function ote(e){qv=e.wasm.cwrap(Fi,null,["number","array","number","number","array","array","number","number"])}function lte(e){let{inputs:{x:t},backend:a,attrs:{paddings:n,mode:r}}=e,s=n.map((f,m)=>f[0]+t.shape[m]+f[1]),i=a.dataIdMap.get(t.dataId).id,o=a.makeOutput(s,t.dtype),l=a.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=n.map(f=>f[0]),c=n.map(f=>f[1]),d=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(c).buffer);return qv(i,u,t.shape.length,Tt[t.dtype],d,h,N1[r],l),o}var ute={kernelName:Fi,backendName:"wasm",kernelFunc:lte,setupFunc:ote},dte=!0,pte=la(Oi,dte),cte=Bt(Wl);function R3(e,t){let a=new Int32Array(e.wasm.HEAPU8.buffer,t,4),n=a[0],r=a[1],s=a[2],i=a[3];return e.wasm._free(t),{pSelectedIndices:n,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var Xv;function hte(e){Xv=e.wasm.cwrap(zi,"number",["number","number","number","number","number"])}function fte(e){let{backend:t,inputs:a,attrs:n}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=n,{boxes:o,scores:l}=a,u=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(l.dataId).id,c=Xv(u,p,s,r,i),{pSelectedIndices:d,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=R3(t,c);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",d)}var mte={kernelName:zi,backendName:"wasm",setupFunc:hte,kernelFunc:fte},Kv;function gte(e){Kv=e.wasm.cwrap(Vl,"number",["number","number","number","number","number","bool"])}function xte(e){let{backend:t,inputs:a,attrs:n}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=n,{boxes:l,scores:u}=a,p=t.dataIdMap.get(l.dataId).id,c=t.dataIdMap.get(u.dataId).id,d=Kv(p,c,s,r,i,o),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=R3(t,d);t.wasm._free(m);let x=t.makeOutput([f],"int32",h),A=t.makeOutput([],"int32",g);return[x,A]}var Ate={kernelName:Vl,backendName:"wasm",setupFunc:gte,kernelFunc:xte},Zv;function yte(e){Zv=e.wasm.cwrap(Li,"number",["number","number","number","number","number","number"])}function bte(e){let{backend:t,inputs:a,attrs:n}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=n,{boxes:l,scores:u}=a,p=t.dataIdMap.get(l.dataId).id,c=t.dataIdMap.get(u.dataId).id,d=Zv(p,c,s,r,i,o),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=R3(t,d);t.wasm._free(g);let x=t.makeOutput([f],"int32",h),A=t.makeOutput([f],"float32",m);return[x,A]}var vte={kernelName:Li,backendName:"wasm",setupFunc:yte,kernelFunc:bte},wte=!1,kte=la(Di,wte,"bool"),Yv;function Ite(e){Yv=e.wasm.cwrap(Bi,null,["number","number","number","number","number"])}function Ste(e){let{inputs:t,backend:a,attrs:n}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=n,u=a.makeOutput([...r.shape,i],s),p=a.dataIdMap.get(u.dataId).id,c=a.dataIdMap.get(r.dataId).id;return Yv(c,i,o,l,p),u}var Tte={kernelName:Bi,backendName:"wasm",setupFunc:Ite,kernelFunc:Ste};function Cte(e){let{inputs:{x:t},backend:a}=e,n=a.makeOutput(t.shape,t.dtype);return a.typedArrayFromHeap(n).fill(1),n}var Nte={kernelName:Ul,backendName:"wasm",kernelFunc:Cte};function Ete(e){let{inputs:t,backend:a,attrs:n}=e,{axis:r}=n;if(t.length===1)return C1({inputs:{input:t[0]},backend:a,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let c=C1({inputs:{input:p},backend:a,attrs:{dim:r}});return o.push(c),c}),u=Cv({inputs:l,backend:a,attrs:{axis:r}});return o.forEach(p=>a.disposeData(p.dataId)),u}var Rte={kernelName:Gl,backendName:"wasm",kernelFunc:Ete},Jv;function Mte(e){Jv=e.wasm.cwrap(Wi,null,["number","array","number","number","array","array","number","number"])}function $te(e){let{inputs:{x:t},backend:a,attrs:{paddings:n,constantValue:r}}=e,s=n.map((f,m)=>f[0]+t.shape[m]+f[1]);if(v.sizeFromShape(t.shape)===0)return Fv({backend:a,attrs:{shape:s,value:r,dtype:t.dtype}});let i=a.dataIdMap.get(t.dataId).id,o=a.makeOutput(s,t.dtype),l=a.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=n.map(f=>f[0]),c=n.map(f=>f[1]),d=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(c).buffer);return Jv(i,u,t.shape.length,Tt[t.dtype],d,h,r,l),o}var Qv={kernelName:Wi,backendName:"wasm",kernelFunc:$te,setupFunc:Mte},_te=!1,Pte=la(Vi,_te),e8;function Fte(e){e8=e.wasm.cwrap(Ui,null,["number","number","number"])}function Ote(e){let{inputs:t,backend:a}=e,{x:n,alpha:r}=t,s=a.dataIdMap.get(n.dataId).id,i=a.dataIdMap.get(r.dataId).id,o=s,l=n,u=l;l.dtype!=="float32"&&(u=gu({backend:a,inputs:{x:n},attrs:{dtype:"float32"}}),o=a.dataIdMap.get(u.dataId).id);let p=a.makeOutput(n.shape,"float32"),c=a.dataIdMap.get(p.dataId).id;return e8(o,i,c),l.dtype!=="float32"&&a.disposeData(u.dataId),p}var Dte={kernelName:Ui,backendName:"wasm",setupFunc:Fte,kernelFunc:Ote},t8;function zte(e){t8=e.wasm.cwrap(Gi,null,["number","number","number","number"])}function Lte(e){let{backend:t,inputs:a,attrs:n}=e,{axis:r,keepDims:s}=n,{x:i}=a,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:c,originalAxes:d,inputWasTransposed:h}=os(i,r,t),f=c;if(h){let y=t.dataIdMap.get(p.dataId).id;y!==o&&(u=p,l=y,f=T.getInnerMostAxes(f.length,u.shape.length))}T.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,g]=T.computeOutAndReduceShapes(u.shape,f),x=v.sizeFromShape(g),A=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let y=t.dataIdMap.get(A.dataId).id;t8(l,x,Tt[A.dtype],y)}if(h&&t.disposeData(p.dataId),s){let y=T.expandShapeToKeepDim(A.shape,d);A.shape=y}return A}var Bte={kernelName:Gi,backendName:"wasm",setupFunc:zte,kernelFunc:Lte},Wte=e=>{let{backend:t,attrs:a}=e,{start:n,stop:r,step:s,dtype:i}=a,o=o3(n,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},Vte={kernelName:Hl,backendName:"wasm",kernelFunc:Wte},Ute=!0,Gte=la(di,Ute),Hte=Bt(Hi),jte=Bt(ji),qte=Bt(Ki),a8;function Xte(e){a8=e.wasm.cwrap(Xi,null,["number","number","number","number","number","number","number","number","number","number"])}function Kte(e){let{backend:t,inputs:a,attrs:n}=e,{images:r}=a,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,[p,c,d,h]=r.shape,f=[p,l,u,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=gu({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let x=m.id,A=t.makeOutput(f,"float32");if(v.sizeFromShape(r.shape)===0)return A;let y=t.dataIdMap.get(A.dataId).id;return a8(x,p,c,d,h,l,u,s?1:0,i?1:0,y),g!=null&&t.disposeData(g.dataId),A}var Zte={kernelName:Xi,backendName:"wasm",setupFunc:Xte,kernelFunc:Kte},n8;function Yte(e){n8=e.wasm.cwrap(qi,null,["number","number","number","number","number","number","number","number","number","number"])}function Jte(e){let{backend:t,inputs:a,attrs:n}=e,{images:r}=a,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,[p,c,d,h]=r.shape,f=[p,l,u,h],m=t.makeOutput(f,"float32");if(v.sizeFromShape(r.shape)===0)return m;let g=t.dataIdMap.get(r.dataId),x;g.dtype!=="float32"&&(x=gu({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),g=t.dataIdMap.get(x.dataId));let A=g.id,y=t.dataIdMap.get(m.dataId).id;return n8(A,p,c,d,h,l,u,s?1:0,i?1:0,y),x!=null&&t.disposeData(x.dataId),m}var Qte={kernelName:qi,backendName:"wasm",setupFunc:Yte,kernelFunc:Jte},r8;function eae(e){r8=e.wasm.cwrap(Zi,null,["number","array","number","array","number","number"])}function tae(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{dims:s}=n,i=v.parseAxisParam(s,r.shape);if(r.shape.length===0)return Dh({inputs:{x:r},backend:a});let o=a.makeOutput(r.shape,r.dtype),l=a.dataIdMap.get(r.dataId).id,u=a.dataIdMap.get(o.dataId).id,p=new Uint8Array(new Int32Array(i).buffer),c=new Uint8Array(new Int32Array(r.shape).buffer);r8(l,p,i.length,c,r.shape.length,u);let d=za({inputs:{x:o},attrs:{shape:r.shape},backend:a});return a.disposeData(o.dataId),d}var aae={kernelName:Zi,backendName:"wasm",kernelFunc:tae,setupFunc:eae},s8;function nae(e){s8=e.wasm.cwrap(ho,null,["number","number","number","number","number","number","number","number","array","number","number"])}function rae(e){let{inputs:t,backend:a,attrs:n}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=n,l=a.makeOutput(r.shape,r.dtype),u=a.dataIdMap.get(r.dataId).id,p=a.dataIdMap.get(l.dataId).id,[c,d,h,f]=r.shape,[m,g]=T.getImageCenter(o,d,h),x=i===0,A=255,y=typeof i=="number"?[i,i,i,x?0:A]:[...i,A],b=new Uint8Array(new Int32Array(y).buffer);return s8(u,c,d,h,f,s,m,g,b,y.length,p),l}var sae={kernelName:ho,backendName:"wasm",kernelFunc:rae,setupFunc:nae},iae=Bt(ql),oae=Bt(Yi),i8;function lae(e){i8=e.wasm.cwrap(Ji,null,["number","number","number","number","number","number","array","number","number"])}function uae(e){let{backend:t,inputs:a,attrs:n}=e,{indices:r,updates:s}=a,{shape:i}=n,o=t.makeOutput(i,s.dtype);if(v.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:p,strides:c,outputSize:d}=d2.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,f=t.dataIdMap.get(s.dataId).id,m=new Uint8Array(new Int32Array(c).buffer),g=t.dataIdMap.get(o.dataId).id;return i8(h,f,Tt[s.dtype],l,u,p,m,d,g),o}var dae={kernelName:Ji,backendName:"wasm",setupFunc:lae,kernelFunc:uae},o8;function pae(e){o8=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function cae(e){let{inputs:t,backend:a}=e,{condition:n,t:r,e:s}=t,i=a.dataIdMap.get(n.dataId).id,o=a.dataIdMap.get(r.dataId).id,l=a.dataIdMap.get(s.dataId).id,u=a.makeOutput(r.shape,r.dtype),p=a.dataIdMap.get(u.dataId).id,c=n.shape.length,d=r.shape.length,h=c===0||c>1||d===1?1:v.sizeFromShape(r.shape.slice(1));return o8(i,o,l,h,p),u}var hae={kernelName:Xl,backendName:"wasm",kernelFunc:cae,setupFunc:pae},l8;function fae(e){l8=e.wasm.cwrap(eo,null,["number","number"])}function mae(e){let{backend:t,inputs:{x:a}}=e,n=t.dataIdMap.get(a.dataId).id,r=t.makeOutput(a.shape,a.dtype),s=t.dataIdMap.get(r.dataId).id;return v.sizeFromShape(r.shape)===0||l8(n,s),r}var gae={kernelName:"Sigmoid",backendName:"wasm",setupFunc:fae,kernelFunc:mae},xae=Bt(Qi),u8;function Aae(e){u8=e.wasm.cwrap(no,null,["number","number","number","number"])}function yae(e){let{backend:t,inputs:{logits:a},attrs:{dim:n}}=e,r=t.dataIdMap.get(a.dataId).id,s=t.makeOutput(a.shape,a.dtype),i=t.dataIdMap.get(s.dataId).id,o=a.shape[n],l=v.sizeFromShape(a.shape)/o;return v.sizeFromShape(s.shape)===0||u8(r,i,o,l),s}var bae={kernelName:no,backendName:"wasm",setupFunc:Aae,kernelFunc:yae};function vae(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{blockShape:s,paddings:i}=n,o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=Qv.kernelFunc({inputs:{x:r},backend:a,attrs:{paddings:l,constantValue:0}}),p=T.getReshaped(u.shape,s,o,!1),c=T.getPermuted(p.length,s.length,!1),d=T.getReshapedPermuted(u.shape,s,o,!1),h=za({inputs:{x:u},backend:a,attrs:{shape:p}}),f=Yr({inputs:{x:h},backend:a,attrs:{perm:c}}),m=za({inputs:{x:f},backend:a,attrs:{shape:d}});return a.disposeData(u.dataId),a.disposeData(h.dataId),a.disposeData(f.dataId),m}var wae={kernelName:Yl,backendName:"wasm",kernelFunc:vae},d8;function kae(e){d8=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function Iae(e){let{backend:t,inputs:a}=e,{indices:n,values:r,denseShape:s,defaultValue:i}=a,o=n.shape[0],l=n.shape[1],u=t.readSync(s.dataId)[0],p=[o+u,l],c=t.dataIdMap.get(n.dataId).id,d=t.dataIdMap.get(r.dataId).id,h=t.dataIdMap.get(i.dataId).id,f=t.makeOutput(p,n.dtype),m=t.dataIdMap.get(f.dataId).id,g=t.makeOutput(p.slice(0,1),r.dtype),x=t.dataIdMap.get(g.dataId).id,A=t.makeOutput([u],"bool"),y=t.dataIdMap.get(A.dataId).id,b=t.makeOutput([o],n.dtype),w=t.dataIdMap.get(b.dataId).id,S=t.makeOutput([4],"int32"),C=t.dataIdMap.get(S.dataId).id,E=d8(c,d,Tt[r.dtype],o,u,l,h,m,x,y,w,C),_=t.readSync(S.dataId),$;switch(_[0]){case 1:{$=T.getSparseFillEmptyRowsIndicesDenseShapeMismatch(_[1]);break}case 2:{$=T.getSparseFillEmptyRowsNegativeIndexErrorMessage(_[1],_[2]);break}case 3:$=T.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(_[1],_[2],_[3]);break;default:$=""}if(t.disposeData(S.dataId),$)throw t.disposeData(f.dataId),t.disposeData(g.dataId),t.disposeData(A.dataId),t.disposeData(b.dataId),new Error($);let M=f,I=g;return E!==p[0]&&(M=Hs({inputs:{x:f},attrs:{begin:0,size:[E,l]},backend:t}),I=Hs({inputs:{x:g},attrs:{begin:0,size:E},backend:t}),t.disposeData(f.dataId),t.disposeData(g.dataId)),[M,I,A,b]}var Sae={kernelName:Od,backendName:"wasm",setupFunc:kae,kernelFunc:Iae},p8;function Tae(e){p8=e.wasm.cwrap(Ql,null,["number","number","number","number","number","number","number"])}function Cae(e){let{backend:t,inputs:a}=e,{inputIndices:n,inputShape:r,newShape:s}=a;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${n.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(n.dataId).id,o=t.dataIdMap.get(r.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=n.shape[0],p=v.sizeFromShape(s.shape),c=t.makeOutput([u,p],n.dtype),d=t.dataIdMap.get(c.dataId).id,h=t.makeOutput([p],s.dtype),f=t.dataIdMap.get(h.dataId).id,m=t.makeOutput([3],"int32"),g=t.dataIdMap.get(m.dataId).id;p8(i,o,l,u,d,f,g);let x=t.readSync(m.dataId),A;switch(x[0]){case 0:{A=T.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(x[1],x[2]);break}case 1:{A=T.getSparseReshapeNegativeOutputDimErrorMessage(x[1],x[2]);break}case 2:A=T.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let y=Array.from(t.readSync(r.dataId)),b=Array.from(t.readSync(h.dataId));A=T.getSparseReshapeInputOutputMultipleErrorMessage(y,b);break}case 4:{let y=Array.from(t.readSync(r.dataId)),b=Array.from(t.readSync(h.dataId));A=T.getSparseReshapeInputOutputMismatchErrorMessage(y,b);break}default:A=""}if(t.disposeData(m.dataId),A)throw t.disposeData(c.dataId),t.disposeData(h.dataId),new Error(A);return[c,h]}var Nae={kernelName:Ql,backendName:"wasm",setupFunc:Tae,kernelFunc:Cae},c8;function h8(e){c8=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function f8(e,t){let{backend:a,inputs:n}=e,{data:r,indices:s,segmentIds:i}=n,o=s.shape[0],l=a.readSync(i.dataId,o-1,o)[0],u=o>0?l+1:0;if(u<0)throw new Error(T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=u;let c=a.dataIdMap.get(r.dataId).id,d=a.dataIdMap.get(s.dataId).id,h=a.dataIdMap.get(i.dataId).id,f=a.makeOutput(p,r.dtype),m=a.dataIdMap.get(f.dataId).id,g=a.makeOutput([4],"int32"),x=a.dataIdMap.get(g.dataId).id;c8(c,Tt[r.dtype],r.shape[0],d,h,m,x,t,0);let A=a.readSync(g.dataId),y;switch(A[0]){case 0:{y=T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{y=T.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:y=T.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(A[1],A[2]);break;case 3:y=T.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(A[1],A[2],A[3]);break;default:y=""}if(a.disposeData(g.dataId),y)throw a.disposeData(f.dataId),new Error(y);return f}function Eae(e){return f8(e,!0)}var Rae={kernelName:Dd,backendName:"wasm",setupFunc:h8,kernelFunc:Eae};function Mae(e){return f8(e,!1)}var $ae={kernelName:zd,backendName:"wasm",setupFunc:h8,kernelFunc:Mae};function _ae(e){let{inputs:t,attrs:a,backend:n}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=v.parseAxisParam(i,r.shape)[0],l=T.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(c=>{let d=[...p];d[o]=c;let h=Hs({inputs:{x:r},attrs:{begin:u,size:d},backend:n});return u[o]+=c,h})}var Pae={kernelName:Jl,backendName:"wasm",kernelFunc:_ae},Fae=Bt(to),Oae=Bt(Bd),Dae=!0,zae=la(ro,Dae),m8;function Lae(e){m8=e.wasm.cwrap(co,null,["number","number","number","number"])}function Bae(e){let{backend:t,inputs:a,attrs:n}=e,{alpha:r}=n,{x:s}=a,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return m8(i,r,Tt[s.dtype],l),o}var Wae={kernelName:co,backendName:"wasm",setupFunc:Lae,kernelFunc:Bae},g8;function Vae(e){g8=e.wasm.cwrap(so,null,["number","array","number","array","array","array","array","array","number","number"])}function Uae(e){let{backend:t,inputs:a,attrs:n}=e,{x:r}=a,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:c,shrinkAxisMask:d}=n,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:x,begin:A,end:y,strides:b}=It.sliceInfo(r.shape,s,i,o,l,u,p,c,d),w;if(m)w=za({inputs:{x:r},backend:t,attrs:{shape:f}});else if(g||x){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let S=It.computeOutShape(A,y,b),C=Hs({inputs:{x:r},backend:t,attrs:{begin:A,size:S}});w=za({inputs:{x:C},backend:t,attrs:{shape:f}}),t.disposeData(C.dataId)}else{let S=t.makeOutput(h,"float32"),C=t.dataIdMap.get(r.dataId).id,E=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),_=new Uint8Array(new Int32Array(A).buffer),$=new Uint8Array(new Int32Array(y).buffer),M=new Uint8Array(new Int32Array(b).buffer),I=new Uint8Array(new Int32Array(h).buffer),N=new Uint8Array(new Int32Array(v.computeStrides(h)).buffer),O=t.dataIdMap.get(S.dataId).id;g8(C,E,r.shape.length,_,$,M,I,N,h.length,O),w=za({inputs:{x:S},backend:t,attrs:{shape:f}}),t.disposeData(S.dataId)}return w}var Gae={kernelName:so,backendName:"wasm",setupFunc:Vae,kernelFunc:Uae};function Hae(e){let{backend:t,inputs:a,attrs:n}=e,{data:r,dataSplits:s}=a,{separator:i,nGramWidths:o,leftPad:l,rightPad:u,padWidth:p,preserveShortSequences:c}=n,d=t.readSync(r.dataId),h=t.readSync(s.dataId),[f,m]=u3(d,h,i,o,l,u,p,c),g=t.makeOutput([f.length],"string"),x=t.dataIdMap.get(g.dataId);x.stringBytes=f;let A=t.makeOutput(s.shape,"int32");return t.typedArrayFromHeap(A).set(m),[g,A]}var jae={kernelName:eu,backendName:"wasm",kernelFunc:Hae};function qae(e){let{backend:t,inputs:a,attrs:n}=e,{input:r,delimiter:s}=a,{skipEmpty:i}=n,o=t.readSync(r.dataId),l=t.readSync(s.dataId),[u,p,c]=d3(o,l[0],i),d=p.length,h=t.makeOutput([d,2],"int32");t.typedArrayFromHeap(h).set(u);let f=t.makeOutput([d],"string"),m=t.dataIdMap.get(f.dataId);m.stringBytes=p;let g=t.makeOutput([2],"int32");return t.typedArrayFromHeap(g).set(c),[h,f,g]}var Xae={kernelName:Wd,backendName:"wasm",kernelFunc:qae};function Kae(e){let{backend:t,inputs:a,attrs:n}=e,{input:r}=a,{numBuckets:s}=n,i=t.readSync(r.dataId),o=p3(i,s),l=t.makeOutput(r.shape,"int32");return t.typedArrayFromHeap(l).set(o),l}var Zae={kernelName:Vd,backendName:"wasm",kernelFunc:Kae},Yae=!0,Jae=la(io,Yae),x8;function Qae(e){x8=e.wasm.cwrap(ao,null,["number","number","number","number"])}function ene(e){let{backend:t,inputs:a,attrs:n}=e,{axis:r,keepDims:s}=n,{x:i}=a,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:c,originalAxes:d,inputWasTransposed:h}=os(i,r,t),f=c;if(h){let y=t.dataIdMap.get(p.dataId).id;y!==o&&(u=p,l=y,f=T.getInnerMostAxes(f.length,u.shape.length))}T.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,g]=T.computeOutAndReduceShapes(u.shape,f),x=v.sizeFromShape(g),A=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let y=t.dataIdMap.get(A.dataId).id;x8(l,x,Tt[A.dtype],y)}if(h&&t.disposeData(p.dataId),s){let y=T.expandShapeToKeepDim(A.shape,d);A.shape=y}return A}var tne={kernelName:ao,backendName:"wasm",setupFunc:Qae,kernelFunc:ene},ane=Bt(oo),nne=Bt(lo),A8;function rne(e){A8=e.wasm.cwrap(ts,null,["number","array","number","array","number","number"])}function sne(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,s=a.dataIdMap.get(r.dataId).id,{reps:i}=n,o=new Array(r.shape.length);for(let d=0;d<o.length;d++)o[d]=r.shape[d]*i[d];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),p=a.makeOutput(o,r.dtype),c=a.dataIdMap.get(p.dataId).id;return A8(s,l,r.shape.length,u,o.length,Tt[p.dtype],c),p}var ine={kernelName:ts,backendName:"wasm",setupFunc:rne,kernelFunc:sne},y8;function one(e){y8=e.wasm.cwrap(uo,null,["number","array","number","number","number","bool","number","number"])}var lne=({inputs:e,backend:t,attrs:a})=>{let{x:n}=e,{k:r,sorted:s}=a,i=t.dataIdMap.get(n.dataId).id,o=new Uint8Array(new Int32Array(n.shape).buffer),l=n.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,n.dtype),p=t.dataIdMap.get(u.dataId).id,c=t.makeOutput(l,"int32"),d=t.dataIdMap.get(c.dataId).id;return y8(i,o,n.shape.length,Tt[n.dtype],r,s,p,d),[u,c]},une={kernelName:uo,backendName:"wasm",setupFunc:one,kernelFunc:lne},b8;function dne(e){b8=e.wasm.cwrap(po,null,["number","number","bool","number","number","number","number","number","number","array","number","array","number","number","number","number","number"])}function pne(e){let{backend:t,inputs:a,attrs:n}=e,{image:r,transforms:s}=a,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[p,c,d,h]=r.shape,[f,m]=u!=null?u:[c,d],g=[p,f,m,h],x=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),A=new Uint8Array(new Int32Array(v.computeStrides(g)).buffer),y=t.makeOutput(g,r.dtype),b=t.dataIdMap.get(y.dataId).id,w=t.dataIdMap.get(r.dataId).id,S=t.dataIdMap.get(s.dataId).id,C=i==="nearest"?1:2,E;switch(o){case"constant":E=1;break;case"reflect":E=2;break;case"wrap":E=3;break;case"nearest":E=4;break;default:E=1;break}return b8(w,S,s.shape[0]>1,p,f,m,h,d,c,x,r.shape.length-1,A,g.length-1,C,E,l,b),y}var cne={kernelName:po,backendName:"wasm",setupFunc:dne,kernelFunc:pne};function hne(e){let{inputs:t,backend:a,attrs:n}=e,{value:r}=t,{axis:s}=n;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i),c=new Array(o).fill(0),d=r.shape.slice();d[s]=1;for(let h=0;h<p.length;h++)c[s]=h,p[h]=Hs({inputs:{x:r},attrs:{begin:c,size:d},backend:a});return p.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:l}))}var fne={kernelName:tu,backendName:"wasm",kernelFunc:hne};function mne(e){let{inputs:{x:t},backend:a}=e,n=a.makeOutput(t.shape,t.dtype);return a.typedArrayFromHeap(n).fill(0),n}var gne={kernelName:au,backendName:"wasm",kernelFunc:mne},xne=[UJ,GJ,jJ,KJ,nQ,iQ,uQ,cQ,gQ,wQ,kQ,IQ,CQ,NQ,MQ,PQ,FQ,OQ,LQ,VQ,HQ,XQ,YQ,JQ,eee,tee,aee,nee,iee,oee,uee,cee,mee,Aee,vee,Iee,Tee,Nee,ZJ,Eee,$ee,Pee,Oee,Dee,Lee,Bee,Vee,Gee,qee,Kee,Jee,tte,rte,ite,ute,pte,cte,mte,Ate,vte,kte,Tte,Nte,Rte,Qv,Pte,Dte,Bte,Vte,Gte,Hte,jte,qte,hQ,Zte,Qte,aae,sae,iae,oae,dae,hae,gae,xae,bQ,bae,wae,Sae,Nae,Rae,$ae,Pae,Fae,Oae,zae,Wae,Gae,jae,Xae,Zae,Jae,tne,ane,nne,ine,une,cne,eQ,fne,gne];for(let e of xne)fn(e);var E1=W();E1.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>{try{return WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11]))}catch(e){return!1}});E1.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(E1.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var _x=Al(eS()),Ane=Al(tS()),Px=Al(aS()),Fx=_x.default||_x,yne=Px.default||Px,v8=class extends yl{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(w8),R1=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new vd(this,kt())}write(e,t,a){let n={id:this.dataIdNextNumber++};return this.move(n,e,t,a,1),n}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,a,n,r){let s=this.dataIdNextNumber++;if(n==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:a,dtype:n,memoryOffset:null,refCount:r});return}let i=v.sizeFromShape(a),o=i*v.bytesPerElement(n),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:a,dtype:n,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e,t,a){let{memoryOffset:n,dtype:r,shape:s,stringBytes:i}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(a==null||a>=i.length)?i:i.slice(t,a);t=t||0,a=a||v.sizeFromShape(s);let o=v.bytesPerElement(r),l=this.wasm.HEAPU8.slice(n+t*o,n+a*o);return wne(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let a=this.dataIdMap.get(e);if(a.refCount--,!t&&a.refCount>0)return!1;this.wasm._free(a.memoryOffset),this.wasm.tfjs.disposeData(a.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,a){let n;if(a==null)n=this.write(null,e,t);else{let r=this.dataIdNextNumber++;n={id:r},this.dataIdMap.set(n,{id:r,memoryOffset:a,shape:e,dtype:t,refCount:1});let s=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,a)}return{dataId:n,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:a}){let n=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(a),s=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(n,r,s);case"int32":return new Int32Array(n,r,s);case"bool":return new Uint8Array(n,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function bne(e){return(t,a)=>(v.fetch(e,{credentials:"same-origin"}).then(n=>{n.ok||t.env.a(`failed to load wasm binary file at '${e}'`),n.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{a(s.instance,s.module)})})}),{})}function Ox(e,t,a){if(Dc!=null)return Dc;let n="tfjs-backend-wasm.wasm";return e&&t?n="tfjs-backend-wasm-threaded-simd.wasm":e&&(n="tfjs-backend-wasm-simd.wasm"),ed!=null&&ed[n]!=null?ed[n]:a+n}async function vne(){let[e,t]=await Promise.all([W().getAsync("WASM_HAS_SIMD_SUPPORT"),W().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((a,n)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=Ane.wasmWorkerContents.replace(/\n/g,"\\n"),p=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(p)}return o.endsWith(".wasm")?Ox(e,t,Yu!=null?Yu:l):l+o},M3&&(r.instantiateWasm=bne(Ox(e,t,Yu!=null?Yu:"")));let s=!1;r.onAbort=()=>{s||td||(td=!0,n({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Dc==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+Fx.toString()],{type:"text/javascript"}),i=Fx(r)):i=yne(r),i.then(o=>{s=!0,td=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},a({wasm:o})}).catch(n)})}function wne(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var kne=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Dc=null,Yu=null,ed={},td=!1,M3=!1;function Ine(e,t=!1){if(s2("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),td)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Dc=e,M3=t}function zh(e,t=!1){if(td)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Yu=e;else{ed=e;let a=kne.filter(n=>ed[n]==null);if(a.length>0)throw new Error(`There were no entries found for the following binaries: ${a.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}M3=t}var w8=-1,R1=-1;function Sne(e){w8=e}function Tne(){if(R1===-1)throw new Error("WASM backend not initialized.");return R1}var Cne="4.1.0",Nne=2;fo("wasm",async()=>{let{wasm:e}=await vne();return new v8(e)},Nne);var Dn=W();Dn.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);Dn.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);Dn.registerFlag("WEBGPU_MATMUL_PROGRAM_TYPE",()=>-1);Dn.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);Dn.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);Dn.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);Dn.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);Dn.registerFlag("WEBGPU_IMPORT_EXTERNAL_TEXTURE",()=>!0);Dn.registerFlag("WEBGPU_USE_NAIVE_CONV2D_DEBUG",()=>!1);Dn.registerFlag("WEBGPU_THRESHOLD_TO_INCREASE_WORKGROUPS_FOR_MATMUL",()=>0);Dn.registerFlag("WEBGPU_CONV_SEPARATE_IM2COL_SHADER",()=>!1);var Ene=class{constructor(e){e&&(this.vendor=e.vendor,this.architecture=e.architecture,this.intelGPUGeneration=this.getIntelGPUGeneration())}getIntelGPUGeneration(){if(this.isIntel()){if(this.architecture.startsWith("gen"))return Number(this.architecture.match(/\d+/));if(this.architecture.startsWith("xe"))return 12}return 0}isIntel(){return this.vendor==="intel"}},Rne=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireUploadBuffer(e,t){return this.acquireBuffer(e,t,!0)}acquireBuffer(e,t,a=!1){let n=Dx(e,t);if(this.freeBuffers.has(n)||this.freeBuffers.set(n,[]),this.usedBuffers.has(n)||this.usedBuffers.set(n,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(n).length>0){this.numFreeBuffers--;let s=this.freeBuffers.get(n).shift();return this.usedBuffers.get(n).push(s),s}this.numBytesAllocated+=e;let r=this.device.createBuffer({size:e,usage:t,mappedAtCreation:a});return this.usedBuffers.get(n).push(r),r}releaseBuffer(e,t,a){if(this.freeBuffers.size===0)return;let n=Dx(t,a);this.freeBuffers.has(n)||this.freeBuffers.set(n,[]),this.freeBuffers.get(n).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let r=this.usedBuffers.get(n),s=r.indexOf(e);if(s<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");r.splice(s,1),this.numBytesUsed-=t}releaseUploadBuffer(e,t,a){e.mapAsync(GPUMapMode.WRITE).then(()=>{this.releaseBuffer(e,t,a)},n=>{})}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}dispose(){this.freeBuffers.forEach((e,t)=>{e.forEach(a=>{a.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(a=>{a.destroy()})}),this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function Dx(e,t){return`${e}_${t}`}var Mne=class{constructor(e){this.device=e,this.numUsedTextures=0,this.numFreeTextures=0,this.freeTextures=new Map,this.usedTextures=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireTexture(e,t,a,n){let r=Lx(a),s=e*t*r,i=zx(e,t,a,n);if(this.freeTextures.has(i)||this.freeTextures.set(i,[]),this.usedTextures.has(i)||this.usedTextures.set(i,[]),this.numBytesUsed+=s,this.numUsedTextures++,this.freeTextures.get(i).length>0){this.numFreeTextures--;let l=this.freeTextures.get(i).shift();return this.usedTextures.get(i).push(l),l}this.numBytesAllocated+=s;let o=this.device.createTexture({size:[e,t],format:a,usage:n});return this.usedTextures.get(i).push(o),o}releaseTexture(e,t,a,n,r){if(this.freeTextures.size===0)return;let s=zx(t,a,n,r);this.freeTextures.has(s)||this.freeTextures.set(s,[]),this.freeTextures.get(s).push(e),this.numFreeTextures++,this.numUsedTextures--;let i=this.usedTextures.get(s),o=i.indexOf(e);if(o<0)throw new Error("Cannot release a texture that was never provided by this texture manager");i.splice(o,1);let l=Lx(n),u=t*a*l;this.numBytesUsed-=u}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){this.freeTextures.forEach((e,t)=>{e.forEach(a=>{a.destroy()})}),this.usedTextures.forEach((e,t)=>{e.forEach(a=>{a.destroy()})}),this.freeTextures=new Map,this.usedTextures=new Map,this.numUsedTextures=0,this.numFreeTextures=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function zx(e,t,a,n){return`${e}_${t}_${a}_${n}`}function Lx(e){if(e==="rgba8unorm")return 16;throw new Error(`${e} is not supported!`)}function $ne(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let a=e.length,n=e.map(s=>`${t}[${s}]`),r=new Array(a-1);r[a-2]=n[a-1];for(let s=a-3;s>=0;--s)r[s]=`(${r[s+1]} * ${n[s+1]})`;return r}var _ne=(e,t,a,n)=>{let r={dtype:n.dtype,shape:n.shape},s=Fne(a,r,t),i=e.createShaderModule({code:s,label:t.constructor.name});return e.createComputePipeline({compute:{module:i,entryPoint:"_start"},label:t.constructor.name,layout:"auto"})};function ra(e){if(e<=1)return"i32";if(e===2)return"vec2<i32>";if(e===3)return"vec3<i32>";if(e===4)return"vec4<i32>";if(e===5)return"vec5";if(e===6)return"vec6";throw Error(`GPU for rank ${e} is not yet supported`)}function xr(e){if(e===0)return"x";if(e===1)return"y";if(e===2)return"z";if(e===3)return"w";if(e===4)return"u";if(e===5)return"v";throw Error(`Index ${e} is not yet supported`)}function Ce(...e){let t;switch(e.length){case 0:t=`
fn main()
`;break;case 1:t=`
fn main(${e[0]} : i32)
`;break;default:throw Error("Unreachable")}return t}function Bx(e){let t;return t=`
${Pne()}
fn _start(@builtin(local_invocation_id) LocalId : vec3<u32>,
@builtin(global_invocation_id) GlobalId : vec3<u32>,
@builtin(local_invocation_index) LocalIndex: u32,
@builtin(workgroup_id) WorkgroupId : vec3<u32>,
@builtin(num_workgroups) NumWorkgroups : vec3<u32>) {
localId = LocalId;
localIndex = LocalIndex;
globalId = GlobalId;
numWorkgroups = NumWorkgroups;
workgroupId = WorkgroupId;
${e?"main(getGlobalIndex());":"main();"};
}
`,t}function Pne(){return`
@compute @workgroup_size(workgroupSizeX, workgroupSizeY, workgroupSizeZ)
`}function Fne(e,t,a){let n=[],r=a.workgroupSize[0]*a.workgroupSize[1]*a.workgroupSize[2];if(n.push(`
const workgroupSizeX = ${a.workgroupSize[0]}u;
const workgroupSizeY = ${a.workgroupSize[1]}u;
const workgroupSizeZ = ${a.workgroupSize[2]}u;
var<private> localId: vec3<u32>;
var<private> localIndex: u32;
var<private> globalId: vec3<u32>;
var<private> numWorkgroups: vec3<u32>;
var<private> workgroupId: vec3<u32>;
// Only used when the y/z dimension of workgroup size is 1.
fn getGlobalIndex() -> i32 {
${k8(a)?" return i32(globalId.x);":` return i32((workgroupId.z * numWorkgroups.x * numWorkgroups.y +
workgroupId.y * numWorkgroups.x + workgroupId.x) * ${r} +
localIndex);
`}
}
`),a.isFromPixels){n.push(`
struct Uniform {
size : i32,
numChannels : i32,
outShapeStrides : vec2<i32>,
};
@group(0) @binding(0) var<storage, read_write> result: array<${ad(t.dtype,a.isVec4)}>;
@group(0) @binding(2) var<uniform> uniforms: Uniform;
`);let h=Ux(a);return[Wx,n.join(`
`),Vx(t.shape),a.getUserCode(),Bx(h)].join(`
`)}let s="struct Uniforms { NAN : f32, INFINITY : f32, ";a.variableNames.forEach((h,f)=>{let m=ra(e[f].shape.length);s+=`${h.charAt(0).toLowerCase()+h.slice(1)}Shape : ${m}, `});let i=ra(t.shape.length);s+=`outShape : ${i}, `;let o=t.shape.length-1,l=ra(o);s+=`
outShapeStrides: ${l}, `,a.size&&(s+="size : i32, "),a.uniforms&&(s+=a.uniforms),s+="};",s=Gne(s),n.push(s),a.atomic?n.push(`
@group(0) @binding(0) var<storage, read_write> result: array<atomic<i32>>;
`):n.push(`
@group(0) @binding(0) var<storage, read_write> result: array<${ad(t.dtype,a.isVec4)}>;
`),a.variableNames.forEach((h,f)=>{n.push(`
@group(0) @binding(${1+f}) var<storage, read> ${h}: array<${a.variableTypes?a.variableTypes[f]:ad(e[f].dtype,a.isVec4)}>;
`)}),s!==""&&n.push(`
@group(0) @binding(${1+a.variableNames.length}) var<uniform> uniforms: Uniforms;
`);let u=Wne(t.shape,a.dispatchLayout),p=[Wx+Dne,n.join(`
`),Vx(t.shape),u,Vne(t.shape.length)];a.atomic||p.push(Une(t.shape,t.dtype,a.isVec4));let c=e.map((h,f)=>Bne(h,t.shape,a.variableTypes?a.variableTypes[f]==="vec4<f32>":a.isVec4,a.dispatchLayout.x.length===t.shape.length)).join(`
`);p.push(c),p.push(a.getUserCode());let d=Ux(a);return p.push(Bx(d)),p.join(`
`)}function One(e,t,a,n){let r=e.shaderKey;if(e.isFromPixels)return r;let s=a.map(p=>p.dtype).concat(n.dtype),i=a.map(p=>T.getBroadcastDims(p.shape,n.shape)),o=a.map(p=>v.arraysEqual(p.shape,n.shape)).join("_"),l=i.map(p=>p.join("_")).join(";"),u=k8(e)?"flatDispatch":"";return r+="_"+(e.workgroupSize?e.workgroupSize.join(","):"")+t.map(p=>p.length).join(",")+s.join(",")+e.variableNames.join(",")+l+o+u,r}var Wx=`
struct vec5 {x: i32, y: i32, z: i32, w: i32, u: i32};
struct vec6 {x: i32, y: i32, z: i32, w: i32, u: i32, v: i32};
// Checks whether coordinates lie within the bounds of the shape.
fn coordsInBounds2D(coord : vec2<i32>, shape : vec2<i32>) -> bool {
return all(coord >= vec2<i32>(0)) && all(coord < shape);
}
fn coordsInBounds3D(coord : vec3<i32>, shape : vec3<i32>) -> bool {
return all(coord >= vec3<i32>(0)) && all(coord < shape);
}
fn coordsInBounds4D(coord : vec4<i32>, shape : vec4<i32>) -> bool {
return all(coord >= vec4<i32>(0)) && all(coord < shape);
}
fn getIndexFromCoords1D(coord : i32, shape : i32) -> i32 {
return coord;
}
fn getIndexFromCoords2D(coords : vec2<i32>, shape : vec2<i32>) -> i32 {
return dot(coords, vec2<i32>(shape.y, 1));
}
fn getIndexFromCoords3D(coords : vec3<i32>, shape : vec3<i32>) -> i32 {
return dot(coords, vec3<i32>(shape.y * shape.z, shape.z, 1));
}
fn getIndexFromCoords4D(coords : vec4<i32>, shape : vec4<i32>) -> i32 {
return dot(coords, vec4<i32>(
shape.y * shape.z * shape.w, shape.z * shape.w, shape.w, 1));
}
fn getIndexFromCoords5D(coords : vec5, shape : vec5) -> i32 {
let shapeStrides: vec5 = vec5(shape.y * shape.z * shape.w * shape.u, shape.z * shape.w * shape.u, shape.w * shape.u, shape.u, 1);
return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u;
}
fn getIndexFromCoords6D(coords : vec6, shape : vec6) -> i32 {
let shapeStrides: vec6 = vec6(shape.y * shape.z * shape.w * shape.u * shape.v, shape.z * shape.w * shape.u * shape.v, shape.w * shape.u * shape.v, shape.u * shape.v, shape.v, 1);
return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u + coords.v*shapeStrides.v;
}
fn idiv(a: i32, b: i32, sign: f32) -> i32 {
var res: i32 = a / b;
let modulo: i32 = a % b;
if (sign < 0. && modulo != 0) {
res = res - 1;
}
return res;
}
// NaN defination in IEEE 754-1985 is :
// - sign = either 0 or 1.
// - biased exponent = all 1 bits.
// - fraction = anything except all 0 bits (since all 0 bits represents infinity).
// https://en.wikipedia.org/wiki/IEEE_754-1985#Representation_of_non-numbers
fn isnan(val: f32) -> bool {
let floatToUint: u32 = bitcast<u32>(val);
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
}
fn isnanVec4(val : vec4<f32>) -> vec4<bool> {
return vec4<bool>(isnan(val[0]), isnan(val[1]), isnan(val[2]), isnan(val[3]));
}
`,Dne=`
fn isinf(val: f32) -> bool {
return abs(val) == uniforms.INFINITY;
}
`;function Vx(e){let t=e.length;if(t<=1)return"fn getCoordsFromIndex(index : i32) -> i32 { return index; }";let a=v.computeStrides(e),n=ra(t),r=[];for(let i=0;i<t;i++)r.push(`d${i}`);if(a.length===1)return` fn getCoordsFromIndex(index : i32) -> vec2<i32> {
let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides;
return vec2<i32>(d0, d1);
}`;let s;return s="var index2 = index;"+a.map((i,o)=>{let l=`let ${r[o]} = index2 / uniforms.outShapeStrides.${xr(o)}`,u=o===a.length-1?`let ${r[o+1]} = index2 - ${r[o]} * uniforms.outShapeStrides.${xr(o)}`:`index2 = index2 - ${r[o]} * uniforms.outShapeStrides.${xr(o)}`;return`${l}; ${u};`}).join(""),`
fn getCoordsFromIndex(index : i32) -> ${n} {
${s}
return ${n}(${r.join(",")});
}
`}function zne(e,t){let a=e.name,n=e.shape.length,r=ra(n),s="get"+a.charAt(0).toUpperCase()+a.slice(1),i=["d0","d1","d2","d3","d4","d5"].slice(0,n),o=i.map(p=>`${p} : i32`).join(", ");if(n<1)return t?`
fn ${s}() -> vec4<f32> {
return vec4<f32>(${a}[0]);
}
`:`
fn ${s}() ->f32 {
return f32(${a}[0]);
}
`;let l=`uniforms.${a.charAt(0).toLowerCase()+a.slice(1)}Shape`,u=`${n}D`;return n===0&&(u="1D"),t?`
fn ${s}(${o}) -> vec4<f32> {
return vec4<f32>(${a}[getIndexFromCoords${u}(${r}(${i.join(",")}),
${l}) / 4]);
}
`:`
fn ${s}(${o}) -> f32 {
return f32(${a}[getIndexFromCoords${u}(${r}(${i.join(",")}),
${l})]);
}
`}function Lne(e,t,a,n){let r=e.name,s=r.charAt(0).toUpperCase()+r.slice(1),i="get"+s+"ByOutput",o=e.shape.length,l=t.length,u=ra(l);if(v.arraysEqual(e.shape,t)&&n)return a?`
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
return vec4<f32>(${r}[globalIndex]);
}
fn ${i}Coords(coords : ${u}) -> vec4<f32> {
return vec4<f32>(${r}[${l>1?"getOutputIndexFromCoords(coords)":"coords"} / 4]);
}
`:`
fn ${i}Index(globalIndex : i32) -> f32 {
return f32(${r}[globalIndex]);
}
fn ${i}Coords(coords : ${u}) -> f32 {
return f32(${r}[${l>1?"getOutputIndexFromCoords(coords)":"coords"}]);
}
`;let p=T.getBroadcastDims(e.shape,t),c=l-o,d="";if(o===0)return a?`
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
return get${s}();
}
fn ${i}Coords(coords : ${u}) -> vec4<f32> {
return get${s}();
}
`:`
fn ${i}Index(globalIndex : i32) -> f32{
return get${s}();
}
fn ${i}Coords(coords : ${u}) -> f32{
return get${s}();
}
`;l<2&&p.length>=1?d="coords = 0;":d=p.map(g=>`coords.${xr(g+c)} = 0;`).join(`
`);let h="";if(l<2&&o>0)h="coords";else if(l>1){let g=ra(o),x=e.shape.map((A,y)=>`coords.${xr(y+c)}`).join(", ");h=`${g}(${x})`}else h="coords";let f=`uniforms.${r.charAt(0).toLowerCase()+r.slice(1)}Shape`,m=`${o}D`;return a?`
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
var coords = getCoordsFromIndex(globalIndex);
${d}
return ${r}[getIndexFromCoords${m}(${h}, ${f}) / 4];
}
fn ${i}Coords(coordsIn : ${u}) -> vec4<f32> {
var coords = coordsIn;
${d}
return ${r}[getIndexFromCoords${m}(${h}, ${f}) / 4];
}
`:`
fn ${i}Index(globalIndex : i32) -> f32 {
var coords = getCoordsFromIndex(globalIndex);
${d}
return f32(${r}[getIndexFromCoords${m}(${h}, ${f})]);
}
fn ${i}Coords(coordsIn : ${u}) -> f32 {
var coords = coordsIn;
${d}
return f32(${r}[getIndexFromCoords${m}(${h}, ${f})]);
}
`}function Bne(e,t,a,n){let r=zne(e,a);return e.shape.length<=t.length&&(r+=Lne(e,t,a,n)),r}function Wne(e,t){let{x:a,y:n=[],z:r=[]}=t,s=e.length,i=a.length+n.length+r.length;if(i!==s)return"";if(a.length===s)return`fn getOutputCoords() -> ${ra(s)}{
let globalIndex = getGlobalIndex();
return getCoordsFromIndex(globalIndex);
}
`;let o="",l=[a,n,r];for(let d=0;d<l.length;d++){let h=l[d];if(h.length!==0)if(h.length===1)o+=`let d${h[0]} = i32(globalId[${d}]);`;else{let f=$ne(h,"uniforms.outShape");o+=`var index${d} = i32(globalId[${d}]);`;for(let m=0;m<f.length;m++)o+=`let d${h[m]} = index${d} / ${f[m]};`,m===f.length-1?o+=`let d${h[m+1]} = index${d} - d${h[m]} * ${f[m]};`:o+=`index${d} = index${d} - d${h[m]} * ${f[m]};`}}let u=[];for(let d=0;d<i;d++)u.push(`d${d}`);let p=ra(i),c=`fn getOutputCoords() -> ${p} {
${o}
`;return u.length===0?c+=`return ${p}(0); }`:c+=`return ${p}(${u.join(",")}); }`,c}function Vne(e){let t="";switch(e){case 0:case 1:t+=`
fn getOutputIndexFromCoords(coords : i32) -> i32 {
return coords;
}
`;break;case 2:t+=`
fn getOutputIndexFromCoords(coords : vec2<i32>) -> i32 {
return dot(coords, vec2<i32>(uniforms.outShapeStrides, 1));
}
`;break;case 3:t+=`
fn getOutputIndexFromCoords(coords : vec3<i32>) -> i32 {
return dot(coords, vec3<i32>(uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, 1));
}
`;break;case 4:t+=`
fn getOutputIndexFromCoords(coords : vec4<i32>) -> i32 {
return dot(coords, vec4<i32>(
uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, uniforms.outShapeStrides.z, 1));
}
`;break;case 5:t+=`
fn getOutputIndexFromCoords(coords : vec5) -> i32 {
return coords.x * uniforms.outShapeStrides.x +
coords.y * uniforms.outShapeStrides.y +
coords.z * uniforms.outShapeStrides.z +
coords.w * uniforms.outShapeStrides.w +
coords.u;
}
`;break;case 6:t+=`
fn getOutputIndexFromCoords(coords : vec6) -> i32 {
return coords.x * uniforms.outShapeStrides.x +
coords.y * uniforms.outShapeStrides.y +
coords.z * uniforms.outShapeStrides.z +
coords.w * uniforms.outShapeStrides.w +
coords.u * uniforms.outShapeStrides.u +
coords.v;
}
`;break;default:v.assert(!1,()=>`Unsupported ${e}D shape`);break}return t}function k8(e){return e.dispatch[1]===1&&e.dispatch[2]===1}function ad(e,t){return e==="float32"?t?"vec4<f32>":"f32":e==="int32"||e==="bool"?t?"vec4<i32>":"i32":e}function Une(e,t,a){let n=e.length,r=ad(t,a),s;if(a?s=`fn setOutputAtIndex(flatIndex : i32, value : vec4<f32>) {
result[flatIndex] = ${r}(value);
}
fn setOutputAtIndexI32(flatIndex : i32, value : vec4<i32>) {
result[flatIndex] = ${r}(value);
}`:s=`fn setOutputAtIndex(flatIndex : i32, value : f32) {
result[flatIndex] = ${r}(value);
}
fn setOutputAtIndexI32(flatIndex : i32, value : i32) {
result[flatIndex] = ${r}(value);
}`,n>=2){let i=["d0","d1","d2","d3","d4","d5"].slice(0,n),o=ra(n);a?s+=`
fn setOutputAtCoords(${i.map(l=>`${l} : i32`).join(", ")}, value : vec4<f32>) {
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
setOutputAtIndex(flatIndex / 4, value);
}
fn setOutputAtCoordsI32(${i.map(l=>`${l} : i32`).join(", ")}, value : vec4<i32>) {
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
setOutputAtIndexI32(flatIndex / 4, value);
}
`:s+=`
fn setOutputAtCoords(${i.map(l=>`${l} : i32`).join(", ")}, value : f32) {
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
setOutputAtIndex(flatIndex, value);
}
fn setOutputAtCoordsI32(${i.map(l=>`${l} : i32`).join(", ")}, value : i32) {
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
setOutputAtIndexI32(flatIndex, value);
}
`}return s}function Gne(e){let t=/(\w+)\s*:\s*vec(5|6)/g;e=e.replace(t,n=>"@align(16) "+n);let a=/vec(5|6)\s*,\s*(\w+)/g;return e=e.replace(a,(n,r,s)=>`vec${r}, @align(16) ${s}`),e}function Ux(e){return!(e.dispatchLayout.hasOwnProperty("y")&&e.dispatchLayout.y.length!==0||e.dispatchLayout.hasOwnProperty("z")&&e.dispatchLayout.z.length!==0)}var I8={};Xe(I8,{ArrayBufferToTypedArray:()=>C8,GPUBytesPerElement:()=>T8,MatMulProgramType:()=>_n,computeDispatch:()=>Ne,computeWorkPerThreadForConv2d:()=>_3,computeWorkgroupInfoForMatMul:()=>S8,computeWorkgroupSizeForConv2d:()=>$3,flatDispatchLayout:()=>Ve,isWebGPUSupported:()=>P3,tilesFitEvenlyIntoShape:()=>Hne});var Fs=e=>{let t=1;for(let a=0;a<e.length;a++)t*=e[a];return t};function Hne(e,t){if(e.length!==t.length)throw new Error(`Cannot compute whether rank ${e.length} tiles fit evenly into rank ${t.length} shape - ranks must match.`);return t.every((a,n)=>a%e[n]===0)}function Ne(e,t,a=[1,1,1],n=[1,1,1]){let[r,s,i]=[Math.ceil(Fs(e.x.map(o=>t[o]))/(a[0]*n[0])),e.y?Math.ceil(Fs(e.y.map(o=>t[o]))/(a[1]*n[1])):1,e.z?Math.ceil(Fs(e.z.map(o=>t[o]))/(a[2]*n[2])):1];return[r,s,i]}function S8(e,t,a,n=!1){let r=[8,8,1],s=[4,4,1];return n||(e<=8&&(s[1]=1),t<=16&&a<=16&&(r[0]=4)),{workgroupSize:r,elementsPerThread:s}}function $3(e,t,a=!1){if(a)return[8,8,1];let n=Fs(e.x.map(s=>t[s])),r=Fs(e.y.map(s=>t[s]));return n<=4?[4,16,1]:r<=4?[16,4,1]:[16,16,1]}function _3(e,t,a=!1){if(a)return[4,4,1];let n=Fs(e.x.map(s=>t[s])),r=Fs(e.y.map(s=>t[s]));return n<=4?[1,2,1]:r<=4?[2,1,1]:[2,2,1]}function Ve(e){return{x:e.map((t,a)=>a)}}function T8(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function C8(e,t){if(t==="float32")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"||t==="string")return Uint8Array.from(new Int32Array(e));throw new Error(`Unknown dtype ${t}`)}function P3(){return(typeof window!="undefined"||typeof WorkerGlobalScope!="undefined")&&!!navigator.gpu}var _n;(function(e){e[e.MatMulReduceProgram=0]="MatMulReduceProgram",e[e.MatMulSplitKProgram=1]="MatMulSplitKProgram",e[e.MatMulSmallOutputSizeProgram=2]="MatMulSmallOutputSizeProgram",e[e.MatMulPackedProgram=3]="MatMulPackedProgram",e[e.MatMulMax=4]="MatMulMax"})(_n||(_n={}));var jne=W().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),qne=(e,t)=>{let a=e.limits.maxComputeWorkgroupsPerDimension,n=t.dispatchLayout,r=t.dispatch;if(r.every(i=>i<=a))return r;v.assert(r[0]>a&&n.y===void 0&&n.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let s=Math.ceil(Math.sqrt(r[0]));return s>a?(s=Math.ceil(Math.cbrt(r[0])),v.assert(s<=a,()=>"Total dispatch size exceeds WebGPU maximum."),[s,s,s]):[s,s,1]},Lh=class extends yl{constructor(e,t){if(super(),this.commandQueueOwnedIds=new WeakSet,this.dispatchNumberInEncoder=0,this.disposed=!1,this.downloadWaitMs=0,this.tensorDataPendingDisposal=[],this.stagingPendingDisposal=[],this.uniformPendingDisposal=[],this.uploadWaitMs=0,!P3())throw new Error("WebGPU is not supported on this device");this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=e.features.has("timestamp-query-inside-passes"),this.adapterInfo=new Ene(t),this.thresholdToIncreaseWorkgroups=this.adapterInfo.intelGPUGeneration>=12?16:8,this.bufferManager=new Rne(this.device),this.textureManager=new Mne(this.device),this.tensorMap=new vd(this,kt()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),W().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return Lh.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}disposeData(e,t=!1){if(this.tensorDataPendingDisposal.indexOf(e)>=0)return!1;if(!this.tensorMap.has(e))return!0;let a=this.tensorMap.get(e);if(this.decRef(e),!t&&a.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDataPendingDisposal.push(e),!1;let{complexTensorInfos:n}=this.tensorMap.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.releaseResource(e),this.tensorMap.delete(e),!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}releaseResource(e){let t=this.tensorMap.get(e);if(!(!t||!t.resourceInfo)){if("texture"in t.resourceInfo){let a=t.resourceInfo;a.texture instanceof GPUTexture&&this.textureManager.releaseTexture(a.texture,a.width,a.height,a.format,a.usage),a.texture=null}else{let a=t.resourceInfo;this.bufferManager.releaseBuffer(a.buffer,a.size,a.usage),a.buffer=null}t.resourceInfo=null}}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,a){if(a==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let n={id:this.nextDataId()};return this.tensorMap.set(n,{dtype:a,shape:t,values:e,refCount:1}),n}move(e,t,a,n,r){if(n==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.tensorMap.set(e,{dtype:n,shape:a,values:t,refCount:r})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.tensorDataPendingDisposal.forEach(e=>{this.releaseResource(e),this.tensorMap.delete(e)}),this.uniformPendingDisposal.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.size,e.usage)),this.stagingPendingDisposal.forEach(e=>this.bufferManager.releaseUploadBuffer(e.buffer,e.size,e.usage)),this.tensorDataPendingDisposal=[],this.uniformPendingDisposal=[],this.stagingPendingDisposal=[]}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.end(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e,t){let a=this.bufferManager.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e,0,a,0,t),this.submitQueue(),await a.mapAsync(GPUMapMode.READ);let n=a.getMappedRange().slice(0);return a.unmap(),a!=null&&this.bufferManager.releaseBuffer(a,t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),W().getBool("WEBGPU_USE_PROFILE_TOOL")&&(v.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),n}convertAndCacheOnCPU(e,t){let a=this.tensorMap.get(e);return this.releaseResource(e),a.values=t,a.values}readSync(e){let t=this.tensorMap.get(e),{values:a}=t;if(a==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return a}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:a}=t;if(a!=null)return this.convertAndCacheOnCPU(e,a);let n;if(t.dtype==="complex64"){let r=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),s=r[0],i=r[1];n=T.mergeRealAndImagArrays(s,i)}else{let r=t.resourceInfo,s=await this.getBufferData(r.buffer,r.size);n=C8(s,t.dtype)}return this.convertAndCacheOnCPU(e,n),n}readToGPU(e){let t=this.tensorMap.get(e),{values:a,dtype:n,shape:r,resourceInfo:s}=t;if(n==="complex64")throw new Error("Does not support reading buffer for complex64 dtype.");if(s==null)throw a!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let i=s.size,o=this.bufferManager.acquireBuffer(i,s.usage);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(s.buffer,0,o,0,i),this.submitQueue();let l=this.makeTensorInfo(r,n),u=kt().makeTensorFromTensorInfo(l),p=this.tensorMap.get(l.dataId);return p.resourceInfo={size:i,usage:this.defaultGpuBufferUsage(),buffer:o},{tensorRef:u,buffer:o,bufSize:i}}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let a=t.map(n=>v.decodeString(n));return Me(e.shape,e.dtype,a)}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return Me(e.shape,e.dtype,t)}async time(e){this.supportTimeQuery||console.warn("This device doesn't support timestamp-query-inside-passes extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Otherwise, zero will be shown for the kernel time when profiling mode is enabled. Using performance.now is not workable for webgpu since it doesn't support synchronous data read from GPU.");let t=this.activeTimers,a=[],n=!1;this.programTimersStack==null?(this.programTimersStack=a,n=!0):this.activeTimers.push(a),this.activeTimers=a,e();let r=v.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),s=v.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,n&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},o=await Promise.all(r);return i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,i}makeTensorInfo(e,t,a){return t==="string"&&a!=null&&a.length>0&&v.isString(a[0])&&(a=a.map(n=>v.encodeString(n))),{dataId:this.write(a,e,t),shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);if("texture"in t.resourceInfo){let n=t.resourceInfo;return n.texture instanceof GPUExternalTexture?n.texture:n.texture.createView()}let a=t.resourceInfo;return{offset:0,size:a.size,buffer:a.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);if(t.resourceInfo)return;let a=T8(t.dtype)*v.sizeFromShape(t.shape),n=this.bufferManager.acquireBuffer(a,this.defaultGpuBufferUsage());if(t.resourceInfo={size:a,usage:this.defaultGpuBufferUsage(),buffer:n},t.values){let r=this.bufferManager.acquireUploadBuffer(a,GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC),s=r.getMappedRange();t.dtype==="int32"||t.dtype==="bool"?new Int32Array(s).set(t.values):new Float32Array(s).set(t.values),r.unmap(),this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(r,0,n,0,a);let i={size:a,usage:GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC,buffer:r};this.stagingPendingDisposal.push(i)}}makeUniforms(e){let t=0,a=0,n=[];e.forEach(o=>{o.data.length===0&&(o.data=[1]);let l;switch(o.data.length){case 1:l=4;break;case 2:l=8;break;case 3:l=16;break;case 4:l=16;break;case 5:l=16;break;case 6:l=16;break;default:v.assert(!1,()=>`Unsupported ${o.data.length}D shape`)}(a===5||a===6)&&(l=16),t=Math.ceil(t/l)*l,a=o.data.length,n.push(t),t+=o.data.length*4});let r=new ArrayBuffer(t);e.forEach((o,l)=>{let u=n[l];o.type==="int32"?new Int32Array(r,u,o.data.length).set(o.data):o.type==="uint32"?new Uint32Array(r,u,o.data.length).set(o.data):new Float32Array(r,u,o.data.length).set(o.data)});let s=this.bufferManager.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);this.queue.writeBuffer(s,0,r,0,t);let i={size:t,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:s};return this.uniformPendingDisposal.push(i),{offset:0,size:t,buffer:s}}runWebGPUProgram(e,t,a,n,r){if(r||(r=this.makeTensorInfo(e.outputShape,a)),v.sizeFromShape(r.shape)===0)return this.tensorMap.get(r.dataId).values=v.getTypedArrayFromDType(r.dtype,0),r;this.uploadToGPU(r.dataId),e.dispatch=qne(this.device,e);let s=[],i=[];if(!e.isFromPixels){s.push({type:"float32",data:[NaN]},{type:"float32",data:[1/0]}),i=t.concat(r).map(g=>g.shape);let f="int32";i.map(g=>{s.push({type:f,data:g})});let m=v.computeStrides(r.shape);if(s.push({type:f,data:m}),e.size){let g=v.sizeFromShape(e.outputShape);s.push({type:f,data:[e.isVec4?g/4:g]})}}let o=t.map((f,m)=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU(f.dataId),{dtype:this.tensorMap.get(f.dataId).dtype,shape:f.shape,name:e.variableNames[m]}}),l=One(e,i,o,r),u;l in this.pipelineCache?u=this.pipelineCache[l]:(u=_ne(this.device,e,o,r),this.pipelineCache[l]=u),n&&(s=[...s,...n]);let p=[this.tensorToBinding(r),...t.map(f=>this.tensorToBinding(f)),this.makeUniforms(s)],c=this.device.createBindGroup({layout:u.getBindGroupLayout(0),entries:p.map((f,m)=>({binding:m,resource:f}))});this.ensureCommandEncoderReady();let d=this.getComputePass(),h=this.activeTimers!=null;return h&&this.supportTimeQuery&&d.writeTimestamp(this.querySet,0),d.setPipeline(u),d.setBindGroup(0,c),d.dispatchWorkgroups(e.dispatch[0],e.dispatch[1],e.dispatch[2]),h&&this.supportTimeQuery&&d.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach(f=>{this.commandQueueOwnedIds.add(f.dataId)}),this.commandQueueOwnedIds.add(r.dataId),W().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),h&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),r}async getTimeFromQuerySet(e){let t=this.bufferManager.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),a=this.bufferManager.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,a,0,16),this.submitQueue(),await a.mapAsync(GPUMapMode.READ);let n=new BigUint64Array(a.getMappedRange()),r=Number(n[1]-n[0]);return a.unmap(),this.bufferManager.releaseBuffer(a,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),r/1e6}shouldExecuteOnCPU(e,t=jne){return W().getBool("WEBGPU_CPU_FORWARD")&&e.every(a=>this.tensorMap.get(a.dataId).resourceInfo==null&&v.sizeFromShape(a.shape)<t)}numDataIds(){return this.tensorMap.numDataIds()-this.tensorDataPendingDisposal.length}dispose(){this.disposed||(this.bufferManager.dispose(),this.textureManager.dispose(),this.disposed=!0)}};Lh.nextDataId=0;P3()&&fo("webgpu",async()=>{W().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:W().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),a={};t.features.has("timestamp-query-inside-passes")&&(a.requiredFeatures=["timestamp-query-inside-passes"]);let n=t.limits;a.requiredLimits={maxComputeWorkgroupStorageSize:n.maxComputeWorkgroupStorageSize,maxComputeWorkgroupsPerDimension:n.maxComputeWorkgroupsPerDimension,maxStorageBufferBindingSize:n.maxStorageBufferBindingSize};let r=await t.requestDevice(a),s=await t.requestAdapterInfo();return new Lh(r,s)},3);var De;(function(e){e[e.ADD=0]="ADD",e[e.ATAN2=1]="ATAN2",e[e.COMPLEX_MULTIPLY_IMAG=2]="COMPLEX_MULTIPLY_IMAG",e[e.COMPLEX_MULTIPLY_REAL=3]="COMPLEX_MULTIPLY_REAL",e[e.DIV=4]="DIV",e[e.EQUAL=5]="EQUAL",e[e.GREATER=6]="GREATER",e[e.GREATER_EQUAL=7]="GREATER_EQUAL",e[e.INT_DIV=8]="INT_DIV",e[e.LESS=9]="LESS",e[e.LESS_EQUAL=10]="LESS_EQUAL",e[e.LOGICAL_AND=11]="LOGICAL_AND",e[e.MAX=12]="MAX",e[e.MIN=13]="MIN",e[e.MOD=14]="MOD",e[e.MUL=15]="MUL",e[e.NOT_EQUAL=16]="NOT_EQUAL",e[e.POW=17]="POW",e[e.PRELU=18]="PRELU",e[e.SQUARED_DIFFERENCE=19]="SQUARED_DIFFERENCE",e[e.SUB=20]="SUB"})(De||(De={}));var N8=`
if (isnan(a)) { return a; }
if (isnan(b)) { return b; }
`,E8=`
if (isNaN.r) {
resultTemp.r = valueForNaN;
}
if (isNaN.g) {
resultTemp.g = valueForNaN;
}
if (isNaN.b) {
resultTemp.b = valueForNaN;
}
if (isNaN.a) {
resultTemp.a = valueForNaN;
}
`,F3=`
let isNaN = isnanVec4(a) | isnanVec4(b);
${E8}
`,Xne="return a + b;",Kne="return areal * breal - aimag * bimag;",Zne="return areal * bimag + aimag * breal;",Yne="return a / b;",Jne="return f32(a == b);",Qne="return vec4<f32>(a == b);",ere="return f32(a > b);",tre="return vec4<f32>(a > b);",are="return f32(a >= b);",nre="return vec4<f32>(a >= b);",rre=`
let s = sign(a) * sign(b);
let ia = i32(round(a));
let ib = i32(round(b));
return f32(idiv(ia, ib, s));
`,sre=`
let ia = vec4<i32>(round(a));
let ib = vec4<i32>(round(b));
let cond = ib != vec4<i32>(0);
var resultTemp = vec4<i32>(0);
let s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
resultTemp[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
resultTemp[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
resultTemp[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
resultTemp[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4<f32>(resultTemp);
`,ire="return f32(a < b);",ore="return vec4<f32>(a < b);",lre="return f32(a <= b);",ure="return vec4<f32>(a <= b);",dre="return f32(f32(a) >= 1.0 && f32(b) >= 1.0);",pre=`return (vec4<f32>(a >= vec4<f32>(1.0)) *
vec4<f32>(b >= vec4<f32>(1.0)));`,cre=`
${N8}
if (b == 0.) {
return uniforms.NAN;
}
var resultTemp = a % b;
if ((a < 0. && b < 0.) || (a >= 0. && b > 0.)) {
return resultTemp;
} else {
return (resultTemp + b) % b;
}
`,hre=`
let valueForNaN = uniforms.NAN;
var resultTemp = vec4<f32>(a % b);
${F3}
if (b[0] == 0.) {
resultTemp[0] = uniforms.NAN;
}
if (b[1] == 0.) {
resultTemp[1] = uniforms.NAN;
}
if (b[2] == 0.) {
resultTemp[2] = uniforms.NAN;
}
if (b[3] == 0.) {
resultTemp[3] = uniforms.NAN;
}
if (!((a[0] < 0. && b[0] < 0.) || (a[0] >= 0. && b[0] > 0.))) {
resultTemp[0] = (resultTemp[0] + b[0]) % b[0];
}
if (!((a[1] < 0. && b[1] < 0.) || (a[1] >= 0. && b[1] > 0.))) {
resultTemp[1] = (resultTemp[1] + b[1]) % b[1];
}
if (!((a[2] < 0. && b[2] < 0.) || (a[2] >= 0. && b[2] > 0.))) {
resultTemp[2] = (resultTemp[2] + b[2]) % b[2];
}
if (!((a[3] < 0. && b[3] < 0.) || (a[3] >= 0. && b[3] > 0.))) {
resultTemp[3] = (resultTemp[3] + b[3]) % b[3];
}
return resultTemp;
`,fre="return a * b;",mre=`
if (isnan(a) || isnan(b)) {
return 1.0;
}
return f32(a != b);
`,gre=`
var resultTemp = vec4<f32>(a != b);
let valueForNaN = 1.0;
${F3}
return resultTemp;
`,xre=`
if(a < 0.0 && floor(b) < b) {
return uniforms.NAN;
}
if (b == 0.0) {
return 1.0;
}
if (round(abs(b) % 2.0) != 1.0) {
return pow(abs(a), b);
}
return sign(a) * pow(abs(a), b);
`,Are=`
let isModRound1Bool = vec4<i32>(round(abs(b) % vec4<f32>(2.0))) == vec4<i32>(1);
let isModRound1 = vec4<f32>(isModRound1Bool);
let multiplier = sign(a) * isModRound1 + (vec4<f32>(1.0) - isModRound1);
var resultTemp = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
let isExpZero = b == vec4<f32>(0.0);
if (isExpZero.r) {
resultTemp.r = 1.0;
}
if (isExpZero.g) {
resultTemp.g = 1.0;
}
if (isExpZero.b) {
resultTemp.b = 1.0;
}
if (isExpZero.a) {
resultTemp.a = 1.0;
}
let isNaN = (a < vec4<f32>(0.0)) & (floor(b) < b);
let valueForNaN = uniforms.NAN;
${E8}
return resultTemp;
`,yre="if (a < 0.0) { return b * a; } return a;",bre=`
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
return (aLessThanZero * (b * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
`,vre="return (a - b) * (a - b);",wre="return a - b;";function Dm(e,t,a="uniforms.NAN"){let n=t?F3:N8;return t?`
let valueForNaN = ${a};
var resultTemp = vec4<f32>(${e}(a, b));
`+n+`
return resultTemp;
`:n+`
return ${e}(a, b);
`}function O3(e,t){switch(e){case De.ADD:return Xne;case De.ATAN2:return Dm("atan2",t);case De.COMPLEX_MULTIPLY_IMAG:return Zne;case De.COMPLEX_MULTIPLY_REAL:return Kne;case De.DIV:return Yne;case De.EQUAL:return t?Qne:Jne;case De.GREATER:return t?tre:ere;case De.GREATER_EQUAL:return t?nre:are;case De.INT_DIV:return t?sre:rre;case De.LESS:return t?ore:ire;case De.LESS_EQUAL:return t?ure:lre;case De.LOGICAL_AND:return t?pre:dre;case De.MAX:return Dm("max",t);case De.MIN:return Dm("min",t);case De.MOD:return t?hre:cre;case De.MUL:return fre;case De.NOT_EQUAL:return t?gre:mre;case De.POW:return t?Are:xre;case De.PRELU:return t?bre:yre;case De.SQUARED_DIFFERENCE:return vre;case De.SUB:return wre;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var de;(function(e){e[e.ABS=0]="ABS",e[e.ACOS=1]="ACOS",e[e.ACOSH=2]="ACOSH",e[e.ASIN=3]="ASIN",e[e.ASINH=4]="ASINH",e[e.ATAN=5]="ATAN",e[e.ATANH=6]="ATANH",e[e.CEIL=7]="CEIL",e[e.COS=8]="COS",e[e.COSH=9]="COSH",e[e.ELU=10]="ELU",e[e.ERF=11]="ERF",e[e.EXP=12]="EXP",e[e.EXPM1=13]="EXPM1",e[e.FLOOR=14]="FLOOR",e[e.IS_FINITE=15]="IS_FINITE",e[e.IS_INF=16]="IS_INF",e[e.IS_NAN=17]="IS_NAN",e[e.LINEAR=18]="LINEAR",e[e.LOG=19]="LOG",e[e.LOG1P=20]="LOG1P",e[e.LOGICAL_NOT=21]="LOGICAL_NOT",e[e.NEG=22]="NEG",e[e.RELU=23]="RELU",e[e.RELU6=24]="RELU6",e[e.LEAKYRELU=25]="LEAKYRELU",e[e.RECIPROCAL=26]="RECIPROCAL",e[e.RSQRT=27]="RSQRT",e[e.SIN=28]="SIN",e[e.SINH=29]="SINH",e[e.SIGMOID=30]="SIGMOID",e[e.SQRT=31]="SQRT",e[e.SQUARE=32]="SQUARE",e[e.TAN=33]="TAN",e[e.TANH=34]="TANH",e[e.TO_INT=35]="TO_INT"})(de||(de={}));var kre="return abs(a);",Ire=`
if (abs(a) > 1.) {
return uniforms.NAN;
}
return acos(a);
`,Sre=`
if (a < 1.) {
return uniforms.NAN;
}
return acosh(a);
`,Tre=`
if (abs(a) > 1.) {
return uniforms.NAN;
}
return asin(a);
`,Cre="return asinh(a);",Nre=`
if (isnan(a)) {
return uniforms.NAN;
}
return atan(a);
`,Ere=`
if (abs(a) > 1.) {
return uniforms.NAN;
}
if (a == 1.) {
return uniforms.INFINITY;
}
if (a == -1.) {
return -uniforms.INFINITY;
}
return atanh(a);
`,Rre="return ceil(a);",Mre="return cos(a);",$re=`
let e2x = exp(-a);
return (e2x + 1.0 / e2x) / 2.0;
`,_re="return exp(a) - 1.0;",Pre="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",Fre=`
var resFloat = exp(a) - vec4<f32>(1.0);
if (a.r >= 0.0) {
resFloat.r = a.r;
}
if (a.g >= 0.0) {
resFloat.g = a.g;
}
if (a.b >= 0.0) {
resFloat.b = a.b;
}
if (a.a >= 0.0) {
resFloat.a = a.a;
}
return resFloat;
`,Ore=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
let p = ${T.ERF_P};
let a1 = ${T.ERF_A1};
let a2 = ${T.ERF_A2};
let a3 = ${T.ERF_A3};
let a4 = ${T.ERF_A4};
let a5 = ${T.ERF_A5};
let sign = sign(a);
let absA = abs(a);
let t = 1.0 / (1.0 + p * absA);
return sign * (1.0 - (((((a5 * t + a4) * t) + a3) * t + a2) * t + a1) * t * exp(-absA * absA));
`,Dre="return exp(a);",zre="return floor(a);",Lre="return f32(!isnan(a) && !isinf(a));",Bre="return f32(isinf(a));",Wre="return f32(isnan(a));",Vre="return a;",Ure=`if (a < 0.0) { return uniforms.NAN; }
return log(a);`,Gre=`
if (isnan(a)) { return a; }
return log(1.0 + a);
`,Hre="return f32(!(a >= 1.0));",jre="return -a;",qre="if (a < 0.0) { return uniforms.alpha * a; } return a;",Xre=`
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
return (aLessThanZero * (uniforms.alpha * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
`,Kre="return 1.0 / a;",Zre="return select(a, 0.0, a < 0.0);",Yre="return clamp(a, 0.0, 6.0);",Jre="return clamp(a, vec4<f32>(0.0, 0.0, 0.0, 0.0), vec4<f32>(6.0, 6.0, 6.0, 6.0));",Qre=`
return select(a, vec4<f32>(0.0), a < vec4<f32>(0.0));
`,ese="return inverseSqrt(a);",tse="return 1.0 / (1.0 + exp(-1.0 * a));",ase="return sin(a);",nse=`
let e2x = exp(a);
return (e2x - 1.0 / e2x) / 2.0;
`,rse="return sqrt(a);",sse="return a * a;",ise="return tan(a);",ose=`
let e2x = exp(-2.0 * abs(a));
return sign(a) * (1.0 - e2x) / (1.0 + e2x);
`,lse="return f32(i32((a)));";function Es(e,t){switch(e){case de.ABS:return kre;case de.ACOS:return Ire;case de.ACOSH:return Sre;case de.ASIN:return Tre;case de.ASINH:return Cre;case de.ATAN:return Nre;case de.ATANH:return Ere;case de.COS:return Mre;case de.COSH:return $re;case de.CEIL:return Rre;case de.ELU:return t?Fre:Pre;case de.ERF:return Ore;case de.EXP:return Dre;case de.EXPM1:return _re;case de.FLOOR:return zre;case de.IS_FINITE:return Lre;case de.IS_INF:return Bre;case de.IS_NAN:return Wre;case de.LINEAR:return Vre;case de.LOG:return Ure;case de.LOG1P:return Gre;case de.LOGICAL_NOT:return Hre;case de.NEG:return jre;case de.LEAKYRELU:return t?Xre:qre;case de.RECIPROCAL:return Kre;case de.RELU:return t?Qre:Zre;case de.RELU6:return t?Jre:Yre;case de.RSQRT:return ese;case de.SIGMOID:return tse;case de.SIN:return ase;case de.SINH:return nse;case de.SQRT:return rse;case de.SQUARE:return sse;case de.TAN:return ise;case de.TANH:return ose;case de.TO_INT:return lse;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var Mt=e=>{switch(e){case 1:return"f32";case 2:return"vec2<f32>";case 3:return"vec3<f32>";case 4:return"vec4<f32>";default:throw new Error(`${e}-component is not supported.`)}};function Ir(e,t=!1,a=!1,n=3){if(e===null)return"";let r="";if(e==="linear")r=Es(de.LINEAR);else if(e==="relu")r=Es(de.RELU,a);else if(e==="elu")r=Es(de.ELU,a);else if(e==="relu6")r=Es(de.RELU6,a);else if(e==="prelu")r=O3(De.PRELU,a);else if(e==="sigmoid")r=Es(de.SIGMOID,a);else if(e==="leakyrelu")r=Es(de.LEAKYRELU,a);else throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`);let s=Mt(a?4:1),i="";return t?i=`
fn activation(a : ${s}, coords : vec${n}<i32>) -> ${s} {
let b = getPreluActivationWeightsByOutputCoords(coords);
${r}
}`:i=`
fn activation(a : ${s}, coords : vec${n}<i32>) -> ${s} {
${r}
}`,i}function yo(e,t){return`
${e?"value = value + getBiasByOutputCoords(coords);":""}
${t?"value = activation(value, coords);":""}
`}function R8(e,t,a,n,r=!1,s=!1,i=!1,o=1){v.assert(a&&o===1||!a,()=>`transposeA ${a} is not compatible with component size ${o}`);let l=`
let batch = ${e?"0":"batchIn"};
${a?"value = getA(batch, col, row);":"value = getA(batch, row, col);"}
`,u=n?"value = getB(batch, col, row);":"value = getB(batch, row, col);";return`
fn mm_readA(batchIn: i32, row: i32, colIn: i32) -> ${Mt(o)} {
var value = ${Mt(o)}(0.0);
let col = colIn * ${o};
${r&&i?l:`
${a?"if(row < uniforms.dimAOuter && col < uniforms.dimInner)":"if(row < uniforms.aShape[1] && col < uniforms.aShape[2])"}
{
${l}
}
`}
return value;
}
fn mm_readB(batchIn: i32, row: i32, colIn: i32) -> ${Mt(o)} {
let col = colIn * ${o};
let batch = ${t?"0":"batchIn"};
var value = ${Mt(o)}(0.0);
${u}
return value;
}
`}function D3(e,t,a,n,r,s,i=!1,o=!1,l=!1,u=1){return`
${R8(a,n,r,s,i,o,l,u)}
fn mm_write(batch: i32, row: i32, colIn: i32, valueIn: ${Mt(u)}) {
let col = colIn * ${u};
${i&&o?"":"if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)"}
{
var value = valueIn;
let coords = vec3<i32>(batch, row, col);
${yo(e,t)}
setOutputAtCoords(coords[0], coords[1], coords[2], value);
}
}
`}var use=e=>e?`
mm_Asub[inputRow][inputCol] = mm_readA(batch,
kStart + inputRow,
globalRowStart / innerElementSize + inputCol);
`:`
mm_Asub[inputRow][inputCol] = mm_readA(batch,
globalRow + innerRow,
kStart / innerElementSize + inputCol);
`,dse=(e,t)=>e?`
let ACached0 = mm_Asub[k * innerElementSize][localRow];
let ACached1 = mm_Asub[k * innerElementSize + 1][localRow];
let ACached2 = mm_Asub[k * innerElementSize + 2][localRow];
${t===3?"":"let ACached3 = mm_Asub[k * innerElementSize + 3][localRow];"}
for (var i = 0; i < rowPerThread; i = i + 1) {
acc[i] = BCached0 * ACached0[i] + acc[i];
acc[i] = BCached1 * ACached1[i] + acc[i];
acc[i] = BCached2 * ACached2[i] + acc[i];
${t===3?"":"acc[i] = BCached3 * ACached3[i] + acc[i];"}
}`:`
for (var i = 0; i < rowPerThread; i = i + 1) {
let ACached = mm_Asub[tileRow + i][k];
acc[i] = BCached0 * ACached.x + acc[i];
acc[i] = BCached1 * ACached.y + acc[i];
acc[i] = BCached2 * ACached.z + acc[i];
${t===3?"":"acc[i] = BCached3 * ACached.w + acc[i];"}
}`;function Bh(e,t,a=!1,n=32,r=!1,s=32,i=!1){let o=t[1]*e[1],l=t[0]*e[0],u=a?o:n,p=a?n:o,c=u/t[0],d=n/t[1];return v.assert((a&&c===4&&e[1]===4||!a&&(c===3||c===4))&&u%t[0]===0&&n%t[1]===0&&e[0]===4,()=>`If transposeA ${a} is true, innerElementSize ${c} and workPerThread[1] ${e[1]} must be 4.
Otherwise, innerElementSize ${c} must be 3 or 4.
tileAWidth ${u} must be divisible by workgroupSize[0]${t[0]}. tileInner ${n} must be divisible by workgroupSize[1] ${t[1]}. colPerThread ${e[0]} must be 4.`),`
var<workgroup> mm_Asub : array<array<vec${c}<f32>, ${u/c}>, ${p}>;
var<workgroup> mm_Bsub : array<array<vec4<f32>, ${l/e[0]}>, ${n}>;
const rowPerThread = ${e[1]};
const colPerThread = ${e[0]};
const innerElementSize = ${c};
const tileInner = ${n};
${Ce()} {
let localRow = i32(localId.y);
let tileRow = ${i?"0":"localRow * rowPerThread"};
let tileCol = i32(localId.x);
let globalRow = ${i?"0":"i32(globalId.y) * rowPerThread"};
let globalCol = i32(globalId.x);
let batch = ${r?"0":"i32(globalId.z)"};
let globalRowStart = i32(workgroupId.y) * ${o};
let numTiles = ${r?`${Math.ceil(s/n)}`:"(uniforms.dimInner - 1) / tileInner + 1"};
var kStart = ${r?`i32(globalId.z) * ${s}`:"0"};
var acc: array<vec4<f32>, rowPerThread>;
// Loop over shared dimension.
let tileRowB = localRow * ${d};
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
for (var innerRow = 0; innerRow < rowPerThread; innerRow = innerRow + 1) {
let inputRow = tileRow + innerRow;
let inputCol = tileCol;
${use(a)}
}
// Load one tile of B into local memory.
for (var innerRow = 0; innerRow < ${d}; innerRow = innerRow + 1) {
let inputRow = tileRowB + innerRow;
let inputCol = tileCol;
mm_Bsub[inputRow][inputCol] = mm_readB(batch, kStart + inputRow, globalCol);
}
kStart = kStart + tileInner;
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < tileInner / innerElementSize; k = k + 1) {
let BCached0 = mm_Bsub[k * innerElementSize][tileCol];
let BCached1 = mm_Bsub[k * innerElementSize + 1][tileCol];
let BCached2 = mm_Bsub[k * innerElementSize + 2][tileCol];
${c===3?"":"let BCached3 = mm_Bsub[k * innerElementSize + 3][tileCol];"}
${dse(a,c)}
}
workgroupBarrier();
}
for (var innerRow = 0; innerRow < rowPerThread; innerRow = innerRow + 1) {
mm_write(batch, globalRow + innerRow, globalCol, acc[innerRow]);
}
}`}var Gx=e=>e?`
mm_Asub[inputRow][inputCol] = mm_readA(batch,
kStart + inputRow,
globalRowStart + inputCol);
`:`
mm_Asub[inputRow][inputCol] = mm_readA(batch,
globalRowStart + inputRow,
kStart + inputCol);
`,pse=e=>e?"let ACached = mm_Asub[k][tileRow + innerRow];":"let ACached = mm_Asub[tileRow + innerRow][k];";function Wh(e,t,a=!1,n=32,r=!1,s=32,i=!1){let o=e[1]*t[1],l=e[0]*t[0],u=a?o:n,p=a?n:o;v.assert(p%t[1]===0&&u%t[0]===0&&n%t[1]===0,()=>`tileAHight ${p} must be divisible by workgroupSize[1]${t[1]}, tileAWidth ${u} must be divisible by workgroupSize[0]${t[0]}, tileInner ${n} must be divisible by workgroupSize[1]${t[1]}`);let c=p/t[1],d=u/t[0],h=n/t[1],f=i?`
let localRow = i32(localId.y);
let localCol = i32(localId.x);
let globalRowStart = i32(workgroupId.y) * ${o};
let globalColStart = i32(workgroupId.x) * ${l};
// Loop over shared dimension.
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
for (var inputRow = localRow; inputRow < ${p}; inputRow = inputRow + ${t[1]}) {
for (var inputCol = localCol; inputCol < ${u}; inputCol = inputCol + ${t[0]}) {
${Gx(a)}
}
}
// Load one tile of B into local memory.
for (var inputRow = localRow; inputRow < ${n}; inputRow = inputRow + ${t[1]}) {
for (var inputCol = localCol; inputCol < ${l}; inputCol = inputCol + ${t[0]}) {
mm_Bsub[inputRow][inputCol] = mm_readB(batch,
kStart + inputRow,
globalColStart + inputCol);
}
}
kStart = kStart + tileInner;
workgroupBarrier();
// Compute acc values for a single thread.
var BCached : array<f32, colPerThread>;
for (var k = 0; k < tileInner; k = k + 1) {
for (var inner = 0; inner < colPerThread; inner = inner + 1) {
BCached[inner] = mm_Bsub[k][localCol + inner * ${t[0]}];
}
for (var innerRow = 0; innerRow < rowPerThread; innerRow = innerRow + 1) {
let ACached = ${a?`mm_Asub[k][localRow + innerRow * ${t[1]}];`:`mm_Asub[localRow + innerRow * ${t[1]}][k];`}
for (var innerCol = 0; innerCol < colPerThread; innerCol = innerCol + 1) {
acc[innerRow][innerCol] = acc[innerRow][innerCol] +
ACached * BCached[innerCol];
}
}
}
workgroupBarrier();
}
for (var innerRow = 0; innerRow < rowPerThread; innerRow = innerRow + 1) {
let gRow = globalRowStart + localRow + innerRow * ${t[1]};
for (var innerCol = 0; innerCol < colPerThread; innerCol = innerCol + 1) {
let gCol = globalColStart + localCol + innerCol * ${t[0]};
mm_write(batch, gRow, gCol, acc[innerRow][innerCol]);
}
}
`:`
let tileRow = i32(localId.y) * rowPerThread;
let tileCol = i32(localId.x) * colPerThread;
let globalRow = i32(globalId.y) * rowPerThread;
let globalCol = i32(globalId.x) * colPerThread;
let globalRowStart = i32(workgroupId.y) * ${o};
let tileRowA = i32(localId.y) * ${c};
let tileColA = i32(localId.x) * ${d};
let tileRowB = i32(localId.y) * ${h};
// Loop over shared dimension.
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
for (var innerRow = 0; innerRow < ${c}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ${d}; innerCol = innerCol + 1) {
let inputRow = tileRowA + innerRow;
let inputCol = tileColA + innerCol;
${Gx(a)}
}
}
// Load one tile of B into local memory.
for (var innerRow = 0; innerRow < ${h}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < colPerThread; innerCol = innerCol + 1) {
let inputRow = tileRowB + innerRow;
let inputCol = tileCol + innerCol;
mm_Bsub[inputRow][inputCol] = mm_readB(batch,
kStart + inputRow,
globalCol + innerCol);
}
}
kStart = kStart + tileInner;
workgroupBarrier();
// Compute acc values for a single thread.
var BCached : array<f32, colPerThread>;
for (var k = 0; k < tileInner; k = k + 1) {
for (var inner = 0; inner < colPerThread; inner = inner + 1) {
BCached[inner] = mm_Bsub[k][tileCol + inner];
}
for (var innerRow = 0; innerRow < rowPerThread; innerRow = innerRow + 1) {
${pse(a)}
for (var innerCol = 0; innerCol < colPerThread; innerCol = innerCol + 1) {
acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];
}
}
}
workgroupBarrier();
}
for (var innerRow = 0; innerRow < rowPerThread; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < colPerThread; innerCol = innerCol + 1) {
mm_write(batch, globalRow + innerRow, globalCol + innerCol,
acc[innerRow][innerCol]);
}
}
`;return`
var<workgroup> mm_Asub : array<array<f32, ${u}>, ${p}>;
var<workgroup> mm_Bsub : array<array<f32, ${l}>, ${n}>;
const rowPerThread = ${e[1]};
const colPerThread = ${e[0]};
const tileInner = ${n};
${Ce()} {
let batch = ${r?"0":"i32(globalId.z)"};
let numTiles = ${r?`${Math.ceil(s/n)}`:"(uniforms.dimInner - 1) / tileInner + 1"};
var kStart = ${r?`i32(globalId.z) * ${s}`:"0"};
var acc : array<array<f32, colPerThread>, rowPerThread>;
// Without this initialization strange values show up in acc.
for (var innerRow = 0; innerRow < rowPerThread; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < colPerThread; innerCol = innerCol + 1) {
acc[innerRow][innerCol] = 0.0;
}
}
${f}
}
`}var cse=e=>e?`
mm_readA(batch, colA, globalRow),
mm_readA(batch, colA + 1, globalRow),
mm_readA(batch, colA + 2, globalRow),
mm_readA(batch, colA + 3, globalRow)
`:`
mm_readA(batch, globalRow, colA),
mm_readA(batch, globalRow, colA + 1),
mm_readA(batch, globalRow, colA + 2),
mm_readA(batch, globalRow, colA + 3)
`;function hse(e,t=!1){return v.assert(e[1]===1&&e[2]===1,()=>`A linear work group size is required. But got ${e}.`),`
const tileSize = ${e[0]*4};
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
${Ce()} {
let tileCol = i32(localId.x);
let globalCol = i32(globalId.x);
let globalRow = i32(globalId.y);
let numTiles = (uniforms.dimInner - 1) / tileSize + 1;
let batch = i32(globalId.z);
// Without this initialization strange values show up in acc.
var acc = 0.0;
// Loop over shared dimension.
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
let colA = t * tileSize + tileCol * 4;
mm_Asub[tileCol] = vec4<f32>(${cse(t)});
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < tileSize / 4; k = k + 1) {
let rowB = t * tileSize + k * 4;
let BCached = vec4<f32>(mm_readB(batch, rowB, globalCol),
mm_readB(batch, rowB + 1, globalCol),
mm_readB(batch, rowB + 2, globalCol),
mm_readB(batch, rowB + 3, globalCol));
let ACached = mm_Asub[k];
acc = acc + dot(ACached, BCached);
}
workgroupBarrier();
}
mm_write(batch, globalRow, globalCol, acc);
}
`}var fse=class{constructor(e,t,a,n,r=!1,s=!1,i=null,o=null,l=null,u=!1){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let p=r?e[1]:e[2];if(this.isVec4=(p%4===0&&!r||t[1]%4===0&&r)&&t[2]%4===0&&!s,this.isVectorA=t[1]===1&&!r,!this.isVec4&&this.isVectorA)this.elementsPerThread=[1,1,1],this.workgroupSize=[32,1,1];else{let h=S8(t[1],p,t[2],r);this.workgroupSize=h.workgroupSize,this.elementsPerThread=h.elementsPerThread}this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize,this.elementsPerThread);let c=i!=null,d=l!=null;c&&this.variableNames.push("bias"),d&&this.variableNames.push("preluActivationWeights"),this.sequentialAccessByThreads=u,this.transposeA=r,this.transposeB=s,this.addBias=c,this.activation=o,this.hasPreluActivationWeights=d,this.batchAEqualOne=a,this.batchBEqualOne=n,[this.fitAOuter,this.fitBOuter,this.fitInner]=this.getShapeFit(t[1],t[2],p),this.shaderKey=`matMulPacked_${this.elementsPerThread}_${r}_${s}_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.isVectorA}_${this.batchAEqualOne}_${this.batchBEqualOne}_${this.sequentialAccessByThreads}`}getShapeFit(e,t,a){let n=this.workgroupSize[1]*this.elementsPerThread[1],r=this.workgroupSize[0]*this.elementsPerThread[0];!this.isVec4&&this.isVectorA?this.tileInner=this.workgroupSize[0]*4:this.tileInner=r;let s=e%n===0,i=t%r===0,o=a%this.tileInner===0;return[s,i,o]}getUserCode(){return`
${Ir(this.activation,this.hasPreluActivationWeights,this.isVec4)}
${D3(this.addBias,this.activation,this.batchAEqualOne,this.batchBEqualOne,!1,this.transposeB,this.fitAOuter,this.fitBOuter,this.fitInner,this.isVec4?4:1)}
${this.isVec4?Bh(this.elementsPerThread,this.workgroupSize,this.transposeA,this.tileInner,!1,null,this.isVectorA):this.isVectorA?hse(this.workgroupSize,this.transposeA):Wh(this.elementsPerThread,this.workgroupSize,this.transposeA,this.tileInner,!1,null,this.sequentialAccessByThreads)}
`}};function mse(){return`
var<workgroup> sumValues : array<f32, workgroupSizeX>;
${Ce()} {
let coords = getOutputCoords();
let batch = coords[0];
let row = coords[1];
let col = coords[2];
var sum = 0.0;
let Length = uniforms.dimInner;
for (var k = i32(localId.x); k < Length; k = k + i32(workgroupSizeX)) {
let dataA = mm_readA(batch, row, k);
let dataB = mm_readB(batch, k, col);
sum = sum + dataA * dataB;
}
sumValues[localId.x] = sum;
workgroupBarrier();
for(var currentSize = workgroupSizeX / 2u; currentSize > 1u;
currentSize = currentSize / 2u) {
if (localId.x < currentSize)
{
sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize];
}
workgroupBarrier();
}
if (localId.x == 0u) {
sum = sumValues[0] + sumValues[1];
mm_write(batch, row, col, sum);
}
}
`}var gse=class{constructor(e,t,a,n=!1,r=!1,s=null,i=null,o=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workgroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout={x:[],y:[1,2],z:[0]},this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize);let l=s!=null,u=o!=null;l&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),this.transposeA=n,this.transposeB=r,this.addBias=l,this.activation=i,this.hasPreluActivationWeights=u,this.batchAEqualOne=t,this.batchBEqualOne=a,this.shaderKey=`matMulReduce_${this.activation}_${n}_${r}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getUserCode(){return`
${Ir(this.activation,this.hasPreluActivationWeights)}
${D3(this.addBias,this.activation,this.batchAEqualOne,this.batchBEqualOne,this.transposeA,this.transposeB)}
${mse()}
`}};function xse(e){let t=e[1],a=e[0],n=t>a?t:a;return`
var<workgroup> mm_Asub : array<array<f32, ${n}>, ${t}>;
var<workgroup> mm_Bsub : array<array<f32, ${a}>, ${n}>;
// If the output size is small for matrix multiplication, avoid to use vec4
// and handle some elements per thread to optimally utilize the ALU.
// Read data from global memory to registers firstly, then store them into
// shared memory, so it is instruction-Level parallelism for arithmetic
// operations and others handle IO operations between barrier api, makes ALU
// and load/store units work simultaneously, could improves the performance.
${Ce()} {
let tileRow = i32(localId.y);
let tileCol = i32(localId.x);
let globalRow = i32(globalId.y);
let globalCol = i32(globalId.x);
let batch = i32(globalId.z);
// uniforms.dimInner should be greater than 0.
let numTiles = (uniforms.dimInner - 1) / ${n} + 1;
var acc = 0.0;
var globalColA = tileCol;
var globalRowB = 0;
var regA = mm_readA(batch, globalRow, globalColA);
var regB0 = mm_readB(batch, globalRowB + 2 * tileRow, globalCol);
var regB1 = mm_readB(batch, globalRowB + 2 * tileRow + 1, globalCol);
globalColA = globalColA + ${n};
globalRowB = globalRowB + ${n};
for (var t = 0; t < numTiles; t = t + 1) {
mm_Asub[tileRow][tileCol] = regA;
mm_Bsub[2 * tileRow][tileCol] = regB0;
mm_Bsub[2 * tileRow + 1][tileCol] = regB1;
workgroupBarrier();
regA = mm_readA(batch, globalRow, globalColA);
regB0 = mm_readB(batch, globalRowB + 2 * tileRow, globalCol);
regB1 = mm_readB(batch, globalRowB + 2 * tileRow + 1, globalCol);
globalColA = globalColA + ${n};
globalRowB = globalRowB + ${n};
for (var k = 0; k < ${n}; k = k + 1) {
acc = acc + mm_Asub[tileRow][k] * mm_Bsub[k][tileCol];
}
workgroupBarrier();
}
mm_write(batch, globalRow, globalCol, acc);
}
`}var Ase=class{constructor(e,t,a,n=!1,r=!1,s=null,i=null,o=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workgroupSize=[16,8,1],this.outputShape=a,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(a[2]/this.workgroupSize[0]),Math.ceil(a[1]/this.workgroupSize[1]),a[0]];let l=s!=null;l&&this.variableNames.push("bias");let u=o!=null;u&&this.variableNames.push("preluActivationWeights"),this.transposeA=n,this.transposeB=r,this.addBias=l,this.activation=i,this.hasPreluActivationWeights=u,this.batchAEqualOne=e[0]===1,this.batchBEqualOne=t[0]===1,this.shaderKey=`matMulSmallOutputSize_${this.activation}_${n}_${r}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getUserCode(){return`
${Ir(this.activation,this.hasPreluActivationWeights)}
${D3(this.addBias,this.activation,this.batchAEqualOne,this.batchBEqualOne,this.transposeA,this.transposeB)}
${xse(this.workgroupSize)}
`}},yse=class{constructor(e,t,a,n,r=!1,s=!1){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workgroupSize=[8,8,1],this.atomic=!0,this.isVec4=!1,this.splitedDimInner=128,v.assert(e[0]===1,()=>"MatMulSplitKProgram only supports batch = 1."),this.outputShape=e,this.dispatchLayout={x:[2],y:[1],z:[0,3]},this.isVec4=(r&&this.outputShape[1]%4===0||!r&&t%4===0)&&this.outputShape[2]%4===0,this.elementsPerThread=[4,4,this.splitedDimInner],this.isVec4||(this.outputShape[1]<16&&(this.elementsPerThread[1]=1),this.outputShape[2]<16&&(this.elementsPerThread[0]=1)),this.dispatch=Ne(this.dispatchLayout,[this.outputShape[0],this.outputShape[1],this.outputShape[2],t],this.workgroupSize,this.elementsPerThread),this.transposeA=r,this.transposeB=s,this.batchAEqualOne=a,this.batchBEqualOne=n,this.shaderKey=`matMulSplitK_${r}_${s}_${a}_${n}_${this.elementsPerThread}_${this.isVec4}`}getUserCode(){let e=a=>`
for (var i = 0; i < ${a}; i = i + 1)
{
var oldValue = atomicLoad(&(result[flatIndex + i]));
var exchanged = false;
for (; !exchanged;) {
let newValueF32 = bitcast<f32>(oldValue) + ${a>1?"value[i]":"value"};
let newValue = bitcast<i32>(newValueF32);
let res = atomicCompareExchangeWeak(&(result[flatIndex + i]), oldValue, newValue);
oldValue = res.old_value;
exchanged = res.exchanged;
}
}
`,t=this.isVec4?4:1;return`
${R8(this.batchAEqualOne,this.batchBEqualOne,!1,this.transposeB,!1,!1,!1,t)}
fn mm_write(batch: i32, row : i32, colIn : i32, value : ${Mt(t)}) {
let col = colIn * ${t};
if (row < uniforms.dimAOuter && col < uniforms.dimBOuter) {
let coords = vec3<i32>(batch, row, col);
let flatIndex = getOutputIndexFromCoords(coords);
// The problem is that we should initialize output to zero before using.
// Otherwise, the original value will be added to the result.
${e(t)}
}
}
${this.isVec4?Bh(this.elementsPerThread,this.workgroupSize,this.transposeA,32,!0,this.splitedDimInner):Wh(this.elementsPerThread,this.workgroupSize,this.transposeA,32,!0,this.splitedDimInner)}
`}},bse=class{constructor(e,t=null,a=null,n=null){this.uniforms="",this.variableNames=["x"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.addBias=t!=null,this.hasPreluActivationWeights=n!=null,this.activation=a,this.addBias&&this.variableNames.push("bias"),this.hasPreluActivationWeights&&this.variableNames.push("preluActivationWeights"),this.shaderKey=`biasActivation_${a}`}getUserCode(){return`
${Ir(this.activation,this.hasPreluActivationWeights)}
${Ce("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
var value = getXByOutputIndex(index);
${yo(this.addBias,this.activation)}
setOutputAtIndex(index, value);
}
}
`}},vse=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="fill"}getUserCode(){return`
${Ce("index")} {
if (index < uniforms.size) {
setOutputAtIndex(index, uniforms.value);
}
}
`}};function Sr(e){let{backend:t,attrs:a}=e,{shape:n,value:r}=a,{dtype:s}=a;if(s=s||v.inferDtype(r),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(n));return i.fill(r),t.makeTensorInfo(n,s,i)}else{let i=new vse(n),o=[{type:"float32",data:[r]}];return t.runWebGPUProgram(i,[],s,o)}}var wse={kernelName:Pl,backendName:"webgpu",kernelFunc:Sr};function Se(e){let{inputs:t,attrs:a}=e,{x:n}=t,{shape:r}=a,s=v.sizeFromShape(n.shape),i=v.inferFromImplicitShape(r,s),o=v.sizeFromShape(i);return v.assert(s===o,()=>`The new shape (${i}) has ${o} elements and the old shape (${n.shape}) has ${s} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(n.dataId),{dataId:n.dataId,shape:i,dtype:n.dtype}}var kse={kernelName:jl,backendName:"webgpu",kernelFunc:Se};function Vh({a:e,b:t,transposeA:a,transposeB:n,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,p=t.shape.length,c=a?e.shape[u-2]:e.shape[u-1],d=n?t.shape[p-1]:t.shape[p-2],h=a?e.shape[u-1]:e.shape[u-2],f=n?t.shape[p-2]:t.shape[p-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),x=v.sizeFromShape(m),A=v.sizeFromShape(g),y=mo.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${a} and transposeB=${n} must match.`);let b=a?[x,c,h]:[x,h,c],w=n?[A,f,d]:[A,d,f],S=Se({inputs:{x:e},backend:r,attrs:{shape:b}}),C=Se({inputs:{x:t},backend:r,attrs:{shape:w}}),E=[S,C],_=Math.max(x,A),$=x===1,M=A===1,I=[S,C],N=[{type:"int32",data:[h]},{type:"int32",data:[f]},{type:"int32",data:[c]}],O,L,B=[_,h,f],G=W().get("WEBGPU_MATMUL_PROGRAM_TYPE");if(G<0){let U=W().getNumber("WEBGPU_THRESHOLD_TO_INCREASE_WORKGROUPS_FOR_MATMUL"),H=U>0?U:r.thresholdToIncreaseWorkgroups,V=_*Math.ceil(h/32)*Math.ceil(f/32);V<=H||h<=8&&V<=H*2?_*h*f<=128?G=_n.MatMulReduceProgram:_===1&&d>=2e3?G=_n.MatMulSplitKProgram:G=_n.MatMulSmallOutputSizeProgram:G=_n.MatMulPackedProgram}switch(G){case _n.MatMulReduceProgram:O=new gse(B,$,M,a,n,s,l,i);break;case _n.MatMulSplitKProgram:{if(L=Sr({backend:r,attrs:{shape:B,value:0,dtype:e.dtype}}),O=new yse(B,d,$,M,a,n),s||l){L=r.runWebGPUProgram(O,I,e.dtype,N,L);let H=new bse(L.shape,s,l,i),V=null,Q=[L];s&&Q.push(s),i&&Q.push(i),l==="leakyrelu"&&(V=[{type:"float32",data:[o]}],H.uniforms+=" alpha : f32,");let Z=r.runWebGPUProgram(H,Q,L.dtype,V);E.push(L);let re=Se({inputs:{x:Z},backend:r,attrs:{shape:y}});E.push(Z);for(let ee of E)r.disposeData(ee.dataId);return re}break}case _n.MatMulSmallOutputSizeProgram:O=new Ase(b,w,B,a,n,s,l,i);break;case _n.MatMulPackedProgram:let U=r.adapterInfo.isIntel();O=new fse(b,B,$,M,a,n,s,l,i,U);break;default:throw new Error(`Unsupported MatMulProgramType ${G}.`)}s&&I.push(s),i&&I.push(i),l==="leakyrelu"&&(N.push({type:"float32",data:[o]}),O.uniforms+=" alpha : f32,"),L=r.runWebGPUProgram(O,I,e.dtype,N,L);let j=Se({inputs:{x:L},backend:r,attrs:{shape:y}});E.push(L);for(let U of E)r.disposeData(U.dataId);return j}function Ise(e){let{inputs:t,backend:a,attrs:n}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:c}=n;return Vh({a:r,b:s,transposeA:l,transposeB:u,backend:a,bias:i,preluActivationWeights:o,leakyreluAlpha:c,activation:p})}var Sse={kernelName:Gr,backendName:"webgpu",kernelFunc:Ise},Hx=class{constructor(e,t,a){this.variableNames=["AReal","AImag","BReal","BImag"],this.workgroupSize=[128,1,1],this.size=!0,this.outputShape=T.assertAndGetBroadcastShape(t,a),this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e}getUserCode(){return`
fn binaryOpComplex(
areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {
${O3(this.op,!1)}
}
${Ce("index")} {
if(index < uniforms.size) {
let areal = getARealByOutputIndex(index);
let aimag = getAImagByOutputIndex(index);
let breal = getBRealByOutputIndex(index);
let bimag = getBImagByOutputIndex(index);
setOutputAtIndex(index, binaryOpComplex(areal, aimag, breal, bimag));
}
}
`}},M1=class{constructor(e,t,a){this.size=!0,this.variableNames=["A","B"],this.outputShape=T.assertAndGetBroadcastShape(t,a),this.dispatchLayout=Ve(this.outputShape),this.op=e,this.useSharedMemoryWithA=t.length<=1&&a.length>1&&t[0]<128,this.useSharedMemoryWithB=a.length<=1&&t.length>1&&a[0]<128,this.useSharedMemoryWithA||this.useSharedMemoryWithB?(this.isVec4=!1,this.lastDimensionSize=this.useSharedMemoryWithB?a[0]:t[0],this.shaderKey=`binary_${this.type}_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`,this.type="shared",this.workgroupSize=[256,1,1],this.workPerThread=1):(v.arraysEqual(t,a)&&v.sizeFromShape(t)%4===0?(this.isVec4=!0,this.type="vec4",this.workPerThread=4):(this.isVec4=!1,this.type="plain",this.workPerThread=1),this.shaderKey=`binary_${this.type}_${e}`,this.workgroupSize=[128,1,1]),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize,[this.workPerThread,1,1])}getUserCode(){let e,t=this.isVec4?"vec4<f32>":"f32",a=`
fn binaryOperation(a : ${t}, b : ${t}) -> ${t} {
${O3(this.op,this.isVec4)}
};
`;if(this.type==="shared"){let n=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",r=this.useSharedMemoryWithB?`let a = getAByOutputIndex(index);
let b = sharedBuf[${n}];`:`let a = sharedBuf[${n}];
let b = getBByOutputIndex(index);`;e=`
${a}
var<workgroup> sharedBuf : array<f32, ${this.lastDimensionSize}>;
${Ce("index")} {
// Fill in the shared memory buffer.
let localIndex = i32(localId.x);
if(localIndex < ${this.lastDimensionSize}) {
sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB?"B":"A"}[localIndex]);
}
workgroupBarrier();
if(index < uniforms.size) {
let coords = getCoordsFromIndex(index);
${r}
setOutputAtIndex(index, binaryOperation(a, b));
}
}
`}else e=`
${a}
${Ce("index")} {
if (index < uniforms.size) {
let a = getAByOutputIndex(index);
let b = getBByOutputIndex(index);
setOutputAtIndex(index, binaryOperation(a, b));
}
}
`;return e}};function Za(e){let{inputs:t}=e,{x:a}=t;return e.backend.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var Tse={kernelName:vi,backendName:"webgpu",kernelFunc:Za};function bo(e){let{inputs:t,backend:a}=e,{real:n,imag:r}=t,s=a.makeTensorInfo(n.shape,"complex64"),i=a.tensorMap.get(s.dataId),o=Za({inputs:{x:n},backend:a}),l=Za({inputs:{x:r},backend:a});return i.complexTensorInfos={real:o,imag:l},s}var Cse={kernelName:Sd,backendName:"webgpu",kernelFunc:bo},mp=class{constructor(e,t){this.variableNames=["A"],this.size=!0;let a=128;this.workgroupSize=[a,1,1],this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.op=t,this.shaderKey=`unary_${t}`}getUserCode(){return`
fn unaryOperation(a : f32) -> f32 {
${Es(this.op,!1)}
}
${Ce("index")} {
if (index < uniforms.size) {
let a = getAByOutputIndex(index);
setOutputAtIndex(index, unaryOperation(a));
}
}
`}};function it({opType:e,cpuKernelImpl:t,dtype:a}){return({inputs:n,backend:r})=>{let{x:s}=n,i=r,o=a||s.dtype;if(i.shouldExecuteOnCPU([s])&&t!=null){let u=i.tensorMap.get(s.dataId),p=t(u.values,o);return i.makeTensorInfo(s.shape,o,p)}let l=new mp(s.shape,e);return i.runWebGPUProgram(l,[s],o)}}function ua({opType:e,cpuKernelImpl:t,supportsComplex:a=!1,dtype:n}){return({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(a&&i.dtype==="complex64"){let c=l.tensorMap.get(i.dataId),d=l.tensorMap.get(o.dataId),h,f;if(e!==De.MUL)[h,f]=[[c.complexTensorInfos.real,d.complexTensorInfos.real],[c.complexTensorInfos.imag,d.complexTensorInfos.imag]].map(g=>{let[x,A]=g,y={dataId:x.dataId,dtype:x.dtype,shape:i.shape},b={dataId:A.dataId,dtype:A.dtype,shape:o.shape},w=new M1(e,i.shape,o.shape);return l.runWebGPUProgram(w,[y,b],ca(x.dtype,A.dtype))});else{let g=new Hx(De.COMPLEX_MULTIPLY_REAL,i.shape,o.shape),x=new Hx(De.COMPLEX_MULTIPLY_IMAG,i.shape,o.shape),A=[{dataId:c.complexTensorInfos.real.dataId,dtype:c.complexTensorInfos.real.dtype,shape:i.shape},{dataId:c.complexTensorInfos.imag.dataId,dtype:c.complexTensorInfos.imag.dtype,shape:i.shape},{dataId:d.complexTensorInfos.real.dataId,dtype:d.complexTensorInfos.real.dtype,shape:o.shape},{dataId:d.complexTensorInfos.imag.dataId,dtype:d.complexTensorInfos.imag.dtype,shape:o.shape}];h=l.runWebGPUProgram(g,A,"float32"),f=l.runWebGPUProgram(x,A,"float32")}let m=bo({inputs:{real:h,imag:f},backend:l});return l.disposeData(h.dataId),l.disposeData(f.dataId),m}let u=n||ca(i.dtype,o.dtype);if((i.dtype==="string"||o.dtype==="string"||l.shouldExecuteOnCPU([i,o]))&&t!=null){let c=l.tensorMap.get(i.dataId).values,d=l.tensorMap.get(o.dataId).values,h=i.dtype==="string"?T.fromUint8ToStringArray(c):c,f=i.dtype==="string"?T.fromUint8ToStringArray(d):d,[m,g]=t(i.shape,o.shape,h,f,u);return l.makeTensorInfo(g,u,m)}let p=new M1(e,i.shape,o.shape);return l.runWebGPUProgram(p,[i,o],u)}}var{addImpl:Nse,castImpl:Ese,ceilImpl:Rse,concatImpl:Mse,equalImpl:$se,expImpl:_se,expm1Impl:Pse,floorImpl:Fse,gatherNdImpl:Ose,gatherV2Impl:Dse,greaterEqualImpl:zse,greaterImpl:Lse,lessEqualImpl:Bse,lessImpl:Wse,logImpl:Vse,maxImpl:Use,maximumImpl:Gse,minimumImpl:Hse,multiplyImpl:jse,negImpl:qse,notEqualImpl:Xse,prodImpl:Kse,rangeImpl:Zse,rsqrtImpl:Yse,scatterImpl:Jse,simpleAbsImpl:Qse,sliceImpl:eie,stridedSliceImpl:tie,stringNGramsImpl:aie,subImpl:nie,tileImpl:rie,topKImpl:sie,transposeImpl:iie,uniqueImpl:I0e}=Rh,oie=it({opType:de.ABS,cpuKernelImpl:Qse}),lie={kernelName:vl,backendName:"webgpu",kernelFunc:oie},uie=it({opType:de.ACOS}),die={kernelName:wl,backendName:"webgpu",kernelFunc:uie},pie=it({opType:de.ACOSH}),cie={kernelName:kl,backendName:"webgpu",kernelFunc:pie},hie=ua({opType:De.ADD,cpuKernelImpl:Nse,supportsComplex:!0}),fie={kernelName:Qr,backendName:"webgpu",kernelFunc:hie},mie=class{constructor(e){this.workPerThread=1,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e[0],this.variableNames=e.map((t,a)=>`T${a}`),this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize,[this.workPerThread,1,1]),this.shaderKey="addN"}getUserCode(){let e=[];this.variableNames.forEach(a=>{e.push(`let v${a} = get${a}ByOutputCoords(coords);`)});let t=this.variableNames.map(a=>`v${a}`).join(" + ");return`
${Ce("index")} {
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if (flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndex);
${e.join(`
`)}
setOutputAtIndex(flatIndex, ${t});
}
}
}
`}};function gie(e){let{inputs:t,backend:a}=e,n=t;if(n.length===1)return Za({inputs:{x:n[0]},backend:a});let r=n.map(o=>o.dtype).reduce((o,l)=>ca(o,l)),s=n.map(o=>o.shape),i=new mie(s);return a.runWebGPUProgram(i,n,r)}var xie={kernelName:qs,backendName:"webgpu",kernelFunc:gie},Aie=class{constructor(e,t){this.variableNames=["A"],this.workgroupSize=[16,16,1];let a=new Array(e.length);for(let n=0;n<a.length;n++)a[n]=e[t[n]];this.outputShape=a,this.dispatchLayout={x:[0],y:[1]},this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize,[1,1,1]),this.shaderKey="transposeShared"}getUserCode(){return v.assert(this.workgroupSize[0]===this.workgroupSize[1],()=>`Must be a square tile, current tile shape is ${this.workgroupSize[0]} x ${this.workgroupSize[1]}`),`
const tileSize = ${this.workgroupSize[0]};
var<workgroup> tile : array<array<f32, ${this.workgroupSize[0]+1}>, ${this.workgroupSize[0]}>;
${Ce()} {
var x = i32(workgroupId.x) * tileSize + i32(localId.x);
var y = i32(workgroupId.y) * tileSize + i32(localId.y);
let width = uniforms.outShape[0];
let height = uniforms.outShape[1];
if (x < width && y < height) {
tile[localId.y][localId.x] = f32(A[y * width + x]);
}
workgroupBarrier();
x = i32(workgroupId.y) * tileSize + i32(localId.x);
y = i32(workgroupId.x) * tileSize + i32(localId.y);
if (x < height && y < width) {
setOutputAtIndex((y * height + x), tile[localId.x]
[localId.y]);
}
}
`}},yie=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=1,this.workgroupSize=[64,1,1],this.size=!0;let a=new Array(e.length);for(let n=0;n<a.length;n++)a[n]=e[t[n]];this.outputShape=a,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize,[this.workPerThread,1,1]),this.newDim=t,this.shaderKey=`transpose_${t}`}getUserCode(){let e=ra(this.outputShape.length),t=bie(this.newDim);return`
${Ce("index")} {
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let resRC = getCoordsFromIndex(flatIndex);
setOutputAtIndex(flatIndex, A[getIndexFromCoords${this.outputShape.length}D(
${e}(${t}), uniforms.aShape)]);
}
}
}
`}};function bie(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let a=new Array(t);for(let n=0;n<e.length;n++)a[e[n]]=`resRC.${xr(n)}`;return a.join()}function yr(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{perm:s}=n,i=a,o=r.shape.length,l=new Array(o);for(let p=0;p<l.length;p++)l[p]=r.shape[s[p]];if(a.shouldExecuteOnCPU([r])){let p=i.tensorMap.get(r.dataId).values,c=iie(p,r.shape,r.dtype,s,l);return a.makeTensorInfo(l,r.dtype,c)}if(r.shape.length===2&&v.arraysEqual(s,[1,0])){let p=new Aie(r.shape,s);return i.runWebGPUProgram(p,[r],r.dtype)}let u=new yie(r.shape,s);return i.runWebGPUProgram(u,[r],r.dtype)}var vie={kernelName:gr,backendName:"webgpu",kernelFunc:yr},wie=class{constructor(e,t){this.workgroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="reduceSize : i32,",this.size=!0,this.inputShape=[e.batchSize,e.inSize];let[a]=T.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=a.length===0?[1]:a,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,[1,1,1]),this.reduceType=t,this.shaderKey=`reduce_${t}`}getUserCode(){let e="",t="0.0";this.reduceType==="min"||this.reduceType==="max"?(e=`
if (isnan(candidate)) {
bestValue = uniforms.NAN;
} else if (!isnan(bestValue) && candidate ${this.reduceType==="min"?"<":">"} bestValue)
{ bestValue = candidate; }`,t="f32(x[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?e=" bestValue = bestValue + candidate; ":this.reduceType==="prod"?(e=" bestValue = bestValue * candidate; ",t="1.0"):this.reduceType==="all"?(e=" bestValue = f32(bestValue >= 1.0 && candidate >= 1.0); ",t="1.0"):this.reduceType==="any"&&(e=" bestValue = f32(bestValue >= 1.0 || candidate >= 1.0); ",t="0.0");let a=this.reduceType==="mean"?"setOutputAtIndex(outputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputAtIndex(outputIndex, bestValue);";return`
fn DIV_CEIL(a : u32, b : u32) -> u32 {
return ((a - 1u) / b + 1u);
}
${`
var<workgroup> xBestValues : array<f32, ${this.workgroupSize[0]}>;
`}
fn getOffset(outputIndex : i32) -> i32 {
let outputCoords = getCoordsFromIndex(outputIndex);
let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize;
return offset;
}
${Ce("index")} {
let outputIndex = index / i32(workgroupSizeX);
let offset = getOffset(outputIndex);
var bestValue = ${t};
let Length = uniforms.reduceSize;
let WorkPerThread = DIV_CEIL(u32(Length), workgroupSizeX);
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
k = k + i32(workgroupSizeX)) {
let candidate = f32(x[offset + k]);
${e}
}
xBestValues[localId.x] = bestValue;
workgroupBarrier();
var reduceSize = min(u32(Length), workgroupSizeX);
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
currentSize = reduceSize / 2u) {
let interval = DIV_CEIL(reduceSize, 2u);
if (localId.x < currentSize) {
let candidate = xBestValues[localId.x + interval];
${e}
xBestValues[localId.x] = bestValue;
}
reduceSize = interval;
workgroupBarrier();
}
if (localId.x == 0u && outputIndex < uniforms.size) {
${a}
}
}
`}};function vo(e,t,a,n,r){let s=e.shape.length,i=[],o=v.parseAxisParam(t,e.shape),l=o,u=T.getAxesPermutation(l,s),p=e;u!=null&&(p=yr({inputs:{x:e},attrs:{perm:u},backend:r}),l=T.getInnerMostAxes(l.length,s),i.push(p)),T.assertAxesAreInnerMostDims(n,l,s);let[c,d]=T.computeOutAndReduceShapes(p.shape,l),h=c;a&&(h=T.expandShapeToKeepDim(c,o));let f;if((n==="max"||n==="prod")&&r.shouldExecuteOnCPU([p])){let m=r.tensorMap.get(p.dataId).values;switch(n){case"max":let g=Use(m,v.sizeFromShape(d),h,e.dtype);f=r.makeTensorInfo(h,e.dtype,g);break;case"prod":let{outVals:x,outShape:A,outDtype:y}=Kse(p.shape,p.dtype,m,l);f=r.makeTensorInfo(A,y,x);break;default:throw new Error(`${n} CPU implementation is not yet supported.`)}}else{let m=v.sizeFromShape(d),g=v.sizeFromShape(p.shape)/m,x={windowSize:m,inSize:m,batchSize:g,outSize:1},A=n==="mean"?"float32":Hd(e.dtype),y=[{type:"int32",data:[m]}],b=new wie(x,n),w=r.runWebGPUProgram(b,[p],A,y);i.push(w),f=Se({inputs:{x:w},attrs:{shape:h},backend:r})}return i.forEach(m=>r.disposeData(m.dataId)),f}function kie(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{keepDims:s,axis:i}=n;return vo(r,i,s,"all",a)}var Iie={kernelName:Xs,backendName:"webgpu",kernelFunc:kie};function Sie(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{keepDims:s,axis:i}=n;return vo(r,i,s,"any",a)}var Tie={kernelName:Ks,backendName:"webgpu",kernelFunc:Sie},M8=class{constructor(e,t,a){this.workgroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="infinityValue : f32,",this.size=!0;let n=[t];this.op=a==="min"?"<":">";let[r,s]=T.computeOutAndReduceShapes(e,n);this.outputShape=r.length===0?[1]:r,this.dispatchLayout=Ve(this.outputShape),v.sizeFromShape(s)<32||v.sizeFromShape(r)>1e3?(this.type="plain",this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize)):(this.type="shared",this.dispatch=Ne(this.dispatchLayout,this.outputShape,[1,1,1])),this.inputShape=e,this.shaderKey=`argMinMax_${this.op}_${this.type}`}getUserCode(){let e=()=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape.${xr(this.inputShape.length-1)}`,t=()=>{let a="";if(this.outputShape.length===1)this.inputShape.length!==1&&(a+="outputCoords,");else for(let n=0;n<this.outputShape.length;n++)a+=`outputCoords.${xr(n)},`;return a};return this.type==="shared"?`
fn DIV_CEIL(a : u32, b : u32) -> u32 {
return ((a - 1u) / b + 1u);
}
${`
var<workgroup> xBestIndices : array<i32, ${this.workgroupSize[0]}>;
var<workgroup> xBestValues : array<f32, ${this.workgroupSize[0]}>;
`}
${Ce("index")} {
let outputIndex = index / i32(workgroupSizeX);
let reduceLength = ${e()};
var bestIndex = i32(localId.x);
var bestValue = uniforms.infinityValue;
let outputCoords = getCoordsFromIndex(outputIndex);
for (var k = i32(localId.x); k < reduceLength && outputIndex < uniforms.size;
k = k + i32(workgroupSizeX)) {
let candidate = getX(${t()} k);
if (!isnan(candidate) && candidate ${this.op} bestValue) {
bestValue = candidate;
bestIndex = k;
}
}
xBestValues[localId.x] = bestValue;
xBestIndices[localId.x] = bestIndex;
workgroupBarrier();
var reduceSize = min(u32(reduceLength), workgroupSizeX);
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
currentSize = reduceSize / 2u) {
let interval = DIV_CEIL(reduceSize, 2u);
if (localId.x < currentSize) {
let candidate = xBestValues[localId.x + interval];
if (candidate ${this.op} bestValue) {
bestValue = candidate;
xBestValues[localId.x] = bestValue;
xBestIndices[localId.x] = xBestIndices[localId.x + interval];
}
}
reduceSize = interval;
workgroupBarrier();
}
if (localId.x == 0u && outputIndex < uniforms.size) {
setOutputAtIndexI32(outputIndex, xBestIndices[localId.x]);
}
}
`:`
${Ce("index")} {
if (index < uniforms.size) {
let outputCoords = getCoordsFromIndex(index);
var bestIndex = 0;
var bestValue = getX(${t()} 0);
let reduceLength = ${e()};
for (var i = 1; i < reduceLength; i++) {
let candidate = getX(${t()} i);
if (candidate ${this.op} bestValue) {
bestValue = candidate;
bestIndex = i;
}
}
setOutputAtIndexI32(index, bestIndex);
}
}
`}};function Cie(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s}=n,i=v.parseAxisParam(s,r.shape),o=T.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=yr({inputs:{x:r},backend:a,attrs:{perm:o}}),u.push(l),i=T.getInnerMostAxes(i.length,l.shape.length)),T.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let p=new M8(l.shape,i[0],"max"),c=[{type:"float32",data:[Number.NEGATIVE_INFINITY]}],d=a.runWebGPUProgram(p,[l],"int32",c);return u.forEach(h=>a.disposeData(h.dataId)),d}var Nie={kernelName:Zs,backendName:"webgpu",kernelFunc:Cie};function Eie(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s}=n,i=v.parseAxisParam(s,r.shape),o=T.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=yr({inputs:{x:r},backend:a,attrs:{perm:o}}),u.push(l),i=T.getInnerMostAxes(i.length,l.shape.length)),T.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let p=new M8(l.shape,i[0],"min"),c=[{type:"float32",data:[Number.POSITIVE_INFINITY]}],d=a.runWebGPUProgram(p,[l],"int32",c);return u.forEach(h=>a.disposeData(h.dataId)),d}var Rie={kernelName:kd,backendName:"webgpu",kernelFunc:Eie},Mie=it({opType:de.ASIN}),$ie={kernelName:Il,backendName:"webgpu",kernelFunc:Mie},_ie=it({opType:de.ASINH}),Pie={kernelName:Sl,backendName:"webgpu",kernelFunc:_ie},Fie=it({opType:de.ATAN}),Oie={kernelName:Tl,backendName:"webgpu",kernelFunc:Fie},Die=ua({opType:De.ATAN2}),zie={kernelName:Nl,backendName:"webgpu",kernelFunc:Die},Lie=it({opType:de.ATANH}),Bie={kernelName:Cl,backendName:"webgpu",kernelFunc:Lie},jx=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2<i32>, pad : vec2<i32>, dilation : vec2<i32>, convDims : vec2<i32>, filterDims : vec2<i32>,",this.workgroupSize=[128,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / count"),`
${Ce("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"};
var count = 0.0;
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) {
let xR = xRCorner + wR;
if (xR < 0 || xR >= uniforms.convDims.x) {
continue;
}
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) {
let xC = xCCorner + wC;
if (xC < 0 || xC >= uniforms.convDims.y) {
continue;
}
let value = getX(batch, xR, xC, coords[3]);
${e}
}
}
setOutputAtIndex(index, ${t});
}
}
`}},Wie=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2<i32>,",this.workgroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return`
${Ce("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords[0];
let d = coords[3];
let xRCCorner = coords.yz * uniforms.stride;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
let value = getX(batch, xRCorner, xCCorner, d);
setOutputAtIndex(index, value);
}
}
`}};function z3(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=n;return vo(r,s,i,"max",a)}var Vie={kernelName:Ei,backendName:"webgpu",kernelFunc:z3};function $8(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{keepDims:s,axis:i}=n;return vo(r,i,s,"mean",a)}var Uie={kernelName:$i,backendName:"webgpu",kernelFunc:$8};function _8(e,t,a,n){if(t.filterWidth===1&&t.filterHeight===1&&v.arraysEqual(t.inShape,t.outShape))return Za({inputs:{x:e},backend:n});if(t.filterWidth===t.inWidth&&t.filterHeight===t.inHeight&&t.batchSize===1&&t.padInfo.type==="VALID"){let i=e.shape.length,o=Se({inputs:{x:e},backend:n,attrs:{shape:[e.shape[i-3]*e.shape[i-2],e.shape[i-1]]}}),l;a==="avg"?l=$8({inputs:{x:o},backend:n,attrs:{axis:0,keepDims:!1}}):(v.assert(a==="max",()=>`Invalid pool type ${a}`),l=z3({inputs:{x:o},backend:n,attrs:{reductionIndices:0,keepDims:!1}}));let u=Se({inputs:{x:l},backend:n,attrs:{shape:t.outShape}});return n.disposeData(o.dataId),n.disposeData(l.dataId),u}let r,s=[{type:"int32",data:[t.strideHeight,t.strideWidth]}];return t.filterHeight===1&&t.filterWidth===1?r=new Wie(t):(a==="avg"?r=new jx(t,"avg"):(v.assert(a==="max",()=>`Invalid pool type ${a}`),r=new jx(t,"max")),s.push({type:"int32",data:[t.padInfo.top,t.padInfo.left]},{type:"int32",data:[t.dilationHeight,t.dilationWidth]},{type:"int32",data:[t.inHeight,t.inWidth]},{type:"int32",data:[t.effectiveFilterHeight,t.effectiveFilterWidth]})),n.runWebGPUProgram(r,[e],e.dtype,s)}function Gie(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1,p=T.computePool2DInfo(r.shape,s,i,u,o,l);return _8(r,p,"avg",a)}var Hie={kernelName:Ys,backendName:"webgpu",kernelFunc:Gie};function jie(e){let{inputs:t,backend:a,attrs:n}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=n;return Vh({a:r,b:s,transposeA:i,transposeB:o,backend:a})}var qie={kernelName:Js,backendName:"webgpu",kernelFunc:jie},Xie=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.rank=t.length,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${ra(e.length)}, `,this.shaderKey="slice"}getUserCode(){let e=ra(this.rank),t=Kie(this.rank),a;return this.start.length===1?a=this.outputShape.map((n,r)=>"sourceLoc = uniforms.start + coords;"):a=this.outputShape.map((n,r)=>`sourceLoc.${$1[r]} = uniforms.start.${xr(r)} + coords.${$1[r]};`),`
${Ce("index")} {
if (index < uniforms.size) {
var sourceLoc : ${e};
let coords = getCoordsFromIndex(index);
${a.join(`
`)}
setOutputAtIndex(index, getSource(${t}));
}
}
`}},$1=["x","y","z","w","u","v"];function Kie(e){if(e===1)return"sourceLoc";if(e<=6)return $1.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function xu(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{begin:s,size:i}=n,[o,l]=It.parseSliceParams(r,s,i);if(It.assertParamsValid(r,o,l),a.shouldExecuteOnCPU([r])||r.dtype==="string"){let c=a.tensorMap.get(r.dataId),d=eie(c.values,o,l,r.shape,r.dtype);return a.makeTensorInfo(l,r.dtype,d)}if(v.sizeFromShape(l)===0)return a.makeTensorInfo(l,r.dtype,[]);let u=new Xie(o,l),p=[{type:"int32",data:o}];return a.runWebGPUProgram(u,[r],r.dtype,p)}var Zie={kernelName:Kl,backendName:"webgpu",kernelFunc:xu},Yie=e=>{let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{blockShape:s,crops:i}=n;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let o=s.reduce((A,y)=>A*y),l=T.getReshaped(r.shape,s,o),u=T.getPermuted(l.length,s.length),p=T.getReshapedPermuted(r.shape,s,o),c=T.getSliceBeginCoords(i,s.length),d=T.getSliceSize(p,i,s.length),h=[],f=Se({inputs:{x:r},backend:a,attrs:{shape:l}}),m=yr({inputs:{x:f},backend:a,attrs:{perm:u}}),g=Se({inputs:{x:m},backend:a,attrs:{shape:p}}),x=xu({inputs:{x:g},backend:a,attrs:{begin:c,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(A=>a.disposeData(A.dataId)),x},Jie={kernelName:El,backendName:"webgpu",kernelFunc:Yie},Qie=`
fn bincount_write(index: i32, value: f32) {
var oldValue = atomicLoad(& (result[index]));
var exchanged = false;
for (; !exchanged;) {
let newValueF32 = bitcast<f32>(oldValue) + value;
let newValue = bitcast<i32>(newValueF32);
let res = atomicCompareExchangeWeak(
&(result[index]), oldValue, newValue);
oldValue = res.old_value;
exchanged = res.exchanged;
}
}
`,eoe=`
fn bincount_write(index: i32, value: f32) {
result[index] = value;
}
`,P8=class{constructor(e,t,a=!1){this.outputShape=[],this.variableNames=["x"],this.uniforms="binCountSize : i32,",this.workgroupSize=[64,1,1],this.atomic=!0,this.hasWeights=!0,this.binaryOutput=!1,this.outputShape=e,this.rank=e.length,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.binaryOutput=a,a&&(this.atomic=!1),this.hasWeights=t,this.hasWeights&&this.variableNames.push("w"),this.shaderKey=`bincount_${this.hasWeights}_${this.binaryOutput}_${this.rank}`}getUserCode(){return`
${this.binaryOutput?eoe:Qie}
${Ce("index")} {
${this.rank===1?`if (index < uniforms.xShape) {
let indexVal = i32(getX(index));
if (indexVal < uniforms.binCountSize) {
let value = ${this.binaryOutput?1:this.hasWeights?"f32(getW(index))":"1."};
bincount_write(indexVal, value);
}
}`:`let coord = getCoordsFromIndex(index);
if (coordsInBounds2D(coord, uniforms.xShape)) {
let indexVal = i32(getX(coord[0], coord[1]));
if (indexVal < uniforms.binCountSize) {
let value = ${this.binaryOutput?1:this.hasWeights?"f32(getW(coord[0], coord[1]))":"1."};
bincount_write(coord.x * uniforms.binCountSize + indexVal, value);
}
}`}
}
`}};function toe(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,weights:s}=t,{size:i}=n,o=v.sizeFromShape(r.shape),l=v.sizeFromShape(s.shape)>0,u=[i],p=s.dtype,c=Sr({backend:a,attrs:{shape:u,value:0,dtype:p}}),d=new P8([o],l),h=[{type:"int32",data:[i]}],f=l?[r,s]:[r];return a.runWebGPUProgram(d,f,p,h,c)}var aoe={kernelName:Id,backendName:"webgpu",kernelFunc:toe},F8=ua({opType:De.NOT_EQUAL,dtype:"bool",cpuKernelImpl:Xse}),noe={kernelName:Di,backendName:"webgpu",kernelFunc:F8};function gp(e){let{inputs:t,backend:a}=e,{input:n}=t,r=a.tensorMap.get(n.dataId);return Za({inputs:{x:r.complexTensorInfos.real},backend:a})}var roe={kernelName:Md,backendName:"webgpu",kernelFunc:gp};function soe(e,t){let a=new mp(e.shape,de.TO_INT),n=t.runWebGPUProgram(a,[e],"int32");return{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}function _1(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{dtype:s}=n;if(s==="complex64"){if(r.dtype==="complex64")return Za({inputs:{x:r},backend:a});let i=hn(r.shape),o=_1({inputs:{x:r},backend:a,attrs:{dtype:"float32"}}),l=bo({inputs:{real:o,imag:i},backend:a});return i.dispose(),a.disposeData(o.dataId),l}if(r.dtype==="complex64"){let i=gp({inputs:{input:r},backend:a}),o=_1({inputs:{x:i},backend:a,attrs:{dtype:s}});return a.disposeData(i.dataId),o}if(!v.hasEncodingLoss(r.dtype,s)){let i=Za({inputs:{x:r},backend:a});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(a.shouldExecuteOnCPU([r])){let i=a.tensorMap.get(r.dataId).values,[o,l,u]=Ese(i,r.shape,r.dtype,s);return a.makeTensorInfo(o,l,u)}if(s==="int32")return soe(r,a);if(s==="bool"){let i=a.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=F8({inputs:{a:r,b:i},backend:a});return a.disposeData(i.dataId),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var ioe={kernelName:Qs,backendName:"webgpu",kernelFunc:_1},ooe=it({opType:de.CEIL,cpuKernelImpl:Rse}),loe={kernelName:ei,backendName:"webgpu",kernelFunc:ooe},uoe=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workPerThread=4,this.workgroupSize=[64,1,1],this.isVec4=!0,this.size=!0,this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4"}getUserCode(){return`
${Ce("index")} {
if(index < uniforms.size) {
let value = getAByOutputIndex(index);
var clampedValue : vec4<f32>;
for (var i = 0; i < 4; i = i + 1) {
if (isnan(value[i])) {
clampedValue[i] = value[i];
} else {
clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal);
}
}
setOutputAtIndex(index, clampedValue);
}
}
`}},doe=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="clip"}getUserCode(){return`
${Ce("index")} {
if(index < uniforms.size) {
let value = getAByOutputIndex(index);
if (isnan(value)) {
setOutputAtIndex(index, value);
return;
}
setOutputAtIndex(index, clamp(value, uniforms.minVal, uniforms.maxVal));
}
}
`}};function poe(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=n,o,l=[{type:"float32",data:[s]},{type:"float32",data:[i]}];return v.sizeFromShape(r.shape)%4===0?o=new uoe(r.shape):o=new doe(r.shape),a.runWebGPUProgram(o,[r],r.dtype,l)}var coe={kernelName:es,backendName:"webgpu",kernelFunc:poe},hoe=class{constructor(e){this.uniforms="",this.workPerThread=1,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=T.computeOutShape(e,1),this.variableNames=e.map((t,a)=>`T${a}`),this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize,[this.workPerThread,1,1]),this.offsetLength=e.length-1;for(let t=0;t<this.offsetLength;t++)this.uniforms+=`offset${t} : i32,`;this.shaderKey="concat"}getUserCode(){let e=[];if(this.offsetLength>0){e.push("if (yC < uniforms.offset0){ setOutputAtCoords(coords.x, coords.y, getT0(yR, yC)); }");for(let n=1;n<this.offsetLength;n++)e.push(`else if (yC < uniforms.offset${[n]}){ setOutputAtCoords(coords.x, coords.y, getT${n}(yR, yC - uniforms.offset${n-1})); }`);let t=this.offsetLength,a=this.offsetLength-1;e.push(`else { setOutputAtCoords(coords.x, coords.y, getT${t}(yR, yC - uniforms.offset${a})); }`)}else e.push("setOutputAtCoords(coords.x, coords.y, getT0(yR, yC));");return`
${Ce("index")} {
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndex);
let yR = coords.x;
let yC = coords.y;
${e.join(`
`)}
}
}
}
`}};function Uh(e){let{inputs:t,backend:a}=e,{input:n}=t,r=a.tensorMap.get(n.dataId);return Za({inputs:{x:r.complexTensorInfos.imag},backend:a})}var foe={kernelName:Rd,backendName:"webgpu",kernelFunc:Uh};function Ju(e,t,a){let n=e[0].dtype;if(n==="complex64"){let f=e.map(y=>gp({inputs:{input:y},backend:a})),m=e.map(y=>Uh({inputs:{input:y},backend:a})),g=Ju(f,t,a),x=Ju(m,t,a),A=bo({inputs:{real:g,imag:x},backend:a});return f.forEach(y=>a.disposeData(y.dataId)),m.forEach(y=>a.disposeData(y.dataId)),a.disposeData(g.dataId),a.disposeData(x.dataId),A}let r=a.shouldExecuteOnCPU(e);if(n==="string"&&(r=!0),r){let f=e.map(w=>{let S=[-1,v.sizeFromShape(w.shape.slice(t))];return Se({inputs:{x:w},backend:a,attrs:{shape:S}})}),m=f.map(w=>({vals:a.readSync(w.dataId),shape:w.shape})),g=T.computeOutShape(f.map(w=>w.shape),1),x=f[0].shape[0]===1,A=Mse(m,g,n,x),y=T.computeOutShape(e.map(w=>w.shape),t),b=a.makeTensorInfo(y,n,A);return f.forEach(w=>a.disposeData(w.dataId)),b}let s=a.device.limits.maxStorageBuffersPerShaderStage-1;if(e.length>s){let f=[];for(let g=0;g<e.length;g+=s){let x=e.slice(g,g+s);f.push(Ju(x,t,a))}let m=Ju(f,t,a);for(let g of f)a.disposeData(g.dataId);return m}let{tensors2D:i,outShape:o}=moe(e,t,a),l=i.map(f=>f.shape),u=new hoe(l),p=[],c=new Array(l.length-1);if(c.length>0){c[0]=l[0][1],p.push({type:"int32",data:[c[0]]});for(let f=1;f<c.length;f++)c[f]=c[f-1]+l[f][1],p.push({type:"int32",data:[c[f]]})}let d=a.runWebGPUProgram(u,i,i[0].dtype,p);i.forEach(f=>a.disposeData(f.dataId));let h=Se({inputs:{x:d},backend:a,attrs:{shape:o}});return a.disposeData(d.dataId),h}function moe(e,t,a){let n=T.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>Se({inputs:{x:r},backend:a,attrs:{shape:[v.sizeFromShape(r.shape.slice(0,t)),v.sizeFromShape(r.shape.slice(t))]}})),outShape:n}}function O8(e){let{inputs:t,backend:a,attrs:n}=e,{axis:r}=n,s=v.parseAxisParam(r,t[0].shape)[0],i=t.map(u=>u.shape);T.assertParamsConsistent(i,s);let o=T.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(o)===0)return a.makeTensorInfo(o,t[0].dtype,[]);let l=t.filter(u=>v.sizeFromShape(u.shape)>0);return l.length===1?Za({inputs:{x:l[0]},backend:a}):Ju(l,s,a)}var goe={kernelName:Rl,backendName:"webgpu",kernelFunc:O8};function xoe(e,t,a,n,r=!1,s=null,i=!1,o=4,l=4,u=4){let p=E=>{switch(E){case 1:return"resData = x[xIndex];";case 3:return"resData = vec3<f32>(x[xIndex], x[xIndex + 1], x[xIndex + 2]);";case 4:return"resData = x[xIndex / 4];";default:throw new Error(`innerElementSize ${E} is not supported.`)}},c=E=>{switch(E){case 1:return"return W[row * uniforms.wShape[3] + colIn];";case 4:return"return W[row * uniforms.wShape[3] / 4 + colIn];";default:throw new Error(`innerElementSize ${E} is not supported.`)}},d=e?`
let coord = vec4<i32>(batch, xRow, xCol, xCh);
`:`
let coord = vec4<i32>(batch, xCh, xRow, xCol);
`,h=e?`
let coords = vec4<i32>(
batch,
row / outWidth,
row % outWidth,
col);
`:`
let coords = vec4<i32>(
batch,
row,
col / outWidth,
col % outWidth);
`,f=e?"uniforms.xShape[1]":"uniforms.xShape[2]",m=e?"uniforms.xShape[2]":"uniforms.xShape[3]",g=e?"row":"col",x=e?"col":"row",A=`
let inChannels = uniforms.wShape[2];
let outWidth = ${e?"uniforms.outShape[2]":"uniforms.outShape[3]"};
let outRow = ${g} / outWidth;
let outCol = ${g} % outWidth;
let WRow = ${x} / (uniforms.filterDims[1] * inChannels);
let WCol = ${x} / inChannels % uniforms.filterDims[1];
let xRow = outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0];
let xCol = outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1];
let xCh = ${x} % inChannels;
var resData = ${Mt(o)}(0.0);
// The bounds checking is always needed since we use it to pad zero for
// the 'same' padding type.
if (xRow >= 0 && xRow < ${f} && xCol >= 0 && xCol < ${m}) {
${d}
let xIndex = getIndexFromCoords4D(coord, uniforms.xShape);
${p(o)}
}
return resData;`,y=e?t&&n?`
let col = colIn * ${o};
${A}`:`
let col = colIn * ${o};
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
${A}
}
return ${Mt(o)}(0.0);`:n&&a?`
let col = colIn * ${o};
${A}`:`
let col = colIn * ${o};
if (row < uniforms.dimInner && col < uniforms.dimBOuter) {
${A}
}
return ${Mt(o)}(0.0);`,b=`${c(l)}`,w=Mt(u),S=Mt(e?o:l),C=Mt(e?l:o);return`
${Ir(s,i,u===4,4)}
fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${S} {
${e?y:b}
}
fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${C} {
${e?b:y}
}
fn mm_write(batch: i32, row : i32, colIn : i32, valueIn : ${w}) {
let col = colIn * ${u};
if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)
{
var value = valueIn;
let outWidth = ${e?"uniforms.outShape[2]":"uniforms.outShape[3]"};
${h}
${yo(r,s)}
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
}
}`}var Aoe=class{constructor(e,t,a,n,r=!1,s=null,i=!1,o=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.outShape,this.isChannelsLast=e.dataFormat==="channelsLast",this.isVec4=((e.inChannels%4===0||e.inChannels%3===0)&&this.isChannelsLast||e.outWidth%4===0&&!this.isChannelsLast)&&e.outChannels%4===0,this.dispatchLayout=this.isChannelsLast?{x:[3],y:[1,2],z:[0]}:{x:[2,3],y:[1],z:[0]},this.workgroupSize=$3(this.dispatchLayout,this.outputShape,this.isVec4),this.elementsPerThread=_3(this.dispatchLayout,this.outputShape,this.isVec4),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize,this.elementsPerThread),this.isVec4?(this.isChannelsLast&&e.inChannels%4!==0?(this.innerElementSize=3,this.variableTypes=["f32","vec4<f32>"]):(this.innerElementSize=4,this.variableTypes=["vec4<f32>","vec4<f32>"]),r&&(this.variableNames.push("bias"),this.variableTypes.push("vec4<f32>")),i&&(this.variableNames.push("preluActivationWeights"),this.variableTypes.push("vec4<f32>"))):(this.innerElementSize=this.elementsPerThread[0],r&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights")),this.sequentialAccessByThreads=o,this.addBias=r,this.activation=s,this.hasPreluActivationWeights=i,this.tileAOuter=this.workgroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workgroupSize[0]*this.elementsPerThread[0],this.tileInner=Math.max(this.workgroupSize[0]*this.innerElementSize,this.workgroupSize[1]),this.fitAOuter=t%this.tileAOuter===0,this.fitBOuter=a%this.tileBOuter===0,this.fitInner=n%this.tileInner===0,this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.innerElementSize}_${this.isChannelsLast}_${this.sequentialAccessByThreads}`}getUserCode(){let e=this.isVec4?Bh(this.elementsPerThread,this.workgroupSize,!this.isChannelsLast,this.tileInner):Wh(this.elementsPerThread,this.workgroupSize,!this.isChannelsLast,this.tileInner,!1,null,this.sequentialAccessByThreads),t=this.isVec4?[this.innerElementSize,4,4]:[1,1,1];return`
${xoe(this.isChannelsLast,this.fitAOuter,this.fitBOuter,this.fitInner,this.addBias,this.activation,this.hasPreluActivationWeights,t[0],t[1],t[2])}
${e}
`}},yoe=class{constructor(e,t=!1,a=null,n=!1){this.variableNames=["x","W"],this.uniforms="filterDims: vec2<i32>, pad: vec2<i32>, stride: vec2<i32>, dilation: vec2<i32>,",this.workgroupSize=[4,4,8],this.outputShape=e.outShape,this.isChannelsLast=e.dataFormat==="channelsLast",this.dispatchLayout=this.isChannelsLast?{x:[2],y:[1],z:[0,3]}:{x:[3],y:[2],z:[0,1]},this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.addBias=t,this.activation=a,this.hasPreluActivationWeights=n,t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.shaderKey=`conv2dnaive_${this.activation}_${this.isChannelsLast}`}getUserCode(){return`
${Ir(this.activation,this.hasPreluActivationWeights,!1,4)}
fn readInp(batch : i32, row : i32, col : i32, chan : i32) -> f32{
let coords = vec4<i32>(batch, row, col, chan);
if (coordsInBounds4D(coords, uniforms.xShape)) {
return getX(batch, row, col, chan);
} else {
return 0.0;
}
}
fn readFilt(row : i32, col : i32, xChannel : i32, outChannel : i32) -> f32{
let coords = vec4<i32>(row, col, xChannel, outChannel);
if(coordsInBounds4D(coords, uniforms.wShape)) {
return getW(row, col, xChannel, outChannel);
} else {
return 0.0;
}
}
fn writeResult(batch : i32, row : i32, col : i32, chan : i32, valueIn : f32) {
let coords = ${this.isChannelsLast?"vec4<i32>(batch, row, col, chan);":"vec4<i32>(batch, chan, row, col);"}
if (coordsInBounds4D(coords, uniforms.outShape)) {
var value = valueIn;
${yo(this.addBias,this.activation)}
setOutputAtCoords(coords.x, coords.y, coords.z, coords.w, value);
}
}
${Ce("index")} {
let coords = getOutputCoords();
let batch = coords[0];
let outChannel = ${this.isChannelsLast?"coords[3];":"coords[1];"}
let outRow = ${this.isChannelsLast?"coords[1];":"coords[2];"}
let outCol = ${this.isChannelsLast?"coords[2];":"coords[3];"}
var acc : f32 = 0.0;
for (var row = 0; row < uniforms.filterDims[0]; row = row + 1) {
for (var col = 0; col < uniforms.filterDims[1]; col = col + 1) {
let xRow = outRow * uniforms.stride[0] + uniforms.dilation[0] * row - uniforms.pad[0];
let xCol = outCol * uniforms.stride[1] + uniforms.dilation[1] * col - uniforms.pad[1];
for (var xChannel = 0; xChannel < ${this.isChannelsLast?"uniforms.xShape[3];":"uniforms.xShape[1];"} xChannel = xChannel + 1) {
${this.isChannelsLast?"let v = readInp(batch, xRow, xCol, xChannel);":"let v = readInp(batch, xChannel, xRow, xCol);"}
let f = readFilt(row, col, xChannel, outChannel);
acc = acc + v * f;
}
}
}
writeResult(batch, outRow, outCol, outChannel, acc);
}
`}},boe=class{constructor(e,t){this.variableNames=["x"],this.uniforms=`pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, outWidth : i32, itemsPerBlockRow : i32,
inChannels : i32,`,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.isChannelsLast=t,this.shaderKey=`im2col_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,a=this.isChannelsLast?"coords[1]":"coords[2]",n=this.isChannelsLast?"coords[2]":"coords[1]",r=this.isChannelsLast?"getX(batch, xRow, xCol, ch)":"getX(batch, ch, xRow, xCol)";return`
${Ce("index")} {
let coords = getCoordsFromIndex(index);
if(index < uniforms.size) {
let batch = coords[0];
let row = ${a};
let col = ${n};
let offsetY = (row / uniforms.outWidth) * uniforms.stride[0] - uniforms.pad[0];
let xRow = offsetY + uniforms.dilation[0] * (col / uniforms.itemsPerBlockRow);
var value = 0.0;
if(xRow < uniforms.xShape[${e}] && xRow >= 0) {
let offsetX = (row % uniforms.outWidth) * uniforms.stride[1] -
uniforms.pad[1];
let xCol = offsetX + uniforms.dilation[1] * ((col %
uniforms.itemsPerBlockRow) / uniforms.inChannels);
let ch = col % uniforms.inChannels;
if(xCol < uniforms.xShape[${t}] && xCol >= 0) {
value = ${r};
}
}
setOutputAtIndex(index, value);
}
}
`}};function zc(e,t){let a=e.length;return a>=3?t?[...e.slice(0,-3),e[a-3]*e[a-2],e[a-1]]:[...e.slice(0,-3),e[a-3],e[a-2]*e[a-1]]:!t&&a===1&&e[0]>1?[e[0],1]:null}function voe({x:e,filter:t,convInfo:a,backend:n,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=a.dataFormat==="channelsLast",u=!l,p=!1,c=l&&a.filterHeight===a.inHeight&&a.filterWidth===a.inWidth&&a.padInfo.type==="VALID",d=[],h,f;if(c){let x=a.inHeight*a.inWidth*a.inChannels;h=Se({inputs:{x:e},backend:n,attrs:{shape:[1,a.batchSize,x]}}),f=Se({inputs:{x:t},backend:n,attrs:{shape:[1,x,a.outChannels]}})}else h=Se({inputs:{x:e},backend:n,attrs:{shape:l?[a.batchSize,a.inHeight*a.inWidth,a.inChannels]:[a.batchSize,a.inChannels,a.inHeight*a.inWidth]}}),f=Se({inputs:{x:t},backend:n,attrs:{shape:[1,a.inChannels,a.outChannels]}});if(d.push(h),d.push(f),s!=null){let x=zc(s.shape,l);x!=null&&(s=Se({inputs:{x:s},backend:n,attrs:{shape:x}}),d.push(s))}if(r!=null){let x=zc(r.shape,l);x!=null&&(r=Se({inputs:{x:r},backend:n,attrs:{shape:x}}),d.push(r))}let m=Vh({a:l?h:f,b:l?f:h,transposeA:u,transposeB:p,backend:n,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),g=Se({inputs:{x:m},backend:n,attrs:{shape:a.outShape}});d.push(m);for(let x of d)n.disposeData(x.dataId);return g}function woe({x:e,filter:t,convInfo:a,backend:n,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:p,strideWidth:c,strideHeight:d,padInfo:h,outWidth:f,outHeight:m,dilationWidth:g,dilationHeight:x,dataFormat:A}=a,y=A==="channelsLast",b=l*u*p,w=m*f,S=y?[a.batchSize,w,b]:[a.batchSize,b,w],C=new boe(S,y),E=[{type:"int32",data:[h.top,h.left]},{type:"int32",data:[d,c]},{type:"int32",data:[x,g]},{type:"int32",data:[f]},{type:"int32",data:[p*l]},{type:"int32",data:[p]}],_=n.runWebGPUProgram(C,[e],e.dtype,E),$=[];$.push(_);let M=Se({inputs:{x:t},backend:n,attrs:{shape:[1,b,-1]}});if($.push(M),s!=null){let O=zc(s.shape,y);O!=null&&(s=Se({inputs:{x:s},backend:n,attrs:{shape:O}}),$.push(s))}if(r!=null){let O=zc(r.shape,y);O!=null&&(r=Se({inputs:{x:r},backend:n,attrs:{shape:O}}),$.push(r))}let I=Vh({a:y?_:M,b:y?M:_,transposeA:!y,transposeB:!1,backend:n,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),N=Se({inputs:{x:I},backend:n,attrs:{shape:a.outShape}});$.push(I);for(let O of $)n.disposeData(O.dataId);return N}function D8({x:e,filter:t,convInfo:a,backend:n,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=r!=null,u=s!=null,p=a.dataFormat==="channelsLast",c=p&&a.filterHeight===a.inHeight&&a.filterWidth===a.inWidth&&a.padInfo.type==="VALID",d=W().getBool("WEBGPU_USE_NAIVE_CONV2D_DEBUG");if(!d&&(c||a.filterHeight===1&&a.filterWidth===1&&a.dilationHeight===1&&a.dilationWidth===1&&a.strideHeight===1&&a.strideWidth===1&&(a.padInfo.type==="SAME"||a.padInfo.type==="VALID")))return voe({x:e,filter:t,convInfo:a,backend:n,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});let h=W().getNumber("WEBGPU_THRESHOLD_TO_INCREASE_WORKGROUPS_FOR_MATMUL"),f=h>0?h:n.thresholdToIncreaseWorkgroups,m=a.batchSize*Math.ceil(a.outHeight*a.outWidth/32)*Math.ceil(a.outChannels/32);if(W().getBool("WEBGPU_CONV_SEPARATE_IM2COL_SHADER")||m<=f)return woe({x:e,filter:t,convInfo:a,backend:n,bias:r,preluActivationWeights:s,leakyreluAlpha:i,activation:o});let g,x=[a.padInfo.top,a.padInfo.left],A=[{type:"int32",data:[a.filterHeight,a.filterWidth]},{type:"int32",data:[...x]},{type:"int32",data:[a.strideHeight,a.strideWidth]},{type:"int32",data:[a.dilationHeight,a.dilationWidth]}];if(d)g=new yoe(a,l,o,u);else{let S=p?a.outHeight*a.outWidth:a.outChannels,C=p?a.outChannels:a.outHeight*a.outWidth,E=a.filterHeight*a.filterWidth*a.inChannels;A.push({type:"int32",data:[S]},{type:"int32",data:[C]},{type:"int32",data:[E]});let _=n.adapterInfo.isIntel();g=new Aoe(a,S,C,E,l,o,u,_)}let y=[],b=[e,t];l&&(!p&&r.shape.length===1&&(r=Se({inputs:{x:r},backend:n,attrs:{shape:[r.shape[0],1,1]}}),y.push(r)),b.push(r)),u&&(!p&&s.shape.length===1&&(s=Se({inputs:{x:s},backend:n,attrs:{shape:[s.shape[0],1,1]}}),y.push(s)),b.push(s)),o==="leakyrelu"&&(A.push({type:"float32",data:[i]}),g.uniforms+=" alpha : f32,");let w=n.runWebGPUProgram(g,b,e.dtype,A);for(let S of y)n.disposeData(S.dataId);return w}function koe(e){let{inputs:t,attrs:a,backend:n}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a,c=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,c);return D8({x:r,filter:s,convInfo:d,backend:n})}var Ioe={kernelName:ti,backendName:"webgpu",kernelFunc:koe};function Soe(e=4){let t=n=>{switch(n){case 1:return"return W[getIndexFromCoords4D(coord, uniforms.wShape)];";case 4:return`
let coord1 = vec4<i32>(coordX, coordY, col + 1, rowInner);
let coord2 = vec4<i32>(coordX, coordY, col + 2, rowInner);
let coord3 = vec4<i32>(coordX, coordY, col + 3, rowInner);
let v0 = W[getIndexFromCoords4D(coord, uniforms.wShape)];
let v1 = W[getIndexFromCoords4D(coord1, uniforms.wShape)];
let v2 = W[getIndexFromCoords4D(coord2, uniforms.wShape)];
let v3 = W[getIndexFromCoords4D(coord3, uniforms.wShape)];
return vec4<f32>(v0, v1, v2, v3);
`;default:throw new Error(`innerElementSize ${n} is not supported.`)}},a=`if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
${`
let outRow = row / uniforms.outShape[2];
let outCol = row % uniforms.outShape[2];
let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];
let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]);
let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]);
if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {
return ${Mt(e)}(0.0);
}
if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {
return ${Mt(e)}(0.0);
}
let coord = vec4<i32>(
batch,
i32(xR),
i32(xC),
col % uniforms.outBackprop[3]);
return x[getIndexFromCoords4D(coord, uniforms.xShape)/${e}];`}
}
return ${Mt(e)}(0.0);`;return`
fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${Mt(e)} {
let col = colIn * ${e};
${a}
}
fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${Mt(e)} {
let col = colIn * ${e};
let coordX = uniforms.filterDims.x - 1 -
row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
let coordY = uniforms.filterDims.y - 1 -
(row / uniforms.outBackprop[3]) % uniforms.filterDims[1];
if (row < uniforms.dimInner && col < uniforms.dimBOuter &&
coordX >= 0 && coordY >= 0) {
let rowInner = row % uniforms.outBackprop[3];
let coord = vec4<i32>(coordX, coordY, col, rowInner);
${t(e)}
}
return ${Mt(e)}(0.0);
}
fn mm_write(batch: i32, row : i32, colIn : i32, valueInput : ${Mt(e)}) {
let col = colIn * ${e};
if (row < uniforms.dimAOuter && (col + ${e-1}) < uniforms.dimBOuter) {
var value = valueInput;
let outCoord = vec4<i32>(
batch,
row / uniforms.outShape[2],
row % uniforms.outShape[2],
col);
result[getIndexFromCoords4D(outCoord, uniforms.outShape)/${e}] = value;
}
}`}var Toe=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.inShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.isVec4=e.inChannels%4===0&&e.outChannels%4===0,this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workgroupSize=$3(this.dispatchLayout,this.outputShape,this.isVec4),this.elementsPerThread=_3(this.dispatchLayout,this.outputShape,this.isVec4),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize,this.elementsPerThread),this.isVec4&&(this.variableTypes=["vec4<f32>","f32"]),this.shaderKey=`conv2DDerInputMM_${this.isVec4}_${this.elementsPerThread}`}getUserCode(){let e=this.isVec4?Bh(this.elementsPerThread,this.workgroupSize):Wh(this.elementsPerThread,this.workgroupSize);return`
${Soe(this.isVec4?4:1)}
${e}
`}},Coe=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,a=this.isChannelsLast?3:1;return`
${Ce("index")} {
if(index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords[0];
let d1 = coords[${a}];
let dyCorner = vec2<i32>(coords[${e}], coords[${t}]) - uniforms.pads;
let dyRCorner = dyCorner.x;
let dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
var dotProd = 0.0;
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {
let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x);
let wRPerm = uniforms.filterDims.x - 1 - wR;
if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||
wRPerm < 0) {
continue;
}
let idyR = i32(dyR);
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {
let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y);
let wCPerm = uniforms.filterDims.y - 1 - wC;
if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||
fract(dyC) > 0.0 || wCPerm < 0) {
continue;
}
let idyC = i32(dyC);
for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {
if (${this.isChannelsLast}) {
let xValue = getDy(batch, idyR, idyC, d2);
let wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd = dotProd + xValue * wValue;
} else {
let xValue = getDy(batch, d2, idyR, idyC);
let wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd = dotProd + xValue * wValue;
}
}
}
}
setOutputAtIndex(index, dotProd);
}
}
`}};function Noe(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=n,c=T.convertConv2DDataFormat(u),d=T.computeConv2DInfo(i,s.shape,o,1,l,p,!1,c),h=[{type:"int32",data:[d.filterHeight,d.filterWidth]},{type:"int32",data:[d.filterHeight-1-d.padInfo.top,d.filterWidth-1-d.padInfo.left]},{type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.batchSize,d.outHeight,d.outWidth,d.outChannels]}],f;if(W().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE")||d.filterHeight<=2&&d.filterWidth<=2&&d.outChannels<=16&&d.inChannels===1)f=new Coe(d);else{f=new Toe(d);let m=d.inHeight*d.inWidth,g=d.inChannels,x=d.filterHeight*d.filterWidth*d.outChannels;h.push({type:"uint32",data:[m]},{type:"uint32",data:[g]},{type:"uint32",data:[x]})}return a.runWebGPUProgram(f,[r,s],"float32",h)}var Eoe={kernelName:ai,backendName:"webgpu",kernelFunc:Noe},Roe=it({opType:de.COS}),Moe={kernelName:ni,backendName:"webgpu",kernelFunc:Roe},$oe=it({opType:de.COSH}),_oe={kernelName:ri,backendName:"webgpu",kernelFunc:$oe},Poe=class{constructor(e,t,a,n){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32,",this.workgroupSize=[64,1,1],this.size=!0;let[r]=t;this.outputShape=[r,a[0],a[1],e],this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.methodId=n==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[a,n,r]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[s,i,o]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return`
${Ce("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let height_ratio = f32(${a});
let width_ratio = f32(${s});
let b = coords[0];
let y = coords[1];
let x = coords[2];
let d = coords[3];
// get box vals
let y1 = getBoxes(b, 0);
let x1 = getBoxes(b, 1);
let y2 = getBoxes(b, 2);
let x2 = getBoxes(b, 3);
// get image in batch index
let bInd = i32(round(getBoxInd(b)));
if(bInd < 0 || bInd >= uniforms.outShape[0]) {
return;
}
let height_scale = ${n};
let width_scale = ${i};
let in_y = ${r};
if( in_y < 0.0 || in_y > ${e} ) {
setOutputAtIndex(index, uniforms.extrapolationValue);
return;
}
let in_x = ${o};
if( in_x < 0.0 || in_x > ${t} ) {
setOutputAtIndex(index, uniforms.extrapolationValue);
return;
}
let sourceFracIndexCR = vec2<f32>(in_x,in_y);
if(${this.methodId} == 1) {
// Compute the four integer indices.
let sourceFloorCR = vec2<i32>(sourceFracIndexCR);
let sourceCeilCR = vec2<i32>(ceil(sourceFracIndexCR));
let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);
let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);
let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);
let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);
let fracCR = sourceFracIndexCR - vec2<f32>(sourceFloorCR);
let top = topLeft + (topRight - topLeft) * fracCR.x;
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
let newValue = top + (bottom - top) * fracCR.y;
setOutputAtIndex(index, newValue);
} else {
// Compute the coordinators of nearest neighbor point.
let sourceNearestCR = vec2<i32>(floor(
sourceFracIndexCR + vec2<f32>(0.5,0.5)));
let newValue = getImage(
bInd, sourceNearestCR.y, sourceNearestCR.x, d);
setOutputAtIndex(index, newValue);
}
}
}
`}},Foe=e=>{let{inputs:t,backend:a,attrs:n}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=n,p=new Poe(r.shape[3],s.shape,o,l),c=[{type:"float32",data:[u]}];return a.runWebGPUProgram(p,[r,s,i],"float32",c)},Ooe={kernelName:oi,backendName:"webgpu",kernelFunc:Foe},bd;(function(e){e.Prod="*",e.Sum="+"})(bd||(bd={}));var qx=class{constructor(e,t,a,n){this.variableNames=["x"],this.uniforms="index : f32,",this.size=!0,this.workgroupSize=[128,1,1],this.outputShape=t,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.exclusive=a,this.reverse=n,this.op=e,this.shaderKey=`cum_${this.op}_${this.exclusive}_${this.reverse}`}getUserCode(){let e=this.outputShape.length,t=this.op===bd.Prod?"1.0":"0.0",a=this.exclusive?t:`getX(${Xx(e,"coords",this.op)})`,n=this.outputShape[this.outputShape.length-1],r="",s="";return this.exclusive?(r=this.reverse?`end != ${n-1}`:"end != 0",s=this.reverse?"end + 1":"end - 1"):(r=this.reverse?`end + pow2 < ${n}`:"end >= pow2",s=this.reverse?"end + pow2":"end - pow2"),`
${Ce("index")} {
if (index < uniforms.size) {
var coords = getCoordsFromIndex(index);
let end = ${Kx(e,"coords",this.op)};
var val = ${a};
let pow2 = i32(pow(2.0, uniforms.index));
if (${r}) {
let idx = ${s};
${Kx(e,"coords",this.op)} = idx;
val ${this.op}= getX(${Xx(e,"coords",this.op)});
}
setOutputAtIndex(index, val);
}
}
`}};function Xx(e,t,a){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative ${a} for rank ${e} is not yet supported`)}function Kx(e,t,a){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative ${a} for rank ${e} is not yet supported`)}function z8(e,t,a,n,r,s){let i=t.shape.length,o=T.getAxesPermutation([n],i),l=t;o!=null&&(l=yr({inputs:{x:t},backend:a,attrs:{perm:o}}));let u=T.getInnerMostAxes(1,i)[0];if(u!==i-1)throw new Error(`WebGPU cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${n}`);let p=l.shape[u],c=Za({inputs:{x:l},backend:a});for(let d=0;d<=Math.ceil(Math.log2(p))-1;d++){let h=new qx(e,l.shape,!1,s),f=c,m=[{type:"float32",data:[d]}];c=a.runWebGPUProgram(h,[c],c.dtype,m),a.disposeData(f.dataId)}if(r){let d=new qx(e,l.shape,r,s),h=c,f=[{type:"float32",data:[0]}];c=a.runWebGPUProgram(d,[c],c.dtype,f),a.disposeData(h.dataId)}if(o!=null){let d=T.getUndoAxesPermutation(o),h=yr({inputs:{x:c},backend:a,attrs:{perm:d}});return a.disposeData(c.dataId),a.disposeData(l.dataId),h}return c}function Doe(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=n;return z8(bd.Prod,r,a,s,i,o)}var zoe={kernelName:si,backendName:"webgpu",kernelFunc:Doe};function Loe(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=n;return z8(bd.Sum,r,a,s,i,o)}var Boe={kernelName:ii,backendName:"webgpu",kernelFunc:Loe};function Woe(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=n,l=r.shape.length===1,u=v.sizeFromShape(s.shape)>0,p=s.dtype,c=l?[r.shape[0]]:[r.shape[0],r.shape[1]],d=l?[i]:[r.shape[0],i],h=Sr({backend:a,attrs:{shape:d,value:0,dtype:p}}),f=new P8(c,u,o),m=[{type:"int32",data:[i]}],g=u?[r,s]:[r];return a.runWebGPUProgram(f,g,p,m,h)}var Voe={kernelName:Td,backendName:"webgpu",kernelFunc:Woe},Uoe=class{constructor(e,t){this.variableNames=["x"],this.workgroupSize=[64,1,1],this.size=!0,this.uniforms="blockSize : i32,",this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey=`depthToSpace_${t}`,this.dataFormat=t}getUserCode(){return`
${Ce("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let b = coords[0];
let h = ${this.getHeightCoordString()};
let w = ${this.getWidthCoordString()};
let d = ${this.getDepthCoordString()};
let in_h = h / uniforms.blockSize;
let offset_h = h % uniforms.blockSize;
let in_w = w / uniforms.blockSize;
let offset_w = w % uniforms.blockSize;
let offset_d = (offset_h * uniforms.blockSize + offset_w) *
${this.getOutputDepthSize()};
let in_d = d + offset_d;
let rlt = ${this.getInputSamplingString()};
setOutputAtIndex(index, rlt);
}
}`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Goe(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{blockSize:s,dataFormat:i}=n,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],c=l*s,d=u*s,h=p/(s*s),f=i==="NHWC"?[o,c,d,h]:[o,h,c,d],m=[{type:"int32",data:[s]}],g=new Uoe(f,i);return a.runWebGPUProgram(g,[r],r.dtype,m)}var Hoe={kernelName:li,backendName:"webgpu",kernelFunc:Goe},joe=class{constructor(e,t,a,n=!1,r=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>, inDims : vec2<i32>,",this.workgroupSize=[16,16,1],this.outputShape=e,this.dispatchLayout={x:[3],y:[2],z:[0,1]},this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),n&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.addBias=n,this.activation=r,this.hasPreluActivation=s,this.filterHeight=t,this.filterWidth=a,this.shaderKey=`depthwiseNCHW_${this.activation}_${this.filterHeight}_${this.filterWidth}`}getUserCode(){let e=this.filterWidth*this.filterHeight,t=this.workgroupSize[0]*this.workgroupSize[1]*this.workgroupSize[2],a=this.workgroupSize[1]+this.filterHeight-1,n=this.workgroupSize[0]+this.filterWidth-1;return`
${Ir(this.activation,this.hasPreluActivation,!1,4)}
var<workgroup> mm_Asub : array<array<f32, ${n}>, ${a}>;
var<workgroup> mm_Bsub : array<array<f32, ${this.filterWidth}>, ${this.filterHeight}>;
fn readX(batch : i32, channel : i32, row : i32, col : i32) -> f32 {
var value = 0.0;
if (row >=0 && row < uniforms.inDims[0] && col >=0 && col < uniforms.inDims[1])
{
value = getX(batch, channel, row, col);
}
return value;
}
${Ce()} {
let coords = getOutputCoords();
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.zw) - uniforms.pad;
let channelMul = uniforms.wShape[3];
let d1 = coords[1] / channelMul;
let q = coords[1] % channelMul;
let inputRowStart = xRCCorner.x;
let inputColStart = xRCCorner.y;
let localRow = i32(localId.y);
let localCol = i32(localId.x);
// Load one tile of X into local memory.
for (var inputRow = localRow; inputRow < ${a}; inputRow = inputRow + ${this.workgroupSize[1]}) {
for (var inputCol = localCol; inputCol < ${n}; inputCol = inputCol + ${this.workgroupSize[0]}) {
let rowOffset = inputRow - localRow;
let colOffset = inputCol - localCol;
mm_Asub[inputRow][inputCol] = readX(batch, d1, inputRowStart + rowOffset, inputColStart + colOffset);
}
}
// Load one tile of W into local memory.
var wIndex = i32(localIndex);
${e<t?`if (wIndex < ${e})`:`for(; wIndex < ${e}; wIndex = wIndex + ${t})`}
{
let wRow = wIndex / ${this.filterWidth};
let wCol = wIndex % ${this.filterWidth};
mm_Bsub[wRow][wCol] = getW(wRow, wCol, d1, q);
}
workgroupBarrier();
var value = 0.0;
for (var wR = 0; wR < ${this.filterHeight}; wR = wR + 1) {
for (var wC = 0; wC < ${this.filterWidth}; wC = wC + 1) {
let xVal = mm_Asub[localRow + wR][localCol + wC];
let wVal = mm_Bsub[wR][wC];
value = fma(xVal, wVal, value);
}
}
${yo(this.addBias,this.activation)}
if (coordsInBounds4D(coords, uniforms.outShape)) {
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
}
}
`}},L8=class{constructor(e,t=!1,a=null,n=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>, inDims : vec2<i32>,",this.workgroupSize=[4,4,4],this.workPerThread=4,this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[3],y:[2],z:[0,1]},this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize,[4,this.workPerThread,1]),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=a,this.hasPreluActivation=n,this.shaderKey=`depthwiseVec4_${a}_${this.convInfo.filterHeight}_${this.convInfo.filterWidth}_${this.convInfo.strideHeight}_${this.convInfo.strideWidth}_${this.workPerThread}`}getUserCode(){let e=(this.workPerThread-1)*this.convInfo.strideWidth+this.convInfo.filterWidth;return`
${Ir(this.activation,this.hasPreluActivation,!0,4)}
fn readX(batch : i32, row : i32, col : i32, channel : i32) -> vec4<f32> {
var value = vec4<f32>(0.0);
if (col >=0 && col < uniforms.inDims[1]) {
value = getX(batch, row, col, channel);
}
return value;
}
const strideHeight = ${this.convInfo.strideHeight};
const strideWidth = ${this.convInfo.strideWidth};
${Ce()} {
let batch = i32(globalId.z) / uniforms.outShape[1];
let r = i32(globalId.z) % uniforms.outShape[1];
let c = i32(globalId.y) * ${this.workPerThread};
let d1 = i32(globalId.x) * 4;
let xRCCorner = vec2<i32>(r, c) * vec2<i32>(strideHeight, strideWidth) - uniforms.pad;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
var xVals : array<vec4<f32>, ${e}>;
var dotProd : array<vec4<f32>, ${this.workPerThread}>;
for (var i = 0; i < ${this.workPerThread}; i++) {
dotProd[i] = vec4<f32>(0.0);
}
// Use constant instead of uniform can give better performance.
for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) {
let xR = xRCorner + wR;
if (xR >=0 && xR < uniforms.inDims[0]) {
for (var i = 0; i < ${e}; i++) {
xVals[i] = readX(batch, xR, xCCorner + i, d1);
}
for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) {
let wValue = getW(wR, wC, d1, 0);
for (var i = 0; i < ${this.workPerThread}; i++) {
dotProd[i] = fma(xVals[i * strideWidth + wC], wValue, dotProd[i]);
}
}
}
}
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
let coords = vec4<i32>(batch, r, c + i, d1);
if (coordsInBounds4D(coords, uniforms.outShape)) {
var value = dotProd[i];
${yo(this.addBias,this.activation)}
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
}
}
}
`}},B8=class{constructor(e,t=!1,a=null,n=!1){this.variableNames=["x","W"],this.uniforms=`pad : vec2<i32>, inDims : vec2<i32>, filterHeight : i32,
filterWidth : i32, stride : vec2<i32>, dilation : vec2<i32>,`,this.workgroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=a,this.hasPreluActivation=n,this.shaderKey=`depthwise_${this.activation}_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?"getX(batch, xR, xC, d1);":"getX(batch, d1, xR, xC);";return`
${Ir(this.activation,this.hasPreluActivation,!1,4)}
${Ce("index")} {
if (index < uniforms.size) {
let coords = getOutputCoords();
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.${this.isChannelsLast?"yz":"zw"}) * uniforms.stride - uniforms.pad;
let d2 = coords[${this.isChannelsLast?3:1}];
let channelMul = uniforms.wShape[3];
let d1 = d2 / channelMul;
let q = d2 % channelMul;
let inputRowStart = xRCCorner.x;
let inputColStart = xRCCorner.y;
let inputRowEnd = inputRowStart + uniforms.filterHeight *
uniforms.dilation[0];
let inputColEnd = inputColStart + uniforms.filterWidth *
uniforms.dilation[1];
// Convolve x(?, ?, d1)|x(d1, ?, ?) with w(:, :, d1, q) to get
// y(yR, yC, d2)|y(d2, yR, yC). ? = to be determined. : = across all
// values in that axis. x(?, ?, d1) and y(yR, yC, d2) is for NHWC.
// x(d1, ?, ?) and y(d2, yR, yC) is for NCHW.
var value = 0.0;
// Extract if checking out of for loop for performance.
if (inputRowStart >= 0 && inputColStart >= 0 &&
inputRowEnd < uniforms.inDims[0] &&
inputColEnd < uniforms.inDims[1]) {
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
let xR = inputRowStart + wR * uniforms.dilation[0];
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
let xC = inputColStart + wC * uniforms.dilation[1];
let xVal = ${e};
let wVal = getW(wR, wC, d1, q);
value = value + xVal * wVal;
}
}
} else {
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
let xR = inputRowStart + wR * uniforms.dilation[0];
if (xR < 0 || xR >= uniforms.inDims[0]) {
continue;
}
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
let xC = inputColStart + wC * uniforms.dilation[1];
if (xC < 0 || xC >= uniforms.inDims[1]) {
continue;
}
let xVal = ${e};
let wVal = getW(wR, wC, d1, q);
value = value + xVal * wVal;
}
}
}
${yo(this.addBias,this.activation)}
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
}
}
`}};function qoe(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=n,c=T.convertConv2DDataFormat(l),d=u;d==null&&(d=[1,1]);let h=T.computeConv2DInfo(r.shape,s.shape,i,d,o,p,!0,c),f=[{type:"int32",data:[h.padInfo.top,h.padInfo.left]},{type:"int32",data:[h.inHeight,h.inWidth]}],m=h.dataFormat==="channelsLast",g;return!m&&h.inHeight>16&&h.inWidth>16&&h.strideHeight===1&&h.strideWidth===1&&h.dilationWidth===1&&h.dilationHeight===1&&h.inChannels===h.outChannels?g=new joe(h.outShape,h.filterHeight,h.filterWidth):m&&h.outHeight>4&&h.outWidth>4&&h.strideWidth<=2&&h.inChannels===h.outChannels&&h.dilationHeight===1&&h.dilationWidth===1&&h.inChannels%4===0?g=new L8(h):(g=new B8(h),f.push({type:"int32",data:[h.filterHeight]},{type:"int32",data:[h.filterWidth]},{type:"int32",data:[h.strideHeight,h.strideWidth]},{type:"int32",data:[h.dilationHeight,h.dilationWidth]})),a.runWebGPUProgram(g,[r,s],r.dtype,f)}var Xoe={kernelName:ui,backendName:"webgpu",kernelFunc:qoe},W8=ua({opType:De.MUL,cpuKernelImpl:jse,supportsComplex:!0}),Koe={kernelName:Oi,backendName:"webgpu",kernelFunc:W8};function L3(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n;return vo(r,s,i,"sum",a)}var Zoe={kernelName:ao,backendName:"webgpu",kernelFunc:L3};function Yoe(e){let{inputs:t,backend:a,attrs:n}=e,{equation:r}=n,s=t,{allDims:i,summedDims:o,idDims:l}=T.decodeEinsumEquation(r,s.length);T.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=T.getEinsumComputePath(o,l),c=p.length,d=null,h=i.length,f=[];for(let m=0;m<c;++m){for(let g of p[m]){let{permutationIndices:x,expandDims:A}=T.getEinsumPermutation(h,l[g]),y;T.isIdentityPermutation(x)?y=s[g]:(y=yr({inputs:{x:s[g]},backend:a,attrs:{perm:x}}),f.push(y));let b=y.shape.slice();for(let w=0;w<A.length;++w)b.splice(A[w],0,1);v.arraysEqual(y.shape,b)||(y=Se({inputs:{x:y},backend:a,attrs:{shape:b}}),f.push(y)),d===null?d=y:(d=W8({inputs:{a:y,b:d},backend:a}),f.push(d))}m<c-1&&(u[m]>=0&&(d=L3({inputs:{x:d},backend:a,attrs:{axis:u[m]-(i.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&a.disposeData(m.dataId);return d}var Joe={kernelName:Cd,backendName:"webgpu",kernelFunc:Yoe},Qoe=it({opType:de.ELU}),ele={kernelName:pi,backendName:"webgpu",kernelFunc:Qoe},tle=ua({opType:De.EQUAL,dtype:"bool",cpuKernelImpl:$se}),ale={kernelName:ci,backendName:"webgpu",kernelFunc:tle},nle=it({opType:de.ERF}),rle={kernelName:Ml,backendName:"webgpu",kernelFunc:nle},V8=it({opType:de.EXP,cpuKernelImpl:_se,dtype:"float32"}),sle={kernelName:hi,backendName:"webgpu",kernelFunc:V8};function P1(e){let{inputs:t,attrs:a,backend:n}=e,{dim:r}=a,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(v.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),Se({inputs:{x:s},backend:n,attrs:{shape:o}})}var ile={kernelName:$l,backendName:"webgpu",kernelFunc:P1},ole=it({opType:de.EXPM1,cpuKernelImpl:Pse}),lle={kernelName:_l,backendName:"webgpu",kernelFunc:ole},Zx=class{constructor(e,t){this.variableNames=["real","imag"],this.outputShape=[],this.uniforms="exponentMultiplier : f32, denominator: f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.component=e,this.shaderKey=`fft_${e}`}getUserCode(){return`
fn unaryOpComplex(real: f32, expR: f32, imag: f32, expI: f32) -> f32 {
${this.component==="real"?"return real * expR - imag * expI;":"return real * expI + imag * expR;"}
}
fn mulMatDFT(batch: i32, index: i32) -> f32 {
let indexRatio = f32(index) / f32(uniforms.realShape[1]);
let exponentMultiplierTimesIndexRatio =
uniforms.exponentMultiplier * indexRatio;
var result = 0.0;
for (var i = 0; i < uniforms.realShape[1]; i = i + 1) {
// x = (-2|2 * PI / N) * index * i;
let x = exponentMultiplierTimesIndexRatio * f32(i);
let expR = cos(x);
let expI = sin(x);
let real = getReal(batch, i);
let imag = getImag(batch, i);
result = result +
unaryOpComplex(real, expR, imag, expI) / uniforms.denominator;
}
return result;
}
${Ce("index")} {
if (index < uniforms.size) {
let coords = getOutputCoords();
setOutputAtIndex(index, mulMatDFT(coords[0], coords[1]));
}
}
`}};function U8(e,t,a){let n=a.tensorMap.get(e.dataId),r=v.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=[],l=Se({inputs:{x:e},backend:a,attrs:{shape:[i,s]}});o.push(l);let u=l.shape,p=new Zx("real",u),c=new Zx("imag",u),d=[{dataId:n.complexTensorInfos.real.dataId,dtype:n.complexTensorInfos.real.dtype,shape:u},{dataId:n.complexTensorInfos.imag.dataId,dtype:n.complexTensorInfos.imag.dtype,shape:u}],h=t?2*Math.PI:-2*Math.PI,f=t?u[1]:1,m=[{type:"float32",data:[h]},{type:"float32",data:[f]}],g=a.runWebGPUProgram(p,d,"float32",m);o.push(g);let x=a.runWebGPUProgram(c,d,"float32",m);o.push(x);let A=bo({inputs:{real:g,imag:x},backend:a});o.push(A);let y=Se({inputs:{x:A},backend:a,attrs:{shape:e.shape}});return o.forEach(b=>a.disposeData(b.dataId)),y}function ule(e){let{inputs:t,backend:a}=e,{input:n}=t;return U8(n,!1,a)}var dle={kernelName:Nd,backendName:"webgpu",kernelFunc:ule},ple=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="flipLeftRight"}getUserCode(){return`
${Ce("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let coordX = uniforms.xShape[2] - coords[2] - 1;
let outputValue = getX(coords[0], coords[1], coordX, coords[3]);
setOutputAtIndex(index, outputValue);
}
}
`}},cle={kernelName:fi,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:a}=e,n=t,r=new ple(a.shape);return n.runWebGPUProgram(r,[a],a.dtype)}},hle=it({opType:de.FLOOR,cpuKernelImpl:Fse}),fle={kernelName:mi,backendName:"webgpu",kernelFunc:hle},mle=ua({opType:De.INT_DIV,dtype:"int32"}),gle={kernelName:gi,backendName:"webgpu",kernelFunc:mle},xle=class{constructor(e,t,a=!1){this.isFromPixels=!0,this.outputShape=[0],this.variableNames=[],this.workgroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize,[t,1,1]),this.importVideo=a,this.shaderKey=`fromPixels_${this.importVideo}`}getUserCode(){let e=this.importVideo?"textureLoad(src, vec2<i32>(coords.yx));":"textureLoad(src, vec2<i32>(coords.yx), 0)";return`
@binding(1) @group(0) var src: ${this.importVideo?"texture_external":"texture_2d<f32>"};
${Ce("index")} {
let flatIndex = index * uniforms.numChannels;
if (flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndex);
let values = ${e};
for (var i = 0; i < uniforms.numChannels; i = i + 1) {
result[flatIndex + i] = i32(floor(255.0 * values[i]));
}
}
}
`}},Ale={kernelName:rd,backendName:"webgpu",kernelFunc:yle},Zo,zm=W().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU"),uc=new Map;function yle(e){let{inputs:t,backend:a,attrs:n}=e,{pixels:r}=t,{numChannels:s}=n;if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,l=typeof HTMLCanvasElement!="undefined"&&r instanceof HTMLCanvasElement||typeof OffscreenCanvas!="undefined"&&r instanceof OffscreenCanvas,u=typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap,[p,c]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],d=[c,p,s],h=!1,f=i||o;if(u||l||f){let A;if(h){let $=r;if(!uc.has($)||uc.get($).expired){let M={source:$};uc.set($,a.device.importExternalTexture(M))}A={width:p,height:c,format:null,usage:null,texture:uc.get($)}}else{if(f){let N=W().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");(Zo==null||N!==zm)&&(zm=N,Zo=document.createElement("canvas").getContext("2d",{willReadFrequently:zm})),Zo.canvas.width=p,Zo.canvas.height=c,Zo.drawImage(r,0,0,p,c),r=Zo.canvas}let $=GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING,M="rgba8unorm",I=a.textureManager.acquireTexture(d[1],d[0],M,$);a.queue.copyExternalImageToTexture({source:r},{texture:I},[d[1],d[0]]),A={width:p,height:c,format:M,usage:$,texture:I}}let y=v.sizeFromShape(d),b=v.computeStrides(d),w=new xle(d,s,h),S=[{type:"uint32",data:[y]},{type:"uint32",data:[s]},{type:"uint32",data:[...b]}],C=a.makeTensorInfo([c,p],"int32"),E=a.tensorMap.get(C.dataId);E.resourceInfo=A;let _=a.runWebGPUProgram(w,[C],"int32",S);return a.disposeData(C.dataId),_}let m=r.data,g=m;if(s!=null&&s!==4){g=new Uint8Array(r.width*r.height*s);let A=m.length,y=0;for(let b=0;b<A;b++)b%4<s&&(g[y++]=m[b])}let x=a.makeTensorInfo(d,"int32",new Int32Array(g));return a.uploadToGPU(x.dataId),x}var ble=class{constructor(e,t,a,n,r){this.uniforms="varianceEpsilon : f32,",this.workgroupSize=[128,1,1],this.size=!0,this.variableNames=["x","mean","variance"],T.assertAndGetBroadcastShape(e,t),T.assertAndGetBroadcastShape(e,a),this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),n!=null&&(T.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset")),r!=null&&(T.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale")),this.offsetShape=n,this.scaleShape=r,this.shaderKey="batchNorm"}getUserCode(){let e="0.0";this.offsetShape!=null&&(e="getOffsetByOutputIndex(index)");let t="1.0";return this.scaleShape!=null&&(t="getScaleByOutputIndex(index)"),`
${Ce("index")} {
if (index < uniforms.size)
{
let xValue = getXByOutputIndex(index);
let meanValue = getMeanByOutputIndex(index);
let varianValue = getVarianceByOutputIndex(index);
let offsetValue = ${e};
let scaleValue = ${t};
let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));
setOutputAtIndex(index,dot(vec3<f32>(xValue, -meanValue, offsetValue), vec3<f32>(inv, inv, 1.0)));
}
}
`}},vle={kernelName:xi,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:a})=>{let{x:n,scale:r,offset:s,mean:i,variance:o}=e,{varianceEpsilon:l}=t,u=a,p=[n,i,o],c=null;s!=null&&(c=s.shape,p.push(s));let d=null;r!=null&&(d=r.shape,p.push(r));let h=new ble(n.shape,i.shape,o.shape,c,d),f=[{type:"float32",data:[l]}];return u.runWebGPUProgram(h,p,n.dtype,f)}};function wle(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:c,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=T.convertConv2DDataFormat(p),g=T.computeConv2DInfo(r.shape,s.shape,l,c,u,d,!1,m);return D8({x:r,filter:s,convInfo:g,backend:a,bias:i,preluActivationWeights:o,leakyreluAlpha:f,activation:h})}var kle={kernelName:Hr,backendName:"webgpu",kernelFunc:wle};function Ile(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dimRoundingMode:c,activation:d,leakyreluAlpha:h}=n,f=p;f==null&&(f=[1,1]),v.assert(T.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let m=T.computeConv2DInfo(r.shape,s.shape,l,f,u,c,!0),g=[r,s],x=i!=null,A=o!=null;x&&g.push(i),A&&g.push(o);let y=[{type:"int32",data:[m.padInfo.top,m.padInfo.left]},{type:"int32",data:[m.inHeight,m.inWidth]}],b;return m.outHeight>4&&m.outWidth>4&&m.strideWidth<=2&&m.inChannels===m.outChannels&&m.dilationHeight===1&&m.dilationWidth===1&&m.inChannels%4===0?b=new L8(m,x,d,A):(b=new B8(m,x,d,A),y.push({type:"int32",data:[m.filterHeight]},{type:"int32",data:[m.filterWidth]},{type:"int32",data:[m.strideHeight,m.strideWidth]},{type:"int32",data:[m.dilationHeight,m.dilationWidth]})),d==="leakyrelu"&&(y.push({type:"float32",data:[h]}),b.uniforms+=" alpha : f32,"),a.runWebGPUProgram(b,g,"float32",y)}var Sle={kernelName:jr,backendName:"webgpu",kernelFunc:Ile},Tle=class{constructor(e,t){this.variableNames=["A","indices"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey=`gathernd_${e}`,this.sliceDim=e,this.uniforms=`sliceDim : i32, strides : ${ra(e)},`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",`
${Ce("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
var flattenIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexTemp = i32(round(getIndices(coords[0], j)));
let strideNum = ${e};
flattenIndex = flattenIndex + indexTemp * strideNum;
}
setOutputAtIndex(index, getA(flattenIndex, coords[1]));
}
}
`}};function Cle(e){let{inputs:t,backend:a}=e,{params:n,indices:r}=t,s=r.shape,i=s[s.length-1],o=v.sizeFromShape(n.shape),[l,u,p,c]=T.prepareAndValidate(n,r),d=Se({inputs:{x:r},backend:a,attrs:{shape:[u,i]}}),h=Se({inputs:{x:n},backend:a,attrs:{shape:[v.sizeFromShape(n.shape)/p,p]}});if(a.shouldExecuteOnCPU([n,r])||n.dtype==="string"){let A=a.readSync(r.dataId),y=a.bufferSync(n),b=Ose(A,y,n.dtype,u,i,p,c,n.shape,o);return a.makeTensorInfo(l,n.dtype,b.values)}let f=new Tle(i,[u,p]),m=[{type:"int32",data:[i]},{type:"int32",data:c}],g=a.runWebGPUProgram(f,[h,d],h.dtype,m),x=Se({inputs:{x:g},backend:a,attrs:{shape:l}});return a.disposeData(d.dataId),a.disposeData(h.dataId),a.disposeData(g.dataId),x}var Nle={kernelName:Ai,backendName:"webgpu",kernelFunc:Cle},Ele=class{constructor(e,t){this.variableNames=["A","indices"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="gather"}getUserCode(){let e=Rle(this.aShape);return`
${Ce("index")} {
if (index < uniforms.size) {
let resRC = getCoordsFromIndex(index);
let indexZ = i32(getIndices(resRC.x, resRC.z));
let inBounds = select(0.0, 1.0, indexZ >= 0 && indexZ < uniforms.aShape[2]);
setOutputAtIndex(index, inBounds * getA(${e}));
}
}
`}};function Rle(e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let n=0;n<e.length;n++)n===2?a.push("indexZ"):a.push(`${t[n]}`);return a.join()}function G8(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=n,l=v.parseAxisParam(i,r.shape)[0],u=T.segment_util.collectGatherOpShapeInfo(r,s,l,o),p=v.sizeFromShape(s.shape),c=[],d=Se({inputs:{x:r},backend:a,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=Se({inputs:{x:s},backend:a,attrs:{shape:[u.batchSize,p/u.batchSize]}});c.push(d),c.push(h);let f=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize];if(a.shouldExecuteOnCPU([r,s])){let A=a.tensorMap.get(h.dataId).values,y=Me(h.shape,h.dtype,A),b=a.tensorMap.get(d.dataId).values,w=Me(d.shape,d.dtype,b),S=Dse(w,y,f);return c.forEach(C=>a.disposeData(C.dataId)),a.makeTensorInfo(u.outputShape,S.dtype,S.values)}let m=new Ele(d.shape,f),g=a.runWebGPUProgram(m,[d,h],d.dtype);c.push(g);let x=Se({inputs:{x:g},backend:a,attrs:{shape:u.outputShape}});return c.forEach(A=>a.disposeData(A.dataId)),x}var Mle={kernelName:Fl,backendName:"webgpu",kernelFunc:G8},$le=ua({opType:De.GREATER,cpuKernelImpl:Lse,dtype:"bool"}),_le={kernelName:yi,backendName:"webgpu",kernelFunc:$le},Ple=ua({opType:De.GREATER_EQUAL,dtype:"bool",cpuKernelImpl:zse}),Fle={kernelName:bi,backendName:"webgpu",kernelFunc:Ple};function Ole(e){let{inputs:t,backend:a}=e,{input:n}=t;return U8(n,!0,a)}var Dle={kernelName:Ed,backendName:"webgpu",kernelFunc:Ole},zle=it({opType:de.IS_FINITE,dtype:"bool"}),Lle={kernelName:Ol,backendName:"webgpu",kernelFunc:zle},Ble=it({opType:de.IS_INF,dtype:"bool"}),Wle={kernelName:Dl,backendName:"webgpu",kernelFunc:Ble},Vle=it({opType:de.IS_NAN,dtype:"bool"}),Ule={kernelName:wi,backendName:"webgpu",kernelFunc:Vle};function Gle(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{alpha:s}=n,i=[{type:"float32",data:[s]}],o=new mp(r.shape,de.LEAKYRELU);return o.uniforms="alpha : f32,",a.runWebGPUProgram(o,[r],"float32",i)}var Hle={kernelName:ki,backendName:"webgpu",kernelFunc:Gle},jle=ua({opType:De.LESS,dtype:"bool",cpuKernelImpl:Wse}),qle={kernelName:Ii,backendName:"webgpu",kernelFunc:jle},Xle=ua({opType:De.LESS_EQUAL,dtype:"bool",cpuKernelImpl:Bse}),Kle={kernelName:Si,backendName:"webgpu",kernelFunc:Xle},Zle=it({opType:de.LOG,cpuKernelImpl:Vse}),Yle={kernelName:Ti,backendName:"webgpu",kernelFunc:Zle},Jle=it({opType:de.LOG1P}),Qle={kernelName:zl,backendName:"webgpu",kernelFunc:Jle},eue=ua({opType:De.LOGICAL_AND,dtype:"bool"}),tue={kernelName:Ci,backendName:"webgpu",kernelFunc:eue},aue=it({opType:de.LOGICAL_NOT}),nue={kernelName:Ni,backendName:"webgpu",kernelFunc:aue},rue=ua({opType:De.MAX,cpuKernelImpl:Gse}),sue={kernelName:Ri,backendName:"webgpu",kernelFunc:rue};function iue(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1,p=T.computePool2DInfo(r.shape,s,i,u,o,l);return _8(r,p,"max",a)}var oue={kernelName:Mi,backendName:"webgpu",kernelFunc:iue};function lue(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n;return vo(r,s,i,"min",a)}var uue={kernelName:_i,backendName:"webgpu",kernelFunc:lue},due=ua({opType:De.MIN,cpuKernelImpl:Hse}),pue={kernelName:Pi,backendName:"webgpu",kernelFunc:due},cue=class{constructor(e,t,a){this.uniforms="",this.variableNames=["x"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((n,r)=>n[0]+e[r]+n[1]),this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.xShape=e,t.map((n,r)=>{this.uniforms+=` pad${r} : vec2<i32>,`}),this.offset=a==="reflect"?0:1,this.shaderKey=`mirrorPad_${a}`}getUserCode(){let e=this.xShape.length,t=this.xShape.map((l,u)=>`uniforms.pad${u}[0]`).join(","),a=this.xShape.map((l,u)=>`uniforms.pad${u}[0] + uniforms.xShape${e>1?`[${u}]`:""}`).join(","),n=e===1?"start":"start[i]",r=e===1?"end":"end[i]",s=e===1?"outC":"outC[i]",i=ra(e),o=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
${Ce("index")} {
if (index < uniforms.size) {
let start = ${i}(${t});
let end = ${i}(${a});
var outC = getCoordsFromIndex(index);
for (var i = 0; i < ${e}; i = i + 1) {
if (${s} < ${n}) {
${s} = ${n} * 2 - ${s} - ${this.offset};
} else if(${s} >= ${r}) {
${s} = (${r} - 1) * 2 - ${s} + ${this.offset};
}
}
let coords = outC - start;
setOutputAtIndex(index, getX(${o}));
}
}
`}},hue={kernelName:Fi,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:a})=>{let{x:n}=e,{paddings:r,mode:s}=t,i=a,o=r.map(u=>({type:"int32",data:[u[0],u[1]]})),l=new cue(n.shape,r,s);return i.runWebGPUProgram(l,[n],n.dtype,o)}},fue=ua({opType:De.MOD}),mue={kernelName:Bl,backendName:"webgpu",kernelFunc:fue};function gue(e){let{inputs:t,backend:a}=e,{x:n}=t;if(a.shouldExecuteOnCPU([n])){let s=a.tensorMap.get(n.dataId),[i,o]=qse(s.values,n.shape,n.dtype);return a.makeTensorInfo(o,n.dtype,i)}let r=new mp(n.shape,de.NEG);return a.runWebGPUProgram(r,[n],n.dtype)}var xue={kernelName:Wl,backendName:"webgpu",kernelFunc:gue};function Aue(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:a,attrs:n}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=n,u=a.readSync(r.dataId),p=a.readSync(s.dataId),{selectedIndices:c}=Sn.nonMaxSuppressionV3Impl(u,p,i,o,l);return a.makeTensorInfo([c.length],"int32",new Int32Array(c))}var yue={kernelName:zi,backendName:"webgpu",kernelFunc:Aue};function bue(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:a,attrs:n}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=n,p=a.readSync(r.dataId),c=a.readSync(s.dataId),d=i,h=o,f=l,m=u,{selectedIndices:g,selectedScores:x}=Sn.nonMaxSuppressionV5Impl(p,c,d,h,f,m);return[a.makeTensorInfo([g.length],"int32",new Int32Array(g)),a.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var vue={kernelName:Li,backendName:"webgpu",kernelFunc:bue},wue=class{constructor(e,t){this.variableNames=["x"],this.uniforms="onValue : f32, offValue : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=[e,t],this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="onehot"}getUserCode(){return`
${Ce("index")} {
if(index < uniforms.size) {
let coords = getCoordsFromIndex(index);
setOutputAtIndex(index, mix(uniforms.offValue, uniforms.onValue,
f32(i32(round(getX(coords.x))) == coords.y)));
}
}
`}};function kue(e){let{inputs:t,backend:a,attrs:n}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=n,u=v.sizeFromShape(r.shape),p=new wue(u,i),c=Se({inputs:{x:r},backend:a,attrs:{shape:[u]}}),d=[{type:"float32",data:[o]},{type:"float32",data:[l]}],h=a.runWebGPUProgram(p,[c],s,d);a.disposeData(c.dataId);let f=[...r.shape,i],m=Se({inputs:{x:h},backend:a,attrs:{shape:f}});return a.disposeData(h.dataId),m}var Iue={kernelName:Bi,backendName:"webgpu",kernelFunc:kue};function Lc(e){let{inputs:t,backend:a}=e,{x:n}=t;if(n.dtype==="complex64"){let r=gp({inputs:{input:n},backend:a}),s=Lc({inputs:{x:r},backend:a}),i=Uh({inputs:{input:n},backend:a}),o=Lc({inputs:{x:i},backend:a}),l=bo({inputs:{real:s,imag:o},backend:a});return a.disposeData(r.dataId),a.disposeData(s.dataId),a.disposeData(i.dataId),a.disposeData(o.dataId),l}else return Sr({attrs:{shape:n.shape,dtype:n.dtype,value:n.dtype==="string"?"":0},backend:a})}var Sue={kernelName:au,backendName:"webgpu",kernelFunc:Lc};function H8(e){let{inputs:t,backend:a}=e,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(n.dtype==="complex64"){let r=gp({inputs:{input:n},backend:a}),s=H8({inputs:{x:r},backend:a}),i=Uh({inputs:{input:n},backend:a}),o=Lc({inputs:{x:i},backend:a}),l=bo({inputs:{real:s,imag:o},backend:a});return a.disposeData(r.dataId),a.disposeData(s.dataId),a.disposeData(i.dataId),a.disposeData(o.dataId),l}else return Sr({attrs:{shape:n.shape,dtype:n.dtype,value:1},backend:a})}var Tue={kernelName:Ul,backendName:"webgpu",kernelFunc:H8};function Cue(e){let{inputs:t,backend:a,attrs:n}=e,{axis:r}=n;if(t.length===1)return P1({inputs:{input:t[0]},backend:a,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let c=P1({inputs:{input:p},backend:a,attrs:{dim:r}});return o.push(c),c}),u=O8({inputs:l,backend:a,attrs:{axis:r}});return o.forEach(p=>a.disposeData(p.dataId)),u}var Nue={kernelName:Gl,backendName:"webgpu",kernelFunc:Cue},Eue=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((a,n)=>a[0]+e[n]+a[1]),this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),t.map((a,n)=>{this.uniforms+=` pad${n} : vec2<i32>,`}),this.xShape=e,this.shaderKey="pad"}getUserCode(){let e=this.xShape.length,t=ra(e),a=this.xShape.map((u,p)=>`uniforms.pad${p}[0]`).join(","),n=this.xShape.map((u,p)=>`uniforms.pad${p}[0] + uniforms.xShape${e>1?`[${p}]`:""}`).join(","),r=e>1?`${t}(${a})`:`${a}`,s=e>1?`${t}(${n})`:`${n}`,i=e>1?"any(outC < start)":"outC < start",o=e>1?"any(outC >= end)":"outC >= end",l=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
${Ce("index")} {
if (index < uniforms.size) {
let start = ${r};
let end = ${s};
let outC = getCoordsFromIndex(index);
if (${i} || ${o}) {
setOutputAtIndex(index, uniforms.constantValue);
} else {
let coords = outC - start;
setOutputAtIndex(index, getX(${l}));
}
}
}
`}},j8=e=>{let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{paddings:s,constantValue:i}=n;if(s.every(u=>v.arraysEqual(u,[0,0])))return Za({inputs:{x:r},backend:a});if(v.sizeFromShape(r.shape)===0){let u=s.map((p,c)=>p[0]+r.shape[c]+p[1]);return Sr({backend:a,attrs:{shape:u,value:i,dtype:r.dtype}})}let o=[{type:"float32",data:[i]}];s.map(u=>o.push({type:"int32",data:[u[0],u[1]]}));let l=new Eue(r.shape,s);return a.runWebGPUProgram(l,[r],r.dtype,o)},Rue={kernelName:Wi,backendName:"webgpu",kernelFunc:j8},Mue=ua({opType:De.POW}),$ue={kernelName:Vi,backendName:"webgpu",kernelFunc:Mue};function _ue(e){let{inputs:t,backend:a}=e,{x:n,alpha:r}=t,s=new M1(De.PRELU,n.shape,r.shape);return a.runWebGPUProgram(s,[n,r],"float32")}var Pue={kernelName:Ui,backendName:"webgpu",kernelFunc:_ue};function Fue(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n;return vo(r,s,i,"prod",a)}var Oue={kernelName:Gi,backendName:"webgpu",kernelFunc:Fue},Due=e=>{let{backend:t,attrs:a}=e,{start:n,stop:r,step:s,dtype:i}=a,o=Zse(n,r,s,i);return t.makeTensorInfo([o.length],i,o)},zue={kernelName:Hl,backendName:"webgpu",kernelFunc:Due},q8=ua({opType:De.DIV}),Lue={kernelName:di,backendName:"webgpu",kernelFunc:q8},Bue=it({opType:de.RECIPROCAL}),Wue={kernelName:Hi,backendName:"webgpu",kernelFunc:Bue},Vue=it({opType:de.RELU}),Uue={kernelName:ji,backendName:"webgpu",kernelFunc:Vue},Gue=it({opType:de.RELU6}),Hue={kernelName:Ki,backendName:"webgpu",kernelFunc:Gue},jue=class{constructor(e,t,a){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, halfPixelCenters : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,a,e[3]],this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="resizeBilinear"}getUserCode(){return`
${Ce("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let b = coords[0];
let d = coords[3];
let rc = coords.yz;
let effectiveInSize = vec2<f32>(
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveOutSize = vec2<f32>(
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveInputOverOutputRatioRC =
effectiveInSize / effectiveOutSize;
// Fractional source index
let sourceFracIndexRC =
(vec2<f32>(rc) + vec2<f32>(uniforms.halfPixelCenters)) *
effectiveInputOverOutputRatioRC - vec2<f32>(uniforms.halfPixelCenters);
// Compute the four integer indices.
let sourceFloorRC = vec2<i32>(sourceFracIndexRC);
let sourceCeilRC = vec2<i32>(
min(vec2<f32>(uniforms.xShape.yz) - vec2<f32>(1.0), ceil(sourceFracIndexRC)));
let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);
let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);
let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);
let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);
let fracRC = sourceFracIndexRC - vec2<f32>(sourceFloorRC);
let top = topLeft + (topRight - topLeft) * fracRC.y;
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
let newValue = top + (bottom - top) * fracRC.x;
setOutputAtIndex(index, newValue);
}
}
`}};function que(e){let{inputs:t,backend:a,attrs:n}=e,{images:r}=t,{alignCorners:s,size:i,halfPixelCenters:o}=n,[l,u]=i,p=s&&l>1?1:0,c=s&&u>1?1:0,d=[{type:"float32",data:[p,c]},{type:"float32",data:[o?.5:0]}],h=new jue(r.shape,l,u);return a.runWebGPUProgram(h,[r],"float32",d)}var Xue={kernelName:Xi,backendName:"webgpu",kernelFunc:que},Kue=class{constructor(e,t,a,n){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, roundBase : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,a,e[3]],this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.halfPixelCenters=n,this.shaderKey=`resizeNearest_${n}`}getUserCode(){let e;return this.halfPixelCenters?e="max((vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC, vec2<f32>(0.0))":e="vec2<f32>(rc) * effectiveInputOverOutputRatioRC",`
${Ce("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let b = coords[0];
let d = coords[3];
let rc = coords.yz;
let effectiveInSize = vec2<f32>(
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveOutSize = vec2<f32>(
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveInputOverOutputRatioRC =
effectiveInSize / effectiveOutSize;
// Fractional source index
let sourceFracIndexRC = ${e};
// Compute the coordinators of nearest neighbor point.
let inputShapeRC = vec2<f32>(f32(uniforms.xShape.y), f32(uniforms.xShape.z));
let sourceNearestRC = vec2<i32>(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + uniforms.roundBase)));
let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutputAtIndex(index, newValue);
}
}
`}};function Zue(e){let{inputs:t,backend:a,attrs:n}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,p=s&&l>1?1:0,c=s&&u>1?1:0,d=[{type:"float32",data:[p,c]},{type:"float32",data:[s?.5:0]}],h=new Kue(r.shape,l,u,i);return a.runWebGPUProgram(h,[r],r.dtype,d)}var Yue={kernelName:qi,backendName:"webgpu",kernelFunc:Zue},Jue=class{constructor(e){this.variableNames=["x"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.uniforms=" axis : vec4<i32>,",this.shaderKey="reverse"}getUserCode(){return`
// Using uniform variables as judging conditions, so the function has
// coherent execution within all threads.
fn getReverseCoords(coords : vec4<i32>) -> vec4<i32> {
var reverseCoords = coords;
if (uniforms.axis[0] == 1) {
reverseCoords[0] = uniforms.xShape[0] - coords[0] - 1;
}
if (uniforms.axis[1] == 1) {
reverseCoords[1] = uniforms.xShape[1] - coords[1] - 1;
}
if (uniforms.axis[2] == 1) {
reverseCoords[2] = uniforms.xShape[2] - coords[2] - 1;
}
if (uniforms.axis[3] == 1) {
reverseCoords[3] = uniforms.xShape[3] - coords[3] - 1;
}
return reverseCoords;
}
${Ce("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let reverseCoords = getReverseCoords(coords);
setOutputAtIndex(index, getX(reverseCoords[0],
reverseCoords[1], reverseCoords[2], reverseCoords[3]));
}
}
`}};function Que(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{dims:s}=n,i=r.shape.length;if(i===0)return Za({inputs:{x:r},backend:a});let o=r.shape,l=[1,1,1,1];o.forEach((g,x)=>{let A=x+4-i;l[A]=g});let u=v.parseAxisParam(s,r.shape),p=[0,0,0,0];u.forEach(g=>{let x=g+4-i;p[x]=1});let c=[{type:"int32",data:p}],d=Se({inputs:{x:r},backend:a,attrs:{shape:l}}),h=new Jue(l),f=a.runWebGPUProgram(h,[d],d.dtype,c);a.disposeData(d.dataId);let m=Se({inputs:{x:f},backend:a,attrs:{shape:o}});return a.disposeData(f.dataId),m}var ede={kernelName:Zi,backendName:"webgpu",kernelFunc:Que},tde=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.uniforms=`centerX : f32, centerY : f32, sinRadians : f32,
cosRadians : f32,`,this.shaderKey="rotate",this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32,",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3<f32>,",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return`
${Ce("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let coordXFloat = (f32(coords[2]) - uniforms.centerX) *
uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *
uniforms.sinRadians;
let coordYFloat = (f32(coords[2]) - uniforms.centerX) *
uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *
uniforms.cosRadians;
let coordX = i32(round(coordXFloat + uniforms.centerX));
let coordY = i32(round(coordYFloat + uniforms.centerY));
${this.fillSnippet}
if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&
coordY < uniforms.xShape[1]) {
outputValue = getX(coords[0], coordY, coordX, coords[3]);
}
setOutputAtIndex(index, outputValue);
}
}
`}},ade={kernelName:ho,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:a})=>{let{image:n}=e,{radians:r,fillValue:s,center:i}=t,o=a,l=new tde(n.shape,s),[u,p]=T.getImageCenter(i,n.shape[1],n.shape[2]),c=[{type:"float32",data:[u]},{type:"float32",data:[p]},{type:"float32",data:[Math.sin(r)]},{type:"float32",data:[Math.cos(r)]}];return typeof s=="number"?c.push({type:"float32",data:[Number.parseFloat(s.toFixed(2))]}):c.push({type:"float32",data:s}),o.runWebGPUProgram(l,[n],n.dtype,c)}},nde=it({opType:de.RSQRT,cpuKernelImpl:Yse}),rde={kernelName:Yi,backendName:"webgpu",kernelFunc:nde},Ac=class{constructor(e,t,a,n,r,s,i,o=!0){this.variableNames=["updates","indices"],this.workgroupSize=[64,1,1],this.atomic=!0,this.outputShape=s,this.type=i,this.sumDupeIndices=o,this.dispatchLayout=Ve(e),this.dispatch=Ne(this.dispatchLayout,e,this.workgroupSize),this.sliceDimGreaterThanOne=t>1,this.shaderKey=`scatter_${a}_${n}_${this.sliceDimGreaterThanOne}_${i}_${o}`;let l=ra(r.length);this.uniforms=`sliceDim : i32, strides: ${l}, updatesSize: i32,`,this.updatesRank=n,this.indicesRank=a}getUserCode(){let e="";this.indicesRank===1?e="coords[0]":this.indicesRank===2&&(e="coords[0], j");let t=`getIndices(${e})`,a=this.sliceDimGreaterThanOne?"uniforms.strides[j]":"uniforms.strides",n="",r="";this.dispatchLayout.x.length===1?(n="flattenedIndex",r=`
fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 {
return index;
}
`):this.dispatchLayout.x.length===2&&(n="vec2<i32>(flattenedIndex, coords[1])",r=`
fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2<i32> {
// N.B. |updates| could be a scalar tensor, conceptually representing a
// 2D tensor with all values equal to that. By design, its size must be
// the same as |outShape[1]| in one dimension, and |indicesShape[0]|
// gives the other.
let sliceSize = uniforms.outShape[1];
let d0 = index / sliceSize;
let d1 = index - d0 * sliceSize;
return vec2<i32>(d0, d1);
}
`);let s=`getUpdates(${Array.from({length:this.updatesRank},(o,l)=>`coords[${l}]`).join(", ")})`,i=(o,l)=>{let u=`atomicAdd(${o}, bitcast<i32>(${l}))`;this.type==="float32"&&(u=`
{
var oldBits = 0;
var newBits = bitcast<i32>(${l});
loop {
let info = atomicCompareExchangeWeak(${o}, oldBits, newBits);
if (info.exchanged) {
break;
}
oldBits = info.old_value;
let oldValue = bitcast<f32>(oldBits);
let newValue = oldValue + (${l});
newBits = bitcast<i32>(newValue);
}
}
`);let p=`atomicStore(${o}, bitcast<i32>(${l}));`;return this.sumDupeIndices?u:p};return`
${r}
${Ce("index")} {
if (index < uniforms.updatesSize) {
let coords = getUpdatesCoordsFromFlatIndex(index);
var flattenedIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexInside = i32(round(${t}));
flattenedIndex = flattenedIndex + indexInside * ${a};
}
let updateValue =
${ad(this.type,!1)}(${s});
let flatIndex = getOutputIndexFromCoords(${n});
${i("&result[flatIndex]","updateValue")};
}
}`}};function sde(e){let{inputs:t,backend:a,attrs:n}=e,{indices:r,updates:s}=t,{shape:i}=n,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:c}=T.calculateShapes(s,r,i),d=[c/u,u];if(c===0)return a.makeTensorInfo(i,r.dtype);let h=Se({inputs:{x:r},backend:a,attrs:{shape:[l,o]}}),f=Se({inputs:{x:s},backend:a,attrs:{shape:[l,u]}}),m=f.dtype,g=Sr({backend:a,attrs:{shape:d,value:0,dtype:m}}),x=v.sizeFromShape(f.shape),A=[{type:"int32",data:[o]},{type:"int32",data:p},{type:"int32",data:[x]}],y=new Ac(f.shape,o,h.shape.length,f.shape.length,p,d,m),b=a.runWebGPUProgram(y,[f,h],m,A,g),w=Se({inputs:{x:b},backend:a,attrs:{shape:i}});return a.disposeData(h.dataId),a.disposeData(f.dataId),a.disposeData(b.dataId),w}var ide={kernelName:Ji,backendName:"webgpu",kernelFunc:sde},ode=class{constructor(e,t){this.outputShape=[],this.variableNames=["sortedSequence","values"],this.uniforms="numInputs : i32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.side=t,this.shaderKey=`search_sorted_${t}`}getUserCode(){return`
fn findBound(batch: i32, value: f32) -> i32 {
var left = i32(0);
var right = uniforms.numInputs;
while (left < right) {
var mid = (left + right) / 2;
if (getSortedSequence(batch, mid) ${this.side==="left"?"<":"<="} value) {
left = mid + 1;
} else {
right = mid;
}
}
return right;
}
${Ce("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let value = getValuesByOutputIndex(index);
setOutputAtIndexI32(index, findBound(coords[0], value));
}
}
`}};function lde(e){let{inputs:t,backend:a,attrs:n}=e,{sortedSequence:r,values:s}=t,{side:i}=n,o=new ode([s.shape[0],s.shape[1]],i),l=[{type:"int32",data:[r.shape[1]]}];return a.runWebGPUProgram(o,[r,s],"int32",l)}var ude={kernelName:$d,backendName:"webgpu",kernelFunc:lde},dde=class{constructor(e,t,a){this.variableNames=["c","a","b"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.cRank=e,this.rank=a,this.shaderKey="select"}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let a=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[],r=[];for(let s=0;s<this.outputShape.length;s++)r.push(`${a[s]}`),s<this.cRank&&n.push(`${a[s]}`);e=n.join(),t=r.join()}return`
${Ce("index")} {
if (index < uniforms.size) {
let resRC = getCoordsFromIndex(index);
let cVal = getC(${e});
if (cVal >= 1.0) {
setOutputAtIndex(index, getA(${t}));
} else {
setOutputAtIndex(index, getB(${t}));
}
}
}
`}};function pde(e){let{inputs:t,backend:a}=e,{condition:n,t:r,e:s}=t,i=new dde(n.shape.length,r.shape,r.shape.length);return a.runWebGPUProgram(i,[n,r,s],ca(r.dtype,s.dtype))}var cde={kernelName:Xl,backendName:"webgpu",kernelFunc:pde},hde=it({opType:de.SIGMOID}),fde={kernelName:eo,backendName:"webgpu",kernelFunc:hde},mde=it({opType:de.SIN}),gde={kernelName:Qi,backendName:"webgpu",kernelFunc:mde},xde=it({opType:de.SINH}),Ade={kernelName:Zl,backendName:"webgpu",kernelFunc:xde},X8=ua({opType:De.SUB,cpuKernelImpl:nie,supportsComplex:!0}),yde={kernelName:io,backendName:"webgpu",kernelFunc:X8};function bde(e){let{inputs:t,backend:a,attrs:n}=e,{logits:r}=t,{dim:s}=n,i=v.parseAxisParam([s],r.shape),o=z3({inputs:{x:r},backend:a,attrs:{reductionIndices:i,keepDims:!1}}),l=T.expandShapeToKeepDim(o.shape,i),u=Se({inputs:{x:o},backend:a,attrs:{shape:l}}),p=X8({inputs:{a:r,b:u},backend:a}),c=V8({inputs:{x:p},backend:a}),d=L3({inputs:{x:c},backend:a,attrs:{axis:i,keepDims:!1}}),h=Se({inputs:{x:d},backend:a,attrs:{shape:l}}),f=q8({inputs:{a:c,b:h},backend:a});return a.disposeData(o.dataId),a.disposeData(u.dataId),a.disposeData(p.dataId),a.disposeData(c.dataId),a.disposeData(d.dataId),a.disposeData(h.dataId),f}var vde={kernelName:no,backendName:"webgpu",kernelFunc:bde},wde=e=>{let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{blockShape:s,paddings:i}=n;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let o=s.reduce((x,A)=>x*A),l=[[0,0]];l.push(...i);for(let x=1+s.length;x<r.shape.length;++x)l.push([0,0]);let u=[],p=j8({inputs:{x:r},backend:a,attrs:{paddings:l,constantValue:0}}),c=T.getReshaped(p.shape,s,o,!1),d=T.getPermuted(c.length,s.length,!1),h=T.getReshapedPermuted(p.shape,s,o,!1),f=Se({inputs:{x:p},backend:a,attrs:{shape:c}}),m=yr({inputs:{x:f},backend:a,attrs:{perm:d}}),g=Se({inputs:{x:m},backend:a,attrs:{shape:h}});return u.push(p),u.push(f),u.push(m),u.forEach(x=>a.disposeData(x.dataId)),g},kde={kernelName:Yl,backendName:"webgpu",kernelFunc:wde},Ide=class{constructor(e,t){this.variableNames=["A"],this.workgroupSize=[64,1,1],this.size=!0;let a=new Array(e.length);for(let n=0;n<a.length;n++)a[n]=e[n]*t[n];this.outputShape=a,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.rank=this.outputShape.length,this.shaderKey="tile"}getUserCode(){let e=Sde(this.rank,"uniforms.");return`
${Ce("index")} {
if (index < uniforms.size) {
let resRC = getCoordsFromIndex(index);
setOutputAtIndex(index, getA(${e}));
}
}
`}};function Sde(e,t=""){if(e>=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let a=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let r=0;r<e;r++)n.push(`(${a[r]} % ${t}aShape[${r}])`);return n.join()}function K8(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{reps:s}=n;if(a.shouldExecuteOnCPU([r])||r.dtype==="string"||r.shape.length>=5){let o=a.readSync(r.dataId),l=r.dtype==="string"?o.map(c=>v.decodeString(c)):o,u=Me(r.shape,r.dtype,l),p=rie(u,s);return a.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new Ide(r.shape,s);return a.runWebGPUProgram(i,[r],r.dtype)}var Tde={kernelName:ts,backendName:"webgpu",kernelFunc:K8};function Cde(e){let{inputs:t,backend:a,attrs:n}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=n,{sliceRank:l,numUpdates:u,sliceSize:p,strides:c,outputSize:d}=T.calculateShapes(s,r,o),h=!1;if(s.dtype==="string"){let E=a.bufferSync(r),_=a.bufferSync(s),$=v.decodeString(a.readSync(i.dataId)[0]),M=Jse(E,_,o,d,p,u,l,c,$,h);return a.makeTensorInfo(o,M.dtype,M.values)}let f=[d/p,p],m=Se({inputs:{x:r},backend:a,attrs:{shape:[u,l]}}),g=s.shape.length?Se({inputs:{x:s},backend:a,attrs:{shape:[u,p]}}):Za({inputs:{x:s},backend:a}),x=g.dtype,A=a.makeTensorInfo([],x,v.makeZerosTypedArray(1,x)),y=Se({inputs:{x:i},backend:a,attrs:{shape:Array(f.length).fill(1)}}),b=K8({inputs:{x:y},backend:a,attrs:{reps:f}}),w=v.sizeFromShape([u,p]),S=[{type:"int32",data:[l]},{type:"int32",data:c},{type:"int32",data:[w]}];switch(u){case 0:break;case 1:{let E=new Ac([u,p],l,m.shape.length,g.shape.length,c,f,x,h);a.runWebGPUProgram(E,[g,m],x,S,b)}break;default:{let E=new Ac([u,p],l,m.shape.length,A.shape.length,c,f,x,h);a.runWebGPUProgram(E,[A,m],x,S,b)}{let E=new Ac([u,p],l,m.shape.length,g.shape.length,c,f,x);a.runWebGPUProgram(E,[g,m],x,S,b)}}let C=Se({inputs:{x:b},backend:a,attrs:{shape:o}});return a.disposeData(m.dataId),a.disposeData(g.dataId),a.disposeData(y.dataId),a.disposeData(A.dataId),a.disposeData(b.dataId),C}var Nde={kernelName:Ld,backendName:"webgpu",kernelFunc:Cde};function Ede(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,r.shape)[0],l=T.prepareSplitSize(r,s,o),u=r.shape.length,p=new Array(u).fill(0),c=r.shape.slice();return l.map(d=>{let h=[...c];h[o]=d;let f=xu({inputs:{x:r},backend:a,attrs:{begin:p,size:h}});return p[o]+=d,f})}var Rde={kernelName:Jl,backendName:"webgpu",kernelFunc:Ede},Mde=it({opType:de.SQRT}),$de={kernelName:to,backendName:"webgpu",kernelFunc:Mde},_de={kernelName:Bd,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:a}=e,n=t,r=new mp(a.shape,de.SQUARE);return n.runWebGPUProgram(r,[a],a.dtype)}},Pde=ua({opType:De.SQUARED_DIFFERENCE}),Fde={kernelName:ro,backendName:"webgpu",kernelFunc:Pde},Ode=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize,[this.workPerThread,1,1]);let t=ra(this.outputShape.length);this.uniforms=`begin : ${t}, strides : ${t}, `,this.shaderKey="stridedSlice"}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let a=0;t=this.outputShape.map((n,r)=>(a++,this.outputShape.length===1?`coords * uniforms.strides[${r}] + uniforms.begin[${r}]`:`coords[${a-1}] * uniforms.strides[${r}] + uniforms.begin[${r}]`)).join(",")}return`
${Ce("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
setOutputAtIndex(index, getX(${t}));
}
}
`}};function Dde(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:c,shrinkAxisMask:d}=n,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:x,begin:A,end:y,strides:b}=It.sliceInfo(r.shape,s,i,o,l,u,p,c,d),w;if(m)w=Se({inputs:{x:r},backend:a,attrs:{shape:f}});else if(g||x){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let S=It.computeOutShape(A,y,b),C=xu({inputs:{x:r},backend:a,attrs:{begin:A,size:S}});w=Se({inputs:{x:C},backend:a,attrs:{shape:f}}),a.disposeData(C.dataId)}else if(a.shouldExecuteOnCPU([r])){let S=a.readSync(r.dataId),C=Me(r.shape,r.dtype,S),E=tie(h,C,b,A);w=a.makeTensorInfo(f,r.dtype,E.values)}else{let S=new Ode(h),C=[{type:"int32",data:A},{type:"int32",data:b}],E=a.runWebGPUProgram(S,[r],r.dtype,C);w=Se({inputs:{x:E},backend:a,attrs:{shape:f}}),a.disposeData(E.dataId)}return w}var zde={kernelName:so,backendName:"webgpu",kernelFunc:Dde};function Lde(e){let{inputs:t,backend:a,attrs:n}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=n,{data:p,dataSplits:c}=t,d=a.readSync(p.dataId),h=a.readSync(c.dataId),[f,m]=aie(d,h,r,s,i,o,l,u);return[a.makeTensorInfo([f.length],"string",f),a.makeTensorInfo(c.shape,"int32",m)]}var Bde={kernelName:eu,backendName:"webgpu",kernelFunc:Lde},Wde=it({opType:de.TAN}),Vde={kernelName:oo,backendName:"webgpu",kernelFunc:Wde},Ude=it({opType:de.TANH}),Gde={kernelName:lo,backendName:"webgpu",kernelFunc:Ude},Hde=class{constructor(e){this.variableNames=["x","indices"],this.workgroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.uniforms=`inputSize : i32, firstPass : i32, negativeInf : f32,
dir : i32, inc : i32,`,this.shaderKey="swap"}getUserCode(){return`
${Ce("index")} {
if (index < uniforms.size) {
let outC = getCoordsFromIndex(index);
let batch = outC[0];
let elemIdx = outC[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced
// above, Figure5(a) shows that element[1] is in the second half of
// the group when group size is 2, but it is in the first half of
// the group when group size is 4.
let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc;
var i = 0;
if (isFirstInPair) {
i = elemIdx;
} else {
i = elemIdx - uniforms.inc;
}
var i0 = 0;
if (uniforms.firstPass == 1) {
i0 = i;
} else {
i0 = i32(getIndices(batch, i));
}
var i1 = 0;
if (uniforms.firstPass == 1) {
i1 = i + uniforms.inc;
} else {
i1 = i32(getIndices(batch, i + uniforms.inc));
}
var x0 = f32(0.0);
var x1 = f32(0.0);
if (i0 < uniforms.inputSize) {
x0 = getX(batch, i0);
} else {
x0 = uniforms.negativeInf;
}
if (i1 < uniforms.inputSize) {
x1 = getX(batch, i1);
} else {
x1 = uniforms.negativeInf;
}
let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir;
let isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) {
// Elements in opposite order of direction
let iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutputAtIndex(index, f32(i0));
} else {
setOutputAtIndex(index, f32(i1));
}
}
}
`}},jde=class{constructor(e){this.variableNames=["x","indices"],this.workgroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.uniforms="inputSize : i32, firstPass : i32, k : i32,",this.shaderKey="merge"}getUserCode(){return`
${Ce("index")} {
if (index < uniforms.size) {
let outC = getCoordsFromIndex(index);
let batch = outC[0];
let elemIdx = outC[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _
// (k=4), we only need to output the indices at positions |, the
// indices at positions _ can be thrown away, see Figure5(b) After
// Phase 2 (Merge phase) in the Bitonic Top K paper referenced
// above.
// For example, the paper shows we only need to output the orange
// bars. The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back to
// the previous sequence to find the corresponding value, we need
// to double the index. When we double the index, we basically
// interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k
// position of each 2k positions by - elemIdx % k. E.g. for output
// at index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
var i = 0;
if (elemIdx < uniforms.k) {
i = elemIdx;
} else {
i = elemIdx * 2 - elemIdx % uniforms.k;
}
var i0 = 0;
if (uniforms.firstPass == 1) {
i0 = i;
} else {
i0 = i32(getIndices(batch, i));
}
var i1 = 0;
if (uniforms.firstPass == 1) {
i1 = i + uniforms.k;
} else {
i1 = i32(getIndices(batch, i + uniforms.k));
}
let x0 = getX(batch, i0);
var x1 = f32(0.0);
if (i1 < uniforms.inputSize) {
x1 = getX(batch, i1);
} else {
x1 = x0;
}
if (x0 >= x1) {
setOutputAtIndex(index, f32(i0));
} else {
setOutputAtIndex(index, f32(i1));
}
}
}
`}};function Yo(e,t){t!==null&&e.disposeData(t.dataId)}function Yx(e){let t=1;for(;t<e;)t*=2;return t}function qde(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{k:s,sorted:i}=n,o=r.shape,l=o[o.length-1];if(a.shouldExecuteOnCPU([r])){let b=a.readSync(r.dataId),[w,S]=sie(b,o,r.dtype,s,i);return[a.makeTensorInfo(w.shape,w.dtype,w.values),a.makeTensorInfo(S.shape,S.dtype,S.values)]}if(s===0)return o[o.length-1]=0,[a.makeTensorInfo(o,r.dtype,[]),a.makeTensorInfo(o,"int32",[])];if(l===1)return[r,Sr({attrs:{shape:o,dtype:"int32",value:0},backend:a})];let u=v.sizeFromShape(o)/l,p=Se({inputs:{x:r},attrs:{shape:[u,l]},backend:a}),c=Yx(s),d=Yx(l),h=null,f=()=>h===null?[p,p]:[p,h],m=(b,w,S)=>{let C=f(),E=new Hde(S),_=[{type:"int32",data:[l]},{type:"int32",data:[h===null?1:0]},{type:"float32",data:[Number.NEGATIVE_INFINITY]},{type:"int32",data:[b]},{type:"int32",data:[w]}],$=h;h=a.runWebGPUProgram(E,C,"int32",_),Yo(a,$)};for(let b=1;b<c;b*=2){let w=b*2;for(let S=b;S>=1;S/=2)m(w,S,[u,d])}for(let b=d;b>c;b/=2){let w=f(),S=new jde([u,b/2]),C=[{type:"int32",data:[l]},{type:"int32",data:[h===null?1:0]},{type:"int32",data:[c]}],E=h;h=a.runWebGPUProgram(S,w,"int32",C),Yo(a,E);let _=c/2,$=_*2;for(let M=_;M>=1;M/=2)m($,M,h.shape)}let g=h;h=xu({inputs:{x:h},backend:a,attrs:{begin:0,size:[u,s]}}),Yo(a,g);let x=G8({inputs:{x:p,indices:h},backend:a,attrs:{axis:1,batchDims:1}});Yo(a,p);let A=o.slice(0,-1);A.push(s),g=h,h=Se({inputs:{x:h},attrs:{shape:A},backend:a}),Yo(a,g);let y=x;return x=Se({inputs:{x},attrs:{shape:A},backend:a}),Yo(a,y),[x,h]}var Xde={kernelName:uo,backendName:"webgpu",kernelFunc:qde},Kde=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32, fillModeId : i32, fillValue : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=Ne(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="transform"}getUserCode(){return`
fn mapCoord(outCoord : f32, len : f32) -> f32{
var inCoord = outCoord;
if(uniforms.fillModeId == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +
inCoord;
}
if (inCoord < -len) {
inCoord = inCoord + sz2;
} else {
inCoord = -inCoord - 1.0;
}
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz2 = 2.0 * len;
inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (uniforms.fillModeId == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz = len - 1.0;
inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz = len - 1.0;
inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (uniforms.fillModeId == 4) {
return clamp(outCoord, 0.0, len - 1.0);
}
return outCoord;
}
fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,
channel : i32) -> f32 {
var outputValue : f32;
if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = uniforms.fillValue;
}
return outputValue;
}
${Ce("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
var outputValue : f32;
let batch = coords[0];
let x = coords[2];
let y = coords[1];
let channel = coords[3];
let xf = f32(x);
let yf = f32(y);
let a1 = getTransforms(batch, 0);
let a2 = getTransforms(batch, 1);
let a3 = getTransforms(batch, 2);
let b1 = getTransforms(batch, 3);
let b2 = getTransforms(batch, 4);
let b3 = getTransforms(batch, 5);
let c1 = getTransforms(batch, 6);
let c2 = getTransforms(batch, 7);
let projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = uniforms.fillValue;
} else {
let inX = (a1 * xf + a2 * yf + a3) / projection;
let inY = (b1 * xf + b2 * yf + b3) / projection;
let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));
let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));
if (uniforms.interpolationModeId == 1) {
let coordY = i32(round(mapY));
let coordX = i32(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
let yFloor = floor(mapY);
let xFloor = floor(mapX);
let yCeil = yFloor + 1.0;
let xCeil = xFloor + 1.0;
let valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);
let valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutputAtIndex(index, outputValue);
}
}
`}};function Zde(e){let{inputs:t,backend:a,attrs:n}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[p,c,d,h]=r.shape,[f,m]=u!=null?u:[c,d],g=[p,f,m,h],x=new Kde(g),A=i==="nearest"?1:2,y;switch(o){case"constant":y=1;break;case"reflect":y=2;break;case"wrap":y=3;break;case"nearest":y=4;break;default:y=1;break}let b=[{type:"int32",data:[A]},{type:"int32",data:[y]},{type:"float32",data:[l]}];return a.runWebGPUProgram(x,[r,s],"float32",b)}var Yde={kernelName:po,backendName:"webgpu",kernelFunc:Zde};function Jde(e){let{inputs:t,backend:a,attrs:n}=e,{value:r}=t,{axis:s}=n;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],u=new Array(o-1),p=0;for(let m=0;m<o;m++)m!==s&&(u[p++]=i.shape[m]);let c=[],d=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let f=new Array(l);for(let m=0;m<f.length;m++){d[s]=m;let g=xu({inputs:{x:i},backend:a,attrs:{begin:d,size:h}}),x=Se({inputs:{x:g},backend:a,attrs:{shape:u}});f[m]=x,c.push(g)}return c.forEach(m=>a.disposeData(m.dataId)),f}var Qde={kernelName:tu,backendName:"webgpu",kernelFunc:Jde},epe=[Sse,lie,die,cie,fie,xie,Iie,Tie,Nie,Rie,$ie,Pie,Oie,zie,Bie,Hie,qie,Jie,aoe,ioe,loe,coe,Cse,goe,Ioe,Eoe,Moe,_oe,Ooe,zoe,Boe,Voe,Hoe,Xoe,Joe,ele,ale,rle,sle,ile,lle,dle,wse,cle,Ale,fle,gle,vle,kle,Sle,Nle,Mle,_le,Fle,Tse,Dle,foe,Lle,Wle,Ule,Hle,qle,Kle,Qle,Yle,tue,nue,Vie,sue,oue,Uie,uue,pue,hue,mue,Koe,xue,yue,vue,noe,Iue,Tue,Nue,Rue,$ue,Pue,Oue,zue,roe,Lue,Wue,Uue,Hue,kse,Xue,Yue,ede,ade,rde,ide,ude,cde,fde,gde,Ade,Zie,zde,Bde,vde,kde,Nde,Rde,$de,_de,Fde,yde,Zoe,Vde,Gde,Tde,Xde,Yde,vie,Qde,Sue];for(let e of epe)fn(e);var Jx="4.1.0",tpe="4.1.0",ape="4.1.0",npe="4.1.0",rpe="4.1.0",spe="0.0.1-alpha.16",xp={tfjs:Jx,"tfjs-core":Jx,"tfjs-converter":tpe,"tfjs-backend-cpu":ape,"tfjs-backend-webgl":npe,"tfjs-backend-wasm":rpe,"tfjs-backend-webgpu":spe};function K(...e){let t=new Date,a=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(a,"Human:",...e)}function Z8(e,t){let a=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${a}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${r}`);return r}var te=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function B3(e,t,a="config",n=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")B3(e[r],t[r],r,n);else{let s=e&&typeof e[r]!="undefined";s||n.push({reason:"unknown property",where:`${a}.${r} = ${t[r]}`});let i=e&&typeof e[r]==typeof t[r];s&&!i&&n.push({reason:"property type mismatch",where:`${a}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&a==="config"&&n.length>0&&K("invalid configuration",n),n}function Ct(...e){let t=a=>a&&typeof a=="object";return e.reduce((a,n)=>(Object.keys(n||{}).forEach(r=>{let s=a[r],i=n[r];Array.isArray(s)&&Array.isArray(i)?a[r]=s.concat(...i):t(s)&&t(i)?a[r]=Ct(s,i):a[r]=i}),a),{})}var wo={backend:"",modelBasePath:"",cacheModels:!0,validateModels:!0,wasmPath:"",wasmPlatformFetch:!1,debug:!1,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,flags:{},softwareKernels:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,autoBrightness:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json",keepInvalid:!1},attention:{enabled:!1,modelPath:"facemesh-attention.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"rvm.json",ratio:.5,mode:"default"}};var Y8=`
precision highp float;
attribute vec2 pos;
attribute vec2 uv;
varying vec2 vUv;
uniform float flipY;
void main(void) {
vUv = uv;
gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);
}
`;var J8=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform float m[20];
void main(void) {
vec4 c = texture2D(texture, vUv);
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];
gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];
}
`,Q8=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform float m[20];
void main(void) {
vec4 c = texture2D(texture, vUv);
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];
gl_FragColor.a = c.a;
}
`,e9=`
precision highp float;
varying vec2 vUv;
uniform vec2 size;
uniform sampler2D texture;
vec2 pixelate(vec2 coord, vec2 size) {
return floor( coord / size ) * size;
}
void main(void) {
gl_FragColor = vec4(0.0);
vec2 coord = pixelate(vUv, size);
gl_FragColor += texture2D(texture, coord);
}
`,t9=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform vec2 px;
void main(void) {
gl_FragColor = vec4(0.0);
gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;
gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;
gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;
gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;
gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;
gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;
gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;
gl_FragColor += texture2D(texture, vUv )*0.159576912161;
gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;
gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;
gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;
gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;
gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;
gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;
gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;
}
`,a9=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform vec2 px;
uniform float m[9];
void main(void) {
vec4 c11 = texture2D(texture, vUv - px); // top left
vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center
vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right
vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left
vec4 c22 = texture2D(texture, vUv); // mid center
vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right
vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left
vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center
vec4 c33 = texture2D(texture, vUv + px ); // bottom right
gl_FragColor =
c11 * m[0] + c12 * m[1] + c22 * m[2] +
c21 * m[3] + c22 * m[4] + c23 * m[5] +
c31 * m[6] + c32 * m[7] + c33 * m[8];
gl_FragColor.a = c22.a;
}
`;var W3=(e,t,a)=>{let n=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(n,(r,s)=>(a[s]=0,r))},V3=class{constructor(t,a,n){le(this,"uniform",{});le(this,"attribute",{});le(this,"gl");le(this,"id");le(this,"compile",(t,a)=>{let n=this.gl.createShader(a);return n?(this.gl.shaderSource(n,t),this.gl.compileShader(n),this.gl.getShaderParameter(n,this.gl.COMPILE_STATUS)?n:(K(`filter: gl compile failed: ${this.gl.getShaderInfoLog(n)||"unknown"}`),null)):(K("filter: could not create shader"),null)});this.gl=t;let r=this.compile(a,this.gl.VERTEX_SHADER),s=this.compile(n,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),!(!r||!s)){if(!this.id){K("filter: could not create webgl program");return}if(this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,s),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS)){K(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)||"unknown"}`);return}this.gl.useProgram(this.id),W3(a,"attribute",this.attribute);for(let i in this.attribute)this.attribute[i]=this.gl.getAttribLocation(this.id,i);W3(a,"uniform",this.uniform),W3(n,"uniform",this.uniform);for(let i in this.uniform)this.uniform[i]=this.gl.getUniformLocation(this.id,i)}}};function n9(){let e=0,t=null,a=!1,n=-1,r=[null,null],s=[],i=null,o=null,l=Cn(100,100),u={},p={INTERMEDIATE:1},c=l.getContext("webgl");if(!c){K("filter: cannot get webgl context");return}this.gl=c;function d(A,y){if(!(A===l.width&&y===l.height)){if(l.width=A,l.height=y,!i){let b=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);i=c.createBuffer(),c.bindBuffer(c.ARRAY_BUFFER,i),c.bufferData(c.ARRAY_BUFFER,b,c.STATIC_DRAW),c.pixelStorei(c.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}c.viewport(0,0,l.width,l.height),r=[null,null]}}function h(A,y){let b=c.createFramebuffer();c.bindFramebuffer(c.FRAMEBUFFER,b);let w=c.createRenderbuffer();c.bindRenderbuffer(c.RENDERBUFFER,w);let S=c.createTexture();return c.bindTexture(c.TEXTURE_2D,S),c.texImage2D(c.TEXTURE_2D,0,c.RGBA,A,y,0,c.RGBA,c.UNSIGNED_BYTE,null),c.texParameteri(c.TEXTURE_2D,c.TEXTURE_MAG_FILTER,c.LINEAR),c.texParameteri(c.TEXTURE_2D,c.TEXTURE_MIN_FILTER,c.LINEAR),c.texParameteri(c.TEXTURE_2D,c.TEXTURE_WRAP_S,c.CLAMP_TO_EDGE),c.texParameteri(c.TEXTURE_2D,c.TEXTURE_WRAP_T,c.CLAMP_TO_EDGE),c.framebufferTexture2D(c.FRAMEBUFFER,c.COLOR_ATTACHMENT0,c.TEXTURE_2D,S,0),c.bindTexture(c.TEXTURE_2D,null),c.bindFramebuffer(c.FRAMEBUFFER,null),{fbo:b,texture:S}}function f(A){return r[A]=r[A]||h(l.width,l.height),r[A]}function m(A=0){if(!o)return;let y=null,b=null,w=!1;e===0?y=t:y=f(n).texture||null,e++,a&&!(A&p.INTERMEDIATE)?(b=null,w=e%2===0):(n=(n+1)%2,b=f(n).fbo||null),c.bindTexture(c.TEXTURE_2D,y),c.bindFramebuffer(c.FRAMEBUFFER,b),c.uniform1f(o.uniform.flipY,w?-1:1),c.drawArrays(c.TRIANGLES,0,6)}function g(A){if(u[A])return o=u[A],c.useProgram((o?o.id:null)||null),o;if(o=new V3(c,Y8,A),!o)return K("filter: could not get webgl program"),null;let y=Float32Array.BYTES_PER_ELEMENT,b=4*y;return c.enableVertexAttribArray(o.attribute.pos),c.vertexAttribPointer(o.attribute.pos,2,c.FLOAT,!1,b,0*y),c.enableVertexAttribArray(o.attribute.uv),c.vertexAttribPointer(o.attribute.uv,2,c.FLOAT,!1,b,2*y),u[A]=o,o}let x={colorMatrix:A=>{let y=new Float32Array(A);y[4]/=255,y[9]/=255,y[14]/=255,y[19]/=255;let b=y[18]===1&&y[3]===0&&y[8]===0&&y[13]===0&&y[15]===0&&y[16]===0&&y[17]===0&&y[19]===0?Q8:J8,w=g(b);!w||(c.uniform1fv(w.uniform.m,y),m())},brightness:A=>{let y=(A||0)+1;x.colorMatrix([y,0,0,0,0,0,y,0,0,0,0,0,y,0,0,0,0,0,1,0])},saturation:A=>{let y=(A||0)*2/3+1,b=(y-1)*-.5;x.colorMatrix([y,b,b,0,0,b,y,b,0,0,b,b,y,0,0,0,0,0,1,0])},desaturate:()=>{x.saturation(-1)},contrast:A=>{let y=(A||0)+1,b=-128*(y-1);x.colorMatrix([y,0,0,0,b,0,y,0,0,b,0,0,y,0,b,0,0,0,1,0])},negative:()=>{x.contrast(-2)},hue:A=>{A=(A||0)/180*Math.PI;let y=Math.cos(A),b=Math.sin(A),w=.213,S=.715,C=.072;x.colorMatrix([w+y*(1-w)+b*-w,S+y*-S+b*-S,C+y*-C+b*(1-C),0,0,w+y*-w+b*.143,S+y*(1-S)+b*.14,C+y*-C+b*-.283,0,0,w+y*-w+b*-(1-w),S+y*-S+b*S,C+y*(1-C)+b*C,0,0,0,0,0,1,0])},desaturateLuminance:()=>{x.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{x.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{x.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{x.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{x.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{x.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{x.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{x.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:A=>{let y=new Float32Array(A),b=1/l.width,w=1/l.height,S=g(a9);!S||(c.uniform1fv(S.uniform.m,y),c.uniform2f(S.uniform.px,b,w),m())},detectEdges:()=>{x.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{x.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{x.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:A=>{let y=A||1;x.convolution.call(this,[0,-1*y,0,-1*y,1+4*y,-1*y,0,-1*y,0])},emboss:A=>{let y=A||1;x.convolution.call(this,[-2*y,-1*y,0,-1*y,1,1*y,0,1*y,2*y])},blur:A=>{let y=A/7/l.width,b=A/7/l.height,w=g(t9);!w||(c.uniform2f(w.uniform.px,0,b),m(p.INTERMEDIATE),c.uniform2f(w.uniform.px,y,0),m())},pixelate:A=>{let y=A/l.width,b=A/l.height,w=g(e9);!w||(c.uniform2f(w.uniform.size,y,b),m())}};this.add=function(A){let y=Array.prototype.slice.call(arguments,1),b=x[A];s.push({func:b,args:y})},this.reset=function(){s=[]},this.get=function(){return s},this.apply=function(A){d(A.width,A.height),e=0,t||(t=c.createTexture()),c.bindTexture(c.TEXTURE_2D,t),c.texParameteri(c.TEXTURE_2D,c.TEXTURE_WRAP_S,c.CLAMP_TO_EDGE),c.texParameteri(c.TEXTURE_2D,c.TEXTURE_WRAP_T,c.CLAMP_TO_EDGE),c.texParameteri(c.TEXTURE_2D,c.TEXTURE_MIN_FILTER,c.NEAREST),c.texParameteri(c.TEXTURE_2D,c.TEXTURE_MAG_FILTER,c.NEAREST),c.texImage2D(c.TEXTURE_2D,0,c.RGBA,c.RGBA,c.UNSIGNED_BYTE,A);for(let y=0;y<s.length;y++){a=y===s.length-1;let b=s[y];b.func.apply(this,b.args||[])}return l},this.draw=function(A){return this.add("brightness",0),this.apply(A)}}async function Gh(e){let t=e.shape.length===4?_e(e):e,a=ka(t,3,2),n=[qr(a[0]),qr(a[1]),qr(a[2])],r=[pa(a[0]),pa(a[1]),pa(a[2])],s=await Promise.all(r.map(p=>p.data())),i=Math.max(s[0][0],s[1][0],s[2][0]),l=(i>1?255:1)/i,u;if(l>1){let p=[fe(a[0],n[0]),fe(a[1],n[1]),fe(a[2],n[2])],c=[fe(r[0],n[0]),fe(r[1],n[1]),fe(r[2],n[2])],d=[ae(p[0],l),ae(p[1],l),ae(p[2],l)],h=sa([d[0],d[1],d[2]],2);u=J(h,[1,t.shape[0]||0,t.shape[1]||0,3]),Y([...p,...c,...d])}else u=Gt(t,0);return Y([...a,...n,...r,a,t,e]),u}var Hh=3840,Jt=null,Qt=null,Au=null,xt,mn={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function U3(){mn.inputSum=0,mn.cacheDiff=1,mn.sumMethod=0,mn.inputTensor=void 0}function Cn(e,t){let a;if(ne.browser)if(ne.worker){if(typeof OffscreenCanvas=="undefined")throw new Error("canvas error: attempted to run in web worker but OffscreenCanvas is not supported");a=new OffscreenCanvas(e,t)}else{if(typeof document=="undefined")throw new Error("canvas error: attempted to run in browser but DOM is not defined");a=document.createElement("canvas"),a.width=e,a.height=t}else typeof ne.Canvas!="undefined"?a=new ne.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(a=new globalThis.Canvas(e,t));return a}function jh(e,t){let a=t||Cn(e.width,e.height);return a.getContext("2d").drawImage(e,0,0),a}async function qh(e,t,a=!0){var d,h,f;if(!e)return t.debug&&K("input error: input is missing"),{tensor:null,canvas:null};if(!(e instanceof pt)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ne.Canvas!="undefined"&&e instanceof ne.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input error: type is not recognized");if(e instanceof pt){let m=null;if(e.isDisposedInternal)throw new Error("input error: attempted to use tensor but it is disposed");if(!e.shape)throw new Error("input error: attempted to use tensor without a shape");if(e.shape.length===3){if(e.shape[2]===3)m=Gt(e,0);else if(e.shape[2]===4){let g=sp(e,[0,0,0],[-1,-1,3]);m=Gt(g,0),Y(g)}}else e.shape.length===4&&(e.shape[3]===3?m=wa(e):e.shape[3]===4&&(m=fh(e,[0,0,0,0],[-1,-1,-1,3])));if(m==null||m.shape.length!==4||m.shape[0]!==1||m.shape[3]!==3)throw new Error(`input error: attempted to use tensor with unrecognized shape: ${e.shape.toString()}`);if(m.dtype==="int32"){let g=He(m,"float32");Y(m),m=g}return{tensor:m,canvas:t.filter.return?Qt:null}}if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&K("input stream is not ready"),{tensor:null,canvas:Jt};let n=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!n||!r)return t.debug&&K("cannot determine input dimensions"),{tensor:null,canvas:Jt};let s=n,i=r;if(s>Hh&&(s=Hh,i=Math.trunc(s*r/n)),i>Hh&&(i=Hh,s=Math.trunc(i*n/r)),(((d=t.filter)==null?void 0:d.width)||0)>0?s=t.filter.width:(((h=t.filter)==null?void 0:h.height)||0)>0&&(s=n*((t.filter.height||0)/r)),(t.filter.height||0)>0?i=t.filter.height:(t.filter.width||0)>0&&(i=r*((t.filter.width||0)/n)),!s||!i)throw new Error("input error: cannot determine dimension");(!Jt||Jt.width!==s||Jt.height!==i)&&(Jt=Cn(s,i));let o=Jt.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?o.putImageData(e,0,0):t.filter.flip&&typeof o.translate!="undefined"?(o.translate(n,0),o.scale(-1,1),o.drawImage(e,0,0,n,r,0,0,Jt.width,Jt.height),o.setTransform(1,0,0,1,0,0)):o.drawImage(e,0,0,n,r,0,0,Jt.width,Jt.height),(!Qt||Jt.width!==Qt.width||Jt.height!==Qt.height)&&(Qt=Cn(Jt.width,Jt.height)),t.filter.enabled&&ne.webgl.supported?(xt||(xt=ne.browser?new n9:null),ne.filter=!!xt,xt!=null&&xt.add?(xt.reset(),t.filter.brightness!==0&&xt.add("brightness",t.filter.brightness),t.filter.contrast!==0&&xt.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&xt.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&xt.add("blur",t.filter.blur),t.filter.saturation!==0&&xt.add("saturation",t.filter.saturation),t.filter.hue!==0&&xt.add("hue",t.filter.hue),t.filter.negative&&xt.add("negative"),t.filter.sepia&&xt.add("sepia"),t.filter.vintage&&xt.add("brownie"),t.filter.sepia&&xt.add("sepia"),t.filter.kodachrome&&xt.add("kodachrome"),t.filter.technicolor&&xt.add("technicolor"),t.filter.polaroid&&xt.add("polaroid"),t.filter.pixelate!==0&&xt.add("pixelate",t.filter.pixelate),((f=xt.get())==null?void 0:f.length)>1?Qt=xt.apply(Jt):Qt=xt.draw(Jt)):(t.debug&&K("input process error: cannot initialize filters"),ne.webgl.supported=!1,t.filter.enabled=!1,jh(Jt,Qt))):(jh(Jt,Qt),xt&&(xt=null),ne.filter=!!xt),!a)return{tensor:null,canvas:Qt};if(!Qt)throw new Error("canvas error: cannot create output");let l,u=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(ne.browser&&br)l=br?br.fromPixels(e):null;else{u=e.data.length/e.height/e.width;let m=new Uint8Array(e.data.buffer);l=Be(m,[e.height,e.width,u],"int32")}else if((!Au||Qt.width!==Au.width||Qt.height!==Au.height)&&(Au=Cn(Qt.width,Qt.height)),br&&ne.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=br.fromPixels(Qt):(Au=jh(Qt),l=br.fromPixels(Au));else{let x=jh(Qt).getContext("2d").getImageData(0,0,s,i);u=x.data.length/s/i;let A=new Uint8Array(x.data.buffer);l=Be(A,[s,i,u])}if(u===4){let m=sp(l,[0,0,0],[-1,-1,3]);Y(l),l=m}if(!l)throw new Error("input error: cannot create tensor");let p=He(l,"float32"),c=t.filter.equalization?await Gh(p):Gt(p,0);if(Y([l,p]),t.filter.autoBrightness){let m=pa(c),g=await m.data();t.filter.brightness=g[0]>1?1-g[0]/255:1-g[0],Y(m)}return{tensor:c,canvas:t.filter.return?Qt:null}}async function r9(e,t){let a=!1;if(e.cacheSensitivity===0||!t.shape||t.shape.length!==4||t.shape[1]>3840||t.shape[2]>2160)return a;if(!mn.inputTensor)mn.inputTensor=wa(t);else if(mn.inputTensor.shape[1]!==t.shape[1]||mn.inputTensor.shape[2]!==t.shape[2])Y(mn.inputTensor),mn.inputTensor=wa(t);else{let n={};n.diff=fe(t,mn.inputTensor),n.squared=ae(n.diff,n.diff),n.sum=tt(n.squared);let s=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;Y([mn.inputTensor,n.diff,n.squared,n.sum]),mn.inputTensor=wa(t),a=s<=(e.cacheSensitivity||0)}return a}async function s9(e,t,a){let n={};if(!t||!a||t.shape.length!==4||t.shape.length!==a.shape.length)return e.debug||K("invalid input tensor or tensor shapes do not match:",t.shape,a.shape),0;if(t.shape[0]!==1||a.shape[0]!==1||t.shape[3]!==3||a.shape[3]!==3)return e.debug||K("input tensors must be of shape [1, height, width, 3]:",t.shape,a.shape),0;n.input1=wa(t),n.input2=t.shape[1]!==a.shape[1]||t.shape[2]!==a.shape[2]?ge.resizeBilinear(a,[t.shape[1],t.shape[2]]):wa(a),n.diff=fe(n.input1,n.input2),n.squared=ae(n.diff,n.diff),n.sum=tt(n.squared);let s=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return Y([n.input1,n.input2,n.diff,n.squared,n.sum]),s}var Ap=class{constructor(){le(this,"browser");le(this,"node");le(this,"worker");le(this,"platform","");le(this,"agent","");le(this,"backends",[]);le(this,"initial");le(this,"filter");le(this,"tfjs");le(this,"offscreen");le(this,"perfadd",!1);le(this,"tensorflow",{version:void 0,gpu:void 0});le(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});le(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0,shader:void 0,vendor:void 0});le(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});le(this,"cpu",{model:void 0,flags:[]});le(this,"kernels",[]);le(this,"Canvas");le(this,"Image");le(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined",this.tfjs={version:xp["tfjs-core"]},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t!=null&&t[0]){let a=t[0].match(/\(([^()]+)\)/g);this.platform=a!=null&&a[0]?a[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(kt().registryFactory);try{this.tensorflow={version:er().binding?er().binding.TF_Version:void 0,gpu:er().binding?er().binding.isUsingGpuDevice():void 0}}catch(n){}this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&(this.wasm.simd=await W().getAsync("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=await W().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"));let t=Cn(100,100),a=t?t.getContext("webgl2"):void 0;this.webgl.supported=typeof a!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&a&&(this.webgl.version=a.getParameter(a.VERSION),this.webgl.vendor=a.getParameter(a.VENDOR),this.webgl.renderer=a.getParameter(a.RENDERER),this.webgl.shader=a.getParameter(a.SHADING_LANGUAGE_VERSION)),this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu");try{if(this.webgpu.supported){let n=await navigator.gpu.requestAdapter();this.webgpu.adapter=await(n==null?void 0:n.requestAdapterInfo())}}catch(n){this.webgpu.supported=!1}try{this.kernels=Kn(ia()).map(n=>n.kernelName.toLowerCase())}catch(n){}}updateCPU(){let t={model:"",flags:[]};this.node&&this.platform.startsWith("linux"),this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},ne=new Ap;var Kh=class{constructor(){le(this,"config");le(this,"element");le(this,"stream");le(this,"devices",[]);le(this,"enumerate",async()=>{try{let t=await navigator.mediaDevices.enumerateDevices();this.devices=t.filter(a=>a.kind==="videoinput")}catch(t){this.devices=[]}return this.devices});le(this,"start",async t=>{if(t!=null&&t.debug&&(this.config.debug=t==null?void 0:t.debug),t!=null&&t.crop&&(this.config.crop=t==null?void 0:t.crop),t!=null&&t.mode&&(this.config.mode=t==null?void 0:t.mode),t!=null&&t.width&&(this.config.width=t==null?void 0:t.width),t!=null&&t.height&&(this.config.height=t==null?void 0:t.height),t!=null&&t.id&&(this.config.id=t==null?void 0:t.id),t!=null&&t.element)if(typeof t.element=="string"){let r=document.getElementById(t.element);if(r&&r instanceof HTMLVideoElement)this.element=r;else{this.config.debug&&K("webcam","cannot get dom element",t.element);return}}else if(t.element instanceof HTMLVideoElement)this.element=t.element;else{this.config.debug&&K("webcam","unknown dom element",t.element);return}else this.element=document.createElement("video");let a={audio:!1,video:{facingMode:this.config.mode==="front"?"user":"environment",resizeMode:this.config.crop?"crop-and-scale":"none",width:{ideal:this.config.width>0?this.config.width:window.innerWidth},height:{ideal:this.config.height>0?this.config.height:window.innerHeight}}};if(this.config.id&&(a.video.deviceId=this.config.id),this.element.addEventListener("play",()=>{this.config.debug&&K("webcam","play")}),this.element.addEventListener("pause",()=>{this.config.debug&&K("webcam","pause")}),this.element.addEventListener("click",async()=>{!this.element||!this.stream||(this.element.paused?await this.element.play():this.element.pause())}),!(navigator!=null&&navigator.mediaDevices)){this.config.debug&&K("webcam","no devices");return}try{this.stream=await navigator.mediaDevices.getUserMedia(a)}catch(r){K("webcam",r);return}if(!this.stream){this.config.debug&&K("webcam","no stream");return}this.element.srcObject=this.stream,await new Promise(r=>{this.element?this.element.onloadeddata=()=>r(!0):r(!1)}),await this.element.play(),this.config.debug&&K("webcam",{width:this.width,height:this.height,label:this.label,stream:this.stream,track:this.track,settings:this.settings,constraints:this.constraints,capabilities:this.capabilities})});le(this,"pause",()=>{this.element&&this.element.pause()});le(this,"play",async()=>{this.element&&await this.element.play()});le(this,"stop",()=>{this.config.debug&&K("webcam","stop"),this.track&&this.track.stop()});this.config={element:void 0,debug:!0,mode:"front",crop:!1,width:0,height:0}}get track(){if(!!this.stream)return this.stream.getVideoTracks()[0]}get capabilities(){if(!!this.track)return this.track.getCapabilities?this.track.getCapabilities():void 0}get constraints(){if(!!this.track)return this.track.getConstraints?this.track.getConstraints():void 0}get settings(){if(!this.stream)return;let t=this.stream.getVideoTracks()[0];return t.getSettings?t.getSettings():void 0}get label(){return this.track?this.track.label:""}get paused(){var t;return((t=this.element)==null?void 0:t.paused)||!1}get width(){var t;return((t=this.element)==null?void 0:t.videoWidth)||0}get height(){var t;return((t=this.element)==null?void 0:t.videoHeight)||0}};var G3={};cr(G3,{age:()=>vpe,"anti-spoofing":()=>ece,antispoof:()=>upe,blazeface:()=>dpe,"blazeface-back":()=>wpe,"blazeface-front":()=>kpe,"blazepose-detector":()=>Qpe,"blazepose-detector2d":()=>Ipe,"blazepose-detector3d":()=>Spe,"blazepose-full":()=>Tpe,"blazepose-heavy":()=>Cpe,"blazepose-lite":()=>Npe,centernet:()=>ppe,default:()=>hce,efficientpose:()=>Epe,"efficientpose-i-lite":()=>tce,"efficientpose-ii-lite":()=>ace,"efficientpose-iv":()=>nce,emotion:()=>cpe,faceboxes:()=>Rpe,facemesh:()=>hpe,"facemesh-attention":()=>$pe,"facemesh-attention-alt":()=>Mpe,"facemesh-detection-full":()=>_pe,"facemesh-detection-short":()=>Ppe,"facemesh-orig":()=>Fpe,faceres:()=>fpe,"faceres-deep":()=>Ope,gear:()=>Dpe,gender:()=>Lpe,"gender-ssrnet-imdb":()=>zpe,handdetect:()=>Bpe,"handlandmark-full":()=>mpe,"handlandmark-lite":()=>Wpe,"handlandmark-sparse":()=>Vpe,handskeleton:()=>Upe,handtrack:()=>gpe,"insightface-efficientnet-b0":()=>rce,"insightface-ghostnet-strides1":()=>sce,"insightface-ghostnet-strides2":()=>ice,"insightface-mobilenet-emore":()=>oce,"insightface-mobilenet-swish":()=>lce,iris:()=>xpe,liveness:()=>Ape,meet:()=>Gpe,mobileface:()=>Hpe,mobilefacenet:()=>jpe,models:()=>ype,"movenet-lightning":()=>bpe,"movenet-multipose":()=>qpe,"movenet-thunder":()=>Xpe,nanodet:()=>Kpe,"nanodet-e":()=>uce,"nanodet-g":()=>dce,"nanodet-m":()=>pce,"nanodet-t":()=>cce,posenet:()=>Zpe,rvm:()=>Ype,selfie:()=>Jpe});var upe=853098,dpe=538928,ppe=4030290,cpe=820516,hpe=1477958,fpe=6978814,mpe=5431368,gpe=2964837,xpe=2599092,Ape=592976,ype=0,bpe=4650216,vpe=161240,wpe=538928,kpe=402048,Ipe=7499400,Spe=5928856,Tpe=6338290,Cpe=27501554,Npe=2725490,Epe=5651240,Rpe=2013002,Mpe=2387598,$pe=2382414,_pe=1026192,Ppe=201268,Fpe=2955780,Ope=13957620,Dpe=1498916,zpe=161236,Lpe=201808,Bpe=3515612,Wpe=2023432,Vpe=5286322,Upe=5502280,Gpe=372228,Hpe=2183192,jpe=5171976,qpe=9448838,Xpe=12477112,Kpe=7574558,Zpe=5032780,Ype=3739355,Jpe=212886,Qpe=5928856,ece=853098,tce=2269064,ace=5651240,nce=25643252,rce=13013224,sce=8093408,ice=8049584,oce=6938536,lce=12168584,uce=12319156,dce=7574558,pce=1887474,cce=5294216,hce={antispoof:upe,blazeface:dpe,centernet:ppe,emotion:cpe,facemesh:hpe,faceres:fpe,"handlandmark-full":mpe,handtrack:gpe,iris:xpe,liveness:Ape,models:ype,"movenet-lightning":bpe,age:vpe,"blazeface-back":wpe,"blazeface-front":kpe,"blazepose-detector2d":Ipe,"blazepose-detector3d":Spe,"blazepose-full":Tpe,"blazepose-heavy":Cpe,"blazepose-lite":Npe,efficientpose:Epe,faceboxes:Rpe,"facemesh-attention-alt":Mpe,"facemesh-attention":$pe,"facemesh-detection-full":_pe,"facemesh-detection-short":Ppe,"facemesh-orig":Fpe,"faceres-deep":Ope,gear:Dpe,"gender-ssrnet-imdb":zpe,gender:Lpe,handdetect:Bpe,"handlandmark-lite":Wpe,"handlandmark-sparse":Vpe,handskeleton:Upe,meet:Gpe,mobileface:Hpe,mobilefacenet:jpe,"movenet-multipose":qpe,"movenet-thunder":Xpe,nanodet:Kpe,posenet:Zpe,rvm:Ype,selfie:Jpe,"blazepose-detector":Qpe,"anti-spoofing":ece,"efficientpose-i-lite":tce,"efficientpose-ii-lite":ace,"efficientpose-iv":nce,"insightface-efficientnet-b0":rce,"insightface-ghostnet-strides1":sce,"insightface-ghostnet-strides2":ice,"insightface-mobilenet-emore":oce,"insightface-mobilenet-swish":lce,"nanodet-e":uce,"nanodet-g":dce,"nanodet-m":pce,"nanodet-t":cce};var Ea={cacheModels:!0,cacheSupported:!0,verbose:!0,debug:!1,modelBasePath:""},ha={};async function fce(e,t){return Ea.debug&&K("load model fetch:",e,t),fetch(e,t)}function i9(e){Ea.cacheModels=e.cacheModels,Ea.verbose=e.debug,Ea.modelBasePath=e.modelBasePath}async function Ee(e){var u,p,c,d;let t=Z8(Ea.modelBasePath,e||"");t.toLowerCase().endsWith(".json")||(t+=".json");let a=t.includes("/")?t.split("/"):t.split("\\"),n=a[a.length-1].replace(".json",""),r="indexeddb://"+n;ha[n]={name:n,sizeFromManifest:0,sizeLoadedWeights:0,sizeDesired:G3[n],inCache:!1,url:""},Ea.cacheSupported=typeof indexedDB!="undefined";let s={};try{s=Ea.cacheSupported&&Ea.cacheModels?await Hn.listModels():{}}catch(h){Ea.cacheSupported=!1}ha[n].inCache=Ea.cacheSupported&&Ea.cacheModels&&Object.keys(s).includes(r),ha[n].url=ha[n].inCache?r:t;let i=typeof fetch=="undefined"?{}:{fetchFunc:(h,f)=>fce(h,f)},o=new op(ha[n].url,i),l=!1;try{o.findIOHandler(),Ea.debug&&K("model load handler:",o.handler)}catch(h){K("error finding model i/o handler:",t,h)}try{let h=await((u=o.handler)==null?void 0:u.load())||null;ha[n].sizeFromManifest=((p=h==null?void 0:h.weightData)==null?void 0:p.byteLength)||0,h?o.loadSync(h):o=await t3(ha[n].inCache?r:t,i),ha[n].sizeLoadedWeights=((d=(c=o.artifacts)==null?void 0:c.weightData)==null?void 0:d.byteLength)||0,Ea.verbose&&K("load:",{model:n,url:o.modelUrl,bytes:ha[n].sizeLoadedWeights}),l=!0}catch(h){K("error loading model:",t,h)}if(l&&Ea.cacheModels&&Ea.cacheSupported&&!ha[n].inCache)try{let h=await o.save(r);Ea.debug&&K("model saved:",r,h)}catch(h){K("error saving model:",t,h)}return o}var H3="3.0.0";var vt={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function xce(){let e=vt.gl;!e||(vt.extensions=e.getSupportedExtensions())}function o9(e){var t;if(e.config.backend==="humangl"&&(vt.name in kt().registry&&!((t=vt==null?void 0:vt.gl)!=null&&t.getParameter(vt.gl.VERSION))&&(K("humangl error: backend invalid context"),e.models.reset()),!i2(vt.name))){try{vt.canvas=Cn(100,100)}catch(r){K("humangl error: cannot create canvas:",r);return}try{if(vt.gl=vt.canvas.getContext("webgl2",vt.webGLattr),!vt.gl){K("humangl error: cannot get webgl context");return}if(!vt.gl.getParameter(vt.gl.VERSION).includes("2.0")){K("backend override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}vt.canvas&&(vt.canvas.addEventListener("webglcontextlost",s=>{throw K("humangl error:",s.type),K("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("backend error: webgl context lost")}),vt.canvas.addEventListener("webglcontextrestored",s=>{K("humangl error: context restored:",s)}),vt.canvas.addEventListener("webglcontextcreationerror",s=>{K("humangl error: context create:",s)}))}catch(r){K("humangl error: cannot get webgl context:",r);return}try{$h(2,vt.gl)}catch(r){K("humangl error: cannot set webgl context:",r);return}try{let r=new sl(vt.gl);fo(vt.name,()=>new hu(r),vt.priority)}catch(r){K("humangl error: cannot register webgl backend:",r);return}try{Kn("webgl").forEach(s=>{let i={...s,backendName:vt.name};fn(i)})}catch(r){K("humangl error: cannot update webgl backend registration:",r);return}try{W().flagRegistry.WEBGL_VERSION&&W().set("WEBGL_VERSION",2)}catch(r){K("humangl error: cannot set WebGL backend flags:",r);return}xce();let a=er(),n=typeof a.gpgpu!="undefined"?a.getGPGPUContext().gl:null;n?e.config.debug&&K("humangl backend registered:",{webgl:n.getParameter(n.VERSION),renderer:n.getParameter(n.RENDERER)}):K("humangl error: no current gl context:",n,vt.gl)}}var ze={tf255:255,tf1:1,tf2:2,tf05:.5,tf127:127.5,rgb:[.2989,.587,.114]};function l9(){ze.tf255=Fe(255,"float32"),ze.tf1=Fe(1,"float32"),ze.tf2=Fe(2,"float32"),ze.tf05=Fe(.5,"float32"),ze.tf127=Fe(127.5,"float32"),ze.rgb=Ht([.2989,.587,.114],"float32")}async function bce(){return await ne.updateBackend(),ne.browser?ne.webgpu.supported&&ne.webgpu.backend?"webgpu":ne.webgl.supported&&ne.webgl.backend?"webgl":ne.wasm.supported&&ne.wasm.backend?"wasm":"cpu":"tensorflow"}function vce(e){let t=[];if(!ne.kernels.includes("mod")){let a={kernelName:"Mod",backendName:ia(),kernelFunc:n=>$e(()=>fe(n.inputs.a,ae(me(n.inputs.a,n.inputs.b),n.inputs.b)))};fn(a),ne.kernels.push("mod"),t.push("mod")}if(!ne.kernels.includes("floormod")){let a={kernelName:"FloorMod",backendName:ia(),kernelFunc:n=>$e(()=>be(ae(Yd(n.inputs.a,n.inputs.b),n.inputs.b),ru(n.inputs.a,n.inputs.b)))};fn(a),ne.kernels.push("floormod"),t.push("floormod")}if(!ne.kernels.includes("rotatewithoffset")&&e.softwareKernels){let a={kernelName:"RotateWithOffset",backendName:ia(),kernelFunc:n=>$e(()=>{let r=ia();Xd("cpu");let s=ge.rotateWithOffset(n.inputs.image,n.attrs.radians,n.attrs.fillValue,n.attrs.center);return Xd(r),s})};fn(a),ne.kernels.push("rotatewithoffset"),t.push("rotatewithoffset")}t.length>0&&e.debug&&K("registered kernels:",t)}var u9={};async function yp(e,t=!1){var a;if(e.state="backend",((a=e.config.backend)==null?void 0:a.length)===0&&(e.config.backend=await bce()),t||ne.initial||e.config.backend&&e.config.backend.length>0&&ia()!==e.config.backend){let n=te();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&K("running inside web worker"),ne.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&K("override: backend set to tensorflow while running in browser"),e.config.backend="webgl"),ne.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&K(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),ne.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")K("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="webgl";else{let s=await navigator.gpu.requestAdapter();if(e.config.debug&&K("enumerated webgpu adapter:",s),!s)K("override: backend set to webgpu but browser reports no available gpu"),e.config.backend="webgl";else{let i="requestAdapterInfo"in s?await s.requestAdapterInfo():void 0;K("webgpu adapter info:",i)}}let r=Object.keys(kt().registryFactory);if(e.config.backend==="humangl"&&!r.includes("humangl")&&(o9(e),r=Object.keys(kt().registryFactory)),e.config.debug&&K("available backends:",r),r.includes(e.config.backend)||(K(`error: backend ${e.config.backend} not found in registry`),e.config.backend=ne.node?"tensorflow":"webgl",e.config.debug&&K(`override: setting backend ${e.config.backend}`)),e.config.debug&&K("setting backend:",[e.config.backend]),e.config.backend==="wasm"){if(W().flagRegistry.CANVAS2D_WILL_READ_FREQUENTLY&&W().set("CANVAS2D_WILL_READ_FREQUENTLY",!0),e.config.debug&&K("wasm path:",e.config.wasmPath),typeof zh!="undefined")zh(e.config.wasmPath,e.config.wasmPlatformFetch);else throw new Error("backend error: attempting to use wasm backend but wasm path is not set");let s=!1,i=!1;try{s=await W().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"),i=await W().getAsync("WASM_HAS_SIMD_SUPPORT"),e.config.debug&&K(`wasm execution: ${i?"simd":"no simd"} ${s?"multithreaded":"singlethreaded"}`),e.config.debug&&!i&&K("warning: wasm simd support is not enabled")}catch(o){K("wasm detection failed")}}try{await Xd(e.config.backend),await Kd()}catch(s){return K("error: cannot set backend:",e.config.backend,s),!1}e.config.debug&&(u9=JSON.parse(JSON.stringify(W().flags)))}if((ia()==="humangl"||ia()==="webgl")&&(W().flagRegistry.WEBGL_USE_SHAPES_UNIFORMS&&W().set("WEBGL_USE_SHAPES_UNIFORMS",!0),W().flagRegistry.WEBGL_EXP_CONV&&W().set("WEBGL_EXP_CONV",!0),e.config.debug&&typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(K("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),W().set("WEBGL_DELETE_TEXTURE_THRESHOLD",0))),ia(),e.config.debug){let r=W().flags,s={};for(let i of Object.keys(r))u9[i]!==r[i]&&(s[i]=r[i]);e.config.debug&&Object.keys(s).length>0&&K("backend:",ia(),"flags:",s)}if(e.config.flags&&Object.keys(e.config.flags).length>0){e.config.debug&&K("flags:",e.config.flags);for(let[r,s]of Object.entries(e.config.flags))W().set(r,s)}r2(),l9(),e.performance.initBackend=Math.trunc(te()-n),e.config.backend=ia(),await ne.updateBackend(),vce(e.config),ne.initial=!1}return!0}function Zh(e,t){for(let a of e){let n={kernelName:a,backendName:t.backend,kernelFunc:r=>{var s;return t.debug&&K("kernelFunc",a,t.backend,r),(s=r==null?void 0:r.inputs)==null?void 0:s.info}};fn(n)}ne.kernels=Kn(ia()).map(a=>a.kernelName.toLowerCase())}var a0={};cr(a0,{all:()=>Jce,body:()=>Jh,canvas:()=>Yce,face:()=>Yh,gesture:()=>t0,hand:()=>Qh,init:()=>J3,object:()=>e0,options:()=>$t,person:()=>Zce});var gn=e=>{if(!e)K("draw error: invalid canvas");else if(!e.getContext)K("draw error: canvas context not defined");else{let t=e.getContext("2d");if(!t)K("draw error: cannot get canvas context");else return t}return null},ko=e=>Math.round(e*180/Math.PI),ct=(e,t,a)=>e.replace(t,typeof a=="number"?a.toFixed(1):a),Io=(e,t)=>{if(!t.useDepth||typeof e=="undefined")return t.color;let a=Uint8ClampedArray.from([127+2*e,127-2*e,255]);return`rgba(${a[0]}, ${a[1]}, ${a[2]}, ${t.alpha})`};function Nn(e,t,a,n,r){let s=t.replace(/\[.*\]/g,"").split(`
`).map(o=>o.trim()),i=Math.max(0,a);for(let o=s.length-1;o>=0;o--){let l=o*r.lineHeight+n;r.shadowColor&&r.shadowColor!==""&&(e.fillStyle=r.shadowColor,e.fillText(s[o],i+5,l+16)),e.fillStyle=r.labelColor,e.fillText(s[o],i+4,l+15)}}function Tr(e,t,a,n,r){e.fillStyle=Io(n,r),e.beginPath(),e.arc(t,a,r.pointSize,0,2*Math.PI),e.fill()}function rr(e,t,a,n,r,s){if(e.beginPath(),e.lineWidth=s.lineWidth,s.useCurves){let i=(t+t+n)/2,o=(a+a+r)/2;e.ellipse(i,o,n/2,r/2,0,0,2*Math.PI)}else e.moveTo(t+s.roundRect,a),e.lineTo(t+n-s.roundRect,a),e.quadraticCurveTo(t+n,a,t+n,a+s.roundRect),e.lineTo(t+n,a+r-s.roundRect),e.quadraticCurveTo(t+n,a+r,t+n-s.roundRect,a+r),e.lineTo(t+s.roundRect,a+r),e.quadraticCurveTo(t,a+r,t,a+r-s.roundRect),e.lineTo(t,a+s.roundRect),e.quadraticCurveTo(t,a,t+s.roundRect,a),e.closePath();e.stroke()}function j3(e,t,a){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let n of t)e.strokeStyle=Io(n[2]||0,a),e.lineTo(Math.trunc(n[0]),Math.trunc(n[1]));e.stroke(),a.fillPolygons&&(e.closePath(),e.fill())}}function p9(e,t,a){if(!(t.length<2)){if(e.lineWidth=a.lineWidth,!a.useCurves||t.length<=2){j3(e,t,a);return}e.moveTo(t[0][0],t[0][1]);for(let n=0;n<t.length-2;n++){let r=(t[n][0]+t[n+1][0])/2,s=(t[n][1]+t[n+1][1])/2;e.quadraticCurveTo(t[n][0],t[n][1],r,s)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),a.fillPolygons&&(e.closePath(),e.fill())}}function q3(e,t,a,n=5){let r,s,i;e.beginPath(),e.moveTo(t[0],t[1]),e.lineTo(a[0],a[1]),r=Math.atan2(a[1]-t[1],a[0]-t[0]),s=n*Math.cos(r)+a[0],i=n*Math.sin(r)+a[1],e.moveTo(s,i),r+=1/3*(2*Math.PI),s=n*Math.cos(r)+a[0],i=n*Math.sin(r)+a[1],e.lineTo(s,i),r+=1/3*(2*Math.PI),s=n*Math.cos(r)+a[0],i=n*Math.sin(r)+a[1],e.lineTo(s,i),e.closePath(),e.stroke(),e.fill()}var $t={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",alpha:.5,font:'small-caps 16px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawAttention:!0,drawGestures:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,faceLabels:"",bodyLabels:"",bodyPartLabels:"",objectLabels:"",handLabels:"",fingerLabels:"",gestureLabels:""};var En={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[185,40,39,37,0,267,269,270,409],lipsLowerOuter:[61,146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[191,80,81,82,13,312,311,310,415],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],lipsLowerSemiOuter:[76,77,90,180,85,16,315,404,320,307,306],lipsUpperSemiOuter:[184,74,73,72,11,302,303,304,408],lipsLowerSemiInner:[62,96,89,179,86,15,316,403,319,325,292],lipsUpperSemiInner:[183,42,41,38,12,268,271,272,407],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},X3={count:468,mouth:13,symmetryLine:[13,En.midwayBetweenEyes[0]]},So={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},K3=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]},{key:"EyebrowUpper",indices:[63,64,65,66,67,68,69,70]},{key:"EyebrowLower",indices:[48,49,50,51,52,53]}],bp=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],To=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var wce=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],kce=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Ice=[33,133,362,263,1,78,308],R2e=wce.map(e=>bp[e]),M2e=kce.map(e=>bp[e]),$2e=Ice.map(e=>bp[e]);function ls(e){let t=e.map(a=>a[0]);return t.push(e[e.length-1][1]),t}var Sce=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],Tce=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],Cce=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],Nce=[[474,475],[475,476],[476,477],[477,474]],Ece=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],Rce=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],Mce=[[469,470],[470,471],[471,472],[472,469]],$ce=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]],_2e={lips:ls(Sce),leftEye:ls(Tce),leftEyebrow:ls(Cce),leftIris:ls(Nce),rightEye:ls(Ece),rightEyebrow:ls(Rce),rightIris:ls(Mce),faceOval:ls($ce)};var _ce=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],Pce=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],Fce=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],Oce=[[474,475],[475,476],[476,477],[477,474]],Dce=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],zce=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],Lce=[[469,470],[470,471],[471,472],[472,469]],Bce=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]];function us(e){let t=e.map(a=>a[0]);return t.push(e[e.length-1][1]),t}var Wce={lips:us(_ce),leftEye:us(Pce),leftEyebrow:us(Fce),leftIris:us(Oce),rightEye:us(Dce),rightEyebrow:us(zce),rightIris:us(Lce),faceOval:us(Bce)},Vce=Object.entries(Wce).map(([e,t])=>t.map(a=>[a,e])).flat(),P2e=new Map(Vce),vp=[61,146,91,181,84,17,314,405,321,375,291,185,40,39,37,0,267,269,270,409,78,95,88,178,87,14,317,402,318,324,308,191,80,81,82,13,312,311,310,415,76,77,90,180,85,16,315,404,320,307,306,184,74,73,72,11,302,303,304,408,62,96,89,179,86,15,316,403,319,325,292,183,42,41,38,12,268,271,272,407],Co=[33,7,163,144,145,153,154,155,133,246,161,160,159,158,157,173,130,25,110,24,23,22,26,112,243,247,30,29,27,28,56,190,226,31,228,229,230,231,232,233,244,113,225,224,223,222,221,189,35,124,46,53,52,65,143,111,117,118,119,120,121,128,245,156,70,63,105,66,107,55,193],No=[263,249,390,373,374,380,381,382,362,466,388,387,386,385,384,398,359,255,339,254,253,252,256,341,463,467,260,259,257,258,286,414,446,261,448,449,450,451,452,453,464,342,445,444,443,442,441,413,265,353,276,283,282,295,372,340,346,347,348,349,350,357,465,383,300,293,334,296,336,285,417];var lt;function Uce(e,t){var n,r,s,i,o,l,u,p,c;if(!lt.drawLabels||((n=lt.faceLabels)==null?void 0:n.length)===0)return;let a=lt.faceLabels.slice();if(e.score&&(a=ct(a,"[score]",100*e.score)),e.gender&&(a=ct(a,"[gender]",e.gender)),e.genderScore&&(a=ct(a,"[genderScore]",100*e.genderScore)),e.age&&(a=ct(a,"[age]",e.age)),e.distance&&(a=ct(a,"[distance]",100*e.distance)),e.real&&(a=ct(a,"[real]",100*e.real)),e.live&&(a=ct(a,"[live]",100*e.live)),e.emotion&&e.emotion.length>0){let d=e.emotion.map(h=>`${Math.trunc(100*h.score)}% ${h.emotion}`);d.length>3&&(d.length=3),a=ct(a,"[emotions]",d.join(" "))}(s=(r=e.rotation)==null?void 0:r.angle)!=null&&s.roll&&(a=ct(a,"[roll]",ko(e.rotation.angle.roll))),(o=(i=e.rotation)==null?void 0:i.angle)!=null&&o.yaw&&(a=ct(a,"[yaw]",ko(e.rotation.angle.yaw))),(u=(l=e.rotation)==null?void 0:l.angle)!=null&&u.pitch&&(a=ct(a,"[pitch]",ko(e.rotation.angle.pitch))),(c=(p=e.rotation)==null?void 0:p.gaze)!=null&&c.bearing&&(a=ct(a,"[gaze]",ko(e.rotation.gaze.bearing))),Nn(t,a,e.box[0],e.box[1],lt)}function Gce(e,t){var a,n,r,s;if(((a=e.annotations)==null?void 0:a.leftEyeIris)&&((n=e.annotations)==null?void 0:n.leftEyeIris[0])){t.strokeStyle=lt.useDepth?"rgba(255, 200, 255, 0.3)":lt.color,t.beginPath();let i=Math.abs(e.annotations.leftEyeIris[3][0]-e.annotations.leftEyeIris[1][0])/2,o=Math.abs(e.annotations.leftEyeIris[4][1]-e.annotations.leftEyeIris[2][1])/2;t.ellipse(e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1],i,o,0,0,2*Math.PI),t.stroke(),lt.fillPolygons&&(t.fillStyle=lt.useDepth?"rgba(255, 255, 200, 0.3)":lt.color,t.fill())}if(((r=e.annotations)==null?void 0:r.rightEyeIris)&&((s=e.annotations)==null?void 0:s.rightEyeIris[0])){t.strokeStyle=lt.useDepth?"rgba(255, 200, 255, 0.3)":lt.color,t.beginPath();let i=Math.abs(e.annotations.rightEyeIris[3][0]-e.annotations.rightEyeIris[1][0])/2,o=Math.abs(e.annotations.rightEyeIris[4][1]-e.annotations.rightEyeIris[2][1])/2;t.ellipse(e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1],i,o,0,0,2*Math.PI),t.stroke(),lt.fillPolygons&&(t.fillStyle=lt.useDepth?"rgba(255, 255, 200, 0.3)":lt.color,t.fill())}}function Hce(e,t){var a;if(lt.drawGaze&&((a=e.rotation)==null?void 0:a.angle)&&typeof Path2D!="undefined"){t.strokeStyle="pink";let n=e.box[0]+e.box[2]/2-e.box[3]*ko(e.rotation.angle.yaw)/90,r=e.box[1]+e.box[3]/2+e.box[2]*ko(e.rotation.angle.pitch)/90,s=new Path2D(`
M ${e.box[0]+e.box[2]/2} ${e.box[1]}
C
${n} ${e.box[1]},
${n} ${e.box[1]+e.box[3]},
${e.box[0]+e.box[2]/2} ${e.box[1]+e.box[3]}
`),i=new Path2D(`
M ${e.box[0]} ${e.box[1]+e.box[3]/2}
C
${e.box[0]} ${r},
${e.box[0]+e.box[2]} ${r},
${e.box[0]+e.box[2]} ${e.box[1]+e.box[3]/2}
`);t.stroke(i),t.stroke(s)}}function jce(e,t){var a;if(lt.drawGaze&&((a=e.rotation)==null?void 0:a.gaze.strength)&&e.rotation.gaze.bearing&&e.annotations.leftEyeIris&&e.annotations.rightEyeIris&&e.annotations.leftEyeIris[0]&&e.annotations.rightEyeIris[0]){t.strokeStyle="pink",t.fillStyle="pink";let n=[e.annotations.leftEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.leftEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];q3(t,[e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1]],[n[0],n[1]],4);let r=[e.annotations.rightEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.rightEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];q3(t,[e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1]],[r[0],r[1]],4)}}function qce(e,t){if(lt.drawPolygons&&e.mesh.length>=468){t.lineWidth=1;for(let a=0;a<To.length/3;a++){let n=[To[a*3+0],To[a*3+1],To[a*3+2]].map(r=>e.mesh[r]);j3(t,n,lt)}Gce(e,t)}}function Xce(e,t){if(lt.drawPoints&&e.mesh.length>=468)for(let a=0;a<e.mesh.length;a++)Tr(t,e.mesh[a][0],e.mesh[a][1],e.mesh[a][2],lt),lt.drawAttention&&(vp.includes(a)&&Tr(t,e.mesh[a][0],e.mesh[a][1],e.mesh[a][2]+127,lt),Co.includes(a)&&Tr(t,e.mesh[a][0],e.mesh[a][1],e.mesh[a][2]-127,lt),No.includes(a)&&Tr(t,e.mesh[a][0],e.mesh[a][1],e.mesh[a][2]-127,lt))}function Kce(e,t){lt.drawBoxes&&rr(t,e.box[0],e.box[1],e.box[2],e.box[3],lt)}function Yh(e,t,a){if(lt=Ct($t,a),!t||!e)return;let n=gn(e);if(!!n){n.font=lt.font,n.strokeStyle=lt.color,n.fillStyle=lt.color;for(let r of t)Kce(r,n),Uce(r,n),r.mesh&&r.mesh.length>0&&(Xce(r,n),qce(r,n),Hce(r,n),jce(r,n))}}function Jh(e,t,a){var s,i;let n=Ct($t,a);if(!t||!e)return;let r=gn(e);if(!!r){r.lineJoin="round";for(let o=0;o<t.length;o++){if(r.strokeStyle=n.color,r.fillStyle=n.color,r.lineWidth=n.lineWidth,r.font=n.font,n.drawBoxes&&t[o].box&&t[o].box.length===4&&(rr(r,t[o].box[0],t[o].box[1],t[o].box[2],t[o].box[3],n),n.drawLabels&&((s=n.bodyLabels)==null?void 0:s.length)>0)){let l=n.bodyLabels.slice();l=ct(l,"[score]",100*t[o].score),Nn(r,l,t[o].box[0],t[o].box[1],n)}if(n.drawPoints&&t[o].keypoints)for(let l=0;l<t[o].keypoints.length;l++)!t[o].keypoints[l].score||t[o].keypoints[l].score===0||(r.fillStyle=Io(t[o].keypoints[l].position[2],n),Tr(r,t[o].keypoints[l].position[0],t[o].keypoints[l].position[1],0,n));if(n.drawLabels&&((i=n.bodyPartLabels)==null?void 0:i.length)>0&&t[o].keypoints){r.font=n.font;for(let l of t[o].keypoints){if(!l.score||l.score===0)continue;let u=n.bodyPartLabels.slice();u=ct(u,"[label]",l.part),u=ct(u,"[score]",100*l.score),Nn(r,u,l.position[0],l.position[1],n)}}if(n.drawPolygons&&t[o].keypoints&&t[o].annotations)for(let l of Object.values(t[o].annotations))for(let u of l)p9(r,u,n)}}}function Qh(e,t,a){var s,i;let n=Ct($t,a);if(!t||!e)return;let r=gn(e);if(!!r){r.lineJoin="round",r.font=n.font;for(let o of t){if(n.drawBoxes){if(r.strokeStyle=n.color,r.fillStyle=n.color,rr(r,o.box[0],o.box[1],o.box[2],o.box[3],n),n.drawLabels&&((s=n.handLabels)==null?void 0:s.length)>0){let l=n.handLabels.slice();l=ct(l,"[label]",o.label),l=ct(l,"[score]",100*o.score),Nn(r,l,o.box[0],o.box[1],n)}r.stroke()}if(n.drawPoints&&o.keypoints&&o.keypoints.length>0)for(let l of o.keypoints)r.fillStyle=Io(l[2],n),Tr(r,l[0],l[1],0,n);if(n.drawLabels&&o.annotations&&((i=n.fingerLabels)==null?void 0:i.length)>0)for(let[l,u]of Object.entries(o.annotations)){let p=n.fingerLabels.slice();p=ct(p,"[label]",l),Nn(r,p,u[u.length-1][0],u[u.length-1][1],n)}if(n.drawPolygons&&o.annotations){let l=u=>{if(!(!u||u.length===0||!u[0]))for(let p=0;p<u.length;p++){r.beginPath();let c=u[p][2]||0;r.strokeStyle=Io(p*c,n),r.moveTo(u[p>0?p-1:0][0],u[p>0?p-1:0][1]),r.lineTo(u[p][0],u[p][1]),r.stroke()}};r.lineWidth=n.lineWidth,l(o.annotations.index),l(o.annotations.middle),l(o.annotations.ring),l(o.annotations.pinky),l(o.annotations.thumb)}}}}function e0(e,t,a){var s;let n=Ct($t,a);if(!t||!e)return;let r=gn(e);if(!!r){r.lineJoin="round",r.font=n.font;for(let i of t)if(n.drawBoxes){if(r.strokeStyle=n.color,r.fillStyle=n.color,rr(r,i.box[0],i.box[1],i.box[2],i.box[3],n),n.drawLabels&&((s=n.objectLabels)==null?void 0:s.length)>0){let o=n.objectLabels.slice();o=ct(o,"[label]",i.label),o=ct(o,"[score]",100*i.score),Nn(r,o,i.box[0],i.box[1],n)}r.stroke()}}}function t0(e,t,a){var r;let n=Ct($t,a);if(!(!t||!e)&&n.drawGestures&&((r=n.gestureLabels)==null?void 0:r.length)>0){let s=gn(e);if(!s)return;s.font=n.font,s.fillStyle=n.color;let i=1;for(let o=0;o<t.length;o++){let[l,u]=Object.entries(t[o]);if(u.length>1&&u[1].length>0){let p=l[1]>0?`#${l[1]}`:"",c=n.gestureLabels.slice();c=ct(c,"[where]",l[0]),c=ct(c,"[who]",p),c=ct(c,"[what]",u[1]),Nn(s,c,8,2+i*n.lineHeight,n),i+=1}}}}var ds={face:`face
confidence: [score]%
[gender] [genderScore]%
age: [age] years
distance: [distance]cm
real: [real]%
live: [live]%
[emotions]
roll: [roll]\xB0 yaw:[yaw]\xB0 pitch:[pitch]\xB0
gaze: [gaze]\xB0`,body:"body [score]%",bodyPart:"[label] [score]%",object:"[label] [score]%",hand:"[label] [score]%",finger:"[label]",gesture:"[where] [who]: [what]"};var Y3=0;function Zce(e,t,a){let n=Ct($t,a);if(!t||!e)return;let r=gn(e);if(!!r){r.lineJoin="round",r.font=n.font;for(let s=0;s<t.length;s++)if(n.drawBoxes){if(r.strokeStyle=n.color,r.fillStyle=n.color,rr(r,t[s].box[0],t[s].box[1],t[s].box[2],t[s].box[3],n),n.drawLabels){let i=`person #${s}`;n.shadowColor&&n.shadowColor!==""&&(r.fillStyle=n.shadowColor,r.fillText(i,t[s].box[0]+3,1+t[s].box[1]+n.lineHeight,t[s].box[2])),r.fillStyle=n.labelColor,r.fillText(i,t[s].box[0]+2,0+t[s].box[1]+n.lineHeight,t[s].box[2])}r.stroke()}}}function Yce(e,t){if(!e||!t)return;let a=gn(t);!a||a.drawImage(e,0,0)}async function Jce(e,t,a){if(!(t!=null&&t.performance)||!e)return null;let n=te(),r=Ct($t,a),s=Promise.all([Yh(e,t.face,r),Jh(e,t.body,r),Qh(e,t.hand,r),e0(e,t.object,r),t0(e,t.gesture,r)]);return Y3=ne.perfadd?Y3+Math.round(te()-n):Math.round(te()-n),t.performance.draw=Y3,s}function J3(){$t.faceLabels=ds.face,$t.bodyLabels=ds.body,$t.bodyPartLabels=ds.bodyPart,$t.handLabels=ds.hand,$t.fingerLabels=ds.finger,$t.objectLabels=ds.object,$t.gestureLabels=ds.gesture}var n0={};cr(n0,{connected:()=>e5,kpt:()=>Q3});var Q3=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPinky","rightPinky","leftIndex","rightIndex","leftThumb","rightThumb","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftPalm","leftHand","rightPalm","rightHand"],e5={shoulders:["leftShoulder","rightShoulder"],hips:["rightHip","leftHip"],mouth:["leftMouth","rightMouth"],leftLegUpper:["leftHip","leftKnee"],leftLegLower:["leftKnee","leftAnkle"],leftFoot:["leftAnkle","leftHeel","leftFoot"],leftTorso:["leftShoulder","leftHip"],leftArmUpper:["leftShoulder","leftElbow"],leftArmLower:["leftElbow","leftWrist"],leftHand:["leftWrist","leftPalm"],leftHandPinky:["leftPalm","leftPinky"],leftHandIndex:["leftPalm","leftIndex"],leftHandThumb:["leftPalm","leftThumb"],leftEyeOutline:["leftEyeInside","leftEyeOutside"],rightLegUpper:["rightHip","rightKnee"],rightLegLower:["rightKnee","rightAnkle"],rightFoot:["rightAnkle","rightHeel","rightFoot"],rightTorso:["rightShoulder","rightHip"],rightArmUpper:["rightShoulder","rightElbow"],rightArmLower:["rightElbow","rightWrist"],rightHand:["rightWrist","rightPalm"],rightHandPinky:["rightPalm","rightPinky"],rightHandIndex:["rightPalm","rightIndex"],rightHandThumb:["rightPalm","rightThumb"],rightEyeOutline:["rightEyeInside","rightEyeOutside"]};var xn,Eo=224,f9,Qce=5,r0=[8,16,32,32,32];function ehe(){let e=[],t=0;for(;t<Qce;){let a=0,n=t;for(;n<r0.length&&r0[n]===r0[t];)a+=2,n++;let r=r0[t],s=Math.ceil(Eo/r),i=Math.ceil(Eo/r);for(let o=0;o<s;++o)for(let l=0;l<i;++l)for(let u=0;u<a;++u)e.push({x:(l+.5)/i,y:(o+.5)/s});t=n}f9={x:Ht(e.map(a=>a.x)),y:Ht(e.map(a=>a.y))}}async function m9(e){if(ne.initial&&(xn=null),!xn&&e.body.detector&&e.body.detector.modelPath){xn=await Ee(e.body.detector.modelPath);let t=xn!=null&&xn.executor?Object.values(xn.modelSignature.inputs):void 0;Eo=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0}else e.debug&&xn&&K("cached model:",xn.modelUrl);return ehe(),xn}var h9=[5,5];function the(e,t){return $e(()=>{let a=ka(e,12,1),n=_e(a[0]),r=_e(a[1]),s=_e(a[2]),i=_e(a[3]);n=be(me(n,Eo),t.x),r=be(me(r,Eo),t.y),s=ae(me(s,Eo),h9[0]),i=ae(me(i,Eo),h9[1]);let o=fe(n,me(s,2)),l=fe(r,me(i,2)),u=be(o,s),p=be(l,i);return sa([o,l,u,p],1)})}async function ahe(e,t,a,n){var u,p;let r=[],s={};s.boxes=the(e,f9),s.scores=Da(t),s.nms=await ge.nonMaxSuppressionAsync(s.boxes,s.scores,1,((u=a.body.detector)==null?void 0:u.minConfidence)||.1,((p=a.body.detector)==null?void 0:p.iouThreshold)||.1);let i=await s.nms.data(),o=await s.scores.data(),l=await s.boxes.array();for(let c of Array.from(i)){let d=o[c],h=l[c],f=[Math.round(h[0]*n[0]),Math.round(h[1]*n[1]),Math.round(h[2]*n[0]),Math.round(h[3]*n[1])],m={score:d,boxRaw:h,box:f};r.push(m)}return Object.keys(s).forEach(c=>Y(s[c])),r}async function g9(e,t,a){let n={};n.res=xn==null?void 0:xn.execute(e,["Identity"]),n.logitsRaw=Pe(n.res,[0,0,0],[1,-1,1]),n.boxesRaw=Pe(n.res,[0,0,1],[1,-1,-1]),n.logits=_e(n.logitsRaw),n.boxes=_e(n.boxesRaw);let r=await ahe(n.boxes,n.logits,t,a);return Object.keys(n).forEach(s=>Y(n[s])),r}function Cr(e,t=[1,1]){let a=[e.map(o=>o[0]),e.map(o=>o[1])],n=[Math.min(...a[0]),Math.min(...a[1])],r=[Math.max(...a[0]),Math.max(...a[1])],s=[n[0],n[1],r[0]-n[0],r[1]-n[1]],i=[s[0]/t[0],s[1]/t[1],s[2]/t[0],s[3]/t[1]];return{box:s,boxRaw:i}}function x9(e,t=[1,1]){let a=[e.map(u=>u[0]),e.map(u=>u[1])],n=[Math.min(...a[0]),Math.min(...a[1])],r=[Math.max(...a[0]),Math.max(...a[1])],s=[(n[0]+r[0])/2,(n[1]+r[1])/2],i=Math.max(s[0]-n[0],s[1]-n[1],-s[0]+r[0],-s[1]+r[1]),o=[Math.trunc(s[0]-i),Math.trunc(s[1]-i),Math.trunc(2*i),Math.trunc(2*i)],l=[o[0]/t[0],o[1]/t[1],o[2]/t[0],o[3]/t[1]];return{box:o,boxRaw:l}}function s0(e,t){let a=[e[2]*t,e[3]*t];return[e[0]-(a[0]-e[2])/2,e[1]-(a[1]-e[3])/2,a[0],a[1]]}var Ba,a5=256,t5=Number.MAX_SAFE_INTEGER,nhe={landmarks:["ld_3d","activation_segmentation","activation_heatmap","world_3d","output_poseflag"],detector:[]},o0=[],ps=[[0,0],[0,0],[0,0],[0,0]],A9=0,y9=e=>1-1/(1+Math.exp(e)),v9=e=>m9(e);async function w9(e){if(ne.initial&&(Ba=null),Ba)e.debug&&K("cached model:",Ba.modelUrl);else{Ba=await Ee(e.body.modelPath);let t=Ba!=null&&Ba.executor?Object.values(Ba.modelSignature.inputs):void 0;a5=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0}return Ba}function b9(e,t,a){var s,i;let n={};if(!((s=e==null?void 0:e.shape)!=null&&s[1])||!((i=e==null?void 0:e.shape)!=null&&i[2]))return e;let r;if(a&&(n.cropped=ge.cropAndResize(e,[a],[0],[e.shape[1],e.shape[2]])),e.shape[1]!==e.shape[2]){let o=[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],l=[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0];ps=[[0,0],o,l,[0,0]],n.pad=nr(n.cropped||e,ps),n.resize=ge.resizeBilinear(n.pad,[t,t]),r=me(n.resize,ze.tf255)}else e.shape[1]!==t?(n.resize=ge.resizeBilinear(n.cropped||e,[t,t]),r=me(n.resize,ze.tf255)):r=me(n.cropped||e,ze.tf255);return Object.keys(n).forEach(o=>Y(n[o])),r}function rhe(e,t,a){for(let n of e)n.position=[Math.trunc(n.position[0]*(t[0]+ps[2][0]+ps[2][1])/t[0]-ps[2][0]),Math.trunc(n.position[1]*(t[1]+ps[1][0]+ps[1][1])/t[1]-ps[1][0]),n.position[2]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1],2*n.position[2]/(t[0]+t[1])];if(a){let n=a[2]-a[0],r=a[3]-a[1];for(let s of e)s.positionRaw=[s.positionRaw[0]/r+a[1],s.positionRaw[1]/n+a[0],s.positionRaw[2]],s.position=[Math.trunc(s.positionRaw[0]*t[0]),Math.trunc(s.positionRaw[1]*t[1]),s.positionRaw[2]]}return e}function she(e){let t=e.find(o=>o.part==="leftPalm"),a=e.find(o=>o.part==="leftWrist"),n=e.find(o=>o.part==="leftIndex");t.position[2]=((a.position[2]||0)+(n.position[2]||0))/2;let r=e.find(o=>o.part==="rightPalm"),s=e.find(o=>o.part==="rightWrist"),i=e.find(o=>o.part==="rightIndex");r.position[2]=((s.position[2]||0)+(i.position[2]||0))/2}async function ihe(e,t,a){if(!(Ba!=null&&Ba.executor))return null;let n={};[n.ld,n.segmentation,n.heatmap,n.world,n.poseflag]=Ba==null?void 0:Ba.execute(e,nhe.landmarks);let r=(await n.poseflag.data())[0],s=await n.ld.data(),i=await n.world.data();Object.keys(n).forEach(f=>Y(n[f]));let o=[],l=5;for(let f=0;f<s.length/l;f++){let m=y9(s[l*f+3]),g=y9(s[l*f+4]),x=Math.trunc(100*m*g*r)/100,A=[s[l*f+0]/a5,s[l*f+1]/a5,s[l*f+2]+0],y=[Math.trunc(a[0]*A[0]),Math.trunc(a[1]*A[1]),A[2]],b=[i[l*f+0],i[l*f+1],i[l*f+2]+0];o.push({part:Q3[f],positionRaw:A,position:y,distance:b,score:x})}if(r<(t.body.minConfidence||0))return null;she(o);let u=rhe(o,a),p=u.map(f=>f.position),c=Cr(p,[a[0],a[1]]),d={};for(let[f,m]of Object.entries(e5)){let g=[];for(let x=0;x<m.length-1;x++){let A=u.find(b=>b.part===m[x]),y=u.find(b=>b.part===m[x+1]);A&&y&&g.push([A.position,y.position])}d[f]=g}return{id:0,score:Math.trunc(100*r)/100,box:c.box,boxRaw:c.boxRaw,keypoints:u,annotations:d}}async function n5(e,t){var s,i,o;let a=[e.shape[2]||0,e.shape[1]||0],n=(t.body.skipTime||0)>te()-A9,r=t5<(t.body.skipFrames||0);if(t.skipAllowed&&n&&r&&o0!==null)t5++;else{let l=[];if((i=(s=t.body)==null?void 0:s.detector)!=null&&i.enabled){let u=b9(e,224);l=await g9(u,t,a),Y(u)}else l=[{box:[0,0,0,0],boxRaw:[0,0,1,1],score:0}];for(let u=0;u<l.length;u++){let p=b9(e,256,(o=l[u])==null?void 0:o.boxRaw);o0.length=0;let c=await ihe(p,t,a);Y(p),c&&(c.id=u,o0.push(c))}A9=te(),t5=0}return o0}var yu=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Wa,Ro=0,r5=[],I9=0,s5=Number.MAX_SAFE_INTEGER;async function S9(e){if(ne.initial&&(Wa=null),Wa)e.debug&&K("cached model:",Wa.modelUrl);else{Wa=await Ee(e.object.modelPath);let t=Wa!=null&&Wa.executor?Object.values(Wa.modelSignature.inputs):void 0;Ro=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return Wa}async function ohe(e,t,a){if(!e)return[];let n={},r=[],s=await e.array();n.squeeze=_e(e);let i=ka(n.squeeze,6,1);n.stack=sa([i[1],i[0],i[3],i[2]],1),n.boxes=_e(n.stack),n.scores=_e(i[4]),n.classes=_e(i[5]),Y([e,...i]),n.nms=await ge.nonMaxSuppressionAsync(n.boxes,n.scores,a.object.maxDetected||0,a.object.iouThreshold,a.object.minConfidence||0);let o=await n.nms.data(),l=0;for(let u of Array.from(o)){let p=Math.trunc(100*s[0][u][4])/100,c=s[0][u][5];if(Number.isNaN(c))continue;let d=yu[c].label,[h,f]=[s[0][u][0]/Ro,s[0][u][1]/Ro],m=[h,f,s[0][u][2]/Ro-h,s[0][u][3]/Ro-f],g=[Math.trunc(m[0]*t[0]),Math.trunc(m[1]*t[1]),Math.trunc(m[2]*t[0]),Math.trunc(m[3]*t[1])];r.push({id:l++,score:p,class:c,label:d,box:g,boxRaw:m})}return Object.keys(n).forEach(u=>Y(n[u])),r}async function i5(e,t){if(!(Wa!=null&&Wa.executor))return[];let a=(t.object.skipTime||0)>te()-I9,n=s5<(t.object.skipFrames||0);return t.skipAllowed&&a&&n&&r5.length>0?(s5++,r5):(s5=0,new Promise(async r=>{let s=[e.shape[2]||0,e.shape[1]||0],i=ge.resizeBilinear(e,[Ro,Ro]),o=t.object.enabled?Wa==null?void 0:Wa.execute(i,["tower_0/detections"]):null;I9=te(),Y(i);let l=await ohe(o,s,t);r5=l,r(l)}))}var l0={};cr(l0,{connected:()=>l5,kpt:()=>o5});var o5=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],l5={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var Nt,C9=0,Ra={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},u5=Number.MAX_SAFE_INTEGER;async function N9(e){return ne.initial&&(Nt=null),Nt?e.debug&&K("cached model:",Nt.modelUrl):Nt=await Ee(e.body.modelPath),Nt}async function lhe(e,t){let[a,n]=e.shape,r=J(e,[n*a]),s=pa(r,0),i=(await s.data())[0];if(i>t){let o=tr(r,0),l=ru(o,a),u=(await l.data())[0],p=me(o,a),c=(await p.data())[0];return Y([r,s,o,l,p]),[u,c,i]}return Y([r,s]),[0,0,i]}async function d5(e,t){if(!(Nt!=null&&Nt.executor)||!(Nt!=null&&Nt.inputs[0].shape))return[];let a=(t.body.skipTime||0)>te()-C9,n=u5<(t.body.skipFrames||0);return t.skipAllowed&&a&&n&&Object.keys(Ra.keypoints).length>0?(u5++,[Ra]):(u5=0,new Promise(async r=>{let s=$e(()=>{var f,m;let c=ge.resizeBilinear(e,[((f=Nt==null?void 0:Nt.inputs[0].shape)==null?void 0:f[2])||0,((m=Nt==null?void 0:Nt.inputs[0].shape)==null?void 0:m[1])||0],!1),d=ae(c,ze.tf2);return fe(d,ze.tf1)}),i;if(t.body.enabled&&(i=Nt==null?void 0:Nt.execute(s)),C9=te(),Y(s),i){Ra.keypoints.length=0;let c=_e(i);Y(i);let d=Ta(c,2);Y(c);for(let h=0;h<d.length;h++){let[f,m,g]=await lhe(d[h],t.body.minConfidence);g>(t.body.minConfidence||0)&&Ra.keypoints.push({score:Math.round(100*g)/100,part:o5[h],positionRaw:[f/Nt.inputs[0].shape[2],m/Nt.inputs[0].shape[1]],position:[Math.round(e.shape[2]*f/Nt.inputs[0].shape[2]),Math.round(e.shape[1]*m/Nt.inputs[0].shape[1])]})}d.forEach(h=>Y(h))}Ra.score=Ra.keypoints.reduce((c,d)=>d.score>c?d.score:c,0);let o=Ra.keypoints.map(c=>c.position[0]),l=Ra.keypoints.map(c=>c.position[1]);Ra.box=[Math.min(...o),Math.min(...l),Math.max(...o)-Math.min(...o),Math.max(...l)-Math.min(...l)];let u=Ra.keypoints.map(c=>c.positionRaw[0]),p=Ra.keypoints.map(c=>c.positionRaw[1]);Ra.boxRaw=[Math.min(...u),Math.min(...p),Math.max(...u)-Math.min(...u),Math.max(...p)-Math.min(...p)];for(let[c,d]of Object.entries(l5)){let h=[];for(let f=0;f<d.length-1;f++){let m=Ra.keypoints.find(x=>x.part===d[f]),g=Ra.keypoints.find(x=>x.part===d[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}Ra.annotations[c]=h}r([Ra])}))}var bu=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],u0=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2,1],d0=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],p0=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],$9=(e,t)=>{let a=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:a,endPoint:n,landmarks:e.landmarks,confidence:e.confidence}},p5=(e,t,a)=>{let n=t.shape[1],r=t.shape[2],s=[e.startPoint[1]/n,e.startPoint[0]/r,e.endPoint[1]/n,e.endPoint[0]/r],i=ge.cropAndResize(t,[s],[0],a),o=me(i,ze.tf255);return Y(i),o},c0=(e,t)=>{let a=u0(e),n=bu(e),r=[t*n[0]/2,t*n[1]/2];return{startPoint:[a[0]-r[0],a[1]-r[1]],endPoint:[a[0]+r[0],a[1]+r[1]],landmarks:e.landmarks,confidence:e.confidence}},h0=e=>{let t=u0(e),a=bu(e),n=Math.max(...a)/2;return{startPoint:[Math.round(t[0]-n),Math.round(t[1]-n)],endPoint:[Math.round(t[0]+n),Math.round(t[1]+n)],landmarks:e.landmarks,confidence:e.confidence}},_9=e=>{let t=e.map(n=>n[0]),a=e.map(n=>n[1]);return{startPoint:[Math.min(...t),Math.min(...a)],endPoint:[Math.max(...t),Math.max(...a)],landmarks:e}},c5=[[1,0,0],[0,1,0],[0,0,1]],uhe=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),dhe=(e,t)=>uhe(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var R9=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],Mo=(e,t)=>{let a=0;for(let n=0;n<e.length;n++)a+=e[n]*t[n];return a},phe=(e,t)=>{let a=[];for(let n=0;n<e.length;n++)a.push(e[n][t]);return a},M9=(e,t)=>{let a=[],n=e.length;for(let r=0;r<n;r++){a.push([]);for(let s=0;s<n;s++)a[r].push(Mo(e[r],phe(t,s)))}return a},P9=(e,t)=>{let a=Math.cos(e),n=Math.sin(e),r=[[a,-n,0],[n,a,0],[0,0,1]],s=R9(t[0],t[1]),i=M9(s,r),o=R9(-t[0],-t[1]);return M9(i,o)},che=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],a=[e[0][2],e[1][2]],n=[-Mo(t[0],a),-Mo(t[1],a)];return[t[0].concat(n[0]),t[1].concat(n[1]),[0,0,1]]},hhe=(e,t)=>[Mo(e,t[0]),Mo(e,t[1])];function F9(e){let t=e===192?{strides:[4],anchors:[1]}:{strides:[e/16,e/8],anchors:[2,6]},a=[];for(let n=0;n<t.strides.length;n++){let r=t.strides[n],s=Math.floor((e+r-1)/r),i=Math.floor((e+r-1)/r),o=t.anchors[n];for(let l=0;l<s;l++){let u=r*(l+.5);for(let p=0;p<i;p++){let c=r*(p+.5);for(let d=0;d<o;d++)a.push([c,u])}}}return a}function O9(e,t,a,n,r){let s=bu(t),i=e.map(h=>[s[0]/r*(h[0]-r/2),s[1]/r*(h[1]-r/2),h[2]||0]),o=a&&a!==0&&Math.abs(a)>.2,l=o?P9(a,[0,0]):c5,u=o?i.map(h=>[...hhe(h,l),h[2]]):i,p=o?che(n):c5,c=u0(t),d=[Mo(c,p[0]),Mo(c,p[1])];return u.map(h=>[Math.trunc(h[0]+d[0]),Math.trunc(h[1]+d[1]),Math.trunc(h[2]||0)])}function D9(e,t,a,n){let r=t.landmarks.length>=X3.count?X3.symmetryLine:So.symmetryLine,s=0,i=c5,o;if(e&&ne.kernels.includes("rotatewithoffset"))if(s=dhe(t.landmarks[r[0]],t.landmarks[r[1]]),s&&s!==0&&Math.abs(s)>.2){let u=u0(t),p=[u[0]/a.shape[2],u[1]/a.shape[1]],c=ge.rotateWithOffset(a,s,0,[p[0],p[1]]);i=P9(-s,u),o=p5(t,c,[n,n]),Y(c)}else o=p5(t,a,[n,n]);else o=p5(t,a,[n,n]);return[s,i,o]}var fhe=e=>{let t=e.map(n=>n[0]),a=e.map(n=>n[1]);return[Math.min(...t)+(Math.max(...t)-Math.min(...t))/2,Math.min(...a)+(Math.max(...a)-Math.min(...a))/2]},z9=(e,t)=>{let a=fhe(e),n=bu(t);return{startPoint:[a[0]-n[0]/2,a[1]-n[1]/2],endPoint:[a[0]+n[0]/2,a[1]+n[1]/2]}};var L9=6,mhe=1.4,zn,f5=null,cs=0,vu=null,wu=()=>cs;async function B9(e){var t;return ne.initial&&(zn=null),zn?e.debug&&K("cached model:",zn.modelUrl):zn=await Ee((t=e.face.detector)==null?void 0:t.modelPath),cs=zn.executor&&zn.inputs[0].shape?zn.inputs[0].shape[2]:256,vu=Fe(cs,"int32"),f5=Xn(F9(cs)),zn}function ghe(e){if(!f5||!vu)return hn([0,0]);let t={};t.boxStarts=Pe(e,[0,1],[-1,2]),t.centers=be(t.boxStarts,f5),t.boxSizes=Pe(e,[0,3],[-1,2]),t.boxSizesNormalized=me(t.boxSizes,vu),t.centersNormalized=me(t.centers,vu),t.halfBoxSize=me(t.boxSizesNormalized,ze.tf2),t.starts=fe(t.centersNormalized,t.halfBoxSize),t.ends=be(t.centersNormalized,t.halfBoxSize),t.startNormalized=ae(t.starts,vu),t.endNormalized=ae(t.ends,vu);let a=nu([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(n=>Y(t[n])),a}async function W9(e,t){var o,l,u,p;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return[];let a={};a.resized=ge.resizeBilinear(e,[cs,cs]),a.div=me(a.resized,ze.tf127),a.normalized=fe(a.div,ze.tf05);let n=zn==null?void 0:zn.execute(a.normalized);if(Array.isArray(n)&&n.length>2){let c=n.sort((d,h)=>d.size-h.size);a.concat384=at([c[0],c[2]],2),a.concat512=at([c[1],c[3]],2),a.concat=at([a.concat512,a.concat384],1),a.batch=_e(a.concat,[0])}else Array.isArray(n)?a.batch=_e(n[0]):a.batch=_e(n);Y(n),a.boxes=ghe(a.batch),a.logits=Pe(a.batch,[0,0],[-1,1]),a.sigmoid=Da(a.logits),a.scores=_e(a.sigmoid),a.nms=await ge.nonMaxSuppressionAsync(a.boxes,a.scores,((o=t.face.detector)==null?void 0:o.maxDetected)||0,((l=t.face.detector)==null?void 0:l.iouThreshold)||0,((u=t.face.detector)==null?void 0:u.minConfidence)||0);let r=await a.nms.array(),s=[],i=await a.scores.data();for(let c=0;c<r.length;c++){let d=i[r[c]];if(d>(((p=t.face.detector)==null?void 0:p.minConfidence)||0)){let h={};h.bbox=Pe(a.boxes,[r[c],0],[1,-1]),h.slice=Pe(a.batch,[r[c],L9-1],[1,-1]),h.squeeze=_e(h.slice),h.landmarks=J(h.squeeze,[L9,-1]);let f=await h.bbox.data(),m={startPoint:[f[0],f[1]],endPoint:[f[2],f[3]],landmarks:await h.landmarks.array(),confidence:d},g=$9(m,[(e.shape[2]||0)/cs,(e.shape[1]||0)/cs]),x=c0(g,t.face.scale||mhe),A=h0(x);s.push(A),Object.keys(h).forEach(y=>Y(h[y]))}}return Object.keys(a).forEach(c=>Y(a[c])),s}var Ja,hs=0,xhe=2.3,m5=En.leftEyeLower0,g5=En.rightEyeLower0,ku={leftBounds:[m5[0],m5[m5.length-1]],rightBounds:[g5[0],g5[g5.length-1]]},Iu={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function j9(e){var t,a;return ne.initial&&(Ja=null),Ja?e.debug&&K("cached model:",Ja.modelUrl):Ja=await Ee((t=e.face.iris)==null?void 0:t.modelPath),hs=(Ja==null?void 0:Ja.executor)&&((a=Ja.inputs)==null?void 0:a[0].shape)?Ja.inputs[0].shape[2]:0,hs===-1&&(hs=64),Ja}function f0(e,t,a,n){for(let r=0;r<K3.length;r++){let{key:s,indices:i}=K3[r],o=En[`${a}${s}`];if(!n||n.includes(s))for(let l=0;l<i.length;l++){let u=i[l];e[o[l]]=[t[u][0],t[u][1],(t[u][2]+e[o[l]][2])/2]}}}var Ahe=e=>{let t=e[ku.leftBounds[0]][2],a=e[ku.rightBounds[0]][2];return t-a},U9=(e,t,a,n,r,s=!1)=>{let i=h0(c0(_9([e[a],e[n]]),xhe)),o=bu(i),l=ge.cropAndResize(t,[[i.startPoint[1]/r,i.startPoint[0]/r,i.endPoint[1]/r,i.endPoint[0]/r]],[0],[hs,hs]);if(s&&ne.kernels.includes("flipleftright")){let u=ge.flipLeftRight(l);Y(l),l=u}return{box:i,boxSize:o,crop:l}},G9=(e,t,a,n=!1)=>{let r=[];for(let s=0;s<Iu.numCoordinates;s++){let i=e[s*3],o=e[s*3+1],l=e[s*3+2];r.push([(n?1-i/hs:i/hs)*a[0]+t.startPoint[0],o/hs*a[1]+t.startPoint[1],l])}return{rawCoords:r,iris:r.slice(Iu.index)}},H9=(e,t,a)=>{let n=e[En[`${a}EyeUpper0`][Iu.upperCenter]][2],r=e[En[`${a}EyeLower0`][Iu.lowerCenter]][2],s=(n+r)/2;return t.map((i,o)=>{let l=s;return o===2?l=n:o===4&&(l=r),[i[0],i[1],l]})};async function q9(e,t,a){if(!(Ja!=null&&Ja.executor))return e;let{box:n,boxSize:r,crop:s}=U9(e,t,ku.leftBounds[0],ku.leftBounds[1],a,!0),{box:i,boxSize:o,crop:l}=U9(e,t,ku.rightBounds[0],ku.rightBounds[1],a,!0),u=at([s,l]);Y(s),Y(l);let p=Ja.execute(u);Y(u);let c=await p.data();Y(p);let d=c.slice(0,Iu.numCoordinates*3),{rawCoords:h,iris:f}=G9(d,n,r,!0),m=c.slice(Iu.numCoordinates*3),{rawCoords:g,iris:x}=G9(m,i,o,!1),A=Ahe(e);Math.abs(A)<30?(f0(e,h,"left",null),f0(e,g,"right",null)):A<1?f0(e,h,"left",["EyeUpper0","EyeLower0"]):f0(e,g,"right",["EyeUpper0","EyeLower0"]);let y=H9(e,f,"left"),b=H9(e,x,"right");return e.concat(y).concat(b)}async function K9(e,t){var s,i,o,l,u,p,c,d,h,f;let a={lips:await((i=(s=t.filter(m=>m.size===160))==null?void 0:s[0])==null?void 0:i.data()),irisL:await((l=(o=t.filter(m=>m.size===10))==null?void 0:o[0])==null?void 0:l.data()),eyeL:await((p=(u=t.filter(m=>m.size===142))==null?void 0:u[0])==null?void 0:p.data()),irisR:await((d=(c=t.filter(m=>m.size===10))==null?void 0:c[1])==null?void 0:d.data()),eyeR:await((f=(h=t.filter(m=>m.size===142))==null?void 0:h[1])==null?void 0:f.data())};for(let m of Object.values(a))if(!m)return e;let n=Co.reduce((m,g)=>m+=e[g][2],0)/Co.length;for(let m=0;m<a.irisL.length/2;m++)e.push([a.irisL[2*m+0],a.irisL[2*m+1],n]);let r=No.reduce((m,g)=>m+=e[g][2],0)/No.length;for(let m=0;m<a.irisR.length/2;m++)e.push([a.irisR[2*m+0],a.irisR[2*m+1],r]);for(let m=0;m<a.eyeL.length/2;m++)e[Co[m]]=[a.eyeL[2*m+0],a.eyeL[2*m+1],e[Co[m]][2]];for(let m=0;m<a.eyeR.length/2;m++)e[No[m]]=[a.eyeR[2*m+0],a.eyeR[2*m+1],e[No[m]][2]];for(let m=0;m<a.lips.length/2;m++)e[vp[m]]=[a.lips[2*m+0],a.lips[2*m+1],e[vp[m]][2]];return e}var sr={boxes:[],skipped:Number.MAX_SAFE_INTEGER,timestamp:0},wt=null,wp=0;async function Z9(e,t){var l,u,p,c,d,h,f,m,g,x;if(!(wt!=null&&wt.executor))return[];let a=(((l=t.face.detector)==null?void 0:l.skipTime)||0)>te()-sr.timestamp,n=sr.skipped<(((u=t.face.detector)==null?void 0:u.skipFrames)||0);!t.skipAllowed||!a||!n||sr.boxes.length===0?(sr.boxes=await W9(e,t),sr.timestamp=te(),sr.skipped=0):sr.skipped++;let r=[],s=[],i=0,o=wp;for(let A=0;A<sr.boxes.length;A++){let y=sr.boxes[A],b=0,w,S={id:i++,mesh:[],meshRaw:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,boxScore:0,faceScore:0,annotations:{}};if([b,w,S.tensor]=D9((p=t.face.detector)==null?void 0:p.rotation,y,e,(c=t.face.mesh)!=null&&c.enabled?wp:wu()),t.filter.equalization){let C=S.tensor?await Gh(S.tensor):void 0;Y(S.tensor),C&&(S.tensor=C)}if(S.boxScore=Math.round(100*y.confidence)/100,(d=t.face.mesh)!=null&&d.enabled)if(!wt)t.debug&&K("face mesh detection requested, but model is not loaded");else{if(((h=t.face.attention)==null?void 0:h.enabled)&&!ne.kernels.includes("atan2"))return t.face.attention.enabled=!1,Y(S.tensor),r;let C=wt.execute(S.tensor),_=await C.find($=>$.shape[$.shape.length-1]===1).data();if(S.faceScore=Math.round(100*_[0])/100,S.faceScore<(((f=t.face.detector)==null?void 0:f.minConfidence)||1)){if(y.confidence=S.faceScore,t.face.mesh.keepInvalid){S.box=d0(y,e),S.boxRaw=p0(y,e),S.score=S.boxScore,S.mesh=y.landmarks.map($=>[(y.startPoint[0]+y.endPoint[0])/2+(y.endPoint[0]+y.startPoint[0])*$[0]/wu(),(y.startPoint[1]+y.endPoint[1])/2+(y.endPoint[1]+y.startPoint[1])*$[1]/wu()]),S.meshRaw=S.mesh.map($=>[$[0]/(e.shape[2]||1),$[1]/(e.shape[1]||1),($[2]||0)/o]);for(let $ of Object.keys(So))S.annotations[$]=[S.mesh[So[$]]]}}else{let $=C.find(O=>O.shape[O.shape.length-1]===1404),M=J($,[-1,3]),I=await M.array();Y(M),(m=t.face.attention)!=null&&m.enabled?I=await K9(I,C):(g=t.face.iris)!=null&&g.enabled&&(I=await q9(I,S.tensor,wp)),S.mesh=O9(I,y,b,w,wp),S.meshRaw=S.mesh.map(O=>[O[0]/(e.shape[2]||0),O[1]/(e.shape[1]||0),(O[2]||0)/o]);for(let O of Object.keys(En))S.annotations[O]=En[O].map(L=>S.mesh[L]);S.score=S.faceScore;let N={...z9(S.mesh,y),confidence:y.confidence,landmarks:y.landmarks};S.box=d0(N,e),S.boxRaw=p0(N,e),s.push(N)}Y(C)}else{S.box=d0(y,e),S.boxRaw=p0(y,e),S.score=S.boxScore,S.mesh=y.landmarks.map(C=>[(y.startPoint[0]+y.endPoint[0])/2+(y.endPoint[0]+y.startPoint[0])*C[0]/wu(),(y.startPoint[1]+y.endPoint[1])/2+(y.endPoint[1]+y.startPoint[1])*C[1]/wu()]),S.meshRaw=S.mesh.map(C=>[C[0]/(e.shape[2]||0),C[1]/(e.shape[1]||0),(C[2]||0)/o]);for(let C of Object.keys(So))S.annotations[C]=[S.mesh[So[C]]]}S.score>(((x=t.face.detector)==null?void 0:x.minConfidence)||1)?r.push(S):Y(S.tensor)}return sr.boxes=s,r}async function Y9(e){var t,a,n,r,s,i;return ne.initial&&(wt=null),((t=e.face.attention)==null?void 0:t.enabled)&&(wt==null?void 0:wt.signature)&&Object.keys(((a=wt==null?void 0:wt.signature)==null?void 0:a.outputs)||{}).length<6&&(wt=null),wt?e.debug&&K("cached model:",wt.modelUrl):(n=e.face.attention)!=null&&n.enabled?wt=await Ee(e.face.attention.modelPath):wt=await Ee((r=e.face.mesh)==null?void 0:r.modelPath),wp=wt.executor&&((s=wt==null?void 0:wt.inputs)==null?void 0:s[0].shape)?(i=wt==null?void 0:wt.inputs)==null?void 0:i[0].shape[2]:256,wt}var J9=To,Q9=bp;var bhe=["angry","disgust","fear","happy","sad","surprise","neutral"],An,m0=[],ew=0,tw=0,A5=Number.MAX_SAFE_INTEGER;async function aw(e){var t;return ne.initial&&(An=null),An?e.debug&&K("cached model:",An.modelUrl):An=await Ee((t=e.face.emotion)==null?void 0:t.modelPath),An}async function y5(e,t,a,n){var i,o;if(!An)return[];let r=A5<(((i=t.face.emotion)==null?void 0:i.skipFrames)||0),s=(((o=t.face.emotion)==null?void 0:o.skipTime)||0)>te()-tw;return t.skipAllowed&&s&&r&&ew===n&&m0[a]&&m0[a].length>0?(A5++,m0[a]):(A5=0,new Promise(async l=>{var p;let u=[];if((p=t.face.emotion)!=null&&p.enabled){let c={},d=An!=null&&An.inputs[0].shape?An.inputs[0].shape[2]:0;c.resize=ge.resizeBilinear(e,[d,d],!1),c.channels=ae(c.resize,ze.rgb),c.grayscale=tt(c.channels,3,!0),c.grayscaleSub=fe(c.grayscale,ze.tf05),c.grayscaleMul=ae(c.grayscaleSub,ze.tf2),c.emotion=An==null?void 0:An.execute(c.grayscaleMul),tw=te();let h=await c.emotion.data();for(let f=0;f<h.length;f++)h[f]>(t.face.emotion.minConfidence||0)&&u.push({score:Math.min(.99,Math.trunc(100*h[f])/100),emotion:bhe[f]});u.sort((f,m)=>m.score-f.score),Object.keys(c).forEach(f=>Y(c[f]))}m0[a]=u,ew=n,l(u)}))}var fa,fs=[],rw=0,sw=0,b5=Number.MAX_SAFE_INTEGER;async function iw(e){var t;return ne.initial&&(fa=null),fa?e.debug&&K("cached model:",fa.modelUrl):fa=await Ee((t=e.face.description)==null?void 0:t.modelPath),fa}function vhe(e){let t=e.image||e.tensor||e;if(!(fa!=null&&fa.inputs[0].shape))return t;let a=ge.resizeBilinear(t,[fa.inputs[0].shape[2],fa.inputs[0].shape[1]],!1),n=ae(a,ze.tf255);return Y(a),n}async function v5(e,t,a,n){var o,l,u,p;let r={age:0,gender:"unknown",genderScore:0,descriptor:[]};if(!(fa!=null&&fa.executor))return r;let s=b5<(((o=t.face.description)==null?void 0:o.skipFrames)||0),i=(((l=t.face.description)==null?void 0:l.skipTime)||0)>te()-rw;return t.skipAllowed&&s&&i&&sw===n&&((u=fs==null?void 0:fs[a])==null?void 0:u.age)>0&&((p=fs==null?void 0:fs[a])==null?void 0:p.genderScore)>0?(b5++,fs[a]):(b5=0,new Promise(async c=>{var d;if((d=t.face.description)!=null&&d.enabled){let h=vhe(e),f=fa==null?void 0:fa.execute(h);rw=te(),Y(h);let g=await f.find(E=>E.shape[1]===1).data(),x=Math.trunc(200*Math.abs(g[0]-.5))/100;x>(t.face.description.minConfidence||0)&&(r.gender=g[0]<=.5?"female":"male",r.genderScore=Math.min(.99,x));let A=tr(f.find(E=>E.shape[1]===100),1),y=(await A.data())[0];Y(A);let w=await f.find(E=>E.shape[1]===100).data();r.age=Math.round(w[y-1]>w[y+1]?10*y-100*w[y-1]:10*y+100*w[y+1])/10,(Number.isNaN(g[0])||Number.isNaN(w[0]))&&K("faceres error:",{model:fa,result:f});let S=f.find(E=>E.shape[1]===1024),C=S?await S.data():[];r.descriptor=Array.from(C),f.forEach(E=>Y(E))}fs[a]=r,sw=n,c(r)}))}var Su=.1,w5=.5;function whe(e,t,a){let n=!1,r=a.length-1;for(let s=0;s<a.length;r=s++)a[s].y>t!=a[r].y>t&&e<(a[r].x-a[s].x)*(t-a[s].y)/(a[r].y-a[s].y)+a[s].x&&(n=!n);return n}async function lw(e){if(!e.tensor||!e.mesh||e.mesh.length<100)return e.tensor;let t=e.tensor.shape[2]||0,a=e.tensor.shape[1]||0,n=await e.tensor.buffer(),r=[];for(let i of En.silhouette)r.push({x:(e.mesh[i][0]-e.box[0])/e.box[2],y:(e.mesh[i][1]-e.box[1])/e.box[3]});Su&&Su>0&&(r=r.map(i=>({x:i.x>.5?i.x+Su:i.x-Su,y:i.y>.5?i.y+Su:i.y-Su})));for(let i=0;i<t;i++)for(let o=0;o<a;o++)whe(i/t,o/t,r)||(n.set(w5*n.get(0,o,i,0),0,o,i,0),n.set(w5*n.get(0,o,i,1),0,o,i,1),n.set(w5*n.get(0,o,i,2),0,o,i,2));return n.toTensor()}var ea,g0=[],k5=Number.MAX_SAFE_INTEGER,uw=0,dw=0;async function pw(e){var t;return ne.initial&&(ea=null),ea?e.debug&&K("cached model:",ea.modelUrl):ea=await Ee((t=e.face.antispoof)==null?void 0:t.modelPath),ea}async function I5(e,t,a,n){var i,o;if(!(ea!=null&&ea.executor))return 0;let r=(((i=t.face.antispoof)==null?void 0:i.skipTime)||0)>te()-dw,s=k5<(((o=t.face.antispoof)==null?void 0:o.skipFrames)||0);return t.skipAllowed&&r&&s&&uw===n&&g0[a]?(k5++,g0[a]):(k5=0,new Promise(async l=>{let u=ge.resizeBilinear(e,[ea!=null&&ea.inputs[0].shape?ea.inputs[0].shape[2]:0,ea!=null&&ea.inputs[0].shape?ea.inputs[0].shape[1]:0],!1),p=ea==null?void 0:ea.execute(u),c=(await p.data())[0];g0[a]=Math.round(100*c)/100,uw=n,dw=te(),Y([u,p]),l(g0[a])}))}var ta,x0=[],S5=Number.MAX_SAFE_INTEGER,hw=0,fw=0;async function mw(e){var t;return ne.initial&&(ta=null),ta?e.debug&&K("cached model:",ta.modelUrl):ta=await Ee((t=e.face.liveness)==null?void 0:t.modelPath),ta}async function T5(e,t,a,n){var i,o;if(!(ta!=null&&ta.executor))return 0;let r=(((i=t.face.liveness)==null?void 0:i.skipTime)||0)>te()-fw,s=S5<(((o=t.face.liveness)==null?void 0:o.skipFrames)||0);return t.skipAllowed&&r&&s&&hw===n&&x0[a]?(S5++,x0[a]):(S5=0,new Promise(async l=>{let u=ge.resizeBilinear(e,[ta!=null&&ta.inputs[0].shape?ta.inputs[0].shape[2]:0,ta!=null&&ta.inputs[0].shape?ta.inputs[0].shape[1]:0],!1),p=ta==null?void 0:ta.execute(u),c=(await p.data())[0];x0[a]=Math.round(100*c)/100,hw=n,fw=te(),Y([u,p]),l(x0[a])}))}var Rn,C5=[],Ihe=["white","black","asian","indian","other"],She=[15,23,28,35.5,45.5,55.5,65],xw=0,Aw=0,N5=Number.MAX_SAFE_INTEGER;async function yw(e){var t;return ne.initial&&(Rn=null),Rn?e.debug&&K("cached model:",Rn.modelUrl):Rn=await Ee((t=e.face.gear)==null?void 0:t.modelPath),Rn}async function E5(e,t,a,n){var i,o;if(!Rn)return{age:0,gender:"unknown",genderScore:0,race:[]};let r=N5<(((i=t.face.gear)==null?void 0:i.skipFrames)||0),s=(((o=t.face.gear)==null?void 0:o.skipTime)||0)>te()-Aw;return t.skipAllowed&&s&&r&&xw===n&&C5[a]?(N5++,C5[a]):(N5=0,new Promise(async l=>{var x,A;if(!(Rn!=null&&Rn.inputs[0].shape))return;let u={},p=[[0,.1,.9,.9]];u.resize=ge.cropAndResize(e,p,[0],[Rn.inputs[0].shape[2],Rn.inputs[0].shape[1]]);let c={age:0,gender:"unknown",genderScore:0,race:[]};(x=t.face.gear)!=null&&x.enabled&&([u.age,u.gender,u.race]=Rn.execute(u.resize,["age_output","gender_output","race_output"]));let d=await u.gender.data();c.gender=d[0]>d[1]?"male":"female",c.genderScore=Math.round(100*(d[0]>d[1]?d[0]:d[1]))/100;let h=await u.race.data();for(let y=0;y<h.length;y++)h[y]>(((A=t.face.gear)==null?void 0:A.minConfidence)||.2)&&c.race.push({score:Math.round(100*h[y])/100,race:Ihe[y]});c.race.sort((y,b)=>b.score-y.score);let m=Array.from(await u.age.data()).map((y,b)=>[She[b],y]).sort((y,b)=>b[1]-y[1]),g=m[0][0];for(let y=1;y<m.length;y++)g+=m[y][1]*(m[y][0]-g);c.age=Math.round(10*g)/10,Object.keys(u).forEach(y=>Y(u[y])),C5[a]=c,xw=n,Aw=te(),l(c)}))}var Qa,A0=[],vw=0,ww=0,R5=Number.MAX_SAFE_INTEGER;async function kw(e){return ne.initial&&(Qa=null),Qa?e.debug&&K("cached model:",Qa.modelUrl):Qa=await Ee(e.face.ssrnet.modelPathAge),Qa}async function M5(e,t,a,n){var i,o,l,u;if(!Qa)return{age:0};let r=R5<(((i=t.face.ssrnet)==null?void 0:i.skipFrames)||0),s=(((o=t.face.ssrnet)==null?void 0:o.skipTime)||0)>te()-ww;return t.skipAllowed&&r&&s&&vw===n&&((l=A0[a])==null?void 0:l.age)&&((u=A0[a])==null?void 0:u.age)>0?(R5++,A0[a]):(R5=0,new Promise(async p=>{var h;if(!(Qa!=null&&Qa.inputs)||!Qa.inputs[0]||!Qa.inputs[0].shape)return;let c={};c.resize=ge.resizeBilinear(e,[Qa.inputs[0].shape[2],Qa.inputs[0].shape[1]],!1),c.enhance=ae(c.resize,ze.tf255);let d={age:0};if((h=t.face.ssrnet)!=null&&h.enabled&&(c.age=Qa.execute(c.enhance)),c.age){let f=await c.age.data();d.age=Math.trunc(10*f[0])/10}Object.keys(c).forEach(f=>Y(c[f])),A0[a]=d,vw=n,ww=te(),p(d)}))}var Mn,y0=[],Sw=0,Tw=0,$5=Number.MAX_SAFE_INTEGER,_5=[.2989,.587,.114];async function Cw(e){var t;return ne.initial&&(Mn=null),Mn?e.debug&&K("cached model:",Mn.modelUrl):Mn=await Ee((t=e.face.ssrnet)==null?void 0:t.modelPathGender),Mn}async function P5(e,t,a,n){var i,o,l,u;if(!Mn)return{gender:"unknown",genderScore:0};let r=$5<(((i=t.face.ssrnet)==null?void 0:i.skipFrames)||0),s=(((o=t.face.ssrnet)==null?void 0:o.skipTime)||0)>te()-Tw;return t.skipAllowed&&r&&s&&Sw===n&&((l=y0[a])==null?void 0:l.gender)&&((u=y0[a])==null?void 0:u.genderScore)>0?($5++,y0[a]):($5=0,new Promise(async p=>{var f;if(!(Mn!=null&&Mn.inputs[0].shape))return;let c={};c.resize=ge.resizeBilinear(e,[Mn.inputs[0].shape[2],Mn.inputs[0].shape[1]],!1),c.enhance=$e(()=>{let[m,g,x]=ka(c.resize,3,3),A=ae(m,_5[0]),y=ae(g,_5[1]),b=ae(x,_5[2]),w=uh([A,y,b]);return ae(fe(w,ze.tf05),2)});let d={gender:"unknown",genderScore:0};(f=t.face.ssrnet)!=null&&f.enabled&&(c.gender=Mn.execute(c.enhance));let h=await c.gender.data();d.gender=h[0]>h[1]?"female":"male",d.genderScore=h[0]>h[1]?Math.trunc(100*h[0])/100:Math.trunc(100*h[1])/100,Object.keys(c).forEach(m=>Y(c[m])),y0[a]=d,Sw=n,Tw=te(),p(d)}))}var en,F5=[],Ew=0,Rw=0,Mw=Number.MAX_SAFE_INTEGER;async function $w(e){var t;return ne.initial&&(en=null),en?e.debug&&K("cached model:",en.modelUrl):en=await Ee((t=e.face.mobilefacenet)==null?void 0:t.modelPath),en}async function O5(e,t,a,n){var i,o;if(!(en!=null&&en.executor))return[];let r=Mw<(((i=t.face.mobilefacenet)==null?void 0:i.skipFrames)||0),s=(((o=t.face.mobilefacenet)==null?void 0:o.skipTime)||0)>te()-Rw;return t.skipAllowed&&s&&r&&Ew===n&&F5[a]?(Mw++,F5[a]):new Promise(async l=>{var p;let u=[];if(((p=t.face.mobilefacenet)==null?void 0:p.enabled)&&(en==null?void 0:en.inputs[0].shape)){let c={};c.crop=ge.resizeBilinear(e,[en.inputs[0].shape[2],en.inputs[0].shape[1]],!1),c.data=en.execute(c.crop);let d=await c.data.data();u=Array.from(d),Object.keys(c).forEach(h=>Y(c[h]))}F5[a]=u,Ew=n,Rw=te(),l(u)})}var tn,D5=[],Pw=0,Fw=0,Ow=Number.MAX_SAFE_INTEGER;async function Dw(e){return ne.initial&&(tn=null),tn?e.debug&&K("cached model:",tn.modelUrl):tn=await Ee(e.face.insightface.modelPath),tn}async function z5(e,t,a,n){var i,o;if(!(tn!=null&&tn.executor))return[];let r=Ow<(((i=t.face.insightface)==null?void 0:i.skipFrames)||0),s=(((o=t.face.insightface)==null?void 0:o.skipTime)||0)>te()-Fw;return t.skipAllowed&&s&&r&&Pw===n&&D5[a]?(Ow++,D5[a]):new Promise(async l=>{var p;let u=[];if(((p=t.face.insightface)==null?void 0:p.enabled)&&(tn==null?void 0:tn.inputs[0].shape)){let c={};c.crop=ge.resizeBilinear(e,[tn.inputs[0].shape[2],tn.inputs[0].shape[1]],!1),c.data=tn.execute(c.crop);let d=await c.data.data();u=Array.from(d),Object.keys(c).forEach(h=>Y(c[h]))}D5[a]=u,Pw=n,Fw=te(),l(u)})}var The=e=>{let t=(c,d)=>Math.atan2(c[1]-d[1],c[0]-d[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let a=[0,-.1],n=1,r=(e.mesh[33][2]||0)>(e.mesh[263][2]||0),s=r?e.mesh[473]:e.mesh[468],i=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],o=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(i[0]-s[0])/o[0]-a[0],n*(s[1]-i[1])/o[1]-a[1]],u=Math.sqrt(l[0]*l[0]+l[1]*l[1]);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},Lw=(e,t)=>{let a=m=>{let g=Math.sqrt(m[0]*m[0]+m[1]*m[1]+m[2]*m[2]);return m[0]/=g,m[1]/=g,m[2]/=g,m},n=(m,g)=>{let x=m[0]-g[0],A=m[1]-g[1],y=m[2]-g[2];return[x,A,y]},r=(m,g)=>{let x=m[1]*g[2]-m[2]*g[1],A=m[2]*g[0]-m[0]*g[2],y=m[0]*g[1]-m[1]*g[0];return[x,A,y]},s=m=>{let[g,x,A,y,b,w,S,C,E]=m,_,$,M;return y<1?y>-1?(M=Math.asin(y),$=Math.atan2(-S,g),_=Math.atan2(-w,b)):(M=-Math.PI/2,$=-Math.atan2(C,E),_=0):(M=Math.PI/2,$=Math.atan2(C,E),_=0),Number.isNaN(_)&&(_=0),Number.isNaN($)&&($=0),Number.isNaN(M)&&(M=0),{pitch:2*-_,yaw:2*-$,roll:2*-M}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let o=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,l=[i[10],i[152],i[234],i[454]].map(m=>[m[0]*t[0]/o,m[1]*t[1]/o,m[2]]),u=a(n(l[1],l[0])),p=a(n(l[3],l[2])),c=a(r(p,u));p=r(u,c);let d=[p[0],p[1],p[2],u[0],u[1],u[2],c[0],c[1],c[2]],h=s(d),f=i.length===478?The(e):{bearing:0,strength:0};return{angle:h,matrix:d,gaze:f}};function Bw(e,t){let a=e==null?void 0:e.annotations;if(!a)return 0;let n=Math.max(Math.abs(a.leftEyeIris[3][0]-a.leftEyeIris[1][0]),Math.abs(a.rightEyeIris[3][0]-a.rightEyeIris[1][0]))/t;return Math.round(1.17/n)/100}var L5=async(e,t)=>{var f,m,g,x,A,y,b,w,S,C,E,_,$,M,I,N,O,L,B,G,j,U,H;let a=te(),n,r,s,i,o,l,u,p,c,d=[];e.state="run:face";let h=await Z9(t,e.config);if(e.performance.face=ne.perfadd?(e.performance.face||0)+Math.trunc(te()-a):Math.trunc(te()-a),!t.shape||t.shape.length!==4)return[];if(!h)return[];for(let V=0;V<h.length;V++){if(e.analyze("Get Face"),!h[V].tensor||h[V].tensor.isDisposedInternal){K("Face object is disposed:",h[V].tensor);continue}if((f=e.config.face.detector)!=null&&f.mask){let he=await lw(h[V]);Y(h[V].tensor),he&&(h[V].tensor=he)}let Q=h[V].mesh&&h[V].mesh.length>200?Lw(h[V],[t.shape[2],t.shape[1]]):null;e.analyze("Start Emotion:"),e.config.async?i=(m=e.config.face.emotion)!=null&&m.enabled?y5(h[V].tensor||Be([]),e.config,V,h.length):[]:(e.state="run:emotion",a=te(),i=(g=e.config.face.emotion)!=null&&g.enabled?await y5(h[V].tensor||Be([]),e.config,V,h.length):[],e.performance.emotion=ne.perfadd?(e.performance.emotion||0)+Math.trunc(te()-a):Math.trunc(te()-a)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?u=(x=e.config.face.antispoof)!=null&&x.enabled?I5(h[V].tensor||Be([]),e.config,V,h.length):0:(e.state="run:antispoof",a=te(),u=(A=e.config.face.antispoof)!=null&&A.enabled?await I5(h[V].tensor||Be([]),e.config,V,h.length):0,e.performance.antispoof=ne.perfadd?(e.performance.antispoof||0)+Math.trunc(te()-a):Math.trunc(te()-a)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?p=(y=e.config.face.liveness)!=null&&y.enabled?T5(h[V].tensor||Be([]),e.config,V,h.length):0:(e.state="run:liveness",a=te(),p=(b=e.config.face.liveness)!=null&&b.enabled?await T5(h[V].tensor||Be([]),e.config,V,h.length):0,e.performance.liveness=ne.perfadd?(e.performance.antispoof||0)+Math.trunc(te()-a):Math.trunc(te()-a)),e.analyze("End Liveness:"),e.analyze("Start GEAR:"),e.config.async?r=(w=e.config.face.gear)!=null&&w.enabled?E5(h[V].tensor||Be([]),e.config,V,h.length):null:(e.state="run:gear",a=te(),r=(S=e.config.face.gear)!=null&&S.enabled?await E5(h[V].tensor||Be([]),e.config,V,h.length):null,e.performance.gear=Math.trunc(te()-a)),e.analyze("End GEAR:"),e.analyze("Start SSRNet:"),e.config.async?(n=(C=e.config.face.ssrnet)!=null&&C.enabled?M5(h[V].tensor||Be([]),e.config,V,h.length):null,s=(E=e.config.face.ssrnet)!=null&&E.enabled?P5(h[V].tensor||Be([]),e.config,V,h.length):null):(e.state="run:ssrnet",a=te(),n=(_=e.config.face.ssrnet)!=null&&_.enabled?await M5(h[V].tensor||Be([]),e.config,V,h.length):null,s=($=e.config.face.ssrnet)!=null&&$.enabled?await P5(h[V].tensor||Be([]),e.config,V,h.length):null,e.performance.ssrnet=Math.trunc(te()-a)),e.analyze("End SSRNet:"),e.analyze("Start MobileFaceNet:"),e.config.async?o=(M=e.config.face.mobilefacenet)!=null&&M.enabled?O5(h[V].tensor||Be([]),e.config,V,h.length):null:(e.state="run:mobilefacenet",a=te(),o=(I=e.config.face.mobilefacenet)!=null&&I.enabled?await O5(h[V].tensor||Be([]),e.config,V,h.length):null,e.performance.mobilefacenet=Math.trunc(te()-a)),e.analyze("End MobileFaceNet:"),e.analyze("Start InsightFace:"),e.config.async?l=(N=e.config.face.insightface)!=null&&N.enabled?z5(h[V].tensor||Be([]),e.config,V,h.length):null:(e.state="run:mobilefacenet",a=te(),l=(O=e.config.face.insightface)!=null&&O.enabled?await z5(h[V].tensor||Be([]),e.config,V,h.length):null,e.performance.mobilefacenet=Math.trunc(te()-a)),e.analyze("End InsightFace:"),e.analyze("Start Description:"),e.config.async?c=v5(h[V].tensor||Be([]),e.config,V,h.length):(e.state="run:description",a=te(),c=await v5(h[V].tensor||Be([]),e.config,V,h.length),e.performance.description=ne.perfadd?(e.performance.description||0)+Math.trunc(te()-a):Math.trunc(te()-a)),e.analyze("End Description:"),e.config.async&&([n,s,i,o,l,c,r,u,p]=await Promise.all([n,s,i,o,l,c,r,u,p])),e.analyze("Finish Face:"),((L=e.config.face.ssrnet)==null?void 0:L.enabled)&&n&&s&&(c={...c,age:n.age,gender:s.gender,genderScore:s.genderScore}),((B=e.config.face.gear)==null?void 0:B.enabled)&&r&&(c={...c,age:r.age,gender:r.gender,genderScore:r.genderScore,race:r.race}),((G=e.config.face.mobilefacenet)==null?void 0:G.enabled)&&o&&(c.descriptor=o),((j=e.config.face.insightface)==null?void 0:j.enabled)&&l&&(c.descriptor=l);let Z=(U=e.config.face.iris)!=null&&U.enabled?Bw(h[V],t.shape[2]):0,re=(H=e.config.face.detector)!=null&&H.return?_e(h[V].tensor):null;Y(h[V].tensor),h[V].tensor&&delete h[V].tensor;let ee={...h[V],id:V};c.age&&(ee.age=c.age),c.gender&&(ee.gender=c.gender),c.genderScore&&(ee.genderScore=c.genderScore),c.descriptor&&(ee.embedding=c.descriptor),c.race&&(ee.race=c.race),i&&(ee.emotion=i),u&&(ee.real=u),p&&(ee.live=p),Z>0&&(ee.distance=Z),Q&&(ee.rotation=Q),re&&(ee.tensor=re),d.push(ee),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),d};var Ma={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>Ma.nameMapping[e],getPoints:e=>Ma.pointsMapping[e]},gs={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>gs.nameMapping[e]},Et={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>Et.nameMapping[e]},ms=class{constructor(t){le(this,"name");le(this,"curls");le(this,"directions");le(this,"weights");le(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,a,n){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([a,n])}direction(t,a,n){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([a,n])}weight(t,a){this.weights[t]=a;let n=this.weights.reduce((r,s)=>r+s,0);this.weightsRelative=this.weights.map(r=>r*5/n)}matchAgainst(t,a){let n=0;for(let r in t){let s=t[r],i=this.curls[r];if(typeof i=="undefined"){n+=this.weightsRelative[r];continue}for(let[o,l]of i)if(s===o){n+=l*this.weightsRelative[r];break}}for(let r in a){let s=a[r],i=this.directions[r];if(typeof i=="undefined"){n+=this.weightsRelative[r];continue}for(let[o,l]of i)if(s===o){n+=l*this.weightsRelative[r];break}}return n/10}};var{thumb:Ln,index:Nr,middle:Er,ring:$o,pinky:_o}=Ma,{none:Bn,half:Nhe,full:Wn}=gs,{verticalUp:Tu,verticalDown:z5e,horizontalLeft:B5,horizontalRight:Ehe,diagonalUpRight:Rhe,diagonalUpLeft:Cu,diagonalDownRight:L5e,diagonalDownLeft:B5e}=Et,xs=new ms("thumbs up");xs.curl(Ln,Bn,1);xs.direction(Ln,Tu,1);xs.direction(Ln,Cu,.25);xs.direction(Ln,Rhe,.25);for(let e of[Ma.index,Ma.middle,Ma.ring,Ma.pinky])xs.curl(e,Wn,1),xs.direction(e,B5,1),xs.direction(e,Ehe,1);var Wt=new ms("victory");Wt.curl(Ln,Nhe,.5);Wt.curl(Ln,Bn,.5);Wt.direction(Ln,Tu,1);Wt.direction(Ln,Cu,1);Wt.curl(Nr,Bn,1);Wt.direction(Nr,Tu,.75);Wt.direction(Nr,Cu,1);Wt.curl(Er,Bn,1);Wt.direction(Er,Tu,1);Wt.direction(Er,Cu,.75);Wt.curl($o,Wn,1);Wt.direction($o,Tu,.2);Wt.direction($o,Cu,1);Wt.direction($o,B5,.2);Wt.curl(_o,Wn,1);Wt.direction(_o,Tu,.2);Wt.direction(_o,Cu,1);Wt.direction(_o,B5,.2);Wt.weight(Nr,2);Wt.weight(Er,2);var As=new ms("point");As.curl(Ln,Wn,1);As.curl(Nr,Bn,.5);As.curl(Er,Wn,.5);As.curl($o,Wn,.5);As.curl(_o,Wn,.5);As.weight(Nr,2);As.weight(Er,2);var ys=new ms("middle finger");ys.curl(Ln,Bn,1);ys.curl(Nr,Wn,.5);ys.curl(Er,Wn,.5);ys.curl($o,Wn,.5);ys.curl(_o,Wn,.5);ys.weight(Nr,2);ys.weight(Er,2);var Nu=new ms("open palm");Nu.curl(Ln,Bn,.75);Nu.curl(Nr,Bn,.75);Nu.curl(Er,Bn,.75);Nu.curl($o,Bn,.75);Nu.curl(_o,Bn,.75);var Ww=[xs,Wt,As,ys,Nu];var Mhe=.7,Po={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function Vw(e,t,a,n){let r=(t-n)/(e-a),s=Math.atan(r)*180/Math.PI;return s<=0?s=-s:s>0&&(s=180-s),s}function Gw(e,t){if(!e||!t)return[0,0];let a=Vw(e[0],e[1],t[0],t[1]);if(e.length===2)return a;let n=Vw(e[1],e[2],t[1],t[2]);return[a,n]}function Uw(e,t=1){let a=0,n=0,r=0;return e>=75&&e<=105?a=1*t:e>=25&&e<=155?n=1*t:r=1*t,[a,n,r]}function $he(e,t,a){let n=e[0]-t[0],r=e[0]-a[0],s=t[0]-a[0],i=e[1]-t[1],o=e[1]-a[1],l=t[1]-a[1],u=e[2]-t[2],p=e[2]-a[2],c=t[2]-a[2],d=Math.sqrt(n*n+i*i+u*u),h=Math.sqrt(r*r+o*o+p*p),f=Math.sqrt(s*s+l*l+c*c),m=(f*f+d*d-h*h)/(2*f*d);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let x;return g>Po.NO_CURL_START_LIMIT?x=gs.none:g>Po.HALF_CURL_START_LIMIT?x=gs.half:x=gs.full,x}function Hw(e,t,a,n){let r;return n===Math.abs(e)?e>0?r=Et.horizontalLeft:r=Et.horizontalRight:n===Math.abs(t)?t>0?r=Et.horizontalLeft:r=Et.horizontalRight:a>0?r=Et.horizontalLeft:r=Et.horizontalRight,r}function jw(e,t,a,n){let r;return n===Math.abs(e)?e<0?r=Et.verticalDown:r=Et.verticalUp:n===Math.abs(t)?t<0?r=Et.verticalDown:r=Et.verticalUp:a<0?r=Et.verticalDown:r=Et.verticalUp,r}function _he(e,t,a,n,r,s,i,o){let l,u=jw(e,t,a,n),p=Hw(r,s,i,o);return u===Et.verticalUp?p===Et.horizontalLeft?l=Et.diagonalUpLeft:l=Et.diagonalUpRight:p===Et.horizontalLeft?l=Et.diagonalDownLeft:l=Et.diagonalDownRight,l}function Phe(e,t,a,n){let r=e[0]-t[0],s=e[0]-a[0],i=t[0]-a[0],o=e[1]-t[1],l=e[1]-a[1],u=t[1]-a[1],p=Math.max(Math.abs(r),Math.abs(s),Math.abs(i)),c=Math.max(Math.abs(o),Math.abs(l),Math.abs(u)),d=0,h=0,f=0,m=c/(p+1e-5);m>1.5?d+=Po.DISTANCE_VOTE_POWER:m>.66?h+=Po.DISTANCE_VOTE_POWER:f+=Po.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+o*o),x=Math.sqrt(s*s+l*l),A=Math.sqrt(i*i+u*u),y=Math.max(g,x,A),b=e[0],w=e[1],S=a[0],C=a[1];y===g?(S=a[0],C=a[1]):y===A&&(b=t[0],w=t[1]);let $=Gw([b,w],[S,C]),M=Uw($,Po.TOTAL_ANGLE_VOTE_POWER);d+=M[0],h+=M[1],f+=M[2];for(let N of n){let O=Uw(N,Po.SINGLE_ANGLE_VOTE_POWER);d+=O[0],h+=O[1],f+=O[2]}let I;return d===Math.max(d,h,f)?I=jw(l,o,u,c):f===Math.max(h,f)?I=Hw(s,r,i,p):I=_he(l,o,u,c,s,r,i,p),I}function qw(e){let t=[],a=[],n=[],r=[];if(!e)return{curls:n,directions:r};for(let s of Ma.all){let i=Ma.getPoints(s),o=[],l=[];for(let u of i){let p=e[u[0]],c=e[u[1]],d=Gw(p,c),h=d[0],f=d[1];o.push(h),l.push(f)}t.push(o),a.push(l)}for(let s of Ma.all){let i=s===Ma.thumb?1:0,o=Ma.getPoints(s),l=e[o[i][0]],u=e[o[i+1][1]],p=e[o[3][1]],c=$he(l,u,p),d=Phe(l,u,p,t[s].slice(i));n[s]=c,r[s]=d}return{curls:n,directions:r}}function b0(e){if(!e||e.length===0)return null;let t=qw(e),a={};for(let n of Ma.all)a[Ma.getName(n)]={curl:gs.getName(t.curls[n]),direction:Et.getName(t.directions[n])};return a}function Xw(e){let t=[];if(!e||e.length===0)return t;let a=qw(e);for(let n of Ww){let r=n.matchAgainst(a.curls,a.directions);r>=Mhe&&t.push({name:n.name,confidence:r})}return t}var Kw=e=>{if(!e)return[];let t=[];for(let a=0;a<e.length;a++){let n=e[a].keypoints.find(l=>l.part==="leftWrist"),r=e[a].keypoints.find(l=>l.part==="rightWrist"),s=e[a].keypoints.find(l=>l.part==="nose");s&&n&&r&&n.position[1]<s.position[1]&&r.position[1]<s.position[1]?t.push({body:a,gesture:"i give up"}):s&&n&&n.position[1]<s.position[1]?t.push({body:a,gesture:"raise left hand"}):s&&r&&r.position[1]<s.position[1]&&t.push({body:a,gesture:"raise right hand"});let i=e[a].keypoints.find(l=>l.part==="leftShoulder"),o=e[a].keypoints.find(l=>l.part==="rightShoulder");i&&o&&Math.abs(i.positionRaw[1]-o.positionRaw[1])>.1&&t.push({body:a,gesture:`leaning ${i.position[1]>o.position[1]?"left":"right"}`})}return t},Zw=e=>{if(!e)return[];let t=[];for(let a=0;a<e.length;a++)if(e[a].mesh&&e[a].mesh.length>450){let n=(e[a].mesh[33][2]||0)-(e[a].mesh[263][2]||0),r=e[a].mesh[33][0]-e[a].mesh[263][0];Math.abs(n/r)<=.15?t.push({face:a,gesture:"facing center"}):t.push({face:a,gesture:`facing ${n<0?"left":"right"}`}),Math.abs(e[a].mesh[374][1]-e[a].mesh[386][1])/Math.abs(e[a].mesh[443][1]-e[a].mesh[450][1])<.2&&t.push({face:a,gesture:"blink left eye"}),Math.abs(e[a].mesh[145][1]-e[a].mesh[159][1])/Math.abs(e[a].mesh[223][1]-e[a].mesh[230][1])<.2&&t.push({face:a,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[a].mesh[13][1]-e[a].mesh[14][1])/Math.abs(e[a].mesh[10][1]-e[a].mesh[152][1]));o>10&&t.push({face:a,gesture:`mouth ${Math.trunc(o)}% open`});let l=e[a].mesh[152][2]||0;Math.abs(l)>10&&t.push({face:a,gesture:`head ${l<0?"up":"down"}`})}return t},Yw=e=>{var a,n,r,s;if(!e)return[];let t=[];for(let i=0;i<e.length;i++){if(!((n=(a=e[i].annotations)==null?void 0:a.leftEyeIris)!=null&&n[0])||!((s=(r=e[i].annotations)==null?void 0:r.rightEyeIris)!=null&&s[0]))continue;let o=e[i].annotations.leftEyeIris[3][0]-e[i].annotations.leftEyeIris[1][0],l=e[i].annotations.leftEyeIris[4][1]-e[i].annotations.leftEyeIris[2][1],u=Math.abs(o*l),p=e[i].annotations.rightEyeIris[3][0]-e[i].annotations.rightEyeIris[1][0],c=e[i].annotations.rightEyeIris[4][1]-e[i].annotations.rightEyeIris[2][1],d=Math.abs(p*c),h=!1;Math.abs(u-d)/Math.max(u,d)<.25&&(h=!0,t.push({iris:i,gesture:"facing center"}));let m=Math.abs(e[i].mesh[263][0]-e[i].annotations.leftEyeIris[0][0])/e[i].box[2],g=Math.abs(e[i].mesh[33][0]-e[i].annotations.rightEyeIris[0][0])/e[i].box[2];(m>.06||g>.06)&&(h=!1),m>g?m>.05&&t.push({iris:i,gesture:"looking right"}):g>.05&&t.push({iris:i,gesture:"looking left"});let x=Math.abs(e[i].mesh[145][1]-e[i].annotations.rightEyeIris[0][1])/e[i].box[3],A=Math.abs(e[i].mesh[374][1]-e[i].annotations.leftEyeIris[0][1])/e[i].box[3];(A<.01||x<.01||A>.022||x>.022)&&(h=!1),(A<.01||x<.01)&&t.push({iris:i,gesture:"looking down"}),(A>.022||x>.022)&&t.push({iris:i,gesture:"looking up"}),h&&t.push({iris:i,gesture:"looking center"})}return t},Jw=e=>{if(!e)return[];let t=[];for(let a=0;a<e.length;a++){let n=[];if(e[a].annotations)for(let[r,s]of Object.entries(e[a].annotations))r!=="palmBase"&&Array.isArray(s)&&s[0]&&n.push({name:r.toLowerCase(),position:s[0]});if(n&&n.length>0){let r=n.reduce((i,o)=>(i.position[2]||0)<(o.position[2]||0)?i:o);t.push({hand:a,gesture:`${r.name} forward`});let s=n.reduce((i,o)=>i.position[1]<o.position[1]?i:o);t.push({hand:a,gesture:`${s.name} up`})}if(e[a].keypoints){let r=Xw(e[a].keypoints);for(let s of r)t.push({hand:a,gesture:s.name})}}return t};function v0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function kp(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function tk(e,t,a){let n=t.shape[1],r=t.shape[2],s=[[e.startPoint[1]/n,e.startPoint[0]/r,e.endPoint[1]/n,e.endPoint[0]/r]];return ge.cropAndResize(t,s,[0],a)}function ak(e,t){let a=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:a,endPoint:n,palmLandmarks:r,confidence:e.confidence}}function w0(e,t=1.5){let a=kp(e),n=v0(e),r=[t*n[0]/2,t*n[1]/2],s=[a[0]-r[0],a[1]-r[1]],i=[a[0]+r[0],a[1]+r[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function k0(e){let t=kp(e),a=v0(e),r=Math.max(...a)/2,s=[t[0]-r,t[1]-r],i=[t[0]+r,t[1]+r];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function Ohe(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function nk(e,t){let a=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Ohe(a)}var Qw=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function bs(e,t){let a=0;for(let n=0;n<e.length;n++)a+=e[n]*t[n];return a}function Dhe(e,t){let a=[];for(let n=0;n<e.length;n++)a.push(e[n][t]);return a}function ek(e,t){let a=[],n=e.length;for(let r=0;r<n;r++){a.push([]);for(let s=0;s<n;s++)a[r].push(bs(e[r],Dhe(t,s)))}return a}function V5(e,t){let a=Math.cos(e),n=Math.sin(e),r=[[a,-n,0],[n,a,0],[0,0,1]],s=Qw(t[0],t[1]),i=ek(s,r),o=Qw(-t[0],-t[1]);return ek(i,o)}function rk(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],a=[e[0][2],e[1][2]],n=[-bs(t[0],a),-bs(t[1],a)];return[t[0].concat(n[0]),t[1].concat(n[1]),[0,0,1]]}function U5(e,t){return[bs(e,t[0]),bs(e,t[1])]}var ik=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var I0=class{constructor(t){le(this,"model");le(this,"anchors");le(this,"anchorsTensor");le(this,"inputSize");le(this,"inputSizeTensor");le(this,"doubleInputSizeTensor");var a,n,r,s;this.model=t,this.anchors=ik.map(i=>[i.x,i.y]),this.anchorsTensor=Xn(this.anchors),this.inputSize=((s=(r=(n=(a=this==null?void 0:this.model)==null?void 0:a.inputs)==null?void 0:n[0])==null?void 0:r.shape)==null?void 0:s[2])||0,this.inputSizeTensor=Ht([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Ht([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let a={};a.boxOffsets=Pe(t,[0,0],[-1,2]),a.boxSizes=Pe(t,[0,2],[-1,2]),a.div=me(a.boxOffsets,this.inputSizeTensor),a.boxCenterPoints=be(a.div,this.anchorsTensor),a.halfBoxSizes=me(a.boxSizes,this.doubleInputSizeTensor),a.sub=fe(a.boxCenterPoints,a.halfBoxSizes),a.startPoints=ae(a.sub,this.inputSizeTensor),a.add=be(a.boxCenterPoints,a.halfBoxSizes),a.endPoints=ae(a.add,this.inputSizeTensor);let n=nu([a.startPoints,a.endPoints],1);return Object.keys(a).forEach(r=>Y(a[r])),n}normalizeLandmarks(t,a){let n={};n.reshape=J(t,[-1,7,2]),n.div=me(n.reshape,this.inputSizeTensor),n.landmarks=be(n.div,this.anchors[a]?this.anchors[a]:0);let r=ae(n.landmarks,this.inputSizeTensor);return Object.keys(n).forEach(s=>Y(n[s])),r}async predict(t,a){var o;let n={};n.resize=ge.resizeBilinear(t,[this.inputSize,this.inputSize]),n.div=me(n.resize,ze.tf127),n.image=fe(n.div,ze.tf1),n.batched=this.model.execute(n.image),n.predictions=_e(n.batched),n.slice=Pe(n.predictions,[0,0],[-1,1]),n.sigmoid=Da(n.slice),n.scores=_e(n.sigmoid);let r=await n.scores.data();n.boxes=Pe(n.predictions,[0,1],[-1,4]),n.norm=this.normalizeBoxes(n.boxes),n.nms=await ge.nonMaxSuppressionAsync(n.norm,n.scores,3*(((o=a.hand)==null?void 0:o.maxDetected)||1),a.hand.iouThreshold,a.hand.minConfidence);let s=await n.nms.array(),i=[];for(let l of s){let u={};u.box=Pe(n.norm,[l,0],[1,-1]),u.slice=Pe(n.predictions,[l,5],[1,14]),u.norm=this.normalizeLandmarks(u.slice,l),u.palmLandmarks=J(u.norm,[-1,2]);let p=await u.box.data(),c=p.slice(0,2),d=p.slice(2,4),h=await u.palmLandmarks.array(),f={startPoint:c,endPoint:d,palmLandmarks:h,confidence:r[l]},m=ak(f,[(t.shape[2]||1)/this.inputSize,(t.shape[1]||0)/this.inputSize]);i.push(m),Object.keys(u).forEach(g=>Y(u[g]))}return Object.keys(n).forEach(l=>Y(n[l])),i}};var Bhe=5,ok=1.65,lk=[0,5,9,13,17,1,2],Whe=0,Vhe=2,uk=0,S0=class{constructor(t,a){le(this,"handDetector");le(this,"handPoseModel");le(this,"inputSize");le(this,"storedBoxes");le(this,"skipped");le(this,"detectedHands");var n,r,s;this.handDetector=t,this.handPoseModel=a,this.inputSize=((s=(r=(n=this.handPoseModel)==null?void 0:n.inputs)==null?void 0:r[0].shape)==null?void 0:s[2])||0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let a=t.map(i=>i[0]),n=t.map(i=>i[1]),r=[Math.min(...a),Math.min(...n)],s=[Math.max(...a),Math.max(...n)];return{startPoint:r,endPoint:s}}getBoxForPalmLandmarks(t,a){let n=t.map(s=>U5([...s,1],a)),r=this.calculateLandmarksBoundingBox(n);return w0(k0(r),Bhe)}getBoxForHandLandmarks(t){let a=this.calculateLandmarksBoundingBox(t),n=w0(k0(a),ok);n.palmLandmarks=[];for(let r=0;r<lk.length;r++)n.palmLandmarks.push(t[lk[r]].slice(0,2));return n}transformRawCoords(t,a,n,r){let s=v0(a),i=[s[0]/this.inputSize,s[1]/this.inputSize,(s[0]+s[1])/this.inputSize/2],o=t.map(h=>[i[0]*(h[0]-this.inputSize/2),i[1]*(h[1]-this.inputSize/2),i[2]*h[2]]),l=V5(n,[0,0]),u=o.map(h=>[...U5(h,l),h[2]]),p=rk(r),c=[...kp(a),1],d=[bs(c,p[0]),bs(c,p[1])];return u.map(h=>[Math.trunc(h[0]+d[0]),Math.trunc(h[1]+d[1]),Math.trunc(h[2])])}async estimateHands(t,a){let n=!1,r,s=(a.hand.skipTime||0)>te()-uk,i=this.skipped<(a.hand.skipFrames||0);a.skipAllowed&&s&&i&&(r=await this.handDetector.predict(t,a),this.skipped=0),a.skipAllowed&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==a.hand.maxDetected||!a.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(n=!0));let o=[];for(let l=0;l<this.storedBoxes.length;l++){let u=this.storedBoxes[l];if(!!u)if(a.hand.landmarks){let p=a.hand.rotation?nk(u.palmLandmarks[Whe],u.palmLandmarks[Vhe]):0,c=kp(u),d=[c[0]/t.shape[2],c[1]/t.shape[1]],h=a.hand.rotation&&ne.kernels.includes("rotatewithoffset")?ge.rotateWithOffset(t,p,0,d):t.clone(),f=V5(-p,c),m=n?this.getBoxForPalmLandmarks(u.palmLandmarks,f):u,g=tk(m,h,[this.inputSize,this.inputSize]),x=me(g,ze.tf255);Y(g),Y(h);let[A,y]=this.handPoseModel.execute(x);uk=te(),Y(x);let b=(await A.data())[0];if(Y(A),b>=a.hand.minConfidence/4){let w=J(y,[-1,3]),S=await w.array();Y(y),Y(w);let C=this.transformRawCoords(S,m,p,f),E=this.getBoxForHandLandmarks(C);this.storedBoxes[l]={...E,confidence:b};let _={landmarks:C,confidence:b,boxConfidence:u.confidence,fingerConfidence:b,box:{topLeft:E.startPoint,bottomRight:E.endPoint}};o.push(_)}else this.storedBoxes[l]=null;Y(y)}else{let p=w0(k0(u),ok),c={confidence:u.confidence,boxConfidence:u.confidence,fingerConfidence:0,box:{topLeft:p.startPoint,bottomRight:p.endPoint},landmarks:[]};o.push(c)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=o.length,o.length>a.hand.maxDetected&&(o.length=a.hand.maxDetected),o}};var dk={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},Fo,Oo,pk;async function G5(e,t){let a=await pk.estimateHands(e,t);if(!a)return[];let n=[];for(let r=0;r<a.length;r++){let s={};if(a[r].landmarks)for(let p of Object.keys(dk))s[p]=dk[p].map(c=>a[r].landmarks[c]);let i=a[r].landmarks,o=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(i&&i.length>0){for(let p of i)p[0]<o[0]&&(o[0]=p[0]),p[1]<o[1]&&(o[1]=p[1]),p[0]>o[2]&&(o[2]=p[0]),p[1]>o[3]&&(o[3]=p[1]);o[2]-=o[0],o[3]-=o[1],l=[o[0]/(e.shape[2]||0),o[1]/(e.shape[1]||0),o[2]/(e.shape[2]||0),o[3]/(e.shape[1]||0)]}else o=a[r].box?[Math.trunc(Math.max(0,a[r].box.topLeft[0])),Math.trunc(Math.max(0,a[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,a[r].box.bottomRight[0])-Math.max(0,a[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,a[r].box.bottomRight[1])-Math.max(0,a[r].box.topLeft[1]))]:[0,0,0,0],l=[a[r].box.topLeft[0]/(e.shape[2]||0),a[r].box.topLeft[1]/(e.shape[1]||0),(a[r].box.bottomRight[0]-a[r].box.topLeft[0])/(e.shape[2]||0),(a[r].box.bottomRight[1]-a[r].box.topLeft[1])/(e.shape[1]||0)];let u=b0(i);n.push({id:r,score:Math.round(100*a[r].confidence)/100,boxScore:Math.round(100*a[r].boxConfidence)/100,fingerScore:Math.round(100*a[r].fingerConfidence)/100,label:"hand",box:o,boxRaw:l,keypoints:i,annotations:s,landmarks:u})}return n}async function ck(e){var a,n;ne.initial&&(Fo=null,Oo=null),!Fo||!Oo?[Fo,Oo]=await Promise.all([e.hand.enabled?Ee((a=e.hand.detector)==null?void 0:a.modelPath):null,e.hand.landmarks?Ee((n=e.hand.skeleton)==null?void 0:n.modelPath):null]):(e.debug&&K("cached model:",Fo.modelUrl),e.debug&&K("cached model:",Oo.modelUrl));let t=Fo?new I0(Fo):void 0;return t&&Oo&&(pk=new S0(t,Oo)),[Fo,Oo]}var Pt=[null,null],Ghe=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],vs=[[0,0],[0,0]],Hhe=["hand","fist","pinch","point","face","tip","pinchtip"],fk=4,mk=1.6,jhe=512,qhe=1.4,T0=Number.MAX_SAFE_INTEGER,H5=0,Rr=[0,0],_t={boxes:[],hands:[]},gk={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],base:[0],palm:[0,17,13,9,5,1,0]};async function xk(e){var t;if(ne.initial&&(Pt[0]=null),Pt[0])e.debug&&K("cached model:",Pt[0].modelUrl);else{Zh(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),Pt[0]=await Ee((t=e.hand.detector)==null?void 0:t.modelPath);let a=Pt[0].executor?Object.values(Pt[0].modelSignature.inputs):void 0;vs[0][0]=Array.isArray(a)?parseInt(a[0].tensorShape.dim[1].size):0,vs[0][1]=Array.isArray(a)?parseInt(a[0].tensorShape.dim[2].size):0}return Pt[0]}async function Ak(e){var t;if(ne.initial&&(Pt[1]=null),Pt[1])e.debug&&K("cached model:",Pt[1].modelUrl);else{Pt[1]=await Ee((t=e.hand.skeleton)==null?void 0:t.modelPath);let a=Pt[1].executor?Object.values(Pt[1].modelSignature.inputs):void 0;vs[1][0]=Array.isArray(a)?parseInt(a[0].tensorShape.dim[1].size):0,vs[1][1]=Array.isArray(a)?parseInt(a[0].tensorShape.dim[2].size):0}return Pt[1]}async function Xhe(e,t){let a=[];if(!e||!Pt[0])return a;let n={},r=(e.shape[2]||1)/(e.shape[1]||1),s=Math.min(Math.round((e.shape[1]||0)/8)*8,jhe),i=Math.round(s*r/8)*8;n.resize=ge.resizeBilinear(e,[s,i]),n.cast=He(n.resize,"int32"),[n.rawScores,n.rawBoxes]=await Pt[0].executeAsync(n.cast,Ghe),n.boxes=_e(n.rawBoxes,[0,2]),n.scores=_e(n.rawScores,[0]);let o=Ta(n.scores,1);Y(o[fk]),o.splice(fk,1),n.filtered=sa(o,1),Y(o),n.max=pa(n.filtered,1),n.argmax=tr(n.filtered,1);let l=0;n.nms=await ge.nonMaxSuppressionAsync(n.boxes,n.max,(t.hand.maxDetected||0)+1,t.hand.iouThreshold||0,t.hand.minConfidence||1);let u=await n.nms.data(),p=await n.max.data(),c=await n.argmax.data();for(let d of Array.from(u)){let h=Pe(n.boxes,d,1),f=await h.data();Y(h);let m=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=s0(m,qhe),x=[Math.trunc(m[0]*Rr[0]),Math.trunc(m[1]*Rr[1]),Math.trunc(m[2]*Rr[0]),Math.trunc(m[3]*Rr[1])],A=p[d],y=Hhe[c[d]],b={id:l++,score:A,box:x,boxRaw:g,label:y};a.push(b)}return Object.keys(n).forEach(d=>Y(n[d])),a.sort((d,h)=>h.score-d.score),a.length>(t.hand.maxDetected||1)&&(a.length=t.hand.maxDetected||1),a}async function j5(e,t,a){let n={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&Pt[1]&&a.hand.landmarks&&t.score>(a.hand.minConfidence||0)){let r={},s=[t.boxRaw[1],t.boxRaw[0],t.boxRaw[3]+t.boxRaw[1],t.boxRaw[2]+t.boxRaw[0]];r.crop=ge.cropAndResize(e,[s],[0],[vs[1][0],vs[1][1]],"bilinear"),r.div=me(r.crop,ze.tf255),[r.score,r.keypoints]=Pt[1].execute(r.div,["Identity_1","Identity"]);let i=(await r.score.data())[0],o=(100-Math.trunc(100/(1+Math.exp(i))))/100;if(o>=(a.hand.minConfidence||0)){n.fingerScore=o,r.reshaped=J(r.keypoints,[-1,3]);let p=(await r.reshaped.array()).map(c=>[c[0]/vs[1][1],c[1]/vs[1][0],c[2]||0]).map(c=>[c[0]*t.boxRaw[2],c[1]*t.boxRaw[3],c[2]||0]);n.keypoints=p.map(c=>[Rr[0]*(c[0]+t.boxRaw[0]),Rr[1]*(c[1]+t.boxRaw[1]),c[2]||0]),n.landmarks=b0(n.keypoints);for(let c of Object.keys(gk))n.annotations[c]=gk[c].map(d=>n.landmarks&&n.keypoints[d]?n.keypoints[d]:null)}Object.keys(r).forEach(l=>Y(r[l]))}return n}async function q5(e,t){var r,s;if(!((r=Pt[0])!=null&&r.executor)||!((s=Pt[1])!=null&&s.executor)||!Pt[0].inputs[0].shape||!Pt[1].inputs[0].shape)return[];Rr=[e.shape[2]||0,e.shape[1]||0],T0++;let a=(t.hand.skipTime||0)>te()-H5,n=T0<(t.hand.skipFrames||0);return t.skipAllowed&&a&&n?_t.hands:new Promise(async i=>{let o=3*(t.hand.skipTime||0)>te()-H5,l=T0<3*(t.hand.skipFrames||0);t.skipAllowed&&_t.hands.length===t.hand.maxDetected?_t.hands=await Promise.all(_t.boxes.map(p=>j5(e,p,t))):t.skipAllowed&&o&&l&&_t.hands.length>0?_t.hands=await Promise.all(_t.boxes.map(p=>j5(e,p,t))):(_t.boxes=await Xhe(e,t),H5=te(),_t.hands=await Promise.all(_t.boxes.map(p=>j5(e,p,t))),T0=0);let u=[..._t.boxes];if(_t.boxes.length=0,t.cacheSensitivity>0)for(let p=0;p<_t.hands.length;p++){let c=x9(_t.hands[p].keypoints,Rr);if(c.box[2]/(e.shape[2]||1)>.05&&c.box[3]/(e.shape[1]||1)>.05&&_t.hands[p].fingerScore&&_t.hands[p].fingerScore>(t.hand.minConfidence||0)){let d=s0(c.box,mk),h=s0(c.boxRaw,mk);_t.boxes.push({...u[p],box:d,boxRaw:h})}}for(let p=0;p<_t.hands.length;p++){let c=Cr(_t.hands[p].keypoints,Rr);_t.hands[p].box=c.box,_t.hands[p].boxRaw=c.boxRaw}i(_t.hands)})}var ir=(e=null)=>({face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,width:0,height:0,error:e});var Ip={};cr(Ip,{connected:()=>N0,horizontal:()=>X5,kpt:()=>C0,relative:()=>Z5,vertical:()=>K5});var C0=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],X5=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],K5=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],Z5=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],N0={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var xe=ir(),Y5=0;function bk(e,t){var i,o,l,u,p,c,d,h,f,m,g,x,A,y,b,w,S,C,E,_,$,M,I;let a=te();if(!e)return ir();let n=Date.now()-e.timestamp,r=n<1e3?8-Math.log(n+1):1;if(e.canvas&&(xe.canvas=e.canvas),e.error&&(xe.error=e.error),!xe.body||e.body.length!==xe.body.length)xe.body=JSON.parse(JSON.stringify(e.body));else for(let N=0;N<e.body.length;N++){let O=e.body[N].box.map((U,H)=>((r-1)*xe.body[N].box[H]+U)/r),L=e.body[N].boxRaw.map((U,H)=>((r-1)*xe.body[N].boxRaw[H]+U)/r),B=e.body[N].keypoints.map((U,H)=>{var V,Q,Z,re,ee,he,oe,Ae,we;return{score:U.score,part:U.part,position:[xe.body[N].keypoints[H]?((r-1)*(xe.body[N].keypoints[H].position[0]||0)+(U.position[0]||0))/r:U.position[0],xe.body[N].keypoints[H]?((r-1)*(xe.body[N].keypoints[H].position[1]||0)+(U.position[1]||0))/r:U.position[1],xe.body[N].keypoints[H]?((r-1)*(xe.body[N].keypoints[H].position[2]||0)+(U.position[2]||0))/r:U.position[2]],positionRaw:[xe.body[N].keypoints[H]?((r-1)*(xe.body[N].keypoints[H].positionRaw[0]||0)+(U.positionRaw[0]||0))/r:U.positionRaw[0],xe.body[N].keypoints[H]?((r-1)*(xe.body[N].keypoints[H].positionRaw[1]||0)+(U.positionRaw[1]||0))/r:U.positionRaw[1],xe.body[N].keypoints[H]?((r-1)*(xe.body[N].keypoints[H].positionRaw[2]||0)+(U.positionRaw[2]||0))/r:U.positionRaw[2]],distance:[xe.body[N].keypoints[H]?((r-1)*(((V=xe.body[N].keypoints[H].distance)==null?void 0:V[0])||0)+(((Q=U.distance)==null?void 0:Q[0])||0))/r:(Z=U.distance)==null?void 0:Z[0],xe.body[N].keypoints[H]?((r-1)*(((re=xe.body[N].keypoints[H].distance)==null?void 0:re[1])||0)+(((ee=U.distance)==null?void 0:ee[1])||0))/r:(he=U.distance)==null?void 0:he[1],xe.body[N].keypoints[H]?((r-1)*(((oe=xe.body[N].keypoints[H].distance)==null?void 0:oe[2])||0)+(((Ae=U.distance)==null?void 0:Ae[2])||0))/r:(we=U.distance)==null?void 0:we[2]]}}),G={},j={connected:{}};(i=t.body.modelPath)!=null&&i.includes("efficientpose")?j=l0:(o=t.body.modelPath)!=null&&o.includes("blazepose")?j=n0:(l=t.body.modelPath)!=null&&l.includes("movenet")&&(j=Ip);for(let[U,H]of Object.entries(j.connected)){let V=[];for(let Q=0;Q<H.length-1;Q++){let Z=B.find(ee=>ee.part===H[Q]),re=B.find(ee=>ee.part===H[Q+1]);Z&&re&&V.push([Z.position,re.position])}G[U]=V}xe.body[N]={...e.body[N],box:O,boxRaw:L,keypoints:B,annotations:G}}if(!xe.hand||e.hand.length!==xe.hand.length)xe.hand=JSON.parse(JSON.stringify(e.hand));else for(let N=0;N<e.hand.length;N++){let O=e.hand[N].box.map((j,U)=>((r-1)*xe.hand[N].box[U]+j)/r),L=e.hand[N].boxRaw.map((j,U)=>((r-1)*xe.hand[N].boxRaw[U]+j)/r);xe.hand[N].keypoints.length!==e.hand[N].keypoints.length&&(xe.hand[N].keypoints=e.hand[N].keypoints);let B=e.hand[N].keypoints&&e.hand[N].keypoints.length>0?e.hand[N].keypoints.map((j,U)=>j.map((H,V)=>((r-1)*(xe.hand[N].keypoints[U][V]||1)+(H||0))/r)):[],G={};if(Object.keys(xe.hand[N].annotations).length!==Object.keys(e.hand[N].annotations).length)xe.hand[N].annotations=e.hand[N].annotations,G=xe.hand[N].annotations;else if(e.hand[N].annotations)for(let j of Object.keys(e.hand[N].annotations))G[j]=(c=(p=(u=e.hand[N])==null?void 0:u.annotations)==null?void 0:p[j])!=null&&c[0]?e.hand[N].annotations[j].map((U,H)=>U.map((V,Q)=>((r-1)*xe.hand[N].annotations[j][H][Q]+V)/r)):null;xe.hand[N]={...e.hand[N],box:O,boxRaw:L,keypoints:B,annotations:G}}if(!xe.face||e.face.length!==xe.face.length)xe.face=JSON.parse(JSON.stringify(e.face));else for(let N=0;N<e.face.length;N++){let O=e.face[N].box.map((B,G)=>((r-1)*xe.face[N].box[G]+B)/r),L=e.face[N].boxRaw.map((B,G)=>((r-1)*xe.face[N].boxRaw[G]+B)/r);if(e.face[N].rotation){let B={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};B.matrix=(d=e.face[N].rotation)==null?void 0:d.matrix,B.angle={roll:((r-1)*(((f=(h=xe.face[N].rotation)==null?void 0:h.angle)==null?void 0:f.roll)||0)+(((g=(m=e.face[N].rotation)==null?void 0:m.angle)==null?void 0:g.roll)||0))/r,yaw:((r-1)*(((A=(x=xe.face[N].rotation)==null?void 0:x.angle)==null?void 0:A.yaw)||0)+(((b=(y=e.face[N].rotation)==null?void 0:y.angle)==null?void 0:b.yaw)||0))/r,pitch:((r-1)*(((S=(w=xe.face[N].rotation)==null?void 0:w.angle)==null?void 0:S.pitch)||0)+(((E=(C=e.face[N].rotation)==null?void 0:C.angle)==null?void 0:E.pitch)||0))/r},B.gaze={bearing:((r-1)*(((_=xe.face[N].rotation)==null?void 0:_.gaze.bearing)||0)+((($=e.face[N].rotation)==null?void 0:$.gaze.bearing)||0))/r,strength:((r-1)*(((M=xe.face[N].rotation)==null?void 0:M.gaze.strength)||0)+(((I=e.face[N].rotation)==null?void 0:I.gaze.strength)||0))/r},xe.face[N]={...e.face[N],rotation:B,box:O,boxRaw:L}}else xe.face[N]={...e.face[N],box:O,boxRaw:L}}if(!xe.object||e.object.length!==xe.object.length)xe.object=JSON.parse(JSON.stringify(e.object));else for(let N=0;N<e.object.length;N++){let O=e.object[N].box.map((B,G)=>((r-1)*xe.object[N].box[G]+B)/r),L=e.object[N].boxRaw.map((B,G)=>((r-1)*xe.object[N].boxRaw[G]+B)/r);xe.object[N]={...e.object[N],box:O,boxRaw:L}}if(e.persons){let N=e.persons;if(!xe.persons||N.length!==xe.persons.length)xe.persons=JSON.parse(JSON.stringify(N));else for(let O=0;O<N.length;O++)xe.persons[O].box=N[O].box.map((L,B)=>((r-1)*xe.persons[O].box[B]+L)/r)}e.gesture&&(xe.gesture=e.gesture),xe.width=e.width,xe.height=e.height;let s=te();return Y5=ne.perfadd?Y5+Math.round(s-a):Math.round(s-a),e.performance&&(xe.performance={...e.performance,interpolate:Y5}),xe}var ma;async function J5(e){return!ma||ne.initial?ma=await Ee(e.segmentation.modelPath):e.debug&&K("cached model:",ma.modelUrl),ma}async function vk(e,t){var r;if(ma||(ma=await J5(t)),!(ma!=null&&ma.executor)||!((r=ma==null?void 0:ma.inputs)!=null&&r[0].shape))return null;let a={};a.resize=ge.resizeBilinear(e,[ma.inputs[0].shape?ma.inputs[0].shape[1]:0,ma.inputs[0].shape?ma.inputs[0].shape[2]:0],!1),a.norm=me(a.resize,ze.tf255),a.res=ma.execute(a.norm),a.squeeze=_e(a.res,[0]),[a.bgRaw,a.fgRaw]=Ta(a.squeeze,2),a.fg=mh(a.fgRaw),a.mul=ae(a.fg,ze.tf255),a.expand=Gt(a.mul,2),a.output=ge.resizeBilinear(a.expand,[e.shape[1]||0,e.shape[2]||0]);let n;switch(t.segmentation.mode||"default"){case"default":a.input=_e(e),a.concat=at([a.input,a.output],-1),n=He(a.concat,"int32");break;case"alpha":n=He(a.output,"int32");break;default:n=Be(0)}return Object.keys(a).forEach(s=>Y(a[s])),n}var E0={};cr(E0,{distance:()=>Q5,find:()=>Yhe,similarity:()=>Zhe});function Q5(e,t,a={order:2,multiplier:25}){if(!e||!e)return Number.MAX_SAFE_INTEGER;let n=0;for(let r=0;r<e.length;r++){let s=!a.order||a.order===2?e[r]-t[r]:Math.abs(e[r]-t[r]);n+=!a.order||a.order===2?s*s:s**a.order}return(a.multiplier||20)*n}var kk=(e,t,a,n)=>{if(e===0)return 1;let s=(1-(t===2?Math.sqrt(e):e**(1/t))/100-a)/(n-a);return Math.max(Math.min(s,1),0)};function Zhe(e,t,a={order:2,multiplier:25,min:.2,max:.8}){let n=Q5(e,t,a);return kk(n,a.order||2,a.min||0,a.max||1)}function Yhe(e,t,a={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let n=Number.MAX_SAFE_INTEGER,r=-1;for(let i=0;i<t.length;i++){let o=t[i].length===e.length?Q5(e,t[i],a):Number.MAX_SAFE_INTEGER;if(o<n&&(n=o,r=i),n<(a.threshold||0))break}let s=kk(n,a.order||2,a.min||0,a.max||1);return{index:r,distance:n,similarity:s}}var fg={};cr(fg,{Models:()=>Cp,validateModel:()=>O0});var Ik=.005,an={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function eg(e){for(let t of X5){let a=e.keypoints.findIndex(r=>r.part===t[0]),n=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[a]&&e.keypoints[n]&&e.keypoints[a].position[0]<e.keypoints[n].position[0]){let r=e.keypoints[a];e.keypoints[a]=e.keypoints[n],e.keypoints[n]=r}}for(let t of K5){let a=e.keypoints.findIndex(r=>r&&r.part===t[0]),n=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[a]&&e.keypoints[n]&&e.keypoints[a].position[1]<e.keypoints[n].position[1]&&e.keypoints.splice(a,1)}for(let[t,a]of Z5){let n=e.keypoints.findIndex(u=>u&&u.part===t[0]),r=e.keypoints.findIndex(u=>u&&u.part===t[1]),s=e.keypoints.findIndex(u=>u&&u.part===a[0]),i=e.keypoints.findIndex(u=>u&&u.part===a[1]);if(!e.keypoints[s]||!e.keypoints[i])continue;let o=e.keypoints[n]?[Math.abs(e.keypoints[s].position[0]-e.keypoints[n].position[0]),Math.abs(e.keypoints[i].position[0]-e.keypoints[n].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[i].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[s].position[0]-e.keypoints[r].position[0])]:[0,0];if(o[0]>o[1]||l[0]>l[1]){let u=e.keypoints[n];e.keypoints[n]=e.keypoints[r],e.keypoints[r]=u}}}function Sk(e){for(let t=0;t<e.length;t++)if(e[t]&&an.keypoints[t]){let a=[Math.abs(e[t].positionRaw[0]-an.keypoints[t].positionRaw[0]),Math.abs(e[t].positionRaw[1]-an.keypoints[t].positionRaw[1])];a[0]<Ik&&a[1]<Ik?e[t]=an.keypoints[t]:an.keypoints[t]=e[t]}else an.keypoints[t]=e[t];return e}function Tk(e,t){var r,s;let a={};if(!((r=e==null?void 0:e.shape)!=null&&r[1])||!((s=e==null?void 0:e.shape)!=null&&s[2]))return e;an.padding=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],a.pad=nr(e,an.padding),a.resize=ge.resizeBilinear(a.pad,[t,t]);let n=He(a.resize,"int32");return Object.keys(a).forEach(i=>Y(a[i])),n}function Ck(e,t){e.keypoints=e.keypoints.filter(n=>n==null?void 0:n.position);for(let n of e.keypoints)n.position=[n.position[0]*(t[0]+an.padding[2][0]+an.padding[2][1])/t[0]-an.padding[2][0],n.position[1]*(t[1]+an.padding[1][0]+an.padding[1][1])/t[1]-an.padding[1][0]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1]];let a=Cr(e.keypoints.map(n=>n.position),t);return e.box=a.box,e.boxRaw=a.boxRaw,e}var Vt,R0=0,tg=Number.MAX_SAFE_INTEGER,Do={boxes:[],bodies:[],last:0};async function Nk(e){var t;return ne.initial&&(Vt=null),Vt?e.debug&&K("cached model:",Vt.modelUrl):(Zh(["size"],e),Vt=await Ee(e.body.modelPath)),R0=(Vt==null?void 0:Vt.executor)&&((t=Vt==null?void 0:Vt.inputs)==null?void 0:t[0].shape)?Vt.inputs[0].shape[2]:0,R0<64&&(R0=256),Vt}function Qhe(e,t,a){let n=e[0][0],r=[],s=0;for(let p=0;p<n.length;p++)if(s=n[p][2],s>t.body.minConfidence){let c=[n[p][1],n[p][0]];r.push({score:Math.round(100*s)/100,part:C0[p],positionRaw:c,position:[Math.round((a.shape[2]||0)*c[0]),Math.round((a.shape[1]||0)*c[1])]})}s=r.reduce((p,c)=>c.score>p?c.score:p,0);let i=[],o=Cr(r.map(p=>p.position),[a.shape[2],a.shape[1]]),l={};for(let[p,c]of Object.entries(N0)){let d=[];for(let h=0;h<c.length-1;h++){let f=r.find(g=>g.part===c[h]),m=r.find(g=>g.part===c[h+1]);f&&m&&f.score>(t.body.minConfidence||0)&&m.score>(t.body.minConfidence||0)&&d.push([f.position,m.position])}l[p]=d}let u={id:0,score:s,box:o.box,boxRaw:o.boxRaw,keypoints:r,annotations:l};return eg(u),i.push(u),i}function e0e(e,t,a){let n=[];for(let r=0;r<e[0].length;r++){let s=e[0][r],i=Math.round(100*s[51+4])/100;if(i>t.body.minConfidence){let o=[];for(let c=0;c<17;c++){let d=s[3*c+2];if(d>t.body.minConfidence){let h=[s[3*c+1],s[3*c+0]];o.push({part:C0[c],score:Math.round(100*d)/100,positionRaw:h,position:[Math.round((a.shape[2]||0)*h[0]),Math.round((a.shape[1]||0)*h[1])]})}}let l=Cr(o.map(c=>c.position),[a.shape[2],a.shape[1]]),u={};for(let[c,d]of Object.entries(N0)){let h=[];for(let f=0;f<d.length-1;f++){let m=o.find(x=>x.part===d[f]),g=o.find(x=>x.part===d[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}u[c]=h}let p={id:r,score:i,box:l.box,boxRaw:l.boxRaw,keypoints:[...o],annotations:u};eg(p),n.push(p)}}return n.sort((r,s)=>s.score-r.score),n.length>t.body.maxDetected&&(n.length=t.body.maxDetected),n}async function ag(e,t){var r;if(!(Vt!=null&&Vt.executor)||!((r=Vt==null?void 0:Vt.inputs)!=null&&r[0].shape))return[];t.skipAllowed||(Do.boxes.length=0),tg++;let a=(t.body.skipTime||0)>te()-Do.last,n=tg<(t.body.skipFrames||0);return t.skipAllowed&&a&&n?Do.bodies:new Promise(async s=>{let i={};tg=0,i.input=Tk(e,R0),i.res=Vt==null?void 0:Vt.execute(i.input),Do.last=te();let o=await i.res.array();Do.bodies=i.res.shape[2]===17?Qhe(o,t,e):e0e(o,t,e);for(let l of Do.bodies)Ck(l,[e.shape[2]||1,e.shape[1]||1]),Sk(l.keypoints);Object.keys(i).forEach(l=>Y(i[l])),s(Do.bodies)})}var $n,M0=[],Rk=0,ng=Number.MAX_SAFE_INTEGER,_0=0,$0=2.5;async function Mk(e){if(!$n||ne.initial){$n=await Ee(e.object.modelPath);let t=$n!=null&&$n.executor?Object.values($n.modelSignature.inputs):void 0;_0=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):416}else e.debug&&K("cached model:",$n.modelUrl);return $n}async function t0e(e,t,a){var u,p;let n=0,r=[],s=_0;for(let c of[1,2,4]){let d=c*13,h=_e(e.find(y=>y.shape[1]===d**2&&(y.shape[2]||0)===yu.length)),f=await h.array(),m=_e(e.find(y=>y.shape[1]===d**2&&(y.shape[2]||0)<yu.length)),g=J(m,[-1,4,(((u=m.shape)==null?void 0:u[1])||0)/4]),x=tr(g,2),A=await x.array();for(let y=0;y<h.shape[0];y++)for(let b=0;b<(((p=h.shape)==null?void 0:p[1])||0);b++){let w=f[y][b];if(w>(a.object.minConfidence||0)&&b!==61){let S=(.5+Math.trunc(y%d))/d,C=(.5+Math.trunc(y/d))/d,E=A[y].map(B=>B*(d/c/s)),[_,$]=[S-$0/c*E[0],C-$0/c*E[1]],[M,I]=[S+$0/c*E[2]-_,C+$0/c*E[3]-$],N=[_,$,M,I];N=N.map(B=>Math.max(0,Math.min(B,1)));let O=[N[0]*t[0],N[1]*t[1],N[2]*t[0],N[3]*t[1]],L={id:n++,score:Math.round(100*w)/100,class:b+1,label:yu[b].label,box:O.map(B=>Math.trunc(B)),boxRaw:N};r.push(L)}}Y([h,m,g,x])}let i=r.map(c=>[c.boxRaw[1],c.boxRaw[0],c.boxRaw[3],c.boxRaw[2]]),o=r.map(c=>c.score),l=[];if(i&&i.length>0){let c=await ge.nonMaxSuppressionAsync(i,o,a.object.maxDetected||0,a.object.iouThreshold,a.object.minConfidence);l=Array.from(await c.data()),Y(c)}return r=r.filter((c,d)=>l.includes(d)).sort((c,d)=>d.score-c.score),r}async function rg(e,t){if(!($n!=null&&$n.executor))return[];let a=(t.object.skipTime||0)>te()-Rk,n=ng<(t.object.skipFrames||0);return t.skipAllowed&&a&&n&&M0.length>0?(ng++,M0):(ng=0,!ne.kernels.includes("mod")||!ne.kernels.includes("sparsetodense")?M0:new Promise(async r=>{let s=[e.shape[2]||0,e.shape[1]||0],i=ge.resizeBilinear(e,[_0,_0],!1),o=me(i,ze.tf255),l=Ls(o,[0,3,1,2]),u;t.object.enabled&&(u=$n.execute(l)),Rk=te();let p=await t0e(u,s,t);M0=p,Y([i,o,l,...u]),r(p)}))}var Tp=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],a0e=Tp.length,Sp=Tp.reduce((e,t,a)=>(e[t]=a,e),{}),n0e=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Mge=n0e.map(([e,t])=>[Sp[e],Sp[t]]),_k=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function Pk(e){let t=e.reduce(({maxX:a,maxY:n,minX:r,minY:s},{position:{x:i,y:o}})=>({maxX:Math.max(a,i),maxY:Math.max(n,o),minX:Math.min(r,i),minY:Math.min(s,o)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function Fk(e,[t,a],[n,r]){let s=t/n,i=a/r,o=(u,p)=>({id:p,score:u.score,boxRaw:[u.box[0]/r,u.box[1]/n,u.box[2]/r,u.box[3]/n],box:[Math.trunc(u.box[0]*i),Math.trunc(u.box[1]*s),Math.trunc(u.box[2]*i),Math.trunc(u.box[3]*s)],keypoints:u.keypoints.map(({score:c,part:d,position:h})=>({score:c,part:d,position:[Math.trunc(h.x*i),Math.trunc(h.y*s)],positionRaw:[h.x/n,h.y/n]})),annotations:{}});return e.map((u,p)=>o(u,p))}var P0=class{constructor(t,a){le(this,"priorityQueue");le(this,"numberOfElements");le(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=a}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let a=2*t;if(a<this.numberOfElements&&this.less(a,a+1)&&a++,!this.less(t,a))break;this.exchange(t,a),t=a}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,a){return this.getValueAt(t)<this.getValueAt(a)}exchange(t,a){let n=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[a],this.priorityQueue[a]=n}};function sg(e,t,a,n){return{y:n.get(e,t,a),x:n.get(e,t,a+a0e)}}function ig(e,t,a){let{heatmapY:n,heatmapX:r,id:s}=e,{y:i,x:o}=sg(n,r,s,a);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}function og(e,t,a){return e<t?t:e>a?a:e}function Ok(e,t,a,n){let r=a-e,s=n-t;return r*r+s*s}function lg(e,t){return{x:e.x+t.x,y:e.y+t.y}}var nn,s0e=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],F0=1,Eu=16,i0e=50**2;function Dk(e,t,a,n,r,s,i=2){let o=x=>({y:s.get(x.y,x.x,e),x:s.get(x.y,x.x,s.shape[2]/2+e)}),l=(x,A,y)=>({y:og(Math.round(x.y/Eu),0,A-1),x:og(Math.round(x.x/Eu),0,y-1)}),[u,p]=n.shape,c=l(t.position,u,p),d=o(c),f=lg(t.position,d);for(let x=0;x<i;x++){let A=l(f,u,p),y=sg(A.y,A.x,a,r);f=lg({x:A.x*Eu,y:A.y*Eu},{x:y.x,y:y.y})}let m=l(f,u,p),g=n.get(m.y,m.x,a);return{position:f,part:Tp[a],score:g}}function o0e(e,t,a,n,r){let s=_k.map(([d,h])=>[Sp[d],Sp[h]]),i=s.map(([,d])=>d),o=s.map(([d])=>d),l=t.shape[2],u=i.length,p=new Array(l),c=ig(e.part,Eu,a);p[e.part.id]={score:e.score,part:Tp[e.part.id],position:c};for(let d=u-1;d>=0;--d){let h=i[d],f=o[d];p[h]&&!p[f]&&(p[f]=Dk(d,p[h],f,t,a,r))}for(let d=0;d<u;++d){let h=o[d],f=i[d];p[h]&&!p[f]&&(p[f]=Dk(d,p[h],f,t,a,n))}return p}function l0e(e,t,a,n,r){let[s,i]=r.shape,o=!0,l=Math.max(a-F0,0),u=Math.min(a+F0+1,s);for(let p=l;p<u;++p){let c=Math.max(n-F0,0),d=Math.min(n+F0+1,i);for(let h=c;h<d;++h)if(r.get(p,h,e)>t){o=!1;break}if(!o)break}return o}function u0e(e,t){let[a,n,r]=t.shape,s=new P0(a*n*r,({score:i})=>i);for(let i=0;i<a;++i)for(let o=0;o<n;++o)for(let l=0;l<r;++l){let u=t.get(i,o,l);u<e||l0e(l,u,i,o,t)&&s.enqueue({score:u,part:{heatmapY:i,heatmapX:o,id:l}})}return s}function zk(e,{x:t,y:a},n){return e.some(({keypoints:r})=>{var i;let s=(i=r[n])==null?void 0:i.position;return s?Ok(a,t,s.y,s.x)<=i0e:!1})}function d0e(e,t){return t.reduce((n,{position:r,score:s},i)=>(zk(e,r,i)||(n+=s),n),0)/t.length}function p0e(e,t,a,n,r,s){let i=[],o=u0e(s,t);for(;i.length<r&&!o.empty();){let l=o.dequeue(),u=ig(l.part,Eu,e);if(zk(i,u,l.part.id))continue;let p=o0e(l,t,e,a,n);p=p.filter(h=>h.score>s);let c=d0e(i,p),d=Pk(p);c>s&&i.push({keypoints:p,box:d,score:Math.round(100*c)/100})}return i}async function ug(e,t){if(!(nn!=null&&nn.executor))return[];let a=$e(()=>{if(!nn.inputs[0].shape)return[];let i=ge.resizeBilinear(e,[nn.inputs[0].shape[2],nn.inputs[0].shape[1]]),o=fe(me(He(i,"float32"),127.5),1),u=nn.execute(o,s0e).map(p=>_e(p,[0]));return u[1]=Da(u[1]),u}),n=await Promise.all(a.map(i=>i.buffer()));for(let i of a)Y(i);let r=p0e(n[0],n[1],n[2],n[3],t.body.maxDetected,t.body.minConfidence);return nn.inputs[0].shape?Fk(r,[e.shape[1],e.shape[2]],[nn.inputs[0].shape[2],nn.inputs[0].shape[1]]):[]}async function Lk(e){return!nn||ne.initial?nn=await Ee(e.body.modelPath):e.debug&&K("cached model:",nn.modelUrl),nn}var or,c0e=["fgr","pha","r1o","r2o","r3o","r4o"],Ut={},pg=0;function Vk(e){Y([Ut.r1i,Ut.r2i,Ut.r3i,Ut.r4i,Ut.downsample_ratio]),Ut.r1i=Be(0),Ut.r2i=Be(0),Ut.r3i=Be(0),Ut.r4i=Be(0),pg=e.segmentation.ratio||.5,Ut.downsample_ratio=Be(pg)}async function cg(e){return!or||ne.initial?or=await Ee(e.segmentation.modelPath):e.debug&&K("cached model:",or.modelUrl),Vk(e),or}var Wk=e=>$e(()=>{let t=_e(e,[0]),a=ae(t,ze.tf255);return He(a,"int32")});function dg(e,t){let a=e?Wk(e):ar([t.shape[1]||0,t.shape[2]||0,3],255,"int32"),n=t?Wk(t):ar([e.shape[1]||0,e.shape[2]||0,1],255,"int32"),r=at([a,n],-1);return Y([a,n]),r}function h0e(e){return $e(()=>{let t={};return t.unstack=Ta(e,-1),t.concat=at(t.unstack,1),t.split=ka(t.concat,4,1),t.stack=at(t.split,2),t.squeeze=_e(t.stack,[0]),t.expand=Gt(t.squeeze,-1),t.add=be(t.expand,1),t.mul=ae(t.add,127.5),t.cast=He(t.mul,"int32"),t.tile=Vr(t.cast,[1,1,3]),t.alpha=ar([t.tile.shape[0]||0,t.tile.shape[1]||0,1],255,"int32"),at([t.tile,t.alpha],-1)})}async function Uk(e,t){if(or||(or=await cg(t)),!(or!=null&&or.executor))return null;Ut.src=me(e,255),pg!==t.segmentation.ratio&&Vk(t);let[a,n,r,s,i,o]=await or.executeAsync(Ut,c0e),l;switch(t.segmentation.mode||"default"){case"default":l=dg(a,n);break;case"alpha":l=dg(null,n);break;case"foreground":l=dg(a,null);break;case"state":l=h0e(r);break;default:l=Be(0)}return Y([Ut.src,a,n,Ut.r1i,Ut.r2i,Ut.r3i,Ut.r4i]),[Ut.r1i,Ut.r2i,Ut.r3i,Ut.r4i]=[r,s,i,o],l}var ga;async function hg(e){return!ga||ne.initial?ga=await Ee(e.segmentation.modelPath):e.debug&&K("cached model:",ga.modelUrl),ga}async function Hk(e,t){var r;if(ga||(ga=await hg(t)),!(ga!=null&&ga.executor)||!((r=ga==null?void 0:ga.inputs)!=null&&r[0].shape))return null;let a={};a.resize=ge.resizeBilinear(e,[ga.inputs[0].shape?ga.inputs[0].shape[1]:0,ga.inputs[0].shape?ga.inputs[0].shape[2]:0],!1),a.norm=me(a.resize,ze.tf255),a.res=ga.execute(a.norm),a.squeeze=_e(a.res,[0]),a.alpha=ge.resizeBilinear(a.squeeze,[e.shape[1]||0,e.shape[2]||0]),a.mul=ae(a.alpha,ze.tf255);let n;switch(t.segmentation.mode||"default"){case"default":a.input=_e(e),a.concat=at([a.input,a.mul],-1),n=He(a.concat,"int32");break;case"alpha":n=He(a.mul,"int32");break;default:n=Be(0)}return Object.keys(a).forEach(s=>Y(a[s])),n}function O0(e,t,a){var u,p;if(!t||!((u=e==null?void 0:e.config)!=null&&u.validateModels))return null;let n=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"],r=["biasadd","fusedbatchnormv3","matmul","switch","shape","merge","split","broadcastto"],s=[],i=[],o=t.modelUrl,l=t.executor;if((p=l==null?void 0:l.graph)!=null&&p.nodes)for(let c of Object.values(l.graph.nodes)){let d=c.op.toLowerCase();s.includes(d)||s.push(d)}else!l&&e.config.debug&&K("model not loaded",a);for(let c of s)!n.includes(c)&&!r.includes(c)&&!e.env.kernels.includes(c)&&!e.env.kernels.includes(c.replace("_",""))&&!e.env.kernels.includes(c.replace("native",""))&&!e.env.kernels.includes(c.replace("v2",""))&&i.push(c);return e.config.debug&&i.length>0&&K("model validation failed:",a,i),i.length>0?{name:a,missing:i,ops:s,url:o}:null}var Cp=class{constructor(t){le(this,"instance");le(this,"models",{});this.models={},this.instance=t}stats(){let t=0,a=0,n=0;for(let s of Object.values(ha))t+=s.sizeFromManifest,a+=s.sizeLoadedWeights,n+=s.sizeDesired;let r=n>0?a/n:0;return{numLoadedModels:Object.values(ha).length,numDefinedModels:Object.keys(this.models).length,percentageLoaded:r,totalSizeFromManifest:t,totalSizeWeights:a,totalSizeLoading:n,modelStats:Object.values(ha)}}reset(){for(let t of Object.keys(this.models))this.models[t]=null}async load(t){var n,r,s,i,o,l,u,p,c,d,h,f,m,g,x,A,y,b,w,S,C,E,_,$,M,I,N;ne.initial&&this.reset(),t&&(this.instance=t);let a={};a.blazeface=this.instance.config.face.enabled&&!this.models.blazeface?B9(this.instance.config):null,a.antispoof=this.instance.config.face.enabled&&((n=this.instance.config.face.antispoof)==null?void 0:n.enabled)&&!this.models.antispoof?pw(this.instance.config):null,a.liveness=this.instance.config.face.enabled&&((r=this.instance.config.face.liveness)==null?void 0:r.enabled)&&!this.models.liveness?mw(this.instance.config):null,a.faceres=this.instance.config.face.enabled&&((s=this.instance.config.face.description)==null?void 0:s.enabled)&&!this.models.faceres?iw(this.instance.config):null,a.emotion=this.instance.config.face.enabled&&((i=this.instance.config.face.emotion)==null?void 0:i.enabled)&&!this.models.emotion?aw(this.instance.config):null,a.iris=this.instance.config.face.enabled&&((o=this.instance.config.face.iris)==null?void 0:o.enabled)&&!((l=this.instance.config.face.attention)!=null&&l.enabled)&&!this.models.iris?j9(this.instance.config):null,a.facemesh=this.instance.config.face.enabled&&((u=this.instance.config.face.mesh)==null?void 0:u.enabled)&&!this.models.facemesh?Y9(this.instance.config):null,a.gear=this.instance.config.face.enabled&&((p=this.instance.config.face.gear)==null?void 0:p.enabled)&&!this.models.gear?yw(this.instance.config):null,a.ssrnetage=this.instance.config.face.enabled&&((c=this.instance.config.face.ssrnet)==null?void 0:c.enabled)&&!this.models.ssrnetage?kw(this.instance.config):null,a.ssrnetgender=this.instance.config.face.enabled&&((d=this.instance.config.face.ssrnet)==null?void 0:d.enabled)&&!this.models.ssrnetgender?Cw(this.instance.config):null,a.mobilefacenet=this.instance.config.face.enabled&&((h=this.instance.config.face.mobilefacenet)==null?void 0:h.enabled)&&!this.models.mobilefacenet?$w(this.instance.config):null,a.insightface=this.instance.config.face.enabled&&((f=this.instance.config.face.insightface)==null?void 0:f.enabled)&&!this.models.insightface?Dw(this.instance.config):null,a.blazepose=this.instance.config.body.enabled&&!this.models.blazepose&&((m=this.instance.config.body.modelPath)==null?void 0:m.includes("blazepose"))?w9(this.instance.config):null,a.blazeposedetect=this.instance.config.body.enabled&&!this.models.blazeposedetect&&this.instance.config.body.detector&&this.instance.config.body.detector.modelPath?v9(this.instance.config):null,a.efficientpose=this.instance.config.body.enabled&&!this.models.efficientpose&&((g=this.instance.config.body.modelPath)==null?void 0:g.includes("efficientpose"))?N9(this.instance.config):null,a.movenet=this.instance.config.body.enabled&&!this.models.movenet&&((x=this.instance.config.body.modelPath)==null?void 0:x.includes("movenet"))?Nk(this.instance.config):null,a.posenet=this.instance.config.body.enabled&&!this.models.posenet&&((A=this.instance.config.body.modelPath)==null?void 0:A.includes("posenet"))?Lk(this.instance.config):null,a.handtrack=this.instance.config.hand.enabled&&!this.models.handtrack&&((b=(y=this.instance.config.hand.detector)==null?void 0:y.modelPath)==null?void 0:b.includes("handtrack"))?xk(this.instance.config):null,a.handskeleton=this.instance.config.hand.enabled&&this.instance.config.hand.landmarks&&!this.models.handskeleton&&((S=(w=this.instance.config.hand.detector)==null?void 0:w.modelPath)==null?void 0:S.includes("handtrack"))?Ak(this.instance.config):null,(E=(C=this.instance.config.hand.detector)==null?void 0:C.modelPath)!=null&&E.includes("handdetect")&&([a.handpose,a.handskeleton]=this.models.handpose?[null,null]:await ck(this.instance.config)),a.centernet=this.instance.config.object.enabled&&!this.models.centernet&&((_=this.instance.config.object.modelPath)==null?void 0:_.includes("centernet"))?S9(this.instance.config):null,a.nanodet=this.instance.config.object.enabled&&!this.models.nanodet&&(($=this.instance.config.object.modelPath)==null?void 0:$.includes("nanodet"))?Mk(this.instance.config):null,a.selfie=this.instance.config.segmentation.enabled&&!this.models.selfie&&((M=this.instance.config.segmentation.modelPath)==null?void 0:M.includes("selfie"))?hg(this.instance.config):null,a.meet=this.instance.config.segmentation.enabled&&!this.models.meet&&((I=this.instance.config.segmentation.modelPath)==null?void 0:I.includes("meet"))?J5(this.instance.config):null,a.rvm=this.instance.config.segmentation.enabled&&!this.models.rvm&&((N=this.instance.config.segmentation.modelPath)==null?void 0:N.includes("rvm"))?cg(this.instance.config):null,await Promise.all([...Object.values(a)]);for(let O of Object.keys(a))this.models[O]=a[O]||this.models[O]||null}list(){let t=Object.keys(this.models).map(a=>{var n;return{name:a,loaded:this.models[a]!==null,size:0,url:this.models[a]?(n=this.models[a])==null?void 0:n.modelUrl:null}});for(let a of t){let n=Object.keys(ha).find(r=>r.startsWith(a.name));!n||(a.size=ha[n].sizeLoadedWeights,a.url=ha[n].url)}return t}loaded(){return this.list().filter(n=>n.loaded).map(n=>n.name)}validate(){let t=[];for(let a of Object.keys(this.models)){let n=this.models[a];if(!n)continue;let r=O0(this.instance,n,a);r&&t.push(r)}return t}};function qk(e,t,a,n,r){var o,l,u,p,c,d;let s=0,i=[];for(let h of e){let f={id:s++,face:h,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let b of t)h.box[0]>b.box[0]&&h.box[0]<b.box[0]+b.box[2]&&h.box[1]+h.box[3]>b.box[1]&&h.box[1]+h.box[3]<b.box[1]+b.box[3]&&(f.body=b);if(f.body)for(let b of a)b.box[0]+b.box[2]>f.body.box[0]&&b.box[0]+b.box[2]<f.body.box[0]+f.body.box[2]&&b.box[1]+b.box[3]>f.body.box[1]&&b.box[1]+b.box[3]<f.body.box[1]+f.body.box[3]&&f.hands&&(f.hands.left=b),b.box[0]<f.body.box[0]+f.body.box[2]&&b.box[0]>f.body.box[0]&&b.box[1]+b.box[3]>f.body.box[1]&&b.box[1]+b.box[3]<f.body.box[1]+f.body.box[3]&&f.hands&&(f.hands.right=b);for(let b of n)(b.face!==void 0&&b.face===h.id||b.iris!==void 0&&b.iris===h.id||b.body!==void 0&&b.body===((o=f.body)==null?void 0:o.id)||b.hand!==void 0&&b.hand===((l=f.hands.left)==null?void 0:l.id)||b.hand!==void 0&&b.hand===((u=f.hands.right)==null?void 0:u.id))&&f.gestures.push(b);let m=[],g=[],x=b=>{b&&b.length===4&&(m.push(b[0],b[0]+b[2]),g.push(b[1],b[1]+b[3]))};x(f.face.box),x((p=f.body)==null?void 0:p.box),x((c=f.hands.left)==null?void 0:c.box),x((d=f.hands.right)==null?void 0:d.box);let A=Math.min(...m),y=Math.min(...g);f.box=[A,y,Math.max(...m)-A,Math.max(...g)-y],(r==null?void 0:r[1])&&(r==null?void 0:r[2])&&(f.boxRaw=[f.box[0]/r[2],f.box[1]/r[1],f.box[2]/r[2],f.box[3]/r[1]]),i.push(f)}return i}var D0=`
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,z0=`
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
2Q==`;async function g0e(e){let t=(r,s="application/octet-stream")=>fetch(`data:${s};base64,${r}`).then(i=>i.blob()),a,n;switch(e.config.warmup){case"face":a=await t(D0);break;case"body":case"full":a=await t(z0);break;default:a=null}if(a){let r=await createImageBitmap(a);n=await e.detect(r,e.config),r.close()}return n}async function x0e(e){return new Promise(t=>{let a;switch(e.config.warmup){case"face":a="data:image/jpeg;base64,"+D0;break;case"full":case"body":a="data:image/jpeg;base64,"+z0;break;default:a=""}let n;if(typeof Image!="undefined")n=new Image;else if(ne.Image)n=new ne.Image;else return;n.onload=async()=>{let r=Cn(n.naturalWidth,n.naturalHeight);if(!r)K("Warmup: Canvas not found"),t(void 0);else{let s=r.getContext("2d");s&&s.drawImage(n,0,0);let i=await e.image(r,!0),o=i.tensor?await e.detect(i.tensor,e.config):void 0;t(o)}},a?n.src=a:t(void 0)})}async function A0e(e){let t=r=>Buffer.from(r,"base64"),a;e.config.warmup==="face"?a=t(D0):a=t(z0);let n;if("node"in Ue&&ia()==="tensorflow"){let r=(void 0).decodeJpeg(a),s=Gt(r,0);e.tf.dispose(r),n=await e.detect(s,e.config),e.tf.dispose(s)}else e.config.debug&&K("Warmup tfjs-node not loaded");return n}async function y0e(e){let t;return typeof createImageBitmap=="function"?t=await g0e(e):typeof Image!="undefined"||ne.Canvas!==void 0?t=await x0e(e):t=await A0e(e),t}async function b0e(e){var o,l,u,p;if(!W().flagRegistry.ENGINE_COMPILE_ONLY)return;let t=ia(),a=er();if(t!=="webgl"&&t!=="humangl"||!(a!=null&&a.checkCompileCompletion))return;W().set("ENGINE_COMPILE_ONLY",!0);let n=kt().state.numTensors,r=[];for(let[c,d]of Object.entries(e.models).filter(([h,f])=>h!==null&&f!==null)){let h=(d==null?void 0:d.modelSignature)&&((l=(o=d==null?void 0:d.inputs)==null?void 0:o[0])==null?void 0:l.shape)?[...d.inputs[0].shape]:[1,64,64,3],f=(d==null?void 0:d.modelSignature)&&((p=(u=d==null?void 0:d.inputs)==null?void 0:u[0])==null?void 0:p.dtype)?d.inputs[0].dtype:"float32";for(let g=0;g<h.length;g++)h[g]===-1&&(h[g]=g===0?1:64);let m=hn(h,f);try{let g=d.execute(m);r.push(c),Array.isArray(g)?g.forEach(x=>Y(x)):Y(g)}catch(g){e.config.debug&&K("compile fail model:",c)}Y(m)}let s=await a.checkCompileCompletionAsync();a.getUniformLocations(),e.config.debug&&K("compile pass:",{models:r,kernels:s.length}),W().set("ENGINE_COMPILE_ONLY",!1);let i=kt().state.numTensors;i-n>0&&K("tensor leak:",i-n)}async function Xk(e,t){await yp(e,!1);let a=te();return e.state="warmup",t&&(e.config=Ct(e.config,t)),!e.config.warmup||e.config.warmup.length===0||e.config.warmup==="none"?ir():new Promise(async n=>{await e.models.load(),await b0e(e);let r=await y0e(e),s=te();e.config.debug&&K("warmup",e.config.warmup,Math.round(s-a),"ms"),e.emit("warmup"),n(r)})}var Ru,Np,Ep,L0,ws,mg=class{constructor(t){le(this,"version");le(this,"config");le(this,"result");le(this,"state");le(this,"process");le(this,"tf");le(this,"env",ne);le(this,"draw",a0);le(this,"match",E0);le(this,"models");le(this,"events");le(this,"faceTriangulation");le(this,"faceUVMap");le(this,"performance");Xo(this,Ru,void 0);Xo(this,Np,void 0);Xo(this,Ep,void 0);le(this,"analyze",(...t)=>{if(!Un(this,Np))return;let a=this.tf.engine().state.numTensors,n=Un(this,Ru);Bu(this,Ru,a);let r=a-n;r!==0&&K(...t,r)});Xo(this,L0,t=>{if(!Un(this,Ep))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof pt))return"input must be a tensor";try{this.tf.getBackend()}catch(a){return"backend not loaded"}return null});le(this,"webcam",new Kh);le(this,"emit",t=>{var a;(a=this.events)!=null&&a.dispatchEvent&&this.events.dispatchEvent(new Event(t))});Xo(this,ws,{});let a=(xp.tfjs||m2).replace(/-(.*)/,"");wo.wasmPath=`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${a}/dist/`,wo.modelBasePath=ne.browser?"../models/":"file://models/",this.version=H3,Object.defineProperty(this,"version",{value:H3}),this.config=JSON.parse(JSON.stringify(wo)),Object.seal(this.config),this.config.cacheModels=typeof indexedDB!="undefined",t&&(this.config=Ct(this.config,t)),i9(this.config),this.tf=Ue,this.state="idle",Bu(this,Ru,0),Bu(this,Np,!1),Bu(this,Ep,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new Cp(this),J3(),this.result=ir(),this.process={tensor:null,canvas:null},this.faceTriangulation=J9,this.faceUVMap=Q9,O0(this,null,""),this.emit("create"),(this.config.debug||this.env.browser)&&K(`version: ${this.version}`),this.config.debug&&K(`tfjs version: ${this.tf.version["tfjs-core"]}`);let n=JSON.parse(JSON.stringify(this.env));delete n.kernels,delete n.initial,delete n.perfadd,this.config.debug&&K("environment:",n)}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(wo)),this.config.backend=t,U3(),ne.initial=!0}validate(t){let a=B3(wo,t||this.config);return a.length===0&&(this.config=Ct(this.config,t)),a}now(){return te()}image(t,a=!1){return qh(t,this.config,a)}async segmentation(t,a){var s,i,o;if(a&&(this.config=Ct(this.config,a)),!this.config.segmentation.enabled)return null;let n=await qh(t,this.config);if(!n.tensor)return null;let r=null;return(s=this.config.segmentation.modelPath)!=null&&s.includes("rvm")&&(r=await Uk(n.tensor,this.config)),(i=this.config.segmentation.modelPath)!=null&&i.includes("meet")&&(r=await vk(n.tensor,this.config)),(o=this.config.segmentation.modelPath)!=null&&o.includes("selfie")&&(r=await Hk(n.tensor,this.config)),Y(n.tensor),r}compare(t,a){return s9(this.config,t,a)}async init(){await yp(this,!0),await this.tf.ready(),U3()}async load(t){this.state="load";let a=te(),n=Object.values(this.models.models).filter(i=>i).length;t&&(this.config=Ct(this.config,t)),this.env.initial&&(await yp(this,!1)||K("error: backend check failed"),await Kd(),this.env.browser&&(this.config.debug&&K("configuration:",this.config),this.config.debug&&K("tf flags:",this.tf.ENV.flags))),await this.models.load(this),this.env.initial&&this.config.debug&&K("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models.models).filter(i=>i).length!==n&&(this.models.validate(),this.emit("load"));let s=Math.trunc(te()-a);s>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+s:s)}next(t=this.result){return bk(t,this.config)}async warmup(t){let a=te(),n=await Xk(this,t),r=te();return this.performance.warmup=Math.trunc(r-a),n}async profile(t,a){let n=await this.tf.profile(()=>this.detect(t,a)),r={},s=0;for(let o of n.kernels){let l=Number(o.kernelTimeMs)||0;r[o.name]?r[o.name]+=l:r[o.name]=l,s+=l}let i=[];Object.entries(r).forEach(o=>i.push({kernel:o[0],time:o[1],perc:0}));for(let o of i)o.perc=Math.round(1e3*o.time/s)/1e3,o.time=Math.round(1e3*o.time)/1e3;return i.sort((o,l)=>l.time-o.time),i.length=20,i}async detect(t,a){return this.state="detect",new Promise(async n=>{var g,x,A,y,b,w,S,C,E,_,$,M,I,N,O,L,B,G,j,U,H;this.state="config";let r;this.config=Ct(this.config,a),this.state="check";let s=Un(this,L0).call(this,t);s&&(K(s,t),this.emit("error"),n(ir(s)));let i=te();await this.load(),r=te(),this.state="image";let o=await qh(t,this.config);if(this.process=o,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(te()-r):Math.trunc(te()-r),this.analyze("Get Image:"),!o.tensor){this.config.debug&&K("could not convert input to tensor"),this.emit("error"),n(ir("could not convert input to tensor"));return}this.emit("image"),r=te(),this.config.skipAllowed=await r9(this.config,o.tensor),this.config.filter.autoBrightness=(this.config.filter.autoBrightness||!1)&&this.config.skipAllowed,this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(te()-r):Math.trunc(te()-r),this.analyze("Check Changed:");let l=[],u=[],p=[],c=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?L5(this,o.tensor):[],this.performance.face&&delete this.performance.face):(r=te(),l=this.config.face.enabled?await L5(this,o.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(te()-r):Math.trunc(te()-r)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let d=this.config.body.maxDetected===-1?Ct(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?((g=this.config.body.modelPath)!=null&&g.includes("posenet")?u=this.config.body.enabled?ug(o.tensor,d):[]:(x=this.config.body.modelPath)!=null&&x.includes("blazepose")?u=this.config.body.enabled?n5(o.tensor,d):[]:(A=this.config.body.modelPath)!=null&&A.includes("efficientpose")?u=this.config.body.enabled?d5(o.tensor,d):[]:(y=this.config.body.modelPath)!=null&&y.includes("movenet")&&(u=this.config.body.enabled?ag(o.tensor,d):[]),this.performance.body&&delete this.performance.body):(r=te(),(b=this.config.body.modelPath)!=null&&b.includes("posenet")?u=this.config.body.enabled?await ug(o.tensor,d):[]:(w=this.config.body.modelPath)!=null&&w.includes("blazepose")?u=this.config.body.enabled?await n5(o.tensor,d):[]:(S=this.config.body.modelPath)!=null&&S.includes("efficientpose")?u=this.config.body.enabled?await d5(o.tensor,d):[]:(C=this.config.body.modelPath)!=null&&C.includes("movenet")&&(u=this.config.body.enabled?await ag(o.tensor,d):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(te()-r):Math.trunc(te()-r)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let h=this.config.hand.maxDetected===-1?Ct(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?((_=(E=this.config.hand.detector)==null?void 0:E.modelPath)!=null&&_.includes("handdetect")?p=this.config.hand.enabled?G5(o.tensor,h):[]:(M=($=this.config.hand.detector)==null?void 0:$.modelPath)!=null&&M.includes("handtrack")&&(p=this.config.hand.enabled?q5(o.tensor,h):[]),this.performance.hand&&delete this.performance.hand):(r=te(),(N=(I=this.config.hand.detector)==null?void 0:I.modelPath)!=null&&N.includes("handdetect")?p=this.config.hand.enabled?await G5(o.tensor,h):[]:(L=(O=this.config.hand.detector)==null?void 0:O.modelPath)!=null&&L.includes("handtrack")&&(p=this.config.hand.enabled?await q5(o.tensor,h):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(te()-r):Math.trunc(te()-r)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?((B=this.config.object.modelPath)!=null&&B.includes("nanodet")?c=this.config.object.enabled?rg(o.tensor,this.config):[]:(G=this.config.object.modelPath)!=null&&G.includes("centernet")&&(c=this.config.object.enabled?i5(o.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=te(),(j=this.config.object.modelPath)!=null&&j.includes("nanodet")?c=this.config.object.enabled?await rg(o.tensor,this.config):[]:(U=this.config.object.modelPath)!=null&&U.includes("centernet")&&(c=this.config.object.enabled?await i5(o.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(te()-r):Math.trunc(te()-r)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,u,p,c]=await Promise.all([l,u,p,c])),this.state="detect:gesture";let f=[];this.config.gesture.enabled&&(r=te(),f=[...Zw(l),...Kw(u),...Jw(p),...Yw(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(te()-r):Math.trunc(te()-r)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(te()-i):Math.trunc(te()-i);let m=((H=this.process.tensor)==null?void 0:H.shape)||[0,0,0,0];this.result={face:l,body:u,hand:p,gesture:f,object:c,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),error:null,width:m[2],height:m[1],get persons(){return qk(l,u,p,f,m)}},Y(o.tensor),this.emit("detect"),this.state="idle",n(this.result)})}async sleep(t){return new Promise(a=>{setTimeout(a,t)})}async video(t,a=!0,n=0){a?(Un(this,ws)[t.id]||(this.config.debug&&K("video start",t.id),Un(this,ws)[t.id]=!0),!t.paused&&Un(this,ws)[t.id]&&t.readyState>=2&&await this.detect(t),n>0&&await this.sleep(n),Un(this,ws)[t.id]&&requestAnimationFrame(()=>this.video(t,a,n))):(this.config.debug&&K("video stop",t.id),Un(this,ws)[t.id]=!1)}};Ru=new WeakMap,Np=new WeakMap,Ep=new WeakMap,L0=new WeakMap,ws=new WeakMap;return _I(w0e);})();