mirror of https://github.com/vladmandic/human
93 lines
3.2 KiB
TypeScript
93 lines
3.2 KiB
TypeScript
/**
|
|
* EfficientPose Module
|
|
*/
|
|
|
|
import { log, join } from '../helpers';
|
|
import * as tf from '../../dist/tfjs.esm.js';
|
|
import { Body } from '../result';
|
|
import { GraphModel } from '../tfjs/types';
|
|
|
|
let model: GraphModel;
|
|
|
|
type Keypoints = { score: number, part: string, position: { x: number, y: number }, positionRaw: { x: number, y: number } };
|
|
|
|
const keypoints: Array<Keypoints> = [];
|
|
let box: [number, number, number, number] = [0, 0, 0, 0];
|
|
let boxRaw: [number, number, number, number] = [0, 0, 0, 0];
|
|
let score = 0;
|
|
let skipped = Number.MAX_SAFE_INTEGER;
|
|
|
|
const bodyParts = ['nose', 'leftEye', 'rightEye', 'leftEar', 'rightEar', 'leftShoulder', 'rightShoulder', 'leftElbow', 'rightElbow', 'leftWrist', 'rightWrist', 'leftHip', 'rightHip', 'leftKnee', 'rightKnee', 'leftAnkle', 'rightAnkle'];
|
|
|
|
export async function load(config) {
|
|
if (!model) {
|
|
// @ts-ignore type mismatch on GraphModel
|
|
model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath));
|
|
if (!model || !model['modelUrl']) log('load model failed:', config.body.modelPath);
|
|
else if (config.debug) log('load model:', model['modelUrl']);
|
|
} else if (config.debug) log('cached model:', model['modelUrl']);
|
|
return model;
|
|
}
|
|
|
|
export async function predict(image, config): Promise<Body[]> {
|
|
if ((skipped < config.body.skipFrames) && config.skipFrame && Object.keys(keypoints).length > 0) {
|
|
skipped++;
|
|
return [{ id: 0, score, box, boxRaw, keypoints }];
|
|
}
|
|
skipped = 0;
|
|
return new Promise(async (resolve) => {
|
|
const tensor = tf.tidy(() => {
|
|
if (!model.inputs[0].shape) return null;
|
|
const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);
|
|
const cast = tf.cast(resize, 'int32');
|
|
return cast;
|
|
});
|
|
|
|
let resT;
|
|
if (config.body.enabled) resT = await model.predict(tensor);
|
|
tensor.dispose();
|
|
|
|
if (resT) {
|
|
keypoints.length = 0;
|
|
const res = resT.arraySync();
|
|
tf.dispose(resT);
|
|
const kpt = res[0][0];
|
|
for (let id = 0; id < kpt.length; id++) {
|
|
score = kpt[id][2];
|
|
if (score > config.body.minConfidence) {
|
|
keypoints.push({
|
|
score: Math.round(100 * score) / 100,
|
|
part: bodyParts[id],
|
|
positionRaw: { // normalized to 0..1
|
|
x: kpt[id][1],
|
|
y: kpt[id][0],
|
|
},
|
|
position: { // normalized to input image size
|
|
x: Math.round(image.shape[2] * kpt[id][1]),
|
|
y: Math.round(image.shape[1] * kpt[id][0]),
|
|
},
|
|
});
|
|
}
|
|
}
|
|
}
|
|
score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);
|
|
const x = keypoints.map((a) => a.position.x);
|
|
const y = keypoints.map((a) => a.position.y);
|
|
box = [
|
|
Math.min(...x),
|
|
Math.min(...y),
|
|
Math.max(...x) - Math.min(...x),
|
|
Math.max(...y) - Math.min(...y),
|
|
];
|
|
const xRaw = keypoints.map((a) => a.positionRaw.x);
|
|
const yRaw = keypoints.map((a) => a.positionRaw.y);
|
|
boxRaw = [
|
|
Math.min(...xRaw),
|
|
Math.min(...yRaw),
|
|
Math.max(...xRaw) - Math.min(...xRaw),
|
|
Math.max(...yRaw) - Math.min(...yRaw),
|
|
];
|
|
resolve([{ id: 0, score, box, boxRaw, keypoints }]);
|
|
});
|
|
}
|