mirror of https://github.com/vladmandic/human
8051 lines
1.6 MiB
8051 lines
1.6 MiB
/*
|
|
Human
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var Human=(()=>{var Dh=Object.defineProperty;var E9=Object.getOwnPropertyDescriptor;var R9=Object.getOwnPropertyNames;var _9=Object.prototype.hasOwnProperty;var $9=(e,t,n)=>t in e?Dh(e,t,{enumerable:!0,configurable:!0,writable:!0,value:n}):e[t]=n;var ya=(e,t)=>{for(var n in t)Dh(e,n,{get:t[n],enumerable:!0})},D9=(e,t,n,s)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of R9(t))!_9.call(e,r)&&r!==n&&Dh(e,r,{get:()=>t[r],enumerable:!(s=E9(t,r))||s.enumerable});return e};var P9=e=>D9(Dh({},"__esModule",{value:!0}),e);var fe=(e,t,n)=>($9(e,typeof t!="symbol"?t+"":t,n),n),b3=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var nd=(e,t,n)=>(b3(e,t,"read from private field"),n?n.call(e):t.get(e)),sd=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},rd=(e,t,n,s)=>(b3(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);var _Ae={};ya(_Ae,{Human:()=>FE,default:()=>FE,defaults:()=>Aa,draw:()=>j5,env:()=>he,match:()=>J5,models:()=>Y0});function oe(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}function v3(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${r}`);return r}var le=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function z2(e,t,n="config",s=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")z2(e[r],t[r],r,s);else{let a=e&&typeof e[r]!="undefined";a||s.push({reason:"unknown property",where:`${n}.${r} = ${t[r]}`});let o=e&&typeof e[r]==typeof t[r];a&&!o&&s.push({reason:"property type mismatch",where:`${n}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&n==="config"&&s.length>0&&oe("invalid configuration",s),s}function kn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=kn(a,o):n[r]=o}),n),{})}var Aa={backend:"",modelBasePath:"",cacheModels:!0,wasmPath:"",wasmPlatformFetch:!1,debug:!0,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var Ue={};ya(Ue,{Abs:()=>Pi,Acos:()=>Eu,Acosh:()=>Ru,AdadeltaOptimizer:()=>Rm,AdagradOptimizer:()=>_m,AdamOptimizer:()=>$m,AdamaxOptimizer:()=>Dm,Add:()=>Kr,AddN:()=>Ha,All:()=>_u,Any:()=>$u,ArgMax:()=>ja,ArgMin:()=>Du,Asin:()=>Pu,Asinh:()=>Fu,Atan:()=>Ou,Atan2:()=>zu,Atanh:()=>Mu,AvgPool:()=>qa,AvgPool3D:()=>Ld,AvgPool3DGrad:()=>zf,AvgPoolGrad:()=>Mf,BackendWasm:()=>Z8,BatchMatMul:()=>Xa,BatchToSpaceND:()=>Fi,Bincount:()=>Lf,BroadcastArgs:()=>Bf,BroadcastTo:()=>bw,Callback:()=>XI,CallbackList:()=>XS,Cast:()=>Ka,Ceil:()=>Za,ClipByValue:()=>Zr,Complex:()=>Bd,ComplexAbs:()=>Wd,Concat:()=>Oi,Conv2D:()=>Ya,Conv2DBackpropFilter:()=>Wf,Conv2DBackpropInput:()=>Ja,Conv3D:()=>Vd,Conv3DBackpropFilterV2:()=>Vf,Conv3DBackpropInputV2:()=>Uf,Cos:()=>Qa,Cosh:()=>eo,CropAndResize:()=>zi,Cumprod:()=>Lu,Cumsum:()=>Mi,CustomCallback:()=>ZS,DataStorage:()=>zd,DenseBincount:()=>Gf,DepthToSpace:()=>Li,DepthwiseConv2dNative:()=>to,DepthwiseConv2dNativeBackpropFilter:()=>Hf,DepthwiseConv2dNativeBackpropInput:()=>jf,Diag:()=>qf,Dilation2D:()=>Ud,Dilation2DBackpropFilter:()=>lf,Dilation2DBackpropInput:()=>of,ENV:()=>gr,EarlyStopping:()=>KI,Einsum:()=>Gd,Elu:()=>so,EluGrad:()=>Xf,Environment:()=>Aw,Equal:()=>Bi,Erf:()=>Bu,Exp:()=>ro,ExpandDims:()=>Wi,Expm1:()=>Vi,FFT:()=>Kf,Fill:()=>Wu,FlipLeftRight:()=>Ui,Floor:()=>ao,FloorDiv:()=>oo,FromPixels:()=>Id,FusedBatchNorm:()=>io,FusedConv2D:()=>Ra,FusedDepthwiseConv2D:()=>_a,GPGPUContext:()=>hu,GatherNd:()=>Hi,GatherV2:()=>Gi,GraphModel:()=>r0,Greater:()=>ji,GreaterEqual:()=>lo,History:()=>KS,IFFT:()=>Zf,Identity:()=>uo,Imag:()=>Hd,InputSpec:()=>Xt,IsFinite:()=>Vu,IsInf:()=>Uu,IsNan:()=>Gu,KernelBackend:()=>Tu,LRN:()=>qd,LRNGrad:()=>Jf,LayerVariable:()=>GS,LayersModel:()=>qr,LeakyRelu:()=>co,Less:()=>qi,LessEqual:()=>Xi,LinSpace:()=>Yf,Log:()=>po,Log1p:()=>Hu,LogSoftmax:()=>vw,LogicalAnd:()=>Ki,LogicalNot:()=>ju,LogicalOr:()=>jd,MathBackendCPU:()=>zx,MathBackendWebGL:()=>Ep,Max:()=>ho,MaxPool:()=>mo,MaxPool3D:()=>Xd,MaxPool3DGrad:()=>em,MaxPoolGrad:()=>Qf,MaxPoolWithArgmax:()=>tm,Maximum:()=>fo,Mean:()=>go,Min:()=>yo,Minimum:()=>Ao,MirrorPad:()=>xo,Mod:()=>qu,MomentumOptimizer:()=>Pm,Multinomial:()=>nm,Multiply:()=>bo,Neg:()=>Zi,NonMaxSuppressionV3:()=>Ji,NonMaxSuppressionV4:()=>Xu,NonMaxSuppressionV5:()=>Qi,NotEqual:()=>Yi,OP_SCOPE_SUFFIX:()=>Ow,OneHot:()=>tl,OnesLike:()=>el,Optimizer:()=>ea,OptimizerConstructors:()=>ba,Pack:()=>nl,PadV2:()=>vo,Pool:()=>IR,Pow:()=>wo,Prelu:()=>ko,Prod:()=>sl,RMSPropOptimizer:()=>Fm,RNN:()=>ta,Range:()=>Ku,Rank:()=>Cw,Real:()=>Kd,RealDiv:()=>no,Reciprocal:()=>Zu,Reduction:()=>SS,Relu:()=>So,Relu6:()=>Co,Reshape:()=>rl,ResizeBilinear:()=>Io,ResizeBilinearGrad:()=>rm,ResizeNearestNeighbor:()=>Yu,ResizeNearestNeighborGrad:()=>sm,Reverse:()=>al,RotateWithOffset:()=>xl,Round:()=>ol,Rsqrt:()=>To,SGDOptimizer:()=>fp,ScatterNd:()=>il,Select:()=>ll,Selu:()=>Ju,Sequential:()=>Km,Sigmoid:()=>Eo,Sign:()=>Qu,Sin:()=>No,Sinh:()=>cl,Slice:()=>ul,Softmax:()=>$o,Softplus:()=>ec,SpaceToBatchND:()=>dl,SparseFillEmptyRows:()=>Zd,SparseReshape:()=>tc,SparseSegmentMean:()=>Yd,SparseSegmentSum:()=>Jd,SparseToDense:()=>Qd,SplitV:()=>pl,Sqrt:()=>Ro,Square:()=>nc,SquaredDifference:()=>Do,Step:()=>Mo,StridedSlice:()=>hl,StringNGrams:()=>ep,StringSplit:()=>am,StringToHashBucketFast:()=>om,Sub:()=>Po,Sum:()=>_o,SymbolicTensor:()=>ir,Tan:()=>fl,Tanh:()=>Fo,Tensor:()=>nt,TensorBuffer:()=>nn,Tile:()=>Yr,TopK:()=>ml,Transform:()=>gl,Transpose:()=>Oo,Unique:()=>im,Unpack:()=>yl,UnsortedSegmentSum:()=>tp,Variable:()=>Nd,ZerosLike:()=>Al,_FusedMatMul:()=>Ea,abs:()=>en,acos:()=>mk,acosh:()=>gk,add:()=>ue,addN:()=>um,all:()=>S1,any:()=>ff,argMax:()=>Ns,argMin:()=>yk,asin:()=>Ak,asinh:()=>xk,atan:()=>bk,atan2:()=>vk,atanh:()=>wk,avgPool:()=>cm,avgPool3d:()=>C1,backend:()=>Gs,backend_util:()=>C,basicLSTMCell:()=>pD,batchNorm:()=>yu,batchNorm2d:()=>Ck,batchNorm3d:()=>Tk,batchNorm4d:()=>Nk,batchToSpaceND:()=>dm,bincount:()=>T1,booleanMaskAsync:()=>IO,broadcastArgs:()=>Ek,broadcastTo:()=>bd,broadcast_util:()=>bl,browser:()=>Ps,buffer:()=>We,callbacks:()=>JG,cast:()=>ge,ceil:()=>Rk,clipByValue:()=>ms,clone:()=>Vn,complex:()=>$a,concat:()=>kt,concat1d:()=>_k,concat2d:()=>rc,concat3d:()=>$k,concat4d:()=>Dk,constraints:()=>_S,conv1d:()=>N1,conv2d:()=>Pa,conv2dTranspose:()=>R1,conv3d:()=>_1,conv3dTranspose:()=>Fk,copyRegisteredKernels:()=>ER,cos:()=>pm,cosh:()=>$1,cosineWindow:()=>nA,cumprod:()=>Ok,cumsum:()=>D1,customGrad:()=>Rr,data:()=>b7,denseBincount:()=>Mk,deprecationWarn:()=>v1,depthToSpace:()=>zk,depthwiseConv2d:()=>up,deregisterOp:()=>tH,device_util:()=>ap,diag:()=>UD,dilation2d:()=>Lk,disableDeprecationWarnings:()=>N$,dispose:()=>ne,disposeVariables:()=>E$,div:()=>de,divNoNan:()=>Bk,dot:()=>ZD,dropout:()=>mS,einsum:()=>Wk,elu:()=>cp,enableDebugMode:()=>T$,enableProdMode:()=>b1,enclosingPowerOfTwo:()=>gS,engine:()=>yn,env:()=>J,equal:()=>Es,erf:()=>Vk,exp:()=>Rs,expandDims:()=>qt,expm1:()=>Uk,eye:()=>P1,fft:()=>km,fill:()=>ac,findBackend:()=>k1,findBackendFactory:()=>D$,floor:()=>dp,floorDiv:()=>ip,forceHalfFloat:()=>V4,fused:()=>Ma,gather:()=>Au,gatherND:()=>fS,gather_util:()=>h1,getBackend:()=>rs,getGradient:()=>ey,getKernel:()=>uf,getKernelsForBackend:()=>Nr,getThreadsCount:()=>Jye,gpgpu_util:()=>x4,grad:()=>vP,grads:()=>wP,greater:()=>gs,greaterEqual:()=>wl,ifft:()=>$d,imag:()=>hm,image:()=>Se,inTopKAsync:()=>OO,initializers:()=>FS,input:()=>cI,io:()=>In,irfft:()=>Y1,isFinite:()=>dP,isInf:()=>hP,isNaN:()=>Gk,keep:()=>dn,kernel_impls:()=>js,layers:()=>VS,leakyRelu:()=>fm,less:()=>F1,lessEqual:()=>kl,linalg:()=>IS,linspace:()=>Hk,loadGraphModel:()=>rj,loadLayersModel:()=>uU,localResponseNormalization:()=>jk,log:()=>_s,log1p:()=>mm,logSigmoid:()=>NP,logSoftmax:()=>O1,logSumExp:()=>Yk,logicalAnd:()=>pr,logicalNot:()=>ym,logicalOr:()=>L1,logicalXor:()=>BP,losses:()=>bz,matMul:()=>Ye,math:()=>Zw,max:()=>hn,maxPool:()=>Am,maxPool3d:()=>B1,maxPoolWithArgmax:()=>Jk,maximum:()=>Jr,mean:()=>Bt,memory:()=>hf,meshgrid:()=>jP,metrics:()=>HI,min:()=>Fa,minimum:()=>pp,mirrorPad:()=>Qk,mod:()=>ic,model:()=>iU,models:()=>jI,moments:()=>xm,movingAverage:()=>NO,mul:()=>L,multiRNNCell:()=>eF,multinomial:()=>eS,neg:()=>Ot,nextFrame:()=>aA,norm:()=>eA,notEqual:()=>xu,oneHot:()=>Rd,ones:()=>fs,onesLike:()=>$s,op:()=>V,outerProduct:()=>aF,pad:()=>Hs,pad1d:()=>lF,pad2d:()=>cF,pad3d:()=>pF,pad4d:()=>fF,pool:()=>xF,pow:()=>Oa,prelu:()=>vm,print:()=>jw,prod:()=>W1,profile:()=>R$,rand:()=>SF,randomGamma:()=>NF,randomNormal:()=>tS,randomUniform:()=>lc,range:()=>bu,ready:()=>sc,real:()=>_d,reciprocal:()=>nS,registerBackend:()=>vl,registerCallbackConstructor:()=>cU,registerGradient:()=>ww,registerKernel:()=>Us,registerOp:()=>eH,regularizers:()=>qI,relu:()=>Dr,relu6:()=>G1,removeBackend:()=>$$,reshape:()=>H,reverse:()=>Ds,reverse1d:()=>MF,reverse2d:()=>LF,reverse3d:()=>WF,reverse4d:()=>UF,rfft:()=>Sm,round:()=>H1,rsqrt:()=>j1,scalar:()=>Ie,scatterND:()=>hS,scatter_util:()=>f1,selu:()=>q1,separableConv2d:()=>sS,sequential:()=>lU,serialization:()=>ce,setBackend:()=>w1,setPlatform:()=>P$,setThreadsCount:()=>Yye,setWasmPath:()=>Zye,setWasmPaths:()=>bb,setWebGLContext:()=>i0,setdiff1dAsync:()=>rS,shared:()=>a0,sigmoid:()=>Cn,sign:()=>aS,signal:()=>xz,sin:()=>X1,sinh:()=>K1,slice:()=>Pe,slice1d:()=>wm,slice2d:()=>Z1,slice3d:()=>Sl,slice4d:()=>Ii,slice_util:()=>Ft,softmax:()=>uc,softplus:()=>oc,spaceToBatchND:()=>bm,sparse:()=>dd,sparseToDense:()=>tA,spectral:()=>Az,split:()=>Kt,sqrt:()=>Nn,square:()=>At,squaredDifference:()=>J1,squeeze:()=>Qe,stack:()=>an,step:()=>hp,stridedSlice:()=>oS,string:()=>Xh,sub:()=>pe,sum:()=>ke,sumOutType:()=>rp,tan:()=>iS,tanh:()=>gu,tensor:()=>pt,tensor1d:()=>It,tensor2d:()=>ur,tensor3d:()=>Jw,tensor4d:()=>mO,tensor5d:()=>gO,tensor6d:()=>yO,tensor_util:()=>lr,test_util:()=>pk,tidy:()=>X,tile:()=>Ls,time:()=>_$,topk:()=>lS,train:()=>li,transpose:()=>st,truncatedNormal:()=>Im,unique:()=>hy,unregisterGradient:()=>NR,unregisterKernel:()=>TR,unsortedSegmentSum:()=>uS,unstack:()=>es,upcastType:()=>Tn,util:()=>v,valueAndGrad:()=>kP,valueAndGrads:()=>SP,variable:()=>cS,variableGrads:()=>qk,version:()=>zp,version_converter:()=>aj,version_core:()=>x1,version_cpu:()=>Hq,version_layers:()=>NA,version_wasm:()=>Qye,version_webgl:()=>mte,webgl:()=>gte,webgl_util:()=>UC,webgpu:()=>H6,where:()=>Un,whereAsync:()=>Q1,zeros:()=>Wt,zerosLike:()=>rt});var F9=Object.create,Df=Object.defineProperty,O9=Object.getOwnPropertyDescriptor,ow=Object.getOwnPropertyNames,M9=Object.getPrototypeOf,z9=Object.prototype.hasOwnProperty,L9=e=>Df(e,"__esModule",{value:!0}),on=(e,t)=>function(){return t||(0,e[ow(e)[0]])((t={exports:{}}).exports,t),t.exports},Le=(e,t)=>{for(var n in t)Df(e,n,{get:t[n],enumerable:!0})},B9=(e,t,n,s)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of ow(t))!z9.call(e,r)&&(n||r!=="default")&&Df(e,r,{get:()=>t[r],enumerable:!(s=O9(t,r))||s.enumerable});return e},$i=(e,t)=>B9(L9(Df(e!=null?F9(M9(e)):{},"default",!t&&e&&e.__esModule?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),W9=on({"src/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(D){}function s(D,T,O){this.low=D|0,this.high=T|0,this.unsigned=!!O}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(D){return(D&&D.__isLong__)===!0}s.isLong=r;var a={},o={};function i(D,T){var O,U,K;return T?(D>>>=0,(K=0<=D&&D<256)&&(U=o[D],U)?U:(O=u(D,(D|0)<0?-1:0,!0),K&&(o[D]=O),O)):(D|=0,(K=-128<=D&&D<128)&&(U=a[D],U)?U:(O=u(D,D<0?-1:0,!1),K&&(a[D]=O),O))}s.fromInt=i;function l(D,T){if(isNaN(D))return T?b:A;if(T){if(D<0)return b;if(D>=g)return R}else{if(D<=-y)return P;if(D+1>=y)return E}return D<0?l(-D,T).neg():u(D%m|0,D/m|0,T)}s.fromNumber=l;function u(D,T,O){return new s(D,T,O)}s.fromBits=u;var c=Math.pow;function p(D,T,O){if(D.length===0)throw Error("empty string");if(D==="NaN"||D==="Infinity"||D==="+Infinity"||D==="-Infinity")return A;if(typeof T=="number"?(O=T,T=!1):T=!!T,O=O||10,O<2||36<O)throw RangeError("radix");var U;if((U=D.indexOf("-"))>0)throw Error("interior hyphen");if(U===0)return p(D.substring(1),T,O).neg();for(var K=l(c(O,8)),z=A,Z=0;Z<D.length;Z+=8){var W=Math.min(8,D.length-Z),ee=parseInt(D.substring(Z,Z+W),O);if(W<8){var Q=l(c(O,W));z=z.mul(Q).add(l(ee))}else z=z.mul(K),z=z.add(l(ee))}return z.unsigned=T,z}s.fromString=p;function d(D,T){return typeof D=="number"?l(D,T):typeof D=="string"?p(D,T):u(D.low,D.high,typeof T=="boolean"?T:D.unsigned)}s.fromValue=d;var h=1<<16,f=1<<24,m=h*h,g=m*m,y=g/2,x=i(f),A=i(0);s.ZERO=A;var b=i(0,!0);s.UZERO=b;var w=i(1);s.ONE=w;var S=i(1,!0);s.UONE=S;var I=i(-1);s.NEG_ONE=I;var E=u(-1,2147483647,!1);s.MAX_VALUE=E;var R=u(-1,-1,!0);s.MAX_UNSIGNED_VALUE=R;var P=u(0,-2147483648,!1);s.MIN_VALUE=P;var _=s.prototype;_.toInt=function(){return this.unsigned?this.low>>>0:this.low},_.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},_.toString=function(T){if(T=T||10,T<2||36<T)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(P)){var O=l(T),U=this.div(O),K=U.mul(O).sub(this);return U.toString(T)+K.toInt().toString(T)}else return"-"+this.neg().toString(T);for(var z=l(c(T,6),this.unsigned),Z=this,W="";;){var ee=Z.div(z),Q=Z.sub(ee.mul(z)).toInt()>>>0,ae=Q.toString(T);if(Z=ee,Z.isZero())return ae+W;for(;ae.length<6;)ae="0"+ae;W=""+ae+W}},_.getHighBits=function(){return this.high},_.getHighBitsUnsigned=function(){return this.high>>>0},_.getLowBits=function(){return this.low},_.getLowBitsUnsigned=function(){return this.low>>>0},_.getNumBitsAbs=function(){if(this.isNegative())return this.eq(P)?64:this.neg().getNumBitsAbs();for(var T=this.high!=0?this.high:this.low,O=31;O>0&&(T&1<<O)==0;O--);return this.high!=0?O+33:O+1},_.isZero=function(){return this.high===0&&this.low===0},_.eqz=_.isZero,_.isNegative=function(){return!this.unsigned&&this.high<0},_.isPositive=function(){return this.unsigned||this.high>=0},_.isOdd=function(){return(this.low&1)===1},_.isEven=function(){return(this.low&1)===0},_.equals=function(T){return r(T)||(T=d(T)),this.unsigned!==T.unsigned&&this.high>>>31===1&&T.high>>>31===1?!1:this.high===T.high&&this.low===T.low},_.eq=_.equals,_.notEquals=function(T){return!this.eq(T)},_.neq=_.notEquals,_.ne=_.notEquals,_.lessThan=function(T){return this.comp(T)<0},_.lt=_.lessThan,_.lessThanOrEqual=function(T){return this.comp(T)<=0},_.lte=_.lessThanOrEqual,_.le=_.lessThanOrEqual,_.greaterThan=function(T){return this.comp(T)>0},_.gt=_.greaterThan,_.greaterThanOrEqual=function(T){return this.comp(T)>=0},_.gte=_.greaterThanOrEqual,_.ge=_.greaterThanOrEqual,_.compare=function(T){if(r(T)||(T=d(T)),this.eq(T))return 0;var O=this.isNegative(),U=T.isNegative();return O&&!U?-1:!O&&U?1:this.unsigned?T.high>>>0>this.high>>>0||T.high===this.high&&T.low>>>0>this.low>>>0?-1:1:this.sub(T).isNegative()?-1:1},_.comp=_.compare,_.negate=function(){return!this.unsigned&&this.eq(P)?P:this.not().add(w)},_.neg=_.negate,_.add=function(T){r(T)||(T=d(T));var O=this.high>>>16,U=this.high&65535,K=this.low>>>16,z=this.low&65535,Z=T.high>>>16,W=T.high&65535,ee=T.low>>>16,Q=T.low&65535,ae=0,Y=0,re=0,ie=0;return ie+=z+Q,re+=ie>>>16,ie&=65535,re+=K+ee,Y+=re>>>16,re&=65535,Y+=U+W,ae+=Y>>>16,Y&=65535,ae+=O+Z,ae&=65535,u(re<<16|ie,ae<<16|Y,this.unsigned)},_.subtract=function(T){return r(T)||(T=d(T)),this.add(T.neg())},_.sub=_.subtract,_.multiply=function(T){if(this.isZero())return A;if(r(T)||(T=d(T)),n){var O=n.mul(this.low,this.high,T.low,T.high);return u(O,n.get_high(),this.unsigned)}if(T.isZero())return A;if(this.eq(P))return T.isOdd()?P:A;if(T.eq(P))return this.isOdd()?P:A;if(this.isNegative())return T.isNegative()?this.neg().mul(T.neg()):this.neg().mul(T).neg();if(T.isNegative())return this.mul(T.neg()).neg();if(this.lt(x)&&T.lt(x))return l(this.toNumber()*T.toNumber(),this.unsigned);var U=this.high>>>16,K=this.high&65535,z=this.low>>>16,Z=this.low&65535,W=T.high>>>16,ee=T.high&65535,Q=T.low>>>16,ae=T.low&65535,Y=0,re=0,ie=0,me=0;return me+=Z*ae,ie+=me>>>16,me&=65535,ie+=z*ae,re+=ie>>>16,ie&=65535,ie+=Z*Q,re+=ie>>>16,ie&=65535,re+=K*ae,Y+=re>>>16,re&=65535,re+=z*Q,Y+=re>>>16,re&=65535,re+=Z*ee,Y+=re>>>16,re&=65535,Y+=U*ae+K*Q+z*ee+Z*W,Y&=65535,u(ie<<16|me,Y<<16|re,this.unsigned)},_.mul=_.multiply,_.divide=function(T){if(r(T)||(T=d(T)),T.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&T.low===-1&&T.high===-1)return this;var O=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,T.low,T.high);return u(O,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:A;var U,K,z;if(this.unsigned){if(T.unsigned||(T=T.toUnsigned()),T.gt(this))return b;if(T.gt(this.shru(1)))return S;z=b}else{if(this.eq(P)){if(T.eq(w)||T.eq(I))return P;if(T.eq(P))return w;var Z=this.shr(1);return U=Z.div(T).shl(1),U.eq(A)?T.isNegative()?w:I:(K=this.sub(T.mul(U)),z=U.add(K.div(T)),z)}else if(T.eq(P))return this.unsigned?b:A;if(this.isNegative())return T.isNegative()?this.neg().div(T.neg()):this.neg().div(T).neg();if(T.isNegative())return this.div(T.neg()).neg();z=A}for(K=this;K.gte(T);){U=Math.max(1,Math.floor(K.toNumber()/T.toNumber()));for(var W=Math.ceil(Math.log(U)/Math.LN2),ee=W<=48?1:c(2,W-48),Q=l(U),ae=Q.mul(T);ae.isNegative()||ae.gt(K);)U-=ee,Q=l(U,this.unsigned),ae=Q.mul(T);Q.isZero()&&(Q=w),z=z.add(Q),K=K.sub(ae)}return z},_.div=_.divide,_.modulo=function(T){if(r(T)||(T=d(T)),n){var O=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,T.low,T.high);return u(O,n.get_high(),this.unsigned)}return this.sub(this.div(T).mul(T))},_.mod=_.modulo,_.rem=_.modulo,_.not=function(){return u(~this.low,~this.high,this.unsigned)},_.and=function(T){return r(T)||(T=d(T)),u(this.low&T.low,this.high&T.high,this.unsigned)},_.or=function(T){return r(T)||(T=d(T)),u(this.low|T.low,this.high|T.high,this.unsigned)},_.xor=function(T){return r(T)||(T=d(T)),u(this.low^T.low,this.high^T.high,this.unsigned)},_.shiftLeft=function(T){return r(T)&&(T=T.toInt()),(T&=63)===0?this:T<32?u(this.low<<T,this.high<<T|this.low>>>32-T,this.unsigned):u(0,this.low<<T-32,this.unsigned)},_.shl=_.shiftLeft,_.shiftRight=function(T){return r(T)&&(T=T.toInt()),(T&=63)===0?this:T<32?u(this.low>>>T|this.high<<32-T,this.high>>T,this.unsigned):u(this.high>>T-32,this.high>=0?0:-1,this.unsigned)},_.shr=_.shiftRight,_.shiftRightUnsigned=function(T){if(r(T)&&(T=T.toInt()),T&=63,T===0)return this;var O=this.high;if(T<32){var U=this.low;return u(U>>>T|O<<32-T,O>>>T,this.unsigned)}else return T===32?u(O,0,this.unsigned):u(O>>>T-32,0,this.unsigned)},_.shru=_.shiftRightUnsigned,_.shr_u=_.shiftRightUnsigned,_.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},_.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},_.toBytes=function(T){return T?this.toBytesLE():this.toBytesBE()},_.toBytesLE=function(){var T=this.high,O=this.low;return[O&255,O>>>8&255,O>>>16&255,O>>>24,T&255,T>>>8&255,T>>>16&255,T>>>24]},_.toBytesBE=function(){var T=this.high,O=this.low;return[T>>>24,T>>>16&255,T>>>8&255,T&255,O>>>24,O>>>16&255,O>>>8&255,O&255]},s.fromBytes=function(T,O,U){return U?s.fromBytesLE(T,O):s.fromBytesBE(T,O)},s.fromBytesLE=function(T,O){return new s(T[0]|T[1]<<8|T[2]<<16|T[3]<<24,T[4]|T[5]<<8|T[6]<<16|T[7]<<24,O)},s.fromBytesBE=function(T,O){return new s(T[4]<<24|T[5]<<16|T[6]<<8|T[7],T[0]<<24|T[1]<<16|T[2]<<8|T[3],O)}}}),V9=on({"(disabled):src/node_modules/node-fetch/browser.js"(){}}),U9=on({"(disabled):util"(){}}),G9=on({"src/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(u){var c=this,p=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=p(" "),c.s1=p(" "),c.s2=p(" "),c.s0-=p(u),c.s0<0&&(c.s0+=1),c.s1-=p(u),c.s1<0&&(c.s1+=1),c.s2-=p(u),c.s2<0&&(c.s2+=1),p=null}function o(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function i(u,c){var p=new a(u),d=c&&c.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&o(d,p),h.state=function(){return o(p,{})}),h}function l(){var u=4022871197,c=function(p){p=String(p);for(var d=0;d<p.length;d++){u+=p.charCodeAt(d);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),H9=on({"src/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var p=0;p<c.length+64;p++)u.x^=c.charCodeAt(p)|0,u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function i(l,u){var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),j9=on({"src/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var p=0;p<c.length+64;p++)u.x^=c.charCodeAt(p)|0,p==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),q9=on({"src/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var p=u.x,d=u.i,h,f,m;return h=p[d],h^=h>>>7,f=h^h<<24,h=p[d+1&7],f^=h^h>>>10,h=p[d+3&7],f^=h^h>>>3,h=p[d+4&7],f^=h^h<<7,h=p[d+7&7],h=h^h<<13,f^=h^h<<9,p[d]=f,u.i=d+1&7,f};function c(p,d){var h,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,h=0;h<d.length;++h)m[h&7]=m[h&7]<<15^d.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],p.x=m,p.i=0,h=256;h>0;--h)p.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(p.x&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),X9=on({"src/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var p=u.w,d=u.X,h=u.i,f,m;return u.w=p=p+1640531527|0,m=d[h+34&127],f=d[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[h]=m^f,u.i=h,m+(p^p>>>16)|0};function c(p,d){var h,f,m,g,y,x=[],A=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,A=Math.max(A,d.length)),m=0,g=-32;g<A;++g)d&&(f^=d.charCodeAt((g+32)%d.length)),g===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(y=y+1640531527|0,h=x[g&127]^=f+y,m=h==0?m+1:0);for(m>=128&&(x[(d&&d.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=x[m+34&127],h=x[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,x[m]=f^h;p.w=y,p.X=x,p.i=m}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(p.X&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),K9=on({"src/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var d=u.b,h=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^h,u.c=h=h-f|0,u.d=f<<16^h>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var p=0;p<c.length+20;p++)u.b^=c.charCodeAt(p)|0,u.next()}function o(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function i(l,u){var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),Z9=on({"(disabled):crypto"(){}}),Y9=on({"src/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",u=r.pow(a,o),c=r.pow(2,i),p=c*2,d=a-1,h;function f(w,S,I){var E=[];S=S==!0?{entropy:!0}:S||{};var R=x(y(S.entropy?[w,b(s)]:w==null?A():w,3),E),P=new m(E),_=function(){for(var D=P.g(o),T=u,O=0;D<c;)D=(D+O)*a,T*=a,O=P.g(1);for(;D>=p;)D/=2,T/=2,O>>>=1;return(D+O)/T};return _.int32=function(){return P.g(4)|0},_.quick=function(){return P.g(4)/4294967296},_.double=_,x(b(P.S),s),(S.pass||I||function(D,T,O,U){return U&&(U.S&&g(U,P),D.state=function(){return g(P,{})}),O?(r[l]=D,T):D})(_,R,"global"in S?S.global:this==r,S.state)}function m(w){var S,I=w.length,E=this,R=0,P=E.i=E.j=0,_=E.S=[];for(I||(w=[I++]);R<a;)_[R]=R++;for(R=0;R<a;R++)_[R]=_[P=d&P+w[R%I]+(S=_[R])],_[P]=S;(E.g=function(D){for(var T,O=0,U=E.i,K=E.j,z=E.S;D--;)T=z[U=d&U+1],O=O*a+z[d&(z[U]=z[K=d&K+T])+(z[K]=T)];return E.i=U,E.j=K,O})(a)}function g(w,S){return S.i=w.i,S.j=w.j,S.S=w.S.slice(),S}function y(w,S){var I=[],E=typeof w,R;if(S&&E=="object")for(R in w)try{I.push(y(w[R],S-1))}catch(P){}return I.length?I:E=="string"?w:w+"\0"}function x(w,S){for(var I=w+"",E,R=0;R<I.length;)S[d&R]=d&(E^=S[d&R]*19)+I.charCodeAt(R++);return b(S)}function A(){try{var w;return h&&(w=h.randomBytes)?w=w(a):(w=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(w)),b(w)}catch(E){var S=n.navigator,I=S&&S.plugins;return[+new Date,n,I,n.screen,b(s)]}}function b(w){return String.fromCharCode.apply(0,w)}if(x(r.random(),s),typeof t=="object"&&t.exports){t.exports=f;try{h=Z9()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return f}):r["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}}),Pf=on({"src/node_modules/seedrandom/index.js"(e,t){var n=G9(),s=H9(),r=j9(),a=q9(),o=X9(),i=K9(),l=Y9();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),iw=on({"(disabled):src/node_modules/string_decoder/index.js"(){}}),e1=on({"(disabled):fs"(){}}),sf=on({"(disabled):path"(){}}),J9=on({"(disabled):worker_threads"(){}}),Q9=on({"(disabled):perf_hooks"(){}}),eR=on({"(disabled):os"(){}}),tR=on({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=(()=>{var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return $e.buffer!=Fn&&Js($e.buffer),Jp}function o(){return $e.buffer!=Fn&&Js($e.buffer),Qp}function i(){return $e.buffer!=Fn&&Js($e.buffer),Hc}function l(){return $e.buffer!=Fn&&Js($e.buffer),eh}function u(){return $e.buffer!=Fn&&Js($e.buffer),th}function c(){return $e.buffer!=Fn&&Js($e.buffer),nh}function p(){return $e.buffer!=Fn&&Js($e.buffer),sh}var d=typeof r!="undefined"?r:{},h,f;d.ready=new Promise(function(N,F){h=N,f=F});var m;typeof process!="undefined"&&process.listeners&&(m={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},d),y=[],x="./this.program",A=(N,F)=>{throw F},b=typeof window=="object",w=typeof importScripts=="function",S=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",I=d.ENVIRONMENT_IS_PTHREAD||!1,E="";function R(N){return d.locateFile?d.locateFile(N,E):E+N}var P,_,D,T;function O(N){if(N instanceof ed)return;Q("exiting due to exception: "+N)}var U,K,z;if(S){w?E=sf().dirname(E)+"/":E=__dirname+"/",z=()=>{K||(U=e1(),K=sf())},P=function(G,te){return z(),G=K.normalize(G),U.readFileSync(G,te?void 0:"utf8")},D=F=>{var G=P(F,!0);return G.buffer||(G=new Uint8Array(G)),G},_=(F,G,te)=>{z(),F=K.normalize(F),U.readFile(F,function(ye,xe){ye?te(ye):G(xe.buffer)})},process.argv.length>1&&(x=process.argv[1].replace(/\\/g,"/")),y=process.argv.slice(2),process.on("uncaughtException",function(F){if(!(F instanceof ed))throw F}),process.on("unhandledRejection",function(F){throw F}),A=(F,G)=>{if(ei())throw process.exitCode=F,G;O(G),process.exit(F)},d.inspect=function(){return"[Emscripten Module object]"};let N;try{N=J9()}catch(F){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),F}global.Worker=N.Worker}else(b||w)&&(w?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof s!="undefined"&&s&&(E=s),E.indexOf("blob:")!==0?E=E.substr(0,E.replace(/[?#].*/,"").lastIndexOf("/")+1):E="",S||(P=N=>{var F=new XMLHttpRequest;return F.open("GET",N,!1),F.send(null),F.responseText},w&&(D=N=>{var F=new XMLHttpRequest;return F.open("GET",N,!1),F.responseType="arraybuffer",F.send(null),new Uint8Array(F.response)}),_=(N,F,G)=>{var te=new XMLHttpRequest;te.open("GET",N,!0),te.responseType="arraybuffer",te.onload=()=>{if(te.status==200||te.status==0&&te.response){F(te.response);return}G()},te.onerror=G,te.send(null)}),T=N=>document.title=N);S&&typeof performance=="undefined"&&(global.performance=Q9().performance);var Z=console.log.bind(console),W=console.warn.bind(console);S&&(z(),Z=N=>U.writeSync(1,N+`
|
|
`),W=N=>U.writeSync(2,N+`
|
|
`));var ee=d.print||Z,Q=d.printErr||W;Object.assign(d,g),g=null,d.arguments&&(y=d.arguments),d.thisProgram&&(x=d.thisProgram),d.quit&&(A=d.quit);var ae=4;function Y(N){Y.shown||(Y.shown={}),Y.shown[N]||(Y.shown[N]=1,Q(N))}function re(N,F){if(typeof WebAssembly.Function=="function"){for(var G={i:"i32",j:"i64",f:"f32",d:"f64"},te={parameters:[],results:F[0]=="v"?[]:[G[F[0]]]},ye=1;ye<F.length;++ye)te.parameters.push(G[F[ye]]);return new WebAssembly.Function(te,N)}var xe=[1,0,1,96],Te=F.slice(0,1),Fe=F.slice(1),Dt={i:127,j:126,f:125,d:124};xe.push(Fe.length);for(var ye=0;ye<Fe.length;++ye)xe.push(Dt[Fe[ye]]);Te=="v"?xe.push(0):xe=xe.concat([1,Dt[Te]]),xe[1]=xe.length-2;var nr=new Uint8Array([0,97,115,109,1,0,0,0].concat(xe,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),sr=new WebAssembly.Module(nr),$h=new WebAssembly.Instance(sr,{e:{f:N}}),td=$h.exports.f;return td}var ie=[],me;function be(){if(ie.length)return ie.pop();try{Ss.grow(1)}catch(N){throw N instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":N}return Ss.length-1}function Ee(N,F){for(var G=N;G<N+F;G++){var te=ql(G);te&&me.set(te,G)}}var Re=0,ze=N=>{Re=N},Be=Atomics.load,tt=Atomics.store,it=Atomics.compareExchange,lt;d.wasmBinary&&(lt=d.wasmBinary);var ht=d.noExitRuntime||!0;typeof WebAssembly!="object"&&Gl("no native wasm support detected");var $e,vt,yt=!1,$n;function Ht(N,F){N||Gl(F)}function is(N){var F=d["_"+N];return F}function Qt(N,F,G,te,ye){var xe={string:function(cs){var eu=0;if(cs!=null&&cs!==0){var x3=(cs.length<<2)+1;eu=Ql(x3),Br(cs,eu,x3)}return eu},array:function(cs){var eu=Ql(cs.length);return Wr(cs,eu),eu}};function Te(cs){return F==="string"?Pn(cs):F==="boolean"?Boolean(cs):cs}var Fe=is(N),Dt=[],nr=0;if(te)for(var sr=0;sr<te.length;sr++){var $h=xe[G[sr]];$h?(nr===0&&(nr=O2()),Dt[sr]=$h(te[sr])):Dt[sr]=te[sr]}var td=Fe.apply(null,Dt);function N9(cs){return nr!==0&&Nh(nr),Te(cs)}return td=N9(td),td}function Dn(N,F,G,te){G=G||[];var ye=G.every(function(Te){return Te==="number"}),xe=F!=="string";return xe&&ye&&!te?is(N):function(){return Qt(N,F,G,arguments,te)}}var ls=1;function us(N){var F=new TextDecoder(N);this.decode=G=>(G.buffer instanceof SharedArrayBuffer&&(G=new Uint8Array(G)),F.decode.call(F,G))}var wn=typeof TextDecoder!="undefined"?new us("utf8"):void 0;function ks(N,F,G){for(var te=F+G,ye=F;N[ye]&&!(ye>=te);)++ye;if(ye-F>16&&N.subarray&&wn)return wn.decode(N.subarray(F,ye));for(var xe="";F<ye;){var Te=N[F++];if(!(Te&128)){xe+=String.fromCharCode(Te);continue}var Fe=N[F++]&63;if((Te&224)==192){xe+=String.fromCharCode((Te&31)<<6|Fe);continue}var Dt=N[F++]&63;if((Te&240)==224?Te=(Te&15)<<12|Fe<<6|Dt:Te=(Te&7)<<18|Fe<<12|Dt<<6|N[F++]&63,Te<65536)xe+=String.fromCharCode(Te);else{var nr=Te-65536;xe+=String.fromCharCode(55296|nr>>10,56320|nr&1023)}}return xe}function Pn(N,F){return N?ks(o(),N,F):""}function Lr(N,F,G,te){if(!(te>0))return 0;for(var ye=G,xe=G+te-1,Te=0;Te<N.length;++Te){var Fe=N.charCodeAt(Te);if(Fe>=55296&&Fe<=57343){var Dt=N.charCodeAt(++Te);Fe=65536+((Fe&1023)<<10)|Dt&1023}if(Fe<=127){if(G>=xe)break;F[G++]=Fe}else if(Fe<=2047){if(G+1>=xe)break;F[G++]=192|Fe>>6,F[G++]=128|Fe&63}else if(Fe<=65535){if(G+2>=xe)break;F[G++]=224|Fe>>12,F[G++]=128|Fe>>6&63,F[G++]=128|Fe&63}else{if(G+3>=xe)break;F[G++]=240|Fe>>18,F[G++]=128|Fe>>12&63,F[G++]=128|Fe>>6&63,F[G++]=128|Fe&63}}return F[G]=0,G-ye}function Br(N,F,G){return Lr(N,o(),F,G)}function Wl(N){for(var F=0,G=0;G<N.length;++G){var te=N.charCodeAt(G);te>=55296&&te<=57343&&(te=65536+((te&1023)<<10)|N.charCodeAt(++G)&1023),te<=127?++F:te<=2047?F+=2:te<=65535?F+=3:F+=4}return F}var ha=typeof TextDecoder!="undefined"?new us("utf-16le"):void 0;function Wr(N,F){a().set(N,F)}function Gc(N,F,G){for(var te=0;te<N.length;++te)a()[F++>>0]=N.charCodeAt(te);G||(a()[F>>0]=0)}function Vl(N,F){return N%F>0&&(N+=F-N%F),N}var Fn,Jp,Qp,Hc,eh,th,Q5,nh,sh;I&&(Fn=d.buffer);function Js(N){Fn=N,d.HEAP8=Jp=new Int8Array(N),d.HEAP16=Hc=new Int16Array(N),d.HEAP32=th=new Int32Array(N),d.HEAPU8=Qp=new Uint8Array(N),d.HEAPU16=eh=new Uint16Array(N),d.HEAPU32=Q5=new Uint32Array(N),d.HEAPF32=nh=new Float32Array(N),d.HEAPF64=sh=new Float64Array(N)}var rh=d.INITIAL_MEMORY||16777216;if(I)$e=d.wasmMemory,Fn=d.buffer;else if(d.wasmMemory)$e=d.wasmMemory;else if($e=new WebAssembly.Memory({initial:rh/65536,maximum:32768,shared:!0}),!($e.buffer instanceof SharedArrayBuffer))throw Q("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),S&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");$e&&(Fn=$e.buffer),rh=Fn.byteLength,Js(Fn);var Ss,Ul=[],fa=[],ig=[],ah=[],Qo=!1,lg=!1,oh=0;function ei(){return ht||oh>0}function On(){if(d.preRun)for(typeof d.preRun=="function"&&(d.preRun=[d.preRun]);d.preRun.length;)e3(d.preRun.shift());dh(Ul)}function jc(){Qo=!0,!I&&dh(fa)}function ug(){I||(Oe.terminateAllThreads(),lg=!0)}function cg(){if(!I){if(d.postRun)for(typeof d.postRun=="function"&&(d.postRun=[d.postRun]);d.postRun.length;)qc(d.postRun.shift());dh(ah)}}function e3(N){Ul.unshift(N)}function t3(N){fa.unshift(N)}function qc(N){ah.unshift(N)}var ma=0,ih=null,Qs=null;function Xc(N){ma++,d.monitorRunDependencies&&d.monitorRunDependencies(ma)}function n3(N){if(ma--,d.monitorRunDependencies&&d.monitorRunDependencies(ma),ma==0&&(ih!==null&&(clearInterval(ih),ih=null),Qs)){var F=Qs;Qs=null,F()}}d.preloadedImages={},d.preloadedAudios={};function Gl(N){I?postMessage({cmd:"onAbort",arg:N}):d.onAbort&&d.onAbort(N),N="Aborted("+N+")",Q(N),yt=!0,$n=1,N+=". Build with -s ASSERTIONS=1 for more info.";var F=new WebAssembly.RuntimeError(N);throw f(F),F}var dg="data:application/octet-stream;base64,";function lh(N){return N.startsWith(dg)}function uh(N){return N.startsWith("file://")}var Mn;Mn="tfjs-backend-wasm-threaded-simd.wasm",lh(Mn)||(Mn=R(Mn));function ch(N){try{if(N==Mn&<)return new Uint8Array(lt);if(D)return D(N);throw"both async and sync fetching of the wasm failed"}catch(F){Gl(F)}}function Hl(){if(!lt&&(b||w)){if(typeof fetch=="function"&&!uh(Mn))return fetch(Mn,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+Mn+"'";return N.arrayBuffer()}).catch(function(){return ch(Mn)});if(_)return new Promise(function(N,F){_(Mn,function(G){N(new Uint8Array(G))},F)})}return Promise.resolve().then(function(){return ch(Mn)})}function pg(){var N={env:kh,wasi_snapshot_preview1:kh};function F(Te,Fe){var Dt=Te.exports;if(d.asm=Dt,xg(d.asm.emscripten_tls_init),Ss=d.asm.__indirect_function_table,t3(d.asm.__wasm_call_ctors),vt=Fe,!I){var nr=Oe.unusedWorkers.length;Oe.unusedWorkers.forEach(function(sr){Oe.loadWasmModuleToWorker(sr,function(){--nr||n3("wasm-instantiate")})})}}I||Xc("wasm-instantiate");function G(Te){F(Te.instance,Te.module)}function te(Te){return Hl().then(function(Fe){return WebAssembly.instantiate(Fe,N)}).then(function(Fe){return Fe}).then(Te,function(Fe){Q("failed to asynchronously prepare wasm: "+Fe),Gl(Fe)})}function ye(){return!lt&&typeof WebAssembly.instantiateStreaming=="function"&&!lh(Mn)&&!uh(Mn)&&typeof fetch=="function"?fetch(Mn,{credentials:"same-origin"}).then(function(Te){var Fe=WebAssembly.instantiateStreaming(Te,N);return Fe.then(G,function(Dt){return Q("wasm streaming compile failed: "+Dt),Q("falling back to ArrayBuffer instantiation"),te(G)})}):te(G)}if(d.instantiateWasm)try{var xe=d.instantiateWasm(N,F);return xe}catch(Te){return Q("Module.instantiateWasm callback failed with error: "+Te),!1}return ye().catch(f),{}}var s3,r3,hg={};function dh(N){for(;N.length>0;){var F=N.shift();if(typeof F=="function"){F(d);continue}var G=F.func;typeof G=="number"?F.arg===void 0?ql(G)():ql(G)(F.arg):G(F.arg===void 0?null:F.arg)}}function jl(N){var F=O2(),G=N();return Nh(F),G}function OE(N){return N}function a3(N){var F=/\b_Z[\w\d_]+/g;return N.replace(F,function(G){var te=G;return G===te?G:te+" ["+G+"]"})}function fg(N){u()[N>>2]=0;var F=Oe.pthreads[N];delete Oe.pthreads[N],F.worker.terminate(),F2(N),Oe.runningWorkers.splice(Oe.runningWorkers.indexOf(F.worker),1),F.worker.pthread=void 0}function mg(N){var F=Oe.pthreads[N];F.worker.postMessage({cmd:"cancel"})}function ph(N){var F=Oe.pthreads[N];if(F){u()[N>>2]=0;var G=F.worker;Oe.returnWorkerToPool(G)}}function hh(N){I9(N)}function gg(N){if(N instanceof ed||N=="unwind")return $n;A(1,N)}var Oe={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],init:function(){I?Oe.initWorker():Oe.initMainThread()},initMainThread:function(){for(var N=8,F=0;F<N;++F)Oe.allocateUnusedWorker()},initWorker:function(){ht=!1},pthreads:{},setExitStatus:function(N){$n=N},terminateAllThreads:function(){for(var N in Oe.pthreads){var F=Oe.pthreads[N];F&&F.worker&&Oe.returnWorkerToPool(F.worker)}for(var G=0;G<Oe.unusedWorkers.length;++G){var te=Oe.unusedWorkers[G];te.terminate()}Oe.unusedWorkers=[]},returnWorkerToPool:function(N){Oe.runWithoutMainThreadQueuedCalls(function(){delete Oe.pthreads[N.pthread.threadInfoStruct],Oe.unusedWorkers.push(N),Oe.runningWorkers.splice(Oe.runningWorkers.indexOf(N),1),F2(N.pthread.threadInfoStruct),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){u()[A3>>2]=0;try{N()}finally{u()[A3>>2]=1}},receiveObjectTransfer:function(N){},threadInit:function(){for(var N in Oe.tlsInitFunctions)Oe.tlsInitFunctions[N]()},loadWasmModuleToWorker:function(N,F){N.onmessage=G=>{var te=G.data,ye=te.cmd;if(N.pthread&&(Oe.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),te.targetThread&&te.targetThread!=Th()){var xe=Oe.pthreads[te.targetThread];xe?xe.worker.postMessage(te,te.transferList):Q('Internal error! Worker sent a message "'+ye+'" to target pthread '+te.targetThread+", but that thread no longer exists!"),Oe.currentProxiedOperationCallerThread=void 0;return}ye==="processQueuedMainThreadWork"?h3():ye==="spawnThread"?mh(te):ye==="cleanupThread"?ph(te.thread):ye==="killThread"?fg(te.thread):ye==="cancelThread"?mg(te.thread):ye==="loaded"?(N.loaded=!0,F&&F(N),N.runPthread&&(N.runPthread(),delete N.runPthread)):ye==="print"?ee("Thread "+te.threadId+": "+te.text):ye==="printErr"?Q("Thread "+te.threadId+": "+te.text):ye==="alert"?alert("Thread "+te.threadId+": "+te.text):te.target==="setimmediate"?N.postMessage(te):ye==="onAbort"?d.onAbort&&d.onAbort(te.arg):Q("worker sent an unknown command "+ye),Oe.currentProxiedOperationCallerThread=void 0},N.onerror=G=>{var te="worker sent an error!";throw Q(te+" "+G.filename+":"+G.lineno+": "+G.message),G},S&&(N.on("message",function(G){N.onmessage({data:G})}),N.on("error",function(G){N.onerror(G)}),N.on("detachedExit",function(){})),N.postMessage({cmd:"load",urlOrBlob:d.mainScriptUrlOrBlob||s,wasmMemory:$e,wasmModule:vt})},allocateUnusedWorker:function(){var N=R("tfjs-backend-wasm-threaded-simd.worker.js");Oe.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return Oe.unusedWorkers.length==0&&(Oe.allocateUnusedWorker(),Oe.loadWasmModuleToWorker(Oe.unusedWorkers[0])),Oe.unusedWorkers.pop()}};function yg(){var N=Th(),F=u()[N+44>>2],G=u()[N+48>>2],te=F-G;y3(F,te),Nh(F)}d.establishStackSpace=yg;function fh(N){if(I)return si(1,0,N);try{hh(N)}catch(F){gg(F)}}var ti=[];function ql(N){var F=ti[N];return F||(N>=ti.length&&(ti.length=N+1),ti[N]=F=Ss.get(N)),F}function Ag(N,F){return ql(N)(F)}d.invokeEntryPoint=Ag;function o3(){var N=new Error;if(!N.stack){try{throw new Error}catch(F){N=F}if(!N.stack)return"(no stack trace available)"}return N.stack.toString()}function xg(N,F,G){Oe.tlsInitFunctions.push(N)}function i3(N,F){Ss.set(N,F),ti[N]=F}var ni;S?ni=()=>{var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:I?ni=()=>performance.now()-d.__performance_now_clock_drift:ni=()=>performance.now();var bg=!0;function vg(N){return u()[p3()>>2]=N,N}function wg(N,F){var G;if(N===0)G=Date.now();else if((N===1||N===4)&&bg)G=ni();else return vg(28),-1;return u()[F>>2]=G/1e3|0,u()[F+4>>2]=G%1e3*1e3*1e3|0,0}function kg(N,F){return wg(N,F)}function Sg(N){f3(N,!w,1,!b),Oe.threadInit()}function Ig(N){I?postMessage({cmd:"cleanupThread",thread:N}):ph(N)}function mh(N){var F=Oe.getNewWorker();if(!F)return 6;Oe.runningWorkers.push(F);var G=Oe.pthreads[N.pthread_ptr]={worker:F,threadInfoStruct:N.pthread_ptr};F.pthread=G;var te={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr};return F.runPthread=()=>{te.time=performance.now(),F.postMessage(te,N.transferList)},F.loaded&&(F.runPthread(),delete F.runPthread),0}function Cg(N,F,G,te){if(typeof SharedArrayBuffer=="undefined")return Q("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var ye=[],xe=0;if(I&&(ye.length===0||xe))return m3(687865856,N,F,G,te);if(xe)return xe;var Te={startRoutine:G,pthread_ptr:N,arg:te,transferList:ye};return I?(Te.cmd="spawnThread",postMessage(Te,ye),0):mh(Te)}function Tg(){return 2097152}function Ng(N,F){if(N==F)postMessage({cmd:"processQueuedMainThreadWork"});else if(I)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var G=Oe.pthreads[N],te=G&&G.worker;if(!te)return;te.postMessage({cmd:"processThreadQueue"})}return 1}function Eg(){Gl("")}function Rg(){S||w||Y("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function gh(){return 2147483648}function _g(N,F,G){o().copyWithin(N,F,F+G)}function $g(){return S?eR().cpus().length:navigator.hardwareConcurrency}function si(N,F){var G=arguments.length-2,te=arguments;return jl(function(){for(var ye=G,xe=Ql(ye*8),Te=xe>>3,Fe=0;Fe<G;Fe++){var Dt=te[2+Fe];p()[Te+Fe]=Dt}return g3(N,ye,xe,F)})}var Kc=[];function Dg(N,F,G){Kc.length=F;for(var te=G>>3,ye=0;ye<F;ye++)Kc[ye]=p()[te+ye];var xe=N<0,Te=xe?hg[-N-1]:Jg[N];return Te.apply(null,Kc)}function Pg(N){try{return $e.grow(N-Fn.byteLength+65535>>>16),Js($e.buffer),1}catch(F){}}function Fg(N){var F=o().length;if(N=N>>>0,N<=F)return!1;var G=gh();if(N>G)return!1;for(var te=1;te<=4;te*=2){var ye=F*(1+.2/te);ye=Math.min(ye,N+100663296);var xe=Math.min(G,Vl(Math.max(N,ye),65536)),Te=Pg(xe);if(Te)return!0}return!1}var Xe={inEventHandler:0,removeAllEventListeners:function(){for(var N=Xe.eventHandlers.length-1;N>=0;--N)Xe._removeHandler(N);Xe.eventHandlers=[],Xe.deferredCalls=[]},registerRemoveEventListeners:function(){Xe.removeEventListenersRegistered||(ig.push(Xe.removeAllEventListeners),Xe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,F,G){function te(Te,Fe){if(Te.length!=Fe.length)return!1;for(var Dt in Te)if(Te[Dt]!=Fe[Dt])return!1;return!0}for(var ye in Xe.deferredCalls){var xe=Xe.deferredCalls[ye];if(xe.targetFunction==N&&te(xe.argsList,G))return}Xe.deferredCalls.push({targetFunction:N,precedence:F,argsList:G}),Xe.deferredCalls.sort(function(Te,Fe){return Te.precedence<Fe.precedence})},removeDeferredCalls:function(N){for(var F=0;F<Xe.deferredCalls.length;++F)Xe.deferredCalls[F].targetFunction==N&&(Xe.deferredCalls.splice(F,1),--F)},canPerformEventHandlerRequests:function(){return Xe.inEventHandler&&Xe.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Xe.canPerformEventHandlerRequests())for(var N=0;N<Xe.deferredCalls.length;++N){var F=Xe.deferredCalls[N];Xe.deferredCalls.splice(N,1),--N,F.targetFunction.apply(null,F.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,F){for(var G=0;G<Xe.eventHandlers.length;++G)Xe.eventHandlers[G].target==N&&(!F||F==Xe.eventHandlers[G].eventTypeString)&&Xe._removeHandler(G--)},_removeHandler:function(N){var F=Xe.eventHandlers[N];F.target.removeEventListener(F.eventTypeString,F.eventListenerFunc,F.useCapture),Xe.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var F=function(ye){++Xe.inEventHandler,Xe.currentEventHandler=N,Xe.runDeferredCalls(),N.handlerFunc(ye),Xe.runDeferredCalls(),--Xe.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=F,N.target.addEventListener(N.eventTypeString,F,N.useCapture),Xe.eventHandlers.push(N),Xe.registerRemoveEventListeners();else for(var G=0;G<Xe.eventHandlers.length;++G)Xe.eventHandlers[G].target==N.target&&Xe.eventHandlers[G].eventTypeString==N.eventTypeString&&Xe._removeHandler(G--)},queueEventHandlerOnThread_iiii:function(N,F,G,te,ye){jl(function(){var xe=Ql(12);u()[xe>>2]=G,u()[xe+4>>2]=te,u()[xe+8>>2]=ye,P2(N,637534208,F,te,xe)})},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return Oe.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function Og(N){var F=Wl(N)+1,G=D2(F);return Br(N,G,F),G}function Mg(N,F,G,te){jl(function(){var ye=Ql(12),xe=0;F&&(xe=Og(F)),u()[ye>>2]=xe,u()[ye+4>>2]=G,u()[ye+8>>2]=te,P2(N,657457152,0,xe,ye)})}function zg(N,F,G,te){F=F?Pn(F):"",Mg(N,F,G,te)}function Lg(N){return N>2?Pn(N):N}var Bg=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function Wg(N){N=Lg(N);var F=Bg[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return F}function Zc(N){return Wg(N)}function yh(N,F,G){var te=Zc(N);if(!te)return-4;if(te.canvasSharedPtr&&(u()[te.canvasSharedPtr>>2]=F,u()[te.canvasSharedPtr+4>>2]=G),te.offscreenCanvas||!te.controlTransferredOffscreen){te.offscreenCanvas&&(te=te.offscreenCanvas);var ye=!1;if(te.GLctxObject&&te.GLctxObject.GLctx){var xe=te.GLctxObject.GLctx.getParameter(2978);ye=xe[0]===0&&xe[1]===0&&xe[2]===te.width&&xe[3]===te.height}te.width=F,te.height=G,ye&&te.GLctxObject.GLctx.viewport(0,0,F,G)}else if(te.canvasSharedPtr){var Te=u()[te.canvasSharedPtr+8>>2];return zg(Te,N,F,G),1}else return-4;return 0}function Ah(N,F,G){return I?si(2,1,N,F,G):yh(N,F,G)}function Vg(N,F,G){var te=Zc(N);return te?yh(N,F,G):Ah(N,F,G)}function Ug(){throw"unwind"}function Gg(N){var F=N.getExtension("ANGLE_instanced_arrays");if(F)return N.vertexAttribDivisor=function(G,te){F.vertexAttribDivisorANGLE(G,te)},N.drawArraysInstanced=function(G,te,ye,xe){F.drawArraysInstancedANGLE(G,te,ye,xe)},N.drawElementsInstanced=function(G,te,ye,xe,Te){F.drawElementsInstancedANGLE(G,te,ye,xe,Te)},1}function Hg(N){var F=N.getExtension("OES_vertex_array_object");if(F)return N.createVertexArray=function(){return F.createVertexArrayOES()},N.deleteVertexArray=function(G){F.deleteVertexArrayOES(G)},N.bindVertexArray=function(G){F.bindVertexArrayOES(G)},N.isVertexArray=function(G){return F.isVertexArrayOES(G)},1}function jg(N){var F=N.getExtension("WEBGL_draw_buffers");if(F)return N.drawBuffers=function(G,te){F.drawBuffersWEBGL(G,te)},1}function qg(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var $t={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},queries:[],stringCache:{},unpackAlignment:4,recordError:function(F){$t.lastError||($t.lastError=F)},getNewId:function(N){for(var F=$t.counter++,G=N.length;G<F;G++)N[G]=null;return F},getSource:function(N,F,G,te){for(var ye="",xe=0;xe<F;++xe){var Te=te?u()[te+xe*4>>2]:-1;ye+=Pn(u()[G+xe*4>>2],Te<0?void 0:Te)}return ye},createContext:function(N,F){N.getContextSafariWebGL2Fixed||(N.getContextSafariWebGL2Fixed=N.getContext,N.getContext=function(ye,xe){var Te=N.getContextSafariWebGL2Fixed(ye,xe);return ye=="webgl"==Te instanceof WebGLRenderingContext?Te:null});var G=N.getContext("webgl",F);if(!G)return 0;var te=$t.registerContext(G,F);return te},registerContext:function(N,F){var G=D2(8);u()[G+4>>2]=Th();var te={handle:G,attributes:F,version:F.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=te),$t.contexts[G]=te,(typeof F.enableExtensionsByDefault=="undefined"||F.enableExtensionsByDefault)&&$t.initExtensions(te),G},makeContextCurrent:function(N){return $t.currentContext=$t.contexts[N],d.ctx=wh=$t.currentContext&&$t.currentContext.GLctx,!(N&&!wh)},getContext:function(N){return $t.contexts[N]},deleteContext:function(N){$t.currentContext===$t.contexts[N]&&($t.currentContext=null),typeof Xe=="object"&&Xe.removeAllHandlersOnTarget($t.contexts[N].GLctx.canvas),$t.contexts[N]&&$t.contexts[N].GLctx.canvas&&($t.contexts[N].GLctx.canvas.GLctxObject=void 0),d3($t.contexts[N].handle),$t.contexts[N]=null},initExtensions:function(N){if(N||(N=$t.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var F=N.GLctx;Gg(F),Hg(F),jg(F),F.disjointTimerQueryExt=F.getExtension("EXT_disjoint_timer_query"),qg(F);var G=F.getSupportedExtensions()||[];G.forEach(function(te){!te.includes("lose_context")&&!te.includes("debug")&&F.getExtension(te)})}}},Xg=["default","low-power","high-performance"];function Kg(N,F){var G=F>>2,te=u()[G+6],ye={alpha:!!u()[G+0],depth:!!u()[G+1],stencil:!!u()[G+2],antialias:!!u()[G+3],premultipliedAlpha:!!u()[G+4],preserveDrawingBuffer:!!u()[G+5],powerPreference:Xg[te],failIfMajorPerformanceCaveat:!!u()[G+7],majorVersion:u()[G+8],minorVersion:u()[G+9],enableExtensionsByDefault:u()[G+10],explicitSwapControl:u()[G+11],proxyContextToMainThread:u()[G+12],renderViaOffscreenBackBuffer:u()[G+13]},xe=Zc(N);if(!xe||ye.explicitSwapControl)return 0;var Te=$t.createContext(xe,ye);return Te}function Zg(N,F){return Kg(N,F)}var Xl={mappings:{},buffers:[null,[],[]],printChar:function(N,F){var G=Xl.buffers[N];F===0||F===10?((N===1?ee:Q)(ks(G,0)),G.length=0):G.push(F)},varargs:void 0,get:function(){Xl.varargs+=4;var N=u()[Xl.varargs-4>>2];return N},getStr:function(N){var F=Pn(N);return F},get64:function(N,F){return N}};function xh(N){return I?si(3,1,N):0}function bh(N,F,G,te,ye){if(I)return si(4,1,N,F,G,te,ye)}function vh(N,F,G,te){if(I)return si(5,1,N,F,G,te);for(var ye=0,xe=0;xe<G;xe++){var Te=u()[F>>2],Fe=u()[F+4>>2];F+=8;for(var Dt=0;Dt<Fe;Dt++)Xl.printChar(N,o()[Te+Dt]);ye+=Fe}return u()[te>>2]=ye,0}function Yg(N){ze(N)}Oe.init();var wh,Jg=[null,fh,Ah,xh,bh,vh],l3=!1,kh={__clock_gettime:kg,__emscripten_init_main_thread_js:Sg,__emscripten_thread_cleanup:Ig,__pthread_create_js:Cg,_emscripten_default_pthread_stack_size:Tg,_emscripten_notify_thread_queue:Ng,abort:Eg,emscripten_check_blocking_allowed:Rg,emscripten_get_heap_max:gh,emscripten_get_now:ni,emscripten_memcpy_big:_g,emscripten_num_logical_cores:$g,emscripten_receive_on_main_thread_js:Dg,emscripten_resize_heap:Fg,emscripten_set_canvas_element_size:Vg,emscripten_unwind_to_js_event_loop:Ug,emscripten_webgl_create_context:Zg,exit:hh,fd_close:xh,fd_seek:bh,fd_write:vh,memory:$e||d.wasmMemory,setTempRet0:Yg},u3=pg(),Qg=d.___wasm_call_ctors=function(){return(Qg=d.___wasm_call_ctors=d.asm.__wasm_call_ctors).apply(null,arguments)},e2=d._init=function(){return(e2=d._init=d.asm.init).apply(null,arguments)},t2=d._init_with_threads_count=function(){return(t2=d._init_with_threads_count=d.asm.init_with_threads_count).apply(null,arguments)},n2=d._get_threads_count=function(){return(n2=d._get_threads_count=d.asm.get_threads_count).apply(null,arguments)},s2=d._register_tensor=function(){return(s2=d._register_tensor=d.asm.register_tensor).apply(null,arguments)},r2=d._dispose_data=function(){return(r2=d._dispose_data=d.asm.dispose_data).apply(null,arguments)},a2=d._dispose=function(){return(a2=d._dispose=d.asm.dispose).apply(null,arguments)},o2=d._Abs=function(){return(o2=d._Abs=d.asm.Abs).apply(null,arguments)},i2=d._Add=function(){return(i2=d._Add=d.asm.Add).apply(null,arguments)},l2=d._AddN=function(){return(l2=d._AddN=d.asm.AddN).apply(null,arguments)},u2=d._All=function(){return(u2=d._All=d.asm.All).apply(null,arguments)},c2=d._Any=function(){return(c2=d._Any=d.asm.Any).apply(null,arguments)},d2=d._ArgMax=function(){return(d2=d._ArgMax=d.asm.ArgMax).apply(null,arguments)},p2=d._AvgPool=function(){return(p2=d._AvgPool=d.asm.AvgPool).apply(null,arguments)},h2=d._BatchMatMul=function(){return(h2=d._BatchMatMul=d.asm.BatchMatMul).apply(null,arguments)},f2=d._Ceil=function(){return(f2=d._Ceil=d.asm.Ceil).apply(null,arguments)},m2=d._ClipByValue=function(){return(m2=d._ClipByValue=d.asm.ClipByValue).apply(null,arguments)},g2=d._Conv2D=function(){return(g2=d._Conv2D=d.asm.Conv2D).apply(null,arguments)},y2=d._Conv2DBackpropInput=function(){return(y2=d._Conv2DBackpropInput=d.asm.Conv2DBackpropInput).apply(null,arguments)},A2=d._Cos=function(){return(A2=d._Cos=d.asm.Cos).apply(null,arguments)},x2=d._Cosh=function(){return(x2=d._Cosh=d.asm.Cosh).apply(null,arguments)},b2=d._CropAndResize=function(){return(b2=d._CropAndResize=d.asm.CropAndResize).apply(null,arguments)},v2=d._Cumprod=function(){return(v2=d._Cumprod=d.asm.Cumprod).apply(null,arguments)},w2=d._Cumsum=function(){return(w2=d._Cumsum=d.asm.Cumsum).apply(null,arguments)},k2=d._DepthToSpace=function(){return(k2=d._DepthToSpace=d.asm.DepthToSpace).apply(null,arguments)},S2=d._DepthwiseConv2dNative=function(){return(S2=d._DepthwiseConv2dNative=d.asm.DepthwiseConv2dNative).apply(null,arguments)},I2=d._Elu=function(){return(I2=d._Elu=d.asm.Elu).apply(null,arguments)},C2=d._Equal=function(){return(C2=d._Equal=d.asm.Equal).apply(null,arguments)},T2=d._Exp=function(){return(T2=d._Exp=d.asm.Exp).apply(null,arguments)},N2=d._FlipLeftRight=function(){return(N2=d._FlipLeftRight=d.asm.FlipLeftRight).apply(null,arguments)},Sh=d._Floor=function(){return(Sh=d._Floor=d.asm.Floor).apply(null,arguments)},Ih=d._FloorDiv=function(){return(Ih=d._FloorDiv=d.asm.FloorDiv).apply(null,arguments)},Yc=d._FusedBatchNorm=function(){return(Yc=d._FusedBatchNorm=d.asm.FusedBatchNorm).apply(null,arguments)},E2=d._FusedConv2D=function(){return(E2=d._FusedConv2D=d.asm.FusedConv2D).apply(null,arguments)},R2=d._FusedDepthwiseConv2D=function(){return(R2=d._FusedDepthwiseConv2D=d.asm.FusedDepthwiseConv2D).apply(null,arguments)},Kl=d._Gather=function(){return(Kl=d._Gather=d.asm.Gather).apply(null,arguments)},Jc=d._GatherNd=function(){return(Jc=d._GatherNd=d.asm.GatherNd).apply(null,arguments)},Qc=d._Greater=function(){return(Qc=d._Greater=d.asm.Greater).apply(null,arguments)},c3=d._GreaterEqual=function(){return(c3=d._GreaterEqual=d.asm.GreaterEqual).apply(null,arguments)},Zl=d._LeakyRelu=function(){return(Zl=d._LeakyRelu=d.asm.LeakyRelu).apply(null,arguments)},Yl=d._Less=function(){return(Yl=d._Less=d.asm.Less).apply(null,arguments)},_2=d._LessEqual=function(){return(_2=d._LessEqual=d.asm.LessEqual).apply(null,arguments)},q=d._Log=function(){return(q=d._Log=d.asm.Log).apply(null,arguments)},se=d._LogicalAnd=function(){return(se=d._LogicalAnd=d.asm.LogicalAnd).apply(null,arguments)},Ae=d._Max=function(){return(Ae=d._Max=d.asm.Max).apply(null,arguments)},_e=d._MaxPool=function(){return(_e=d._MaxPool=d.asm.MaxPool).apply(null,arguments)},ut=d._Maximum=function(){return(ut=d._Maximum=d.asm.Maximum).apply(null,arguments)},dt=d._Mean=function(){return(dt=d._Mean=d.asm.Mean).apply(null,arguments)},Ze=d._Min=function(){return(Ze=d._Min=d.asm.Min).apply(null,arguments)},je=d._Minimum=function(){return(je=d._Minimum=d.asm.Minimum).apply(null,arguments)},jt=d._MirrorPad=function(){return(jt=d._MirrorPad=d.asm.MirrorPad).apply(null,arguments)},er=d._Multiply=function(){return(er=d._Multiply=d.asm.Multiply).apply(null,arguments)},tr=d._Neg=function(){return(tr=d._Neg=d.asm.Neg).apply(null,arguments)},Jl=d._NonMaxSuppressionV3=function(){return(Jl=d._NonMaxSuppressionV3=d.asm.NonMaxSuppressionV3).apply(null,arguments)},ri=d._NonMaxSuppressionV4=function(){return(ri=d._NonMaxSuppressionV4=d.asm.NonMaxSuppressionV4).apply(null,arguments)},$2=d._NonMaxSuppressionV5=function(){return($2=d._NonMaxSuppressionV5=d.asm.NonMaxSuppressionV5).apply(null,arguments)},zn=d._NotEqual=function(){return(zn=d._NotEqual=d.asm.NotEqual).apply(null,arguments)},ga=d._OneHot=function(){return(ga=d._OneHot=d.asm.OneHot).apply(null,arguments)},Ch=d._PadV2=function(){return(Ch=d._PadV2=d.asm.PadV2).apply(null,arguments)},ME=d._Pow=function(){return(ME=d._Pow=d.asm.Pow).apply(null,arguments)},zE=d._Prelu=function(){return(zE=d._Prelu=d.asm.Prelu).apply(null,arguments)},LE=d._Prod=function(){return(LE=d._Prod=d.asm.Prod).apply(null,arguments)},BE=d._RealDiv=function(){return(BE=d._RealDiv=d.asm.RealDiv).apply(null,arguments)},WE=d._Relu=function(){return(WE=d._Relu=d.asm.Relu).apply(null,arguments)},VE=d._Relu6=function(){return(VE=d._Relu6=d.asm.Relu6).apply(null,arguments)},UE=d._ResizeBilinear=function(){return(UE=d._ResizeBilinear=d.asm.ResizeBilinear).apply(null,arguments)},GE=d._Reverse=function(){return(GE=d._Reverse=d.asm.Reverse).apply(null,arguments)},HE=d._RotateWithOffset=function(){return(HE=d._RotateWithOffset=d.asm.RotateWithOffset).apply(null,arguments)},jE=d._Round=function(){return(jE=d._Round=d.asm.Round).apply(null,arguments)},qE=d._Rsqrt=function(){return(qE=d._Rsqrt=d.asm.Rsqrt).apply(null,arguments)},XE=d._ScatterNd=function(){return(XE=d._ScatterNd=d.asm.ScatterNd).apply(null,arguments)},KE=d._SelectV2=function(){return(KE=d._SelectV2=d.asm.SelectV2).apply(null,arguments)},ZE=d._Sigmoid=function(){return(ZE=d._Sigmoid=d.asm.Sigmoid).apply(null,arguments)},YE=d._Sin=function(){return(YE=d._Sin=d.asm.Sin).apply(null,arguments)},JE=d._Softmax=function(){return(JE=d._Softmax=d.asm.Softmax).apply(null,arguments)},QE=d._SparseFillEmptyRows=function(){return(QE=d._SparseFillEmptyRows=d.asm.SparseFillEmptyRows).apply(null,arguments)},e9=d._SparseReshape=function(){return(e9=d._SparseReshape=d.asm.SparseReshape).apply(null,arguments)},t9=d._SparseSegmentReduction=function(){return(t9=d._SparseSegmentReduction=d.asm.SparseSegmentReduction).apply(null,arguments)},n9=d._Sqrt=function(){return(n9=d._Sqrt=d.asm.Sqrt).apply(null,arguments)},s9=d._Square=function(){return(s9=d._Square=d.asm.Square).apply(null,arguments)},r9=d._SquaredDifference=function(){return(r9=d._SquaredDifference=d.asm.SquaredDifference).apply(null,arguments)},a9=d._Step=function(){return(a9=d._Step=d.asm.Step).apply(null,arguments)},o9=d._StridedSlice=function(){return(o9=d._StridedSlice=d.asm.StridedSlice).apply(null,arguments)},i9=d._Sub=function(){return(i9=d._Sub=d.asm.Sub).apply(null,arguments)},l9=d._Sum=function(){return(l9=d._Sum=d.asm.Sum).apply(null,arguments)},u9=d._Tan=function(){return(u9=d._Tan=d.asm.Tan).apply(null,arguments)},c9=d._Tanh=function(){return(c9=d._Tanh=d.asm.Tanh).apply(null,arguments)},d9=d._Tile=function(){return(d9=d._Tile=d.asm.Tile).apply(null,arguments)},p9=d._TopK=function(){return(p9=d._TopK=d.asm.TopK).apply(null,arguments)},h9=d._Transform=function(){return(h9=d._Transform=d.asm.Transform).apply(null,arguments)},f9=d._Transpose=function(){return(f9=d._Transpose=d.asm.Transpose).apply(null,arguments)},m9=d.__FusedMatMul=function(){return(m9=d.__FusedMatMul=d.asm._FusedMatMul).apply(null,arguments)},D2=d._malloc=function(){return(D2=d._malloc=d.asm.malloc).apply(null,arguments)},d3=d._free=function(){return(d3=d._free=d.asm.free).apply(null,arguments)},g9=d._emscripten_tls_init=function(){return(g9=d._emscripten_tls_init=d.asm.emscripten_tls_init).apply(null,arguments)},p3=d.___errno_location=function(){return(p3=d.___errno_location=d.asm.__errno_location).apply(null,arguments)},Th=d._pthread_self=function(){return(Th=d._pthread_self=d.asm.pthread_self).apply(null,arguments)},h3=d._emscripten_main_thread_process_queued_calls=function(){return(h3=d._emscripten_main_thread_process_queued_calls=d.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},y9=d.__emscripten_thread_crashed=function(){return(y9=d.__emscripten_thread_crashed=d.asm._emscripten_thread_crashed).apply(null,arguments)},f3=d.__emscripten_thread_init=function(){return(f3=d.__emscripten_thread_init=d.asm._emscripten_thread_init).apply(null,arguments)},A9=d._emscripten_current_thread_process_queued_calls=function(){return(A9=d._emscripten_current_thread_process_queued_calls=d.asm.emscripten_current_thread_process_queued_calls).apply(null,arguments)},x9=d._emscripten_main_browser_thread_id=function(){return(x9=d._emscripten_main_browser_thread_id=d.asm.emscripten_main_browser_thread_id).apply(null,arguments)},b9=d._emscripten_sync_run_in_main_thread_2=function(){return(b9=d._emscripten_sync_run_in_main_thread_2=d.asm.emscripten_sync_run_in_main_thread_2).apply(null,arguments)},m3=d._emscripten_sync_run_in_main_thread_4=function(){return(m3=d._emscripten_sync_run_in_main_thread_4=d.asm.emscripten_sync_run_in_main_thread_4).apply(null,arguments)},g3=d._emscripten_run_in_main_runtime_thread_js=function(){return(g3=d._emscripten_run_in_main_runtime_thread_js=d.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},P2=d._emscripten_dispatch_to_thread_=function(){return(P2=d._emscripten_dispatch_to_thread_=d.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},F2=d.__emscripten_thread_free_data=function(){return(F2=d.__emscripten_thread_free_data=d.asm._emscripten_thread_free_data).apply(null,arguments)},v9=d.__emscripten_thread_exit=function(){return(v9=d.__emscripten_thread_exit=d.asm._emscripten_thread_exit).apply(null,arguments)},w9=d._memalign=function(){return(w9=d._memalign=d.asm.memalign).apply(null,arguments)},y3=d._emscripten_stack_set_limits=function(){return(y3=d._emscripten_stack_set_limits=d.asm.emscripten_stack_set_limits).apply(null,arguments)},O2=d.stackSave=function(){return(O2=d.stackSave=d.asm.stackSave).apply(null,arguments)},Nh=d.stackRestore=function(){return(Nh=d.stackRestore=d.asm.stackRestore).apply(null,arguments)},Ql=d.stackAlloc=function(){return(Ql=d.stackAlloc=d.asm.stackAlloc).apply(null,arguments)},k9=d.dynCall_iijjiiii=function(){return(k9=d.dynCall_iijjiiii=d.asm.dynCall_iijjiiii).apply(null,arguments)},S9=d.dynCall_jiji=function(){return(S9=d.dynCall_jiji=d.asm.dynCall_jiji).apply(null,arguments)},A3=d.__emscripten_allow_main_runtime_queued_calls=21456;d.cwrap=Dn,d.keepRuntimeAlive=ei,d.PThread=Oe,d.PThread=Oe,d.wasmMemory=$e,d.ExitStatus=ed;var Eh;function ed(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}Qs=function N(){Eh||M2(),Eh||(Qs=N)};function M2(N){if(N=N||y,ma>0)return;if(I){h(d),jc(),postMessage({cmd:"loaded"});return}if(On(),ma>0)return;function F(){Eh||(Eh=!0,d.calledRun=!0,!yt&&(jc(),h(d),d.onRuntimeInitialized&&d.onRuntimeInitialized(),cg()))}d.setStatus?(d.setStatus("Running..."),setTimeout(function(){setTimeout(function(){d.setStatus("")},1),F()},1)):F()}d.run=M2;function I9(N,F){if($n=N,!F&&I)throw fh(N),"unwind";ei()||ug(),C9(N)}function C9(N){$n=N,ei()||(Oe.terminateAllThreads(),d.onExit&&d.onExit(N),yt=!0),A(N,new ed(N))}if(d.preInit)for(typeof d.preInit=="function"&&(d.preInit=[d.preInit]);d.preInit.length>0;)d.preInit.pop()();M2();var Rh;m&&(Rh={uncaughtException:process.listeners("uncaughtException").filter(function(N){return!m.uncaughtException.indexOf(N)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(N){return!m.unhandledRejection.indexOf(N)>-1})});var _h;if(typeof WasmBackendModule!="undefined")_h=WasmBackendModule;else if(typeof r!="undefined")_h=r;else throw new Error("Could not find wasm module in post.js");if(Rh){var T9=_h._dispose;_h._dispose=function(){T9(),Rh.uncaughtException.forEach(function(N){process.removeListener("uncaughtException",N)}),Rh.unhandledRejection.forEach(function(N){process.removeListener("unhandledRejection",N)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),nR=on({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=(()=>{var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(q,se){o=q,i=se});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},a),c=[],p="./this.program",d=(q,se)=>{throw se},h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function y(q){return a.locateFile?a.locateFile(q,g):g+q}var x,A,b,w;function S(q){if(q instanceof Jc)return;_("exiting due to exception: "+q)}var I,E,R;m?(f?g=sf().dirname(g)+"/":g=__dirname+"/",R=()=>{E||(I=e1(),E=sf())},x=function(se,Ae){return R(),se=E.normalize(se),I.readFileSync(se,Ae?void 0:"utf8")},b=q=>{var se=x(q,!0);return se.buffer||(se=new Uint8Array(se)),se},A=(q,se,Ae)=>{R(),q=E.normalize(q),I.readFile(q,function(_e,ut){_e?Ae(_e):se(ut.buffer)})},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(q){if(!(q instanceof Jc))throw q}),process.on("unhandledRejection",function(q){throw q}),d=(q,se)=>{if(Hc())throw process.exitCode=q,se;S(se),process.exit(q)},a.inspect=function(){return"[Emscripten Module object]"}):(h||f)&&(f?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),s&&(g=s),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",x=q=>{var se=new XMLHttpRequest;return se.open("GET",q,!1),se.send(null),se.responseText},f&&(b=q=>{var se=new XMLHttpRequest;return se.open("GET",q,!1),se.responseType="arraybuffer",se.send(null),new Uint8Array(se.response)}),A=(q,se,Ae)=>{var _e=new XMLHttpRequest;_e.open("GET",q,!0),_e.responseType="arraybuffer",_e.onload=()=>{if(_e.status==200||_e.status==0&&_e.response){se(_e.response);return}Ae()},_e.onerror=Ae,_e.send(null)},w=q=>document.title=q);var P=a.print||console.log.bind(console),_=a.printErr||console.warn.bind(console);Object.assign(a,u),u=null,a.arguments&&(c=a.arguments),a.thisProgram&&(p=a.thisProgram),a.quit&&(d=a.quit);var D=4;function T(q){T.shown||(T.shown={}),T.shown[q]||(T.shown[q]=1,_(q))}function O(q,se){if(typeof WebAssembly.Function=="function"){for(var Ae={i:"i32",j:"i64",f:"f32",d:"f64"},_e={parameters:[],results:se[0]=="v"?[]:[Ae[se[0]]]},ut=1;ut<se.length;++ut)_e.parameters.push(Ae[se[ut]]);return new WebAssembly.Function(_e,q)}var dt=[1,0,1,96],Ze=se.slice(0,1),je=se.slice(1),jt={i:127,j:126,f:125,d:124};dt.push(je.length);for(var ut=0;ut<je.length;++ut)dt.push(jt[je[ut]]);Ze=="v"?dt.push(0):dt=dt.concat([1,jt[Ze]]),dt[1]=dt.length-2;var er=new Uint8Array([0,97,115,109,1,0,0,0].concat(dt,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),tr=new WebAssembly.Module(er),Jl=new WebAssembly.Instance(tr,{e:{f:q}}),ri=Jl.exports.f;return ri}var U=[],K;function z(){if(U.length)return U.pop();try{ha.grow(1)}catch(q){throw q instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":q}return ha.length-1}function Z(q,se){for(var Ae=q;Ae<q+se;Ae++){var _e=Xc(Ae);_e&&K.set(_e,Ae)}}var W=0,ee=q=>{W=q},Q;a.wasmBinary&&(Q=a.wasmBinary);var ae=a.noExitRuntime||!0;typeof WebAssembly!="object"&&Qo("no native wasm support detected");var Y,re=!1,ie;function me(q,se){q||Qo(se)}function be(q){var se=a["_"+q];return se}function Ee(q,se,Ae,_e,ut){var dt={string:function(zn){var ga=0;if(zn!=null&&zn!==0){var Ch=(zn.length<<2)+1;ga=Yc(Ch),ht(zn,ga,Ch)}return ga},array:function(zn){var ga=Yc(zn.length);return yt(zn,ga),ga}};function Ze(zn){return se==="string"?it(zn):se==="boolean"?Boolean(zn):zn}var je=be(q),jt=[],er=0;if(_e)for(var tr=0;tr<_e.length;tr++){var Jl=dt[Ae[tr]];Jl?(er===0&&(er=Sh()),jt[tr]=Jl(_e[tr])):jt[tr]=_e[tr]}var ri=je.apply(null,jt);function $2(zn){return er!==0&&Ih(er),Ze(zn)}return ri=$2(ri),ri}function Re(q,se,Ae,_e){Ae=Ae||[];var ut=Ae.every(function(Ze){return Ze==="number"}),dt=se!=="string";return dt&&ut&&!_e?be(q):function(){return Ee(q,se,Ae,arguments,_e)}}var ze=1,Be=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function tt(q,se,Ae){for(var _e=se+Ae,ut=se;q[ut]&&!(ut>=_e);)++ut;if(ut-se>16&&q.subarray&&Be)return Be.decode(q.subarray(se,ut));for(var dt="";se<ut;){var Ze=q[se++];if(!(Ze&128)){dt+=String.fromCharCode(Ze);continue}var je=q[se++]&63;if((Ze&224)==192){dt+=String.fromCharCode((Ze&31)<<6|je);continue}var jt=q[se++]&63;if((Ze&240)==224?Ze=(Ze&15)<<12|je<<6|jt:Ze=(Ze&7)<<18|je<<12|jt<<6|q[se++]&63,Ze<65536)dt+=String.fromCharCode(Ze);else{var er=Ze-65536;dt+=String.fromCharCode(55296|er>>10,56320|er&1023)}}return dt}function it(q,se){return q?tt(Dn,q,se):""}function lt(q,se,Ae,_e){if(!(_e>0))return 0;for(var ut=Ae,dt=Ae+_e-1,Ze=0;Ze<q.length;++Ze){var je=q.charCodeAt(Ze);if(je>=55296&&je<=57343){var jt=q.charCodeAt(++Ze);je=65536+((je&1023)<<10)|jt&1023}if(je<=127){if(Ae>=dt)break;se[Ae++]=je}else if(je<=2047){if(Ae+1>=dt)break;se[Ae++]=192|je>>6,se[Ae++]=128|je&63}else if(je<=65535){if(Ae+2>=dt)break;se[Ae++]=224|je>>12,se[Ae++]=128|je>>6&63,se[Ae++]=128|je&63}else{if(Ae+3>=dt)break;se[Ae++]=240|je>>18,se[Ae++]=128|je>>12&63,se[Ae++]=128|je>>6&63,se[Ae++]=128|je&63}}return se[Ae]=0,Ae-ut}function ht(q,se,Ae){return lt(q,Dn,se,Ae)}function $e(q){for(var se=0,Ae=0;Ae<q.length;++Ae){var _e=q.charCodeAt(Ae);_e>=55296&&_e<=57343&&(_e=65536+((_e&1023)<<10)|q.charCodeAt(++Ae)&1023),_e<=127?++se:_e<=2047?se+=2:_e<=65535?se+=3:se+=4}return se}var vt=typeof TextDecoder!="undefined"?new TextDecoder("utf-16le"):void 0;function yt(q,se){Qt.set(q,se)}function $n(q,se,Ae){for(var _e=0;_e<q.length;++_e)Qt[se++>>0]=q.charCodeAt(_e);Ae||(Qt[se>>0]=0)}function Ht(q,se){return q%se>0&&(q+=se-q%se),q}var is,Qt,Dn,ls,us,wn,ks,Pn,Lr;function Br(q){is=q,a.HEAP8=Qt=new Int8Array(q),a.HEAP16=ls=new Int16Array(q),a.HEAP32=wn=new Int32Array(q),a.HEAPU8=Dn=new Uint8Array(q),a.HEAPU16=us=new Uint16Array(q),a.HEAPU32=ks=new Uint32Array(q),a.HEAPF32=Pn=new Float32Array(q),a.HEAPF64=Lr=new Float64Array(q)}var Wl=a.INITIAL_MEMORY||16777216,ha,Wr=[],Gc=[],Vl=[],Fn=!1,Jp=!1,Qp=0;function Hc(){return ae||Qp>0}function eh(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)sh(a.preRun.shift());qc(Wr)}function th(){Fn=!0,qc(Gc)}function Q5(){Jp=!0}function nh(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)rh(a.postRun.shift());qc(Vl)}function sh(q){Wr.unshift(q)}function Js(q){Gc.unshift(q)}function rh(q){Vl.unshift(q)}var Ss=0,Ul=null,fa=null;function ig(q){Ss++,a.monitorRunDependencies&&a.monitorRunDependencies(Ss)}function ah(q){if(Ss--,a.monitorRunDependencies&&a.monitorRunDependencies(Ss),Ss==0&&(Ul!==null&&(clearInterval(Ul),Ul=null),fa)){var se=fa;fa=null,se()}}a.preloadedImages={},a.preloadedAudios={};function Qo(q){a.onAbort&&a.onAbort(q),q="Aborted("+q+")",_(q),re=!0,ie=1,q+=". Build with -s ASSERTIONS=1 for more info.";var se=new WebAssembly.RuntimeError(q);throw i(se),se}var lg="data:application/octet-stream;base64,";function oh(q){return q.startsWith(lg)}function ei(q){return q.startsWith("file://")}var On;On="tfjs-backend-wasm.wasm",oh(On)||(On=y(On));function jc(q){try{if(q==On&&Q)return new Uint8Array(Q);if(b)return b(q);throw"both async and sync fetching of the wasm failed"}catch(se){Qo(se)}}function ug(){if(!Q&&(h||f)){if(typeof fetch=="function"&&!ei(On))return fetch(On,{credentials:"same-origin"}).then(function(q){if(!q.ok)throw"failed to load wasm binary file at '"+On+"'";return q.arrayBuffer()}).catch(function(){return jc(On)});if(A)return new Promise(function(q,se){A(On,function(Ae){q(new Uint8Array(Ae))},se)})}return Promise.resolve().then(function(){return jc(On)})}function cg(){var q={env:jl,wasi_snapshot_preview1:jl};function se(Ze,je){var jt=Ze.exports;a.asm=jt,Y=a.asm.memory,Br(Y.buffer),ha=a.asm.__indirect_function_table,Js(a.asm.__wasm_call_ctors),ah("wasm-instantiate")}ig("wasm-instantiate");function Ae(Ze){se(Ze.instance)}function _e(Ze){return ug().then(function(je){return WebAssembly.instantiate(je,q)}).then(function(je){return je}).then(Ze,function(je){_("failed to asynchronously prepare wasm: "+je),Qo(je)})}function ut(){return!Q&&typeof WebAssembly.instantiateStreaming=="function"&&!oh(On)&&!ei(On)&&typeof fetch=="function"?fetch(On,{credentials:"same-origin"}).then(function(Ze){var je=WebAssembly.instantiateStreaming(Ze,q);return je.then(Ae,function(jt){return _("wasm streaming compile failed: "+jt),_("falling back to ArrayBuffer instantiation"),_e(Ae)})}):_e(Ae)}if(a.instantiateWasm)try{var dt=a.instantiateWasm(q,se);return dt}catch(Ze){return _("Module.instantiateWasm callback failed with error: "+Ze),!1}return ut().catch(i),{}}var e3,t3;function qc(q){for(;q.length>0;){var se=q.shift();if(typeof se=="function"){se(a);continue}var Ae=se.func;typeof Ae=="number"?se.arg===void 0?Xc(Ae)():Xc(Ae)(se.arg):Ae(se.arg===void 0?null:se.arg)}}function ma(q){return q}function ih(q){var se=/\b_Z[\w\d_]+/g;return q.replace(se,function(Ae){var _e=Ae;return Ae===_e?Ae:_e+" ["+Ae+"]"})}var Qs=[];function Xc(q){var se=Qs[q];return se||(q>=Qs.length&&(Qs.length=q+1),Qs[q]=se=ha.get(q)),se}function n3(){var q=new Error;if(!q.stack){try{throw new Error}catch(se){q=se}if(!q.stack)return"(no stack trace available)"}return q.stack.toString()}function Gl(q,se){ha.set(q,se),Qs[q]=se}function dg(){Qo("")}function lh(q,se,Ae){Dn.copyWithin(q,se,se+Ae)}function uh(){return 2147483648}function Mn(q){try{return Y.grow(q-is.byteLength+65535>>>16),Br(Y.buffer),1}catch(se){}}function ch(q){var se=Dn.length;q=q>>>0;var Ae=uh();if(q>Ae)return!1;for(var _e=1;_e<=4;_e*=2){var ut=se*(1+.2/_e);ut=Math.min(ut,q+100663296);var dt=Math.min(Ae,Ht(Math.max(q,ut),65536)),Ze=Mn(dt);if(Ze)return!0}return!1}var Hl={mappings:{},buffers:[null,[],[]],printChar:function(q,se){var Ae=Hl.buffers[q];se===0||se===10?((q===1?P:_)(tt(Ae,0)),Ae.length=0):Ae.push(se)},varargs:void 0,get:function(){Hl.varargs+=4;var q=wn[Hl.varargs-4>>2];return q},getStr:function(q){var se=it(q);return se},get64:function(q,se){return q}};function pg(q){return 0}function s3(q,se,Ae,_e,ut){}function r3(q,se,Ae,_e){for(var ut=0,dt=0;dt<Ae;dt++){var Ze=wn[se>>2],je=wn[se+4>>2];se+=8;for(var jt=0;jt<je;jt++)Hl.printChar(q,Dn[Ze+jt]);ut+=je}return wn[_e>>2]=ut,0}function hg(q){ee(q)}var dh=!1,jl={abort:dg,emscripten_memcpy_big:lh,emscripten_resize_heap:ch,fd_close:pg,fd_seek:s3,fd_write:r3,setTempRet0:hg},OE=cg(),a3=a.___wasm_call_ctors=function(){return(a3=a.___wasm_call_ctors=a.asm.__wasm_call_ctors).apply(null,arguments)},fg=a._init=function(){return(fg=a._init=a.asm.init).apply(null,arguments)},mg=a._init_with_threads_count=function(){return(mg=a._init_with_threads_count=a.asm.init_with_threads_count).apply(null,arguments)},ph=a._get_threads_count=function(){return(ph=a._get_threads_count=a.asm.get_threads_count).apply(null,arguments)},hh=a._register_tensor=function(){return(hh=a._register_tensor=a.asm.register_tensor).apply(null,arguments)},gg=a._dispose_data=function(){return(gg=a._dispose_data=a.asm.dispose_data).apply(null,arguments)},Oe=a._dispose=function(){return(Oe=a._dispose=a.asm.dispose).apply(null,arguments)},yg=a._Abs=function(){return(yg=a._Abs=a.asm.Abs).apply(null,arguments)},fh=a._Add=function(){return(fh=a._Add=a.asm.Add).apply(null,arguments)},ti=a._AddN=function(){return(ti=a._AddN=a.asm.AddN).apply(null,arguments)},ql=a._All=function(){return(ql=a._All=a.asm.All).apply(null,arguments)},Ag=a._Any=function(){return(Ag=a._Any=a.asm.Any).apply(null,arguments)},o3=a._ArgMax=function(){return(o3=a._ArgMax=a.asm.ArgMax).apply(null,arguments)},xg=a._AvgPool=function(){return(xg=a._AvgPool=a.asm.AvgPool).apply(null,arguments)},i3=a._BatchMatMul=function(){return(i3=a._BatchMatMul=a.asm.BatchMatMul).apply(null,arguments)},ni=a._Ceil=function(){return(ni=a._Ceil=a.asm.Ceil).apply(null,arguments)},bg=a._ClipByValue=function(){return(bg=a._ClipByValue=a.asm.ClipByValue).apply(null,arguments)},vg=a._Conv2D=function(){return(vg=a._Conv2D=a.asm.Conv2D).apply(null,arguments)},wg=a._Conv2DBackpropInput=function(){return(wg=a._Conv2DBackpropInput=a.asm.Conv2DBackpropInput).apply(null,arguments)},kg=a._Cos=function(){return(kg=a._Cos=a.asm.Cos).apply(null,arguments)},Sg=a._Cosh=function(){return(Sg=a._Cosh=a.asm.Cosh).apply(null,arguments)},Ig=a._CropAndResize=function(){return(Ig=a._CropAndResize=a.asm.CropAndResize).apply(null,arguments)},mh=a._Cumprod=function(){return(mh=a._Cumprod=a.asm.Cumprod).apply(null,arguments)},Cg=a._Cumsum=function(){return(Cg=a._Cumsum=a.asm.Cumsum).apply(null,arguments)},Tg=a._DepthToSpace=function(){return(Tg=a._DepthToSpace=a.asm.DepthToSpace).apply(null,arguments)},Ng=a._DepthwiseConv2dNative=function(){return(Ng=a._DepthwiseConv2dNative=a.asm.DepthwiseConv2dNative).apply(null,arguments)},Eg=a._Elu=function(){return(Eg=a._Elu=a.asm.Elu).apply(null,arguments)},Rg=a._Equal=function(){return(Rg=a._Equal=a.asm.Equal).apply(null,arguments)},gh=a._Exp=function(){return(gh=a._Exp=a.asm.Exp).apply(null,arguments)},_g=a._FlipLeftRight=function(){return(_g=a._FlipLeftRight=a.asm.FlipLeftRight).apply(null,arguments)},$g=a._Floor=function(){return($g=a._Floor=a.asm.Floor).apply(null,arguments)},si=a._FloorDiv=function(){return(si=a._FloorDiv=a.asm.FloorDiv).apply(null,arguments)},Kc=a._FusedBatchNorm=function(){return(Kc=a._FusedBatchNorm=a.asm.FusedBatchNorm).apply(null,arguments)},Dg=a._FusedConv2D=function(){return(Dg=a._FusedConv2D=a.asm.FusedConv2D).apply(null,arguments)},Pg=a._FusedDepthwiseConv2D=function(){return(Pg=a._FusedDepthwiseConv2D=a.asm.FusedDepthwiseConv2D).apply(null,arguments)},Fg=a._Gather=function(){return(Fg=a._Gather=a.asm.Gather).apply(null,arguments)},Xe=a._GatherNd=function(){return(Xe=a._GatherNd=a.asm.GatherNd).apply(null,arguments)},Og=a._Greater=function(){return(Og=a._Greater=a.asm.Greater).apply(null,arguments)},Mg=a._GreaterEqual=function(){return(Mg=a._GreaterEqual=a.asm.GreaterEqual).apply(null,arguments)},zg=a._LeakyRelu=function(){return(zg=a._LeakyRelu=a.asm.LeakyRelu).apply(null,arguments)},Lg=a._Less=function(){return(Lg=a._Less=a.asm.Less).apply(null,arguments)},Bg=a._LessEqual=function(){return(Bg=a._LessEqual=a.asm.LessEqual).apply(null,arguments)},Wg=a._Log=function(){return(Wg=a._Log=a.asm.Log).apply(null,arguments)},Zc=a._LogicalAnd=function(){return(Zc=a._LogicalAnd=a.asm.LogicalAnd).apply(null,arguments)},yh=a._Max=function(){return(yh=a._Max=a.asm.Max).apply(null,arguments)},Ah=a._MaxPool=function(){return(Ah=a._MaxPool=a.asm.MaxPool).apply(null,arguments)},Vg=a._Maximum=function(){return(Vg=a._Maximum=a.asm.Maximum).apply(null,arguments)},Ug=a._Mean=function(){return(Ug=a._Mean=a.asm.Mean).apply(null,arguments)},Gg=a._Min=function(){return(Gg=a._Min=a.asm.Min).apply(null,arguments)},Hg=a._Minimum=function(){return(Hg=a._Minimum=a.asm.Minimum).apply(null,arguments)},jg=a._MirrorPad=function(){return(jg=a._MirrorPad=a.asm.MirrorPad).apply(null,arguments)},qg=a._Multiply=function(){return(qg=a._Multiply=a.asm.Multiply).apply(null,arguments)},$t=a._Neg=function(){return($t=a._Neg=a.asm.Neg).apply(null,arguments)},Xg=a._NonMaxSuppressionV3=function(){return(Xg=a._NonMaxSuppressionV3=a.asm.NonMaxSuppressionV3).apply(null,arguments)},Kg=a._NonMaxSuppressionV4=function(){return(Kg=a._NonMaxSuppressionV4=a.asm.NonMaxSuppressionV4).apply(null,arguments)},Zg=a._NonMaxSuppressionV5=function(){return(Zg=a._NonMaxSuppressionV5=a.asm.NonMaxSuppressionV5).apply(null,arguments)},Xl=a._NotEqual=function(){return(Xl=a._NotEqual=a.asm.NotEqual).apply(null,arguments)},xh=a._OneHot=function(){return(xh=a._OneHot=a.asm.OneHot).apply(null,arguments)},bh=a._PadV2=function(){return(bh=a._PadV2=a.asm.PadV2).apply(null,arguments)},vh=a._Pow=function(){return(vh=a._Pow=a.asm.Pow).apply(null,arguments)},Yg=a._Prelu=function(){return(Yg=a._Prelu=a.asm.Prelu).apply(null,arguments)},wh=a._Prod=function(){return(wh=a._Prod=a.asm.Prod).apply(null,arguments)},Jg=a._RealDiv=function(){return(Jg=a._RealDiv=a.asm.RealDiv).apply(null,arguments)},l3=a._Relu=function(){return(l3=a._Relu=a.asm.Relu).apply(null,arguments)},kh=a._Relu6=function(){return(kh=a._Relu6=a.asm.Relu6).apply(null,arguments)},u3=a._ResizeBilinear=function(){return(u3=a._ResizeBilinear=a.asm.ResizeBilinear).apply(null,arguments)},Qg=a._Reverse=function(){return(Qg=a._Reverse=a.asm.Reverse).apply(null,arguments)},e2=a._RotateWithOffset=function(){return(e2=a._RotateWithOffset=a.asm.RotateWithOffset).apply(null,arguments)},t2=a._Round=function(){return(t2=a._Round=a.asm.Round).apply(null,arguments)},n2=a._Rsqrt=function(){return(n2=a._Rsqrt=a.asm.Rsqrt).apply(null,arguments)},s2=a._ScatterNd=function(){return(s2=a._ScatterNd=a.asm.ScatterNd).apply(null,arguments)},r2=a._SelectV2=function(){return(r2=a._SelectV2=a.asm.SelectV2).apply(null,arguments)},a2=a._Sigmoid=function(){return(a2=a._Sigmoid=a.asm.Sigmoid).apply(null,arguments)},o2=a._Sin=function(){return(o2=a._Sin=a.asm.Sin).apply(null,arguments)},i2=a._Softmax=function(){return(i2=a._Softmax=a.asm.Softmax).apply(null,arguments)},l2=a._SparseFillEmptyRows=function(){return(l2=a._SparseFillEmptyRows=a.asm.SparseFillEmptyRows).apply(null,arguments)},u2=a._SparseReshape=function(){return(u2=a._SparseReshape=a.asm.SparseReshape).apply(null,arguments)},c2=a._SparseSegmentReduction=function(){return(c2=a._SparseSegmentReduction=a.asm.SparseSegmentReduction).apply(null,arguments)},d2=a._Sqrt=function(){return(d2=a._Sqrt=a.asm.Sqrt).apply(null,arguments)},p2=a._Square=function(){return(p2=a._Square=a.asm.Square).apply(null,arguments)},h2=a._SquaredDifference=function(){return(h2=a._SquaredDifference=a.asm.SquaredDifference).apply(null,arguments)},f2=a._Step=function(){return(f2=a._Step=a.asm.Step).apply(null,arguments)},m2=a._StridedSlice=function(){return(m2=a._StridedSlice=a.asm.StridedSlice).apply(null,arguments)},g2=a._Sub=function(){return(g2=a._Sub=a.asm.Sub).apply(null,arguments)},y2=a._Sum=function(){return(y2=a._Sum=a.asm.Sum).apply(null,arguments)},A2=a._Tan=function(){return(A2=a._Tan=a.asm.Tan).apply(null,arguments)},x2=a._Tanh=function(){return(x2=a._Tanh=a.asm.Tanh).apply(null,arguments)},b2=a._Tile=function(){return(b2=a._Tile=a.asm.Tile).apply(null,arguments)},v2=a._TopK=function(){return(v2=a._TopK=a.asm.TopK).apply(null,arguments)},w2=a._Transform=function(){return(w2=a._Transform=a.asm.Transform).apply(null,arguments)},k2=a._Transpose=function(){return(k2=a._Transpose=a.asm.Transpose).apply(null,arguments)},S2=a.__FusedMatMul=function(){return(S2=a.__FusedMatMul=a.asm._FusedMatMul).apply(null,arguments)},I2=a._malloc=function(){return(I2=a._malloc=a.asm.malloc).apply(null,arguments)},C2=a._free=function(){return(C2=a._free=a.asm.free).apply(null,arguments)},T2=a.___errno_location=function(){return(T2=a.___errno_location=a.asm.__errno_location).apply(null,arguments)},N2=a._emscripten_main_thread_process_queued_calls=function(){return(N2=a._emscripten_main_thread_process_queued_calls=a.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},Sh=a.stackSave=function(){return(Sh=a.stackSave=a.asm.stackSave).apply(null,arguments)},Ih=a.stackRestore=function(){return(Ih=a.stackRestore=a.asm.stackRestore).apply(null,arguments)},Yc=a.stackAlloc=function(){return(Yc=a.stackAlloc=a.asm.stackAlloc).apply(null,arguments)},E2=a.dynCall_iijjiiii=function(){return(E2=a.dynCall_iijjiiii=a.asm.dynCall_iijjiiii).apply(null,arguments)},R2=a.dynCall_jiji=function(){return(R2=a.dynCall_jiji=a.asm.dynCall_jiji).apply(null,arguments)};a.cwrap=Re;var Kl;function Jc(q){this.name="ExitStatus",this.message="Program terminated with exit("+q+")",this.status=q}fa=function q(){Kl||Qc(),Kl||(fa=q)};function Qc(q){if(q=q||c,Ss>0||(eh(),Ss>0))return;function se(){Kl||(Kl=!0,a.calledRun=!0,!re&&(th(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),nh()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),se()},1)):se()}a.run=Qc;function c3(q){ie=q,Hc()||(a.onExit&&a.onExit(q),re=!0),d(q,new Jc(q))}if(a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();Qc();var Zl;l&&(Zl={uncaughtException:process.listeners("uncaughtException").filter(function(q){return!l.uncaughtException.indexOf(q)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(q){return!l.unhandledRejection.indexOf(q)>-1})});var Yl;if(typeof r!="undefined")Yl=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")Yl=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(Zl){var _2=Yl._dispose;Yl._dispose=function(){_2(),Zl.uncaughtException.forEach(function(q){process.removeListener("uncaughtException",q)}),Zl.unhandledRejection.forEach(function(q){process.removeListener("unhandledRejection",q)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),sR=1e-7,rR=1e-4,zd=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Tu=class{refCount(e){return Is("refCount")}incRef(e){return Is("incRef")}timerAvailable(){return!0}time(e){return Is("time")}read(e){return Is("read")}readSync(e){return Is("readSync")}readToGPU(e,t){return Is("readToGPU")}numDataIds(){return Is("numDataIds")}disposeData(e,t){return Is("disposeData")}write(e,t,n){return Is("write")}move(e,t,n,s,r){return Is("move")}memory(){return Is("memory")}floatPrecision(){return Is("floatPrecision")}epsilon(){return this.floatPrecision()===32?sR:rR}dispose(){return Is("dispose")}};function Is(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function lw(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,rf(e,t,n)}function aR(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,rf(e,n,s),rf(t,n,s)}function Sd(e,t,n){return Math.max(e,Math.min(t,n))}function oR(e){return e%2===0?e:e+1}function rf(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function iR(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function lR(e,t){let n=Math.random();return t*n+(1-n)*e}function uR(e,t){let n=0;for(let s=0;s<e.length;s++){let r=Number(e[s])-Number(t[s]);n+=r*r}return n}function M(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Gn(e,t,n=""){M(Ga(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function Di(e){M(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function vi(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||Sn(e)&&!n)for(let s=0;s<e.length;++s)vi(e[s],t,n);else t.push(e);return t}function Ct(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function cR(e){return e.length===0}function Ga(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function fu(e){return e%1===0}function dR(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function pR(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function hR(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return lw(t),t}function xd(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function fR(e,t=s=>0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function mR(e,t){let n=1,s=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function Vs(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),M(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),M(e.every(s=>fu(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function uw(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:Vs(t,e).sort(),o=0;for(let i=0;i<e.length;++i){if(a!=null){if(a[o]===i&&e[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${e[i]}' is not 1`);(a[o]==null||a[o]>i)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function cw(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function dw(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function pw(e,t){for(let n=0;n<e.length;n++){let s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function hw(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function gR(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function Sn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function Q2(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function fw(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function ka(e){return typeof e=="string"||e instanceof String}function mw(e){return typeof e=="boolean"}function gw(e){return typeof e=="number"}function Ff(e){return Array.isArray(e)?Ff(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":gw(e)?"float32":ka(e)?"string":mw(e)?"bool":"float32"}function Na(e){return!!(e&&e.constructor&&e.call&&e.apply)}function af(e,t){for(let n=t;n<e;++n)if(e%n===0)return n;return e}function Nu(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function yw(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;o<a;o++)r[o]=n[e+o]}else{let a=t[0],o=t.slice(1),i=o.reduce((l,u)=>l*u)*(s?2:1);for(let l=0;l<a;l++)r[l]=yw(e+l*i,o,n,s)}return r}function uu(e,t,n=!1){if(e.length===0)return t[0];let s=e.reduce((r,a)=>r*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return yw(0,e,t,n)}function t1(e,t){let n=Of(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function Of(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function yR(e,t){let n=e.reduce((s,r)=>s*r,1);if(t==null||t==="float32")return uu(e,new Float32Array(n));if(t==="int32")return uu(e,new Int32Array(n));if(t==="bool")return uu(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function n1(e){e.forEach(t=>{M(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function AR(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r<e.length-1;++r)s+=n[r]*e[r];return s}function xR(e,t,n){if(t===0)return[];if(t===1)return[e];let s=new Array(t);for(let r=0;r<s.length-1;++r)s[r]=Math.floor(e/n[r]),e-=s[r]*n[r];return s[s.length-1]=e,s}function s1(e){return e&&e.then&&typeof e.then=="function"}var w3="tfjsflags",Aw=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=bR,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(J().getBool("IS_TEST")||J().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let s=this.urlFlags[e];J().getBool("IS_TEST")||J().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(s1(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);w3 in e&&e[w3].split(",").forEach(n=>{let[s,r]=n.split(":");this.urlFlags[s]=wR(s,r)})}};function bR(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(vR(t,s[0],s[1]),s.join("="))),t}function vR(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function wR(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function J(){return gr}var gr=null;function kR(e){gr=e}var L2;function xw(){if(L2==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");L2=e}return L2}function SR(){let e=xw();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function r1(e,t){let n=SR();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var Pi="Abs",Eu="Acos",Ru="Acosh",Kr="Add",Ha="AddN",_u="All",$u="Any",ja="ArgMax",Du="ArgMin",Pu="Asin",Fu="Asinh",Ou="Atan",Mu="Atanh",zu="Atan2",qa="AvgPool",Mf="AvgPoolGrad",Ld="AvgPool3D",zf="AvgPool3DGrad",Xa="BatchMatMul",Fi="BatchToSpaceND",Lf="Bincount",bw="BroadcastTo",Bf="BroadcastArgs",Ka="Cast",Za="Ceil",Zr="ClipByValue",Bd="Complex",Wd="ComplexAbs",Oi="Concat",Ya="Conv2D",Wf="Conv2DBackpropFilter",Ja="Conv2DBackpropInput",Vd="Conv3D",Vf="Conv3DBackpropFilterV2",Uf="Conv3DBackpropInputV2",Qa="Cos",eo="Cosh",Lu="Cumprod",Mi="Cumsum",zi="CropAndResize",Gf="DenseBincount",Li="DepthToSpace",to="DepthwiseConv2dNative",Hf="DepthwiseConv2dNativeBackpropFilter",jf="DepthwiseConv2dNativeBackpropInput",qf="Diag",Ud="Dilation2D",of="Dilation2DBackpropInput",lf="Dilation2DBackpropFilter",no="RealDiv",Gd="Einsum",so="Elu",Xf="EluGrad",Bu="Erf",Bi="Equal",ro="Exp",Wi="ExpandDims",Vi="Expm1",Kf="FFT",Wu="Fill",Ui="FlipLeftRight",ao="Floor",oo="FloorDiv",io="FusedBatchNorm",Gi="GatherV2",Hi="GatherNd",ji="Greater",lo="GreaterEqual",uo="Identity",Zf="IFFT",Hd="Imag",Vu="IsFinite",Uu="IsInf",Gu="IsNan",co="LeakyRelu",qi="Less",Xi="LessEqual",Yf="LinSpace",po="Log",Hu="Log1p",Ki="LogicalAnd",ju="LogicalNot",jd="LogicalOr",vw="LogSoftmax",qd="LRN",Jf="LRNGrad",ho="Max",fo="Maximum",mo="MaxPool",Qf="MaxPoolGrad",Xd="MaxPool3D",em="MaxPool3DGrad",tm="MaxPoolWithArgmax",go="Mean",yo="Min",Ao="Minimum",xo="MirrorPad",qu="Mod",nm="Multinomial",bo="Multiply",Zi="Neg",Yi="NotEqual",Ji="NonMaxSuppressionV3",Xu="NonMaxSuppressionV4",Qi="NonMaxSuppressionV5",el="OnesLike",tl="OneHot",nl="Pack",vo="PadV2",IR="Pool",wo="Pow",ko="Prelu",sl="Prod",Ku="Range",Kd="Real",Zu="Reciprocal",So="Relu",rl="Reshape",Yu="ResizeNearestNeighbor",sm="ResizeNearestNeighborGrad",Io="ResizeBilinear",rm="ResizeBilinearGrad",Co="Relu6",al="Reverse",ol="Round",To="Rsqrt",il="ScatterNd",ll="Select",Ju="Selu",ul="Slice",No="Sin",cl="Sinh",Qu="Sign",Eo="Sigmoid",ec="Softplus",Ro="Sqrt",_o="Sum",dl="SpaceToBatchND",pl="SplitV",$o="Softmax",Zd="SparseFillEmptyRows",tc="SparseReshape",Yd="SparseSegmentMean",Jd="SparseSegmentSum",Qd="SparseToDense",Do="SquaredDifference",nc="Square",hl="StridedSlice",ep="StringNGrams",am="StringSplit",om="StringToHashBucketFast",Po="Sub",fl="Tan",Fo="Tanh",Yr="Tile",ml="TopK",gl="Transform",Oo="Transpose",im="Unique",yl="Unpack",tp="UnsortedSegmentSum",Al="ZerosLike",Mo="Step",Id="FromPixels",xl="RotateWithOffset",Ea="_FusedMatMul",Ra="FusedConv2D",_a="FusedDepthwiseConv2D";function wa(...e){J().getBool("IS_TEST")||J().getBool("PROD")||console.warn(...e)}function CR(...e){J().getBool("IS_TEST")||J().getBool("PROD")||console.log(...e)}var mu=r1("kernelRegistry",()=>new Map),Cd=r1("gradRegistry",()=>new Map);function uf(e,t){let n=a1(e,t);return mu.get(n)}function ey(e){return Cd.get(e)}function Nr(e){let t=mu.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function Us(e){let{kernelName:t,backendName:n}=e,s=a1(t,n);mu.has(s)&&wa(`The kernel '${t}' for backend '${n}' is already registered`),mu.set(s,e)}function ww(e){let{kernelName:t}=e;Cd.has(t)&&J().getBool("DEBUG")&&wa(`Overriding the gradient for '${t}'`),Cd.set(t,e)}function TR(e,t){let n=a1(e,t);if(!mu.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);mu.delete(n)}function NR(e){if(!Cd.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Cd.delete(e)}function ER(e,t){Nr(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});Us(r)})}function a1(e,t){return`${t}_${e}`}var v={};Le(v,{arraysEqual:()=>Ga,assert:()=>M,assertNonNegativeIntegerDimensions:()=>n1,assertNonNull:()=>Di,assertShapesMatch:()=>Gn,bytesFromStringArray:()=>fw,bytesPerElement:()=>Q2,checkConversionForErrors:()=>pw,clamp:()=>Sd,computeStrides:()=>Nu,createScalarValue:()=>FR,createShuffledIndices:()=>hR,decodeString:()=>cf,distSquared:()=>uR,encodeString:()=>sp,fetch:()=>MR,fingerPrint64:()=>PR,flatten:()=>vi,getArrayFromDType:()=>dw,getTypedArrayFromDType:()=>cw,hasEncodingLoss:()=>gR,hexToLong:()=>np,indexToLoc:()=>xR,inferDtype:()=>Ff,inferFromImplicitShape:()=>mR,isBoolean:()=>mw,isFunction:()=>Na,isInt:()=>fu,isNumber:()=>gw,isPromise:()=>s1,isScalarShape:()=>cR,isString:()=>ka,isTypedArray:()=>Sn,isValidDtype:()=>hw,locToIndex:()=>AR,makeOnesTypedArray:()=>t1,makeZerosNestedTypedArray:()=>yR,makeZerosTypedArray:()=>Of,nearestDivisor:()=>af,nearestLargerEven:()=>oR,now:()=>Td,parseAxisParam:()=>Vs,randUniform:()=>lR,repeatedTry:()=>fR,rightPad:()=>xd,shuffle:()=>lw,shuffleCombo:()=>aR,sizeFromShape:()=>Ct,sizeToSquarishShape:()=>pR,squeezeShape:()=>uw,sum:()=>iR,swap:()=>rf,tanh:()=>dR,toNestedArray:()=>uu,toTypedArray:()=>lm});var k3=$i(W9()),ci=k3.default||k3;function np(e){return ci.fromString(e,!0,16)}var kw=np("c3a5c85c97cb3127"),ii=np("b492b66fbe98f273"),Ln=np("9ae16a3b2f90404f");function ty(e){return e.xor(e.shru(47))}function Sw(e,t,n){let s=e.slice(t,t+n);return ci.fromBytes(Array.from(s),!0,!0)}function wt(e,t){return Sw(e,t,8)}function S3(e,t){return Sw(e,t,4)}function cn(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Ia(e,t,n=np("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function RR(e,t,n,s,r,a){r=r.add(e),a=cn(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(cn(r,44)),[r.add(s),a.add(o)]}function Ph(e,t,n,s){return RR(wt(e,t),wt(e,t+8),wt(e,t+16),wt(e,t+24),n,s)}function _R(e,t=e.length){if(t>=8){let n=Ln.add(t*2),s=wt(e,0).add(Ln),r=wt(e,t-8),a=cn(r,37).mul(n).add(s),o=cn(s,25).add(r).mul(n);return Ia(a,o,n)}if(t>=4){let n=Ln.add(t*2),s=S3(e,0);return Ia(s.shl(3).add(t),S3(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return ty(Ln.mul(a).xor(kw.mul(o))).mul(Ln)}return Ln}function $R(e,t=e.length){let n=Ln.add(t*2),s=wt(e,0).mul(ii),r=wt(e,8),a=wt(e,t-8).mul(n),o=wt(e,t-16).mul(Ln);return Ia(cn(s.add(r),43).add(cn(a,30)).add(o),s.add(cn(r.add(Ln),18)).add(a),n)}function DR(e,t=e.length){let n=Ln.add(t*2),s=wt(e,0).mul(Ln),r=wt(e,8),a=wt(e,t-8).mul(n),o=wt(e,t-16).mul(Ln),i=cn(s.add(r),43).add(cn(a,30)).add(o),l=Ia(i,s.add(cn(r.add(Ln),18)).add(a),n),u=wt(e,16).mul(n),c=wt(e,24),p=i.add(wt(e,t-32)).mul(n),d=l.add(wt(e,t-24)).mul(n);return Ia(cn(u.add(c),43).add(cn(p,30)).add(d),u.add(cn(c.add(s),18)).add(p),n)}function PR(e,t=e.length){let n=ci.fromNumber(81,!0);if(t<=32)return t<=16?_R(e,t):$R(e,t);if(t<=64)return DR(e,t);let s=n,r=n.mul(ii).add(113),a=ty(r.mul(Ln).add(113)).mul(Ln),o=[ci.UZERO,ci.UZERO],i=[ci.UZERO,ci.UZERO];s=s.mul(Ln).add(wt(e,0));let l=0,u=(t-1>>6)*64,c=u+(t-1&63)-63;do s=cn(s.add(r).add(o[0]).add(wt(e,l+8)),37).mul(ii),r=cn(r.add(o[1]).add(wt(e,l+48)),42).mul(ii),s=s.xor(i[1]),r=r.add(o[0]).add(wt(e,l+40)),a=cn(a.add(i[0]),33).mul(ii),o=Ph(e,l,o[1].mul(ii),s.add(i[0])),i=Ph(e,l+32,a.add(i[1]),r.add(wt(e,l+16))),[a,s]=[s,a],l+=64;while(l!==u);let p=ii.add(a.and(255).shl(1));return l=c,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=cn(s.add(r).add(o[0]).add(wt(e,l+8)),37).mul(p),r=cn(r.add(o[1]).add(wt(e,l+48)),42).mul(p),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(wt(e,l+40))),a=cn(a.add(i[0]),33).mul(p),o=Ph(e,l,o[1].mul(p),s.add(i[0])),i=Ph(e,l+32,a.add(i[1]),r.add(wt(e,l+16))),[a,s]=[s,a],Ia(Ia(o[0],i[0],p).add(ty(r).mul(kw)).add(a),Ia(o[1],i[1],p).add(s),p)}function FR(e,t){return t==="string"?sp(e):lm([e],t)}function OR(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function lm(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=vi(e)),J().getBool("DEBUG")&&pw(e,t),OR(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Td(){return J().platform.now()}function MR(e,t){return J().platform.fetch(e,t)}function sp(e,t="utf-8"){return t=t||"utf-8",J().platform.encode(e,t)}function cf(e,t="utf-8"){return t=t||"utf-8",J().platform.decode(e,t)}var zR=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new BR)}profileKernel(e,t,n){let s,r=()=>{s=n()},a,o=Td();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:Td()-o})}if(J().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<s.length;l++){let u=s[l];u.data().then(c=>{LR(c,u.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function LR(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){let r=e[s];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var BR=class{logKernelProfile(e,t,n,s,r,a){let o=typeof s=="number"?xd(`${s}ms`,9):s.error,i=xd(e,25),l=t.rank,u=t.size,c=xd(t.shape.toString(),14),p="";for(let d in r){let h=r[d];if(h!=null){let f=h.shape||t.shape,m=f.length;p+=`${d}: ${m}D ${m>0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${c} %c${u} %c${p} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function WR(e,t,n){let s={},r={};for(let l=0;l<t.length;l++)s[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],c=u.inputs;for(let p in c){let d=c[p],h=!1;for(let f=0;f<t.length;f++)if(s[d.id]){u.outputs.forEach(m=>s[m.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let p=0;p<u.outputs.length;p++)if(a[u.outputs[p].id]){for(let d in c)a[c[d].id]=!0,o[u.id]=!0;break}}let i=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&o[u.id]){let c={};for(let d in u.inputs){let h=u.inputs[d];s[h.id]&&(c[d]=h)}let p=Object.assign({},u);p.inputs=c,p.outputs=u.outputs,i.push(p)}}return i}function VR(e,t,n,s){for(let r=t.length-1;r>=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let u=e[l.id];u!=null?o.push(u):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=n(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=a.inputs[l];if(!Ga(u.shape,c.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let p=e[c.id];e[c.id]=s(p,u),p.dispose()}}}}var I3=20,ad=3,B2=7;function UR(e,t,n,s){let r=Nu(t),a=GR(e,t,n,r),o=t.length,i=jh(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function GR(e,t,n,s){let r=Ct(t),a=s[s.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?cd(e):e;if(i>1)for(let u=0;u<r/a;u++){let c=u*a;for(let p=0;p<a;p++)o[p]=Math.max(o[p],ud(l[c+p],0,n).length)}return o}function ud(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(B2))} + ${parseFloat(e[1].toFixed(B2))}j`:ka(e)?s=`'${e}'`:n==="bool"?s=Iw(e):s=parseFloat(e.toFixed(B2)).toString(),xd(s,t)}function Iw(e){return e===0?"false":"true"}function jh(e,t,n,s,r,a=!0){let o=n==="complex64"?2:1,i=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=cd(e);return[ud(m[0],0,n)]}return n==="bool"?[Iw(e[0])]:[e[0].toString()]}if(l===1){if(i>I3){let g=ad*o,y=Array.from(e.slice(0,g)),x=Array.from(e.slice((i-ad)*o,i*o));return n==="complex64"&&(y=cd(y),x=cd(x)),["["+y.map((A,b)=>ud(A,r[b],n)).join(", ")+", ..., "+x.map((A,b)=>ud(A,r[i-ad+b],n)).join(", ")+"]"]}let m=n==="complex64"?cd(e):Array.from(e);return["["+m.map((g,y)=>ud(g,r[y],n)).join(", ")+"]"]}let u=t.slice(1),c=s.slice(1),p=s[0]*o,d=[];if(i>I3){for(let m=0;m<ad;m++){let g=m*p,y=g+p;d.push(...jh(e.slice(g,y),u,n,c,r,!1))}d.push("...");for(let m=i-ad;m<i;m++){let g=m*p,y=g+p;d.push(...jh(e.slice(g,y),u,n,c,r,m===i-1))}}else for(let m=0;m<i;m++){let g=m*p,y=g+p;d.push(...jh(e.slice(g,y),u,n,c,r,m===i-1))}let h=l===2?",":"";d[0]="["+d[0]+h;for(let m=1;m<d.length-1;m++)d[m]=" "+d[m]+h;let f=`,
|
|
`;for(let m=2;m<l;m++)f+=`
|
|
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(a?"":f),d}function cd(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var nn=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Ct(e),n!=null){let s=n.length;M(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||dw(t,this.size),this.strides=Nu(e)}set(e,...t){t.length===0&&(t=[0]),M(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return rr().makeTensor(this.values,this.shape,this.dtype)}},rr=null,ou=null,HR=null;function jR(e){rr=e}function qR(e){ou=e}function XR(e){HR=e}var nt=class{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Ct(e),this.strides=Nu(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return ou.buffer(this.shape,this.dtype,e)}bufferSync(){return ou.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return uu(this.shape,e,this.dtype==="complex64")}arraySync(){return uu(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=rr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>cf(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),rr().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=rr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>cf(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await rr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(rr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return ou.print(this,e)}clone(){return this.throwIfDisposed(),ou.clone(this)}toString(e=!1){let t=this.dataSync();return UR(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),ou.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),rr().makeVariable(this,e,t,n)}};Object.defineProperty(nt,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function KR(){return r1("Tensor",()=>nt)}KR();var Nd=class extends nt{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Ga(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);rr().disposeTensor(this),this.dataId=e.dataId,rr().incRef(this,null)}dispose(){rr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Nd,Symbol.hasInstance,{value:e=>e instanceof nt&&e.assign!=null&&e.assign instanceof Function});var lr={};Le(lr,{assertTypesMatch:()=>_w,getTensorsInContainer:()=>o1,isTensorInList:()=>YR,makeTypesMatch:()=>Mt});var Cw=(e=>(e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6",e))(Cw||{}),Tw=(e=>(e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64",e))(Tw||{}),Nw=(e=>(e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64",e))(Nw||{}),Ew=(e=>(e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64",e))(Ew||{}),Rw=(e=>(e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64",e))(Rw||{}),ZR={float32:Ew,int32:Tw,bool:Nw,complex64:Rw};function Tn(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return ZR[e][t]}function rp(e){return Tn(e,"int32")}function Mt(e,t){if(e.dtype===t.dtype)return[e,t];let n=Tn(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function _w(e,t){M(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function YR(e,t){return t.some(n=>n.id===e.id)}function o1(e){let t=[];return $w(e,t,new Set),t}function $w(e,t,n){if(e==null)return;if(e instanceof nt){t.push(e);return}if(!JR(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),$w(a,t,n))}}function JR(e){return Array.isArray(e)||typeof e=="object"}function W2(e){return e.kernelName!=null}var C3=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},ny=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new C3}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(wa(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new zR(this.backendInstance),!0}setupRegisteredKernels(){Nr(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Nr(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Tu)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,wa(`Initialization of backend ${e} failed`),wa(a.stack||a.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return wa(`Initialization of backend ${e} failed`),wa(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:s,asyncInit:r}=this.initializeBackend(n);if(r||s)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),s=n.backend,r=this.readSync(t),a=s.refCount(t);s.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return ny.nextTensorId++}nextVariableId(){return ny.nextVariableId++}clone(e){let t=B.runKernel(uo,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return B.runKernel(Ka,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(uf(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=W2(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(W2(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=uf(h,this.backendName);M(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let y=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let x=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,x);let A=x.map(b=>{if(b.rank!=null)return b;let{dataId:w,shape:S,dtype:I}=b;return this.makeTensorFromDataId(w,S,I)});if(s){let b=this.getTensorsForGradient(h,f,A);n=this.saveTensorsForBackwardMode(b)}return A}}else{let{forwardFunc:h}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:u,attrs:c}=e,p=W2(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(d=this.profiler.profileKernel(l,u,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),s&&this.addTapeNode(l,u,t,p,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=ey(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(M(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,u)=>a[u]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&ka(e[0])&&(r=e.map(i=>sp(i)));let a=s.write(r,t,n),o=new nt(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=fw(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r=new nt(t,n,e,this.nextTensorId());return this.trackTensor(r,s),r}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new Nd(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Q2(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Nd||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Q2(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=ey(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((u,c)=>{if(u==null){let p=n[c],d=Of(p.size,p.dtype);return this.makeTensor(d,p.shape,p.dtype)}return u}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=o1(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let a=this.state.activeScope.track[r];!a.kept&&!n.has(a.id)&&a.dispose()}let s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(M(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));M(r instanceof nt,()=>"The result y returned by f() must be a tensor.");let a=WR(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n==null?QR(r.shape):n,VR(o,a,l=>this.tidy(l),e_);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return M(Na(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{M(t.every(o=>o instanceof nt),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),M(n.value instanceof nt,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),M(Na(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),u=Array.isArray(l)?l:[l];M(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),M(u.every(p=>p instanceof nt),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((p,d)=>{c[d]=()=>p}),c};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=Td(),n=await this.backend.time(e);return n.wallMs=Td()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new C3;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}},i1=ny;i1.nextTensorId=0;i1.nextVariableId=0;function QR(e){let t=t1(Ct(e),"float32");return B.makeTensor(t,e,"float32")}function Dw(){let e=xw();if(e._tfengine==null){let t=new Aw(e);e._tfengine=new i1(t)}return kR(e._tfengine.ENV),jR(()=>e._tfengine),e._tfengine}var B=Dw();function e_(e,t){let n={a:e,b:t};return B.runKernel(Kr,n)}var ap={};Le(ap,{isBrowser:()=>Pw,isMobile:()=>s_,mockIsMobile:()=>n_});function t_(){return typeof navigator!="undefined"&&navigator!=null}var sy;function n_(e){sy=e}function s_(e){if(sy!==void 0)return sy;if(e||t_()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function Pw(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Bs=J();Bs.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Bs.registerFlag("IS_BROWSER",()=>Pw());Bs.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Bs.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Bs.registerFlag("PROD",()=>!1);Bs.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Bs.getBool("DEBUG"));Bs.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Bs.registerFlag("IS_TEST",()=>!1);Bs.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Bs.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);Bs.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);function Er(e,t){let n=e;if(Sn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||Sn(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&J().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&Fw(e,s,[]),s}function Fw(e,t,n){if(n=n||[],!Array.isArray(e)&&!Sn(e)){M(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}M(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),M(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r<e.length;++r)Fw(e[r],s,n.concat(r))}function T3(e,t,n,s){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}}function $(e,t,n,s="numeric"){if(e instanceof nt)return T3(s,e.dtype,t,n),e;let r=Ff(e);if(r!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(r=s),T3(s,r,t,n),e==null||!Sn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=Er(e,r);!Sn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?lm(e,r):vi(e,[],!0);return B.makeTensor(i,a,r)}function Ed(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>$(a,`${t}[${o}]`,n,s))}var Ow="__op";function V(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Ow;let r=(...a)=>{B.startScope(n);try{let o=s(...a);return s1(o)&&console.error("Cannot return a Promise inside of tidy."),B.endScope(o),o}catch(o){throw B.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function r_(e,t){let n=$(e,"real","complex"),s=$(t,"imag","complex");Gn(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return B.runKernel(Bd,r)}var $a=V({complex_:r_});function zo(e,t,n,s){if(s==null&&(s=Ff(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Sn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){n1(t);let r=Ct(t),a=Ct(n);M(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o<n.length;++o){let i=n[o],l=o===n.length-1?i!==Ct(t.slice(o)):!0;M(n[o]===t[o]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!Sn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?lm(e,s):vi(e,[],!0),B.makeTensor(e,t,s)}function pt(e,t,n){let s=Er(e,n);return zo(e,t,s,n)}var ry={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},df=4;async function a_(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<r.length;++o){let i=r[o],l=Array.isArray(e)?e[o].tensor:e[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let u={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async p=>{let d=await l.bytes(),h=d.reduce((g,y)=>g+y.length,0)+df*d.length,f=new Uint8Array(h),m=0;for(let g=0;g<d.length;g++){let y=d[g],x=new Uint8Array(new Uint32Array([y.length]).buffer);f.set(x,m),m+=df,f.set(y,m),m+=y.length}p(f)});s.push(c)}else s.push(l.data());t!=null&&(u.group=t),n.push(u)}let a=await Promise.all(s);return{data:o_(a),specs:n}}function Mw(e,t){let n={},s,r=0;for(let a of t){let o=a.name,i=a.dtype,l=a.shape,u=Ct(l),c;if("quantization"in a){let p=a.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${a.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${a.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=ry[p.dtype],h=e.slice(r,r+u*d),f=p.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(i==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){c=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=g*p.scale+p.min}}else if(p.dtype==="float16")s===void 0&&(s=p_()),c=s(f);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(i==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);c=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=u*d}else if(i==="string"){let p=Ct(a.shape);c=[];for(let d=0;d<p;d++){let h=new Uint32Array(e.slice(r,r+df))[0];r+=df;let f=new Uint8Array(e.slice(r,r+h));c.push(f),r+=h}}else{let p=ry[i],d=e.slice(r,r+u*p);if(i==="float32")c=new Float32Array(d);else if(i==="int32")c=new Int32Array(d);else if(i==="bool")c=new Uint8Array(d);else if(i==="complex64"){c=new Float32Array(d);let h=new Float32Array(c.length/2),f=new Float32Array(c.length/2);for(let y=0;y<h.length;y++)h[y]=c[y*2],f[y]=c[y*2+1];let m=pt(h,l,"float32"),g=pt(f,l,"float32");n[o]=$a(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=u*p}i!=="complex64"&&(n[o]=pt(c,l,i))}return n}function o_(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var l1=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function N3(e){return l1?Buffer.byteLength(e):new Blob([e]).size}function i_(e){if(l1)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s<r;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function l_(e){if(l1){let s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function u1(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function E3(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function zw(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function c1(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function op(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:N3(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:N3(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function u_(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)===0;)r-=8388608,s<<=1;return s&=-8388609,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function c_(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function d_(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function p_(){let e=u_(),t=c_(),n=d_();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o<s.length;o++){let i=s[o],l=e[n[i>>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var Lt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Lt.instance==null&&(Lt.instance=new Lt),Lt.instance}static registerSaveRouter(e){Lt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Lt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Lt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Lt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?Lt.getInstance().loadRouters:Lt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},h_=e=>Lt.registerSaveRouter(e),f_=e=>Lt.registerLoadRouter(e),m_=e=>Lt.getSaveHandlers(e),g_=(e,t)=>Lt.getLoadHandlers(e,t),ay="tensorflowjs",oy=1,fi="models_store",Sa="model_info_store";function Lw(){if(!J().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function iy(e){let t=e.result;t.createObjectStore(fi,{keyPath:"modelPath"}),t.createObjectStore(Sa,{keyPath:"modelPath"})}var wi=class{constructor(e){if(this.indexedDB=Lw(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(ay,oy);r.onupgradeneeded=()=>iy(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(fi,"readonly"),l=o.objectStore(fi).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=u=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=op(t),i=a.transaction(Sa,"readwrite"),l=i.objectStore(Sa),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),c;u.onsuccess=()=>{c=a.transaction(fi,"readwrite");let d=c.objectStore(fi).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});d.onsuccess=()=>n({modelArtifactsInfo:o}),d.onerror=h=>{l=i.objectStore(Sa);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(d.error)),f.onerror=m=>(a.close(),s(d.error))}},u.onerror=p=>(a.close(),s(u.error)),i.oncomplete=()=>{c==null?a.close():c.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};wi.URL_SCHEME="indexeddb://";var Bw=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(wi.URL_SCHEME)?y_(e.slice(wi.URL_SCHEME.length)):null;Lt.registerSaveRouter(Bw);Lt.registerLoadRouter(Bw);function y_(e){return new wi(e)}function A_(e){return e.startsWith(wi.URL_SCHEME)?e.slice(wi.URL_SCHEME.length):e}var x_=class{constructor(){this.indexedDB=Lw()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(ay,oy);n.onupgradeneeded=()=>iy(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(Sa,"readonly"),o=r.objectStore(Sa).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=A_(e),new Promise((t,n)=>{let s=this.indexedDB.open(ay,oy);s.onupgradeneeded=()=>iy(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(Sa,"readwrite"),o=a.objectStore(Sa),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=o.delete(e),c=()=>{l=r.transaction(fi,"readwrite");let d=l.objectStore(fi).delete(e);d.onsuccess=()=>t(i.result.modelArtifactsInfo),d.onerror=h=>n(i.error)};u.onsuccess=c,u.onerror=p=>(c(),r.close(),n(i.error))}},i.onerror=u=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},Hr="/",iu="tensorflowjs_models",Ww="info",b_="model_topology",v_="weight_specs",w_="weight_data",k_="model_metadata";function Vw(e){return{info:[iu,e,Ww].join(Hr),topology:[iu,e,b_].join(Hr),weightSpecs:[iu,e,v_].join(Hr),weightData:[iu,e,w_].join(Hr),modelMetadata:[iu,e,k_].join(Hr)}}function Uw(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function S_(e){let t=e.split(Hr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Hr)}function I_(e){return e.startsWith(ki.URL_SCHEME)?e.slice(ki.URL_SCHEME.length):e}var ki=class{constructor(e){if(!J().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Vw(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=op(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,i_(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw Uw(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=l_(a),t}};ki.URL_SCHEME="localstorage://";var Gw=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ki.URL_SCHEME)?C_(e.slice(ki.URL_SCHEME.length)):null;Lt.registerSaveRouter(Gw);Lt.registerLoadRouter(Gw);function C_(e){return new ki(e)}var T_=class{constructor(){M(J().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),M(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=iu+Hr,n=Hr+Ww;for(let s=0;s<this.LS.length;++s){let r=this.LS.key(s);if(r.startsWith(t)&&r.endsWith(n)){let a=S_(r);e[a]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=I_(e);let t=Vw(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return Uw(t),n}},cu="://",Cs=class{constructor(){this.managers={}}static getInstance(){return Cs.instance==null&&(Cs.instance=new Cs),Cs.instance}static registerManager(e,t){M(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(cu)&&(e=e.slice(0,e.indexOf(cu))),M(e.length>0,()=>"scheme must not be an empty string.");let n=Cs.getInstance();M(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function qh(e){if(e.indexOf(cu)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Cs.getSchemes().join(",")}`);return{scheme:e.split(cu)[0],path:e.split(cu)[1]}}async function Hw(e,t,n=!1){M(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=Lt.getLoadHandlers(e);M(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),M(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=Lt.getSaveHandlers(t);M(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),M(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=qh(e).scheme,l=qh(e).path,u=i===qh(e).scheme,c=await r.load();n&&u&&await Cs.getManager(i).removeModel(l);let p=await o.save(c);return n&&!u&&await Cs.getManager(i).removeModel(l),p.modelArtifactsInfo}async function N_(){let e=Cs.getSchemes(),t={};for(let n of e){let s=await Cs.getManager(n).listModels();for(let r in s){let a=n+cu+r;t[a]=s[r]}}return t}async function E_(e){let t=qh(e);return Cs.getManager(t.scheme).removeModel(t.path)}async function R_(e,t){return Hw(e,t,!1)}async function __(e,t){return Hw(e,t,!0)}var $_=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(J().get("IS_BROWSER")){J().setPlatform("browser",new $_);try{Cs.registerManager(ki.URL_SCHEME,new T_)}catch(e){}try{Cs.registerManager(wi.URL_SCHEME,new x_)}catch(e){}}var D_={importFetch:()=>V9()},V2,P_=class{constructor(){this.util=U9(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return J().global.fetch!=null?J().global.fetch(e,t):(V2==null&&(V2=D_.importFetch()),V2(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};J().get("IS_NODE")&&!J().get("IS_BROWSER")&&J().setPlatform("node",new P_);function We(e,t="float32",n){return t=t||"float32",n1(e),new nn(e,t,n)}function F_(e,t){let n=$(e,"x","cast");if(!hw(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return B.runKernel(Ka,s,r)}var ge=V({cast_:F_});function O_(e){let n={x:$(e,"x","clone","string_or_numeric")};return B.runKernel(uo,n)}var Vn=V({clone_:O_});function jw(e,t=!1){console.log(e.toString(t))}Dw();var M_={buffer:We,cast:ge,clone:Vn,print:jw};qR(M_);var In={};Le(In,{browserFiles:()=>G_,browserHTTPRequest:()=>K_,concatenateArrayBuffers:()=>u1,copyModel:()=>R_,decodeWeights:()=>Mw,encodeWeights:()=>a_,fromMemory:()=>Y_,getLoadHandlers:()=>g_,getModelArtifactsForJSON:()=>c1,getModelArtifactsInfoForJSON:()=>op,getSaveHandlers:()=>m_,http:()=>p1,isHTTPScheme:()=>uy,listModels:()=>N_,loadWeights:()=>H_,moveModel:()=>__,registerLoadRouter:()=>f_,registerSaveRouter:()=>h_,removeModel:()=>E_,weightsLoaderFactory:()=>Xw,withSaveHandler:()=>J_});var z_="model",L_=".json",B_=".weights.bin";function R3(e){return new Promise(t=>setTimeout(t)).then(e)}var ly=class{constructor(e){if(!J().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(ly.URL_SCHEME)&&(e=e.slice(ly.URL_SCHEME.length)),(e==null||e.length===0)&&(e=z_),this.modelJsonFileName=e+L_,this.weightDataFileName=e+B_}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=zw(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await R3(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await R3(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:op(e)}}}},pf=ly;pf.URL_SCHEME="downloads://";var W_=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=c1(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,u1(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>E3(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=E3(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},V_=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(pf.URL_SCHEME)?U_(e.slice(pf.URL_SCHEME.length)):null;Lt.registerSaveRouter(V_);function U_(e="model"){return new pf(e)}function G_(e){return new W_(e)}function _3(e,t,n,s){o(e),n=n==null?0:n,s=s==null?1:s,i(n,s);let r=0,a=l=>(l.then(u=>{let c=n+ ++r/e.length*(s-n);return t(c),u}),l);function o(l){M(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){M(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),M(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),M(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(a))}async function qw(e,t){t==null&&(t={});let n=t.fetchFunc==null?J().platform.fetch:t.fetchFunc,s=e.map(p=>n(p,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await _3(s,t.onProgress,r,a)).map(p=>p.arrayBuffer()),l=.5,u=1;return t.onProgress==null?await Promise.all(i):await _3(i,t.onProgress,l,u)}async function H_(e,t="",n,s){return Xw(o=>qw(o,{requestInit:s}))(e,t,n)}function Xw(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,x=ry[y]*Ct(g.shape),A=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:x})};s!=null?s.forEach((b,w)=>{b===g.name&&(A(),o[w]=!0)}):A(),i.push(g.name),m+=x})}),!o.every(h=>h)){let h=s.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;u.push(m)})});let c=await e(u),p={},d=0;return l.forEach(h=>{let f=t[h].paths.length,m=0;for(let b=0;b<f;b++)m+=c[d+b].byteLength;let g=new ArrayBuffer(m),y=new Uint8Array(g),x=0;for(let b=0;b<f;b++){let w=new Uint8Array(c[d+b]);y.set(w,x),x+=w.byteLength}a[h].forEach(b=>{let w=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),S=Mw(w,[b.manifestEntry]);for(let I in S)p[I]=S[I]}),d+=f}),p}}var j_="application/octet-stream",q_="application/json",d1=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(M(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=J().platform.fetch,M(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&M(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=zw(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:q_}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:j_}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:op(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return c1(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=X_(t),r=this.weightPathPrefix||n,a=[];for(let u of e)a.push(...u.weights);let o=[],i=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(c)):o.push(r+c+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await qw(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,u1(l)]}};d1.URL_SCHEME_REGEX=/^https?:\/\//;function X_(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function uy(e){return e.match(d1.URL_SCHEME_REGEX)!=null}var Kw=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>uy(s)):n=uy(e),n)return p1(e,t)}return null};Lt.registerSaveRouter(Kw);Lt.registerLoadRouter(Kw);function p1(e,t){return new d1(e,t)}function K_(e,t){return p1(e,t)}var U2=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},Z_=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function Y_(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new U2(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new U2({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new U2({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function J_(e){return new Z_(e)}var Zw={};Le(Zw,{confusionMatrix:()=>s$});function Q_(e,t,n=!1,s=!1){let r=$(e,"a","matMul"),a=$(t,"b","matMul");[r,a]=Mt(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return B.runKernel(Xa,o,i)}var Ye=V({matMul_:Q_});function e$(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:$(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:s};return B.runKernel(tl,a,o)}var Rd=V({oneHot_:e$});function t$(e,t){let n=$(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{M(a>=0&&a<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let s={x:n},r={perm:t};return B.runKernel(Oo,s,r)}var st=V({transpose_:t$});function n$(e,t,n){let s=$(e,"labels","confusionMatrix"),r=$(t,"predictions","confusionMatrix");M(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),M(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),M(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),M(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),M(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=Rd(ge(s,"int32"),n),o=Rd(ge(r,"int32"),n),i=st(a),l=Ye(i,o);return ge(l,"int32")}var s$=V({confusionMatrix_:n$}),bl={};Le(bl,{assertAndGetBroadcastShape:()=>bt,getBroadcastDims:()=>Yw,getReductionAxes:()=>Zt});function Yw(e,t){let n=e.length,s=[];for(let r=0;r<n;r++){let a=n-1-r,o=e[a]||1;(t[t.length-1-r]||1)>1&&o===1&&s.unshift(a)}return s}function Zt(e,t){let n=[];for(let s=0;s<t.length;s++){let r=e[e.length-s-1],a=t.length-s-1,o=t[a];(r==null||r===1&&o>1)&&n.unshift(a)}return n}function bt(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r<s;r++){let a=e[e.length-r-1];a==null&&(a=1);let o=t[t.length-r-1];if(o==null&&(o=1),a===1)n.unshift(o);else if(o===1)n.unshift(a);else if(a!==o){let i=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(i)}else n.unshift(a)}return n}var Ps={};Le(Ps,{fromPixels:()=>c$,fromPixelsAsync:()=>l$,toPixels:()=>u$});function Jw(e,t,n){if(Di(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=Er(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return zo(e,t,s,n)}var ai;function Qw(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r&&r&&e.readyState<2)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.");if(uf(Id,B.backendName)!=null){let f={pixels:e},m={numChannels:t};return B.runKernel(Id,f,m)}let[u,c]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(o)p=e.getContext("2d").getImageData(0,0,u,c).data;else if(s||n)p=e.data;else if(a||r||i){if(ai==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")ai=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else ai=document.createElement("canvas").getContext("2d");ai.canvas.width=u,ai.canvas.height=c,ai.drawImage(e,0,0,u,c),p=ai.getImageData(0,0,u,c).data}let d;if(t===4)d=new Int32Array(p);else{let f=u*c;d=new Int32Array(f*t);for(let m=0;m<f;m++)for(let g=0;g<t;++g)d[m*t+g]=p[m*4+g]}return Jw(d,[c,u,t],"int32")}function r$(e){return e!=null&&e.data instanceof Uint8Array}function a$(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function o$(e){return e!=null&&e.width!==0&&e.height!==0}function i$(e){return a$()&&!(e instanceof ImageBitmap)&&o$(e)&&!r$(e)}async function l$(e,t=3){let n=null;if(J().getBool("WRAP_TO_IMAGEBITMAP")&&i$(e)){let s;try{s=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){s=null}s!=null&&s.width===e.width&&s.height===e.height?n=s:n=e}else n=e;return Qw(n,t)}async function u$(e,t){let n=$(e,"img","toPixels");if(!(e instanceof nt)){let u=n;n=ge(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[s,r]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let u=0;u<s*r;++u){let c=[0,0,0,255];for(let d=0;d<a;d++){let h=o[u*a+d];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(c[0]=h*i,c[1]=h*i,c[2]=h*i):c[d]=h*i}let p=u*4;l[p+0]=Math.round(c[0]),l[p+1]=Math.round(c[1]),l[p+2]=Math.round(c[2]),l[p+3]=Math.round(c[3])}if(t!=null){t.width=r,t.height=s;let u=t.getContext("2d"),c=new ImageData(l,r,s);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var c$=V({fromPixels_:Qw}),h1={};Le(h1,{prepareAndValidate:()=>ek});function ek(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(Ct(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let p=0;p<r.length-1;++p)o*=r[p];let i=e.shape,l=r.slice();l.pop();let u=1;for(let p=a;p<n;++p)u*=i[p],l.push(i[p]);let c=[...Nu(e.shape).map(p=>p/u),1].slice(0,a);return[l,o,u,c]}var f1={};Le(f1,{calculateShapes:()=>tk,validateInput:()=>g1,validateUpdateShape:()=>m1});function m1(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(a+` update.rank < ${r}. `);if(e.length<s+(n.rank-r))throw new Error(a+` Output shape length < ${s+(n.rank-r)}`);if(n.rank!==r+e.length-s)throw new Error(a+` update.rank != ${r+e.length-s}`);for(let o=0;o<r;++o)if(n.shape[o]!==t.shape[o])throw new Error(a+` updates.shape[${o}] (${n.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<n.rank-r;++o)if(n.shape[o+r]!==e[o+s])throw new Error(a+` updates.shape[${o+r}] (${n.shape[o+r]}) != shape[${o+r}] (${e[o+r]})`)}function g1(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}m1(n,t,e)}function tk(e,t,n){let s=t.shape.length,r=s>1?t.shape[s-1]:1,a=n.length,o=1;for(let p=r;p<a;++p)o*=n[p];let i=r<1?1:r,l=Ct(t.shape)/i,u=[...Nu(n.slice(0,r)),1],c=Ct(n);return{sliceRank:r,numUpdates:l,sliceSize:o,strides:u,outputSize:c}}var Ft={};Le(Ft,{assertParamsValid:()=>p$,computeFlatOffset:()=>y$,computeOutShape:()=>f$,getNormalizedAxes:()=>m$,isSliceContinous:()=>g$,maskToAxes:()=>h$,parseSliceParams:()=>ck,sliceInfo:()=>A$,startForAxis:()=>lk,startIndicesWithElidedDims:()=>ak,stopForAxis:()=>uk,stopIndicesWithElidedDims:()=>ok,stridesForAxis:()=>ik,stridesWithElidedDims:()=>nk});var cy=-2,d$=-1;function p$(e,t,n){let s=e.shape.length;M(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),M(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r<s;++r)M(t[r]+n[r]<=e.shape[r],()=>`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function h$(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function f$(e,t,n){let s=[];for(let r=0;r<e.length;r++)s[r]=Math.ceil((t[r]-e[r])/n[r]);return s}function nk(e,t,n,s){let r=[...e];for(let a=r.length;a<s.length;a++)r.push(1);for(let a=0;a<n;a++)a===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function sk(e,t,n){return n<=e?n:n-(t-1)}function rk(e,t){let n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function m$(e,t,n,s,r,a,o,i,l){let u=e.length,c=new Array(u),p=new Array(u),d=new Array(u);if(t.length&&n>0){let h=t[0],f=n+1;c=ak(o,h,f,s,e),p=ok(i,h,f,r,e),d=nk(a,h,f,e)}else for(let h=0;h<u;h++)c[h]=lk(o,s,a,e,h,l),p[h]=uk(i,r,a,e,h,l),d[h]=ik(a,h,l);return{begin:c,end:p,strides:d}}function ak(e,t,n,s,r){let a=[...r],o=rk(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=0;else{let l=sk(t,n,i),u=s[l];e&1<<l&&(u=0),a[i]=u}return a}function ok(e,t,n,s,r){let a=[...r],o=rk(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=sk(t,n,i),u=s[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),a[i]=u}for(let i=0;i<a.length;i++){let l=r[i];a[i]<0&&(a[i]+=l),a[i]=Sd(0,a[i],r[i])}return a}function ik(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function lk(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=Sd(0,o,l-1),o}function uk(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=Sd(0,o,l):o=Sd(-1,o,l-1),o}function g$(e,t,n){let s=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){s=r;break}for(let r=s+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function y$(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function ck(e,t,n){let s,r=e.shape.length;typeof t=="number"?s=[t,...new Array(r-1).fill(0)]:t.length<r?s=t.concat(new Array(r-t.length).fill(0)):s=t.slice(),s.forEach(o=>{M(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.length<r?a=n.concat(new Array(r-n.length).fill(-1)):a=n,a=a.map((o,i)=>o>=0?o:(M(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function A$(e,t,n,s,r,a,o,i,l){let u;if(s==null?(u=new Array(t.length),u.fill(1)):u=s,o!=null&&(o&o-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let c=!1,p={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:u.slice(),beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};for(let A=0;A<p.dims;A++)c&&(1<<A&i)!==0&&p.numAddAxisAfterEllipsis++,1<<A&o&&(c=!0);c||(p.ellipsisMask|=1<<p.dims,p.dims++);let d={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};x$(p,d);let h=!0,f=!0,m=!0,g=[],y=[];for(let A=0;A<e.length;++A){if(d.strides[A]===0)throw Error(`strides[${A}] must be non-zero`);let b=!!(d.shrinkAxisMask&1<<A),w=e[A];if(w===-1){g.push(b?1:-1);continue}let S=[d.beginMask&1<<A,d.endMask&1<<A],I=[d.strides[A]>0?0:-1,d.strides[A]>0?w:w-1];if(b&&d.strides[A]<=0)throw Error("only stride 1 allowed on non-range indexing.");m=m&&d.strides[A]===1;let E=!!(d.beginMask&1<<A&&d.endMask&1<<A);if(d.beginValid&&d.endValid){if(b){let D=d.begin[A]<0?w+d.begin[A]:d.begin[A];if(d.begin[A]=D,d.end[A]=d.begin[A]+1,D<0||D>=w)throw Error(`slice index ${d.begin[A]} of dimension ${A} out of bounds.`)}else d.begin[A]=$3(d.begin[A],0,d.strides[A],w,S,I),d.end[A]=$3(d.end[A],1,d.strides[A],w,S,I);let _=d.strides[A]===1&&d.begin[A]===0&&d.end[A]===w;h=h&&_,f=f&&(A===0&&d.strides[A]===1||_)}else h=h&&d.strides[A]===1&&E,f=f&&(A===0&&d.strides[A]===1||E);let R,P=!1;if(d.beginValid&&d.endValid?(R=d.end[A]-d.begin[A],P=!0):b?(R=1,P=!0):E&&w>=0&&(d.strides[A]<0?R=-w:R=w,P=!0),P){let _;R===0||R<0!=d.strides[A]<0?_=0:_=Math.trunc(R/d.strides[A])+(R%d.strides[A]!==0?1:0),g.push(_)}else g.push(-1)}for(let A=0;A<d.finalShapeGatherIndices.length;++A){let b=d.finalShapeGatherIndices[A];b>=0?y.push(g[b]):b===cy&&y.push(1)}return{finalShapeSparse:y.filter((A,b)=>d.finalShapeGatherIndices[b]!==cy),finalShape:y,isIdentity:h,sliceDim0:f,isSimpleSlice:m,begin:d.begin,end:d.end,strides:d.strides}}function x$(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let s=0;s<e.dims;s++)if(1<<s&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-s)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=s}else if(1<<s&e.newAxisMask)t.finalShapeGatherIndices.push(cy),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[s]),e.end!=null&&(t.end[n]=e.end[s]),t.strides[n]=e.strides[s],e.beginMask&1<<s&&(t.beginMask|=1<<n),e.endMask&1<<s&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<s?(t.finalShapeGatherIndices.push(d$),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(s)),t.inputShapeGatherIndicesSparse[n]=s,n++}}function $3(e,t,n,s,r,a){if(r[t])return n>0?a[t]:a[t+1&1];{let o=e<0?s+e:e;return o<a[0]?a[0]:o>a[1]?a[1]:o}}var ce={};Le(ce,{Serializable:()=>dk,SerializationMap:()=>di,registerClass:()=>Lo});var dk=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},di=class{constructor(){this.classNameMap={}}static getMap(){return di.instance==null&&(di.instance=new di),di.instance}static register(e){di.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Lo(e){M(e.className!=null,()=>"Class being registered does not have the static className property defined."),M(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),M(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),di.register(e)}var pk={};Le(pk,{TEST_EPSILON_FLOAT16:()=>hk,encodeStrings:()=>fk,expectArrayBuffersEqual:()=>C$,expectArraysClose:()=>v$,expectArraysEqual:()=>k$,expectNumbersClose:()=>S$,expectPromiseToFail:()=>w$,expectValuesInRange:()=>I$,testEpsilon:()=>y1});var b$=.001,hk=.1;function v$(e,t,n){return n==null&&(n=y1()),dy(e,t,(s,r)=>A1(s,r,n))}function y1(){return B.backend.floatPrecision()===32?b$:hk}function dy(e,t,n){let s=!0;if((Sn(e)||Sn(t))&&(s=!1),Sn(e)&&Sn(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=Er(e),i=Er(t);if(!Ga(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=Sn(e)?e:vi(e),a=Sn(t)?t:vi(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`);for(let o=0;o<a.length;++o){let i=r[o],l=a[o];if(!n(i,l))throw new Error(`Arrays differ: actual[${o}] = ${i}, expected[${o}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`)}}function w$(e,t){e().then(()=>t.fail(),()=>t())}function k$(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return ka(e)||ka(e[0])||ka(t)||ka(t[0])?dy(e,n,(s,r)=>s==r):dy(e,t,(s,r)=>A1(s,r,0))}function S$(e,t,n){if(n==null&&(n=y1()),!A1(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function A1(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function I$(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function C$(e,t){let n=new Float32Array(e),s=new Float32Array(t);if(n.length!==s.length)throw new Error(`Expected ArrayBuffer to be of length ${s.length}, but it was ${n.length}`);for(let r=0;r<s.length;r++)if(n[r]!==s[r])throw new Error(`Expected ArrayBuffer value at ${r} to be ${s[r]} but got ${n[r]} instead`)}function fk(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?fk(n):e[t]=sp(n)}return e}var x1="0.0.0";function b1(){J().set("PROD",!0)}function T$(){J().set("DEBUG",!0)}function N$(){J().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function v1(e){J().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}XR(v1);function E$(){B.disposeVariables()}function yn(){return B}function hf(){return B.memory()}function R$(e){return B.profile(e)}function X(e,t){return B.tidy(e,t)}function ne(e){o1(e).forEach(n=>n.dispose())}function dn(e){return B.keep(e)}function _$(e){return B.time(e)}function w1(e){return B.setBackend(e)}function sc(){return B.ready()}function rs(){return B.backendName}function $$(e){B.removeBackend(e)}function k1(e){return B.findBackend(e)}function D$(e){return B.findBackendFactory(e)}function vl(e,t,n=1){return B.registerBackend(e,t,n)}function Gs(){return B.backend}function P$(e,t){J().setPlatform(e,t)}function F$(e,t){let n=$(e,"a","add"),s=$(t,"b","add");[n,s]=Mt(n,s);let r={a:n,b:s};return B.runKernel(Kr,r)}var ue=V({add_:F$});function O$(e,t){let n=$(e,"a","floorDiv"),s=$(t,"b","floorDiv");[n,s]=Mt(n,s);let r={a:n,b:s};return B.runKernel(oo,r)}var ip=V({floorDiv_:O$});function M$(e,t){let n=$(e,"a","div"),s=$(t,"b","div");if([n,s]=Mt(n,s),n.dtype==="int32"&&s.dtype==="int32")return ip(n,s);let r={a:n,b:s},a={};return B.runKernel(no,r,a)}var de=V({div_:M$});function z$(e,t){let n=$(e,"a","mul"),s=$(t,"b","mul");[n,s]=Mt(n,s);let r={a:n,b:s};return B.runKernel(bo,r)}var L=V({mul_:z$});function L$(e){let t=$(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return B.runKernel(Wd,n)}else{let n={x:t};return B.runKernel(Pi,n)}}var en=V({abs_:L$});function B$(e){let n={x:$(e,"x","acos")};return B.runKernel(Eu,n)}var mk=V({acos_:B$});function W$(e){let n={x:$(e,"x","acosh")};return B.runKernel(Ru,n)}var gk=V({acosh_:W$});function V$(e){M(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),M(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>$(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!Ga(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return B.runKernel(Ha,s)}var um=V({addN_:V$});function U$(e,t=null,n=!1){let r={x:$(e,"x","all","bool")},a={axis:t,keepDims:n};return B.runKernel(_u,r,a)}var S1=V({all_:U$});function G$(e,t=null,n=!1){let r={x:$(e,"x","any","bool")},a={axis:t,keepDims:n};return B.runKernel($u,r,a)}var ff=V({any_:G$});function H$(e,t=0){let s={x:$(e,"x","argMax")},r={axis:t};return B.runKernel(ja,s,r)}var Ns=V({argMax_:H$});function j$(e,t=0){let s={x:$(e,"x","argMin")},r={axis:t};return B.runKernel(Du,s,r)}var yk=V({argMin_:j$});function q$(e){let n={x:$(e,"x","asin")};return B.runKernel(Pu,n)}var Ak=V({asin_:q$});function X$(e){let n={x:$(e,"x","asinh")};return B.runKernel(Fu,n)}var xk=V({asinh_:X$});function K$(e){let n={x:$(e,"x","atan")};return B.runKernel(Ou,n)}var bk=V({atan_:K$});function Z$(e,t){let n=$(e,"a","atan2"),s=$(t,"b","atan2");[n,s]=Mt(n,s);let r={a:n,b:s};return B.runKernel(zu,r)}var vk=V({atan2_:Z$});function Y$(e){let n={x:$(e,"x","atanh")};return B.runKernel(Mu,n)}var wk=V({atanh_:Y$});function J$(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=Ik(r);return lp(e,i,n,a,s,null,null,l)}function kk(e,t,n,s,r,a,o="channelsLast"){let[i,l]=mf(t),u;if(o==="channelsLast")u=[i,l,e[3],e[3]];else if(o==="channelsFirst")u=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return lp(e,u,n,s,r,a,!1,o)}function Q$(e,t,n,s,r,a,o="NDHWC"){let[i,l,u]=py(t),c,p;if(o==="NDHWC")p="channelsLast",c=[i,l,u,e[4],e[4]];else if(o==="NCDHW")p="channelsFirst",c=[i,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return Sk(e,c,n,s,r,!1,p,a)}function lp(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,u,c,p]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,p]=e;else if(i==="channelsFirst")[l,p,u,c]=e;else throw new Error(`Unknown dataFormat ${i}`);let[d,h,,f]=t,[m,g]=mf(n),[y,x]=mf(s),A=du(d,y),b=du(h,x),{padInfo:w,outHeight:S,outWidth:I}=nD(r,u,c,m,g,A,b,a,i),E=o?f*p:f,R;return i==="channelsFirst"?R=[l,E,S,I]:i==="channelsLast"&&(R=[l,S,I,E]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:p,outHeight:S,outWidth:I,outChannels:E,padInfo:w,strideHeight:m,strideWidth:g,filterHeight:d,filterWidth:h,effectiveFilterHeight:A,effectiveFilterWidth:b,dilationHeight:y,dilationWidth:x,inShape:e,outShape:R,filterShape:t}}function Sk(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,u,c,p,d]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,p,d]=e;else if(o==="channelsFirst")[l,d,u,c,p]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,f,m,,g]=t,[y,x,A]=py(n),[b,w,S]=py(s),I=du(h,b),E=du(f,w),R=du(m,S),{padInfo:P,outDepth:_,outHeight:D,outWidth:T}=sD(r,u,c,p,y,x,A,I,E,R,i),O=a?g*d:g,U;return o==="channelsFirst"?U=[l,O,_,D,T]:o==="channelsLast"&&(U=[l,_,D,T,O]),{batchSize:l,dataFormat:o,inDepth:u,inHeight:c,inWidth:p,inChannels:d,outDepth:_,outHeight:D,outWidth:T,outChannels:O,padInfo:P,strideDepth:y,strideHeight:x,strideWidth:A,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:I,effectiveFilterHeight:E,effectiveFilterWidth:R,dilationDepth:b,dilationHeight:w,dilationWidth:S,inShape:e,outShape:U,filterShape:t}}function eD(e,t,n,s,r){s==null&&(s=I1(e,t,n));let a=e[0],o=e[1],i=yi((a-t+2*s)/n+1,r),l=yi((o-t+2*s)/n+1,r);return[i,l]}function tD(e,t,n,s,r,a){r==null&&(r=I1(e,t,s));let o=e[0],i=e[1],l=e[2],u=yi((o-t+2*r)/s+1,a),c=yi((i-t+2*r)/s+1,a),p=yi((l-t+2*r)/s+1,a);return[u,c,p,n]}function I1(e,t,n,s=1){let r=du(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function mf(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function py(e){return typeof e=="number"?[e,e,e]:e}function du(e,t){return t<=1?e:e+(e-1)*(t-1)}function nD(e,t,n,s,r,a,o,i,l){let u,c,p;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=eD([t,n],a,s,e,i);c=h[0],p=h[1]}else if(e==="same"){c=Math.ceil(t/s),p=Math.ceil(n/r);let d=Math.max(0,(c-1)*s+a-t),h=Math.max(0,(p-1)*r+o-n),f=Math.floor(d/2),m=d-f,g=Math.floor(h/2),y=h-g;u={top:f,bottom:m,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-a+1)/s),p=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:d,bottom:h,left:f,right:m,type:d===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=yi((t-a+d+h)/s+1,i),p=yi((n-o+f+m)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:p}}function sD(e,t,n,s,r,a,o,i,l,u,c){let p,d,h,f;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=tD([t,n,s,1],i,1,r,e,c);d=g[0],h=g[1],f=g[2]}else if(e==="same"){d=Math.ceil(t/r),h=Math.ceil(n/a),f=Math.ceil(s/o);let m=(d-1)*r+i-t,g=(h-1)*a+l-n,y=(f-1)*o+u-s,x=Math.floor(m/2),A=m-x,b=Math.floor(g/2),w=g-b,S=Math.floor(y/2),I=y-S;p={top:b,bottom:w,left:S,right:I,front:x,back:A,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-i+1)/r),h=Math.ceil((n-l+1)/a),f=Math.ceil((s-u+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:d,outHeight:h,outWidth:f}}function yi(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Da(e){let[t,n,s]=mf(e);return t===1&&n===1&&s===1}function $r(e,t){return Da(e)||Da(t)}function Ik(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function Hn(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")M(fu(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(s=>{s.forEach(r=>{M(fu(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function rD(e,t){let s={x:$(e,"x","reshape","string_or_numeric")},r={shape:t};return B.runKernel(rl,s,r)}var H=V({reshape_:rD});function aD(e,t,n,s,r){let a=$(e,"x","avgPool","float32"),o=1;M($r(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=H(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),Hn("avgPool",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},p=B.runKernel(qa,u,c);return p=ge(p,a.dtype),l?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var cm=V({avgPool_:aD});function oD(e,t,n,s,r,a="NDHWC"){let o=$(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),Hn("avgPool3d",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},p=B.runKernel(Ld,u,c);return p=ge(p,i.dtype),l?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var C1=V({avgPool3d_:oD});function iD(e,t=0){M(e.length>=1,()=>"Pass at least one tensor to concat");let n=Ed(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${a.dtype}. `)}),n.length===1)return Vn(n[0]);let s=n,r={axis:t};return B.runKernel(Oi,s,r)}var kt=V({concat_:iD});function lD(e){let n={x:$(e,"x","sigmoid","float32")};return B.runKernel(Eo,n)}var Cn=V({sigmoid_:lD});function uD(e,t,n){let s=$(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return B.runKernel(ul,r,a)}var Pe=V({slice_:uD});function cD(e){let n={x:$(e,"x","tanh","float32")};return B.runKernel(Fo,n)}var gu=V({tanh_:cD});function dD(e,t,n,s,r,a){let o=$(e,"forgetBias","basicLSTMCell"),i=$(t,"lstmKernel","basicLSTMCell"),l=$(n,"lstmBias","basicLSTMCell"),u=$(s,"data","basicLSTMCell"),c=$(r,"c","basicLSTMCell"),p=$(a,"h","basicLSTMCell"),d=kt([u,p],1),h=Ye(d,i),f=ue(h,l),m=f.shape[0],g=f.shape[1]/4,y=[m,g],x=Pe(f,[0,0],y),A=Pe(f,[0,g],y),b=Pe(f,[0,g*2],y),w=Pe(f,[0,g*3],y),S=ue(L(Cn(x),gu(A)),L(c,Cn(ue(o,b)))),I=L(gu(S),Cn(w));return[S,I]}var pD=V({basicLSTMCell_:dD});function hD(e,t,n){let s=$(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);M(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),M(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),M(s.shape[0]%r===0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return B.runKernel(Fi,a,o)}var dm=V({batchToSpaceND_:hD});function fD(e){let t;return e.rank===0||e.rank===1?t=H(e,[1,1,1,e.size]):e.rank===2?t=H(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function mD(e,t,n,s,r,a){a==null&&(a=.001);let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;s!=null&&(c=$(s,"offset","batchNorm")),M(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),M(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),M(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let d={x:fD(o),scale:u,offset:c,mean:i,variance:l},h={varianceEpsilon:a},f=B.runKernel(io,d,h);return H(f,o.shape)}var yu=V({batchNorm_:mD});function gD(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;return s!=null&&(c=$(s,"offset","batchNorm")),M(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),M(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),M(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),yu(o,i,l,c,u,a)}var Ck=V({batchNorm2d_:gD});function yD(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;return s!=null&&(c=$(s,"offset","batchNorm")),M(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),M(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),M(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),yu(o,i,l,c,u,a)}var Tk=V({batchNorm3d_:yD});function AD(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;return s!=null&&(c=$(s,"offset","batchNorm")),M(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),M(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),M(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),yu(o,i,l,c,u,a)}var Nk=V({batchNorm4d_:AD});function xD(e,t,n){let s=$(e,"x","bincount"),r=$(t,"weights","bincount");M(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return B.runKernel(Lf,a,o)}var T1=V({bincount_:xD});function bD(e,t){let n=$(e,"s0","broadcastArgs","int32"),s=$(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return B.runKernel(Bf,r)}var Ek=V({broadcastArgs_:bD});function vD(e,t){let n=$(e,"broadcastTo","x"),s=n.shape;if(t.some(u=>!(u>0)||u%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let u=n.shape.slice();for(;u.length<t.length;)u.unshift(1);n=H(n,u)}let r=n.shape,a=Array.from(t);for(let u=t.length-1;u>=0;u--)if(r[u]===t[u])a[u]=1;else if(n.shape[u]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Vn(n);let i={x:n},l={reps:a};return B.runKernel(Yr,i,l)}var bd=V({broadcastTo_:vD});function wD(e){let n={x:$(e,"x","ceil","float32")};return B.runKernel(Za,n)}var Rk=V({ceil_:wD});function kD(e,t,n){let s=$(e,"x","clipByValue");M(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return B.runKernel(Zr,r,a)}var ms=V({clipByValue_:kD});function SD(e){return kt(e,0)}var _k=V({concat1d_:SD});function ID(e,t){return kt(e,t)}var rc=V({concat2d_:ID});function CD(e,t){return kt(e,t)}var $k=V({concat3d_:CD});function TD(e,t){return kt(e,t)}var Dk=V({concat4d_:TD});function ND(e,t,n,s,r="NHWC",a=[1,1],o){let i=$(e,"x","conv2d","float32"),l=$(t,"filter","conv2d","float32"),u=i,c=!1;i.rank===3&&(c=!0,u=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),Hn("conv2d",s,o);let p=r==="NHWC"?u.shape[3]:u.shape[1];M(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),M($r(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let d={x:u,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=B.runKernel(Ya,d,h);return c?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Pa=V({conv2d_:ND});function ED(e,t,n,s,r="NWC",a=1,o){let i=$(e,"x","conv1d"),l=$(t,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=H(i,[1,i.shape[0],i.shape[1]])),M(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),M(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),Hn("conv1d",s,o),M(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),M($r(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),M(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=H(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=H(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=Pa(d,p,[1,n],s,"NHWC",[1,a],o);return c?H(g,[g.shape[2],g.shape[3]]):H(g,[g.shape[0],g.shape[2],g.shape[3]])}var N1=V({conv1d_:ED});function RD(e,t,n,s,r,a="NHWC",o){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,u=!1;t.rank===3&&(u=!0,l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),M(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),M(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),M(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=a==="NHWC"?i[3]:i[1],p=a==="NHWC"?l.shape[3]:l.shape[1];M(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),M(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),Hn("conv2dDerInput",r,o);let d={dy:l,filter:n},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},f=B.runKernel(Ja,d,h);return u?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var E1=V({conv2DBackpropInput_:RD});function _D(e,t,n,s,r,a){let o=$(e,"x","conv2dTranspose"),i=$(t,"filter","conv2dTranspose");return E1(n,o,i,s,r,"NHWC",a)}var R1=V({conv2dTranspose_:_D});function $D(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=$(e,"x","conv3d"),i=$(t,"filter","conv3d"),l=o,u=!1;o.rank===4&&(u=!0,l=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),M(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),M(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),M($r(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),M(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let c={x:l,filter:i},p={strides:n,pad:s,dataFormat:r,dilations:a},d=B.runKernel(Vd,c,p);return u?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var _1=V({conv3d_:$D});function DD(e,t,n,s,r){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],u=o.shape[4];M(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),M(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),M(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),M(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),M(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:o,filter:n},p={pad:r,strides:s,inputShape:a},d=B.runKernel(Uf,c,p);return i?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Pk=V({conv3DBackpropInput_:DD});function PD(e,t,n,s,r){let a=$(e,"x","conv3dTranspose"),o=$(t,"filter","conv3dTranspose");return Pk(n,a,o,s,r)}var Fk=V({conv3dTranspose_:PD});function FD(e){let n={x:$(e,"x","cos","float32")};return B.runKernel(Qa,n)}var pm=V({cos_:FD});function OD(e){let n={x:$(e,"x","cosh","float32")};return B.runKernel(eo,n)}var $1=V({cosh_:OD});function MD(e,t=0,n=!1,s=!1){let a={x:$(e,"x","cumprod")},o={axis:t,exclusive:n,reverse:s};return B.runKernel(Lu,a,o)}var Ok=V({cumprod_:MD});function zD(e,t=0,n=!1,s=!1){let a={x:$(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return B.runKernel(Mi,a,o)}var D1=V({cumsum_:zD});function LD(e,t,n,s=!1){let r=$(e,"x","denseBincount"),a=$(t,"weights","denseBincount");M(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),M(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return B.runKernel(Gf,o,i)}var Mk=V({denseBincount_:LD});function BD(e,t,n="NHWC"){let s=$(e,"x","depthToSpace","float32"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];M(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),M(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),M(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),M(o%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return B.runKernel(Li,i,l)}var zk=V({depthToSpace_:BD});function WD(e,t,n,s,r="NHWC",a=[1,1],o){let i=$(e,"x","depthwiseConv2d","float32"),l=$(t,"filter","depthwiseConv2d","float32"),u=i,c=!1;i.rank===3&&(c=!0,u=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),M(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),Hn("depthwiseConv2d",s,o);let p={x:u,filter:l},d={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},h=B.runKernel(to,p,d);return c?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var up=V({depthwiseConv2d_:WD});function VD(e){let n={x:$(e,"x","diag")};return B.runKernel(qf,n)}var UD=V({diag_:VD});function GD(e,t,n,s,r=[1,1],a="NHWC"){let o=$(e,"x","dilation2d"),i=$(t,"filter","dilation2d");M(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),M(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),M(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,u=!1;o.rank===3&&(l=H(o,[1,o.shape[0],o.shape[1],o.shape[2]]),u=!0);let c={x:l,filter:i},p={strides:n,pad:s,dilations:r},d=B.runKernel(Ud,c,p);return u?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Lk=V({dilation2d_:GD});function HD(e,t){let n=$(e,"a","equal","string_or_numeric"),s=$(t,"b","equal","string_or_numeric");[n,s]=Mt(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Bi,r)}var Es=V({equal_:HD});function jD(e,t,n){let s=$(t,"a","where"),r=$(n,"b","where"),a=$(e,"condition","where","bool"),o=bt(bt(a.shape,s.shape),r.shape),i=bd(a,o),l=bd(s,o),u=bd(r,o),c={condition:i,t:l,e:u};return B.runKernel(ll,c)}var Un=V({where_:jD});function qD(e){let n={x:$(e,"x","zerosLike")};return B.runKernel(Al,n)}var rt=V({zerosLike_:qD});function XD(e,t){let n=$(e,"a","div"),s=$(t,"b","div");[n,s]=Mt(n,s);let r=de(n,s),a=rt(r),o=Es(s,a);return Un(o,a,r)}var Bk=V({divNoNan_:XD});function KD(e,t){let n=$(e,"t1","dot"),s=$(t,"t2","dot");M((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(M(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=H(n,[1,-1]),i=H(s,[-1,1]),l=Ye(o,i);return H(l,[])}else if(n.rank===1&&s.rank===2){let o=H(n,[1,-1]),i=H(s,[s.shape[0],s.shape[1]]),l=Ye(o,i);return H(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=H(s,[-1,1]),i=Ye(n,o);return H(i,[i.size])}else{let o=H(s,[s.shape[0],s.shape[1]]);return Ye(n,o)}}var ZD=V({dot_:KD});function YD(e,...t){let n=t.map((r,a)=>$(r,`tensors${a}`,"einsum")),s={equation:e};return B.runKernel(Gd,n,s)}var Wk=V({einsum_:YD});function JD(e){let n={x:$(e,"x","elu","float32")};return B.runKernel(so,n)}var cp=V({elu_:JD});function QD(e){let t=$(e,"x","erf");M(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ge(t,"float32"));let n={x:t};return B.runKernel(Bu,n)}var Vk=V({erf_:QD});function eP(e){let n={x:$(e,"x","exp")};return B.runKernel(ro,n)}var Rs=V({exp_:eP});function tP(e,t=0){let n=$(e,"x","expandDims","string_or_numeric");M(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return B.runKernel(Wi,s,r)}var qt=V({expandDims_:tP});function nP(e){let n={x:$(e,"x","expm1")};return B.runKernel(Vi,n)}var Uk=V({expm1_:nP});function sP(e,t){let n=$(e,"x","tile","string_or_numeric");M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return B.runKernel(Yr,s,r)}var Ls=V({tile_:sP});function rP(e,t,n,s="float32"){t==null&&(t=e);let r=We([e,t],s),a=e<=t?e:t;for(let i=0;i<a;++i)r.set(1,i,i);let o=H(r.toTensor(),[e,t]);if(n==null)return o;if(n.length===1)return Ls(qt(o,0),[n[0],1,1]);if(n.length===2)return Ls(qt(qt(o,0),0),[n[0],n[1],1,1]);if(n.length===3)return Ls(qt(qt(qt(o,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var P1=V({eye_:rP});function ac(e,t,n){let s={shape:e,value:t,dtype:n};return B.runKernel(Wu,{},s)}function aP(e){let n={x:$(e,"x","floor","float32")};return B.runKernel(ao,n)}var dp=V({floor_:aP});function oP(e,t,n=0,s=0){let r=$(e,"x","gather"),a=$(t,"indices","gather","int32"),o={x:r,indices:a},i={axis:n,batchDims:s};return B.runKernel(Gi,o,i)}var Au=V({gather_:oP});function iP(e,t){let n=$(e,"a","greater","string_or_numeric"),s=$(t,"b","greater","string_or_numeric");[n,s]=Mt(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(ji,r)}var gs=V({greater_:iP});function lP(e,t){let n=$(e,"a","greaterEqual","string_or_numeric"),s=$(t,"b","greaterEqual","string_or_numeric");[n,s]=Mt(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(lo,r)}var wl=V({greaterEqual_:lP});function uP(e){let n={input:$(e,"input","imag")};return B.runKernel(Hd,n)}var hm=V({imag_:uP});function cP(e){let n={x:$(e,"x","isFinite")};return B.runKernel(Vu,n)}var dP=V({isFinite_:cP});function pP(e){let n={x:$(e,"x","isInf")};return B.runKernel(Uu,n)}var hP=V({isInf_:pP});function fP(e){let n={x:$(e,"x","isNaN")};return B.runKernel(Gu,n)}var Gk=V({isNaN_:fP});function mP(e,t=.2){let s={x:$(e,"x","leakyRelu")},r={alpha:t};return B.runKernel(co,s,r)}var fm=V({leakyRelu_:mP});function gP(e,t){let n=$(e,"a","less","string_or_numeric"),s=$(t,"b","less","string_or_numeric");[n,s]=Mt(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(qi,r)}var F1=V({less_:gP});function yP(e,t){let n=$(e,"a","lessEqual","string_or_numeric"),s=$(t,"b","lessEqual","string_or_numeric");[n,s]=Mt(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Xi,r)}var kl=V({lessEqual_:yP});function Hk(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let s={start:e,stop:t,num:n};return B.runKernel(Yf,{},s)}function AP(e,t=5,n=1,s=1,r=.5){let a=$(e,"x","localResponseNormalization");M(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${a.rank}.`),M(fu(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},u={depthRadius:t,bias:n,alpha:s,beta:r},c=B.runKernel(qd,l,u);return i?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var jk=V({localResponseNormalization_:AP});function xP(e){let n={x:$(e,"x","log","float32")};return B.runKernel(po,n)}var _s=V({log_:xP});function bP(e){let n={x:$(e,"x","log1p")};return B.runKernel(Hu,n)}var mm=V({log1p_:bP});function vP(e){return M(Na(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=$(t,"x","tf.grad","string_or_numeric"),r=n!=null?$(n,"dy","tf.grad"):null;return B.tidy(()=>{let{value:a,grads:o}=B.gradients(()=>e(s),[s],r);return r!=null&&Gn(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),gm(o),o[0]})}}function wP(e){return M(Na(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{M(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=Ed(t,"args","tf.grads","string_or_numeric"),r=n!=null?$(n,"dy","tf.grads"):null;return B.tidy(()=>{let{value:a,grads:o}=B.gradients(()=>e(...s),s,r);return r!=null&&Gn(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),gm(o),o})}}function kP(e){return M(Na(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{M(t instanceof nt,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),M(n==null||n instanceof nt,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=B.gradients(()=>e(t),[t],n);return gm(s),{grad:s[0],value:r}}}function SP(e){return M(Na(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{M(Array.isArray(t)&&t.every(r=>r instanceof nt),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),M(n==null||n instanceof nt,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=B.gradients(()=>e(...t),t,n);return n!=null&&Gn(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),gm(s.grads),s}}function qk(e,t){M(Na(e),()=>"The f passed in variableGrads(f) must be a function"),M(t==null||Array.isArray(t)&&t.every(u=>u instanceof Nd),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in B.registeredVariables)t.push(B.registeredVariables[u])}let s=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),M(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=B.gradients(e,t,null,a);M(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),M(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),s!=null&&s.forEach(u=>l[u.name]=null),{value:o,grads:l}}function Rr(e){return B.customGrad(e)}function gm(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function IP(e){let n={x:$(e,"x","neg")};return B.runKernel(Zi,n)}var Ot=V({neg_:IP});function CP(e){let n={x:$(e,"x","softplus")};return B.runKernel(ec,n)}var oc=V({softplus_:CP});function TP(e){let t=$(e,"x","logSigmoid");return Rr(s=>({value:Ot(oc(Ot(s))),gradFunc:o=>L(o,Cn(Ot(s)))}))(t)}var NP=V({logSigmoid_:TP});function EP(e,t=null,n=!1){let r={x:$(e,"x","max")},a={reductionIndices:t,keepDims:n};return B.runKernel(ho,r,a)}var hn=V({max_:EP});function RP(e,t){let n=$(e,"a","sub"),s=$(t,"b","sub");[n,s]=Mt(n,s);let r={a:n,b:s};return B.runKernel(Po,r)}var pe=V({sub_:RP});function _P(e,t=null,n=!1){let s=$(e,"x","sum");s.dtype==="bool"&&(s=ge(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return B.runKernel(_o,r,a)}var ke=V({sum_:_P});function $P(e,t=-1){let n=$(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Rr((r,a)=>{let i=hn(r,t,!0),l=pe(r,i),u=pe(ge(l,"float32"),_s(ke(Rs(l),t,!0)));return a([u]),{value:u,gradFunc:(p,d)=>{let[h]=d,f=!0,m=Rs(h);return pe(p,L(ke(p,t,f),m))}}})(n)}var O1=V({logSoftmax_:$P});function M1(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function Xk(e,t,n){let s=e.length+t.length,r=[],a=0,o=0;for(let i=0;i<s;i++)n.indexOf(i)===-1?r.push(e[a++]):r.push(t[o++]);return r}function Kk(e,t){let n=[],s=e.length;for(let a=0;a<s;a++)t.indexOf(a)===-1&&n.push(e[a]);let r=t.map(a=>e[a]);return[n,r]}function Si(e,t){let n=t.map(s=>1);return Xk(e,n,t)}function DP(e,t,n){M(M1(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function Zk(e,t){if(M1(e,t))return null;let n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function z1(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function PP(e,t){let n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function FP(e,t=null,n=!1){let s=$(e,"x","logSumExp"),r=Vs(t,s.shape),a=hn(s,r,!0),o=pe(s,a),i=Rs(o),l=ke(i,r),u=_s(l),c=ue(H(a,u.shape),u);if(n){let p=Si(c.shape,r);return H(c,p)}return c}var Yk=V({logSumExp_:FP});function OP(e,t){let n=$(e,"a","logicalAnd","bool"),s=$(t,"b","logicalAnd","bool");bt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Ki,r)}var pr=V({logicalAnd_:OP});function MP(e){let n={x:$(e,"x","logicalNot","bool")};return B.runKernel(ju,n)}var ym=V({logicalNot_:MP});function zP(e,t){let n=$(e,"a","logicalOr","bool"),s=$(t,"b","logicalOr","bool");bt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(jd,r)}var L1=V({logicalOr_:zP});function LP(e,t){let n=$(e,"a","logicalXor","bool"),s=$(t,"b","logicalXor","bool");return bt(n.shape,s.shape),pr(L1(e,t),ym(pr(e,t)))}var BP=V({logicalXor_:LP});function WP(e,t,n,s,r){let a=$(e,"x","maxPool"),o=1,i=a,l=!1;a.rank===3&&(l=!0,i=H(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),M($r(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),Hn("maxPool",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},p=B.runKernel(mo,u,c);return l?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Am=V({maxPool_:WP});function VP(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=$(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),Hn("maxPool3d",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},p=B.runKernel(Xd,u,c);return l?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var B1=V({maxPool3d_:VP});function UP(e,t,n,s,r=!1){let o={x:$(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=B.runKernel(tm,o,i);return{result:l[0],indexes:l[1]}}var Jk=V({maxPoolWithArgmax_:UP});function GP(e,t){let n=$(e,"a","maximum"),s=$(t,"b","maximum");[n,s]=Mt(n,s),n.dtype==="bool"&&(n=ge(n,"int32"),s=ge(s,"int32")),bt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(fo,r)}var Jr=V({maximum_:GP});function HP(e,t=null,n=!1){let r={x:$(e,"x","mean")},a={axis:t,keepDims:n};return B.runKernel(go,r,a)}var Bt=V({mean_:HP});function Wt(e,t="float32"){if(t==="complex64"){let s=Wt(e,"float32"),r=Wt(e,"float32");return $a(s,r)}let n=Of(Ct(e),t);return B.makeTensor(n,e,t)}function fs(e,t="float32"){if(t==="complex64"){let s=fs(e,"float32"),r=Wt(e,"float32");return $a(s,r)}let n=t1(Ct(e),t);return B.makeTensor(n,e,t)}function jP(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=$(e,"x","meshgrid",e instanceof nt?e.dtype:"float32");if(t===void 0)return[s];let r=$(t,"y","meshgrid",t instanceof nt?t.dtype:"float32"),a=Ct(s.shape),o=Ct(r.shape);return n==="xy"?(s=H(s,[1,-1]),r=H(r,[-1,1]),[Ye(fs([o,1],s.dtype),s),Ye(r,fs([1,a],r.dtype))]):(s=H(s,[-1,1]),r=H(r,[1,-1]),[Ye(s,fs([1,o],s.dtype)),Ye(fs([a,1],r.dtype),r)])}function qP(e,t=null,n=!1){let r={x:$(e,"x","min")},a={axis:t,keepDims:n};return B.runKernel(yo,r,a)}var Fa=V({min_:qP});function XP(e,t){let n=$(e,"a","minimum"),s=$(t,"b","minimum");[n,s]=Mt(n,s),n.dtype==="bool"&&(n=ge(n,"int32"),s=ge(s,"int32")),bt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Ao,r)}var pp=V({minimum_:XP});function KP(e,t,n){M(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=$(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");M(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i<s.rank;i++)M(t[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),M(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return B.runKernel(xo,o,a)}var Qk=V({mirrorPad_:KP});function ZP(e,t){let n=$(e,"a","mod"),s=$(t,"b","mod");[n,s]=Mt(n,s);let r={a:n,b:s};return B.runKernel(qu,r)}var ic=V({mod_:ZP});function YP(e){let t=$(e,"x","square"),n={};return B.runKernel("Square",{x:t},n)}var At=V({square_:YP});function JP(e,t=null,n=!1){e=$(e,"x","moments");let s=Vs(t,e.shape),r=Bt(e,s,n),a=r.shape;n||(a=Si(r.shape,s));let o=At(pe(ge(e,"float32"),H(r,a))),i=Bt(o,s,n);return{mean:r,variance:i}}var xm=V({moments_:JP});function QP(e,t,n,s){let r=$(t,"data","multiRNNCell"),a=Ed(n,"c","multiRNNCell"),o=Ed(s,"h","multiRNNCell"),i=r,l=[];for(let p=0;p<e.length;p++){let d=e[p](i,a[p],o[p]);l.push(d[0]),l.push(d[1]),i=d[1]}let u=[],c=[];for(let p=0;p<l.length;p+=2)u.push(l[p]),c.push(l[p+1]);return[u,c]}var eF=V({multiRNNCell_:QP});function tF(e,t,n,s=!1){let r=$(e,"logits","multinomial"),a=r.size,o=r.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?H(r,[1,-1]):r},u={numSamples:t,seed:n,normalized:s},c=B.runKernel(nm,l,u);return o===1?H(c,[c.size]):c}var eS=V({multinomial_:tF});function nF(e,t){let n=$(e,"a","notEqual","string_or_numeric"),s=$(t,"b","notEqual","string_or_numeric");[n,s]=Mt(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Yi,r)}var xu=V({notEqual_:nF});function sF(e){let n={x:$(e,"x","onesLike")};return B.runKernel(el,n)}var $s=V({onesLike_:sF});function rF(e,t){let n=$(e,"v1","outerProduct"),s=$(t,"v2","outerProduct");M(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=H(n,[-1,1]),a=H(s,[1,-1]);return Ye(r,a)}var aF=V({outerProduct_:rF});function oF(e,t,n=0){let s=$(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return B.runKernel(vo,a,r)}var Hs=V({pad_:oF});function iF(e,t,n=0){return M(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Hs(e,[t],n)}var lF=V({pad1d_:iF});function uF(e,t,n=0){return M(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Hs(e,t,n)}var cF=V({pad2d_:uF});function dF(e,t,n=0){return M(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Hs(e,t,n)}var pF=V({pad3d_:dF});function hF(e,t,n=0){return M(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Hs(e,t,n)}var fF=V({pad4d_:hF});function mF(e,t,n){let s=$(e,"x","spaceToBatchND");M(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),M(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),M(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]===0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return B.runKernel(dl,r,a)}var bm=V({spaceToBatchND_:mF});function gF(e,t,n,s,r,a,o){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let i=$(e,"x","maxPool"),l=i,u=!1;i.rank===3&&(u=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M($r(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let c=kk(l.shape,t,a,r,s),p=[c.dilationHeight,c.dilationWidth],d;s==="same"?d=AF([c.filterHeight,c.filterWidth],p):d=[[0,0],[0,0]];let h=p[0]===1&&p[1]===1,[f,m]=yF([c.inHeight,c.inWidth],p,d),g=h?s:"valid",y=h?l:bm(l,p,f),A=(n==="avg"?()=>cm(y,t,a,g,o):()=>Am(y,t,a,g,o))(),b=h?A:dm(A,p,m);return u?H(b,[b.shape[1],b.shape[2],b.shape[3]]):b}function yF(e,t,n){let s=n.map(c=>c[0]),r=n.map(c=>c[1]),a=e.concat(s,r),o=t.map((c,p)=>(c-a[p]%c)%c),i=r.map((c,p)=>c+o[p]),l=t.map((c,p)=>[s[p],i[p]]),u=t.map((c,p)=>[0,o[p]]);return[l,u]}function AF(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var xF=V({pool_:gF});function bF(e,t){let n=$(e,"base","pow"),s=$(t,"exp","pow");[n,s]=Mt(n,s);let r={a:n,b:s};return B.runKernel(wo,r)}var Oa=V({pow_:bF});function vF(e,t){let n=$(e,"x","prelu"),s=$(t,"alpha","prelu"),r={x:n,alpha:s};return B.runKernel(ko,r)}var vm=V({prelu_:vF});function wF(e,t=null,n=!1){let s=$(e,"x","prod");s.dtype==="bool"&&(s=ge(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return B.runKernel(sl,r,a)}var W1=V({prod_:wF});function kF(e,t,n){let s=Ct(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<s;a++)r[a]=t();return B.makeTensor(r,e,n)}var SF=V({rand_:kF}),V1=$i(Pf()),U1=class{constructor(e,t,n,s,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=r||Math.random();this.random=V1.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,r,a;do s=2*this.random()-1,r=2*this.random()-1,a=s*s+r*r;while(a>=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},IF=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=V1.alea(r.toString()),this.randn=new U1(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),r<t||Math.log(r)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},CF=class{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=V1.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function TF(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new IF(t,n,s,r),o=We(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var NF=V({randomGamma_:TF});function EF(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);let a=new U1(t,n,s,!1,r),o=We(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var tS=V({randomNormal_:EF});function RF(e,t=0,n=1,s="float32",r){let a=We(e,s),o=new CF(t,n,null,r);for(let i=0;i<a.values.length;i++)a.values[i]=o.nextValue();return a.toTensor()}var lc=V({randomUniform_:RF});function bu(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:s};return B.runKernel(Ku,{},r)}function _F(e){let n={input:$(e,"input","real")};return B.runKernel(Kd,n)}var _d=V({real_:_F});function $F(e){let n={x:$(e,"x","reciprocal")};return B.runKernel(Zu,n)}var nS=V({reciprocal_:$F});function DF(e){let n={x:$(e,"x","relu")};return B.runKernel(So,n)}var Dr=V({relu_:DF});function PF(e){let n={x:$(e,"x","relu6")};return B.runKernel(Co,n)}var G1=V({relu6_:PF});function FF(e,t){let s={x:$(e,"x","reverse")},r={dims:t};return B.runKernel(al,s,r)}var Ds=V({reverse_:FF});function OF(e){let t=$(e,"x","reverse");return M(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Ds(t,0)}var MF=V({reverse1d_:OF});function zF(e,t){let n=$(e,"x","reverse");return M(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Ds(n,t)}var LF=V({reverse2d_:zF});function BF(e,t){let n=$(e,"x","reverse");return M(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Ds(n,t)}var WF=V({reverse3d_:BF});function VF(e,t){let n=$(e,"x","reverse");return M(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Ds(n,t)}var UF=V({reverse4d_:VF});function GF(e){let n={x:$(e,"x","round")};return B.runKernel(ol,n)}var H1=V({round_:GF});function HF(e){let n={x:$(e,"x","rsqrt","float32")};return B.runKernel(To,n)}var j1=V({rsqrt_:HF});function Ie(e,t){if((Sn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&Sn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return zo(e,[],[],t)}function jF(e){let n={x:$(e,"x","selu")};return B.runKernel(Ju,n)}var q1=V({selu_:jF});function qF(e,t,n,s,r,a=[1,1],o="NHWC"){let i=$(e,"x","separableConv2d"),l=$(t,"depthwiseFilter","separableConv2d"),u=$(n,"pointwiseFilter","separableConv2d"),c=i,p=!1;if(i.rank===3&&(p=!0,c=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");M(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),M(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),M(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),M(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let d=l.shape[2],h=l.shape[3];M(u.shape[2]===d*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*h}, but got ${u.shape[2]}.`);let f=up(c,l,s,r,o,a),g=Pa(f,u,1,"valid",o);return p?H(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var sS=V({separableConv2d_:qF});async function XF(e,t){let n=$(e,"x","setdiff1d"),s=$(t,"y","setdiff1d");M(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),M(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),M(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let c=0;c<r.length;c++)o.has(r[c])||i++;let l=new nn([i],n.dtype),u=new nn([i],"int32");for(let c=0,p=0;c<r.length;c++)o.has(r[c])||(l.values[p]=r[c],u.values[p]=c,p++);return[l.toTensor(),u.toTensor()]}var rS=XF;function KF(e){let n={x:$(e,"x","sign")};return B.runKernel(Qu,n)}var aS=V({sign_:KF});function ZF(e){let n={x:$(e,"x","sin","float32")};return B.runKernel(No,n)}var X1=V({sin_:ZF});function YF(e){let n={x:$(e,"x","sinh")};return B.runKernel(cl,n)}var K1=V({sinh_:YF});function JF(e,t,n){let s=$(e,"x","slice1d");return M(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),Pe(s,[t],[n])}var wm=V({slice1d_:JF});function QF(e,t,n){let s=$(e,"x","slice2d");return M(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),Pe(s,t,n)}var Z1=V({slice2d_:QF});function eO(e,t,n){let s=$(e,"x","slice3d");return M(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),Pe(s,t,n)}var Sl=V({slice3d_:eO});function tO(e,t,n){let s=$(e,"x","slice4d");return M(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),Pe(s,t,n)}var Ii=V({slice4d_:tO});function nO(e,t=-1){let n=$(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return B.runKernel($o,s,r)}var uc=V({softmax_:nO});function sO(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(Kf,t)}var km=V({fft_:sO});function rO(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(Zf,t)}var $d=V({ifft_:rO});function aO(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=H(e,[n,t]);s=$d(r)}else{let r=[n,2*(t-1)],a=H(_d(e),[n,t]),o=H(hm(e),[n,t]),i=Ds(Pe(a,[0,1],[n,t-2]),1),l=L(Ds(Pe(o,[0,1],[n,t-2]),1),Ie(-1)),u=kt([a,i],1),c=kt([o,l],1),p=H($a(u,c),[r[0],r[1]]);s=$d(p)}if(s=_d(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=H(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var Y1=V({irfft_:aO});function oO(e,t,n=0){let r={x:$(e,"x","split")},a={numOrSizeSplits:t,axis:n};return B.runKernel(pl,r,a)}var Kt=V({split_:oO});function iO(e,t){M(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t<n){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=Pe(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=kt([e,Wt(f)],e.shape.length-1),n=t}else r=e;let a=rt(r),o=H($a(r,a),[s,n]),i=km(o),l=Math.floor(n/2)+1,u=_d(i),c=hm(i),p=Kt(u,[l,n-l],u.shape.length-1),d=Kt(c,[l,n-l],c.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,H($a(p[0],d[0]),h)}var Sm=V({rfft_:iO});function lO(e){let n={x:$(e,"x","sqrt","float32")};return B.runKernel(Ro,n)}var Nn=V({sqrt_:lO});function uO(e,t){let n=$(e,"a","squaredDifference"),s=$(t,"b","squaredDifference");[n,s]=Mt(n,s),bt(n.shape,s.shape);let r={a:n,b:s},a={};return B.runKernel(Do,r,a)}var J1=V({squaredDifference_:uO});function cO(e,t){let n=$(e,"x","squeeze");return H(n,uw(n.shape,t).newShape)}var Qe=V({squeeze_:cO});function dO(e,t=0){let n=Ed(e,"tensors","stack","string_or_numeric");M(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&M(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return B.runKernel(nl,s,r)}var an=V({stack_:dO});function pO(e,t=0){let s={x:$(e,"x","step")},r={alpha:t};return B.runKernel(Mo,s,r)}var hp=V({step_:pO});function hO(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let c={x:$(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return B.runKernel(hl,c,p)}var oS=V({stridedSlice_:hO});function fO(e){let n={x:$(e,"x","tan","float32")};return B.runKernel(fl,n)}var iS=V({tan_:fO});function It(e,t){Di(e);let n=Er(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return zo(e,null,n,t)}function ur(e,t,n){if(Di(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=Er(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return zo(e,t,s,n)}function mO(e,t,n){if(Di(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=Er(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return zo(e,t,s,n)}function gO(e,t,n){if(Di(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=Er(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return zo(e,t,s,n)}function yO(e,t,n){if(Di(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=Er(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,zo(e,t,s,n)}function AO(e,t=1,n=!0){let s=$(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=B.runKernel(ml,a,o);return{values:i,indices:l}}var lS=V({topk_:AO});function xO(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new U1(t,n,s,!0,r),o=We(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var Im=V({truncatedNormal_:xO});function bO(e,t=0){let n=$(e,"x","unique","string_or_numeric");M(n.rank>0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=B.runKernel(im,s,r);return{values:a,indices:o}}var hy=V({unique_:bO});function vO(e,t,n){let s=$(e,"x","unsortedSegmentSum"),r=$(t,"segmentIds","unsortedSegmentSum","int32");M(fu(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return B.runKernel(tp,a,o)}var uS=V({unsortedSegmentSum_:vO});function wO(e,t=0){let n=$(e,"x","unstack","string_or_numeric");M(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return B.runKernel(yl,s,r)}var es=V({unstack_:wO});function cS(e,t=!0,n,s){return B.makeVariable(e,t,n,s)}function dS(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let s=We(e,"int32"),r=We([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let o=s.indexToLoc(n[a]),i=a*e.length;r.values.set(o,i)}return r.toTensor()}async function kO(e){let t=$(e,"condition","whereAsync","bool"),n=await t.data(),s=dS(t.shape,n);return e!==t&&t.dispose(),s}var Q1=kO;async function SO(e,t,n){let s=$(e,"tensor","boolMask"),r=$(t,"mask","boolMask","bool"),a=n==null?0:n,o=r.rank,i=s.shape;M(o>0,()=>"mask cannot be scalar"),Gn(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m<a+o;m++)l*=i[m];let u=i.slice(0,a).concat([l],i.slice(a+o)),c=H(s,u),p=H(r,[-1]),d=await Q1(p),h=Qe(d,[1]),f=Au(c,h,a);return e!==s&&s.dispose(),t!==r&&r.dispose(),h.dispose(),c.dispose(),p.dispose(),d.dispose(),f}var IO=SO;function CO(e,t="euclidean",n=null,s=!1){e=$(e,"x","norm");let r=pS(e,t,n),a=r.shape;if(s){let o=Vs(n,e.shape);a=Si(r.shape,o)}return H(r,a)}function pS(e,t,n=null){if(e.rank===0)return en(e);if(e.rank!==1&&n===null)return pS(H(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return ke(en(e),n);if(t===1/0)return hn(en(e),n);if(t===-1/0)return Fa(en(e),n);if(t==="euclidean"||t===2)return Nn(ke(Oa(en(e),Ie(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return hn(ke(en(e),n[0]),n[1]-1);if(t===1/0)return hn(ke(en(e),n[1]),n[0]);if(t===-1/0)return Fa(ke(en(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return Nn(ke(At(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var eA=V({norm_:CO});function TO(e,t,n,s,r=!0){let a=$(e,"v","movingAverage"),o=$(t,"x","movingAverage"),i=$(n,"decay","movingAverage");_w(a,o),M(Ga(a.shape,o.shape),()=>"Shape mismatch in v and x");let l=Ie(1),u=pe(l,i),c=L(pe(o,a),u);if(r){M(s!=null,()=>"When using zeroDebias: true, step is required.");let p=$(s,"step","movingAverage");c=de(c,pe(l,Oa(i,p)))}return ue(a,c)}var NO=V({movingAverage_:TO});function EO(e,t,n){let s=$(e,"indices","scatterND","int32"),r=$(t,"updates","scatterND");g1(r,s,n);let a={indices:s,updates:r},o={shape:n};return B.runKernel(il,a,o)}var hS=V({scatterND_:EO});function RO(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function _O(e,t,n,s=0){let r=$(e,"sparseIndices","sparseToDense","int32"),a=$(t,"sparseValues","sparseToDense"),o=$(s,"defaultValue","sparseToDense",a.dtype);RO(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return B.runKernel(Qd,i,l)}var tA=V({sparseToDense_:_O});function $O(e,t){let n=$(t,"indices","gatherND","int32"),r={params:$(e,"x","gatherND","string_or_numeric"),indices:n};return B.runKernel(Hi,r)}var fS=V({gatherND_:$O});function DO(e,t){if(t==null)return e.shape.slice();if(Ga(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function PO(e,t,n,s){let r=$(e,"x","dropout");if(M(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),M(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof nt?r.clone():r;let a=DO(r,n),o=1-t,i=de(dp(ue(lc(a,0,1,"float32",s),o)),o);return L(r,i)}var mS=V({dropout_:PO});function gS(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function nA(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a<e;++a){let o=2*Math.PI*a/(e+s-1);r[a]=t-n*Math.cos(o)}return It(r,"float32")}async function FO(e,t,n=1){let s=$(e,"predictions","inTopK"),r=$(t,"targets","inTopK");M(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),M(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),Gn(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];M(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,u]=[o.length/a,a],c=cw("bool",l);for(let p=0;p<l;p++){let d=p*u,h=o.subarray(d,d+u),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),c[p]=0;for(let m=0;m<n;m++)if(f[m].index===i[p]){c[p]=1;break}}return e!==s&&s.dispose(),t!==r&&r.dispose(),pt(c,r.shape,"bool")}var OO=FO,Ma={};Le(Ma,{conv2d:()=>LO,depthwiseConv2d:()=>UO,matMul:()=>HO});function MO(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]])),M(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),M(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),M(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=a==="NHWC"?i.shape[3]:i.shape[1],c=a==="NHWC"?l.shape[3]:l.shape[1];M(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),M(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),Hn("conv2dDerFilter",r,o);let p={x:i,dy:l},d={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return B.runKernel(Wf,p,d)}var sA=V({conv2DBackpropFilter_:MO});function Cm(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return L(e,hp(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Tm(e,t){let n=t,s=Zt(e.shape,t.shape);return s.length>0&&(n=ke(n,s)),H(n,e.shape)}function Nm(e,t,n,s){if(t==="linear")return e;if(t==="relu")return Dr(e);if(t==="elu")return cp(e);if(t==="relu6")return G1(e);if(t==="prelu")return vm(e,n);if(t==="leakyrelu")return fm(e,s);if(t==="sigmoid")return Cn(e);throw new Error(`Unknown fused activation ${t}.`)}var Em=(e,t)=>!(e>0)||t==="linear";function zO({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",Em(B.state.gradientDepth,l)===!1){let w=Pa(e,t,n,s,r,a,o);return i!=null&&(w=ue(w,i)),Nm(w,l,u,c)}let p=$(e,"x","conv2d","float32"),d=$(t,"filter","conv2d","float32"),h=p,f=!1;p.rank===3&&(f=!0,h=H(p,[1,p.shape[0],p.shape[1],p.shape[2]])),M(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),M(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),Hn("fused conv2d",s,o),M(h.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${d.shape[2]}.`),M($r(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),M(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let m=lp(h.shape,d.shape,n,a,s,o),g;i!=null&&(g=$(i,"bias","fused conv2d"),[g]=Mt(g,p),bt(m.outShape,g.shape));let y;u!=null&&(y=$(u,"prelu weights","fused conv2d"));let x=(w,S)=>{let[I,E,R,P]=S,_=Cm(w,R,l);M(Da(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let D=E1(E.shape,_,I,n,s),T=sA(E,_,I.shape,n,s),O=[D,T];if(P!=null){let U=Tm(P,_);O.push(U)}return O},A={x:h,filter:d,bias:g,preluActivationWeights:y},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?Rr((S,I,E)=>{let R=B.runKernel(Ra,A,b);return E([I,S,R]),f&&(R=H(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:x}})(h,d):Rr((S,I,E,R)=>{let P=B.runKernel(Ra,A,b);return R([I,S,P,E]),f&&(P=H(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:x}})(h,d,g)}var LO=V({fusedConv2d_:zO});function BO(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:i,dy:l},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return B.runKernel(Hf,u,c)}var yS=V({depthwiseConv2dNativeBackpropFilter_:BO});function WO(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:i,filter:n},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},p=B.runKernel(jf,u,c);return l?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var AS=V({depthwiseConv2dNativeBackpropInput_:WO});function VO({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(Em(B.state.gradientDepth,l)===!1){let w=up(e,t,n,s,r,a,o);return i!=null&&(w=ue(w,i)),Nm(w,l,u,c)}let p=$(e,"x","depthwiseConv2d","float32"),d=$(t,"filter","depthwiseConv2d","float32"),h=p,f=!1;p.rank===3&&(f=!0,h=H(p,[1,p.shape[0],p.shape[1],p.shape[2]])),M(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),M(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),M(h.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),a==null&&(a=[1,1]),M($r(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),Hn("fused depthwiseConv2d",s,o);let m=lp(h.shape,d.shape,n,a,s,o,!0),g;i!=null&&(g=$(i,"bias","fused conv2d"),[g]=Mt(g,p),bt(m.outShape,g.shape));let y;u!=null&&(y=$(u,"prelu weights","fused depthwiseConv2d"));let x=(w,S)=>{M(Da(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[I,E,R,P]=S,_=Cm(w,R,l),D=AS(E.shape,_,I,n,s,a,o),T=yS(E,_,I.shape,n,s,a,o);if(P!=null){let O=Tm(g,_);return[D,T,O]}return[D,T]},A={x:h,filter:d,bias:g,preluActivationWeights:y},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?Rr((S,I,E)=>{let R=B.runKernel(_a,A,b);return E([I,S,R]),f&&(R=H(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:x}})(h,d):Rr((S,I,E,R)=>{let P=B.runKernel(_a,A,b);return R([I,S,P,E]),f&&(P=H(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:x}})(h,d,g)}var UO=V({fusedDepthwiseConv2d_:VO});function GO({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(Em(B.state.gradientDepth,a)===!1){let _=Ye(e,t,n,s);return r!=null&&(_=ue(_,r)),Nm(_,a,o,i)}let l=$(e,"a","fused matMul"),u=$(t,"b","fused matMul");[l,u]=Mt(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],p=s?u.shape[u.rank-1]:u.shape[u.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=s?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),g=Ct(f),y=Ct(m);M(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${s} must match.`);let A=bt(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([d,h]),b=n?H(l,[g,c,d]):H(l,[g,d,c]),w=s?H(u,[y,h,p]):H(u,[y,p,h]),S;r!=null&&(S=$(r,"bias","fused matMul"),[S]=Mt(S,l),bt(A,S.shape));let I;o!=null&&(I=$(o,"prelu weights","fused matMul"));let E=(_,D)=>{let[T,O,U,K]=D,z=Cm(H(_,U.shape),U,a),Z,W;if(!n&&!s?(Z=Ye(z,O,!1,!0),W=Ye(T,z,!0,!1)):!n&&s?(Z=Ye(z,O,!1,!1),W=Ye(z,T,!0,!1)):n&&!s?(Z=Ye(O,z,!1,!0),W=Ye(T,z,!1,!1)):(Z=Ye(O,z,!0,!0),W=Ye(z,T,!0,!0)),r!=null){let ee=Tm(K,z);return[Z,W,ee]}else return[Z,W]},R={a:b,b:w,bias:S,preluActivationWeights:I},P={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?Rr((D,T,O)=>{let U=B.runKernel(Ea,R,P);return O([D,T,U]),{value:H(U,A),gradFunc:E}})(b,w):Rr((D,T,O,U)=>{let K=B.runKernel(Ea,R,P);return U([D,T,K,O]),{value:H(K,A),gradFunc:E}})(b,w,S)}var HO=V({fusedMatMul_:GO});function jO(e){return nA(e,.54,.46)}var qO=V({hammingWindow_:jO});function XO(e){return nA(e,.5,.5)}var xS=V({hannWindow_:XO});function KO(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(Pe(e,a,t)),a+=n;if(s)for(;a<e.size;){let i=a+t-e.size,l=kt([Pe(e,a,t-i),ac([i],r)]);o.push(l),a+=n}return o.length===0?ur([],[0,t]):H(kt(o),[o.length,t])}var bS=V({frame_:KO});function ZO(e,t,n,s,r=xS){s==null&&(s=gS(t));let a=bS(e,t,n),o=L(a,r(t));return Sm(o,s)}var YO=V({stft_:ZO});function JO(e,t,n,s,r="bilinear",a=0){let o=$(e,"image","cropAndResize"),i=$(t,"boxes","cropAndResize","float32"),l=$(n,"boxInd","cropAndResize","int32"),u=i.shape[0];M(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),M(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),M(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),M(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),M(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let c={image:o,boxes:i,boxInd:l},p={method:r,extrapolationValue:a,cropSize:s};return B.runKernel(zi,c,p)}var QO=V({cropAndResize_:JO});function eM(e){let t=$(e,"image","flipLeftRight","float32");M(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return B.runKernel(Ui,n,{})}var tM=V({flipLeftRight_:eM});function nM(e){let t=$(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];M(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),M(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,Ls(t,r)}var sM=V({grayscaleToRGB_:nM});function rM(e,t,n=0,s=.5){let r=$(e,"image","rotateWithOffset","float32");M(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return B.runKernel(xl,a,o)}var aM=V({rotateWithOffset_:rM});function cc(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),M(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),M(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),M(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),M(t.rank===1,()=>"scores must be a 1D tensor"),M(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),M(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function oM(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=$(e,"boxes","nonMaxSuppression","float32"),o=$(t,"scores","nonMaxSuppression","float32"),i=cc(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return B.runKernel(Ji,{boxes:a,scores:o},l)}var iM=V({nonMaxSuppression_:oM});function lM(e,t,n){let s=uM(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function uM(e,t,n){return dM(e,t,n||cM)}function cM(e,t){return e>t?1:e<t?-1:0}function dM(e,t,n){let s=0,r=e.length,a=0,o=!1;for(;s<r;){a=s+(r-s>>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function vS(e,t,n,s,r){return rA(e,t,n,s,r,0)}function wS(e,t,n,s,r,a){return rA(e,t,n,s,r,0,!1,a,!0)}function kS(e,t,n,s,r,a){return rA(e,t,n,s,r,a,!0)}function rA(e,t,n,s,r,a,o=!1,i=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(D3);let c=a>0?-.5/a:0,p=[],d=[];for(;p.length<n&&u.length>0;){let g=u.pop(),{score:y,boxIndex:x,suppressBeginIndex:A}=g;if(y<r)break;let b=!1;for(let w=p.length-1;w>=A;--w){let S=pM(e,x,p[w]);if(S>=s){b=!0;break}if(g.score=g.score*hM(s,c,S),g.score<=r)break}g.suppressBeginIndex=p.length,b||(g.score===y?(p.push(x),d.push(g.score)):g.score>r&&lM(u,g,D3))}let h=p.length,f=n-h;i&&f>0&&(p.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:p};return o&&(m.selectedScores=d),l&&(m.validOutputs=h),m}function pM(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),u=Math.min(r[0],r[2]),c=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),d=Math.max(r[1],r[3]),h=(i-a)*(l-o),f=(p-u)*(d-c);if(h<=0||f<=0)return 0;let m=Math.max(a,u),g=Math.max(o,c),y=Math.min(i,p),x=Math.min(l,d),A=Math.max(y-m,0)*Math.max(x-g,0);return A/(h+f-A)}function hM(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function D3(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function fM(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=$(e,"boxes","nonMaxSuppressionAsync"),o=$(t,"scores","nonMaxSuppressionAsync"),i=cc(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),u=l[0],c=l[1],{selectedIndices:p}=vS(u,c,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),It(p,"int32")}var mM=fM;function gM(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=$(e,"boxes","nonMaxSuppression"),i=$(t,"scores","nonMaxSuppression"),l=cc(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u={boxes:o,scores:i},c={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},p=B.runKernel(Qi,u,c);return{selectedIndices:p[0],selectedScores:p[1]}}var yM=V({nonMaxSuppressionWithScore_:gM});async function AM(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=$(e,"boxes","nonMaxSuppressionAsync"),i=$(t,"scores","nonMaxSuppressionAsync"),l=cc(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u=await Promise.all([o.data(),i.data()]),c=u[0],p=u[1],{selectedIndices:d,selectedScores:h}=kS(c,p,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:It(d,"int32"),selectedScores:It(h)}}var xM=AM;function bM(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=$(e,"boxes","nonMaxSuppression"),i=$(t,"scores","nonMaxSuppression"),l=cc(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,d={boxes:o,scores:i},h={maxOutputSize:u,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:a},f=B.runKernel(Xu,d,h);return{selectedIndices:f[0],validOutputs:f[1]}}var vM=V({nonMaxSuppressionPadded_:bM});async function wM(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=$(e,"boxes","nonMaxSuppressionAsync"),i=$(t,"scores","nonMaxSuppressionAsync"),l=cc(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,[d,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=wS(d,h,u,c,p,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:It(f,"int32"),validOutputs:Ie(m,"int32")}}var kM=wM;function SM(e,t,n=!1,s=!1){let r=$(e,"images","resizeBilinear");M(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),M(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=H(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=B.runKernel(Io,i,l);return o?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var IM=V({resizeBilinear_:SM});function CM(e,t,n=!1,s=!1){let r=$(e,"images","resizeNearestNeighbor");M(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),M(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),M(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=H(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=B.runKernel(Yu,i,l);return o?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var TM=V({resizeNearestNeighbor_:CM});function NM(e,t="binary",n=!1,s=.5){let r=$(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],u=L(It([s]),255),c,p,d,h;if(M(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),M(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),M(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),M(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[c,p,d]=Kt(r,[1,1,1],-1);let g=L(c,a),y=L(p,o),x=L(d,i);h=ue(ue(g,y),x)}else h=e;if(t==="otsu"){let g=T1(ge(H1(h),"int32"),pt([]),256);u=EM(g,l)}let f=n?kl(h,u):gs(h,u);return ge(L(f,255),"int32")}function EM(e,t){let n=It([-1]),s=It([0]),r=It([0]),a,o,i,l,u,c;for(let p=0;p<e.size-1;p++){a=Pe(e,0,p+1),o=Pe(e,p+1),u=de(ke(a),t),c=de(ke(o),t);let d=ke(L(a,bu(0,a.size)));i=de(d,ke(a));let h=ac(o.shape,a.size),f=ue(bu(0,o.size),h),m=L(o,f);l=de(ke(m),ke(o));let g=pe(i,l),y=pe(i,l),x=L(u,c);r=L(L(x,g),y);let A=gs(r,s);s=Un(A,r,s),n=Un(A,It([p]),n)}return n}var RM=V({threshold_:NM});function _M(e,t,n="nearest",s="constant",r=0,a){let o=$(e,"image","transform","float32"),i=$(t,"transforms","transform","float32");M(o.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),M(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},u={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return B.runKernel(gl,l,u)}var $M=V({transform_:_M});function DM(e,t,n){M(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),M(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=$(e,"a","bandPart");M(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=H(bu(0,a,1,"int32"),[-1,1]),l=bu(0,o,1,"int32"),u=pe(i,l),c=pr(kl(u,Ie(+t,"int32")),wl(u,Ie(-n,"int32"))),p=Wt([a,o],s.dtype);return H(an(es(H(s,[-1,a,o])).map(d=>Un(c,d,p))),r)}var PM=V({bandPart_:DM});function FM(e){let t;if(Array.isArray(e)){t=!1,M(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a<e.length;++a)M(e[a].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=Kt(e,e.shape[0],0).map(r=>Qe(r,[0]));M(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r<e.length;++r)n.push(B.tidy(()=>{let a=s[r];if(r>0)for(let o=0;o<r;++o){let i=L(ke(L(n[o],a)),n[o]);a=pe(a,i)}return de(a,eA(a,"euclidean"))}));return t?an(n,0):n}var OM=V({gramSchmidt_:FM});function MM(e,t=!1){if(M(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return P3(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),s=es(H(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[u,c]=P3(l,t);r.push(u),a.push(c)});let o=H(an(r,0),e.shape),i=H(an(a,0),e.shape);return[o,i]}}function P3(e,t=!1){return B.tidy(()=>{M(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=P1(n),a=Vn(e),o=ur([[1]],[1,1]),i=Vn(o),l=n>=s?s:n;for(let u=0;u<l;++u){let c=a,p=i,d=r;[i,a,r]=B.tidy(()=>{let h=Pe(a,[u,u],[n-u,1]),f=eA(h),m=Pe(a,[u,u],[1,1]),g=Un(gs(m,0),ur([[-1]]),ur([[1]])),y=pe(m,L(g,f)),x=de(h,y);x.shape[0]===1?i=Vn(o):i=kt([o,Pe(x,[1,0],[x.shape[0]-1,x.shape[1]])],0);let A=Ot(de(Ye(g,y),f)),b=Pe(a,[u,0],[n-u,s]),w=L(A,i),S=st(i);if(u===0)a=pe(b,Ye(w,Ye(S,b)));else{let R=pe(b,Ye(w,Ye(S,b)));a=kt([Pe(a,[0,0],[u,s]),R],0)}let I=st(w),E=Pe(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=pe(E,Ye(Ye(E,i),I));else{let R=pe(E,Ye(Ye(E,i),I));r=kt([Pe(r,[0,0],[n,u]),R],1)}return[i,a,r]}),ne([c,p,d])}return!t&&n>s&&(r=Pe(r,[0,0],[n,s]),a=Pe(a,[0,0],[s,s])),[r,a]})}var zM=V({qr_:MM}),SS=(e=>(e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS",e))(SS||{});function LM(e,t,n=3){let s=$(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=$(t,"weights","computeWeightedLoss"));let a=r==null?s:L(s,r);if(n===0)return a;if(n===2)return ke(a);if(n===1){if(r==null)return Bt(a);{let o=s.size/r.size,i=de(ke(a),ke(r));return o>1?de(i,Ie(o)):i}}if(n===3){if(r==null)return de(ke(a),Ie(s.size));{let o=L(r,fs(s.shape)),i=ge(ke(xu(o,Ie(0))),"float32");return de(ke(a),i)}}throw Error(`Unknown reduction: ${n}`)}var Qr=V({computeWeightedLoss_:LM});function BM(e,t,n,s=3){let r=$(e,"labels","absoluteDifference"),a=$(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=$(n,"weights","absoluteDifference")),Gn(r.shape,a.shape,"Error in absoluteDifference: ");let i=en(pe(r,a));return Qr(i,o,s)}var WM=V({absoluteDifference_:BM});function VM(e,t,n,s,r=3){let a=$(e,"labels","cosineDistance"),o=$(t,"predictions","cosineDistance"),i=null;s!=null&&(i=$(s,"weights","cosineDistance")),Gn(a.shape,o.shape,"Error in cosineDistance: ");let l=Ie(1),u=pe(l,ke(L(a,o),n,!0));return Qr(u,i,r)}var UM=V({cosineDistance_:VM});function GM(e,t,n,s=3){let r=$(e,"labels","hingeLoss"),a=$(t,"predictions","hingeLoss"),o=null;n!=null&&(o=$(n,"weights","hingeLoss")),Gn(r.shape,a.shape,"Error in hingeLoss: ");let i=Ie(1);r=pe(L(Ie(2),r),i);let l=Dr(pe(i,L(r,a)));return Qr(l,o,s)}var HM=V({hingeLoss_:GM});function jM(e,t,n,s=1,r=3){let a=$(e,"labels","huberLoss"),o=$(t,"predictions","huberLoss"),i=null;n!=null&&(i=$(n,"weights","huberLoss")),Gn(a.shape,o.shape,"Error in huberLoss: ");let l=Ie(s),u=en(pe(o,a)),c=pp(u,l),p=pe(u,c),d=ue(L(Ie(.5),At(c)),L(l,p));return Qr(d,i,r)}var qM=V({huberLoss_:jM});function XM(e,t,n,s=1e-7,r=3){let a=$(e,"labels","logLoss"),o=$(t,"predictions","logLoss"),i=null;n!=null&&(i=$(n,"weights","logLoss")),Gn(a.shape,o.shape,"Error in logLoss: ");let l=Ie(1),u=Ie(s),c=Ot(L(a,_s(ue(o,u)))),p=L(pe(l,a),_s(ue(pe(l,o),u))),d=pe(c,p);return Qr(d,i,r)}var KM=V({logLoss_:XM});function ZM(e,t,n,s=3){let r=$(e,"labels","meanSquaredError"),a=$(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=$(n,"weights","meanSquaredError")),Gn(r.shape,a.shape,"Error in meanSquaredError: ");let i=J1(r,a);return Qr(i,o,s)}var YM=V({meanSquaredError_:ZM});function JM(e,t){let n=$(e,"labels","sigmoidCrossEntropyWithLogits"),s=$(t,"logits","sigmoidCrossEntropyWithLogits");Gn(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Dr(s),a=L(s,n),o=mm(Rs(Ot(en(s))));return ue(pe(r,a),o)}function QM(e,t,n,s=0,r=3){let a=$(e,"multiClassLabels","sigmoidCrossEntropy"),o=$(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=$(n,"weights","sigmoidCrossEntropy")),Gn(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let u=Ie(s),c=Ie(1),p=Ie(.5);a=ue(L(a,pe(c,u)),L(p,u))}let l=JM(a,o);return Qr(l,i,r)}var ez=V({sigmoidCrossEntropy_:QM});function tz(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Rr((r,a,o)=>{let l=Yk(a,[n],!0),u=pe(ge(a,"float32"),l);o([r,u]);let c=Ot(L(u,r));return{value:ke(c,[n]),gradFunc:(h,f)=>{let[m,g]=f,y=Si(h.shape,[n]);return[L(H(h,y),pe(ge(m,"float32"),Rs(g))),L(H(h,y),pe(Rs(g),ge(m,"float32")))]}}})(e,t)}function nz(e,t,n,s=0,r=3){let a=$(e,"onehotLabels","softmaxCrossEntropy"),o=$(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=$(n,"weights","softmaxCrossEntropy")),Gn(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let u=Ie(s),c=Ie(1),p=Ie(a.shape[1]);a=ue(L(a,pe(c,u)),de(u,p))}let l=tz(a,o);return Qr(l,i,r)}var sz=V({softmaxCrossEntropy_:nz});function rz(e,t,n,s){let r=$(e,"indices","sparseFillEmptyRows","int32"),a=$(t,"values","sparseFillEmptyRows"),o=$(n,"denseShape","sparseFillEmptyRows","int32"),i=$(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},u=B.runKernel(Zd,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var az=V({sparseFillEmptyRows_:rz});function oz(e,t,n){let s=$(e,"inputIndices","sparseReshape","int32"),r=$(t,"inputShape","sparseReshape","int32"),a=$(n,"newShape","sparseReshape","int32");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=B.runKernel(tc,o);return{outputIndices:i[0],outputShape:i[1]}}var iz=V({sparseReshape_:oz});function lz(e,t,n){let s=$(e,"data","sparseSegmentMean"),r=$(t,"indices","sparseSegmentMean","int32"),a=$(n,"segmentIds","sparseSegmentMean","int32");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return B.runKernel(Yd,o)}var uz=V({sparseSegmentMean_:lz});function cz(e,t,n){let s=$(e,"data","sparseSegmentSum"),r=$(t,"indices","sparseSegmentSum","int32"),a=$(n,"segmentIds","sparseSegmentSum","int32");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return B.runKernel(Jd,o)}var dz=V({sparseSegmentSum_:cz});function pz(e,t,n,s,r,a,o,i){let l=$(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=$(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},p={data:l,dataSplits:u},d=B.runKernel(ep,p,c);return{nGrams:d[0],nGramsSplits:d[1]}}var hz=V({stringNGrams_:pz});function fz(e,t,n=!0){let s=$(e,"input","stringSplit","string"),r=$(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=B.runKernel(am,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var mz=V({stringSplit_:fz});function gz(e,t){let n=$(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return B.runKernel(om,r,s)}var yz=V({stringToHashBucketFast_:gz}),Az={fft:km,ifft:$d,rfft:Sm,irfft:Y1},xz={hammingWindow:qO,hannWindow:xS,frame:bS,stft:YO},Se={flipLeftRight:tM,grayscaleToRGB:sM,resizeNearestNeighbor:TM,resizeBilinear:IM,rotateWithOffset:aM,cropAndResize:QO,nonMaxSuppression:iM,nonMaxSuppressionAsync:mM,nonMaxSuppressionWithScore:yM,nonMaxSuppressionWithScoreAsync:xM,nonMaxSuppressionPadded:vM,nonMaxSuppressionPaddedAsync:kM,threshold:RM,transform:$M},IS={bandPart:PM,gramSchmidt:OM,qr:zM},bz={absoluteDifference:WM,computeWeightedLoss:Qr,cosineDistance:UM,hingeLoss:HM,huberLoss:qM,logLoss:KM,meanSquaredError:YM,sigmoidCrossEntropy:ez,softmaxCrossEntropy:sz},dd={sparseFillEmptyRows:az,sparseReshape:iz,sparseSegmentMean:uz,sparseSegmentSum:dz},Xh={stringNGrams:hz,stringSplit:mz,stringToHashBucketFast:yz},ea=class extends dk{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return ne(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return qk(e,t)}dispose(){this.iterations_!=null&&ne(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ie(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(ea,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Rm=class extends ea{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:X(()=>rt(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:X(()=>rt(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;X(()=>{let u=ue(L(i,this.rho),L(At(o),1-this.rho)),c=L(de(Nn(ue(l,this.epsilon)),Nn(ue(i,this.epsilon))),o),p=ue(L(l,this.rho),L(At(c),1-this.rho));i.assign(u),l.assign(p);let d=ue(L(c,-this.learningRate),r);r.assign(d)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(ne(this.accumulatedGrads.map(e=>e.variable)),ne(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Rm.className="Adadelta";Lo(Rm);var _m=class extends ea{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n];this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:X(()=>ac(r.shape,this.initialAccumulatorValue).variable(!1))});let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;X(()=>{let i=ue(o,At(a));o.assign(i);let l=ue(L(de(a,Nn(ue(i,B.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&ne(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};_m.className="Adagrad";Lo(_m);var $m=class extends ea{constructor(e,t,n,s=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],X(()=>{this.accBeta1=Ie(t).variable(),this.accBeta2=Ie(n).variable()}),s==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);X(()=>{let n=pe(1,this.accBeta1),s=pe(1,this.accBeta2);t.forEach((r,a)=>{let o=B.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:X(()=>rt(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:X(()=>rt(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedSecondMoment[a].variable,p=ue(L(u,this.beta1),L(l,1-this.beta1)),d=ue(L(c,this.beta2),L(At(l),1-this.beta2)),h=de(p,n),f=de(d,s);u.assign(p),c.assign(d);let m=ue(L(de(h,ue(Nn(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(L(this.accBeta1,this.beta1)),this.accBeta2.assign(L(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&ne(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&ne(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),X(()=>{this.accBeta1.assign(Oa(this.beta1,this.iterations_+1)),this.accBeta2.assign(Oa(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};$m.className="Adam";Lo($m);var Dm=class extends ea{constructor(e,t,n,s=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],X(()=>{this.iteration=Ie(0).variable(),this.accBeta1=Ie(t).variable()}),s==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);X(()=>{let n=pe(1,this.accBeta1),s=de(-this.learningRate,ue(L(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=B.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:rt(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:rt(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedWeightedInfNorm[a].variable,p=ue(L(u,this.beta1),L(l,1-this.beta1)),d=L(c,this.beta2),h=en(l),f=Jr(d,h);u.assign(p),c.assign(f);let m=ue(L(de(s,n),de(p,ue(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(ue(this.iteration,1)),this.accBeta1.assign(L(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&ne(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&ne(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Dm.className="Adamax";Lo(Dm);var fp=class extends ea{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=B.registeredVariables[n];X(()=>{let o=ue(L(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=dn(Ie(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};fp.className="SGD";Lo(fp);var Pm=class extends fp{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ie(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n];this.accumulations[s]==null&&(this.accumulations[s]={originalName:`${n}/momentum`,variable:X(()=>rt(r).variable(!1))});let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&X(()=>{let i,l=ue(L(this.m,a),o);this.useNesterov?i=ue(L(this.c,ue(o,L(l,this.m))),r):i=ue(L(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&ne(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Pm.className="Momentum";Lo(Pm);var Fm=class extends ea{constructor(e,t=.9,n=0,s=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=B.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:X(()=>rt(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:X(()=>rt(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:X(()=>rt(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;X(()=>{let u=ue(L(i,this.decay),L(At(o),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[s].variable,p=ue(L(c,this.decay),L(o,1-this.decay)),d=de(L(o,this.learningRate),Nn(pe(u,ue(At(p),this.epsilon)))),h=ue(L(l,this.momentum),d);i.assign(u),c.assign(p),l.assign(h);let f=pe(r,h);r.assign(f)}else{let c=ue(L(i,this.decay),L(At(o),1-this.decay)),p=ue(L(l,this.momentum),de(L(o,this.learningRate),Nn(ue(c,this.epsilon))));i.assign(c),l.assign(p);let d=pe(r,p);r.assign(d)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&ne(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&ne(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&ne(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Fm.className="RMSProp";Lo(Fm);var ba=class{static sgd(e){return new fp(e)}static momentum(e,t,n=!1){return new Pm(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new Fm(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new $m(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new Rm(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new Dm(e,t,n,s,r)}static adagrad(e,t=.1){return new _m(e,t)}},li={sgd:ba.sgd,momentum:ba.momentum,adadelta:ba.adadelta,adagrad:ba.adagrad,rmsprop:ba.rmsprop,adamax:ba.adamax,adam:ba.adam},vz=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function aA(){return new Promise(e=>vz(()=>e()))}var C={};Le(C,{ERF_A1:()=>$z,ERF_A2:()=>Dz,ERF_A3:()=>Pz,ERF_A4:()=>Fz,ERF_A5:()=>Oz,ERF_P:()=>_z,PARALLELIZE_THRESHOLD:()=>oA,SELU_SCALE:()=>TS,SELU_SCALEALPHA:()=>CS,applyActivation:()=>Nm,assertAndGetBroadcastShape:()=>bt,assertAxesAreInnerMostDims:()=>DP,assertParamsConsistent:()=>wz,assignToTypedArray:()=>Vz,axesAreInnerMostDims:()=>M1,calculateShapes:()=>tk,checkEinsumDimSizes:()=>Xz,checkPadOnDimRoundingMode:()=>Hn,combineLocations:()=>Xk,complexWithEvenIndex:()=>Lz,complexWithOddIndex:()=>Bz,computeConv2DInfo:()=>lp,computeConv3DInfo:()=>Sk,computeDefaultPad:()=>I1,computeDilation2DInfo:()=>J$,computeOptimalWindowSize:()=>Sz,computeOutAndReduceShapes:()=>Kk,computeOutShape:()=>kz,computePool2DInfo:()=>kk,computePool3DInfo:()=>Q$,convertConv2DDataFormat:()=>Ik,decodeEinsumEquation:()=>jz,eitherStridesOrDilationsAreOne:()=>$r,expandShapeToKeepDim:()=>Si,exponent:()=>Gz,exponents:()=>Uz,fromStringArrayToUint8:()=>mL,fromUint8ToStringArray:()=>fL,getAxesPermutation:()=>Zk,getBroadcastDims:()=>Yw,getComplexWithIndex:()=>Wz,getEinsumComputePath:()=>Kz,getEinsumPermutation:()=>qz,getFusedBiasGradient:()=>Tm,getFusedDyActivation:()=>Cm,getImageCenter:()=>Iz,getInnerMostAxes:()=>PP,getPermuted:()=>Tz,getReductionAxes:()=>Zt,getReshaped:()=>Cz,getReshapedPermuted:()=>Nz,getSliceBeginCoords:()=>Ez,getSliceSize:()=>Rz,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>Qz,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>eL,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>tL,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>rL,getSparseReshapeInputOutputMismatchErrorMessage:()=>oL,getSparseReshapeInputOutputMultipleErrorMessage:()=>aL,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>nL,getSparseReshapeNegativeOutputDimErrorMessage:()=>sL,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>cL,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>iL,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>lL,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>uL,getUndoAxesPermutation:()=>z1,isIdentityPermutation:()=>Zz,log:()=>CR,mergeRealAndImagArrays:()=>Mz,prepareAndValidate:()=>ek,prepareSplitSize:()=>Jz,segment_util:()=>NS,shouldFuse:()=>Em,slice_util:()=>Ft,splitRealAndImagArrays:()=>zz,tupleValuesAreOne:()=>Da,upcastType:()=>Tn,validateInput:()=>g1,validateUpdateShape:()=>m1,warn:()=>wa});function wz(e,t){let n=e[0].length;e.forEach((r,a)=>{M(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),M(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o<n;o++)M(o===t||r[o]===s[o],()=>`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function kz(e,t){let n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}var oA=30;function Sz(e){return e<=oA?e:af(e,Math.floor(Math.sqrt(e)))}function Iz(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function Cz(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let o=0;o<a;++o)r=r.concat([e[o+1]/t[o],t[o]]);r=r.concat(e.slice(a+1))}return r}function Tz(e,t,n=!0){let s=[];if(n){s.push(t);for(let r=t+1;r<e;++r)r<=2*t?(s.push(r),s.push(r-(t+1))):s.push(r)}else{let r=[],a=[];for(let o=1;o<e;++o)o>=t*2+1||o%2===1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function Nz(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?s?r.push(t[a-1]*e[a]):r.push(e[a]/t[a-1]):r.push(e[a]);return r}function Ez(e,t){let n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function Rz(e,t,n){let s=e.slice(0,1);for(let r=0;r<n;++r)s.push(e[r+1]-t[r][0]-t[r][1]);return s}var CS=1.7580993408473768,TS=1.0507009873554805,_z=.3275911,$z=.254829592,Dz=-.284496736,Pz=1.421413741,Fz=-1.453152027,Oz=1.061405429;function Mz(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function zz(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function Lz(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function Bz(e){let t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function Wz(e,t){let n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function Vz(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function Uz(e,t){let n=new Float32Array(e/2),s=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let a=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(a),s[r]=Math.sin(a)}return{real:n,imag:s}}function Gz(e,t,n){let s=(n?2:-2)*Math.PI*(e/t),r=Math.cos(s),a=Math.sin(s);return{real:r,imag:a}}var G2="->",Hz=/->/g,F3=",",O3="...";function jz(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(Hz,"").length)/G2.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${G2}").`);let[s,r]=e.split(G2);M(s.indexOf(O3)===-1,()=>`The ellipsis notation ("${O3}") is not supported yet.`);let a=s.split(F3),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let d=0;d<r.length;++d){let h=r[d];if(!a.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let d=0;d<s.length;++d){let h=s[d];i.indexOf(h)===-1&&h!==F3&&i.push(h)}let l=new Array(a.length);for(let d=0;d<o;++d){if(new Set(a[d].split("")).size!==a[d].length)throw new Error(`Found duplicate axes in input component ${a[d]}. Support for duplicate axes in input is not implemented yet.`);l[d]=[];for(let h=0;h<a[d].length;++h)l[d].push(i.indexOf(a[d][h]))}let u=i.length,c=r.length,p=[];for(let d=c;d<u;++d)p.push(d);return{allDims:i,summedDims:p,idDims:l}}function qz(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let s=[];for(let r=0;r<e;++r)n[r]===-1&&s.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:s}}function Xz(e,t,n){let s=new Array(e);for(let r=0;r<n.length;++r){let a=n[r].shape;for(let o=0;o<t[r].length;++o)s[t[r][o]]===void 0?s[t[r][o]]=a[o]:M(s[t[r][o]]===a[o],()=>`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function Kz(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;o<r;++o)s.push([]);let a=[];for(let o=0;o<n.length;++o){let i=n[o],l=Yz(t,i);for(let u of l)a.indexOf(u)===-1&&(s[o].push(u),a.push(u))}return{path:n,steps:s}}function Zz(e){return e.every((t,n)=>t===n)}function Yz(e,t){let n=[];for(let s=0;s<e.length;++s)(e[s].length===0||e[s].indexOf(t)!==-1||t===-1)&&n.push(s);return n}function Jz(e,t,n=0){let s=[];if(typeof t=="number")M(e.shape[n]%t===0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);M(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}M(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}function Qz(e){return`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${e}`}function eL(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function tL(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function nL(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function sL(e,t){return`size ${e} must be non-negative, not ${t}`}function rL(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function aL(e,t){let n=Ct(e),s=Ct(t);return`Input to reshape is a SparseTensor with ${n}
|
|
dense values, but the requested shape requires a multiple of ${s}. inputShape=${e} outputShape= ${t}`}function oL(e,t){let n=Ct(e),s=Ct(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${s}. inputShape=${e} outputShape=${t}`}function iL(){return"segment ids must be >= 0"}function lL(){return"segment ids are not increasing"}function uL(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function cL(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var NS={};Le(NS,{collectGatherOpShapeInfo:()=>hL,computeOutShape:()=>pL,segOpComputeOptimalWindowSize:()=>dL});function dL(e,t){let n=!1,s;for(e<=oA?(s=e,n=!0):s=af(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=af(e,s+1);return s}function pL(e,t,n){let s=[],r=e.length;for(let a=0;a<r;a++)a!==t?s.push(e[a]):s.push(n);return s}function hL(e,t,n,s){let r=t.shape.length,a=e.shape.length;if(s!==0&&(s<-r||s>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) (
|
|
${a}).`);if(n<s)throw new Error(`batchDims (${s}) must be less than or equal to axis (${n}).`);for(let p=0;p<s;++p)if(e.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${e.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let o=e.shape[n],i=[],l=1,u=1,c=1;for(let p=0;p<s;++p)i.push(e.shape[p]),l*=e.shape[p];for(let p=s;p<n;p++)i.push(e.shape[p]),u*=e.shape[p];for(let p=s;p<r;p++)i.push(t.shape[p]);for(let p=n+1;p<a;p++)i.push(e.shape[p]),c*=e.shape[p];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:o,outputShape:i}}function fL(e){try{return e.map(t=>cf(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function mL(e){return e.map(t=>sp(t))}var js={};Le(js,{nonMaxSuppressionV3Impl:()=>vS,nonMaxSuppressionV4Impl:()=>wS,nonMaxSuppressionV5Impl:()=>kS,whereImpl:()=>dS});var ES={kernelName:Pi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,hp(ge(n,"float32"),-1))}}},gL={kernelName:Eu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=At(ge(n,"float32")),r=Nn(pe(Ie(1),s));return Ot(de(e,r))}}}},yL={kernelName:Ru,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Nn(pe(At(ge(n,"float32")),1));return de(e,s)}}}},AL={kernelName:Kr,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=e,l=Zt(n.shape,r);return l.length>0&&(i=ke(i,l)),H(i,n.shape)},b:()=>{let i=e,l=Zt(s.shape,r);return l.length>0&&(i=ke(i,l)),H(i,s.shape)}}}},xL={kernelName:Ha,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},bL={kernelName:ja,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>rt(n)}}},vL={kernelName:Du,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>rt(n)}}},wL={kernelName:Pu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,Nn(pe(Ie(1),At(ge(n,"float32")))))}}},kL={kernelName:Fu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Nn(ue(Ie(1),At(ge(n,"float32"))));return de(e,s)}}}},SL={kernelName:zu,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=ue(At(n),At(s)),l=L(e,de(s,i)),u=Zt(n.shape,r);return u.length>0&&(l=ke(l,u)),H(l,n.shape)},b:()=>{let i=ue(At(n),At(s)),l=Ot(L(e,de(n,i))),u=Zt(s.shape,r);return u.length>0&&(l=ke(l,u)),H(l,s.shape)}}}},IL={kernelName:Ou,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,ue(At(ge(n,"float32")),1))}}},CL={kernelName:Mu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,pe(Ie(1),At(ge(n,"float32"))))}}};function TL(e,t,n,s,r,a){let o=$(e,"dy","avgPool3dGrad"),i=$(t,"input","avgPool3dGrad"),l=o,u=i,c=!1;i.rank===4&&(c=!0,l=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),u=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),M(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),Hn("avgPool3dGrad",r,a);let p={dy:l,input:u},d={filterSize:n,strides:s,pad:r,dimRoundingMode:a},h=B.runKernel(zf,p,d);return c?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var NL=V({avgPool3dGrad_:TL}),EL={kernelName:Ld,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>NL(e,s,r,a,o,i)}}};function RL(e,t,n,s,r){let a=$(e,"dy","avgPoolGrad"),o=$(t,"input","avgPoolGrad");M(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,u=!1;o.rank===3&&(u=!0,i=H(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=H(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),M(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},p={filterSize:n,strides:s,pad:r},d=B.runKernel(Mf,c,p);return u?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var _L=V({avgPoolGrad_:RL}),$L={kernelName:qa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>_L(e,s,r,a,o)}}},DL={kernelName:Xa,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>Ye(e,r,!1,!0),b:()=>Ye(s,e,!0,!1)}:!a&&o?{a:()=>Ye(e,r,!1,!1),b:()=>Ye(e,s,!0,!1)}:a&&!o?{a:()=>Ye(r,e,!1,!0),b:()=>Ye(s,e,!1,!1)}:{a:()=>Ye(r,e,!0,!0),b:()=>Ye(e,s,!0,!0)}}},PL={kernelName:Fi,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>bm(e,s,r)}}},FL={kernelName:bw,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l<o.length;l++)o[l]>1&&i.push(l);return{x:()=>ke(e,i,!0)}}},OL={kernelName:Ka,gradFunc:e=>({x:()=>e.clone()})},ML={kernelName:Za,gradFunc:e=>({x:()=>rt(e)})},zL={kernelName:Zr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>Un(pr(wl(s,r),kl(s,a)),e,rt(e))}}},LL={kernelName:Wd,inputsToSave:["x"],gradFunc:ES.gradFunc},BL={kernelName:Oi,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=Vs(r,t[0].shape)[0],o=s.map(l=>l[a]);return Kt(e,o,a).map(l=>()=>l)}},WL={kernelName:Ya,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return M(Da(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>E1(s.shape,e,r,o,i,l),filter:()=>sA(s,e,r.shape,o,i,l)}}},VL={kernelName:Ja,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>Pa(e,r,a,o,i,1,l),filter:()=>sA(e,s,r.shape,a,o,i,l)}}};function UL(e,t,n,s,r){let a=e;e.rank===4&&(a=H(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),M(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),M(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),M(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),M(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),M(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return B.runKernel(Vf,i,l)}var GL=V({conv3DBackpropFilter_:UL}),HL={kernelName:Vd,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;M(Da(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>Pk(o.shape,e,i,r,a),filter:()=>GL(o,e,i.shape,r,a)}}},jL={kernelName:Qa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Ot(X1(ge(n,"float32"))),e)}}},qL={kernelName:eo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(K1(ge(n,"float32")),e)}}},XL={kernelName:Mi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=Zk([r],s.rank),l=D1(e,r,a,!o);return i!=null&&(l=st(l,i)),l}}}},KL={kernelName:to,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s==null?[1,1]:s;M(Da(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=t;return M(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),M(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),M(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),M($r(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),Hn("depthwiseConv2d",a,o),{x:()=>AS(l.shape,e,u,r,a,i,o),filter:()=>yS(l,e,u.shape,r,a,i,o)}}},ZL={kernelName:Ud,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>B.runKernel(of,a,n),filter:()=>B.runKernel(lf,o,n)}}},YL={kernelName:so,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>B.runKernel(Xf,s)}}},JL={kernelName:Bu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=L(Rs(Ot(At(n))),2/Math.sqrt(Math.PI));return{x:()=>L(e,s)}}},QL={kernelName:ro,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,n)}}},eB={kernelName:Wi,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>H(e,n.shape)}}},tB={kernelName:Vi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Rs(n))}}},nB={kernelName:ao,gradFunc:e=>({x:()=>rt(e)})},sB={kernelName:oo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=de(e,ge(s,"float32")),l=Zt(n.shape,r);return l.length>0?H(ke(i,l),n.shape):i},b:()=>{let i=L(e,ge(n,"float32")),l=Zt(s.shape,r);l.length>0&&(i=H(ke(i,l),s.shape));let u=At(s);return Ot(de(i,ge(u,"float32")))}}}},rB={kernelName:io,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i==null?Ie(1):i,u=Zt(a.shape,r.shape),c=[];if(a.rank===1){for(let b=0;b<r.shape.length-1;++b)c.push(r.shape[b]);c.push(1)}let p=pe(r,a),d=L(e,l),h=j1(ue(o,Ie(s))),f=L(L(L(h,h),h),Ie(-.5));return{x:()=>a.rank===1?H(L(L(e,Ls(H(h,[1,1,1,a.shape[0]]),c)),l),r.shape):H(L(L(e,h),l),r.shape),mean:()=>{let b=L(L(h,Ie(-1)),d);return a.rank===1&&(b=ke(b,u)),H(b,a.shape)},variance:()=>{let b=L(L(f,p),d);return a.rank===1&&(b=ke(b,u)),H(b,a.shape)},scale:()=>{let b=L(p,h),w=L(e,b);return a.rank===1&&(w=ke(w,u)),H(w,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=ke(b,u)),H(b,a.shape)}}}},aB={kernelName:Gi,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=Vs(a,s.shape)[0];return{x:()=>{let l=s.shape,u=r.size,c=l.slice(0,o),p=c.length,d=l.slice(a,l.length).slice(1),h=d.length,f=M3(0,p),m=M3(p+1,p+1+h),g=z3([c,[u],d]),y=H(e,g),x=H(r,[u]),A=z3([[p],f,m]),b=st(y,A),w=uS(b,x,s.shape[o]),S=z1(A);return w=st(w,S),w},indices:()=>r}}};function M3(e,t){let n=[];for(let s=e;s<t;++s)n.push(s);return n}function z3(e){let t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}var oB={kernelName:lo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>rt(n),b:()=>rt(s)}}},iB={kernelName:uo,gradFunc:e=>({x:()=>ge(e,"float32")})},lB={kernelName:Vu,gradFunc:e=>({x:()=>rt(e)})},uB={kernelName:Uu,gradFunc:e=>({x:()=>rt(e)})},cB={kernelName:Gu,gradFunc:e=>({x:()=>rt(e)})},dB={kernelName:co,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=gs(s,0);return{x:()=>Un(a,e,L(e,r))}}},pB={kernelName:Hu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,ue(n,1))}}},hB={kernelName:po,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,ge(n,"float32"))}}},fB={kernelName:vw,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let o=Rs(s);return pe(e,L(ke(e,r,!0),o))}}}};function mB(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return B.runKernel(Jf,i,l)}var gB=V({localResponseNormalizationBackprop_:mB}),yB={kernelName:qd,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>gB(s,r,e,a,o,i,l)}}};function RS(e,t,n,s){return t.rank<n.rank&&(t=H(t,Si(t.shape,s))),e.rank<n.rank&&(e=H(e,Si(e.shape,s))),{x:()=>L(e,ge(Es(n,t),e.dtype))}}var L3={kernelName:ho,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=Vs(r,a.shape),l=RS(e,o,a,i);return{x:()=>l.x()}}},AB={kernelName:fo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>L(e,ge(wl(n,s),"float32")),b:()=>L(e,ge(F1(n,s),"float32"))}}};function xB(e,t,n,s,r,a,o){let i=$(e,"dy","maxPool3dGrad"),l=$(t,"input","maxPool3dGrad"),u=$(n,"output","maxPool3dGrad"),c=i,p=l,d=u,h=!1;l.rank===4&&(h=!0,c=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),p=H(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=H(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),M(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),M(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),M(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),Hn("maxPool3dGrad",a,o);let f={dy:c,input:p,output:d},m={filterSize:s,strides:r,pad:a,dimRoundingMode:o},g=B.runKernel(em,f,m);return h?H(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var bB=V({maxPool3dGrad_:xB}),vB={kernelName:Xd,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>bB(e,s,r,a,o,i,l)}}};function wB(e,t,n,s,r,a,o){let i=$(e,"dy","maxPoolGrad"),l=$(t,"input","maxPoolGrad"),u=$(n,"output","maxPoolGrad");M(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),M(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),M(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),Hn("maxPoolGrad",a,o);let c={dy:i,input:l,output:u},p={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return B.runKernel(Qf,c,p)}var kB=V({maxPoolGrad_:wB}),SB={kernelName:mo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>kB(e,s,r,a,o,i)}}},IB={kernelName:go,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=Vs(r,s.shape),i=Kk(s.shape,a)[1],l=Ct(i);return{x:()=>{let c=s.shape.slice();a.forEach(h=>{c[h]=1});let p=H(e,c);return de(L(p,fs(s.shape,"float32")),l)}}}},CB={kernelName:yo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=Vs(r,a.shape),l=RS(e,o,a,i);return{x:()=>l.x()}}},TB={kernelName:Ao,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>L(e,ge(kl(n,s),"float32")),b:()=>L(e,ge(gs(n,s),"float32"))}}},NB={kernelName:xo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Pe(e,a,s.shape)}}},EB={kernelName:qu,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=Zt(n.shape,r);return i.length>0?H(ke(e,i),n.shape):e},b:()=>{let i=L(e,Ot(dp(de(n,s)))),l=Zt(s.shape,r);return l.length>0?H(ke(i,l),s.shape):i}}}},RB={kernelName:bo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=L(e,ge(s,"float32")),l=Zt(n.shape,r);return l.length>0?H(ke(i,l),n.shape):i},b:()=>{let i=L(e,ge(n,"float32")),l=Zt(s.shape,r);return l.length>0?H(ke(i,l),s.shape):i}}}},_B={kernelName:Zi,gradFunc:e=>({x:()=>Ot(e)})},$B={kernelName:tl,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Wt(n.shape,"float32")}}},DB={kernelName:el,gradFunc:e=>({x:()=>rt(e)})},PB={kernelName:nl,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return es(e,s).map(a=>()=>a)}},B3={kernelName:vo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Pe(e,a,s.shape)}}},FB={kernelName:wo,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=bt(a.shape,o.shape);return{a:()=>{let c=ge(o,"float32"),p=L(e,L(c,Oa(a,pe(c,Ie(1))))),d=Zt(a.shape,i);return d.length>0&&(p=ke(p,d)),H(p,a.shape)},b:()=>{let c=gs(a,0),p=Un(c,_s(a),rt(a)),d=L(e,L(r,p)),h=Zt(o.shape,i);return h.length>0&&(d=ke(d,h)),H(d,o.shape)}}}},OB={kernelName:ko,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=gs(n,0);return{x:()=>Un(r,e,L(e,s)),alpha:()=>{let a=Un(r,rt(e),L(e,n)),o=Zt(s.shape,e.shape);return o.length>0&&(a=ke(a,o)),H(a,s.shape)}}}},MB={kernelName:no,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=de(e,ge(s,"float32")),l=Zt(n.shape,r);return l.length>0?H(ke(i,l),n.shape):i},b:()=>{let i=L(e,ge(n,"float32")),l=Zt(s.shape,r);l.length>0&&(i=H(ke(i,l),s.shape));let u=At(s);return Ot(de(i,ge(u,"float32")))}}}},zB={kernelName:Zu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,Ot(At(n)))}}},LB={kernelName:Co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=L(kl(n,6),hp(n));return{x:()=>L(e,ge(s,"float32"))}}},BB={kernelName:So,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,ge(hp(n),"float32"))}}},WB={kernelName:rl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>H(e,n.shape)}}},VB={kernelName:Io,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>B.runKernel(rm,r,n)}}},UB={kernelName:Yu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>B.runKernel(sm,r,n)}}},GB={kernelName:al,gradFunc:(e,t,n)=>{let{dims:s}=n,r=Vs(s,e.shape);return{x:()=>Ds(e,r)}}},HB={kernelName:ol,gradFunc:e=>({x:()=>rt(e)})},jB={kernelName:To,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ot(de(e,L(Oa(n,1.5),2)))}}},qB={kernelName:ll,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ge(rt(n),"float32"),t:()=>L(e,ge(n,e.dtype)),e:()=>L(e,ge(ym(n),e.dtype))}}},XB={kernelName:Ju,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=gs(n,Ie(0)),r=Ie(CS),a=Ie(TS),o=L(e,a),i=L(L(e,r),Rs(ge(n,"float32")));return Un(s,o,i)}}}},KB={kernelName:Eo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(n,pe(Ie(1),n)))}}},ZB={kernelName:Qu,gradFunc:e=>({x:()=>rt(e)})},YB={kernelName:No,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(pm(ge(n,"float32")),e)}}},JB={kernelName:cl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L($1(ge(n,"float32")),e)}}},QB={kernelName:ul,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=ck(s,r,a),u=[];for(let c=0;c<e.rank;c++)u.push([i[c],o[c]-i[c]-l[c]]);return{x:()=>Hs(e,u)}}},eW={kernelName:$o,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=L(e,s);return{logits:()=>pe(o,L(ke(o,[r],a),s))}}},tW={kernelName:ec,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Cn(n))}}},W3={kernelName:dl,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>dm(e,s,r)}}},V3={kernelName:pl,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>kt(e,s)}}},nW={kernelName:Ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,L(Nn(ge(n,"float32")),2))}}},sW={kernelName:nc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(ge(n,"float32"),2))}}},rW={kernelName:Do,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Ie(2);return{a:()=>L(e,L(r,pe(n,s))),b:()=>L(e,L(r,pe(s,n)))}}},aW={kernelName:Mo,gradFunc:e=>({x:()=>rt(e)})},oW={kernelName:Po,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=e,l=Zt(n.shape,r);return l.length>0&&(i=ke(i,l)),H(i,n.shape)},b:()=>{let i=e,l=Zt(s.shape,r);return l.length>0&&(i=ke(i,l)),H(Ot(i),s.shape)}}}},iW={kernelName:_o,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;Vs(a,s.shape).forEach(u=>{r[u]=1});let i=H(e,r),l=L(i,fs(s.shape,"float32"));return{x:()=>l}}},lW={kernelName:fl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,At(pm(n)))}}},uW={kernelName:Fo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(pe(Ie(1),At(n)),e)}}},cW={kernelName:Yr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=rt(s);if(s.rank===1)for(let i=0;i<r[0];++i)o=ue(o,Pe(e,[i*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)o=ue(o,Pe(e,[i*s.shape[0],l*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let u=0;u<r[2];++u)o=ue(o,Pe(e,[i*s.shape[0],l*s.shape[1],u*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let u=0;u<r[2];++u)for(let c=0;c<r[3];++c)o=ue(o,Pe(e,[i*s.shape[0],l*s.shape[1],u*s.shape[2],c*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return o}}}},dW={kernelName:Oo,gradFunc:(e,t,n)=>{let s=n,{perm:r}=s,a=z1(r);return{x:()=>st(e,a)}}},pW={kernelName:yl,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>an(e,r)}}},hW={kernelName:tp,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fW(e,n)}}};function fW(e,t){let n=Jr(t,rt(t)),s=Au(e,n),r=wl(t,Ie(0,"int32")),a=s.rank-r.rank;for(let i=0;i<a;++i)r=qt(r,i+1);r=pr(r,fs(s.shape,"bool"));let o=rt(s);return Un(r,s,o)}var mW={kernelName:Al,gradFunc:e=>({x:()=>rt(e)})},gW=[ES,gL,yL,AL,xL,bL,vL,wL,kL,SL,IL,CL,EL,$L,DL,PL,FL,OL,ML,zL,LL,BL,VL,WL,HL,jL,qL,XL,KL,ZL,MB,YL,JL,QL,eB,tB,sB,nB,rB,aB,oB,iB,lB,uB,cB,dB,pB,hB,fB,yB,L3,L3,AB,vB,SB,IB,CB,TB,NB,EB,RB,_B,$B,DB,PB,B3,B3,FB,OB,zB,LB,BB,WB,VB,UB,GB,HB,jB,qB,XB,KB,ZB,YB,JB,QB,eW,tW,W3,W3,V3,V3,nW,rW,sW,aW,oW,iW,lW,uW,cW,dW,pW,hW,mW];for(let e of gW)ww(e);var _S={};Le(_S,{maxNorm:()=>bW,minMaxNorm:()=>kW,nonNeg:()=>wW,unitNorm:()=>vW});var H2;function tn(){return H2==null&&(H2=Gs().epsilon()),H2}function hr(){return"channelsLast"}var Vr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Vr.prototype)}},or=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,or.prototype)}},j=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,j.prototype)}},Ve=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ve.prototype)}},$S=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,$S.prototype)}};function Ci(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Sr(e,t){if(!e)throw new $S(t)}function U3(e,t){let n=0;for(let s of e)s===t&&n++;return n}function Jn(e){return e.length===1?e[0]:e}function St(e){return Array.isArray(e)?e:[e]}function Ur(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function pi(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var Ms={};function iA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function fy(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>fy(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:fy(s))}}}function mp(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in Ms)o=Ms[a];else if(o=t[a],o==null)throw new j(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new j(`${s}: Improper config format: ${JSON.stringify(a)}.
|
|
'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in Ms?[i,l]=Ms.className:o in t&&([i,l]=t[o]),i==null)throw new j(`Unknown ${s}: ${o}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(Ms))u[h]=Ms[h];for(let h of Object.keys(n))u[h]=n[h];let c=a.config;c.customObjects=u;let p={...Ms};for(let h of Object.keys(n))Ms[h]=n[h];fy(a.config);let d=l(i,a.config,n,r);return Ms={...p},d}else{let u={...Ms};for(let p of Object.keys(n))Ms[p]=n[p];let c=new i(a.config);return Ms={...u},c}}}function yW(e,t){return e<t?-1:e>t?1:0}function Fh(e,t){return-1*yW(e,t)}function Ca(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function AW(e){if(e==null)throw new j(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Il(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new j(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function lA(e,t,n=0,s=1/0){return Sr(n>=0),Sr(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function pn(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>pn(n,`element ${s+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${DS(e)}.`)}function DS(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>DS(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function xW(e,t,n){let s=n!=null?n():v.now(),r;return(...o)=>{let i=n!=null?n():v.now();return i-s<t||(s=i,r=e(...o)),r}}function PS(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function uA(e,t){return X(()=>Nn(ke(L(e,e),t,!0)))}var gp=class extends ce.Serializable{getConfig(){return{}}},cA=class extends gp{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return X(()=>{let t=uA(e,this.axis),n=ms(t,0,this.maxValue);return L(e,de(n,ue(tn(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};cA.className="MaxNorm";ce.registerClass(cA);var dA=class extends gp{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return X(()=>de(e,ue(tn(),uA(e,this.axis))))}getConfig(){return{axis:this.axis}}};dA.className="UnitNorm";ce.registerClass(dA);var pA=class extends gp{apply(e){return Dr(e)}};pA.className="NonNeg";ce.registerClass(pA);var hA=class extends gp{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return X(()=>{let t=uA(e,this.axis),n=ue(L(this.rate,ms(t,this.minValue,this.maxValue)),L(1-this.rate,t));return L(e,de(n,ue(tn(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};hA.className="MinMaxNorm";ce.registerClass(hA);var G3={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function sn(e){return iA(e)}function H3(e,t={}){return mp(e,ce.SerializationMap.getMap().classNameMap,t,"constraint")}function rn(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in G3?G3[e]:e,config:{}};return H3(n)}else return e instanceof gp?e:H3(e)}function bW(e){return new cA(e)}function vW(e){return new dA(e)}function wW(){return new pA}function kW(e){return new hA(e)}var FS={};Le(FS,{constant:()=>jW,glorotNormal:()=>QW,glorotUniform:()=>JW,heNormal:()=>eV,heUniform:()=>tV,identity:()=>ZW,leCunNormal:()=>nV,leCunUniform:()=>sV,ones:()=>HW,orthogonal:()=>rV,randomNormal:()=>XW,randomUniform:()=>qW,truncatedNormal:()=>KW,varianceScaling:()=>YW,zeros:()=>GW});var SW=["channelsFirst","channelsLast"],IW=["nearest","bilinear"],CW=["valid","same","causal"],TW=["max","avg"],NW=["sum","mul","concat","ave"],tu=new Map;function Ut(e){Il(SW,"DataFormat",e)}function EW(e){Il(IW,"InterpolationFormat",e)}function Fs(e){Il(CW,"PaddingMode",e)}function OS(e){Il(TW,"PoolMode",e)}var vd=[],j3="/";function Ai(e,t){vd.push(e);try{let n=t();return vd.pop(),n}catch(n){throw vd.pop(),n}}function RW(){return vd.length===0?"":vd.join(j3)+j3}function MS(e){if(!LS(e))throw new Error("Not a valid tensor name: '"+e+"'");return RW()+e}function zS(e){if(!LS(e))throw new Error("Not a valid tensor name: '"+e+"'");tu.has(e)||tu.set(e,0);let t=tu.get(e);if(tu.set(e,tu.get(e)+1),t>0){let n=`${e}_${t}`;return tu.set(n,1),n}else return e}var _W=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function LS(e){return!!e.match(_W)}function $W(e){return e===parseInt(e.toString(),10)}function Ta(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;r<n;++r)s*=e[r];return s}function vu(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s<t&&(t=s)}return t}function za(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s>t&&(t=s)}return t}function fr(e,t){if(t<e)throw new j(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let s=e;s<t;++s)n.push(s);return n}function Om(e,t){return ge(e,t)}function yp(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),H(e,n)}function DW(e,t){return X(()=>{if(e.shape.length!==2)throw new j(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=yp(e,1);return my(n,[1,t,1])})}function PW(e){let t=[Ta(e.shape)];return H(e,t)}function FW(e){if(e.rank<=1)throw new j(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Ta(e.shape,1)];return H(e,t)}function xi(e,t,n){return X(()=>{switch(e.rank){case 1:return wm(e,t,n);case 2:return Z1(e,[t,0],[n,e.shape[1]]);case 3:return Sl(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Ii(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Pe(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Pe(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new j(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function j2(e,t,n){return X(()=>{switch(e.rank){case 1:return wm(e,t,n);case 2:return Z1(e,[0,t],[e.shape[0],n]);case 3:return Sl(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Ii(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new j(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Oh(e,t,n,s){return X(()=>{switch(e.rank){case 1:return wm(e,t,n);case 2:switch(s){case 1:return xi(e,t,n);case 2:return j2(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return xi(e,t,n);case 2:return Sl(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return j2(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return xi(e,t,n);case 2:return Ii(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Ii(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return j2(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${s}`)}default:throw new j(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function fA(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),kt(e,t)}function q3(e,t){switch(e.rank){case 1:return _k([e,t]);case 2:return rc([e,t],0);case 3:return $k([e,t],0);case 4:return Dk([e,t],0);default:throw new j(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function my(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new j(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ls(e,t)}function Mm(e,t=0,n=1,s,r){return tS(e,t,n,s,r)}function Tr(e,t,n,s){if(e.rank<2||t.rank<2)throw new Ve(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new Ve(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return Ma.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:s?gy(e.rank,s,hr()):null,activation:n});{let r=e.shape.slice(),a=r.pop();e=H(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),u=[...o,i],c=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=H(st(t,c),[l,-1]);let p=[...r,...u],d=!1,h=!1;return H(Ma.matMul({a:e,b:t,transposeA:d,transposeB:h,bias:s?gy(e.rank,s,hr()):null,activation:n}),p)}}function BS(e,t,n){return X(()=>(Array.isArray(t)?t=It(t,"int32"):t=ge(t,"int32"),Au(e,t,n)))}function Ap(e){return L(e,e)}function gy(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new j(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?H(t,[1,s[0],1,1,1]):H(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?H(t,[1,1,1,1,s[0]]):H(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?H(t,[1,s[0],1,1]):H(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?H(t,[1,1,1,s[0]]):H(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?H(t,[1,s[0],1]):H(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?H(t,[1,1,s[0]]):H(t,[1].concat(s))}else if(e<3)return t;throw new j(`Unsupported input rank by biasAdd: ${t.rank}`)}function yr(e,t,n){return X(()=>(n==null&&(n=hr()),Ut(n),ue(e,gy(e.rank,t,n))))}function OW(e,t=1){if(t!==1)throw new Ve(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return cp(e)}function MW(e){return X(()=>de(e,ue(en(e),1)))}function WS(e,t,n,s){return X(()=>mS(e,t,n,s))}function zW(e){return X(()=>{let t=ue(.5,L(.2,e));return ms(t,0,1)})}function xp(e,t,n=!1){return n?e():t()}var LW=["fanIn","fanOut","fanAvg"],BW=["normal","uniform","truncatedNormal"];function WW(e){Il(LW,"FanMode",e)}function VW(e){Il(BW,"Distribution",e)}var qs=class extends ce.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},mA=class extends qs{apply(e,t){return Wt(e,t)}};mA.className="Zeros";ce.registerClass(mA);var zm=class extends qs{apply(e,t){return fs(e,t)}};zm.className="Ones";ce.registerClass(zm);var gA=class extends qs{constructor(e){super();if(typeof e!="object")throw new j(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new j(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return X(()=>L(Ie(this.value),fs(e,t)))}getConfig(){return{value:this.value}}};gA.className="Constant";ce.registerClass(gA);var yA=class extends qs{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return lc(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};yA.className="RandomUniform";ce.registerClass(yA);var AA=class extends qs{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ve(`randomNormal does not support dType ${t}.`);return Mm(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};AA.className="RandomNormal";ce.registerClass(AA);var xA=class extends qs{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ve(`truncatedNormal does not support dType ${t}.`);return Im(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};xA.className="TruncatedNormal";ce.registerClass(xA);var bA=class extends qs{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return X(()=>{if(e.length!==2||e[0]!==e[1])throw new j("Identity matrix initializer can only be used for 2D square matrices.");return L(this.gain,P1(e[0]))})}getConfig(){return{gain:this.gain}}};bA.className="Identity";ce.registerClass(bA);function UW(e,t="channelsLast"){let n,s;if(Ut(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=Ta(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=Ta(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=Ta(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var ts=class extends qs{constructor(e){super();if(e.scale<0)throw new j(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,WW(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,VW(this.distribution),this.seed=e.seed}apply(e,t){let n=UW(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ve(`${this.getClassName()} does not support dType ${t}.`);return Im(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return lc(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};ts.className="VarianceScaling";ce.registerClass(ts);var Lm=class extends ts{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return ts.className}};Lm.className="GlorotUniform";ce.registerClass(Lm);var Bm=class extends ts{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return ts.className}};Bm.className="GlorotNormal";ce.registerClass(Bm);var Wm=class extends ts{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return ts.className}};Wm.className="HeNormal";ce.registerClass(Wm);var Vm=class extends ts{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return ts.className}};Vm.className="HeUniform";ce.registerClass(Vm);var Um=class extends ts{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return ts.className}};Um.className="LeCunNormal";ce.registerClass(Um);var Gm=class extends ts{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return ts.className}};Gm.className="LeCunNormal";ce.registerClass(Gm);var vA=class extends qs{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Ve("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return X(()=>{if(e.length<2)throw new Ve("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=Mm(n,0,1,"float32"),r=IS.gramSchmidt(s);return e[0]>e[1]&&(r=st(r)),L(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};vA.className="Orthogonal";ce.registerClass(vA);var X3={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function K3(e,t={}){return mp(e,ce.SerializationMap.getMap().classNameMap,t,"initializer")}function Pt(e){return iA(e)}function Et(e){if(typeof e=="string"){let t=e in X3?X3[e]:e;if(t==="GlorotNormal")return new Bm;if(t==="GlorotUniform")return new Lm;if(t==="HeNormal")return new Wm;if(t==="HeUniform")return new Vm;if(t==="LeCunNormal")return new Um;if(t==="LeCunUniform")return new Gm;{let n={};return n.className=t,n.config={},K3(n)}}else return e instanceof qs?e:K3(e)}function GW(){return new mA}function HW(){return new zm}function jW(e){return new gA(e)}function qW(e){return new yA(e)}function XW(e){return new AA(e)}function KW(e){return new xA(e)}function ZW(e){return new bA(e)}function YW(e){return new ts(e)}function JW(e){return new Lm(e)}function QW(e){return new Bm(e)}function eV(e){return new Wm(e)}function tV(e){return new Vm(e)}function nV(e){return new Um(e)}function sV(e){return new Gm(e)}function rV(e){return new vA(e)}var VS={};Le(VS,{Layer:()=>at,RNN:()=>ta,RNNCell:()=>wp,activation:()=>LU,add:()=>XU,alphaDropout:()=>_G,average:()=>KU,averagePooling1d:()=>_x,averagePooling2d:()=>$x,averagePooling3d:()=>Dx,avgPool1d:()=>rG,avgPool2d:()=>oG,avgPool3d:()=>lG,avgPooling1d:()=>aG,avgPooling2d:()=>iG,avgPooling3d:()=>uG,batchNormalization:()=>tG,bidirectional:()=>kG,concatenate:()=>ZU,conv1d:()=>RU,conv2d:()=>_U,conv2dTranspose:()=>$U,conv3d:()=>DU,conv3dTranspose:()=>PU,convLstm2d:()=>xG,convLstm2dCell:()=>bG,cropping2D:()=>OU,dense:()=>BU,depthwiseConv2d:()=>zU,dot:()=>eG,dropout:()=>WU,elu:()=>SU,embedding:()=>qU,flatten:()=>UU,gaussianDropout:()=>RG,gaussianNoise:()=>EG,globalAveragePooling1d:()=>cG,globalAveragePooling2d:()=>dG,globalMaxPool1d:()=>IG,globalMaxPool2d:()=>CG,globalMaxPooling1d:()=>WI,globalMaxPooling2d:()=>VI,gru:()=>hG,gruCell:()=>fG,input:()=>cI,inputLayer:()=>kU,layerNormalization:()=>nG,leakyReLU:()=>CU,lstm:()=>mG,lstmCell:()=>gG,masking:()=>$G,maxPool1d:()=>TG,maxPool2d:()=>NG,maxPooling1d:()=>UI,maxPooling2d:()=>GI,maxPooling3d:()=>pG,maximum:()=>YU,minimum:()=>JU,multiply:()=>QU,permute:()=>jU,prelu:()=>TU,reLU:()=>IU,repeatVector:()=>GU,reshape:()=>HU,rnn:()=>vG,separableConv2d:()=>FU,simpleRNN:()=>yG,simpleRNNCell:()=>AG,softmax:()=>NU,spatialDropout1d:()=>VU,stackedRNNCells:()=>wG,thresholdedReLU:()=>EU,timeDistributed:()=>SG,upSampling2d:()=>MU,zeroPadding2d:()=>sG});var aV=0;function US(){return aV++}var Mh={};function Hm(e=""){return e in Mh||(Mh[e]=0),Mh[e]+=1,e+Mh[e].toString()}function yy(e){return Array.isArray(e)&&Array.isArray(e[0])}function gf(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Ge(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new j(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function ft(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new j(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function yf(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var Z3="Variable",GS=class{constructor(e,t="float32",n=Z3,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=US(),n=n==null?Z3:n,this.originalName=MS(n),this.name=zS(this.originalName),this.trainable_=s,this.constraint=r,this.val=cS(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),oV(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function oV(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function Ay(e){return e.map(t=>t.read())}function wA(e){e.forEach(t=>{t[0].write(t[1])})}var Xt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},ir=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=US(),a!=null&&(this.originalName=MS(a),this.name=zS(this.originalName)),this.rank=t.length}},iV=0,jm=class{constructor(e,t){this.callArgs=t,this.id=iV++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},lV=0,at=class extends ce.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=lV++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Ur(n)+"_"+Hm(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new or(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new j(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Jn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Jn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Vr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Vr(`Layer ${this.name} is not connected, no input to return.`);return Jn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Vr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Vr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Jn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=St(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=St(this.inputSpec);if(e.length!==t.length)throw new j(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let s=e[n],r=t[n];if(r==null)continue;let a=s.rank;if(r.ndim!=null&&a!==r.ndim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${a}`);if(r.maxNDim!=null&&a>r.maxNDim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a<r.minNDim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${a}.`);if(r.dtype!=null&&s.dtype!==r.dtype)throw new j(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${s.dtype}.`);if(r.axes){let o=s.shape;for(let i in r.axes){let l=Number(i),u=r.axes[i],c=l>=0?o[l]:o[o.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o<r.shape.length;++o){let i=r.shape[o],l=s.shape[o];if(i!=null&&l!=null&&i!==l)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=St(e),s=!0;for(let a of n)if(!(a instanceof ir)){s=!1;break}let r=!0;for(let a of n)if(a instanceof ir){r=!1;break}if(s===r)throw new j("Arguments to apply() must be all SymbolicTensors or all Tensors");return Ai(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of St(e))a.push(o.shape);this.build(Jn(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=St(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=Jn(i),this.activityRegularizer!=null)throw new Ve("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=uV(e),o=this.computeOutputShape(a),i,l=cV(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((u,c)=>new ir(l,u,this,St(e),t,this.name,c)):i=new ir(l,o,this,St(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new Ve("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Vr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Vr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new or(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return yf(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Ay(e?this.trainableWeights:this.weights)}setWeights(e){X(()=>{let t=this.weights;if(t.length!==e.length)throw new j(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=Ay(t);for(let r=0;r<s.length;++r){let a=s[r],o=t[r],i=e[r];if(!v.arraysEqual(a.shape,i.shape))throw new j(`Layer weight shape ${a.shape} not compatible with provided weight shape ${i.shape}`);n.push([o,i])}wA(n)})}addWeight(e,t,n,s,r,a,o,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new j(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=i!=null?i():Et("zeros"));let l=s.apply(t,n),u=new GS(l,n,e,a,o);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(u.read())),a==null&&(a=!0),a?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=St(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=St(e);t=St(t),n=St(n),s=St(s),r=gf(r),a=gf(a);let l=[],u=[],c=[];for(let p of i)l.push(p.sourceLayer),u.push(p.nodeIndex),c.push(p.tensorIndex);new jm({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let p=0;p<t.length;p++)t[p].sourceLayer=this,t[p].nodeIndex=this.inboundNodes.length-1,t[p].tensorIndex=p}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function uV(e){e=St(e);let t=[];for(let n of e)t.push(n.shape);return Jn(t)}function cV(e){return"float32"}function HS(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a<s.inboundLayers.length;a++){let o=s.inputTensors[a],i=s.inboundLayers[a],l=s.nodeIndices[a],u=HS(o,i,l);for(let c of u)r.indexOf(c)===-1&&r.push(c)}return r}}}var dc=class extends at{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Hm("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new j("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new j("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new j("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let s=new ir(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new jm({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new j(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};dc.className="InputLayer";ce.registerClass(dc);function jS(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new j("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new dc({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function va(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(r),s.push(o)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;a<r.length;++a)e[n[a]]=r[a][0];ne(s)}}function qS(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var dV=125,wu=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},XS=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},pV=class extends wu{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let s in t){let r=t[s];if(typeof r=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+r*n;else{let a;s in this.totals?a=this.totals[s]:this.totals[s]=0;let o=X(()=>ue(this.totals[s],L(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:X(()=>{let s=L(de(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),dn(t[n])}))}},KS=class extends wu{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;o<a.length;++o)if(typeof a[o]!="number"){let i=a[o];e.push(i.data()),t.push(r),n.push(o)}}let s=await Promise.all(e);for(let r=0;r<s.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=s[r][0]}},ZS=class extends wu{constructor(e,t){super();if(this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||aA,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=dV),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=xW(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let s=[];this.yield!=null&&(await va(n),s.push(this.yield(e,t,n))),s.push(this.nextFrameFunc()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await va(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await va(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await va(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await va(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):v.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await va(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await va(e),await this.trainEnd(e))}};function YS(e,t){return e==null&&(e={}),e instanceof wu?[e]:Array.isArray(e)&&e[0]instanceof wu?e:St(e).map(s=>new ZS(s,t))}var wr=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),wr.checkForDuplicate(t),wr.constructors[e]==null&&(wr.constructors[e]=[]),wr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in wr.constructors)wr.constructors[+t].forEach(s=>{if(s===e)throw new j("Duplicate callback constructor.")})}static clear(){wr.constructors={}}static createCallbacks(e){let t=[];for(let n in wr.constructors){let s=+n;e>=s&&t.push(...wr.constructors[s])}return t.map(n=>new n)}},kA=wr;kA.constructors={};function JS(e,t,n,s,r,a,o,i,l){let u=new KS,c=[new pV,...kA.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let p=new XS(c);return p.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:p,history:u}}function cr(e,t={},n=!1){return mp(e,ce.SerializationMap.getMap().classNameMap,t,"layer",n)}function Af(e,t){return X(()=>{e.dtype!=="float32"&&(e=ge(e,"float32"));let n=ke(Ap(e),t,!0),s=ac(n.shape,tn()),r=Nn(Jr(n,s));return de(e,r)})}function Cl(e,t){return X(()=>Bt(Ap(pe(t,e)),-1))}function qm(e,t){return X(()=>Bt(en(pe(t,e)),-1))}function pc(e,t){return X(()=>{let n=pe(e,t),s=ms(en(e),tn(),Number.MAX_VALUE),r=en(de(n,s));return L(100,Bt(r,-1))})}function hV(e,t){return X(()=>{let n=ms(t,tn(),Number.MAX_VALUE),s=_s(ue(1,n)),r=ms(e,tn(),Number.MAX_VALUE),a=_s(ue(1,r));return Bt(Ap(pe(s,a)),-1)})}function fV(e,t){return X(()=>{let n=Jr(0,pe(1,L(e,t)));return Bt(Ap(n),-1)})}function mV(e,t){return X(()=>{let n=Jr(0,pe(1,L(e,t)));return Bt(n,-1)})}function gV(e,t){return X(()=>{let n=ke(L(e,t),-1),s=hn(L(pe(1,e),t),-1);return Jr(0,ue(1,pe(s,n)))})}function yV(e,t){return X(()=>{let n=Math.log(2),s=pe(t,e),r=pe(ue(s,oc(L(-2,s))),n);return Bt(r,-1)})}function Dd(e,t,n=!1){return X(()=>{if(n)t=uc(t);else{let s=ke(t,t.shape.length-1,!0);t=de(t,s)}return t=ms(t,tn(),1-tn()),Ot(ke(L(ge(e,"float32"),_s(t)),t.shape.length-1))})}function xf(e,t,n=!1){return X(()=>{let s=ge(dp(PW(e)),"int32");t=ms(t,tn(),1-tn());let r=t.shape,a=H(Rd(s,r[r.length-1]),r);return Dd(a,t,n)})}function AV(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new j(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return X(()=>{let n=Dr(t),s=Ot(en(t));return ue(pe(n,L(t,e)),mm(Rs(s)))})}function Xm(e,t){return X(()=>{let n;return n=ms(t,tn(),1-tn()),n=_s(de(n,pe(1,n))),Bt(AV(e,n),-1)})}function xV(e,t){return X(()=>{let n=ms(e,tn(),1),s=ms(t,tn(),1);return ke(L(e,_s(de(n,s))),-1)})}function bV(e,t){return X(()=>{let n=_s(ue(tn(),t));return Bt(pe(t,L(e,n)),-1)})}function SA(e,t){return X(()=>{let n=Af(e,-1),s=Af(t,-1),r=L(n,s);return Ot(ke(r,-1))})}var bf={meanSquaredError:Cl,meanAbsoluteError:qm,meanAbsolutePercentageError:pc,meanSquaredLogarithmicError:hV,squaredHinge:fV,hinge:mV,categoricalHinge:gV,logcosh:yV,categoricalCrossentropy:Dd,sparseCategoricalCrossentropy:xf,binaryCrossentropy:Xm,kullbackLeiblerDivergence:xV,poisson:bV,cosineProximity:SA};function q2(e){if(typeof e=="string"){if(e in bf)return bf[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new j(t)}else return e}function IA(e,t){return X(()=>{let n=L(.5,$s(t)),s=Om(gs(t,n),e.dtype);return Bt(Es(e,s),-1)})}function CA(e,t){return X(()=>Om(Es(Ns(e,-1),Ns(t,-1)),"float32"))}function QS(e,t){return X(()=>ge(ke(pr(Es(e,1),Es(t,1))),"float32"))}function vV(e,t){return X(()=>ge(ke(pr(Es(e,1),Es(t,0))),"float32"))}function wV(e,t){return X(()=>ge(ke(pr(Es(e,0),Es(t,1))),"float32"))}function eI(e,t){return X(()=>{let n=QS(e,t),s=wV(e,t),r=ue(n,s);return ge(Un(gs(r,0),de(n,r),0),"float32")})}function kV(e,t){return X(()=>{let n=QS(e,t),s=vV(e,t),r=ue(n,s);return ge(Un(gs(r,0),de(n,r),0),"float32")})}function tI(e,t){return Xm(e,t)}function nI(e,t){return e.rank===t.rank&&(e=Qe(e,[e.rank-1])),t=Ns(t,-1),t.dtype!==e.dtype&&(t=ge(t,e.dtype)),ge(Es(e,t),"float32")}var SV=Cl,IV=Cl,CV=qm,TV=qm,NV=pc,EV=pc,TA=Dd,RV=SA,sI=xf,vf={binaryAccuracy:IA,categoricalAccuracy:CA,precision:eI,categoricalCrossentropy:TA,sparseCategoricalCrossentropy:sI,mse:SV,MSE:IV,mae:CV,MAE:TV,mape:NV,MAPE:EV,cosine:RV};function _V(e){if(typeof e=="string"&&e in vf)return vf[e];if(typeof e!="string"&&e!=null)return e;throw new j(`Unknown metric ${e}`)}function zh(e){if(Sr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(bf))if(bf[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(vf))if(vf[n]===e){t=n;break}return t!==void 0?t:e.name}}function $V(e){let t={Adagrad:()=>li.adagrad(.01),Adadelta:()=>li.adadelta(1,.95,tn()),Adam:()=>li.adam(.001,.9,.999,tn()),Adamax:()=>li.adamax(.002,.9,.999,tn(),0),RMSProp:()=>li.rmsprop(.001,.9,0,tn()),SGD:()=>li.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new j(`Unknown Optimizer ${e}`)}var Y3=1*1024*1024;function J3(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!xy(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>Y3&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${Y3}.`)}}function xy(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!xy(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!xy(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function DV(e,t,n,s=console.log){let r=FV(e),a=["Layer (type)","Input Shape","Output shape","Param #"];r?(t=t||90,n=n||[.32,.61,.89,1]):(t=t||115,n=n||[.24,.48,.7,.8,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let o;if(!r){a.push("Receives inputs"),o=[];for(let c in e.nodesByDepth)o.push(...e.nodesByDepth[c])}s("_".repeat(t)),wf(a,n,s),s("=".repeat(t));let i=e.layers;for(let c=0;c<i.length;++c)r?OV(i[c],n,s):MV(i[c],n,o,s),s((c===i.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=PV(e),u=yf(e.nonTrainableWeights);s(`Total params: ${l+u}`),s(`Trainable params: ${l}`),s(`Non-trainable params: ${u}`),s("_".repeat(t))}function PV(e){let t;return e.collectedTrainableWeights!=null?t=yf(e.collectedTrainableWeights):t=yf(e.trainableWeights),t}function FV(e){let t=!0,n=[],s=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function wf(e,t,n=console.log){let s="";for(let r=0;r<e.length;++r)r>0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function OV(e,t,n){let s,r;try{r=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){r="multiple"}try{s=JSON.stringify(e.outputShape)}catch(l){s="multiple"}let a=e.name,o=e.getClassName(),i=[`${a} (${o})`,r,s,e.countParams().toString()];wf(i,t,n)}function MV(e,t,n,s){let r,a;try{a=e.inboundNodes.map(p=>JSON.stringify(p.inputShapes)).join(",")}catch(p){a="multiple"}try{r=JSON.stringify(e.outputShape)}catch(p){r="multiple"}let o=[];for(let p of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(p)===-1))for(let d=0;d<p.inboundLayers.length;++d){let h=p.inboundLayers[d].name,f=p.nodeIndices[d],m=p.tensorIndices[d];o.push(`${h}[${f}][${m}]`)}let i=e.name,l=e.getClassName(),u=o.length===0?"":o[0],c=[`${i} (${l})`,a,r,e.countParams().toString(),u];wf(c,t,s);for(let p=1;p<o.length;++p)wf(["","","","",o[p]],t,s)}function rI(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Pd(e,t){if(e===null)return null;if(typeof e=="string")return pi(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];rI(t,r,a)?n.push(a):n.push(Pd(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s];if(s==="name"&&typeof r=="string")n[s]=r;else{let a=pi(s);n[a]=Pd(r,a)}}return n}}function by(e,t){if(e==null)return null;if(typeof e=="string")return Ur(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];rI(t,r,a)?n.push(a):n.push(by(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s],a=Ur(s);(s==="name"||s==="className")&&typeof r=="string"?n[a]=r:n[a]=by(r,s)}return n}}var NA="0.0.0";function zV(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ge(t,e.dtype)}catch(n){throw new j(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var mi=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof mi)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=zV(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new j(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof ir){if(this.id2Value[e.id]==null)throw new j(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new j(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof ir){if(this.id2Value[e.id]==null)throw new j(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new j(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&ne(this.id2Mask)}},X2={},Q3={};function pd(e,t,n,s){let r=n==null?!1:n.training,a=Array.isArray(e),o=a?e:[e],i=o.map(f=>f.name),l=[],u=t.names();for(let f of i)u.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let c=i.join(",")+"|"+t.names().join(","),p,d;if(X2[c]==null){let f=LV(o,t);p=f.sorted,d=f.recipientCounts,X2[c]=p,Q3[c]=d}p=X2[c],d={},r||Object.assign(d,Q3[c]);let h=new mi(t);for(let f=0;f<p.length;++f){if(s!=null){let R=hf().numTensors;R>s.maxNumTensors&&(s.maxNumTensors=R),R<s.minNumTensors&&(s.minNumTensors=R)}let m=p[f],g=m.sourceLayer;if(g instanceof dc)continue;let y=[],x=[],A=[],b=!1;for(let R of m.inputs){let P=h.getValue(R),_=h.getMask(R);y.push(P),x.push(_),_!=null&&(b=!0),r||(d[R.name]--,d[R.name]===0&&!t.hasKey(R)&&i.indexOf(R.name)===-1&&!P.isDisposed&&R.sourceLayer.stateful!==!0&&A.push(P))}b&&(n=n||{},n.mask=x[0]);let w=St(g.apply(y,n)),S=null;g.supportsMasking&&(S=g.computeMask(y,x));let I=WV(m),E=Array.isArray(I)?I:[I];for(let R=0;R<E.length;++R){h.hasKey(E[R])||h.add(E[R],w[R],Array.isArray(S)?S[0]:S);let P=i.indexOf(E[R].name);P!==-1&&(l[P]=w[R])}r||ne(A)}return h.disposeMasks(),a?l:l[0]}function LV(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=ev(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=ev(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(u=>s[l].add(u))}}return{sorted:n,recipientCounts:BV(s)}}function BV(e){let t={};for(let n in e)t[n]=e[n].size;return t}function ev(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let u of i.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(i.name),!n.has(u.name)&&a.push(u)}}return{sorted:s,recipientMap:r}}function WV(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(let r of e.sourceLayer.inboundNodes[s].outputTensors)if(r.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}var kr=class extends at{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=Hm(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Ca(this.inputs).length!==this.inputs.length)throw new j(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);Ca(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let x=y.sourceLayer,A=y.nodeIndex,b=y.tensorIndex;this.outputLayers.push(x),this.outputLayersNodeIndices.push(A),this.outputLayersTensorIndices.push(b)}for(let y of this.inputs){let x=y.sourceLayer,A=y.nodeIndex,b=y.tensorIndex;Sr(A===0,"input layer has >1 nodes"),Sr(b===0,"input layer has >1 tensors"),this.inputLayers.push(x),this.inputLayersNodeIndices.push(A),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let x=this.inputLayers[y];if(!(x instanceof dc))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${x.getClassName()}.`);this.inputNames.push(x.name),this.feedInputShapes.push(x.batchInputShape),this.feedInputNames.push(x.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},s={},r={},a={},o=[],i=(y,x,A,b,w,S)=>{(b==null||w==null||S==null)&&(b=y.sourceLayer,w=y.nodeIndex,S=y.tensorIndex);let I=b.inboundNodes[w];if(A.indexOf(I)!==-1)throw new or(`The tensor ${y.name} at layer "${b.name}" is part of a cycle.`);if(x.indexOf(I)!==-1)return;this.containerNodes.add(kr.nodeKey(b,w)),b.id in a||(a[b.id]=Object.keys(a).length),A.indexOf(I)===-1&&A.push(I);let E=I.inboundLayers.length;for(let R=0;R<E;R++){let P=I.inputTensors[R],_=I.inboundLayers[R],D=I.nodeIndices[R],T=I.tensorIndices[R];i(P,x,A,_,D,T)}for(x.push(I);A.indexOf(I)>=0;)A.splice(A.indexOf(I),1);o.push(I)},l=[],u=[];for(let y of this.outputs)i(y,l,u);let c=o.slice().reverse();for(let y of c){n[y.id]=y,y.id in t||(t[y.id]=0);let x=t[y.id],A=s[y.outboundLayer.id]==null?0:s[y.outboundLayer.id];x=Math.max(x,A),s[y.outboundLayer.id]=x,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=x;for(let b=0;b<y.inboundLayers.length;b++){let w=y.inboundLayers[b],S=y.nodeIndices[b],I=w.inboundNodes[S],E=t[I.id]==null?0:t[I.id];t[I.id]=Math.max(x+1,E),n[I.id]=I}}let p={};for(let y in t){let x=t[y];x in p||(p[x]=[]),p[x].push(n[y])}let d={};for(let y in s){let x=s[y];x in d||(d[x]=[]),d[x].push(r[y])}let h=Object.keys(d).map(y=>parseInt(y,10)).sort(Fh);this.layers=[];for(let y of h){let x=d[y];x.sort((A,b)=>{let w=a[A.id],S=a[b.id];return w<S?-1:w>S?1:0});for(let A of x)A instanceof kr&&this.internalContainerRefs.push(A),this.layers.push(A)}this.layersByDepth=d,h=Object.keys(p).map(y=>parseInt(y,10)).sort(Fh);let f=this.inputs.slice(),m=[];for(let y of h)for(let x of p[y]){let A=x.outboundLayer;if(A!=null){for(let b of x.inputTensors)if(f.indexOf(b)===-1)throw new or(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${A.name}". The following previous layers were accessed without issue: ${m}`);for(let b of x.outputTensors)f.push(b);m.push(A.name)}}this.nodesByDepth=p;let g=this.layers.map(y=>y.name);for(let y of g){let x=g.filter(A=>A===y).length;if(x!==1)throw new or(`The name "${y}" is used ${x} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new jm({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new j("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new j(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new j(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new j(`${a.length} of ${s} weights are not set: ${a}`)}wA(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${NA}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=by(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return X(()=>{e=St(e);let n=new mi;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return pd(this.outputs,n,t)})}computeMask(e,t){return X(()=>{e=St(e);let n;return t==null?n=Ci(null,e.length):n=St(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=gf(e);if(t.length!==this.inputLayers.length)throw new j(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;o<t.length;o++){let i=this.inputLayers[o],l=t[o],u=i.name+"_0_0";n[u]=l}let s=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Fh);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let u=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(u.id)!==-1)continue;let c=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],g=l.nodeIndices[f],y=l.tensorIndices[f],x=`${m.name}_${g}_${y}`,A=n[x];c.push(A)}let p=u.computeOutputShape(Jn(c)),d=gf(p),h=u.inboundNodes.indexOf(l);for(let f=0;f<d.length;f++){let m=`${u.name}_${h}_${f}`;n[m]=d[f]}}}let r=[],a=[];for(let o=0;o<this.outputLayers.length;o++){let i=this.outputLayers[o],l=this.outputLayersNodeIndices[o],u=this.outputLayersTensorIndices[o],c=`${i.name}_${l}_${u}`;a.push(c)}for(let o=0;o<a.length;o++){let i=a[o];Sr(i in n),r.push(n[i])}return Jn(r)}runInternalGraph(e,t){t==null&&(t=Ci(null,e.length));let n={};for(let i=0;i<this.inputs.length;++i){let l=this.inputs[i],u=e[i],c=t[i];n[l.id]=[u,c]}let s=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Fh);for(let i of s){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer,p=u.inputTensors,d=u.outputTensors,h=new Array;for(let f of p)f.id in n&&h.push(n[f.id]);if(h.length===p.length){let f={},m,g,y,x;if(u.callArgs!=null&&(f=u.callArgs),h.length===1){let[A,b]=h[0];f.mask==null&&(f.mask=b),y=St(c.call(A,f)),x=St(c.computeMask(A,b)),m=[A],g=[b]}else m=h.map(A=>A[0]),g=h.map(A=>A[1]),f.mask==null&&(f.mask=g),y=St(c.call(m,f)),x=St(c.computeMask(m,g));if(c.activityRegularizer)throw new Ve("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let A=0;A<d.length;++A){let b=d[A],w=y[A],S=x[A];n[b.id]=[w,S]}}}}let r=[],a=[],o=[];for(let i of this.outputs){Sr(i.id in n,`Could not compute output ${i.name} : ${i.id}`);let[l,u]=n[i.id];o.push(l.shape),r.push(l),a.push(u)}return[r,a,o]}buildNodeConversionMap(e){let t={},n;for(let s of this.layers){n=s instanceof kr?1:0;for(let r=0;r<s.inboundNodes.length;r++){let a=kr.nodeKey(s,r);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new j(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new j("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new j(`No such layer: ${e}`)}calculateLosses(){return X(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let s=kr.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let o=a.getClassName(),i=a.getConfig(),l=[];for(let c=0;c<a.inboundNodes.length;c++){let p=a.inboundNodes[c],d=kr.nodeKey(a,c),h={};if(this.containerNodes.has(d)){if(p.callArgs)try{JSON.stringify(p.callArgs),h=p.callArgs}catch(f){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${p.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(p.inboundLayers.length>0){let f=[];for(let m=0;m<p.inboundLayers.length;m++){let g=p.inboundLayers[m],y=p.nodeIndices[m],x=p.tensorIndices[m],A=kr.nodeKey(g,y),b=t[A];b==null&&(b=0),f.push([g.name,b,x,h])}l.push(f)}}}let u={};u.name=a.name,u.className=o,u.config=i,u.inboundNodes=l,n.push(u)}e.layers=n;let s=[];for(let a=0;a<this.inputLayers.length;a++){let o=this.inputLayers[a],i=this.inputLayersNodeIndices[a],l=kr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.inputLayersTensorIndices[a];s.push([o.name,u,c])}e.inputLayers=s;let r=[];for(let a=0;a<this.outputLayers.length;a++){let o=this.outputLayers[a],i=this.outputLayersNodeIndices[a],l=kr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.outputLayersTensorIndices[a];r.push([o.name,u,c])}return e.outputLayers=r,e}static fromConfig(e,t,n={},s=!1){let r={},a={};function o(m,g){m.name in a?a[m.name].push(g):a[m.name]=[g]}function i(m,g){let y=[],x;for(let A of g){let b=A[0],w=A[1],S=A[2];if(x=A[3]==null?{}:A[3],!(b in r)){o(m,g);return}let I=r[b];if(I.inboundNodes.length<=w){o(m,g);return}let E=I.inboundNodes[w];y.push(E.outputTensors[S])}y.length>0&&m.apply(Jn(y),x)}function l(m){let g=m.name,y=cr(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(s),r[g]=y,m.inboundNodes.forEach(A=>{if(!(A instanceof Array))throw new j(`Corrupted configuration, expected array for nodeData: ${A}`);o(y,A)})}let u=t.name,c=t.layers;for(let m of c)l(m);for(;!AW(a);)for(let m of c){let g=r[m.name];if(g.name in a){let y=a[g.name];delete a[g.name];for(let x of y)i(g,x)}}let p=[],d=[],h=t.inputLayers;for(let m of h){let g=m[0],y=m[1],x=m[2];Sr(g in r);let b=r[g].inboundNodes[y].outputTensors;p.push(b[x])}let f=t.outputLayers;for(let m of f){let g=m[0],y=m[1],x=m[2];Sr(g in r);let b=r[g].inboundNodes[y].outputTensors;d.push(b[x])}return new e({inputs:p,outputs:d,name:u})}get stateful(){if(this._stateful)throw new j("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){X(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function VV(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function aI(e,t){return VV(e,t,"classWeight")}async function oI(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=X(()=>{if(e.shape.length===1)return Vn(e);if(e.shape.length===2){if(e.shape[1]>1)return Ns(e,1);if(e.shape[1]===1)return H(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());ne(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),It(o,"float32")}else return null}function UV(e,t){return L(e,t)}var GV=32;function iI(e,t){let n,s,r=t;n=r.xs,s=r.ys,v.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=tv("input",e.inputNames,n),o=tv("output",e.outputNames,s),i=a[0].shape[0];v.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<a.length;l++)v.assert(a[l].shape[0]===i,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l<o.length;l++)v.assert(o[l].shape[0]===i,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function tv(e,t,n){if(n instanceof nt)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new j(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function HV(e){if(e.length===3)throw new Ve("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function jV(e,t,n){let s=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(nv(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=HV(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=YS(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:d,history:h}=JS(c,p,n.epochs,null,null,qV(t,n),null,r,u);d.setModel(e),e.history=h,await d.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let g={};await d.onEpochBegin(f);let y=0,x=0;for(s||(m=await t.iterator());!s||y<n.batchesPerEpoch;){let A=await m.next();if(s&&A.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(A.value!=null){let{xs:b,ys:w}=iI(e,A.value),S={};S.batch=x,S.size=b[0].shape[0],await d.onBatchBegin(x,S);let I=[];if(n.classWeight!=null){let P=aI(n.classWeight,e.outputNames);for(let _=0;_<P.length;++_)I.push(await oI(w[_],null,P[_]))}let E=b.concat(w).concat(I),R=i(E);ne(E);for(let P=0;P<l.length;++P){let _=l[P],D=R[P];S[_]=D,dn(D)}await d.onBatchEnd(x,S),qS(S),x++,y++}if(s?y>=n.batchesPerEpoch:A.done){if(r){let b;nv(n.validationData)?b=St(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=St(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?GV:n.validationBatchSize,verbose:0}));for(let w=0;w<e.metricsNames.length;++w)g[`val_${e.metricsNames[w]}`]=b[w]}break}if(e.stopTraining_)break}if(await d.onEpochEnd(f,g),f++,e.stopTraining_)break}return await d.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function qV(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function nv(e){return typeof e.iterator=="function"}function XV(e){return typeof e.next=="function"}async function KV(e,t,n){n=n||{};let s=n.batches!=null,r=e.testFunction,a=[];if(n.verbose>0)throw new Ve("Verbose mode is not implemented yet.");v.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=XV(t)?t:await t.iterator(),i=0,l=0;for(;!s||l<n.batches;){let u=await o.next();if(a=X(()=>{if(u.value){let{xs:c,ys:p}=iI(e,u.value),d=c.concat(p),h=X(()=>r(d));if(ne(d),l===0)for(let m=0;m<h.length;++m)a.push(Ie(0));let f=d[0].shape[0];for(let m=0;m<h.length;++m){let g=h[m],y=a[m];a[m]=X(()=>ue(a[m],L(f,g))),l>0&&ne(y)}ne(h),i+=f,++l}return a}),u.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<a.length;++u){let c=a[u];a[u]=de(a[u],i),ne(c)}return Jn(a)}function vy(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function hd(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>xi(s,t,n-t)):xi(e,t,n-t)}function EA(e,t){return X(()=>e==null?null:Array.isArray(e)?e.map(n=>EA(n,t)):BS(e,t.dtype==="int32"?t:ge(t,"int32")))}function wy(e,t){let n=[],s=0,r=null;for(;s<e;)r=s+t,r>=e&&(r=e),n.push([s,r]),s=r;return n}async function ZV(e,t,n,s,r,a,o,i,l,u,c,p,d,h,f){r==null&&(r=32),a==null&&(a=1),c==null&&(c=!0),d==null&&(d=0);let m=!1;if(l!=null&&u!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new j("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;g!=null&&(y=fr(0,g)),o==null&&(o=1);let{callbackList:x,history:A}=JS(i,o,a,d,g,h,r,m,p);x.setModel(e),e.history=A,await x.onTrainBegin(),e.stopTraining_=!1;for(let b=d;b<a;++b){await x.onEpochBegin(b);let w={};if(h!=null)throw new Ve("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Ve("batch shuffling is not implemneted yet");c&&v.shuffle(y);let S=It(y),I=wy(g,r);for(let E=0;E<I.length;++E){let R={};if(await x.onBatchBegin(E,R),X(()=>{let P=I[E][0],_=I[E][1],D=xi(S,P,_-P);R.batch=E,R.size=_-P;let T=EA(n,D),O=t(T);for(let U=0;U<s.length;++U){let K=s[U],z=O[U];R[K]=z,dn(z)}if(E===I.length-1&&m){let U=e.testLoop(l,u,r);for(let K=0;K<s.length;++K){let z=s[K],Z=U[K];dn(Z),w["val_"+z]=Z}}}),await x.onBatchEnd(E,R),qS(R),e.stopTraining_)break}S.dispose()}if(await x.onEpochEnd(b,w),e.stopTraining_)break}return await x.onTrainEnd(),await e.history.syncData(),e.history}async function YV(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,a,o,i,l,u,c,p,d;try{let h=s.batchSize==null?32:s.batchSize;vy(h);let f=!1,m=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,f,h);r=m[0],a=m[1],d=m[2];let g=!1,y;if(s.validationData!=null&&s.validationData.length>0){if(g=!0,s.validationData.length===2)l=s.validationData[0],u=s.validationData[1];else throw s.validationData.length===3?new Ve("validationData including sample weights is not supported yet."):new j(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let R=!0,P=await e.standardizeUserData(l,u,null,null,R,h);c=P[0],p=P[1],y=c.concat(p)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){g=!0;let R=Math.floor(r[0].shape[0]*(1-s.validationSplit)),P=r[0].shape[0];c=hd(r,R,P),o=r,r=hd(r,0,R),p=hd(a,R,P),i=a,a=hd(a,0,R),y=c.concat(p)}else s.validationSteps!=null&&(g=!0);let x=r.concat(a).concat(d);e.checkTrainableWeightsConsistency();let A=e.makeTrainFunction(),b=e.getDedupedMetricsNames(),w,S;g?(e.makeTestFunction(),w=e.testFunction,S=b.slice().concat(b.map(R=>"val_"+R))):(w=null,y=[],S=b.slice());let I=YS(s.callbacks,s.yieldEvery);return await ZV(e,A,x,b,h,s.epochs,s.verbose,I,w,y,s.shuffle,S,s.initialEpoch,null,null)}finally{e.isTraining=!1,ar(r,t),ar(a,n),ar(o,t),ar(i,n),ar(c,l),ar(p,u),d!=null&&ne(d)}}function lI(e){let t=[];e instanceof nt&&(e=[e]);for(let n=0;n<e.length;++n){let s=e[n];if(s.rank===1)t.push(yp(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function ar(e,t){if(e==null)return;let n=[];if(t instanceof nt)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof nt)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function JV(e){return e instanceof nt}function ky(e){return Array.isArray(e)}function sv(e){return!JV(e)&&!ky(e)}function rv(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(ky(e)&&e.length>0)o=!0;else if(sv(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new j(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(sv(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new j(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(ky(e)){if(e=e,e.length!==t.length)throw new j(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new j(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=lI(a),n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new j(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let u=i.shape[l],c=n[o][l];if(c!=null&&c>=0&&u!==c)throw new j(`${r} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${r} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function QV(e,t,n){let s=Ca(e.map(a=>a.shape[0]));s.sort();let r=Ca(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new j(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new j(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!v.arraysEqual(s,r))throw new j(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function eU(e,t,n){let s=[Cl,Xm,Dd];for(let r=0;r<e.length;++r){let a=e[r],o=t[r],i=n[r];if(o!=null){if(o===Dd&&a.shape[a.shape.length-1]===1)throw new j(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(o)!==-1){let l=a.shape.slice(1),u=i.slice(1);for(let c=0;c<l.length;++c){let p=l[c],d=u[c];if(d!=null&&p!==d)throw new j(`A target Tensor with shape ${a.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function av(e,t,n,s=!0,r=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new j(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new j(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new j(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let u=i.shape[l],c=n[o][l];if(c!=null&&c!==u)throw new j(`Error when checking ${r}: expected ${t[o]} to have shape ${JSON.stringify(n[o])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function tU(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var nU="layers-model",qr=class extends kr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new j("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");DV(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=$V(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof ea))throw new j("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new j(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(q2(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new j(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>q2(o))}else{let a=q2(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let o=this.internalOutputShapes[a],i=this.outputNames[a];this.feedOutputNames.push(i),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Ai("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=tU(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};Ai("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=s[a];(l=>{let u="",c,p,d;for(let h of l){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===Xm?["accuracy","acc"].indexOf(h)!==-1?p=IA:["crossentropy","ce"].indexOf(h)!==-1&&(p=tI):this.lossFunctions[a]===xf?["accuracy","acc"].indexOf(h)!==-1?p=nI:["crossentropy","ce"].indexOf(h)!==-1&&(p=sI):["accuracy","acc"].indexOf(h)!==-1?p=CA:["crossentropy","ce"].indexOf(h)!==-1&&(p=TA);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),d=p,c=u+g}else d=_V(h),c=u+zh(h);let f;Ai(c,()=>{f=d}),r(a,c,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;vy(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return Jn(l)}finally{ar(a[0],e),ar(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),KV(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new j(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new j(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new j("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new mi;if(e instanceof nt&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new j(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;i<this.inputs.length;++i)a.add(this.inputs[i],e[i])}else for(let i of this.inputs){let l=e[i.name];if(l==null)throw new j(`No value is provided for the model's input ${i.name}`);a.add(i,l)}let o=pd(r,a);return n?o:o[0]}retrieveSymbolicTensors(e){let t=Ci(null,e.length),n=e.length;for(let s of this.layers){let r=Array.isArray(s.output)?s.output:[s.output],a=r.map(o=>o.name);for(let o=0;o<e.length;++o){let i=a.indexOf(e[o]);if(i!==-1&&(t[o]=r[i],n--),n===0)break}if(n===0)break}if(n>0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new j(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return X(()=>{let s=this.checkNumSamples(e);if(n)throw new Ve("Verbose predictLoop() is not implemented yet.");let r=wy(s,t),a=this.outputs.map(o=>[]);for(let o=0;o<r.length;++o)X(()=>{let l=r[o][0],u=r[o][1],c=hd(e,l,u),p=[];if(Array.isArray(c))for(let h=0;h<c.length;++h)p.push({key:this.inputs[h],value:c[h]});else p.push({key:this.inputs[0],value:c});let d=new mi(p);return pd(this.outputs,d)}).forEach((l,u)=>a[u].push(l));return Jn(a.map(o=>kt(o,0)))})}predict(e,t={}){let n=lI(e);av(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return vy(s),this.predictLoop(n,s)}finally{ar(n,e)}}predictOnBatch(e){av(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new or("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a<this.feedOutputShapes.length;++a){let o=this.feedOutputShapes[a];this.feedLossFns[a]===xf?r.push(o.slice(0,o.length-1).concat([1])):r.push(o)}if(e=rv(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=rv(t,this.feedOutputNames,r,!1,"target"),QV(e,t,null),eU(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!==0)throw new j(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let u=aI(s,this.outputNames);l=[];for(let c=0;c<u.length;++c)l.push(await oI(i[c],null,u[c]))}return[o,i,l]}testLoop(e,t,n,s=0,r){return X(()=>{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new Ve("Verbose mode is not implemented yet.");if(r!=null)throw new Ve("steps mode in testLoop() is not implemented yet");{let i=wy(a,n),l=It(fr(0,a));for(let u=0;u<i.length;++u){let c=i[u][0],p=i[u][1],d=xi(l,c,p-c),h=EA(t,d),f=e(h);if(u===0)for(let m=0;m<f.length;++m)o.push(Ie(0));for(let m=0;m<f.length;++m){let g=f[m];o[m]=ue(o[m],L(p-c,g))}}for(let u=0;u<o.length;++u)o[u]=de(o[u],a)}return o})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let s=e[n],r=s;U3(e,s)>1&&(r+=`_${U3(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let c=[];for(let f=0;f<this.inputs.length;++f)c.push({key:this.inputs[f],value:n[f]});let p=new mi(c),d=pd(this.outputs,p,{training:!0}),h;for(let f=0;f<this.lossFunctions.length;++f){let g=this.lossFunctions[f](s[f],d[f]);r[f]!=null&&(g=UV(g,r[f]));let y=Bt(g);t.push(y),f===0?h=g:h=ue(h,g)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let g=this.metricsTensors[f][0],y=this.metricsTensors[f][1];m=Bt(g(s[y],d[y]))}dn(m),a.push(m)}return h=Bt(h),this.calculateLosses().forEach(f=>{h=ue(h,f)}),h},i=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>X(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;l<this.inputs.length;++l)a.push({key:this.inputs[l],value:s[l]});let o=new mi(a),i=pd(this.outputs,o);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],c=Bt(u(r[l],i[l]));l===0?n=c:n=ue(n,c),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],c=this.metricsTensors[l][1],p=Bt(u(r[c],i[c]));t.push(p)}return t})}async fit(e,t,n={}){return YV(this,e,t,n)}async fitDataset(e,t){return jV(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),s=n[0],r=n[1],o=this.makeTrainFunction()(s.concat(r)),i=[];for(let l of o){let u=await l.data();i.push(u[0])}return ne(o),ar(n[0],e),ar(n[1],t),Jn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let a=0;a<s.length;++a)n&&!s[a].trainable||t.push({name:s[a].originalName,tensor:r[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=hf().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-hf().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Ur(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Ur(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=Ur(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Ur(zh(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Ur(zh(e)));{let e={};for(let t in this.metrics)e[t]=Ur(zh(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Pd(e.optimizer_config),n=cr(t),s;if(typeof e.loss=="string")s=pi(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>pi(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=pi(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>pi(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=pi(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=In.getSaveHandlers(e);if(l.length===0)throw new j(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new j(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new j("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await In.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:nU,generatedBy:`TensorFlow.js tfjs-layers v${NA}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:u,specs:c}=await In.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...c),n.data=In.concatenateArrayBuffers([n.data,u])}return this.userDefinedMetadata!=null&&(J3(this.userDefinedMetadata,this.name,!0),o.userDefinedMetadata=this.userDefinedMetadata),o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){J3(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};qr.className="Model";ce.registerClass(qr);var uI=class extends qr{};uI.className="Functional";ce.registerClass(uI);async function sU(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=Pd(n),r=cr(s,t);if(e.weightsManifest!=null){let a=await In.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),ne(a)}return r}async function rU(e,t){if(t==null&&(t={}),typeof e=="string"){let n=In.getLoadHandlers(e,t);if(n.length===0)n.push(In.browserHTTPRequest(e,t));else if(n.length>1)throw new j(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return aU(e,void 0,t)}async function aU(e,t,n){if(n==null&&(n={}),e.load==null)throw new j("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=cr(Pd(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new j("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=oU(s.weightData,s.weightSpecs);i.loadWeights(u,a),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),ne(u),ne(c.map(p=>p.tensor))}return i}function oU(e,t){let n=In.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var Sy=class extends qr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Hm("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new j(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Sy||e instanceof qr,n;if(t){if(n=e,n.outputs.length!==1)throw new j("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new j("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new j("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=jS({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new j(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new j("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=HS(this.outputs[0])}this.inboundNodes=[],new jm({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Ci(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(ft(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new qr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new or("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new or("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new or("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new or("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new j("Legacy serialization format not supported yet.");r=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof Sy))throw new Ve(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let u=cr(i,void 0,s);s&&u.setFastWeightInitDuringBuild(!0),o.add(u)}return o}set stopTraining(e){if(this.model==null)throw new j("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new j("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}},Km=Sy;Km.className="Sequential";ce.registerClass(Km);function iU(e){return new qr(e)}function lU(e){return new Km(e)}function uU(e,t){return t==null&&(t={}),rU(e,t)}function cI(e){return jS(e)}function cU(e,t){kA.registerCallbackConstructor(e,t)}var as=class extends ce.Serializable{getConfig(){return{}}},dI=class extends as{apply(e,t=1){return OW(e,t)}};dI.className="elu";ce.registerClass(dI);var pI=class extends as{apply(e){return q1(e)}};pI.className="selu";ce.registerClass(pI);var hI=class extends as{apply(e){return Dr(e)}};hI.className="relu";ce.registerClass(hI);var fI=class extends as{apply(e){return X(()=>pp(6,Dr(e)))}};fI.className="relu6";ce.registerClass(fI);var mI=class extends as{apply(e){return e}};mI.className="linear";ce.registerClass(mI);var gI=class extends as{apply(e){return Cn(e)}};gI.className="sigmoid";ce.registerClass(gI);var yI=class extends as{apply(e){return zW(e)}};yI.className="hardSigmoid";ce.registerClass(yI);var AI=class extends as{apply(e){return oc(e)}};AI.className="softplus";ce.registerClass(AI);var xI=class extends as{apply(e){return MW(e)}};xI.className="softsign";ce.registerClass(xI);var bI=class extends as{apply(e){return gu(e)}};bI.className="tanh";ce.registerClass(bI);var RA=class extends as{apply(e,t=-1){return uc(e,t)}};RA.className="softmax";ce.registerClass(RA);var vI=class extends as{apply(e,t=-1){return O1(e,t)}};vI.className="logSoftmax";ce.registerClass(vI);var wI=class extends as{apply(e,t=1){return X(()=>L(Cn(L(e,t)),e))}};wI.className="swish";ce.registerClass(wI);var kI=class extends as{apply(e){return X(()=>L(e,gu(oc(e))))}};kI.className="mish";ce.registerClass(kI);function La(e){return e.getClassName()}function K2(e,t={}){return mp(e,ce.SerializationMap.getMap().classNameMap,t,"activation")}function Ba(e){if(e==null){let t={};return t.className="linear",t.config={},K2(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},K2(t)}else return e instanceof as?e:K2(e)}function _A(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var SI=class extends ce.Serializable{},bp=class extends SI{constructor(e){super();_A(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return X(()=>{let t=Wt([1]);return this.hasL1&&(t=ue(t,ke(L(this.l1,en(e))))),this.hasL2&&(t=ue(t,ke(L(this.l2,Ap(e))))),H(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};bp.className="L1L2";ce.registerClass(bp);function dU(e){return _A(e),new bp({l1:e!=null?e.l1:null,l2:0})}function pU(e){return _A(e),new bp({l2:e!=null?e.l2:null,l1:0})}var ov={l1l2:"L1L2"};function xt(e){return iA(e)}function iv(e,t={}){return mp(e,ce.SerializationMap.getMap().classNameMap,t,"regularizer")}function Rt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in ov?ov[e]:e,config:{}};return iv(n)}else return e instanceof SI?e:iv(e)}var $A=class extends at{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Ge(e);let n=Dr(e);return this.maxValue!=null&&(n=ms(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};$A.className="ReLU";ce.registerClass($A);var DA=class extends at{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Ge(e);return fm(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};DA.className="LeakyReLU";ce.registerClass(DA);var PA=class extends at{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Et(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Rt(e.alphaRegularizer),this.alphaConstraint=rn(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new j(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=ft(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new Xt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Ge(e),vm(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Pt(this.alphaInitializer),alphaRegularizer:xt(this.alphaRegularizer),alphaConstraint:sn(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};PA.className="PReLU";ce.registerClass(PA);var FA=class extends at{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Ve(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Ge(e);return cp(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};FA.className="ELU";ce.registerClass(FA);var OA=class extends at{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Ge(e);return L(n,ge(gs(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};OA.className="ThresholdedReLU";ce.registerClass(OA);var MA=class extends at{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new RA().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Ge(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};MA.className="Softmax";ce.registerClass(MA);function pu(e,t,n){if(typeof e=="number")return Ci(e,t);if(e.length!==t)throw new j(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){let r=e[s];if(!$W(r))throw new j(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function dr(e,t,n,s,r=1){if(e==null)return e;let a=t+(t-1)*(r-1),o;return n==="same"?o=e:o=e-a+1,Math.floor((o+s-1)/s)}function Ir(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+za([n-t,0]);else if(s==="same")e=e*t;else throw new j(`Unsupport padding mode: ${s}.`);return e}function zA(e,t){return X(()=>(Ut(t),t==="channelsFirst"?st(e,[0,2,3,1]):e))}function II(e,t){return X(()=>(Ut(t),t==="channelsFirst"?st(e,[0,2,3,4,1]):e))}function hU(e,t,n,s=1,r="valid",a,o=1){return X(()=>{if(a==null&&(a=hr()),Ut(a),e.shape.length!==3)throw new j(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new j(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new j(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=st(e,[0,2,1])),r==="causal")throw new Ve("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=N1(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=yr(i,n)),i})}function lv(e,t,n,s=[1,1],r="valid",a,o,i=null){return X(()=>{if(a==null&&(a=hr()),Ut(a),e.rank!==3&&e.rank!==4)throw new j(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new j(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=zA(e,a);if(r==="causal")throw new Ve("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Ma.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=st(l,[0,3,1,2])),l})}function fU(e,t,n,s=[1,1,1],r="valid",a,o){return X(()=>{if(a==null&&(a=hr()),Ut(a),e.rank!==4&&e.rank!==5)throw new j(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new j(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=II(e,a);if(r==="causal")throw new Ve("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=_1(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=yr(i,n)),a==="channelsFirst"&&(i=st(i,[0,4,1,2,3])),i})}var LA=class extends at{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",LA.verifyArgs(t),this.rank=e,pn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Ve(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=pu(t.kernelSize,e,"kernelSize"),this.strides=pu(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Fs(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ut(this.dataFormat),this.activation=Ba(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Et(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=rn(t.biasConstraint),this.biasRegularizer=Rt(t.biasRegularizer),this.activityRegularizer=Rt(t.activityRegularizer),this.dilationRate=pu(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new j(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new j(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new j(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Sr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!lA(e.kernelSize,"number",1,3))throw new j(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:La(this.activation),useBias:this.useBias,biasInitializer:Pt(this.biasInitializer),biasRegularizer:xt(this.biasRegularizer),activityRegularizer:xt(this.activityRegularizer),biasConstraint:sn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},vp=class extends LA{constructor(e,t){super(e,t);this.kernel=null,vp.verifyArgs(t),this.filters=t.filters,pn(this.filters,"filters"),this.kernelInitializer=Et(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=rn(t.kernelConstraint),this.kernelRegularizer=Rt(t.kernelRegularizer)}build(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return X(()=>{e=Ge(e);let n,s=this.bias==null?null:this.bias.read(),r=PS(this.activation.getClassName());if(r!=null&&this.rank===2)n=lv(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=hU(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=lv(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=fU(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Ve("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=ft(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let a=dr(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(a)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){let e={filters:this.filters,kernelInitializer:Pt(this.kernelInitializer),kernelRegularizer:xt(this.kernelRegularizer),kernelConstraint:sn(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new j(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},CI=class extends vp{constructor(e){super(2,e);CI.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!lA(e.kernelSize,"number",1,2))throw new j(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}},Zm=CI;Zm.className="Conv2D";ce.registerClass(Zm);var TI=class extends vp{constructor(e){super(3,e);TI.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new j(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}},Ym=TI;Ym.className="Conv3D";ce.registerClass(Ym);var BA=class extends Zm{constructor(e){super(e);if(this.inputSpec=[new Xt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new j(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ft(e),e.length!==4)throw new j("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Xt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return X(()=>{let n=Ge(e);if(n.shape.length!==4)throw new j(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],u=this.kernelSize[0],c=this.kernelSize[1],p=this.strides[0],d=this.strides[1],h=Ir(i,p,u,this.padding),f=Ir(l,d,c,this.padding),m=[r,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=st(n,[0,2,3,1]));let g=R1(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=st(g,[0,3,1,2])),this.bias!=null&&(g=yr(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=ft(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=Ir(t[s],i,a,this.padding),t[r]=Ir(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};BA.className="Conv2DTranspose";ce.registerClass(BA);var WA=class extends Ym{constructor(e){super(e);if(this.inputSpec=[new Xt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new j(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ft(e),e.length!==5)throw new j("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Xt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return X(()=>{let n=Ge(e);if(n.shape.length!==5)throw new j(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],u=s[a],c=s[o],p=this.kernelSize[0],d=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],y=Ir(l,f,p,this.padding),x=Ir(u,m,d,this.padding),A=Ir(c,g,h,this.padding),b=[r,y,x,A,this.filters];this.dataFormat!=="channelsLast"&&(n=st(n,[0,2,3,4,1]));let w=Fk(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=st(w,[0,4,1,2,3])),this.bias!==null&&(w=yr(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=ft(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],c=this.strides[1],p=this.strides[2];return t[n]=this.filters,t[s]=Ir(t[s],u,o,this.padding),t[r]=Ir(t[r],c,i,this.padding),t[a]=Ir(t[a],p,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};WA.className="Conv3DTranspose";ce.registerClass(WA);var NI=class extends vp{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new j("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new j("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new j(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Et(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Rt(t.depthwiseRegularizer),this.depthwiseConstraint=rn(t.depthwiseConstraint),this.pointwiseInitializer=Et(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Rt(t.pointwiseRegularizer),this.pointwiseConstraint=rn(t.pointwiseConstraint)}build(e){if(e=ft(e),e.length<this.rank+2)throw new j(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new j(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let o=0;o<this.rank;++o)r.push(1);r.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new Xt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return X(()=>{e=Ge(e);let n;if(this.rank===1)throw new Ve("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=st(e,[0,2,3,1])),n=sS(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=yr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=st(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Pt(this.depthwiseInitializer),e.pointwiseInitializer=Pt(this.pointwiseInitializer),e.depthwiseRegularizer=xt(this.depthwiseRegularizer),e.pointwiseRegularizer=xt(this.pointwiseRegularizer),e.depthwiseConstraint=sn(this.depthwiseConstraint),e.pointwiseConstraint=sn(this.pointwiseConstraint),e}};NI.className="SeparableConv";var VA=class extends NI{constructor(e){super(2,e)}};VA.className="SeparableConv2D";ce.registerClass(VA);var EI=class extends vp{constructor(e){super(1,e);EI.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!lA(e.kernelSize,"number",1,1))throw new j(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}},UA=EI;UA.className="Conv1D";ce.registerClass(UA);var GA=class extends at{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return X(()=>{if(e=Ge(e),this.dataFormat==="channelsLast"){let n=Oh(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Oh(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Oh(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Oh(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};GA.className="Cropping2D";ce.registerClass(GA);var HA=class extends at{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ut(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,EW(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return X(()=>{let n=Ge(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=st(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?Se.resizeNearestNeighbor(n,[r,a]):Se.resizeBilinear(n,[r,a]);return st(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?Se.resizeNearestNeighbor(n,[r,a]):Se.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};HA.className="UpSampling2D";ce.registerClass(HA);function mU(e,t,n=[1,1],s="valid",r,a){return X(()=>{r==null&&(r=hr()),Ut(r);let o=zA(e,r);if(e.rank!==4)throw new j(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new j(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=up(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=st(o,[0,3,1,2])),o})}var jA=class extends LA{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Et(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=rn(e.depthwiseConstraint),this.depthwiseRegularizer=Rt(e.depthwiseRegularizer)}build(e){if(e=ft(e),e.length<4)throw new j(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new j(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return X(()=>{e=Ge(e);let n=mU(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=yr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=dr(t,this.kernelSize[0],this.padding,this.strides[0]),a=dr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Pt(this.depthwiseInitializer),e.depthwiseRegularizer=xt(this.depthwiseRegularizer),e.depthwiseConstraint=sn(this.depthwiseRegularizer),e}};jA.className="DepthwiseConv2D";ce.registerClass(jA);function RI(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new j("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function _I(e,t,n,s=!1,r,a,o=!1,i=!1){return X(()=>{let l=t.shape.length;if(l<3)throw new j(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(fr(2,l));if(t=st(t,u),a!=null)throw new Ve("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=ge(ge(r,"bool"),"float32"),r.rank===l-1&&(r=qt(r,-1)),r=st(r,u)),s&&(t=Ds(t,0),r!=null&&(r=Ds(r,0)));let c=[],p,d=n,h=t.shape[0],f=es(t),m;r!=null&&(m=es(r));for(let y=0;y<h;++y){let x=f[y],A=X(()=>e(x,d));if(r==null)p=A[0],d=A[1];else{let b=X(()=>{let w=m[y],S=pe($s(w),w),I=ue(L(A[0],w),L(d[0],S)),E=d.map((R,P)=>ue(L(A[1][P],w),L(R,S)));return{output:I,newStates:E}});p=b.output,d=b.newStates}i&&c.push(p)}let g;return i&&(g=an(c,1)),[p,g,d]})}var $I=class extends at{constructor(e){super(e);let t;if(e.cell==null)throw new j("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new e0({cells:e.cell}):t=e.cell,t.stateSize==null)throw new j("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Xt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return fr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){yy(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return X(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new Ve("Constants support is not implemented in RNN yet.");yy(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new Xt({shape:[n,null,...s]});let r=[e[0]].concat(e.slice(2));this.cell.build(r);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),a))throw new j(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new Xt({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){X(()=>{if(!this.stateful)throw new Vr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new j("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Wt([n,s])):this.states_=[Wt([n,this.cell.stateSize])];else if(e==null)ne(this.states_),this.keptStates!=null&&(ne(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Wt([n,s])):this.states_[0]=Wt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new j(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):ne(this.states_);for(let s=0;s<this.states_.length;++s){let r=e[s],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,o=[n,a];if(!v.arraysEqual(r.shape,o))throw new j(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${r.shape}`);this.states_[s]=r}}this.states_=this.states_.map(s=>dn(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=RI(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new Xt({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof ir){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let p=super.apply(l,t);return this.inputSpec=c,p}else return super.apply(e,t)}call(e,t){return X(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=Ge(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new j(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=_I((h,f)=>{let m=this.cell.call([h].concat(f),o);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),u=l[0],c=l[1],p=l[2];this.stateful&&this.resetStates(p,s);let d=this.returnSequences?c:u;return this.returnState?[d].concat(p):d})}getInitialState(e){return X(()=>{let t=Wt(e.shape);return t=ke(t,[1,2]),t=yp(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?my(t,[1,n]):t):this.cell.stateSize>1?[my(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===$I.className&&(t.cell={className:this.cell.getClassName(),config:n}),{...n,...e,...t}}static fromConfig(e,t,n={}){let s=t.cell,r=cr(s,n);return new e(Object.assign(t,{cell:r}))}},ta=$I;ta.className="RNN";ce.registerClass(ta);var wp=class extends at{},Jm=class extends wp{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,pn(this.units,"units"),this.activation=Ba(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Et(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Et(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Et(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Rt(e.kernelRegularizer),this.recurrentRegularizer=Rt(e.recurrentRegularizer),this.biasRegularizer=Rt(e.biasRegularizer),this.kernelConstraint=rn(e.kernelConstraint),this.recurrentConstraint=rn(e.recurrentConstraint),this.biasConstraint=rn(e.biasConstraint),this.dropout=vu([1,za([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=vu([1,za([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ft(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return X(()=>{if(e=e,e.length!==2)throw new j(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Wa({ones:()=>$s(e),rate:this.dropout,training:s,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Wa({ones:()=>$s(n),rate:this.recurrentDropout,training:s,dropoutFunc:this.dropoutFunc}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=Tr(L(e,a),this.kernel.read()):r=Tr(e,this.kernel.read()),this.bias!=null&&(r=yr(r,this.bias.read())),o!=null&&(n=L(n,o));let i=ue(r,Tr(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:La(this.activation),useBias:this.useBias,kernelInitializer:Pt(this.kernelInitializer),recurrentInitializer:Pt(this.recurrentInitializer),biasInitializer:Pt(this.biasInitializer),kernelRegularizer:xt(this.kernelRegularizer),recurrentRegularizer:xt(this.recurrentRegularizer),biasRegularizer:xt(this.biasRegularizer),activityRegularizer:xt(this.activityRegularizer),kernelConstraint:sn(this.kernelConstraint),recurrentConstraint:sn(this.recurrentConstraint),biasConstraint:sn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return{...e,...t}}};Jm.className="SimpleRNNCell";ce.registerClass(Jm);var qA=class extends ta{constructor(e){e.cell=new Jm(e);super(e)}call(e,t){return X(()=>{this.cell.dropoutMask!=null&&(ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};qA.className="SimpleRNN";ce.registerClass(qA);var Qm=class extends wp{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new j("GRUCell does not support reset_after parameter set to true.");this.units=e.units,pn(this.units,"units"),this.activation=Ba(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ba(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Et(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Et(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Et(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Rt(e.kernelRegularizer),this.recurrentRegularizer=Rt(e.recurrentRegularizer),this.biasRegularizer=Rt(e.biasRegularizer),this.kernelConstraint=rn(e.kernelConstraint),this.recurrentConstraint=rn(e.recurrentConstraint),this.biasConstraint=rn(e.biasConstraint),this.dropout=vu([1,za([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=vu([1,za([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ft(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return X(()=>{if(e=e,e.length!==2)throw new j(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Wa({ones:()=>$s(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Wa({ones:()=>$s(s),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0<this.dropout&&this.dropout<1&&(e=L(e,r[0]));let u=Tr(e,this.kernel.read());this.useBias&&(u=yr(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=L(s,a[0]));let c=this.recurrentKernel.read(),[p,d]=Kt(c,[2*this.units,this.units],c.rank-1),h=Tr(s,p),[f,m,g]=Kt(u,3,u.rank-1),[y,x]=Kt(h,2,h.rank-1);o=this.recurrentActivation.apply(ue(f,y)),i=this.recurrentActivation.apply(ue(m,x));let A=Tr(L(i,s),d);l=this.activation.apply(ue(g,A));let b=ue(L(o,s),L(ue(1,Ot(o)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:La(this.activation),recurrentActivation:La(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Pt(this.kernelInitializer),recurrentInitializer:Pt(this.recurrentInitializer),biasInitializer:Pt(this.biasInitializer),kernelRegularizer:xt(this.kernelRegularizer),recurrentRegularizer:xt(this.recurrentRegularizer),biasRegularizer:xt(this.biasRegularizer),activityRegularizer:xt(this.activityRegularizer),kernelConstraint:sn(this.kernelConstraint),recurrentConstraint:sn(this.recurrentConstraint),biasConstraint:sn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return{...e,...t}}};Qm.className="GRUCell";ce.registerClass(Qm);var XA=class extends ta{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Qm(e);super(e)}call(e,t){return X(()=>{this.cell.dropoutMask!=null&&(ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};XA.className="GRU";ce.registerClass(XA);var kp=class extends wp{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,pn(this.units,"units"),this.activation=Ba(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ba(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Et(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Et(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Et(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Rt(e.kernelRegularizer),this.recurrentRegularizer=Rt(e.recurrentRegularizer),this.biasRegularizer=Rt(e.biasRegularizer),this.kernelConstraint=rn(e.kernelConstraint),this.recurrentConstraint=rn(e.recurrentConstraint),this.biasConstraint=rn(e.biasConstraint),this.dropout=vu([1,za([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=vu([1,za([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=ft(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends qs{apply(o,i){let l=r.apply([a]),u=new zm().apply([a]),c=r.apply([a*2]);return q3(q3(l,u),c)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return X(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new j(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Wa({ones:()=>$s(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Wa({ones:()=>$s(s),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,u,c;0<this.dropout&&this.dropout<1&&(e=L(e,a[0]));let p=Tr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=L(s,o[0])),p=ue(p,Tr(s,this.recurrentKernel.read())),this.useBias&&(p=yr(p,this.bias.read()));let[d,h,f,m]=Kt(p,4,p.rank-1);i=this.recurrentActivation.apply(d),l=this.recurrentActivation.apply(h),u=ue(L(l,r),L(i,this.activation.apply(f))),c=this.recurrentActivation.apply(m);let g=L(c,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:La(this.activation),recurrentActivation:La(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Pt(this.kernelInitializer),recurrentInitializer:Pt(this.recurrentInitializer),biasInitializer:Pt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:xt(this.kernelRegularizer),recurrentRegularizer:xt(this.recurrentRegularizer),biasRegularizer:xt(this.biasRegularizer),activityRegularizer:xt(this.activityRegularizer),kernelConstraint:sn(this.kernelConstraint),recurrentConstraint:sn(this.recurrentConstraint),biasConstraint:sn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return{...e,...t}}};kp.className="LSTMCell";ce.registerClass(kp);var KA=class extends ta{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new kp(e);super(e)}call(e,t){return X(()=>{this.cell.dropoutMask!=null&&(ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};KA.className="LSTM";ce.registerClass(KA);var e0=class extends wp{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return X(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o<this.cells.length;++o){let i=this.cells[o];n=s[o],o===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=i.call(a,t),r.push(a.slice(1))}n=[];for(let o of r.slice().reverse())n.push(...o);return[a[0]].concat(n)})}build(e){yy(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{Ai(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return{...e,...s}}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(cr(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Ay(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],r[a]])}wA(t)}};e0.className="StackedRNNCells";ce.registerClass(e0);function Wa(e){let{ones:t,rate:n,training:s=!1,count:r=1,dropoutFunc:a}=e,o=()=>a!=null?a(t(),n):WS(t(),n),i=()=>xp(o,t,s);return!r||r<=1?dn(i().clone()):Array(r).fill(void 0).map(i).map(u=>dn(u.clone()))}var DI=class extends ta{constructor(e){if(e.unroll)throw new Ve("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Ve("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Xt({ndim:5})]}call(e,t){return X(()=>{if(this.cell.dropoutMask!=null&&(ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new j("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return X(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Wt(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){X(()=>{if(!this.stateful)throw new Vr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new j("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Wt(r)):this.states_=[Wt(r)];else if(e==null)ne(this.states_),this.keptStates!=null&&(ne(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Wt(r)):this.states_[0]=Wt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new j(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):ne(this.states_);for(let o=0;o<this.states_.length;++o){let i=e[o],l=r;if(!v.arraysEqual(i.shape,l))throw new j(`State ${o} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${i.shape}`);this.states_[o]=i}}this.states_=this.states_.map(o=>dn(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],u=e[i?4:3],c=dr(l,s[0],r,a[0],o[0]),p=dr(u,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,c,p]:[c,p,n]]}};DI.className="ConvRNN2D";var t0=class extends kp{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super({...e,units:t});this.filters=t,pn(this.filters,"filters"),this.kernelSize=pu(n,2,"kernelSize"),this.kernelSize.forEach(i=>pn(i,"kernelSize")),this.strides=pu(s||1,2,"strides"),this.strides.forEach(i=>pn(i,"strides")),this.padding=r||"valid",Fs(this.padding),this.dataFormat=a||"channelsLast",Ut(this.dataFormat),this.dilationRate=pu(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>pn(i,"dilationRate"))}build(e){var t;e=ft(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new j(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;i=new(t=class extends qs{apply(c,p){let d=l.apply([u]),h=fs([u]),f=l.apply([u*2]);return fA([d,h,f])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return X(()=>{if(e.length!==3)throw new j(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Wa({ones:()=>$s(s),rate:this.dropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,l=(W,ee,Q)=>!ee||!ee[Q]?W:L(ee[Q],W),u=l(s,i,0),c=l(s,i,1),p=l(s,i,2),d=l(s,i,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Wa({ones:()=>$s(r),rate:this.recurrentDropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,f=l(r,h,0),m=l(r,h,1),g=l(r,h,2),y=l(r,h,3),x=3,[A,b,w,S]=Kt(this.kernel.read(),o,x),[I,E,R,P]=this.useBias?Kt(this.bias.read(),o):[null,null,null,null];u=this.inputConv(u,A,I,this.padding),c=this.inputConv(c,b,E,this.padding),p=this.inputConv(p,w,R,this.padding),d=this.inputConv(d,S,P,this.padding);let[_,D,T,O]=Kt(this.recurrentKernel.read(),o,x);f=this.recurrentConv(f,_),m=this.recurrentConv(m,D),g=this.recurrentConv(g,T),y=this.recurrentConv(y,O);let U=this.recurrentActivation.apply(ue(u,f)),K=this.recurrentActivation.apply(ue(c,m)),z=ue(L(K,a),L(U,this.activation.apply(ue(p,g)))),Z=L(this.recurrentActivation.apply(ue(d,y)),this.activation.apply(z));return[Z,Z,z]})}getConfig(){let{units:e,...t}=super.getConfig(),n={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return{...t,...n}}inputConv(e,t,n,s){let r=Pa(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?yr(r,n,this.dataFormat):r}recurrentConv(e,t){return Pa(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};t0.className="ConvLSTM2DCell";ce.registerClass(t0);var ZA=class extends DI{constructor(e){let t=new t0(e);super({...e,cell:t})}static fromConfig(e,t){return new e(t)}};ZA.className="ConvLSTM2D";ce.registerClass(ZA);var n0=class extends at{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return X(()=>{this.invokeCallHook(e,t);let n=Ge(e);if(0<this.rate&&this.rate<1){let s=t.training==null?!1:t.training,r=this.getNoiseShape(n);return xp(()=>WS(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};n0.className="Dropout";ce.registerClass(n0);var YA=class extends n0{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};YA.className="SpatialDropout1D";ce.registerClass(YA);var JA=class extends at{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,pn(this.units,"units"),this.activation=Ba(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Et(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Et(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=rn(e.kernelConstraint),this.biasConstraint=rn(e.biasConstraint),this.kernelRegularizer=Rt(e.kernelRegularizer),this.biasRegularizer=Rt(e.biasRegularizer),this.activityRegularizer=Rt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=ft(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=ft(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return X(()=>{this.invokeCallHook(e,t);let n=Ge(e),s=PS(this.activation.getClassName()),r;return s!=null?r=Tr(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=Tr(n,this.kernel.read()),this.bias!=null&&(r=yr(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:La(this.activation),useBias:this.useBias,kernelInitializer:Pt(this.kernelInitializer),biasInitializer:Pt(this.biasInitializer),kernelRegularizer:xt(this.kernelRegularizer),biasRegularizer:xt(this.biasRegularizer),activityRegularizer:xt(this.activityRegularizer),kernelConstraint:sn(this.kernelConstraint),biasConstraint:sn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};JA.className="Dense";ce.registerClass(JA);var QA=class extends at{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=ft(e);for(let t of e.slice(1))if(t==null)throw new j(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Ta(e,1)]}call(e,t){return X(()=>{this.invokeCallHook(e,t);let n=Ge(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r<n.rank;++r)s.push(r);s.push(1),n=st(n,s)}return FW(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};QA.className="Flatten";ce.registerClass(QA);var ex=class extends at{constructor(e){super(e);this.supportsMasking=!0,this.activation=Ba(e.activation)}call(e,t){return X(()=>{this.invokeCallHook(e,t);let n=Ge(e);return this.activation.apply(n)})}getConfig(){let e={activation:La(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};ex.className="Activation";ce.registerClass(ex);var tx=class extends at{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return X(()=>(e=Ge(e),DW(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};tx.className="RepeatVector";ce.registerClass(tx);var nx=class extends at{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",s=t.slice(),r=1,a=null;for(let i=0;i<s.length;++i){let l=s[i];if(this.isUnknown(l))if(a===null)a=i;else throw new j("Can only specifiy one unknown dimension.");else r*=l}let o=Ta(e);if(a!==null){if(r===0||o%r!==0)throw new j(n);s[a]=o/r}else if(o!==r)throw new j(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return X(()=>{this.invokeCallHook(e,t);let n=Ge(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return H(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};nx.className="Reshape";ce.registerClass(nx);var sx=class extends at{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=fr(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Xt({ndim:this.dims.length+1})]}computeOutputShape(e){e=ft(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return st(Ge(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};sx.className="Permute";ce.registerClass(sx);var rx=class extends at{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Ge(e),s=-1;return ff(xu(n,this.maskValue),s)}call(e,t){return X(()=>{this.invokeCallHook(e,t);let n=Ge(e),s=-1,r=!0,a=ff(xu(n,this.maskValue),s,r);return L(n,ge(a,n.dtype))})}};rx.className="Masking";ce.registerClass(rx);var ax=class extends at{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(St(e.inputLength))}this.inputDim=e.inputDim,pn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,pn(this.outputDim,"outputDim"),this.embeddingsInitializer=Et(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Rt(e.embeddingsRegularizer),this.activityRegularizer=Rt(e.activityRegularizer),this.embeddingsConstraint=rn(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return X(()=>this.maskZero?(e=Ge(e),xu(e,rt(e))):null)}computeOutputShape(e){if(e=ft(e),this.inputLength==null)return[...e,this.outputDim];let t=St(this.inputLength);if(t.length!==e.length-1)throw new j(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){let r=t[s],a=e[s+1];if(r!=null&&a!=null&&r!==a)throw new j(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return X(()=>{this.invokeCallHook(e,t);let n=Ge(e);n.dtype!=="int32"&&(n=Om(n,"int32"));let s=BS(this.embeddings.read(),H(n,[n.size]));return H(s,ft(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Pt(this.embeddingsInitializer),embeddingsRegularizer:xt(this.embeddingsRegularizer),activityRegularizer:xt(this.activityRegularizer),embeddingsConstraint:sn(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};ax.className="Embedding";ce.registerClass(ax);var Tl=class extends at{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Ve}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){let r=e[e.length-t.length+s],a=t[s];if(r==null||a==null||r<0||a<0)n.push(null);else if(r===1)n.push(a);else if(a===1)n.push(r);else{if(r!==a)throw new j("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[ft(e)]),e=e,e.length<2)throw new j(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=Ca(t),t.length>1)throw new j(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let s=e.map(r=>r.length);e.indexOf(null)===-1&&Ca(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return X(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=za(s);for(let a of e){let o=a.rank;for(let i=0;i<r-o;++i)a=yp(a,1);n.push(a)}return this.mergeFunction(n)}else{let r=!1;for(let i of e){let l=i.rank;if(l==null){let u=i.shape,c=u[0],p=u.slice(1).concat([c]),d=H(i,[c].concat(Ta(u.slice(1))));d=st(d,[1,0]),d=H(d,p),n.push(d),r=!0}else if(l>1){let u=fr(1,l).concat([0]);n.push(st(i,u)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,u=i[l-1],c=[u].concat(i.slice(0,i.length-1));a=H(st(H(a,[-1,u]),[1,0]),c)}else if(o>1){let i=[o-1].concat(fr(0,o-1));a=st(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){let r=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=Ca(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return X(()=>{if(t==null)return null;if(!Array.isArray(t))throw new j("`mask` should be an Array");if(!Array.isArray(e))throw new j("`inputs` should be an Array");if(t.length!==e.length)throw new j(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:qt(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=pr(n,t[s]);return n})}},ox=class extends Tl{constructor(e){super(e)}mergeFunction(e){return X(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ue(t,e[n]);return t})}};ox.className="Add";ce.registerClass(ox);var ix=class extends Tl{constructor(e){super(e)}mergeFunction(e){return X(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=L(t,e[n]);return t})}};ix.className="Multiply";ce.registerClass(ix);var lx=class extends Tl{constructor(e){super(e)}mergeFunction(e){return X(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ue(t,e[n]);return L(1/e.length,t)})}};lx.className="Average";ce.registerClass(lx);var ux=class extends Tl{constructor(e){super(e)}mergeFunction(e){return X(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Jr(t,e[n]);return t})}};ux.className="Maximum";ce.registerClass(ux);var cx=class extends Tl{constructor(e){super(e)}mergeFunction(e){return X(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=pp(t,e[n]);return t})}};cx.className="Minimum";ce.registerClass(cx);var dx=class extends Tl{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new j("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let s of e)if(s!=null){t=!1;break}if(t)return;let n=[];for(let s=0;s<e.length;++s){let r=e[s].slice();r.splice(this.axis,1);let a=!1;for(let o of n)if(v.arraysEqual(o,r)){a=!0;break}a||n.push(r)}if(n.length>1)throw new j("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return X(()=>fA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new j("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new j("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new j("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new j(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return X(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a<e.length;++a)t[a]==null?s.push(ge($s(e[a]),"bool")):t[a].rank<e[a].rank?s.push(qt(t[a],-1)):s.push(t[a]);let r=kt(s,this.axis);return S1(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};dx.className="Concatenate";ce.registerClass(dx);function od(e,t){for(;e<0;)e+=t;return e}function gU(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Ve("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Ve("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return X(()=>{let o;if(s>r){o=s-r;let l=[];for(let u=0;u<o;++u)l.push(1);t=H(t,t.shape.concat(l))}else if(r>s){o=r-s;let l=[];for(let u=0;u<o;++u)l.push(1);e=H(e,e.shape.concat(l))}else o=0;let i;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?i=ke(L(e,t),a[0]):i=ke(L(st(e,[1,0]),t),a[1]);else{let l=a[0]!==e.shape.length-1,u=a[1]===t.shape.length-1;i=Ye(e,t,l,u)}if(o>0){let l;s>r?l=s+r-3:l=s-1;let u=[];for(let c=l;c<l+o;++c)u.push(c);i=Qe(i,u)}return i.shape.length===1&&(i=qt(i,1)),i})}var px=class extends Tl{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Ve("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new j(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new j(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>od(r,e[a].shape.length)):s=[od(this.axes,t.shape.length),od(this.axes,n.shape.length)],this.normalize&&(t=Af(t,s[0]),n=Af(n,s[1])),gU(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[od(this.axes,e.length),od(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Ve("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};px.className="Dot";ce.registerClass(px);var hx=class extends at{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return X(()=>{this.invokeCallHook(e,t);let n=Ge(e);return xp(()=>ue(Mm(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};hx.className="GaussianNoise";ce.registerClass(hx);var fx=class extends at{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return X(()=>{this.invokeCallHook(e,t);let n=Ge(e);return this.rate>0&&this.rate<1?xp(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return L(n,Mm(n.shape,1,r))},()=>n,t.training||!1):n})}};fx.className="GaussianDropout";ce.registerClass(fx);var mx=class extends at{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Ge(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return X(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return xp(()=>{let r=Ge(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=wl(lc(n),this.rate);l=Om(l,"float32");let u=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-u*i*this.rate,p=ue(L(r,l),L(ue(l,-1),i));return ue(L(p,u),c)},()=>Ge(e),t.training||!1)}return e})}};mx.className="AlphaDropout";ce.registerClass(mx);function Fd(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=Ck(e,t,n,s,r,a);else if(e.rank===3)o=Tk(e,t,n,s,r,a);else if(e.rank===4)o=Nk(e,t,n,s,r,a);else throw new Ve(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function yU(e,t,n,s,r=.001){return X(()=>{let a=xm(e,s),o=a.mean,i=a.variance;return[Fd(e,o,i,n,t,r),o,i]})}function AU(e,t,n,s,r=.001){return X(()=>{let a=xm(e,s),o=a.mean,i=a.variance,l=[];for(let f of fr(0,e.rank))s.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let u=H(o,l),c=H(i,l),p=t==null?null:H(t,l),d=n==null?null:H(n,l);return[Fd(e,u,c,d,p,r),o,i]})}function xU(e,t,n,s,r=.001){return v.arraysEqual(s.slice().sort(),fr(0,e.rank-1))?yU(e,t,n,s,r):AU(e,t,n,s,r)}var gx=class extends at{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Et(e.betaInitializer||"zeros"),this.gammaInitializer=Et(e.gammaInitializer||"ones"),this.movingMeanInitializer=Et(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Et(e.movingVarianceInitializer||"ones"),this.betaConstraint=rn(e.betaConstraint),this.gammaConstraint=rn(e.gammaConstraint),this.betaRegularizer=Rt(e.betaRegularizer),this.gammaRegularizer=Rt(e.gammaRegularizer)}build(e){e=ft(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new j(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Xt({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return X(()=>{let n=t.training==null?!1:t.training,s=Ge(e),r=s.shape,a=r.length,o=fr(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=Ci(1,a);l[i]=r[i];let u=o.slice();u.sort();let c=!v.arraysEqual(u,fr(0,a).slice(0,a-1)),p=()=>{if(c){let y=H(this.movingMean.read(),l),x=H(this.movingVariance.read(),l),A=this.center?H(this.beta.read(),l):null,b=this.scale?H(this.gamma.read(),l):null;return Fd(s,y,x,A,b,this.epsilon)}else return Fd(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[d,h,f]=xU(s,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(y,x,A)=>{X(()=>{let b=1-A,w=y.read(),S=L(pe(w,x),b);y.write(pe(w,S))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Pt(this.betaInitializer),gammaInitializer:Pt(this.gammaInitializer),movingMeanInitializer:Pt(this.movingMeanInitializer),movingVarianceInitializer:Pt(this.movingVarianceInitializer),betaRegularizer:xt(this.betaRegularizer),gammaRegularizer:xt(this.gammaRegularizer),betaConstraint:sn(this.betaConstraint),gammaConstraint:sn(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};gx.className="BatchNormalization";ce.registerClass(gx);var yx=class extends at{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Et(e.betaInitializer||"zeros"),this.gammaInitializer=Et(e.gammaInitializer||"ones"),this.betaRegularizer=Rt(e.betaRegularizer),this.gammaRegularizer=Rt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=ft(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==Ca(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=Ge(e),s=n.shape,r=s.length;return X(()=>{let{mean:o,variance:i}=xm(n,this.axis,!0),l=Ci(1,r);for(let f of this.axis)l[f]=s[f];let u=f=>f!=null&&f.shape.length!==r?H(f,l):f,c=u(this.gamma.read()),p=u(this.beta.read()),d=[],h=[];for(let f=0;f<r;++f)this.axis.indexOf(f)!==-1?(d.push(s[f]),h.push(1)):(d.push(1),h.push(s[f]));return o=Ls(o,d),i=Ls(i,d),c=Ls(c,h),p=Ls(p,h),Fd(n,o,i,p,c,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Pt(this.betaInitializer),gammaInitializer:Pt(this.gammaInitializer),betaRegularizer:xt(this.betaRegularizer),gammaRegularizer:xt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};yx.className="LayerNormalization";ce.registerClass(yx);function bU(e,t,n){return X(()=>{if(e.rank!==4)throw new j(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new j("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=hr()),n!=="channelsLast"&&n!=="channelsFirst")throw new j(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],Hs(e,s)})}var Ax=class extends at{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?hr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new j(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new j(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new j(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Xt({ndim:4})]}computeOutputShape(e){e=ft(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return X(()=>bU(Ge(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ax.className="ZeroPadding2D";ce.registerClass(Ax);function s0(e,t,n,s,r,a){return X(()=>{Ut(r),OS(a),Fs(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=hr()),a==null&&(a="max"),e=zA(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=Am(e,t,n,i):o=cm(e,t,n,i),r==="channelsFirst"&&(o=st(o,[0,3,1,2])),o})}function PI(e,t,n,s,r,a){return X(()=>{Ut(r),OS(a),Fs(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=hr()),a==null&&(a="max"),e=II(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=B1(e,t,n,i):o=C1(e,t,n,i),r==="channelsFirst"&&(o=st(o,[0,4,1,2,3])),o})}var FI=class extends at{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new j(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(pn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new j(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);pn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Fs(this.padding),this.inputSpec=[new Xt({ndim:3})]}computeOutputShape(e){e=ft(e);let t=dr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return X(()=>{this.invokeCallHook(e,t),e=yp(Ge(e),2);let n=this.poolingFunction(Ge(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Qe(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},xx=class extends FI{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ut(r),Fs(s),s0(e,t,n,s,r,"max")}};xx.className="MaxPooling1D";ce.registerClass(xx);var bx=class extends FI{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ut(r),Fs(s),s0(e,t,n,s,r,"avg")}};bx.className="AveragePooling1D";ce.registerClass(bx);var OI=class extends at{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new j(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];pn(this.poolSize,"poolSize"),pn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ut(this.dataFormat),Fs(this.padding),this.inputSpec=[new Xt({ndim:4})]}computeOutputShape(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=dr(t,this.poolSize[0],this.padding,this.strides[0]),n=dr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return X(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ge(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},vx=class extends OI{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ut(r),Fs(s),s0(e,t,n,s,r,"max")}};vx.className="MaxPooling2D";ce.registerClass(vx);var wx=class extends OI{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ut(r),Fs(s),s0(e,t,n,s,r,"avg")}};wx.className="AveragePooling2D";ce.registerClass(wx);var MI=class extends at{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new j(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];pn(this.poolSize,"poolSize"),pn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ut(this.dataFormat),Fs(this.padding),this.inputSpec=[new Xt({ndim:5})]}computeOutputShape(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=dr(t,this.poolSize[0],this.padding,this.strides[0]),n=dr(n,this.poolSize[1],this.padding,this.strides[1]),s=dr(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return X(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ge(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},kx=class extends MI{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ut(r),Fs(s),PI(e,t,n,s,r,"max")}};kx.className="MaxPooling3D";ce.registerClass(kx);var Sx=class extends MI{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ut(r),Fs(s),PI(e,t,n,s,r,"avg")}};Sx.className="AveragePooling3D";ce.registerClass(Sx);var zI=class extends at{constructor(e){super(e);this.inputSpec=[new Xt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Ve}},Ix=class extends zI{constructor(e){super(e||{})}call(e,t){return X(()=>{let n=Ge(e);return Bt(n,1)})}};Ix.className="GlobalAveragePooling1D";ce.registerClass(Ix);var Cx=class extends zI{constructor(e){super(e||{})}call(e,t){return X(()=>{let n=Ge(e);return hn(n,1)})}};Cx.className="GlobalMaxPooling1D";ce.registerClass(Cx);var LI=class extends at{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ut(this.dataFormat),this.inputSpec=[new Xt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Ve}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Tx=class extends LI{call(e,t){return X(()=>{let n=Ge(e);return this.dataFormat==="channelsLast"?Bt(n,[1,2]):Bt(n,[2,3])})}};Tx.className="GlobalAveragePooling2D";ce.registerClass(Tx);var Nx=class extends LI{call(e,t){return X(()=>{let n=Ge(e);return this.dataFormat==="channelsLast"?hn(n,[1,2]):hn(n,[2,3])})}};Nx.className="GlobalMaxPooling2D";ce.registerClass(Nx);var BI=class extends at{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=cr(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},Ex=class extends BI{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=ft(e),e.length<3)throw new j(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=ft(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return X(()=>(e=Ge(e),_I((a,o)=>[Ge(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Ex.className="TimeDistributed";ce.registerClass(Ex);function vU(e){Il(NW,"BidirectionalMergeMode",e)}var wU="concat",Rx=class extends BI{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=cr(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=cr(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?wU:e.mergeMode,vU(this.mergeMode),e.weights)throw new Ve("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):Jn(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=RI(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new j("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let u=n.map(c=>new Xt({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),o.push(...u)}if(s!=null)throw new Ve("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof ir;for(let l of a)if(l instanceof ir!==i)throw new j("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let p=super.apply(l,t);return this.inputSpec=c,p}else return super.apply(e,t)}call(e,t){return X(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=Ds(r,1));let o;return this.mergeMode==="concat"?o=fA([s,r]):this.mergeMode==="sum"?o=ue(s,r):this.mergeMode==="ave"?o=L(.5,ue(s,r)):this.mergeMode==="mul"?o=L(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Ai(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Ai(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=cr(t.layer);if(delete t.layer,t.numConstants!=null)throw new Ve("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};Rx.className="Bidirectional";ce.registerClass(Rx);function kU(e){return new dc(e)}function SU(e){return new FA(e)}function IU(e){return new $A(e)}function CU(e){return new DA(e)}function TU(e){return new PA(e)}function NU(e){return new MA(e)}function EU(e){return new OA(e)}function RU(e){return new UA(e)}function _U(e){return new Zm(e)}function $U(e){return new BA(e)}function DU(e){return new Ym(e)}function PU(e){return new WA(e)}function FU(e){return new VA(e)}function OU(e){return new GA(e)}function MU(e){return new HA(e)}function zU(e){return new jA(e)}function LU(e){return new ex(e)}function BU(e){return new JA(e)}function WU(e){return new n0(e)}function VU(e){return new YA(e)}function UU(e){return new QA(e)}function GU(e){return new tx(e)}function HU(e){return new nx(e)}function jU(e){return new sx(e)}function qU(e){return new ax(e)}function XU(e){return new ox(e)}function KU(e){return new lx(e)}function ZU(e){return new dx(e)}function YU(e){return new ux(e)}function JU(e){return new cx(e)}function QU(e){return new ix(e)}function eG(e){return new px(e)}function tG(e){return new gx(e)}function nG(e){return new yx(e)}function sG(e){return new Ax(e)}function _x(e){return new bx(e)}function rG(e){return _x(e)}function aG(e){return _x(e)}function $x(e){return new wx(e)}function oG(e){return $x(e)}function iG(e){return $x(e)}function Dx(e){return new Sx(e)}function lG(e){return Dx(e)}function uG(e){return Dx(e)}function cG(e){return new Ix(e)}function dG(e){return new Tx(e)}function WI(e){return new Cx(e)}function VI(e){return new Nx(e)}function UI(e){return new xx(e)}function GI(e){return new vx(e)}function pG(e){return new kx(e)}function hG(e){return new XA(e)}function fG(e){return new Qm(e)}function mG(e){return new KA(e)}function gG(e){return new kp(e)}function yG(e){return new qA(e)}function AG(e){return new Jm(e)}function xG(e){return new ZA(e)}function bG(e){return new t0(e)}function vG(e){return new ta(e)}function wG(e){return new e0(e)}function kG(e){return new Rx(e)}function SG(e){return new Ex(e)}var IG=WI,CG=VI,TG=UI,NG=GI;function EG(e){return new hx(e)}function RG(e){return new fx(e)}function _G(e){return new mx(e)}function $G(e){return new rx(e)}var HI={};Le(HI,{MAPE:()=>UG,MSE:()=>jG,binaryAccuracy:()=>DG,binaryCrossentropy:()=>PG,categoricalAccuracy:()=>OG,categoricalCrossentropy:()=>MG,cosineProximity:()=>BG,mape:()=>GG,meanAbsoluteError:()=>WG,meanAbsolutePercentageError:()=>VG,meanSquaredError:()=>HG,mse:()=>qG,precision:()=>zG,recall:()=>LG,sparseCategoricalAccuracy:()=>FG});function DG(e,t){return IA(e,t)}function PG(e,t){return tI(e,t)}function FG(e,t){return nI(e,t)}function OG(e,t){return CA(e,t)}function MG(e,t){return TA(e,t)}function zG(e,t){return eI(e,t)}function LG(e,t){return kV(e,t)}function BG(e,t){return SA(e,t)}function WG(e,t){return qm(e,t)}function VG(e,t){return pc(e,t)}function UG(e,t){return pc(e,t)}function GG(e,t){return pc(e,t)}function HG(e,t){return Cl(e,t)}function jG(e,t){return Cl(e,t)}function qG(e,t){return Cl(e,t)}var jI={};Le(jI,{modelFromJSON:()=>sU});var qI={};Le(qI,{l1:()=>KG,l1l2:()=>XG,l2:()=>ZG});function XG(e){return new bp(e)}function KG(e){return dU(e)}function ZG(e){return pU(e)}var XI=class extends wu{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof qr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Lh(e,t){return e<t}function uv(e,t){return e>t}var KI=class extends XI{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Ve("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Lh:this.mode==="max"?this.monitorFunc=uv:this.monitor.indexOf("acc")!==-1?this.monitorFunc=uv:this.monitorFunc=Lh,this.monitorFunc===Lh&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Lh?1/0:-1/0}async onEpochEnd(e,t){await va(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function YG(e){return new KI(e)}var JG={earlyStopping:YG},QG=J();QG.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var ZI=(e=>(e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF",e))(ZI||{}),cv;(e=>{let t;(n=>{n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(cv||(cv={}));var Px={};function eH(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};Px[e]=n}function YI(e){return Px[e]}function tH(e){delete Px[e]}function k(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return Bn(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(d=>Bn(d,n,s,r));let u=Bn(t.inputNames.slice(i)[0],n,s,r),c=u.dataSync();return a.type==="number"?c[0]:v.toNestedArray(u.shape,c)}let o=t.attrParams[e];return o&&o.value}function Bn(e,t,n,s){let[r,a]=ps(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[kf(r,i)]);return o!==void 0?t[kf(r,o)][a]:void 0}function nH(e,t,n){return t[kf(e,n.currentContextId)]}function Cr(e,t){let[n,s,r]=ps(e);return[kf(n,t&&t.currentContextId),s,r]}function kf(e,t){return t?`${e}-${t}`:e}function ps(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function Kh(e,t,n){let s=k("pad",e,t,n);if(s==="explicit"){s=k("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function Gr(e){return e.kept?e:Vn(e)}var JI={};Le(JI,{json:()=>sH});var sH=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],QI={};Le(QI,{json:()=>rH});var rH=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],e7={};Le(e7,{json:()=>aH});var aH=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]}],t7={};Le(t7,{json:()=>oH});var oH=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],n7={};Le(n7,{json:()=>iH});var iH=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],s7={};Le(s7,{json:()=>lH});var lH=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],r7={};Le(r7,{json:()=>uH});var uH=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],a7={};Le(a7,{json:()=>cH});var cH=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],o7={};Le(o7,{json:()=>dH});var dH=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],i7={};Le(i7,{json:()=>pH});var pH=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],l7={};Le(l7,{json:()=>hH});var hH=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],u7={};Le(u7,{json:()=>fH});var fH=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],c7={};Le(c7,{json:()=>mH});var mH=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],d7={};Le(d7,{json:()=>gH});var gH=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],p7={};Le(p7,{json:()=>yH});var yH=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],h7={};Le(h7,{json:()=>AH});var AH=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],f7={};Le(f7,{json:()=>xH});var xH=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],m7={};Le(m7,{json:()=>bH});var bH=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],g7={};Le(g7,{json:()=>vH});var vH=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],dv=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[JI,QI,e7,t7,n7,s7,r7,a7,o7,i7,l7,u7,c7,d7,p7,h7,f7,m7,g7],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let p=Object.keys(o);p.forEach(f=>{let m=o[f];m.inputNames.forEach((g,y)=>{let[x,,A]=Cr(g),b=o[x];if(b.outputs!=null){let w=b.outputs.indexOf(A);if(w!==-1){let S=`${x}:${w}`;m.inputNames[y]=S}}m.inputs.push(b),b.children.push(m)})}),Object.keys(c).length===0?p.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(c).forEach(f=>{let[m]=Cr(f),g=o[m];g!=null&&(g.signatureKey=c[f],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=Cr(f),g=o[m];g&&(g.signatureKey=u[f],i.push(g))}):i=s;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:d};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=YI(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.slice(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=Iy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Iy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=$y(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=$y(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=Ty(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=Ty(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=_y(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=_y(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=Cy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Cy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=Py(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Py(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=Ry(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Ry(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=Dy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Dy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=Ny(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Ny(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=Ey(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Ey(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=pv(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=pv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((c,p)=>(c[p.name]=this.mapNode(p),p.op==="Const"&&s.push(c[p.name]),c),{}));let a=[],o=[];e.signature.inputArg.forEach(c=>{let[p]=Cr(c.name),d={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Fx(c.type),type:"dtype"}},children:[]};d.signatureKey=c.name,a.push(d),r[p]=d}),Object.keys(r).forEach(c=>{let p=r[c];p.inputNames.forEach((d,h)=>{let[f,,m]=Cr(d),g=r[f];if(g.outputs!=null){let y=g.outputs.indexOf(m);if(y!==-1){let x=`${f}:${y}`;p.inputNames[h]=x}}p.inputs.push(g),g.children.push(p)})});let l=e.ret;e.signature.outputArg.forEach(c=>{let[p,d]=Cr(l[c.name]),h=r[p];h!=null&&(h.defaultOutput=d,o.push(h))});let u=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:u}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function wH(e){let t=J().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function y7(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):wH(e);return t?n:n.toLowerCase()}function Iy(e,t,n,s=!1){let r=e[t];return r!=null?y7(r.s,s):n}function Cy(e,t,n){let s=e[t];return s?s.b:n}function Ty(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function Fx(e){switch(typeof e=="string"&&(e=ZI[e]),e){case 1:case 19:return"float32";case 3:case 9:case 6:case 4:return"int32";case 10:return"bool";case 2:return"float32";case 7:return"string";default:return null}}function pv(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function Ny(e,t,n){let s=e[t];return s&&s.type?Fx(s.type):n}function Ey(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>Fx(r)):n}function A7(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Ry(e,t,n){let s=e[t];return s&&s.shape?A7(s.shape):n}function _y(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function $y(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>y7(a,s)):n}function Dy(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>A7(r)):n}function Py(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var kH=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return Bn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Bn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Ty(this.node.rawAttrs,e,t);if(n.s!=null)return Iy(this.node.rawAttrs,e,t);if(n.b!=null)return Cy(this.node.rawAttrs,e,t);if(n.shape!=null)return Ry(this.node.rawAttrs,e,t);if(n.type!=null)return Ny(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return _y(this.node.rawAttrs,e,t);if(n.list.s!=null)return $y(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Dy(this.node.rawAttrs,e,t);if(n.list.b!=null)return Py(this.node.rawAttrs,e,t);if(n.list.type!=null)return Ey(this.node.rawAttrs,e,t)}return t}},SH=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[ue(k("a",e,t,n),k("b",e,t,n))];case"AddN":return[um(k("tensors",e,t,n))];case"FloorMod":case"Mod":return[ic(k("a",e,t,n),k("b",e,t,n))];case"Mul":return[L(k("a",e,t,n),k("b",e,t,n))];case"RealDiv":case"Div":return[de(k("a",e,t,n),k("b",e,t,n))];case"DivNoNan":return[Bk(k("a",e,t,n),k("b",e,t,n))];case"FloorDiv":return[ip(k("a",e,t,n),k("b",e,t,n))];case"Sub":return[pe(k("a",e,t,n),k("b",e,t,n))];case"Minimum":return[pp(k("a",e,t,n),k("b",e,t,n))];case"Maximum":return[Jr(k("a",e,t,n),k("b",e,t,n))];case"Pow":return[Oa(k("a",e,t,n),k("b",e,t,n))];case"SquaredDifference":return[J1(k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},IH=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[en(k("x",e,t,n))];case"Acos":return[mk(k("x",e,t,n))];case"Acosh":return[gk(k("x",e,t,n))];case"Asin":return[Ak(k("x",e,t,n))];case"Asinh":return[xk(k("x",e,t,n))];case"Atan":return[bk(k("x",e,t,n))];case"Atan2":return[vk(k("x",e,t,n),k("y",e,t,n))];case"Atanh":return[wk(k("x",e,t,n))];case"Ceil":return[Rk(k("x",e,t,n))];case"Complex":return[$a(k("real",e,t,n),k("imag",e,t,n))];case"Cos":return[pm(k("x",e,t,n))];case"Cosh":return[$1(k("x",e,t,n))];case"Elu":return[cp(k("x",e,t,n))];case"Erf":return[Vk(k("x",e,t,n))];case"Exp":return[Rs(k("x",e,t,n))];case"Expm1":return[Uk(k("x",e,t,n))];case"Floor":return[dp(k("x",e,t,n))];case"Log":return[_s(k("x",e,t,n))];case"Log1p":return[mm(k("x",e,t,n))];case"Imag":return[hm(k("x",e,t,n))];case"Neg":return[Ot(k("x",e,t,n))];case"Reciprocal":return[nS(k("x",e,t,n))];case"Real":return[_d(k("x",e,t,n))];case"Relu":return[Dr(k("x",e,t,n))];case"Round":return[H1(k("x",e,t,n))];case"Selu":return[q1(k("x",e,t,n))];case"Sigmoid":return[Cn(k("x",e,t,n))];case"Sin":return[X1(k("x",e,t,n))];case"Sign":return[aS(k("x",e,t,n))];case"Sinh":return[K1(k("x",e,t,n))];case"Softplus":return[oc(k("x",e,t,n))];case"Sqrt":return[Nn(k("x",e,t,n))];case"Square":return[At(k("x",e,t,n))];case"Tanh":return[gu(k("x",e,t,n))];case"Tan":return[iS(k("x",e,t,n))];case"ClipByValue":return[ms(k("x",e,t,n),k("clipValueMin",e,t,n),k("clipValueMax",e,t,n))];case"Relu6":return[G1(k("x",e,t,n))];case"Rsqrt":return[j1(Bn(e.inputNames[0],t,n))];case"Prod":return[W1(k("x",e,t,n),k("axes",e,t,n))];case"LeakyRelu":return[fm(k("x",e,t,n),k("alpha",e,t,n))];case"Prelu":return[vm(k("x",e,t,n),k("alpha",e,t,n))];case"IsNan":return[Gk(Bn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function zs(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;s<e.length;s++){let r=e[s],a=t[s];v.assert(r<0||a<0||r===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function hv(e){return!(typeof e=="number"||e.some(t=>t<0))}function id(e,t,n){let s=Fy(e,n),r=!hv(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=Fy(a.shape,s)}),!hv(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function Fy(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s<e.length;++s){let r=e[s],a=t[s];if(r>=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var CH=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Ie(0),dn(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),zs(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,dn(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return pt([],[0].concat(this.elementShape));let n=this.readMany(e);return zs(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),an(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return pt([],[0].concat(this.elementShape));let t=[];for(let s=0;s<this.size();s++)t.push(s);let n=this.readMany(t);return zs(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),kt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,es(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];X(()=>{t=H(t,[1,n,r]);for(let i=0;i<e.length;++i){let l=i===0?0:s[i-1],u=[0,l,0],c=[1,e[i],r];a[i]=H(Pe(t,u,c),this.elementShape)}return a});let o=[];for(let i=0;i<e.length;i++)o[i]=i;this.writeMany(o,a)}},Sp=class{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);zs(t,r.shape,"TensorList shape mismatch: "),dn(r)}),this.idTensor=Ie(0),this.maxNumElements=s,dn(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Sp([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);zs(e,this.elementShape,"TensorList shape mismatch: ");let s=id(this.elementShape,this.tensors,e);return X(()=>{let r=this.tensors.map(a=>H(a,s));return an(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=id(this.elementShape,this.tensors,e),s=this.tensors.pop();return zs(s.shape,e,"TensorList shape mismatch: "),H(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(zs(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");dn(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);zs(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=id(this.elementShape,this.tensors,t);return H(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);zs(this.elementShape,t.shape,"TensorList shape mismatch: "),dn(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);zs(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=id(this.elementShape,this.tensors,n);return e.length===0?pt([],[0].concat(s)):X(()=>{let r=e.map(a=>H(this.tensors[a],s));return an(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);zs(this.elementShape,t,"TensorList shape mismatch: ");let n=id(this.elementShape,this.tensors,t);return this.size()===0?pt([],[0].concat(n)):X(()=>{let s=this.tensors.map(r=>H(r,n));return kt(s,0)})}};function TH(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);zs(r,t,"TensorList shape mismatch: ");let a=es(e);return new Sp(a,t,s)}function NH(e,t,n){return new Sp([],e,t,n)}function EH(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new Sp([],n,e.dtype,s),o=es(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function RH(e,t,n){let s=0,r=t.map(c=>(s+=c,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=Fy(a,n),i=s===0?0:e.size/s,l=X(()=>{let c=[];e=H(e,[1,s,i]);for(let p=0;p<t.length;++p){let d=p===0?0:r[p-1],h=[0,d,0],f=[1,t[p],i];c[p]=H(Pe(e,h,f),o)}return e.dispose(),c}),u=new Sp([],n,e.dtype,t.length);for(let c=0;c<l.length;c++)u.setItem(c,l[c]);return u}var _H=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let s=k("thenBranch",e,t,n),r=k("elseBranch",e,t,n),a=k("cond",e,t,n),o=k("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=k("body",e,t,n),r=k("cond",e,t,n),a=k("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(c=>c.id),l=await o[0].data();o.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=a;for(;l[0];){let c=u;u=await n.functionMap[s].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let p=u.map(h=>h.id);c.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let d=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let s=k("pred",e,t,n);return[Gr(s)]}case"Switch":{let s=k("pred",e,t,n),r=k("data",e,t,n);return r.kept||(r=Gr(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>Bn(r,t,n)!==void 0);if(s){let r=Bn(s,t,n);return[Gr(r)]}return}case"Enter":{let s=k("frameName",e,t,n),r=k("tensor",e,t,n);return n.enterFrame(s),[Gr(r)]}case"Exit":{let s=k("tensor",e,t,n);return n.exitFrame(),[Gr(s)]}case"NextIteration":{let s=k("tensor",e,t,n);return n.nextIteration(),[Gr(s)]}case"TensorArrayV3":{let s=k("size",e,t,n),r=k("dtype",e,t,n),a=k("elementShape",e,t,n),o=k("dynamicSize",e,t,n),i=k("clearAfterRead",e,t,n),l=k("identicalElementShapes",e,t,n),u=k("name",e,t,n),c=new CH(u,r,s,a,l,o,i);return n.addTensorArray(c),[c.idTensor,Ie(1)]}case"TensorArrayWriteV3":{let s=k("tensorArrayId",e,t,n),r=k("index",e,t,n),a=k("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=k("tensorArrayId",e,t,n),r=k("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),a=k("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),a=k("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=k("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=k("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=k("tensorArrayId",e,t,n),r=k("tensor",e,t,n),a=k("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=k("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Ie(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=k("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=k("tensorListId",e,t,n),r=k("index",e,t,n),a=k("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=k("tensorListId",e,t,n),r=k("index",e,t,n),a=k("elementShape",e,t,n),o=k("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=k("indices",e,t,n),r=k("tensor",e,t,n),a=k("elementShape",e,t,n),o=k("numElements",e,t,n),i=EH(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=k("elementShape",e,t,n),r=k("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=k(a,e,t,n),i=NH(s,r,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let s=k("tensorListId",e,t,n),r=k("indices",e,t,n),a=k("elementShape",e,t,n),o=k("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),a=k("elementDType",e,t,n),o=k("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=k("tensor",e,t,n),r=k("elementShape",e,t,n),a=k("elementDType",e,t,n),o=TH(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let s=k("tensorListId",e,t,n),r=n.getTensorList(s.id),a=k("dtype",e,t,n),o=k("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=k("tensorListId",e,t,n),r=k("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),a=k("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=k("tensor",e,t,n),r=k("elementShape",e,t,n),a=k("lengths",e,t,n),o=RH(s,a,r);return n.addTensorList(o),[o.idTensor]}case"TensorListLength":{let s=k("tensorListId",e,t,n),r=n.getTensorList(s.id);return[Ie(r.size(),"int32")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function fv(e,t,n){let[s,r]=k("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",u=k("numArgs",e,t,n);if(a){if(i&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=k("strides",e,t,n),p=Kh(e,t,n),d=k("dataFormat",e,t,n).toUpperCase(),h=k("dilations",e,t,n),[f,m]=k("args",e,t,n);o&&(m=f,f=void 0);let g=k("leakyreluAlpha",e,t,n);return{stride:c,pad:p,dataFormat:d,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var $H=(e,t,n)=>{switch(e.op){case"Conv1D":{let s=k("stride",e,t,n),r=k("pad",e,t,n),a=k("dataFormat",e,t,n).toUpperCase(),o=k("dilation",e,t,n);return[N1(k("x",e,t,n),k("filter",e,t,n),s,r,a,o)]}case"Conv2D":{let s=k("strides",e,t,n),r=Kh(e,t,n),a=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[Pa(k("x",e,t,n),k("filter",e,t,n),[s[1],s[2]],r,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=fv(e,t,n);return[Ma.conv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=fv(e,t,n);return[Ma.depthwiseConv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let s=k("outputShape",e,t,n),r=k("strides",e,t,n),a=Kh(e,t,n);return[R1(k("x",e,t,n),k("filter",e,t,n),s,[r[1],r[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let s=k("strides",e,t,n),r=Kh(e,t,n),a=k("dilations",e,t,n),o=k("dataFormat",e,t,n).toUpperCase();return[up(k("input",e,t,n),k("filter",e,t,n),[s[1],s[2]],r,o,[a[1],a[2]])]}case"Conv3D":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[_1(k("x",e,t,n),k("filter",e,t,n),[s[1],s[2],s[3]],r,a,[o[1],o[2],o[3]])]}case"AvgPool":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("kernelSize",e,t,n);return[cm(k("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPool":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("kernelSize",e,t,n);return[Am(k("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPoolWithArgmax":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("kernelSize",e,t,n),o=k("includeBatchInIndex",e,t,n),{result:i,indexes:l}=Jk(k("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r,o);return[i,l]}case"AvgPool3D":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("kernelSize",e,t,n);return[C1(k("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"MaxPool3D":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("kernelSize",e,t,n);return[B1(k("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"Dilation2D":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("dilations",e,t,n),o=s[1],i=s[2],l=a[1],u=a[2];return[Lk(k("x",e,t,n),k("filter",e,t,n),[o,i],r,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},DH=(e,t,n)=>{switch(e.op){case"Fill":{let s=k("shape",e,t,n),r=k("dtype",e,t,n),a=k("value",e,t,n);return[ac(s,a,r)]}case"LinSpace":{let s=k("start",e,t,n),r=k("stop",e,t,n),a=k("num",e,t,n);return[Hk(s,r,a)]}case"Multinomial":{let s=k("logits",e,t,n),r=k("numSamples",e,t,n),a=k("seed",e,t,n);return[eS(s,r,a)]}case"OneHot":{let s=k("indices",e,t,n),r=k("depth",e,t,n),a=k("onValue",e,t,n),o=k("offValue",e,t,n);return[Rd(s,r,a,o)]}case"Ones":return[fs(k("shape",e,t,n),k("dtype",e,t,n))];case"OnesLike":return[$s(k("x",e,t,n))];case"RandomUniform":return[lc(k("shape",e,t,n),k("minval",e,t,n),k("maxval",e,t,n),k("dtype",e,t,n))];case"Range":{let s=k("start",e,t,n),r=k("stop",e,t,n),a=k("step",e,t,n);return[bu(s,r,a,k("dtype",e,t,n))]}case"TruncatedNormal":{let s=k("shape",e,t,n),r=k("mean",e,t,n),a=k("stdDev",e,t,n),o=k("seed",e,t,n);return[Im(s,r,a,k("dtype",e,t,n),o)]}case"Zeros":return[Wt(k("shape",e,t,n),k("dtype",e,t,n))];case"ZerosLike":return[rt(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Z2(e,t,n){let s=k("boxes",e,t,n),r=k("scores",e,t,n),a=k("maxOutputSize",e,t,n),o=k("iouThreshold",e,t,n),i=k("scoreThreshold",e,t,n),l=k("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var PH=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}=Z2(e,t,n),u=await Se.nonMaxSuppressionWithScoreAsync(s,r,a,o,i,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=Z2(e,t,n),l=k("padToMaxOutputSize",e,t,n),u=await Se.nonMaxSuppressionPaddedAsync(s,r,a,o,i,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=Z2(e,t,n);return[await Se.nonMaxSuppressionAsync(s,r,a,o,i)]}case"Where":{let s=ge(k("condition",e,t,n),"bool"),r=[await Q1(s)];return s.dispose(),r}case"ListDiff":return rS(k("x",e,t,n),k("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},FH=(e,t,n)=>{switch(e.op){case"TopKV2":{let s=k("x",e,t,n),r=k("k",e,t,n),a=k("sorted",e,t,n),o=lS(s,r,a);return[o.values,o.indices]}case"Unique":{let s=k("x",e,t,n),r=hy(s);return[r.values,r.indices]}case"UniqueV2":{let s=k("x",e,t,n),r=k("axis",e,t,n),a=hy(s,r);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},OH=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let s=k("default",e,t,n);return[Bn(e.name,t,n)||s];case"Placeholder":return[Bn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=k("x",e,t,n);return[Gr(u)]}case"IdentityN":return k("x",e,t,n).map(u=>Gr(u));case"Snapshot":let r=k("x",e,t,n);return[Gr(r)];case"Shape":return[It(k("x",e,t,n).shape,"int32")];case"ShapeN":return k("x",e,t,n).map(u=>It(u.shape));case"Size":return[Ie(k("x",e,t,n).size,"int32")];case"Rank":return[Ie(k("x",e,t,n).rank,"int32")];case"NoOp":return[Ie(1)];case"Print":let a=k("x",e,t,n),o=k("data",e,t,n),i=k("message",e,t,n),l=k("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let u=0;u<o.length;u++)console.log(Array.prototype.slice.call(o[u].dataSync()).slice(0,l));return[a];default:throw TypeError(`Node type ${e.op} is not implemented`)}},MH=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Ie(0),this.tensorMap=new Map,dn(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Ie(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),X(()=>{let s=es(t),r=n.length,a=s.length;v.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o<r;o++){let i=n[o],l=s[o];dn(l),this.tensorMap.set(i,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return X(()=>{let s=[];for(let r=0;r<n.length;r++){let a=n[r],o=this.findWithDefault(a,t);s.push(o)}return an(s)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},zH=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=k("keyDType",e,t,n),a=k("valueDType",e,t,n),o=new MH(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=k("tableHandle",e,t,n,s),a=k("keys",e,t,n),o=k("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=k("tableHandle",e,t,n,s),a=k("keys",e,t,n),o=k("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=k("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},LH=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let s=k("images",e,t,n),r=k("size",e,t,n),a=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[Se.resizeBilinear(s,[r[0],r[1]],a,o)]}case"ResizeNearestNeighbor":{let s=k("images",e,t,n),r=k("size",e,t,n),a=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[Se.resizeNearestNeighbor(s,[r[0],r[1]],a,o)]}case"CropAndResize":{let s=k("image",e,t,n),r=k("boxes",e,t,n),a=k("boxInd",e,t,n),o=k("cropSize",e,t,n),i=k("method",e,t,n),l=k("extrapolationValue",e,t,n);return[Se.cropAndResize(s,r,a,o,i,l)]}case"ImageProjectiveTransformV3":{let s=k("images",e,t,n),r=k("transforms",e,t,n),a=k("outputShape",e,t,n),o=k("fillValue",e,t,n),i=k("interpolation",e,t,n),l=k("fillMode",e,t,n);return[Se.transform(s,r,i.toLowerCase(),l.toLowerCase(),o,a)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},BH=(e,t,n)=>{switch(e.op){case"Equal":return[Es(k("a",e,t,n),k("b",e,t,n))];case"NotEqual":return[xu(k("a",e,t,n),k("b",e,t,n))];case"Greater":return[gs(k("a",e,t,n),k("b",e,t,n))];case"GreaterEqual":return[wl(k("a",e,t,n),k("b",e,t,n))];case"Less":return[F1(k("a",e,t,n),k("b",e,t,n))];case"LessEqual":return[kl(k("a",e,t,n),k("b",e,t,n))];case"LogicalAnd":return[pr(k("a",e,t,n),k("b",e,t,n))];case"LogicalNot":return[ym(k("a",e,t,n))];case"LogicalOr":return[L1(k("a",e,t,n),k("b",e,t,n))];case"Select":case"SelectV2":return[Un(k("condition",e,t,n),k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},WH=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ye(k("a",e,t,n),k("b",e,t,n),k("transposeA",e,t,n),k("transposeB",e,t,n))];case"Einsum":return[Wk(k("equation",e,t,n),...k("tensors",e,t,n))];case"Transpose":return[st(k("x",e,t,n),k("perm",e,t,n))];case"_FusedMatMul":let[s,r]=k("fusedOps",e,t,n),a=s==="biasadd",o=r==="prelu",i=k("numArgs",e,t,n),l=k("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=k("args",e,t,n);return[Ma.matMul({a:k("a",e,t,n),b:k("b",e,t,n),transposeA:k("transposeA",e,t,n),transposeB:k("transposeB",e,t,n),bias:u,activation:r,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},VH=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[yu(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"FusedBatchNormV3":return[yu(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"LRN":return[jk(k("x",e,t,n),k("radius",e,t,n),k("bias",e,t,n),k("alpha",e,t,n),k("beta",e,t,n))];case"Softmax":return[uc(k("x",e,t,n))];case"LogSoftmax":return[O1(k("x",e,t,n))];case"SparseToDense":return[tA(k("sparseIndices",e,t,n),k("outputShape",e,t,n),k("sparseValues",e,t,n),k("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},UH=(e,t,n)=>{switch(e.op){case"Max":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[hn(k("x",e,t,n),o,i)]}case"Mean":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[Bt(k("x",e,t,n),o,i)]}case"Min":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[Fa(k("x",e,t,n),o,i)]}case"Sum":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[ke(k("x",e,t,n),o,i)]}case"All":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[S1(k("x",e,t,n),o,i)]}case"Any":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[ff(k("x",e,t,n),o,i)]}case"ArgMax":{let o=k("axis",e,t,n);return[Ns(k("x",e,t,n),o)]}case"ArgMin":{let o=k("axis",e,t,n);return[yk(k("x",e,t,n),o)]}case"Prod":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[W1(k("x",e,t,n),o,i)]}case"Cumprod":{let o=k("axis",e,t,n),i=k("exclusive",e,t,n),l=k("reverse",e,t,n);return[Ok(k("x",e,t,n),o,i,l)]}case"Cumsum":{let o=k("axis",e,t,n),i=k("exclusive",e,t,n),l=k("reverse",e,t,n);return[D1(k("x",e,t,n),o,i,l)]}case"Bincount":let s=k("x",e,t,n),r=k("weights",e,t,n),a=k("size",e,t,n);return[T1(s,r,a)];case"DenseBincount":{let o=k("x",e,t,n),i=k("weights",e,t,n),l=k("size",e,t,n),u=k("binaryOutput",e,t,n);return[Mk(o,i,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},GH=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let s=k("n",e,t,n),r=k("axis",e,t,n),a=k("tensors",e,t,n);return a=a.slice(0,s),[kt(a,r)]}case"Gather":{let s=k("x",e,t,n),r=k("indices",e,t,n);return[Au(s,ge(r,"int32"),0)]}case"GatherV2":{let s=k("axis",e,t,n),r=k("batchDims",e,t,n),a=k("x",e,t,n),o=k("indices",e,t,n);return[Au(a,ge(o,"int32"),s,r)]}case"Reverse":{let s=k("dims",e,t,n),r=[];for(let o=0;o<s.length;o++)s[o]&&r.push(o);let a=k("x",e,t,n);return[Ds(a,r)]}case"ReverseV2":{let s=k("axis",e,t,n),r=k("x",e,t,n);return[Ds(r,s)]}case"Slice":{let s=k("begin",e,t,n),r=k("size",e,t,n);return[Pe(k("x",e,t,n),s,r)]}case"StridedSlice":{let s=k("begin",e,t,n),r=k("end",e,t,n),a=k("strides",e,t,n),o=k("beginMask",e,t,n),i=k("endMask",e,t,n),l=k("ellipsisMask",e,t,n),u=k("newAxisMask",e,t,n),c=k("shrinkAxisMask",e,t,n),p=k("x",e,t,n);return[oS(p,s,r,a,o,i,l,u,c)]}case"Pack":return X(()=>{let s=k("axis",e,t,n),r=k("tensors",e,t,n),a=r[0].shape,o=Qe(r[0]).shape,i=r.map(l=>{let u=v.arraysEqual(l.shape,a);if(!u&&!v.arraysEqual(Qe(l).shape,o))throw new Error("the input tensors shape does not match");return u?l:H(l,a)});return[an(i,s)]});case"Unpack":{let s=k("axis",e,t,n),r=k("tensor",e,t,n);return es(r,s)}case"Tile":{let s=k("reps",e,t,n);return[Ls(k("x",e,t,n),s)]}case"Split":case"SplitV":{let s=k("axis",e,t,n),r=k("numOrSizeSplits",e,t,n),a=k("x",e,t,n);return Kt(a,r,s)}case"ScatterNd":{let s=k("indices",e,t,n),r=k("values",e,t,n),a=k("shape",e,t,n);return[hS(s,r,a)]}case"GatherNd":{let s=k("x",e,t,n),r=k("indices",e,t,n);return[fS(s,r)]}case"SparseToDense":{let s=k("sparseIndices",e,t,n),r=k("outputShape",e,t,n),a=k("sparseValues",e,t,n),o=k("defaultValue",e,t,n);return[tA(s,a,r,a.dtype===o.dtype?o:ge(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},HH=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:s,outputValues:r,emptyRowIndicator:a,reverseIndexMap:o}=dd.sparseFillEmptyRows(k("indices",e,t,n),k("values",e,t,n),k("denseShape",e,t,n),k("defaultValue",e,t,n));return[s,r,a,o]}case"SparseReshape":{let{outputIndices:s,outputShape:r}=dd.sparseReshape(k("inputIndices",e,t,n),k("inputShape",e,t,n),k("newShape",e,t,n));return[s,r]}case"SparseSegmentMean":return[dd.sparseSegmentMean(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];case"SparseSegmentSum":return[dd.sparseSegmentSum(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},jH=(e,t,n)=>{switch(e.op){case"FFT":return[km(k("x",e,t,n))];case"IFFT":return[$d(k("x",e,t,n))];case"RFFT":return[Sm(k("x",e,t,n))];case"IRFFT":return[Y1(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},qH=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:s,nGramsSplits:r}=Xh.stringNGrams(k("data",e,t,n),k("dataSplits",e,t,n),k("separator",e,t,n),k("nGramWidths",e,t,n),k("leftPad",e,t,n),k("rightPad",e,t,n),k("padWidth",e,t,n),k("preserveShortSequences",e,t,n));return[s,r]}case"StringSplit":{let{indices:s,values:r,shape:a}=Xh.stringSplit(k("input",e,t,n),k("delimiter",e,t,n),k("skipEmpty",e,t,n));return[s,r,a]}case"StringToHashBucketFast":return[Xh.stringToHashBucketFast(k("input",e,t,n),k("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},XH=(e,t,n)=>{switch(e.op){case"Cast":return[ge(k("x",e,t,n),k("dtype",e,t,n))];case"ExpandDims":{let s=k("axis",e,t,n);return[qt(k("x",e,t,n),s)]}case"Squeeze":{let s=k("axis",e,t,n);return[Qe(k("x",e,t,n),s)]}case"Reshape":return[H(k("x",e,t,n),k("shape",e,t,n))];case"MirrorPad":return[Qk(k("x",e,t,n),k("padding",e,t,n),k("mode",e,t,n))];case"PadV2":case"Pad":return[Hs(k("x",e,t,n),k("padding",e,t,n),k("constantValue",e,t,n))];case"SpaceToBatchND":{let s=k("blockShape",e,t,n),r=k("paddings",e,t,n);return[bm(k("x",e,t,n),s,r)]}case"BatchToSpaceND":{let s=k("blockShape",e,t,n),r=k("crops",e,t,n);return[dm(k("x",e,t,n),s,r)]}case"DepthToSpace":{let s=k("blockSize",e,t,n),r=k("dataFormat",e,t,n).toUpperCase();return[zk(k("x",e,t,n),s,r)]}case"BroadcastTo":return[bd(k("x",e,t,n),k("shape",e,t,n))];case"BroadcastArgs":return[Ek(k("s0",e,t,n),k("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function mv(e,t,n,s){let r=((a,o,i)=>{switch(a.category){case"arithmetic":return X(()=>SH(a,o,i));case"basic_math":return X(()=>IH(a,o,i));case"control":return _H(a,o,i);case"convolution":return X(()=>$H(a,o,i));case"creation":return X(()=>DH(a,o,i));case"dynamic":return PH(a,o,i);case"evaluation":return X(()=>FH(a,o,i));case"image":return X(()=>LH(a,o,i));case"graph":return X(()=>OH(a,o,i));case"logical":return X(()=>BH(a,o,i));case"matrices":return X(()=>WH(a,o,i));case"normalization":return X(()=>VH(a,o,i));case"reduction":return X(()=>UH(a,o,i));case"slice_join":return X(()=>GH(a,o,i));case"sparse":return X(()=>HH(a,o,i));case"spectral":return X(()=>jH(a,o,i));case"string":return X(()=>qH(a,o,i));case"transformation":return X(()=>XH(a,o,i));case"hash_table":return zH(a,o,i,s);case"custom":let l=YI(a.op);if(l&&l.customExecutor)return l.customExecutor(new kH(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(r)?r.then(a=>[].concat(a)):[].concat(r)}var gv=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function yv(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,u=Object.keys(e).map(d=>ps(d)[0]),c=[];s!=null&&(c=s.map(d=>ps(d.name)[0]));let p=[...t];for(;p.length>0;){let d=p.pop();if((x7(d)||QH(d)||ej(d))&&o==null&&(o=d,i=o.children.map(h=>h.name).filter(h=>r.has(h))),r.add(d.name),n[d.name]==null&&u.indexOf(d.name)===-1&&c.indexOf(d.name)===-1){if(d.inputs.length===0){a.push(d.name);continue}d.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function KH(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(c=>ps(c)[0]).map(c=>e.nodes[c]),i=e.initNodes;o.forEach(c=>{s.has(c.name)&&a.push(c)}),e.weights.forEach(c=>{s.has(c.name)&&a.push(c)}),i!=null&&i.forEach(c=>{s.has(c.name)&&a.push(c)});let l=new Set,u=[];for(;a.length>0;){let c=a.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(p=>{!l.has(p.name)&&s.has(p.name)&&p.inputs.every(d=>l.has(d.name))&&a.push(p)})}return u}var ZH=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],YH=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],JH=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function x7(e){return ZH.indexOf(e.op)>=0}function QH(e){return YH.indexOf(e.op)>=0}function ej(e){return JH.indexOf(e.op)>=0}var Oy=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Oy(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=yv(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return KH(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(c=>this.graph.nodes[ps(c)[0]]),r=t.map(c=>ps(c)[0]),a=r.map(c=>this.graph.nodes[c]);this.resetIntermediateTensors(),a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},u={};return X(()=>{let c=new gv(this.weightMap,l,u,this.functionExecutorMap),p={...this.weightMap};Object.keys(e).forEach(f=>{let[m,g]=ps(f),y=[];y[g]=e[f],p[m]=y});let d=this.getFrozenTensorIds(p),h={};for(let f=0;f<i.length;f++){let m=i[f];if(!p[m.name]){let g=mv(m,p,c,this._resourceManager);if(v.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);p[m.name]=g,this.checkTensorForDisposal(m.name,m,p,c,d,r,h)}}return this.parent==null&&c.dispose(d),t.map(f=>Bn(f,p,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=nH(i.name,n,s);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let c=o[u.id];if(c===1){if(!this.keepTensorForDebug)u.dispose();else{let[p,d]=Cr(t.name,s);this.intermediateTensors[p]?this.intermediateTensors[p][d]=u:(this.intermediateTensors[p]=[],this.intermediateTensors[p][d]=u)}delete o[u.id]}else c!=null&&o[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(n=>{n&&!n.kept&&!n.isDisposed&&!this.keepIds.has(n.id)&&n.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=J().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(u){console.warn(u.message)}this.resetIntermediateTensors();let a=new gv(this.weightMap,s,r,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,a,t,n);let o=t.map(u=>Bn(u,this.tensorsMap,a)),i=o.map(u=>u.id),l=Object.keys(e).map(u=>e[u].id);return this.keepIds=new Set([...i,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&a.dispose(this.keepIds),o}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(x=>this.graph.nodes[ps(x)[0]]),o=n.map(x=>ps(x)[0]),i=o.map(x=>this.graph.nodes[x]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:p}=yv(e,i,this.weightMap,this._initNodes),d=[...a,...this.graph.weights,...this._initNodes||[]].map(x=>({node:x,contexts:t.currentContext})),h={...this.weightMap};Object.keys(e).forEach(x=>{let[A,b]=ps(x),w=[];w[b]=e[x],h[A]=w});let f={},m=this.getFrozenTensorIds(h),g={};for(;d.length>0;){let x=this.processStack(a,d,t,h,g,m,o,f,l);await Promise.all(x)}c==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=i.filter(x=>!x7(x)&&!Bn(x.name,h,t)).map(x=>x.name);if(y.length>0){let x="";throw c!=null&&(x=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${x}`)}return h}processStack(e,t,n,s,r,a,o,i,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let p="";if(c.node.op==="Enter"&&k("isConstant",c.node,s,n)&&([p]=Cr(c.node.name,n)),s[c.node.name]==null){let d=mv(c.node,s,n,this._resourceManager);p||([p]=Cr(c.node.name,n));let h=n.currentContext;v.isPromise(d)?u.push(d.then(f=>(s[p]=f,n.currentContext=h,this.checkTensorForDisposal(p,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l),f))):(s[p]=d,this.checkTensorForDisposal(p,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l))}else this.processChildNodes(c.node,t,n,s,r,l)}return u}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=Cr(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!Bn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!Bn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=ps(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);v.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&v.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=ps(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=ps(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},tj=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},nj="?tfjs-format=file",sj="model.json",r0=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new tj}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=In.browserHTTPRequest(e,this.loadOptions);else{let t=In.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(In.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=In.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Oy(dv.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=dv.Instance.transformGraph(e.modelInitializer);this.initializer=new Oy(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=In.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof nt)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function rj(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${sj}${nj}`);let n=new r0(e,t);return await n.load(),n}var aj="0.0.0",b7={};Le(b7,{CSVDataset:()=>$7,Dataset:()=>hc,FileDataSource:()=>L7,TextLineDataset:()=>_7,URLDataSource:()=>B7,array:()=>Nj,csv:()=>Lj,func:()=>Bj,generator:()=>Wj,microphone:()=>Uj,version_data:()=>Gj,webcam:()=>Vj,zip:()=>Ej});var oj=$i(Pf()),ij=$i(Pf());function lj(e,t){return Sf(e,t)}function Sf(e,t,n=new Map,s=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(ku(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=Sf(i,t,n,s);a[o]=l}return s.delete(e),e.__proto__&&(a.__proto__=e.__proto__),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function uj(e,t=w7){return v7(e,t)}function v7(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(ku(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(u=>u[o]),l=v7(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function w7(e){return e===null?null:ku(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function k7(e,t){let n=new Map;Sf(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(v.isPromise(a)){let o=await a;n.set(r,o)}}return Sf(e,t,n)}function ku(e){let t=!1;if(J().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=iw();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof nt)&&!(e instanceof Promise)&&!t)}function cj(e){return e==null||dj(e)||Array.isArray(e)||typeof e=="object"&&e instanceof nt||v.isTypedArray(e)}function dj(e){return e===null||typeof e!="object"&&typeof e!="function"}function pj(e){return lj(e,hj)}function hj(e){return e instanceof nt?{value:e.clone(),recurse:!1}:ku(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var S7=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},I7=class extends S7{constructor(){super(I7.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}},C7=I7;C7.INITIAL_CAPACITY=32;function T7(e){return new gj(e)}function Ox(e){return new yj(e)}function fj(e,t){return new N7(e,t)}function mj(e,t=E7.FAIL){return new Cj(e,t)}var mn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new Sj(this,e)}filter(e){return new wj(this,e)}map(e){return new kj(this,e)}mapAsync(e){return new Av(this,e)}serialMapAsync(e){return new Av(this,e).serial()}flatmap(e){return new Ij(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new vj(this,e,t)}columnMajorBatch(e,t=!0,n=w7){return this.rowMajorBatch(e,t).map(r=>uj(r,n))}concatenate(e,t){return new N7(T7([this,e]),t)}take(e){return e<0||e==null?this:new bj(this,e)}skip(e){return e<0||e==null?this:new xj(this,e)}prefetch(e){return new R7(this,e)}shuffle(e,t){return new Tj(this,e,t)}serial(){return new Aj(this)}},gj=class extends mn{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:pj(e),done:!1}}},yj=class extends mn{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},Aj=class extends mn{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},xj=class extends mn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;ne(e.value)}return this.upstream.next()}},bj=class extends mn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},vj=class extends mn{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},wj=class extends mn{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;ne(e.value)}}},kj=class extends mn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=lr.getTensorsInContainer(e.value),n=this.transform(e.value),s=lr.getTensorsInContainer(n);for(let r of t)lr.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},Sj=class extends mn{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},Av=class extends mn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=lr.getTensorsInContainer(e.value),n=await this.transform(e.value),s=lr.getTensorsInContainer(n);for(let r of t)lr.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},Mx=class extends mn{constructor(){super();this.outputQueue=new C7,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},Ij=class extends Mx{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=lr.getTensorsInContainer(e.value),n=this.transform(e.value),s=lr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)lr.isTensorInList(r,s)||r.dispose();return!0}},N7=class extends mn{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},E7=(e=>(e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST",e))(E7||{}),Cj=class extends mn{constructor(e,t=0){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof mn?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await k7(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case 0:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case 1:return{value:null,done:!0};case 2:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},R7=class extends mn{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new S7(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},Tj=class extends R7{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=ij.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},hc=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),ds(async()=>(await n.iterator()).columnMajorBatch(e,t,Rj),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,ds(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,ds(async()=>(await t.iterator()).filter(s=>X(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return ds(async()=>(await t.iterator()).map(n=>X(()=>e(n))),this.size)}mapAsync(e){let t=this;return ds(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return ds(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,ds(async()=>{let s=Ox(async()=>({value:await t.iterator(),done:!1}));return fj(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,ds(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=oj.alea(t||v.now().toString());return ds(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,ds(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};hc.MAX_BUFFER_SIZE=1e4;function ds(e,t=null){return new class extends hc{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function Nj(e){return ds(async()=>T7(e),e.length)}function Ej(e){if(!ku(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return ds(async()=>{let n=await k7(e,s=>{if(s instanceof hc)return{value:s.iterator(),recurse:!1};if(ku(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return mj(n,1)},t)}function Rj(e){if(e===null)return null;let t=e[0];return cj(t)?{value:_j(e),recurse:!1}:{value:null,recurse:!0}}function _j(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof nt?an(e):pt(e)}var _7=class extends hc{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},Bh='"',ld=Symbol("out"),xv=Symbol("field"),Wh=Symbol("quote"),Y2=Symbol("quoteafterquote"),bv=Symbol("quoteinquote"),$7=class extends hc{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new _7(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r<this.fullColumnNames.length;r++){let a=this.fullColumnNames[r],o=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!o)){let i=t[r],l=null;if(i==="")if(o&&o.default!==void 0)l=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);l=void 0}else{let u=Number(i);if(isNaN(u))o&&o.dtype==="bool"?l=this.getBoolean(i):l=i;else if(!o||!o.dtype)l=u;else switch(o.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(i);break;default:l=u}}o&&o.isLabel?s[a]=l:n[a]=l}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],s=0,r=e.length,a=ld;for(let o=0;o<r;o++)switch(a){case ld:switch(e.charAt(o)){case Bh:s=o+1,a=Wh;break;case this.delimiter:if(s=o+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=ld;break;default:a=xv,s=o;break}break;case xv:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o)),a=ld,s=o+1;break;default:}break;case Wh:switch(e.charAt(o)){case Bh:a=Y2;break;default:}break;case Y2:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o-1)),a=ld,s=o+1;break;case Bh:a=Wh;break;default:a=bv;break}break;case bv:switch(e.charAt(o)){case Bh:a=Wh;break;default:}break;default:}if(a===Y2?n.push(e.substring(s,r-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},D7=class extends mn{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!J().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new D7(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),pt(n,t)}},P7=class extends mn{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=It([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=ur([a,r,i,o],[1,4])}else this.cropBox=ur([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!J().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new P7(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Ps.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return X(()=>{let t=qt(ge(e,"float32"),0),n;n=Se.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return H(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},F7=class{},O7=class extends mn{split(e){return new $j(this,e)}},$j=class extends O7{constructor(e,t){super();this.upstream=e,this.impl=new Dj(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Dj=class extends Mx{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},Pj=class extends mn{decodeUTF8(){return new Fj(this)}},Fj=class extends O7{constructor(e){super();this.upstream=e,this.impl=new Oj(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Oj=class extends Mx{constructor(e){super();if(this.upstream=e,J().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=iw();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return J().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},M7=class extends Pj{constructor(e,t={}){super();this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(J().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function Mj(e,t={},n){let s,r;typeof e=="string"?s=e:(s=e.url,r=zj(e));let a=await(n||v.fetch)(s,r);if(a.ok){let o=new Uint8Array(await a.arrayBuffer());return new M7(o,t)}else throw new Error(a.statusText)}var zj=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function z7(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var L7=class extends F7{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(z7(this.input)&&J().get("IS_NODE")){let e=e1();this.input=e.readFileSync(this.input.slice(7))}return new M7(this.input,this.options)}},B7=class extends F7{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return z7(this.url)?new L7(this.url,this.fileOptions).iterator():Mj(this.url,this.fileOptions)}};function Lj(e,t={}){return new $7(new B7(e),t)}function Bj(e){let t=Ox(e);return ds(async()=>t)}function Wj(e){return ds(async()=>{let t=await e();return Ox(()=>t.next())})}async function Vj(e,t){return P7.create(e,t)}async function Uj(e){return D7.create(e)}var Gj="0.0.0";function Ce(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var Hj=js.whereImpl,W7=class extends Tu{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new zd(this,yn())}nextDataId(){return W7.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,J().get("IS_NODE")&&C.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return C.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>v.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}makeOutput(e,t,n){let s=this.write(e,t,n);return yn().makeTensorFromDataId(s,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Ce([e],"where");let t=this.readSync(e.dataId);return Hj(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}},zx=W7;zx.nextDataId=0;var a0={};Le(a0,{addImpl:()=>U7,bincountImpl:()=>Bx,bincountReduceImpl:()=>G7,ceilImpl:()=>H7,concatImpl:()=>Wx,equalImpl:()=>j7,expImpl:()=>X7,expm1Impl:()=>Z7,floorImpl:()=>Y7,gatherNdImpl:()=>J7,gatherV2Impl:()=>Q7,greaterEqualImpl:()=>tC,greaterImpl:()=>eC,lessEqualImpl:()=>sC,lessImpl:()=>nC,linSpaceImpl:()=>rC,logImpl:()=>aC,maxImpl:()=>oC,maximumImpl:()=>iC,minimumImpl:()=>lC,multiplyImpl:()=>Vx,negImpl:()=>uC,notEqualImpl:()=>cC,prodImpl:()=>dC,rangeImpl:()=>Gx,rsqrtImpl:()=>pC,sigmoidImpl:()=>Dq,simpleAbsImpl:()=>V7,sliceImpl:()=>Cf,sparseFillEmptyRowsImpl:()=>fC,sparseReshapeImpl:()=>mC,sparseSegmentReductionImpl:()=>Hx,sqrtImpl:()=>Oq,squaredDifferenceImpl:()=>gC,stridedSliceImpl:()=>yC,stringNGramsImpl:()=>AC,stringSplitImpl:()=>xC,stringToHashBucketFastImpl:()=>bC,subImpl:()=>vC,tileImpl:()=>wC,topKImpl:()=>SC,transposeImpl:()=>Ux,uniqueImpl:()=>IC});function V7(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var jj=e=>{let{x:t}=e.inputs,n=e.backend;Ce(t,"abs");let s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=V7(r),n.makeOutput(s,t.shape,t.dtype)},qj={kernelName:Pi,backendName:"cpu",kernelFunc:jj};function Yt(e){return(t,n,s,r,a)=>{let o=C.assertAndGetBroadcastShape(t,n),i=o.length,l=v.computeStrides(o),u=v.sizeFromShape(o),c=v.getTypedArrayFromDType(a,u),p=t.length,d=n.length,h=v.computeStrides(t),f=v.computeStrides(n),m=C.getBroadcastDims(t,o),g=C.getBroadcastDims(n,o);if(m.length+g.length===0)for(let y=0;y<c.length;++y)c[y]=e(s[y%s.length],r[y%r.length]);else for(let y=0;y<c.length;++y){let x=v.indexToLoc(y,i,l),A=x.slice(-p);m.forEach(I=>A[I]=0);let b=v.locToIndex(A,p,h),w=x.slice(-d);g.forEach(I=>w[I]=0);let S=v.locToIndex(w,d,f);c[y]=e(s[b],r[S])}return[c,o]}}function hs(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var Xj={kernelName:Bd,backendName:"cpu",kernelFunc:hs};function If(e,t,n="float32"){if(n==="complex64"){let r=If(e,t,"float32"),a=If(e,t,"float32");return hs({inputs:{real:r,imag:a},backend:e})}let s=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function _r(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var Kj={kernelName:uo,backendName:"cpu",kernelFunc:_r};function Ti(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var Zj={kernelName:Kd,backendName:"cpu",kernelFunc:Ti};function Va(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return _r({inputs:{x:r},backend:n});let o=If(n,r.shape,r.dtype),i=Va({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=hs({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=Ti({inputs:{input:r},backend:n}),i=Va({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=_r({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(r.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(r.shape,"int32",i)}if(a==="bool"){let o=n.data.get(r.dataId).values,i=v.toTypedArray([0],r.dtype),[l,u]=Yt((c,p)=>c!==p?1:0)(r.shape,[],o,i,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var Yj={kernelName:Ka,backendName:"cpu",kernelFunc:Va};function gn(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;Ce([o,i],e);let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,p=o.dtype==="string"?C.fromUint8ToStringArray(u):u,d=o.dtype==="string"?C.fromUint8ToStringArray(c):c,h=s||o.dtype,[f,m]=t(o.shape,i.shape,p,d,h);return l.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let u=Va({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),p=c.complexTensorInfos.real,d=c.complexTensorInfos.imag,h=l.data.get(p.dataId).values,f=l.data.get(d.dataId).values,m=Va({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),y=g.complexTensorInfos.real,x=g.complexTensorInfos.imag,A=l.data.get(y.dataId).values,b=l.data.get(x.dataId).values,[w,S,I]=n(o.shape,i.shape,h,f,A,b),E=l.makeTensorInfo(I,"float32",w),R=l.makeTensorInfo(I,"float32",S),P=hs({inputs:{real:E,imag:R},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(R),P}else{let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,p=s||o.dtype,[d,h]=t(o.shape,i.shape,u,c,p);return l.makeTensorInfo(h,p,d)}}}function Lx(e){return(t,n,s,r,a,o)=>{let i=C.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(i),u=i.length,c=v.computeStrides(i),p=v.getTypedArrayFromDType("float32",l),d=v.getTypedArrayFromDType("float32",l),h=C.getBroadcastDims(t,i),f=C.getBroadcastDims(n,i),m=C.mergeRealAndImagArrays(s,r),g=C.mergeRealAndImagArrays(a,o),y=t.length,x=v.computeStrides(t),A=n.length,b=v.computeStrides(n);if(h.length+f.length===0)for(let w=0;w<p.length;w++){let S=w%m.length,I=w%g.length,E=e(m[S*2],m[S*2+1],g[I*2],g[I*2+1]);p[w]=E.real,d[w]=E.imag}else for(let w=0;w<p.length;w++){let S=v.indexToLoc(w,u,c),I=S.slice(-y);h.forEach(D=>I[D]=0);let E=v.locToIndex(I,y,x),R=S.slice(-A);f.forEach(D=>R[D]=0);let P=v.locToIndex(R,A,b),_=e(m[E*2],m[E*2+1],g[P*2],g[P*2+1]);p[w]=_.real,d[w]=_.imag}return[p,d,i]}}var U7=Yt((e,t)=>e+t),Jj=Lx((e,t,n,s)=>({real:e+n,imag:t+s})),Ip=gn(Kr,U7,Jj),Qj={kernelName:Kr,backendName:"cpu",kernelFunc:Ip};function Bx(e,t,n,s,r){let a=v.sizeFromShape(s),o=v.makeZerosTypedArray(r,n);for(let i=0;i<e.length;i++){let l=e[i];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function G7(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=We([r,n],t.dtype);for(let i=0;i<r;i++)for(let l=0;l<a;l++){let u=e.get(i,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(s?o.set(1,i,u):t.size>0?o.set(o.get(i,u)+t.get(i,l),i,u):o.set(o.get(i,u)+1,i,u))}return o}function Bo(e){return(t,n,s)=>{let r=v.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function mt(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Ce(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=v.sizeFromShape(o.shape),c=n||o.dtype,p=v.getArrayFromDType(c,u);for(let d=0;d<u;++d)p[d]=t(l[d],r);return i.makeTensorInfo(o.shape,c,p)}}function fc(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Ce(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=n||o.dtype,c=t(l,u,r);return i.makeTensorInfo(o.shape,u,c)}}var H7=Bo(e=>Math.ceil(e)),eq=fc(Za,H7),tq={kernelName:Za,backendName:"cpu",kernelFunc:eq};function Wx(e,t,n,s){let r=v.getArrayFromDType(n,v.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=v.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?C.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let u=0;u<o.shape[0];++u){let c=u*t[1]+a;for(let p=0;p<o.shape[1];++p)r[c+p]=i[l++]}a+=o.shape[1]})}return r}var j7=Yt((e,t)=>e===t?1:0),q7=gn(Bi,j7,null,"bool"),nq={kernelName:Bi,backendName:"cpu",kernelFunc:q7},X7=Bo(e=>Math.exp(e)),K7=fc(ro,X7,"float32"),sq={kernelName:ro,backendName:"cpu",kernelFunc:K7},Z7=Bo(e=>Math.expm1(e)),rq=fc(Vi,Z7),aq={kernelName:Vi,backendName:"cpu",kernelFunc:rq},Y7=Bo(e=>Math.floor(e)),oq=fc(ao,Y7),iq={kernelName:ao,backendName:"cpu",kernelFunc:oq};function J7(e,t,n,s,r,a,o,i,l){let u=We([s,a],n);for(let c=0;c<s;c++){let p=[],d=0;for(let h=0;h<r;h++){let f=e[c*r+h];d+=f*o[h],p.push(f)}if(d<0||d>=l/a)throw new Error(`Invalid indices: ${p} does not index into ${i}`);for(let h=0;h<a;h++)u.values[c*a+h]=t.get(...t.indexToLoc(d*a+h))}return u}function Q7(e,t,n){let s=We(n,e.dtype);for(let r=0;r<s.size;++r){let o=s.indexToLoc(r).slice(),i=o[0],l=o[2],u=t.locToIndex([i,l]);o[2]=t.values[u];let c=e.locToIndex(o);0<=c&&c<e.values.length&&(s.values[r]=e.values[c])}return s}var eC=Yt((e,t)=>e>t?1:0),lq=gn(ji,eC,null,"bool"),uq={kernelName:ji,backendName:"cpu",kernelFunc:lq},tC=Yt((e,t)=>e>=t?1:0),cq=gn(lo,tC,null,"bool"),dq={kernelName:lo,backendName:"cpu",kernelFunc:cq},nC=Yt((e,t)=>e<t?1:0),pq=gn(qi,nC,null,"bool"),hq={kernelName:qi,backendName:"cpu",kernelFunc:pq},sC=Yt((e,t)=>e<=t?1:0),fq=gn(Xi,sC,null,"bool"),mq={kernelName:Xi,backendName:"cpu",kernelFunc:fq};function rC(e,t,n){let s=(t-e)/(n-1),r=v.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var aC=Bo(e=>Math.log(e)),gq=fc(po,aC),yq={kernelName:po,backendName:"cpu",kernelFunc:gq};function oC(e,t,n,s){let r=v.getTypedArrayFromDType(s,v.sizeFromShape(n));for(let a=0;a<r.length;++a){let o=a*t,i=e[o];for(let l=0;l<t;++l){let u=e[o+l];(Number.isNaN(u)||u>i)&&(i=u)}r[a]=i}return r}var iC=Yt((e,t)=>Math.max(e,t)),Aq=gn(fo,iC),xq={kernelName:fo,backendName:"cpu",kernelFunc:Aq},lC=Yt((e,t)=>Math.min(e,t)),bq=gn(Ao,lC),vq={kernelName:Ao,backendName:"cpu",kernelFunc:bq},Vx=Yt((e,t)=>e*t),wq=Lx((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),o0=gn(bo,Vx,wq),kq={kernelName:bo,backendName:"cpu",kernelFunc:o0};function uC(e,t,n){let s=v.createScalarValue(-1,n);return Vx([],t,s,e,n)}function Sq(e){let{inputs:t,backend:n}=e,{x:s}=t;Ce(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=uC(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var Iq={kernelName:Zi,backendName:"cpu",kernelFunc:Sq},cC=Yt((e,t)=>e!==t?1:0),Cq=gn(Yi,cC,null,"bool"),Tq={kernelName:Yi,backendName:"cpu",kernelFunc:Cq};function Ux(e,t,n,s,r){let a=t.length,o=v.sizeFromShape(t),i=v.computeStrides(t),l=v.computeStrides(r),u=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let c=0;c<o;++c){let p=v.indexToLoc(c,a,i),d=new Array(p.length);for(let f=0;f<d.length;f++)d[f]=p[s[f]];let h=v.locToIndex(d,a,l);u[h]=e[c]}return u}function ns(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{perm:a}=n;Ce(r,"transpose");let o=r.shape.length,i=new Array(o);for(let p=0;p<i.length;p++)i[p]=r.shape[a[p]];let l=s.data.get(r.dataId).values,u=Ux(l,r.shape,r.dtype,a,i);return{dataId:s.write(u,i,r.dtype),shape:i,dtype:r.dtype}}var Nq={kernelName:Oo,backendName:"cpu",kernelFunc:ns};function dC(e,t,n,s){let[r,a]=C.computeOutAndReduceShapes(e,s),o=Tn(t,"int32"),i=v.makeZerosTypedArray(v.sizeFromShape(r),o),l=v.sizeFromShape(a);for(let u=0;u<i.length;++u){let c=u*l,p=1;for(let d=0;d<l;++d)p*=n[c+d];i[u]=p}return{outVals:i,outShape:r,outDtype:o}}function Eq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ce(r,"prod");let i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=C.getAxesPermutation(l,i),c=l,p=r,d=[];u!=null&&(p=ns({inputs:{x:r},backend:n,attrs:{perm:u}}),d.push(p),c=C.getInnerMostAxes(c.length,i));let h=n.data.get(p.dataId).values,{outVals:f,outShape:m,outDtype:g}=dC(p.shape,p.dtype,h,c),y=m;return o&&(y=C.expandShapeToKeepDim(m,l)),d.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.makeTensorInfo(y,g,f)}var Rq={kernelName:sl,backendName:"cpu",kernelFunc:Eq};function Gx(e,t,n,s){let r=e===t,a=e<t&&n<0,o=t<e&&n>1;if(r||a||o)return v.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(i,s);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var pC=Bo(e=>1/Math.sqrt(e)),_q=fc(To,pC),$q={kernelName:To,backendName:"cpu",kernelFunc:_q},Dq=Bo(e=>1/(1+Math.exp(-e))),hC=mt(Eo,e=>1/(1+Math.exp(-e))),Pq={kernelName:Eo,backendName:"cpu",kernelFunc:hC};function Cf(e,t,n,s,r){let a=Ft.isSliceContinous(s,t,n),o=v.sizeFromShape(n),i=v.computeStrides(s);if(a){let p=Ft.computeFlatOffset(t,i);return r==="string"?e.slice(p,p+o):e.subarray(p,p+o)}let l=r==="string"?C.fromUint8ToStringArray(e):e,u=We(s,r,l),c=We(n,r);for(let p=0;p<c.size;++p){let d=c.indexToLoc(p),h=d.map((f,m)=>f+t[m]);c.set(u.get(...h),...d)}return r==="string"?C.fromStringArrayToUint8(c.values):c.values}function Ni(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;Ce(r,"slice");let[i,l]=Ft.parseSliceParams(r,a,o);Ft.assertParamsValid(r,i,l);let u=n.data.get(r.dataId).values,c=Cf(u,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}var Fq={kernelName:ul,backendName:"cpu",kernelFunc:Ni};function fC(e,t,n,s,r,a,o){let i=t[0],l=a[0],u=new Array(l),c=new Array(i),p=t[1];if(l===0){if(i!==0)throw new Error(C.getSparseFillEmptyRowsIndicesDenseShapeMismatch(i));let g=v.getArrayFromDType(n,0),y=v.getArrayFromDType(r,0);return[g,[0,p],y,u,c]}let d=!0,h=0,f=new Array(l).fill(0);for(let g=0;g<i;++g){let y=e[g*p];if(y<0)throw new Error(C.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,y));if(y>=l)throw new Error(C.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,y,l));++f[y],d=d&&y>=h,h=y}let m=!0;for(let g=0;g<l;++g){let y=f[g]===0;u[g]=y,m=m&&!y,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&d){let g=e,y=s;for(let x=0;x<i;++x)c[x]=x;return[g,[i,p],y,u,c]}else{let g=f[l-1],y=v.getArrayFromDType(n,g*p),x=v.getArrayFromDType(r,g),A=new Array(l).fill(0);for(let b=0;b<i;++b){let w=e[b*p],S=A[w],I=(w===0?0:f[w-1])+S;A[w]++;for(let E=0;E<p;++E)y[I*p+E]=e[b*p+E];x[I]=s[b],c[b]=I}for(let b=0;b<l;++b)if(A[b]===0){let S=b===0?0:f[b-1];y[S*p+0]=b;for(let I=1;I<p;++I)y[S*p+I]=0;x[S]=o}return[y,[g,p],x,u,c]}}function mC(e,t,n,s,r){let a=v.sizeFromShape(s),o=t[0],i=r.length,l=[],u=1,c=-1;for(let g=0;g<i;++g){let y=r[g];if(y===-1){if(c!==-1)throw new Error(C.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(c,g));c=g,l.push(1)}else{if(y<0)throw new Error(C.getSparseReshapeNegativeOutputDimErrorMessage(g,y));u*=y,l.push(y)}}if(c!==-1){if(u<=0)throw new Error(C.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let g=Math.trunc(a/u);if(u*g!==a)throw new Error(C.getSparseReshapeInputOutputMultipleErrorMessage(s,l));l[c]=g}if(v.sizeFromShape(l)!==a)throw new Error(C.getSparseReshapeInputOutputMismatchErrorMessage(s,l));let d=s.length,h=[];if(d>0){h[d-1]=1;for(let g=d-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=v.getArrayFromDType(n,o*i);for(let g=0;g<o;++g){let y=0;for(let x=0;x<d;++x)y+=e[g*d+x]*h[x];for(let x=0;x<i;++x)m[g*i+x]=Math.trunc(y/f[x]),y%=f[x]}return[m,[o,i],l]}function Hx(e,t,n,s,r,a=!1,o=0){let i=s.length,l=[t[0],e.length/t[0]],u=l[1],p=i>0?r[i-1]+1:0;if(p<0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let h=d.reduce((A,b)=>A*b,1),f=v.getArrayFromDType(n,h);if(i===0)return p>0&&f.fill(o),[f,d];if(p<=0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,g=1,y=0,x=r[m];for(;;){let A=0;if(g<i){if(A=r[g],x===A){++g;continue}if(x>=A)throw new Error(C.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(x<0||x>=p)throw new Error(C.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(x,p));x>y&&f.fill(o,y*u,x*u);for(let b=m;b<g;++b){let w=s[b];if(w<0||w>=l[0])throw new Error(C.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(b,s[b],l[0]));for(let S=0;S<u;S++)f[x*u+S]+=e[w*u+S]}if(a)for(let b=0;b<u;b++)f[x*u+b]/=g-m;if(m=g,++g,y=x+1,x=A,g>i)break}return y<p&&f.fill(o,y*u,p*u),[f,d]}var Oq=Bo(e=>Math.sqrt(e)),Mq=mt(Ro,e=>Math.sqrt(e)),zq={kernelName:Ro,backendName:"cpu",kernelFunc:Mq},gC=Yt((e,t)=>{let n=e-t;return n*n}),Lq=gn(Do,gC),Bq={kernelName:Do,backendName:"cpu",kernelFunc:Lq};function yC(e,t,n,s){let r=We(e,t.dtype);for(let a=0;a<r.size;a++){let o=r.indexToLoc(a),i=new Array(o.length);for(let l=0;l<i.length;l++)i[l]=o[l]*n[l]+s[l];r.set(t.get(...i),...o)}return r}var Wq=class{constructor(e,t,n,s,r,a){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(n),this.rightPad=v.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let o=0;o<r;++o){let i=this.getPadWidth(a),l=Math.max(0,i-o),u=Math.max(0,i-(r-(o+1))),c=a-(l+u),p=t+(l>0?0:o-i),d=0;d+=l*this.leftPad.length;for(let y=0;y<c;++y)d+=e[p+y].length;d+=u*this.rightPad.length,d+=(l+u+c-1)*this.separator.length,n[s+o]=new Uint8Array(d);let f=n[s+o],m=0,g=y=>y.forEach(x=>f[m++]=x);for(let y=0;y<l;++y)g(this.leftPad),g(this.separator);for(let y=0;y<c-1;++y)g(e[p+y]),g(this.separator);if(c>0){g(e[p+c-1]);for(let y=0;y<u;++y)g(this.separator),g(this.rightPad)}else{for(let y=0;y<u-1;++y)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l<s;++l){let u=t[l]>=i;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=v.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],u=0;this.nGramWidths.forEach(c=>{u+=this.getNumNGrams(l,c)}),this.preserveShort&&l>0&&u===0&&(u=1),a[i]=a[i-1]+u}let o=new Array(a[r]);for(let i=0;i<r;++i){let l=t[i],u=a[i];if(this.nGramWidths.forEach(c=>{let p=t[i+1]-t[i],d=this.getNumNGrams(p,c);this.createNGrams(e,l,o,u,d,c),u+=d}),this.preserveShort&&u===a[i]){let c=t[i+1]-t[i];if(c===0)continue;let p=c+2*this.padWidth,d=1;this.createNGrams(e,l,o,u,d,p)}}return[o,a]}};function AC(e,t,n,s,r,a,o,i){return new Wq(n,s,r,a,o,i).compute(e,t)}function Vq(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)s.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],o=e.indexOf(a);for(;o!==-1;){let i=e.subarray(0,o);(!n||i.length!==0)&&s.push(i),e=e.subarray(o+1),o=e.indexOf(a)}(!n||e.length!==0)&&s.push(e);return}let r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(r,a);(!n||o.length!==0)&&s.push(o),r=a+1}}function xC(e,t,n){let s=e.length,r=[],a=0,o=0,i=new Array(s);for(let d=0;d<s;++d){let h=r.length;Vq(e[d],t,n,r);let f=r.length-h;i[d]=f,a+=f,o=Math.max(o,f)}let l=v.getArrayFromDType("int32",a*2),u=new Array(a),c=[s,o],p=0;for(let d=0;d<s;++d)for(let h=0;h<i[d];++h)l[p*2]=d,l[p*2+1]=h,u[p]=r[p],++p;return[l,u,c]}function bC(e,t){let n=v.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=v.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var vC=Yt((e,t)=>e-t),Uq=Lx((e,t,n,s)=>({real:e-n,imag:t-s})),jx=gn(Po,vC,Uq),Gq={kernelName:Po,backendName:"cpu",kernelFunc:jx};function wC(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=We(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),o=new Array(e.rank);for(let l=0;l<o.length;l++)o[l]=a[l]%e.shape[l];let i=e.locToIndex(o);s.values[r]=e.values[i]}return s}var fd=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function kC(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,u=Math.log(i),c=.5*Math.exp(2*u/3),p=.5*Math.sqrt(u*c*(i-c)/i)*Math.sign(l-i/2),d=Math.max(n,Math.floor(t-l*c/i+p)),h=Math.min(s,Math.floor(t+(i-l)*c/i+p));kC(e,t,d,h)}let r=e[t],a=n,o=s;for(v.swap(e,n,t),fd(e[s],r)>0&&v.swap(e,n,s);a<o;){for(v.swap(e,a,o),a++,o--;fd(e[a],r)<0;)a=a+1;for(;fd(e[o],r)>0;)o=o-1}fd(e[n],r)===0?v.swap(e,n,o):(o=o+1,v.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function SC(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=v.getTypedArrayFromDType(n,o*s),u=v.getTypedArrayFromDType("int32",o*s);for(let p=0;p<o;p++){let d=p*i,h=e.subarray(d,d+i),f=new Array(h.length);h.forEach((x,A)=>f[A]={value:x,index:A}),s<f.length&&(kC(f,s),f=f.slice(0,s)),r&&f.sort(fd);let m=p*s,g=l.subarray(m,m+s),y=u.subarray(m,m+s);for(let x=0;x<s;x++)g[x]=f[x].value,y[x]=f[x].index}let c=t.slice();return c[c.length-1]=s,[We(c,n,l),We(c,"int32",u)]}function IC(e,t,n,s){let r=v.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<r;f++)a[0]*=n[f];a[1]=n[r];for(let f=r+1;f<n.length;f++)a[2]*=n[f];let o={},i=new Int32Array(n[r]),l=new nn(a,s,e),u=[],c=a[0]===1&&a[2]===1;for(let f=0;f<n[r];f++){let m;if(c)m=e[f].toString();else{let g=[];for(let y=0;y<a[0];y++)for(let x=0;x<a[2];x++)g.push(l.get(y,f,x));m=g.join(",")}if(o[m]!==void 0)i[f]=o[m];else{let g=Object.keys(o).length;o[m]=g,i[f]=g,u.push(f)}}let p=a.slice();p[1]=Object.keys(o).length;let d=new nn(p,s);u.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let y=0;y<a[2];y++)d.set(l.get(g,f,y),g,m,y)});let h=n.slice();return h[r]=p[1],{outputValues:d.values,outputShape:h,indices:i}}var Hq="0.0.0";vl("cpu",()=>new zx,1);var CC=mt(so,e=>e>=0?e:Math.exp(e)-1),jq={kernelName:so,backendName:"cpu",kernelFunc:CC};function TC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;Ce([r],"leakyRelu");let o=v.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=v.getTypedArrayFromDType("float32",o);for(let u=0;u<i.length;u++)l[u]=i[u]<0?a*i[u]:i[u];return n.makeTensorInfo(r.shape,"float32",l)}var qq={kernelName:co,backendName:"cpu",kernelFunc:TC},Xq=Yt((e,t)=>e<0?t*e:e);function NC(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;Ce([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=Xq(s.shape,r.shape,a,o,"float32");return n.makeTensorInfo(l,"float32",i)}var Kq={kernelName:ko,backendName:"cpu",kernelFunc:NC},EC=mt(So,e=>Math.max(0,e)),Zq={kernelName:So,backendName:"cpu",kernelFunc:EC},RC=mt(Co,e=>Math.min(Math.max(0,e),6)),Yq={kernelName:Co,backendName:"cpu",kernelFunc:RC};function qx(e,t,n,s,r){if(n==="linear")return _r({inputs:{x:t},backend:e});if(n==="relu")return EC({inputs:{x:t},backend:e});if(n==="elu")return CC({inputs:{x:t},backend:e});if(n==="relu6")return RC({inputs:{x:t},backend:e});if(n==="prelu")return NC({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return TC({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return hC({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function _t(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=v.sizeFromShape(r.shape),i=v.inferFromImplicitShape(a,o),l=v.sizeFromShape(i);v.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,p=u.complexTensorInfos.imag;c.shape=i,p.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var Jq={kernelName:rl,backendName:"cpu",kernelFunc:_t};function _C(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;Ce([r,a],"matMul");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],p=i?a.shape[u-1]:a.shape[u-2],d=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),y=v.sizeFromShape(m),A=bl.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([d,h]);v.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let b=o?[g,c,d]:[g,d,c],w=i?[y,h,p]:[y,p,h],S=_t({inputs:{x:r},backend:n,attrs:{shape:b}}),I=_t({inputs:{x:a},backend:n,attrs:{shape:w}}),E=o?S.shape[1]:S.shape[2],R=o?S.shape[2]:S.shape[1],P=i?I.shape[1]:I.shape[2],_=Math.max(g,y),D=n.data.get(S.dataId).values,T=n.data.get(I.dataId).values,O=v.computeStrides(S.shape),U=v.computeStrides(I.shape),[K,z,Z]=o?[O[0],1,O[1]]:[O[0],O[1],1],[W,ee,Q]=i?[1,U[1],U[0]]:[U[1],1,U[0]],ae=R*P,Y=We([_,R,P],S.dtype),re=Y.values,ie=n.blockSize;for(let me=0;me<_;me++)for(let be=0;be<R;be+=ie)for(let Ee=0;Ee<P;Ee+=ie)for(let Re=0;Re<E;Re+=ie){let ze=Math.min(be+ie,R),Be=Math.min(Ee+ie,P),tt=Math.min(Re+ie,E);for(let it=be;it<ze;it++)for(let lt=Ee;lt<Be;lt++){let ht=0;for(let $e=Re;$e<tt;$e++){let vt=Math.min(me,g-1)*K,yt=Math.min(me,y-1)*Q,$n=D[vt+it*z+$e*Z],Ht=T[$e*W+lt*ee+yt];ht+=$n*Ht}re[me*ae+(it*P+lt)]+=ht}}return n.disposeIntermediateTensorInfo(S),n.disposeIntermediateTensorInfo(I),n.makeTensorInfo(A,Y.dtype,Y.values)}var Qq={kernelName:Xa,backendName:"cpu",kernelFunc:_C};function eX(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s,d,h,f,m=[];d=_C({inputs:{a:r,b:a},attrs:{transposeA:l,transposeB:u},backend:n}),o&&(h=Ip({inputs:{a:d,b:o},backend:n}),m.push(d),d=h),c&&(f=qx(n,d,c,i,p),m.push(d),d=f);for(let y of m)n.disposeIntermediateTensorInfo(y);return d}var tX={kernelName:Ea,backendName:"cpu",kernelFunc:eX},nX=mt(Eu,e=>Math.acos(e)),sX={kernelName:Eu,backendName:"cpu",kernelFunc:nX},rX=mt(Ru,e=>Math.acosh(e)),aX={kernelName:Ru,backendName:"cpu",kernelFunc:rX};function oX(e){let{inputs:t,backend:n}=e,s=t;Ce(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=We(s[0].shape,s[0].dtype),o=a.values;for(let i=0;i<s.length;i++){let l=r[i];for(let u=0;u<o.length;u++)o[u]+=l[u]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var iX={kernelName:Ha,backendName:"cpu",kernelFunc:oX};function lX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ce(r,"all");let i=v.parseAxisParam(a,r.shape),l=i,u=C.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=ns({inputs:{x:r},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("all",l,c.shape.length);let[p,d]=C.computeOutAndReduceShapes(c.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let x=y*h,A=m[x];for(let b=0;b<h;++b){let w=m[x+b];A=A&&w}f[y]=A}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(o){let y=C.expandShapeToKeepDim(p,i),x=_t({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),x}return g}var uX={kernelName:_u,backendName:"cpu",kernelFunc:lX};function cX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ce(r,"any");let i=v.parseAxisParam(a,r.shape),l=i,u=C.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=ns({inputs:{x:r},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("any",l,c.shape.length);let[p,d]=C.computeOutAndReduceShapes(c.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let x=y*h,A=m[x];for(let b=0;b<h;++b){let w=m[x+b];A=A||w}f[y]=A}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(o){let y=C.expandShapeToKeepDim(p,i),x=_t({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),x}return g}var dX={kernelName:$u,backendName:"cpu",kernelFunc:cX};function pX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Ce(r,"argMax");let o=v.parseAxisParam(a,r.shape),i=C.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=ns({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=C.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],C.assertAxesAreInnerMostDims("argMax",o,l.shape.length);let[c,p]=C.computeOutAndReduceShapes(l.shape,o),d=v.sizeFromShape(c),h=v.makeZerosTypedArray(d,"int32"),f=v.sizeFromShape(p),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*f,x=m[y],A=0;for(let b=0;b<f;++b){let w=m[y+b];w>x&&(x=w,A=b)}h[g]=A}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var hX={kernelName:ja,backendName:"cpu",kernelFunc:pX};function fX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Ce(r,"argMin");let o=v.parseAxisParam(a,r.shape),i=C.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=ns({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=C.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],C.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[c,p]=C.computeOutAndReduceShapes(l.shape,o),d=v.sizeFromShape(c),h=v.makeZerosTypedArray(d,"int32"),f=v.sizeFromShape(p),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*f,x=m[y],A=0;for(let b=0;b<f;++b){let w=m[y+b];w<x&&(x=w,A=b)}h[g]=A}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var mX={kernelName:Du,backendName:"cpu",kernelFunc:fX},gX=mt(Pu,e=>Math.asin(e)),yX={kernelName:Pu,backendName:"cpu",kernelFunc:gX},AX=mt(Fu,e=>Math.asinh(e)),xX={kernelName:Fu,backendName:"cpu",kernelFunc:AX},bX=mt(Ou,e=>Math.atan(e)),vX={kernelName:Ou,backendName:"cpu",kernelFunc:bX},wX=Yt((e,t)=>Math.atan2(e,t)),kX=gn(zu,wX),SX={kernelName:zu,backendName:"cpu",kernelFunc:kX},IX=mt(Mu,e=>Math.atanh(e)),CX={kernelName:Mu,backendName:"cpu",kernelFunc:IX};function Xx(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,c=r.effectiveFilterHeight,p=r.effectiveFilterWidth,d=r.padInfo.top,h=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=We(r.outShape,n),g=m.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],x=r.outShape[2]*r.outShape[3],A=r.outShape[3];for(let b=0;b<r.batchSize;++b){let w=b*y,S=b*s[0];for(let I=0;I<r.inChannels;++I)for(let E=0;E<r.outHeight;++E){let R=E*o-d,P=Math.max(0,R),_=Math.min(r.inHeight,c+R),D=w+E*x;for(let T=0;T<r.outWidth;++T){let O=T*i-h,U=Math.max(0,O),K=Math.min(r.inWidth,p+O),z=f,Z=0,W=0;for(let Q=P;Q<_;Q+=l){let ae=S+Q*s[1];for(let Y=U;Y<K;Y+=u){let re=ae+Y*s[2],ie=e[re+I];a==="max"&&ie>z?z=ie:a==="avg"&&(Z+=ie,W++)}if(isNaN(z))break}let ee=D+T*A+I;g[ee]=a==="avg"?Z/W:z}}}return m}function $C(e,t,n,s,r=!1,a=!1){let o=We(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,u=s.dilationHeight,c=s.dilationWidth,p=s.effectiveFilterHeight,d=s.effectiveFilterWidth,h=s.padInfo.top,f=s.padInfo.left,m=We(t,n,e);for(let g=0;g<s.batchSize;++g)for(let y=0;y<s.inChannels;++y)for(let x=0;x<s.outHeight;++x){let A=x*i-h,b=A;for(;b<0;)b+=u;let w=Math.min(s.inHeight,p+A);for(let S=0;S<s.outWidth;++S){let I=S*l-f,E=I;for(;E<0;)E+=c;let R=Math.min(s.inWidth,d+I),P=Number.NEGATIVE_INFINITY,_=-1;for(let D=b;D<w;D+=u){let T=D-A;for(let O=E;O<R;O+=c){let U=O-I,K=m.get(g,D,O,y);K>P&&(P=K,r?_=a?((g*s.inHeight+D)*s.inWidth+O)*s.inChannels+y:(D*s.inWidth+O)*s.inChannels+y:_=T*d+U)}}o.set(_,g,x,S,y)}}return o}function DC(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,c=r.dilationHeight,p=r.dilationWidth,d=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,x=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,A=We(r.outShape,n),b=A.values,w=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],S=r.outShape[2]*r.outShape[3]*r.outShape[4],I=r.outShape[3]*r.outShape[4],E=r.outShape[4];for(let R=0;R<r.batchSize;++R){let P=R*w,_=R*s[0];for(let D=0;D<r.inChannels;++D)for(let T=0;T<r.outDepth;++T){let O=T*o-m,U=O;for(;U<0;)U+=u;let K=Math.min(r.inDepth,d+O),z=P+T*S;for(let Z=0;Z<r.outHeight;++Z){let W=Z*i-g,ee=W;for(;ee<0;)ee+=c;let Q=Math.min(r.inHeight,h+W),ae=z+Z*I;for(let Y=0;Y<r.outWidth;++Y){let re=Y*l-y,ie=re;for(;ie<0;)ie+=p;let me=Math.min(r.inWidth,f+re),be=ae+Y*E,Ee=x,Re=0,ze=0;for(let tt=U;tt<K;tt+=u){let it=_+tt*s[1];for(let lt=ee;lt<Q;lt+=c){let ht=it+lt*s[2];for(let $e=ie;$e<me;$e+=p){let vt=ht+$e*s[3],yt=e[vt+D];if(a==="max"&&yt>Ee?Ee=yt:a==="avg"&&(Re+=yt,ze++),isNaN(Ee))break}if(isNaN(Ee))break}if(isNaN(Ee))break}let Be=be+D;b[Be]=a==="avg"?Re/ze:Ee}}}}return A}function TX(e,t){let n=We(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,p=t.effectiveFilterWidth,d=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let x=y*s-d,A=x;for(;A<0;)A+=o;let b=Math.min(t.inDepth,u+x);for(let w=0;w<t.outHeight;++w){let S=w*r-h,I=S;for(;I<0;)I+=i;let E=Math.min(t.inHeight,c+S);for(let R=0;R<t.outWidth;++R){let P=R*a-f,_=P;for(;_<0;)_+=l;let D=Math.min(t.inWidth,p+P),T=Number.NEGATIVE_INFINITY,O=-1;for(let U=A;U<b;U+=o){let K=U-x;for(let z=I;z<E;z+=i){let Z=z-S;for(let W=_;W<D;W+=l){let ee=W-P,Q=e.get(m,U,z,W,g);Q>=T&&(T=Q,O=K*c*p+Z*c+ee)}}}n.set(O,m,y,w,R,g)}}}return n}function NX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Ce(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(C.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=C.computePool2DInfo(r.shape,a,o,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))p=_r({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=Xx(d,r.shape,r.dtype,h,c,"avg");p=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return p}var EX={kernelName:qa,backendName:"cpu",kernelFunc:NX};function RX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;Ce(r,"avgPool3d");let c=C.computePool3DInfo(r.shape,a,o,1,i,l,u),p=n.data.get(r.dataId).values,d=DC(p,r.shape,r.dtype,v.computeStrides(r.shape),c,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var _X={kernelName:Ld,backendName:"cpu",kernelFunc:RX};function $X(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;Ce([r,a],"avgPool3DGrad");let c=C.computePool3DInfo(a.shape,o,i,1,l,u),p=c.strideDepth,d=c.strideHeight,h=c.strideWidth,f=c.filterDepth,m=c.filterHeight,g=c.filterWidth,y=c.dilationDepth,x=c.dilationHeight,A=c.dilationWidth,b=c.effectiveFilterDepth,w=c.effectiveFilterHeight,S=c.effectiveFilterWidth,I=b-1-c.padInfo.front,E=S-1-c.padInfo.left,R=w-1-c.padInfo.top,P=We(a.shape,"float32"),_=1/(f*m*g),D=n.bufferSync(r);for(let T=0;T<c.batchSize;++T)for(let O=0;O<c.inChannels;++O)for(let U=0;U<c.inDepth;++U)for(let K=0;K<c.inHeight;++K)for(let z=0;z<c.inWidth;++z){let Z=U-I,W=K-R,ee=z-E,Q=0;for(let ae=0;ae<b;ae+=y){let Y=(Z+ae)/p;if(!(Y<0||Y>=c.outDepth||Math.floor(Y)!==Y))for(let re=0;re<w;re+=x){let ie=(W+re)/d;if(!(ie<0||ie>=c.outHeight||Math.floor(ie)!==ie))for(let me=0;me<S;me+=A){let be=(ee+me)/h;if(be<0||be>=c.outWidth||Math.floor(be)!==be)continue;Q+=D.get(T,Y,ie,be,O)}}}P.set(Q*_,T,U,K,z,O)}return n.makeTensorInfo(P.shape,P.dtype,P.values)}var DX={kernelName:zf,backendName:"cpu",kernelFunc:$X};function PX(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Ce([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=C.computePool2DInfo(o.shape,i,l,1,u),p=c.strideHeight,d=c.strideWidth,h=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,g=c.dilationWidth,y=c.effectiveFilterHeight,x=c.effectiveFilterWidth,A=x-1-c.padInfo.left,b=y-1-c.padInfo.top,w=We(o.shape,"float32"),S=1/(h*f),I=n.data.get(r.dataId).values,E=We(r.shape,"float32",I);for(let R=0;R<c.batchSize;++R)for(let P=0;P<c.inChannels;++P)for(let _=0;_<c.inHeight;++_)for(let D=0;D<c.inWidth;++D){let T=_-b,O=D-A,U=0;for(let K=0;K<y;K+=m){let z=(T+K)/p;if(!(z<0||z>=c.outHeight||Math.floor(z)!==z))for(let Z=0;Z<x;Z+=g){let W=(O+Z)/d;if(W<0||W>=c.outWidth||Math.floor(W)!==W)continue;U+=E.get(R,z,W,P)}}w.set(U*S,R,_,D,P)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var FX={kernelName:Mf,backendName:"cpu",kernelFunc:PX};function OX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;v.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Ce([r,i,l,a,o],"batchNorm");let{varianceEpsilon:u}=s;u==null&&(u=.001);let c=n.data.get(r.dataId).values,p=n.data.get(i.dataId).values,d=n.data.get(l.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),g=f.length,y=h.length,x=d.length,A=p.length,b=0,w=0,S=0,I=0;for(let E=0;E<c.length;++E)m[E]=f[b++]+(c[E]-p[w++])*h[S++]/Math.sqrt(d[I++]+u),b>=g&&(b=0),w>=A&&(w=0),S>=y&&(S=0),I>=x&&(I=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var MX={kernelName:io,backendName:"cpu",kernelFunc:OX};function zX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;Ce([r],"batchToSpaceND");let i=a.reduce((y,x)=>y*x),l=C.getReshaped(r.shape,a,i),u=C.getPermuted(l.length,a.length),c=C.getReshapedPermuted(r.shape,a,i),p=C.getSliceBeginCoords(o,a.length),d=C.getSliceSize(c,o,a.length),h=_t({inputs:{x:r},backend:n,attrs:{shape:l}}),f=ns({inputs:{x:h},backend:n,attrs:{perm:u}}),m=_t({inputs:{x:f},backend:n,attrs:{shape:c}}),g=Ni({inputs:{x:m},backend:n,attrs:{begin:p,size:d}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var LX={kernelName:Fi,backendName:"cpu",kernelFunc:zX};function BX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=Bx(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var WX={kernelName:Lf,backendName:"cpu",kernelFunc:BX};function VX(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=C.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var UX={kernelName:Bf,backendName:"cpu",kernelFunc:VX},GX=mt(Zr,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),HX={kernelName:Zr,backendName:"cpu",kernelFunc:GX},jX=e=>{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let u=0;u<i.length;u++){let c=i[u],p=l[u];s[u]=Math.hypot(c,p)}return n.makeOutput(s,t.shape,"float32")},qX={kernelName:Wd,backendName:"cpu",kernelFunc:jX};function Su(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.imag,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var XX={kernelName:Hd,backendName:"cpu",kernelFunc:Su};function Iu(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=C.computeOutShape(t.map(m=>m.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>v.sizeFromShape(m.shape)>0);if(i.length===1)return _r({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if(C.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>Ti({inputs:{input:b},backend:n})),g=i.map(b=>Su({inputs:{input:b},backend:n})),y=Iu({inputs:m,backend:n,attrs:{axis:a}}),x=Iu({inputs:g,backend:n,attrs:{axis:a}}),A=hs({inputs:{real:y,imag:x},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x),A}let u=i.map(m=>{let g=v.sizeFromShape(m.shape.slice(a));return _t({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),c=u.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=C.computeOutShape(u.map(m=>m.shape),1);let p=u[0].shape[0]===1,d=Wx(c,o,t[0].dtype,p),h=C.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,d);return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var KX={kernelName:Oi,backendName:"cpu",kernelFunc:Iu};function PC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s;Ce([r,a],"conv2d");let p=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,p),h=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,g=d.dilationWidth,y=d.padInfo.left,x=d.padInfo.top,A=d.dataFormat==="channelsLast",b=new nn(d.outShape,r.dtype),w=v.computeStrides(r.shape),S=v.computeStrides(a.shape),I=w[0],E=A?w[1]:w[2],R=A?w[2]:1,P=A?1:w[1],_=b.strides[0],D=A?b.strides[1]:b.strides[2],T=A?b.strides[2]:1,O=A?1:b.strides[1],U=n.data.get(r.dataId).values,K=n.data.get(a.dataId).values,z=b.values;for(let Z=0;Z<d.batchSize;++Z){let W=Z*I,ee=Z*_;for(let Q=0;Q<d.outHeight;++Q){let ae=ee+Q*D,Y=Q*d.strideHeight-x;for(let re=0;re<h;++re){let ie=Y+re*m;if(ie<0||ie>=d.inHeight)continue;let me=re*S[0],be=W+ie*E;for(let Ee=0;Ee<d.outWidth;++Ee){let Re=ae+Ee*T,ze=Ee*d.strideWidth-y;for(let Be=0;Be<f;++Be){let tt=ze+Be*g;if(tt<0||tt>=d.inWidth)continue;let it=me+Be*S[1],lt=be+tt*R,ht=it;for(let $e=0;$e<d.inChannels;++$e){let vt=U[lt+$e*P];for(let yt=0;yt<d.outChannels;++yt)z[Re+yt*O]+=vt*K[ht+yt];ht+=d.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,z)}var ZX={kernelName:Ya,backendName:"cpu",kernelFunc:PC};function YX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s;Ce([r,a],"conv2dBackpropFilter");let p=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(r.shape,c,o,1,i,u,!1,p),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=d,y=d.dataFormat==="channelsLast",x=new nn(d.filterShape,"float32"),A=d.padInfo.left,b=d.padInfo.top,w=n.data.get(r.dataId).values,S=n.data.get(a.dataId).values,I=new nn(r.shape,r.dtype,w),E=new nn(a.shape,a.dtype,S);for(let R=0;R<m;++R){let P=Math.max(0,Math.ceil((b-R)/h)),_=Math.min(d.outHeight,(d.inHeight+b-R)/h);for(let D=0;D<g;++D){let T=Math.max(0,Math.ceil((A-D)/f)),O=Math.min(d.outWidth,(d.inWidth+A-D)/f);for(let U=0;U<d.inChannels;++U)for(let K=0;K<d.outChannels;++K){let z=0;for(let Z=0;Z<d.batchSize;++Z)for(let W=P;W<_;++W){let ee=R+W*h-b;for(let Q=T;Q<O;++Q){let ae=D+Q*f-A;y?z+=I.get(Z,ee,ae,U)*E.get(Z,W,Q,K):z+=I.get(Z,U,ee,ae)*E.get(Z,K,W,Q)}}x.set(z,R,D,U,K)}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var JX={kernelName:Wf,backendName:"cpu",kernelFunc:YX};function QX(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s;Ce([r,a],"conv2dBackpropInput");let p=v.computeStrides(a.shape),d=v.computeStrides(r.shape),h=C.convertConv2DDataFormat(u),f=C.computeConv2DInfo(o,a.shape,i,1,l,c,!1,h),m=new nn(f.inShape,"float32"),g=m.values,y=n.data.get(r.dataId).values,x=n.data.get(a.dataId).values,[A,b,w]=p,{batchSize:S,filterHeight:I,filterWidth:E,inChannels:R,inHeight:P,inWidth:_,outChannels:D,outHeight:T,outWidth:O,strideHeight:U,strideWidth:K}=f;h=f.dataFormat;let z=I-1-f.padInfo.top,Z=E-1-f.padInfo.left,W=h==="channelsLast",ee=m.strides[0],Q=W?m.strides[1]:m.strides[2],ae=W?m.strides[2]:1,Y=W?1:m.strides[1],re=d[0],ie=W?d[1]:d[2],me=W?d[2]:1,be=W?1:d[1];for(let Ee=0;Ee<S;++Ee)for(let Re=0;Re<R;++Re)for(let ze=0;ze<P;++ze){let Be=ze-z,tt=Math.max(0,Math.ceil(Be/U)),it=Math.min(T,(I+Be)/U);for(let lt=0;lt<_;++lt){let ht=lt-Z,$e=Math.max(0,Math.ceil(ht/K)),vt=Math.min(O,(E+ht)/K),yt=0;for(let Ht=tt;Ht<it;++Ht){let is=Ht*U-Be;for(let Qt=$e;Qt<vt;++Qt){let Dn=Qt*K-ht,ls=re*Ee+ie*Ht+me*Qt,us=A*(I-1-is)+b*(E-1-Dn)+w*Re;for(let wn=0;wn<D;++wn){let ks=y[ls+be*wn],Pn=x[us+wn];yt+=ks*Pn}}}let $n=ee*Ee+Q*ze+ae*lt+Y*Re;g[$n]=yt}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var eK={kernelName:Ja,backendName:"cpu",kernelFunc:QX};function tK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s;Ce([r,a],"conv3d");let u=C.computeConv3DInfo(r.shape,a.shape,o,l,i),{filterDepth:c,filterHeight:p,filterWidth:d,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=u,y=g.front,x=g.left,A=g.top,b=new nn(u.outShape,r.dtype),w=n.data.get(r.dataId).values,S=n.data.get(a.dataId).values,I=b.values,E=v.computeStrides(r.shape),R=v.computeStrides(a.shape);for(let P=0;P<u.batchSize;++P){let _=P*E[0],D=P*b.strides[0];for(let T=0;T<u.outDepth;++T){let O=D+T*b.strides[1],U=T*u.strideDepth-y;for(let K=0;K<c;++K){let z=U+K*h;if(z<0||z>=u.inDepth)continue;let Z=K*R[0],W=_+z*E[1];for(let ee=0;ee<u.outHeight;++ee){let Q=O+ee*b.strides[2],ae=ee*u.strideHeight-A;for(let Y=0;Y<p;++Y){let re=ae+Y*f;if(re<0||re>=u.inHeight)continue;let ie=Z+Y*R[1],me=W+re*E[2];for(let be=0;be<u.outWidth;++be){let Ee=Q+be*u.outChannels,Re=be*u.strideWidth-x;for(let ze=0;ze<d;++ze){let Be=Re+ze*m;if(Be<0||Be>=u.inWidth)continue;let tt=ie+ze*R[2],it=me+Be*u.inChannels,lt=tt;for(let ht=0;ht<u.inChannels;++ht){let $e=w[it+ht];for(let vt=0;vt<u.outChannels;++vt)I[Ee+vt]+=$e*S[lt+vt];lt+=u.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var nK={kernelName:Vd,backendName:"cpu",kernelFunc:tK};function sK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s;Ce([r,a],"conv3dBackpropFilterV2");let u=v.computeStrides(r.shape),c=v.computeStrides(a.shape),p=C.computeConv3DInfo(r.shape,l,o,1,i),d=p.strideDepth,h=p.strideHeight,f=p.strideWidth,m=p.filterDepth,g=p.filterHeight,y=p.filterWidth,x=new nn(p.filterShape,"float32"),A=x.values,[b,w,S,I]=x.strides,E=n.data.get(a.dataId).values,[R,P,_,D]=c,T=n.data.get(r.dataId).values,[O,U,K,z]=u,Z=p.padInfo.front,W=p.padInfo.left,ee=p.padInfo.top;for(let Q=0;Q<m;++Q){let ae=Math.max(0,Math.ceil((Z-Q)/d)),Y=Math.min(p.outDepth,(p.inDepth+Z-Q)/d),re=Q*b;for(let ie=0;ie<g;++ie){let me=Math.max(0,Math.ceil((ee-ie)/h)),be=Math.min(p.outHeight,(p.inHeight+ee-ie)/h),Ee=ie*w+re;for(let Re=0;Re<y;++Re){let ze=Math.max(0,Math.ceil((W-Re)/f)),Be=Math.min(p.outWidth,(p.inWidth+W-Re)/f),tt=Re*S+Ee;for(let it=0;it<p.inChannels;++it){let lt=it*I+tt;for(let ht=0;ht<p.outChannels;++ht){let $e=0;for(let vt=0;vt<p.batchSize;++vt){let yt=vt*O,$n=vt*R;for(let Ht=ae;Ht<Y;++Ht){let Qt=(Q+Ht*d-Z)*U+yt,Dn=Ht*P+$n;for(let ls=me;ls<be;++ls){let wn=(ie+ls*h-ee)*K+Qt,ks=ls*_+Dn;for(let Pn=ze;Pn<Be;++Pn){let Br=(Re+Pn*f-W)*z+wn,Wl=Pn*D+ks;$e+=T[Br+it]*E[Wl+ht]}}}}A[lt+ht]=$e}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var rK={kernelName:Vf,backendName:"cpu",kernelFunc:sK};function aK(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s;Ce([r],"conv3dBackpropInputV2");let u=v.computeStrides(r.shape),c=v.computeStrides(a.shape),p=C.computeConv3DInfo(l,a.shape,i,1,o),d=new nn(p.inShape,"float32"),h=d.values,[f,m,g,y]=d.strides,x=n.data.get(r.dataId).values,[A,b,w,S]=u,I=n.data.get(a.dataId).values,[E,R,P,_]=c,{batchSize:D,filterDepth:T,filterHeight:O,filterWidth:U,inChannels:K,inDepth:z,inHeight:Z,inWidth:W,outChannels:ee,outDepth:Q,outHeight:ae,outWidth:Y,strideDepth:re,strideHeight:ie,strideWidth:me}=p,be=T-1-p.padInfo.front,Ee=O-1-p.padInfo.top,Re=U-1-p.padInfo.left;for(let ze=0;ze<D;++ze)for(let Be=0;Be<K;++Be)for(let tt=0;tt<z;++tt){let it=tt-be,lt=Math.max(0,Math.ceil(it/re)),ht=Math.min(Q,(T+it)/re);for(let $e=0;$e<Z;++$e){let vt=$e-Ee,yt=Math.max(0,Math.ceil(vt/ie)),$n=Math.min(ae,(O+vt)/ie);for(let Ht=0;Ht<W;++Ht){let is=Ht-Re,Qt=Math.max(0,Math.ceil(is/me)),Dn=Math.min(Y,(U+is)/me),ls=0;for(let us=lt;us<ht;++us){let wn=us*re-it;for(let ks=yt;ks<$n;++ks){let Pn=ks*ie-vt;for(let Lr=Qt;Lr<Dn;++Lr){let Br=Lr*me-is,Wl=A*ze+b*us+w*ks+S*Lr,ha=E*(T-1-wn)+R*(O-1-Pn)+P*(U-1-Br)+_*Be;for(let Wr=0;Wr<ee;++Wr){let Gc=x[Wl+Wr],Vl=I[ha+Wr];ls+=Gc*Vl}}}}h[f*ze+m*tt+g*$e+y*Ht+Be]=ls}}}return n.makeTensorInfo(d.shape,d.dtype,d.values)}var oK={kernelName:Uf,backendName:"cpu",kernelFunc:aK},iK=mt(Qa,e=>Math.cos(e)),lK={kernelName:Qa,backendName:"cpu",kernelFunc:iK},uK=mt(eo,e=>Math.cosh(e)),cK={kernelName:eo,backendName:"cpu",kernelFunc:uK};function dK(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,[c,p,d,h]=r.shape,f=a.shape[0],[m,g]=i,y=We([f,m,g,h],"float32"),x=n.data.get(a.dataId).values,A=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,w=v.computeStrides(r.shape),S=v.computeStrides(y.shape);for(let I=0;I<f;I++){let E=I*4,R=x[E],P=x[E+1],_=x[E+2],D=x[E+3],T=A[I];if(T>=c)continue;let O=m>1?(_-R)*(p-1)/(m-1):0,U=g>1?(D-P)*(d-1)/(g-1):0;for(let K=0;K<m;K++){let z=m>1?R*(p-1)+K*O:.5*(R+_)*(p-1);if(z<0||z>p-1){for(let Z=0;Z<g;Z++)for(let W=0;W<h;W++){let ee=W+Z*S[2]+K*S[1]+I*S[0];y.values[ee]=u}continue}if(l==="bilinear"){let Z=Math.floor(z),W=Math.ceil(z),ee=z-Z;for(let Q=0;Q<g;Q++){let ae=g>1?P*(d-1)+Q*U:.5*(P+D)*(d-1);if(ae<0||ae>d-1){for(let me=0;me<h;me++){let be=me+Q*S[2]+K*S[1]+I*S[0];y.values[be]=u}continue}let Y=Math.floor(ae),re=Math.ceil(ae),ie=ae-Y;for(let me=0;me<h;me++){let be=me+Y*w[2]+Z*w[1]+T*w[0],Ee=b[be];be=me+re*w[2]+Z*w[1]+T*w[0];let Re=b[be];be=me+Y*w[2]+W*w[1]+T*w[0];let ze=b[be];be=me+re*w[2]+W*w[1]+T*w[0];let Be=b[be],tt=Ee+(Re-Ee)*ie,it=ze+(Be-ze)*ie;be=me+Q*S[2]+K*S[1]+I*S[0],y.values[be]=tt+(it-tt)*ee}}}else for(let Z=0;Z<g;++Z){let W=g>1?P*(d-1)+Z*U:.5*(P+D)*(d-1);if(W<0||W>d-1){for(let ae=0;ae<h;ae++){let Y=ae+Z*S[2]+K*S[1]+I*S[0];y.values[Y]=u}continue}let ee=Math.round(W),Q=Math.round(z);for(let ae=0;ae<h;ae++){let Y=ae+ee*w[2]+Q*w[1]+T*w[0],re=ae+Z*S[2]+K*S[1]+I*S[0];y.values[re]=b[Y]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var pK={kernelName:zi,backendName:"cpu",kernelFunc:dK};function hK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;Ce(r,"cumprod");let l=C.getAxesPermutation([a],r.shape.length),u=r;l!=null&&(u=ns({inputs:{x:r},backend:n,attrs:{perm:l}}));let c=C.getInnerMostAxes(1,r.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let p=Tn(u.dtype,"int32"),d=v.makeOnesTypedArray(v.sizeFromShape(u.shape),p),h=n.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=i?(y,x)=>y+f-x-1:(y,x)=>y+x;for(let y=0;y<h.length;y+=f)for(let x=0;x<f;x++){let A=m(y,x);if(x===0)d[A]=o?1:h[A];else{let b=m(y,x-1);d[A]=o?h[b]*d[b]:h[A]*d[b]}}let g=n.makeTensorInfo(u.shape,p,d);if(l!=null){let y=C.getUndoAxesPermutation(l),x=ns({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),x}return g}var fK={kernelName:Lu,backendName:"cpu",kernelFunc:hK};function mK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;Ce(r,"cumsum");let l=C.getAxesPermutation([a],r.shape.length),u=r;l!=null&&(u=ns({inputs:{x:r},backend:n,attrs:{perm:l}}));let c=C.getInnerMostAxes(1,r.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let p=Tn(u.dtype,"int32"),d=v.makeZerosTypedArray(v.sizeFromShape(u.shape),p),h=n.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=i?(y,x)=>y+f-x-1:(y,x)=>y+x;for(let y=0;y<h.length;y+=f)for(let x=0;x<f;x++){let A=m(y,x);if(x===0)d[A]=o?0:h[A];else{let b=m(y,x-1);d[A]=o?h[b]+d[b]:h[A]+d[b]}}let g=n.makeTensorInfo(u.shape,p,d);if(l!=null){let y=C.getUndoAxesPermutation(l),x=ns({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),x}return g}var gK={kernelName:Mi,backendName:"cpu",kernelFunc:mK};function yK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=Bx(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=G7(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var AK={kernelName:Gf,backendName:"cpu",kernelFunc:yK};function xK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;v.assert(o==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`);let i=r.shape[0],l=r.shape[1],u=r.shape[2],c=r.shape[3],p=l*a,d=u*a,h=c/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(i*p*d*h),g=0;for(let y=0;y<i;++y)for(let x=0;x<p;++x){let A=Math.floor(x/a),b=x%a;for(let w=0;w<d;++w){let S=Math.floor(w/a),I=w%a,E=(b*a+I)*h;for(let R=0;R<h;++R){let _=R+E+c*(S+u*(A+l*y));m[g++]=f[_]}}}return n.makeTensorInfo([i,p,d,h],r.dtype,m)}var bK={kernelName:Li,backendName:"cpu",kernelFunc:xK};function FC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s;Ce([r,a],"depthwiseConv2DNative");let c=v.computeStrides(r.shape),p=v.computeStrides(a.shape),d=l;d==null&&(d=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(o,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${d}'`);let h=C.computeConv2DInfo(r.shape,a.shape,o,d,i,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:y,padInfo:x}=h,A=x.left,b=x.top,w=h.outChannels/h.inChannels,S=new nn(h.outShape,r.dtype),I=n.data.get(r.dataId).values,E=n.data.get(a.dataId).values,R=S.values;for(let P=0;P<h.batchSize;++P){let _=P*c[0],D=P*S.strides[0];for(let T=0;T<h.outHeight;++T){let O=D+T*S.strides[1],U=T*h.strideHeight-b;for(let K=0;K<f;++K){let z=U+K*g;if(z<0||z>=h.inHeight)continue;let Z=K*p[0],W=_+z*c[1];for(let ee=0;ee<h.outWidth;++ee){let Q=O+ee*S.strides[2],ae=ee*h.strideWidth-A;for(let Y=0;Y<m;++Y){let re=ae+Y*y;if(re<0||re>=h.inWidth)continue;let ie=Z+Y*p[1],me=W+re*h.inChannels,be=Q,Ee=ie;for(let Re=0;Re<h.inChannels;++Re){let ze=I[me+Re];for(let Be=0;Be<w;++Be)R[be+Be]+=ze*E[Ee+Be];be+=w,Ee+=w}}}}}}return n.makeTensorInfo(S.shape,S.dtype,S.values)}var vK={kernelName:to,backendName:"cpu",kernelFunc:FC};function wK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s;Ce([r,a],"depthwiseConv2dNativeBackpropFilter");let p=C.computeConv2DInfo(r.shape,c,o,i,l,u,!0),{strideHeight:d,strideWidth:h,filterHeight:f,filterWidth:m}=p,g=new nn(p.filterShape,"float32"),y=p.padInfo.left,x=p.padInfo.top,A=p.outChannels/p.inChannels,b=n.data.get(r.dataId).values,w=new nn(r.shape,r.dtype,b),S=n.data.get(a.dataId).values,I=new nn(a.shape,a.dtype,S);for(let E=0;E<f;++E){let R=Math.max(0,Math.ceil((x-E)/d)),P=Math.min(p.outHeight,(p.inHeight+x-E)/d);for(let _=0;_<m;++_){let D=Math.max(0,Math.ceil((y-_)/h)),T=Math.min(p.outWidth,(p.inWidth+y-_)/h);for(let O=0;O<p.outChannels;++O){let U=Math.trunc(O/A),K=O%A,z=0;for(let Z=0;Z<p.batchSize;++Z)for(let W=R;W<P;++W){let ee=E+W*d-x;for(let Q=D;Q<T;++Q){let ae=_+Q*h-y;z+=w.get(Z,ee,ae,U)*I.get(Z,W,Q,O)}}g.set(z,E,_,U,K)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var kK={kernelName:Hf,backendName:"cpu",kernelFunc:wK};function SK(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s;Ce([r,a],"depthwiseConv2DNativeBackpropInput");let p=v.computeStrides(r.shape),d=v.computeStrides(a.shape),h=C.computeConv2DInfo(c,a.shape,o,i,l,u,!0),f=new nn(h.inShape,"float32"),m=f.values,[g,y,x]=f.strides,A=n.data.get(r.dataId).values,[b,w,S]=p,I=n.data.get(a.dataId).values,[E,R,P]=d,{batchSize:_,filterHeight:D,filterWidth:T,inChannels:O,inHeight:U,inWidth:K,outChannels:z,outHeight:Z,outWidth:W,strideHeight:ee,strideWidth:Q}=h,ae=D-1-h.padInfo.top,Y=T-1-h.padInfo.left,re=z/O;for(let ie=0;ie<_;++ie)for(let me=0;me<O;++me)for(let be=0;be<U;++be){let Ee=be-ae,Re=Math.max(0,Math.ceil(Ee/ee)),ze=Math.min(Z,(D+Ee)/ee);for(let Be=0;Be<K;++Be){let tt=Be-Y,it=Math.max(0,Math.ceil(tt/Q)),lt=Math.min(W,(T+tt)/Q),ht=0;for(let $e=Re;$e<ze;++$e){let vt=$e*ee-Ee;for(let yt=it;yt<lt;++yt){let $n=yt*Q-tt,Ht=b*ie+w*$e+S*yt,is=E*(D-1-vt)+R*(T-1-$n)+P*me;for(let Qt=0;Qt<re;++Qt){let Dn=me*re+Qt,ls=A[Ht+Dn],us=I[is+Qt];ht+=ls*us}}}m[g*ie+y*be+x*Be+me]=ht}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var IK={kernelName:jf,backendName:"cpu",kernelFunc:SK};function CK(e){let{inputs:t,backend:n}=e,{x:s}=t,r=v.sizeFromShape(s.shape),a=n.data.get(s.dataId).values,o=We([r,r],s.dtype),i=o.values;for(let u=0;u<a.length;u++)i[u*r+u]=a[u];let l=[...s.shape,...s.shape];return n.makeTensorInfo(l,o.dtype,o.values)}var TK={kernelName:qf,backendName:"cpu",kernelFunc:CK},NK={kernelName:Ud,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,u=l.data.get(s.dataId).values,c=s.shape.length,p=l.data.get(r.dataId).values,d=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:y,outWidth:x,padInfo:A,strideHeight:b,strideWidth:w,filterHeight:S,filterWidth:I,dilationHeight:E,dilationWidth:R,outShape:P}=C.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),_=v.sizeFromShape(P),D=P.length,T=v.getArrayFromDType(s.dtype,_);for(let U=0;U<h;++U)for(let K=0;K<y;++K){let z=K*b-A.top;for(let Z=0;Z<x;++Z){let W=Z*w-A.left;for(let ee=0;ee<g;++ee){let Q=Number.MIN_SAFE_INTEGER;for(let Y=0;Y<S;++Y){let re=z+Y*E;if(re>=0&&re<f)for(let ie=0;ie<I;++ie){let me=W+ie*R;if(me>=0&&me<m){let be=v.locToIndex([U,re,me,ee],c,v.computeStrides(s.shape)),Ee=v.locToIndex([Y,ie,ee],d,v.computeStrides(r.shape)),Re=u[be]+p[Ee];Re>Q&&(Q=Re)}}}let ae=v.locToIndex([U,K,Z,ee],D,v.computeStrides(P));T[ae]=Q}}}return{dataId:l.write(v.toTypedArray(T,s.dtype),P,s.dtype),shape:P,dtype:s.dtype}}},EK={kernelName:lf,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=v.toNestedArray(s.shape,u.data.get(s.dataId).values),p=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:x,strideHeight:A,strideWidth:b,filterHeight:w,filterWidth:S,dilationHeight:I,dilationWidth:E,outShape:R}=C.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===R.length,()=>`Error in ${lf}, dy must have the same rank as output ${R.length}, but got ${a.rank}`);let P=v.toNestedArray(R,u.data.get(a.dataId).values),_=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let T=0;T<d;++T)for(let O=0;O<g;++O){let U=O*A-x.top;for(let K=0;K<y;++K){let z=K*b-x.left;for(let Z=0;Z<m;++Z){let W=Number.MIN_SAFE_INTEGER,ee=0,Q=0;for(let ae=0;ae<w;++ae){let Y=U+ae*I;if(Y>=0&&Y<h)for(let re=0;re<S;++re){let ie=z+re*E;if(ie>=0&&ie<f){let me=c[T][Y][ie][Z]+p[ae][re][Z];me>W&&(W=me,ee=ae,Q=re)}}}_[ee][Q][Z]+=P[T][O][K][Z]}}}return{dataId:u.write(v.toTypedArray(_,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},RK={kernelName:of,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=v.toNestedArray(s.shape,u.data.get(s.dataId).values),p=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:x,strideHeight:A,strideWidth:b,filterHeight:w,filterWidth:S,dilationHeight:I,dilationWidth:E,outShape:R}=C.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===R.length,()=>`Error in ${of}, dy must have the same rank as output ${R.length}, but got ${a.rank}`);let P=v.toNestedArray(R,u.data.get(a.dataId).values),_=v.makeZerosNestedTypedArray(s.shape,s.dtype);for(let T=0;T<d;++T)for(let O=0;O<g;++O){let U=O*A-x.top;for(let K=0;K<y;++K){let z=K*b-x.left;for(let Z=0;Z<m;++Z){let W=Number.MIN_SAFE_INTEGER,ee=U<0?0:U,Q=z<0?0:z;for(let ae=0;ae<w;++ae){let Y=U+ae*I;if(Y>=0&&Y<h)for(let re=0;re<S;++re){let ie=z+re*E;if(ie>=0&&ie<f){let me=c[T][Y][ie][Z]+p[ae][re][Z];me>W&&(W=me,ee=Y,Q=ie)}}}_[T][ee][Q][Z]+=P[T][O][K][Z]}}}return{dataId:u.write(v.toTypedArray(_,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function Cp(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ce(r,"sum");let i;r.dtype==="bool"?i=Va({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=_r({inputs:{x:r},backend:n});let l=i.shape.length,u=v.parseAxisParam(a,i.shape),c=C.getAxesPermutation(u,l),p=u,d=i;c!=null&&(d=ns({inputs:{x:i},backend:n,attrs:{perm:c}}),p=C.getInnerMostAxes(p.length,l)),C.assertAxesAreInnerMostDims("sum",p,d.shape.length);let[h,f]=C.computeOutAndReduceShapes(d.shape,p),m=C.upcastType(d.dtype,"int32"),g=If(n,h,m),y=v.sizeFromShape(f),x=n.data.get(g.dataId).values,A=n.data.get(d.dataId).values;for(let b=0;b<x.length;++b){let w=b*y,S=0;for(let I=0;I<y;++I)S+=A[w+I];x[b]=S}if(o){let b=C.expandShapeToKeepDim(g.shape,u),w=g;g=_t({inputs:{x:g},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(w)}return n.disposeIntermediateTensorInfo(i),c!=null&&n.disposeIntermediateTensorInfo(d),g}var _K={kernelName:_o,backendName:"cpu",kernelFunc:Cp};function $K(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=C.decodeEinsumEquation(r,a.length);C.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=C.getEinsumComputePath(i,l),p=c.length,d=null,h=o.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:y,expandDims:x}=C.getEinsumPermutation(h,l[g]),A;C.isIdentityPermutation(y)?A=a[g]:(A=ns({inputs:{x:a[g]},backend:n,attrs:{perm:y}}),f.push(A));let b=A.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(A.shape,b)||(A=_t({inputs:{x:A},backend:n,attrs:{shape:b}}),f.push(A)),d===null?d=A:(d=o0({inputs:{a:A,b:d},backend:n}),f.push(d))}m<p-1&&(u[m]>=0&&(d=Cp({inputs:{x:d},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var DK={kernelName:Gd,backendName:"cpu",kernelFunc:$K};function PK(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;Ce([s,r],"eluGrad");let a=new Float32Array(v.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l<o.length;++l){let u=o[l];u>=1?a[l]=i[l]:a[l]=i[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",a)}var FK={kernelName:Xf,backendName:"cpu",kernelFunc:PK},OK=C.ERF_P,MK=C.ERF_A1,zK=C.ERF_A2,LK=C.ERF_A3,BK=C.ERF_A4,WK=C.ERF_A5,VK=mt(Bu,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+OK*n);return t*(1-((((WK*s+BK)*s+LK)*s+zK)*s+MK)*s*Math.exp(-n*n))}),UK={kernelName:Bu,backendName:"cpu",kernelFunc:VK};function Tf(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),_t({inputs:{x:r},backend:n,attrs:{shape:i}})}var GK={kernelName:Wi,backendName:"cpu",kernelFunc:Tf},HK=Yt((e,t)=>e/t),Kx=gn(no,HK),My={kernelName:no,backendName:"cpu",kernelFunc:Kx};function OC(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,u=[r,a],c=v.sizeFromShape(u),p=v.getTypedArrayFromDType("float32",c),d=v.getTypedArrayFromDType("float32",c);for(let g=0;g<r;g++){let y=Ni({inputs:{x:i},backend:n,attrs:{begin:[g,0],size:[1,a]}}),x=Ni({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,a]}}),A=hs({inputs:{real:y,imag:x},backend:n}),{real:b,imag:w}=jK(A,t,n),S=C.mergeRealAndImagArrays(b,w);for(let I=0;I<a;I++){let E=C.getComplexWithIndex(S,I);p[g*a+I]=E.real,d[g*a+I]=E.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(A)}let h=n.makeTensorInfo(u,"float32",p),f=n.makeTensorInfo(u,"float32",d),m=hs({inputs:{real:h,imag:f},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}function jK(e,t,n){let s=v.sizeFromShape(e.shape),r=n.data.get(e.dataId),a=n.data.get(r.complexTensorInfos.real.dataId).values,o=n.data.get(r.complexTensorInfos.imag.dataId).values;if(qK(s)){let i=zy(a,o,s,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",i.real),c=n.makeTensorInfo(l,"float32",i.imag),p=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),d=_r({inputs:{x:p},backend:n}),h=My.kernelFunc({inputs:{a:u,b:p},backend:n}),f=My.kernelFunc({inputs:{a:c,b:d},backend:n}),m=n.data.get(h.dataId).values,g=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return i}else{let i=C.mergeRealAndImagArrays(a,o),l=XK(i,s,t);return C.splitRealAndImagArrays(l)}}function qK(e){return(e&e-1)===0}function zy(e,t,n,s,r){if(n===1)return{real:e,imag:t};let a=C.mergeRealAndImagArrays(e,t),o=n/2,i=C.complexWithEvenIndex(a),l=i.real,u=i.imag,c=[l.length],p=r.makeTensorInfo(c,"float32",l),d=r.makeTensorInfo(c,"float32",u),h=hs({inputs:{real:p,imag:d},backend:r}),f=C.complexWithOddIndex(a),m=f.real,g=f.imag,y=[m.length],x=r.makeTensorInfo(y,"float32",m),A=r.makeTensorInfo(y,"float32",g),b=hs({inputs:{real:x,imag:A},backend:r}),w=zy(l,u,o,s,r),S=w.real,I=w.imag,E=[S.length],R=r.makeTensorInfo(E,"float32",S),P=r.makeTensorInfo(E,"float32",I),_=hs({inputs:{real:R,imag:P},backend:r}),D=zy(m,g,o,s,r),T=D.real,O=D.imag,U=[T.length],K=r.makeTensorInfo(U,"float32",T),z=r.makeTensorInfo(U,"float32",O),Z=hs({inputs:{real:K,imag:z},backend:r}),W=C.exponents(n,s),ee=[W.real.length],Q=r.makeTensorInfo(ee,"float32",W.real),ae=r.makeTensorInfo(ee,"float32",W.imag),Y=hs({inputs:{real:Q,imag:ae},backend:r}),re=o0({inputs:{a:Y,b:Z},backend:r}),ie=Ip({inputs:{a:_,b:re},backend:r}),me=jx({inputs:{a:_,b:re},backend:r}),be=Ti({inputs:{input:ie},backend:r}),Ee=Ti({inputs:{input:me},backend:r}),Re=Su({inputs:{input:ie},backend:r}),ze=Su({inputs:{input:me},backend:r}),Be=Iu({inputs:[be,Ee],backend:r,attrs:{axis:0}}),tt=Iu({inputs:[Re,ze],backend:r,attrs:{axis:0}}),it=r.data.get(Be.dataId).values,lt=r.data.get(tt.dataId).values;return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(R),r.disposeIntermediateTensorInfo(P),r.disposeIntermediateTensorInfo(_),r.disposeIntermediateTensorInfo(K),r.disposeIntermediateTensorInfo(z),r.disposeIntermediateTensorInfo(Z),r.disposeIntermediateTensorInfo(Q),r.disposeIntermediateTensorInfo(ae),r.disposeIntermediateTensorInfo(Y),r.disposeIntermediateTensorInfo(re),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(me),r.disposeIntermediateTensorInfo(be),r.disposeIntermediateTensorInfo(Re),r.disposeIntermediateTensorInfo(Ee),r.disposeIntermediateTensorInfo(ze),r.disposeIntermediateTensorInfo(Be),r.disposeIntermediateTensorInfo(tt),{real:it,imag:lt}}function XK(e,t,n){let s=new Float32Array(t*2);for(let r=0;r<t;r++){let a=0,o=0;for(let i=0;i<t;i++){let l=C.exponent(r*i,t,n),u=C.getComplexWithIndex(e,i);a+=u.real*l.real-u.imag*l.imag,o+=u.real*l.imag+u.imag*l.real}n&&(a/=t,o/=t),C.assignToTypedArray(s,a,o,r)}return s}function KK(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=_t({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=OC(i,!1,n),u=_t({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var ZK={kernelName:Kf,backendName:"cpu",kernelFunc:KK};function Zx(e){let{backend:t,attrs:n}=e,{shape:s,value:r,dtype:a}=n,o=a||v.inferDtype(r),i=v.getArrayFromDType(o,v.sizeFromShape(s));return JK(i,r,o),t.makeTensorInfo(s,o,i)}var YK={kernelName:Wu,backendName:"cpu",kernelFunc:Zx};function JK(e,t,n){e.fill(t)}var QK={kernelName:Ui,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,r=n,a=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[o,i,l,u]=s.shape,c=r.data.get(s.dataId).values;for(let d=0;d<o;d++){let h=d*l*i*u;for(let f=0;f<i;f++){let m=f*(l*u);for(let g=0;g<l;g++){let y=g*u;for(let x=0;x<u;x++){let A=Math.round(l-g-1),b=h+m+y+x,w=c[b];if(A>=0&&A<l){let S=A*u,I=h+m+S+x;w=c[I]}a[b]=w}}}}return{dataId:r.write(a,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},eZ=Yt((e,t)=>Math.floor(e/t)),tZ=gn(oo,eZ,null,"int32"),nZ={kernelName:oo,backendName:"cpu",kernelFunc:tZ};function sZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=PC({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d}});if(o){let g=m;m=Ip({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=qx(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var rZ={kernelName:Ra,backendName:"cpu",kernelFunc:sZ};function aZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=FC({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d}});if(o){let g=m;m=Ip({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=qx(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var oZ={kernelName:_a,backendName:"cpu",kernelFunc:aZ};function iZ(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=v.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,u,c,p]=C.prepareAndValidate(s,r);if(u===0)return n.makeTensorInfo(l,s.dtype,[]);let d=n.data.get(r.dataId).values,h=n.bufferSync(s),f=J7(d,h,s.dtype,u,i,c,p,s.shape,a);return n.makeTensorInfo(l,s.dtype,f.values)}var lZ={kernelName:Hi,backendName:"cpu",kernelFunc:iZ};function uZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;Ce([r,a],"gatherV2");let l=v.parseAxisParam(o,r.shape)[0],u=n.data.get(a.dataId).values,c=r.shape[l];for(let b=0;b<u.length;++b){let w=u[b];v.assert(w<=c-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${c-1}]`)}let p=i;i==null&&(p=0);let d=v.sizeFromShape(a.shape),h=C.segment_util.collectGatherOpShapeInfo(r,a,l,p),f=_t({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),m=_t({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,d/h.batchSize]}}),g=[h.batchSize,h.outerSize,d/h.batchSize,h.sliceSize],y=n.bufferSync(m),x=n.bufferSync(f),A=Q7(x,y,g);return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),n.makeTensorInfo(h.outputShape,A.dtype,A.values)}var cZ={kernelName:Gi,backendName:"cpu",kernelFunc:uZ};function dZ(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=_t({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=OC(i,!0,n),u=_t({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var pZ={kernelName:Zf,backendName:"cpu",kernelFunc:dZ},hZ=mt(Vu,e=>Number.isFinite(e)?1:0,"bool"),fZ={kernelName:Vu,backendName:"cpu",kernelFunc:hZ},mZ=mt(Uu,e=>Math.abs(e)===1/0?1:0,"bool"),gZ={kernelName:Uu,backendName:"cpu",kernelFunc:mZ},yZ=mt(Gu,e=>Number.isNaN(e)?1:0,"bool"),AZ={kernelName:Gu,backendName:"cpu",kernelFunc:yZ};function xZ(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=rC(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var bZ={kernelName:Yf,backendName:"cpu",kernelFunc:xZ},vZ=mt(Hu,e=>Math.log1p(e)),wZ={kernelName:Hu,backendName:"cpu",kernelFunc:vZ},kZ=Yt((e,t)=>e&&t),SZ=gn(Ki,kZ,null,"bool"),IZ={kernelName:Ki,backendName:"cpu",kernelFunc:SZ},CZ=mt(ju,e=>e?0:1,"bool"),TZ={kernelName:ju,backendName:"cpu",kernelFunc:CZ},NZ=Yt((e,t)=>e||t),EZ=gn(jd,NZ,null,"bool"),RZ={kernelName:jd,backendName:"cpu",kernelFunc:EZ};function _Z(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;Ce(r,"LRN");let u=r.shape[3],c=u-1,p=n.data.get(r.dataId).values,d=v.sizeFromShape(r.shape),h=new Float32Array(d);function f(m){let g=m%u,y=m-g+Math.max(0,g-a),x=m-g+Math.min(g+a,c),A=0;for(;y<=x;y++){let b=p[y];A+=b*b}return A}for(let m=0;m<d;m++){let g=f(m),y=p[m]*Math.pow(o+i*g,-l);h[m]=y}return n.makeTensorInfo(r.shape,r.dtype,h)}var $Z={kernelName:qd,backendName:"cpu",kernelFunc:_Z};function DZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s;Ce(o,"LRNGrad");let p=v.sizeFromShape(o.shape),d=o.shape[3],h=n.data.get(o.dataId).values,f=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values,g=new Float32Array(p),y=p;for(let x=0;x<y;x++){let A=x%d,b=x-A+Math.max(0,A-i),w=x-A+Math.min(d,A+i+1),S=0;for(let I=b;I<w;I++)S+=Math.pow(f[I],2);S=u*S+l;for(let I=b;I<w;I++){let E=-2*u*c*f[I]*m[x]/S;x===I&&(E+=Math.pow(S,-c)),E*=h[x],g[I]+=E}}return n.makeTensorInfo(o.shape,r.dtype,g)}var PZ={kernelName:Jf,backendName:"cpu",kernelFunc:DZ};function MC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=n,l=r.shape,u=l.length,c=v.parseAxisParam(a,l),p=c,d=C.getAxesPermutation(p,u),h=i.data.get(r.dataId).values;if(d!=null){let b=new Array(u);for(let w=0;w<b.length;w++)b[w]=l[d[w]];h=Ux(h,l,r.dtype,d,b),p=C.getInnerMostAxes(p.length,u),l=b}Ce(r,"max"),C.assertAxesAreInnerMostDims("max",p,u);let[f,m]=C.computeOutAndReduceShapes(l,p),g=v.sizeFromShape(m),y=oC(h,g,f,r.dtype),x=i.write(y,f,r.dtype),A=f;return o&&(A=C.expandShapeToKeepDim(f,c)),{dataId:x,shape:A,dtype:r.dtype}}var FZ={kernelName:ho,backendName:"cpu",kernelFunc:MC};function OZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Ce(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(C.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=C.computePool2DInfo(r.shape,a,o,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))p=_r({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=Xx(d,r.shape,r.dtype,h,c,"max");p=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return p}var MZ={kernelName:mo,backendName:"cpu",kernelFunc:OZ};function zZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;Ce(r,"maxPool3d");let c=C.computePool3DInfo(r.shape,a,o,1,i,l,u),p=n.data.get(r.dataId).values,d=DC(p,r.shape,r.dtype,v.computeStrides(r.shape),c,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var LZ={kernelName:Xd,backendName:"cpu",kernelFunc:zZ};function BZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;Ce([r,a],"maxPool3DGrad");let c=C.computePool3DInfo(a.shape,o,i,1,l,u),p=n.bufferSync(a),d=TX(p,c),h=c.strideDepth,f=c.strideHeight,m=c.strideWidth,g=c.dilationDepth,y=c.dilationHeight,x=c.dilationWidth,A=c.effectiveFilterDepth,b=c.effectiveFilterHeight,w=c.effectiveFilterWidth,S=A-1-c.padInfo.front,I=w-1-c.padInfo.left,E=b-1-c.padInfo.top,R=We(a.shape,"float32"),P=n.bufferSync(r);for(let _=0;_<c.batchSize;++_)for(let D=0;D<c.inChannels;++D)for(let T=0;T<c.inDepth;++T)for(let O=0;O<c.inHeight;++O)for(let U=0;U<c.inWidth;++U){let K=T-S,z=O-E,Z=U-I,W=0;for(let ee=0;ee<A;ee+=g){let Q=(K+ee)/h;if(!(Q<0||Q>=c.outDepth||Math.floor(Q)!==Q))for(let ae=0;ae<b;ae+=y){let Y=(z+ae)/f;if(!(Y<0||Y>=c.outHeight||Math.floor(Y)!==Y))for(let re=0;re<w;re+=x){let ie=(Z+re)/m;if(ie<0||ie>=c.outWidth||Math.floor(ie)!==ie)continue;let me=A*b*w-1-d.get(_,Q,Y,ie,D),be=ee*b*w+ae*w+re,Ee=me===be?1:0;if(Ee===0)continue;W+=P.get(_,Q,Y,ie,D)*Ee}}}R.set(W,_,T,O,U,D)}return n.makeTensorInfo(R.shape,R.dtype,R.values)}var WZ={kernelName:em,backendName:"cpu",kernelFunc:BZ};function VZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Ce([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=s,d=C.computePool2DInfo(i.shape,l,u,1,c,p),h=n.data.get(i.dataId).values,f=We(d.outShape,i.dtype,$C(h,i.shape,i.dtype,d).values),m=d.strideHeight,g=d.strideWidth,y=d.dilationHeight,x=d.dilationWidth,A=d.effectiveFilterHeight,b=d.effectiveFilterWidth,w=b-1-d.padInfo.left,S=A-1-d.padInfo.top,I=We(i.shape,"float32"),E=n.data.get(r.dataId).values,R=We(r.shape,"float32",E);for(let P=0;P<d.batchSize;++P)for(let _=0;_<d.inChannels;++_)for(let D=0;D<d.inHeight;++D)for(let T=0;T<d.inWidth;++T){let O=D-S,U=T-w,K=0;for(let z=0;z<A;z+=y){let Z=(O+z)/m;if(!(Z<0||Z>=d.outHeight||Math.floor(Z)!==Z))for(let W=0;W<b;W+=x){let ee=(U+W)/g;if(ee<0||ee>=d.outWidth||Math.floor(ee)!==ee)continue;let Q=A*b-1-f.get(P,Z,ee,_),ae=z*b+W,Y=Q===ae?1:0;if(Y===0)continue;K+=R.get(P,Z,ee,_)*Y}}I.set(K,P,D,T,_)}return n.makeTensorInfo(I.shape,I.dtype,I.values)}var UZ={kernelName:Qf,backendName:"cpu",kernelFunc:VZ};function GZ(e,t,n,s,r){let a=v.computeStrides(t),o=Xx(e,t,n,a,r,"max"),i=$C(e,t,n,r,!0,s);return[o.values,i.values]}var HZ={kernelName:tm,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;Ce(s,"MaxPoolWithArgmax");let u=l.data.get(s.dataId).values,c=C.computePool2DInfo(s.shape,r,a,[1,1],o),[p,d]=GZ(u,s.shape,s.dtype,i,c),h=l.write(p,c.outShape,s.dtype),f=l.write(d,c.outShape,s.dtype);return[{dataId:h,shape:c.outShape,dtype:s.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function jZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=v.parseAxisParam(a,r.shape),u=C.computeOutAndReduceShapes(r.shape,i)[1],c=v.sizeFromShape(u),p=[],d=n.makeTensorInfo([],"float32",new Float32Array([c]));p.push(d);let h=Va({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});p.push(h);let f=Kx({inputs:{a:h,b:d},backend:n});p.push(f);let m=Cp({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return p.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var qZ={kernelName:go,backendName:"cpu",kernelFunc:jZ};function XZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ce(r,"min");let i=v.parseAxisParam(a,r.shape),l=i,u=C.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=ns({inputs:{x:r},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("min",l,c.shape.length);let[p,d]=C.computeOutAndReduceShapes(c.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let x=y*h,A=m[x];for(let b=0;b<h;++b){let w=m[x+b];(Number.isNaN(w)||w<A)&&(A=w)}f[y]=A}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(o){let y=C.expandShapeToKeepDim(p,i),x=_t({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),x}return g}var KZ={kernelName:yo,backendName:"cpu",kernelFunc:XZ};function ZZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,mode:o}=s;Ce(r,"mirrorPad");let i=a.map((A,b)=>A[0]+r.shape[b]+A[1]),l=a.map(A=>A[0]),u=a.map((A,b)=>A[0]+r.shape[b]),c=o==="reflect"?0:1,p=n.data.get(r.dataId).values,d=r.shape.length,h=v.computeStrides(r.shape),f=v.sizeFromShape(i),m=i.length,g=v.computeStrides(i),y=v.getTypedArrayFromDType(r.dtype,f);for(let A=0;A<f;A++){let b=v.indexToLoc(A,m,g);for(let S=0;S<m;S++)b[S]<l[S]?b[S]=l[S]*2-b[S]-c:b[S]>=u[S]&&(b[S]=(u[S]-1)*2-b[S]+c);b=b.map((S,I)=>S-l[I]);let w=v.locToIndex(b,d,h);y[A]=p[w]}return{dataId:n.write(y,i,r.dtype),shape:i,dtype:r.dtype}}var YZ={kernelName:xo,backendName:"cpu",kernelFunc:ZZ},JZ=Yt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),QZ=gn(qu,JZ),eY={kernelName:qu,backendName:"cpu",kernelFunc:QZ},tY=$i(Pf());function zC(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=v.parseAxisParam([i],r.shape),u=MC({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=C.expandShapeToKeepDim(u.shape,l),p=_t({inputs:{x:u},backend:n,attrs:{shape:c}}),d=jx({inputs:{a:r,b:p},backend:n}),h=K7({inputs:{x:d},backend:n}),f=Cp({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),m=_t({inputs:{x:f},backend:n,attrs:{shape:c}}),g=Kx({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var nY={kernelName:$o,backendName:"cpu",kernelFunc:zC};function sY(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;Ce(r,"multinomial");let l=i?r:zC({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],p=n.data.get(l.dataId).values,d=[u,a],h=v.makeZerosTypedArray(v.sizeFromShape(d),"int32");for(let f=0;f<u;++f){let m=f*c,g=new Float32Array(c-1);g[0]=p[m];for(let A=1;A<g.length;++A)g[A]=g[A-1]+p[m+A];let y=tY.alea(o.toString()),x=f*a;for(let A=0;A<a;++A){let b=y();h[x+A]=g.length;for(let w=0;w<g.length;w++)if(b<g[w]){h[x+A]=w;break}}}return i||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(d,"int32",h)}var rY={kernelName:nm,backendName:"cpu",kernelFunc:sY},aY=js.nonMaxSuppressionV3Impl;function oY(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s;Ce(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,{selectedIndices:p}=aY(u,c,o,i,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var iY={kernelName:Ji,backendName:"cpu",kernelFunc:oY},lY=js.nonMaxSuppressionV4Impl;function uY(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s;Ce(r,"NonMaxSuppressionPadded");let c=n.data.get(r.dataId).values,p=n.data.get(a.dataId).values,{selectedIndices:d,validOutputs:h}=lY(c,p,o,i,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var cY={kernelName:Xu,backendName:"cpu",kernelFunc:uY},dY=js.nonMaxSuppressionV5Impl;function pY(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s;Ce(r,"NonMaxSuppressionWithScore");let c=n.data.get(r.dataId).values,p=n.data.get(a.dataId).values,d=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:y}=dY(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var hY={kernelName:Qi,backendName:"cpu",kernelFunc:pY};function fY(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s;Ce(r,"oneHot");let l=v.sizeFromShape(r.shape),u=new Float32Array(l*a);u.fill(i);let c=n.data.get(r.dataId).values;for(let p=0;p<l;++p)c[p]>=0&&c[p]<a&&(u[p*a+c[p]]=o);return n.makeTensorInfo([...r.shape,a],"int32",u)}var mY={kernelName:tl,backendName:"cpu",kernelFunc:fY};function Nf(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(s.dtype==="complex64"){let r=Ti({inputs:{input:s},backend:n}),a=Nf({inputs:{x:r},backend:n}),o=Su({inputs:{input:s},backend:n}),i=Nf({inputs:{x:o},backend:n}),l=hs({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Zx({backend:n,attrs:{shape:s.shape,value:0,dtype:s.dtype}})}var gY={kernelName:Al,backendName:"cpu",kernelFunc:Nf};function LC(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(s.dtype==="complex64"){let r=Ti({inputs:{input:s},backend:n}),a=LC({inputs:{x:r},backend:n}),o=Su({inputs:{input:s},backend:n}),i=Nf({inputs:{x:o},backend:n}),l=hs({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Zx({backend:n,attrs:{shape:s.shape,value:1,dtype:s.dtype}})}var yY={kernelName:el,backendName:"cpu",kernelFunc:LC};function BC(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Tf({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=Tf({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=Iu({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var AY={kernelName:nl,backendName:"cpu",kernelFunc:BC};function xY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;Ce(r,"pad");let i=a.map((x,A)=>x[0]+r.shape[A]+x[1]),l=a.map(x=>x[0]),u=n.data.get(r.dataId).values,c=v.sizeFromShape(r.shape),p=r.shape.length,d=v.computeStrides(r.shape),h=v.sizeFromShape(i),f=i.length,m=v.computeStrides(i),g=v.getTypedArrayFromDType(r.dtype,h);o!==0&&g.fill(o);for(let x=0;x<c;x++){let b=v.indexToLoc(x,p,d).map((S,I)=>S+l[I]),w=v.locToIndex(b,f,m);g[w]=u[x]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var WC={kernelName:vo,backendName:"cpu",kernelFunc:xY},bY=Yt((e,t)=>Math.pow(e,t)),vY=gn(wo,bY),wY={kernelName:wo,backendName:"cpu",kernelFunc:vY};function kY(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=Gx(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var SY={kernelName:Ku,backendName:"cpu",kernelFunc:kY},IY=mt(Zu,e=>1/e),CY={kernelName:Zu,backendName:"cpu",kernelFunc:IY};function TY(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Ce(r,"resizeBilinear");let l=v.computeStrides(r.shape),[u,c]=i,[p,d,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(v.sizeFromShape([p,u,c,f])),y=[a&&u>1?d-1:d,a&&c>1?h-1:h],x=[a&&u>1?u-1:u,a&&c>1?c-1:c],A=0,b=y[0]/x[0],w=y[1]/x[1];for(let S=0;S<p;S++)for(let I=0;I<u;I++){let E;o?E=b*(I+.5)-.5:E=b*I;let R=Math.max(0,Math.floor(E)),P=E-R,_=Math.min(d-1,Math.ceil(E)),D=S*l[0]+R*l[1],T=S*l[0]+_*l[1];for(let O=0;O<c;O++){let U;o?U=w*(O+.5)-.5:U=w*O;let K=Math.max(0,Math.floor(U)),z=U-K,Z=Math.min(h-1,Math.ceil(U)),W=D+K*l[2],ee=T+K*l[2],Q=D+Z*l[2],ae=T+Z*l[2];for(let Y=0;Y<f;Y++){let re=m[W+Y],ie=m[ee+Y],me=m[Q+Y],be=m[ae+Y],Ee=re+(me-re)*z,Re=ie+(be-ie)*z,ze=Ee+(Re-Ee)*P;g[A++]=ze}}}return n.makeTensorInfo([p,u,c,f],"float32",g)}var NY={kernelName:Io,backendName:"cpu",kernelFunc:TY};function EY(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Ce([a,r],"resizeBilinearGrad");let i=v.computeStrides(r.shape),[l,u,c,p]=r.shape,[,d,h]=a.shape,f=new Float32Array(l*u*c*p),m=[o&&d>1?u-1:u,o&&h>1?c-1:c],g=[o&&d>1?d-1:d,o&&h>1?h-1:h],y=m[0]/g[0],x=m[1]/g[1],A=n.data.get(a.dataId).values,b=0;for(let w=0;w<l;w++){let S=w*i[0];for(let I=0;I<d;I++){let E=I*y,R=Math.floor(E),P=Math.min(Math.ceil(E),u-1),_=S+R*i[1],D=S+P*i[1],T=E-R,O=1-T;for(let U=0;U<h;U++){let K=U*x,z=Math.floor(K),Z=Math.min(Math.ceil(K),c-1),W=K-z,ee=1-W,Q=_+z*i[2],ae=_+Z*i[2],Y=D+z*i[2],re=D+Z*i[2],ie=O*ee,me=O*W,be=T*ee,Ee=T*W;for(let Re=0;Re<p;Re++){let ze=A[b++];f[Q+Re]+=ze*ie,f[ae+Re]+=ze*me,f[Y+Re]+=ze*be,f[re+Re]+=ze*Ee}}}}return n.makeTensorInfo([l,c,u,p],"float32",f)}var RY={kernelName:rm,backendName:"cpu",kernelFunc:EY};function _Y(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Ce(r,"resizeNearestNeighbor");let l=v.computeStrides(r.shape),[u,c]=i,[p,d,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(p*u*c*f),y=[a&&u>1?d-1:d,a&&c>1?h-1:h],x=[a&&u>1?u-1:u,a&&c>1?c-1:c],A=y[0]/x[0],b=y[1]/x[1],w=0;for(let S=0;S<p;S++){let I=S*l[0];for(let E=0;E<u;E++){let R=o?A*(E+.5):A*E,P=Math.min(d-1,a?Math.round(R):Math.floor(R));o&&(P=Math.max(0,P));let _=I+P*l[1];for(let D=0;D<c;D++){let T=o?b*(D+.5):b*D,O=Math.min(h-1,a?Math.round(T):Math.floor(T));o&&(O=Math.max(0,O));let U=_+O*l[2];for(let K=0;K<f;K++){let z=m[U+K];g[w++]=z}}}}return n.makeTensorInfo([p,u,c,f],r.dtype,g)}var $Y={kernelName:Yu,backendName:"cpu",kernelFunc:_Y};function DY(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Ce([a,r],"resizeNearestNeighborGrad");let i=v.computeStrides(r.shape),l=v.computeStrides(a.shape),[u,c,p,d]=r.shape,[,h,f]=a.shape,m=new Float32Array(u*c*p*d),g=n.data.get(a.dataId).values,y=[o&&h>1?c-1:c,o&&f>1?p-1:p],x=[o&&h>1?h-1:h,o&&f>1?f-1:f],A=y[0]/x[0],b=y[1]/x[1],w=1/A,S=1/b,I=Math.ceil(w)*2+2,E=Math.ceil(S)*2+2;for(let R=0;R<u;R++){let P=R*i[0];for(let _=0;_<c;_++){let D=P+_*i[1],T=Math.floor(_*w),O=Math.floor(T-I/2);for(let U=0;U<p;U++){let K=D+U*i[2],z=Math.floor(U*S),Z=Math.floor(z-E/2);for(let W=0;W<d;W++){let ee=0;for(let Q=0;Q<I;Q++){let ae=Q+O;if(ae<0||ae>=h)continue;let Y=P+ae*l[1],re=ae*A,ie=Math.min(c-1,o?Math.round(re):Math.floor(re));if(_===ie)for(let me=0;me<E;me++){let be=me+Z;if(be<0||be>=f)continue;let Ee=Y+be*l[2],Re=be*b,ze=Math.min(p-1,o?Math.round(Re):Math.floor(Re));U===ze&&(ee+=g[Ee+W])}}m[K+W]=ee}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var PY={kernelName:sm,backendName:"cpu",kernelFunc:DY};function FY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;Ce(r,"reverse");let o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return _r({inputs:{x:r},backend:n});let l=new nn(r.shape,r.dtype),u=n.bufferSync(r);for(let c=0;c<l.size;c++){let p=l.indexToLoc(c),d=p.slice();i.forEach(h=>d[h]=r.shape[h]-1-d[h]),l.set(u.get(...d),...p)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var OY={kernelName:al,backendName:"cpu",kernelFunc:FY},MY={kernelName:xl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[u,c,p,d]=s.shape,[h,f]=C.getImageCenter(o,c,p),m=255,g=Math.sin(r),y=Math.cos(r),x=i.data.get(s.dataId).values;for(let b=0;b<u;b++){let w=b*p*c*d;for(let S=0;S<c;S++){let I=S*(p*d);for(let E=0;E<p;E++){let R=E*d;for(let P=0;P<d;P++){let _=[u,S,E,P],D=_[2],T=_[1],O=(D-h)*y-(T-f)*g,U=(D-h)*g+(T-f)*y;O=Math.round(O+h),U=Math.round(U+f);let K=a;if(typeof a!="number"&&(P===3?K=m:K=a[P]),O>=0&&O<p&&U>=0&&U<c){let Z=U*(p*d),W=O*d,ee=w+Z+W+P;K=x[ee]}let z=w+I+R+P;l[z]=K}}}}return{dataId:i.write(l,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},zY=mt(ol,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),LY={kernelName:ol,backendName:"cpu",kernelFunc:zY};function VC(e,t,n,s,r,a,o,i,l,u){let c=[s/r,r],p=e.values,d=t.values;if(s===0)return We(n,t.dtype);let h=We(c,t.dtype);h.values.fill(l);for(let f=0;f<a;f++){let m=[],g=0;for(let y=0;y<o;y++){let x=p[f*o+y];m.push(x),g+=x*i[y]}if(g<0||g>=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y<r;y++)u?h.values[g*r+y]+=d[f*r+y]:h.values[g*r+y]=t.rank===0?d[0]:d[f*r+y]}return h}function BY(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=C.calculateShapes(a,r,o),d=!0,h=n.bufferSync(r),f=n.bufferSync(a),m=VC(h,f,o,p,u,l,i,c,0,d);return n.makeTensorInfo(o,m.dtype,m.values)}var WY={kernelName:il,backendName:"cpu",kernelFunc:BY};function VY(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t;Ce([s,r,a],"select");let o=s.shape.length,i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=Tn(r.dtype,a.dtype),p=v.makeZerosTypedArray(v.sizeFromShape(r.shape),c),d=0,h=o===0||o>1||r.shape.length===1?1:v.sizeFromShape(r.shape.slice(1));for(let f=0;f<i.length;f++)for(let m=0;m<h;m++)i[f]===1?p[d++]=l[f]:p[d++]=u[f];return n.makeTensorInfo(r.shape,c,p)}var UY={kernelName:ll,backendName:"cpu",kernelFunc:VY},GY=C.SELU_SCALEALPHA,HY=C.SELU_SCALE,jY=mt(Ju,e=>e>=0?HY*e:GY*(Math.exp(e)-1)),qY={kernelName:Ju,backendName:"cpu",kernelFunc:jY},XY=mt(Qu,e=>e<0?-1:e>0?1:0),KY={kernelName:Qu,backendName:"cpu",kernelFunc:XY},ZY=mt(No,e=>Math.sin(e)),YY={kernelName:No,backendName:"cpu",kernelFunc:ZY},JY=mt(cl,e=>Math.sinh(e)),QY={kernelName:cl,backendName:"cpu",kernelFunc:JY},eJ=11920928955078125e-23,vv=Math.log(eJ)+2,tJ=mt(ec,e=>{let t=e>-vv,n=e<vv,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),nJ={kernelName:ec,backendName:"cpu",kernelFunc:tJ};function sJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;Ce([r],"spaceToBatchND");let i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let S=1+a.length;S<r.shape.length;++S)l.push([0,0]);let u=WC.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),c=C.getReshaped(u.shape,a,i,!1),p=C.getPermuted(c.length,a.length,!1),d=C.getReshapedPermuted(u.shape,a,i,!1),m=_t({inputs:{x:u},backend:n,attrs:{shape:c}}),x=ns({inputs:{x:m},backend:n,attrs:{perm:p}}),w=_t({inputs:{x},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(x),w}var rJ={kernelName:dl,backendName:"cpu",kernelFunc:sJ};function aJ(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=n.data.get(o.dataId).values[0],[p,d,h,f,m]=fC(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(d,s.dtype,p),n.makeTensorInfo([d[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var oJ={kernelName:Zd,backendName:"cpu",kernelFunc:aJ};function iJ(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[u,c,p]=mC(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([p.length],a.dtype,new Int32Array(p))]}var lJ={kernelName:tc,backendName:"cpu",kernelFunc:iJ};function uJ(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);if(r.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=Hx(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var cJ={kernelName:Yd,backendName:"cpu",kernelFunc:uJ};function dJ(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);if(r.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=Hx(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var pJ={kernelName:Jd,backendName:"cpu",kernelFunc:dJ};function hJ(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=C.calculateShapes(a,r,i),h=!1,f=n.bufferSync(r),m=n.bufferSync(a),g=n.data.get(o.dataId).values[0],y=VC(f,m,i,d,c,u,l,p,g,h);return n.makeTensorInfo(i,y.dtype,y.values)}var fJ={kernelName:Qd,backendName:"cpu",kernelFunc:hJ};function mJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=C.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(p=>{let d=[...c];d[i]=p;let h=Ni({inputs:{x:r},backend:n,attrs:{begin:u,size:d}});return u[i]+=p,h})}var gJ={kernelName:pl,backendName:"cpu",kernelFunc:mJ},yJ={kernelName:nc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;Ce(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i<r.length;++i){let l=r[i];a[i]=l*l}return{dataId:s.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},AJ=mt(Mo,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),xJ={kernelName:Mo,backendName:"cpu",kernelFunc:AJ};function bJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s;Ce(r,"stridedSlice");let{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Ft.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=_t({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let S=Ft.computeOutShape(x,A,b),I=Ni({inputs:{x:r},backend:n,attrs:{begin:x,size:S}});w=_t({inputs:{x:I},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(I)}else{let S=n.bufferSync(r),I=yC(h,S,b,x);w=n.makeTensorInfo(f,I.dtype,I.values)}return w}var vJ={kernelName:hl,backendName:"cpu",kernelFunc:bJ};function wJ(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:p}=t,d=n.data.get(c.dataId).values,h=n.data.get(p.dataId).values,[f,m]=AC(d,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var kJ={kernelName:ep,backendName:"cpu",kernelFunc:wJ};function SJ(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[u,c,p]=xC(i,l,r),d=c.length;return[n.makeTensorInfo([d,2],"int32",u),n.makeTensorInfo([d],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var IJ={kernelName:am,backendName:"cpu",kernelFunc:SJ};function CJ(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=bC(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var TJ={kernelName:om,backendName:"cpu",kernelFunc:CJ},NJ=mt(fl,e=>Math.tan(e)),EJ={kernelName:fl,backendName:"cpu",kernelFunc:NJ},RJ=mt(Fo,e=>Math.tanh(e)),_J={kernelName:Fo,backendName:"cpu",kernelFunc:RJ};function $J(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;Ce(r,"tile");let o=wC(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var DJ={kernelName:Yr,backendName:"cpu",kernelFunc:$J};function PJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;Ce(r,"topk");let i=n.data.get(r.dataId).values,[l,u]=SC(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var FJ={kernelName:ml,backendName:"cpu",kernelFunc:PJ};function OJ(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=n,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=v.computeStrides(r.shape),x=y[0],A=y[1],b=y[2],w=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(g));w.fill(l);let S=s.data.get(r.dataId).values,I=s.data.get(a.dataId).values;for(let R=0;R<c;++R){let P=a.shape[0]===1?I:I.subarray(R*8,R*8+8);for(let _=0;_<f;++_)for(let D=0;D<m;++D)for(let T=0;T<h;++T){let O,U=P[6]*D+P[7]*_+1;if(U===0)continue;let K=(P[0]*D+P[1]*_+P[2])/U,z=(P[3]*D+P[4]*_+P[5])/U,Z=wv(K,d,i),W=wv(z,p,i);switch(o){case"nearest":O=VJ(S,p,d,x,A,b,R,W,Z,T,l);break;case"bilinear":O=UJ(S,p,d,x,A,b,R,W,Z,T,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${o}`)}let ee=R*x+_*A+D*b+T;w[ee]=O}return s.makeTensorInfo(g,r.dtype,w)}return{dataId:s.write(w,g,r.dtype),shape:r.shape,dtype:r.dtype}}var MJ={kernelName:gl,backendName:"cpu",kernelFunc:OJ};function wv(e,t,n){switch(n){case"reflect":return zJ(e,t);case"wrap":return LJ(e,t);case"nearest":return WJ(e,t);case"constant":default:return BJ(e,t)}}function zJ(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=2*t;n<s&&(n=s*Math.trunc(-n/s)+n),n=n<-t?n+s:-n-1}else if(n>t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return v.clamp(0,n,t-1)}function LJ(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return v.clamp(0,n,t-1)}function BJ(e,t){return e}function WJ(e,t){return v.clamp(0,e,t-1)}function md(e,t,n,s,r,a,o,i,l,u,c){let p=o*s+i*r+l*a+u;return 0<=i&&i<t&&0<=l&&l<n?e[p]:c}function VJ(e,t,n,s,r,a,o,i,l,u,c){let p=Math.round(i),d=Math.round(l);return md(e,t,n,s,r,a,o,p,d,u,c)}function UJ(e,t,n,s,r,a,o,i,l,u,c){let p=Math.floor(i),d=Math.floor(l),h=p+1,f=d+1,m=(f-l)*md(e,t,n,s,r,a,o,p,d,u,c)+(l-d)*md(e,t,n,s,r,a,o,p,f,u,c),g=(f-l)*md(e,t,n,s,r,a,o,h,d,u,c)+(l-d)*md(e,t,n,s,r,a,o,h,f,u,c);return(h-i)*m+(i-p)*g}function GJ(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Ce(a,"unique");let o=s.data.get(a.dataId).values,{outputValues:i,outputShape:l,indices:u}=IC(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var HJ={kernelName:im,backendName:"cpu",kernelFunc:GJ};function jJ(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape.length,i=r.shape[a],l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==a&&(l[u++]=r.shape[h]);let c=new Array(o).fill(0),p=r.shape.slice();p[a]=1;let d=new Array(i);for(let h=0;h<d.length;h++){c[a]=h;let f=Ni({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});d[h]=_t({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return d}var qJ={kernelName:yl,backendName:"cpu",kernelFunc:jJ};function XJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s;Ce(r,"unsortedSegmentSum");let i=r.shape.length,l=a.shape.length,u=[],c=[],p=i-l,d=a;for(let f=0;f<p;++f){let m=Tf({inputs:{input:d},backend:n,attrs:{dim:f+1}});d=m,c.push(m)}for(let f=0;f<o;++f){let m=v.createScalarValue(f,"int32"),g=n.makeTensorInfo([],"int32",m),y=q7({inputs:{a:g,b:d},backend:n}),x=Va({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),A=o0({inputs:{a:x,b:r},backend:n}),b=Cp({inputs:{x:A},backend:n,attrs:{axis:0,keepDims:!1}});u.push(b),c.push(g),c.push(y),c.push(x),c.push(A),c.push(b)}let h=BC({inputs:u,backend:n,attrs:{axis:0}});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var KJ={kernelName:tp,backendName:"cpu",kernelFunc:XJ},ZJ=[tX,qj,sX,aX,Qj,iX,uX,dX,hX,mX,yX,xX,vX,SX,CX,EX,_X,DX,FX,Qq,MX,LX,WX,UX,Yj,tq,HX,Xj,qX,KX,ZX,JX,eK,nK,rK,oK,lK,cK,pK,fK,gK,AK,bK,vK,kK,IK,TK,NK,EK,RK,DK,jq,FK,nq,UK,sq,GK,aq,ZK,YK,QK,iq,nZ,rZ,oZ,lZ,cZ,uq,dq,Kj,pZ,XX,fZ,gZ,AZ,qq,hq,mq,bZ,yq,wZ,IZ,TZ,RZ,$Z,PZ,FZ,xq,MZ,LZ,WZ,UZ,HZ,qZ,KZ,vq,YZ,eY,rY,kq,Iq,iY,cY,hY,Tq,mY,yY,AY,WC,wY,Kq,Rq,SY,Zj,My,CY,Zq,Yq,Jq,NY,RY,$Y,PY,OY,MY,LY,$q,WY,UY,qY,Pq,KY,YY,QY,Fq,nY,nJ,rJ,oJ,lJ,cJ,pJ,fJ,gJ,zq,yJ,Bq,xJ,vJ,kJ,IJ,TJ,Gq,_K,EJ,_J,DJ,FJ,MJ,Nq,HJ,qJ,KJ,gY];for(let e of ZJ)Us(e);var UC={};Le(UC,{assertNotComplex:()=>gc,bindCanvasToFramebuffer:()=>iQ,bindColorTextureToFramebuffer:()=>Yh,bindTextureToProgramUniformSampler:()=>r4,bindTextureUnit:()=>t4,bindVertexBufferToProgramAttribute:()=>Ly,callAndCheck:()=>we,canBeRepresented:()=>GC,createFragmentShader:()=>qC,createFramebuffer:()=>e4,createProgram:()=>XC,createStaticIndexBuffer:()=>YC,createStaticVertexBuffer:()=>ZC,createTexture:()=>JC,createVertexShader:()=>jC,getBatchDim:()=>Ei,getExtensionOrThrow:()=>gd,getFramebufferErrorMessage:()=>a4,getMaxTexturesInShader:()=>u4,getNumChannels:()=>aQ,getProgramUniformLocation:()=>s4,getProgramUniformLocationOrThrow:()=>n4,getRowsCols:()=>Ri,getShapeAs3D:()=>Jh,getTextureShapeFromLogicalShape:()=>i4,getWebGLDisjointQueryTimerVersion:()=>c4,getWebGLErrorMessage:()=>HC,getWebGLMaxTextureSize:()=>l4,hasExtension:()=>Ts,isCapableOfRenderingToFloatTexture:()=>d4,isDownloadFloatTextureEnabled:()=>p4,isReshapeFree:()=>Od,isWebGLFenceEnabled:()=>h4,isWebGLVersionEnabled:()=>Wy,linkProgram:()=>KC,logShaderSourceAndInfoLog:()=>Jx,resetMaxTextureSize:()=>lQ,resetMaxTexturesInShader:()=>uQ,unbindColorTextureFromFramebuffer:()=>By,unbindTextureUnit:()=>oQ,validateFramebuffer:()=>yd,validateProgram:()=>Zh,validateTextureSize:()=>QC});var hi={},J2={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function i0(e,t){hi[e]=t}function mr(e,t){if(!(e in hi)||t!=null){let s=JJ(e,t);if(s!==null)hi[e]=s;else return console.log("Could not get context for WebGL version",e),null}let n=hi[e];return n==null||n.isContextLost()?(delete hi[e],mr(e)):(n.disable(n.DEPTH_TEST),n.disable(n.STENCIL_TEST),n.disable(n.BLEND),n.disable(n.DITHER),n.disable(n.POLYGON_OFFSET_FILL),n.disable(n.SAMPLE_COVERAGE),n.enable(n.SCISSOR_TEST),n.enable(n.CULL_FACE),n.cullFace(n.BACK),hi[e])}function YJ(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function JJ(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let n=t==null?YJ(e):t;return n.addEventListener("webglcontextlost",s=>{s.preventDefault(),delete hi[e]},!1),e===1?n.getContext("webgl",J2)||n.getContext("experimental-webgl",J2):n.getContext("webgl2",J2)}function Tp(e,t){return[t,e]}function QJ(e,t){return e*t}function Vh(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function mc(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function eQ(e,t){let[n,s]=mc(e,t);return n*s*4}function Yx(e,t){let n=e,s,r,a,o,i,l,u,c,p,d;return J().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,u=4,c=1,p=n.HALF_FLOAT,d=n.FLOAT,l=n.RGBA8):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,u=4,c=4,p=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT,l=e.RGBA),{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:d}}function we(e,t){let n=t();return J().getBool("DEBUG")&&tQ(e),n}function tQ(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+HC(e,t))}var nQ=596e-10,sQ=65504;function GC(e){return!!(J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||nQ<Math.abs(e)&&Math.abs(e)<sQ)}function HC(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function gd(e,t){return na(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function jC(e,t){let n=na(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(we(e,()=>e.shaderSource(n,t)),we(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function qC(e,t){let n=na(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(we(e,()=>e.shaderSource(n,t)),we(e,()=>e.compileShader(n)),J().get("ENGINE_COMPILE_ONLY"))return n;if(e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw Jx(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var rQ=/ERROR: [0-9]+:([0-9]+):/g;function Jx(e,t){let n=rQ.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(`
|
|
`),a=r.length.toString().length+2,o=r.map((p,d)=>v.rightPad((d+1).toString(),a)+p),i=0;for(let p=0;p<o.length;p++)i=Math.max(o[p].length,i);let l=o.slice(0,s-1),u=o.slice(s-1,s),c=o.slice(s);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${v.rightPad(u[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
|
|
`))}function XC(e){return na(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function KC(e,t){if(we(e,()=>e.linkProgram(t)),!J().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Zh(e,t){if(we(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function ZC(e,t){let n=na(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),we(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function YC(e,t){let n=na(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return we(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),we(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function aQ(){return J().getNumber("WEBGL_VERSION")===2?1:4}function JC(e){return na(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function QC(e,t){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function e4(e){return na(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Ly(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),we(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),we(e,()=>e.enableVertexAttribArray(i)),!0)}function t4(e,t,n){o4(e,n),we(e,()=>e.activeTexture(e.TEXTURE0+n)),we(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function oQ(e,t){o4(e,t),we(e,()=>e.activeTexture(e.TEXTURE0+t)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function n4(e,t,n){return na(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function s4(e,t,n){return e.getUniformLocation(t,n)}function r4(e,t,n,s){we(e,()=>t4(e,t,s)),we(e,()=>e.uniform1i(n,s))}function iQ(e){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),we(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),we(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function Yh(e,t,n){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),we(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function By(e,t){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),we(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function yd(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+a4(e,t))}function a4(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function na(e,t,n){let s=we(e,()=>t());if(s==null)throw new Error(n);return s}function o4(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function Ei(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function Ri(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Jh(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Ei(e),...Ri(e)]),t}function i4(e,t=!1){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?v.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let s=v.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=Ei(e),a=2,o=2;return e.length&&([a,o]=Ri(e)),s=r*(a/2)*(o/2),v.sizeToSquarishShape(s).map(i=>i*2)}return v.sizeToSquarishShape(s)}function Uh(e){return e%2===0}function Od(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||Uh(n)&&Uh(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Uh(e[0])&&Uh(t[0])}var Qh,ef;function l4(e){if(Qh==null){let t=mr(e);Qh=t.getParameter(t.MAX_TEXTURE_SIZE)}return Qh}function lQ(){Qh=null}function uQ(){ef=null}function u4(e){if(ef==null){let t=mr(e);ef=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,ef)}function c4(e){if(e===0)return 0;let t,n=mr(e);return Ts(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Ts(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Ts(e,t){return e.getExtension(t)!=null}function Wy(e){try{if(mr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function d4(e){if(e===0)return!1;let t=mr(e);if(e===1){if(!Ts(t,"OES_texture_float"))return!1}else if(!Ts(t,"EXT_color_buffer_float"))return!1;return Vy(t)}function p4(e){if(e===0)return!1;let t=mr(e);if(e===1){if(!Ts(t,"OES_texture_float")||!Ts(t,"WEBGL_color_buffer_float"))return!1}else{if(Ts(t,"EXT_color_buffer_float"))return Vy(t);let s="EXT_color_buffer_half_float";if(Ts(t,s)){let r=t.getExtension(s);return cQ(t,r)}return!1}return Vy(t)}function Vy(e){let t=Yx(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function cQ(e,t){let n=Yx(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function h4(e){return e!==2?!1:mr(e).fenceSync!=null}function gc(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var De=J();De.registerFlag("HAS_WEBGL",()=>De.getNumber("WEBGL_VERSION")>0);De.registerFlag("WEBGL_VERSION",()=>Wy(2)?2:Wy(1)?1:0);De.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);De.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>De.get("WEBGL_VERSION")===2);De.registerFlag("WEBGL_CPU_FORWARD",()=>!0);De.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);De.registerFlag("WEBGL_PACK",()=>De.getBool("HAS_WEBGL"));De.registerFlag("WEBGL_PACK_NORMALIZATION",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_CLIP",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_REDUCE",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_LAZILY_UNPACK",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_CONV_IM2COL",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>l4(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>u4(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=De.getNumber("WEBGL_VERSION");return e===0?0:c4(e)});De.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>De.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!ap.isMobile());De.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>d4(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>De.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:De.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));De.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>p4(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_FENCE_API_ENABLED",()=>h4(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>De.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);De.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});De.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>ap.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});De.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);De.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);De.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);De.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function jn(){let e,t,n,s,r,a,o,i,l,u;return J().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=`
|
|
bool isnan_custom(float val) {
|
|
uint floatToUint = floatBitsToUint(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",o="",i=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function Nl(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function l0(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function dQ(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function pQ(e,t,n="index"){let s=e.map((a,o)=>o),r=dQ(s,t);return r.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${r[o]}`,l=o===r.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${r[o]}`:`index -= ${e[o]} * ${r[o]}`;return`${i}; ${l};`}).join("")}function Qx(e){let t=v.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function eb(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var f4=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:m4}=C;function hQ(e,t,n){let s=[];if(e.forEach(h=>{let f=v.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?s.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${h.name};`),s.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=tb(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${h.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{s.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let r=s.join(`
|
|
`),a=e.map(h=>fQ(h,t,n.packedInputs,n.enableShapeUniforms)).join(`
|
|
`),o=t.texShape,i=jn(),l=yQ(i),u,c,p=bQ(i);return t.isPacked?(u=mQ(t.logicalShape,o,n.enableShapeUniforms),c=xQ(i)):(u=gQ(t.logicalShape,o,n.enableShapeUniforms),c=AQ(i)),n.packedInputs&&(p+=SQ),[p,l,c,r,u,a,n.userCode].join(`
|
|
`)}function yc(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return OQ(e,t);case 1:return zQ(e,t);case 2:return BQ(e,t);case 3:return VQ(e,t);case 4:return GQ(e,t);case 5:return HQ(e);case 6:return jQ(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function g4(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return FQ(e);case 1:return MQ(e,t);case 2:return LQ(e,t);case 3:return WQ(e,t);default:return UQ(e,t)}}function fQ(e,t,n=!1,s){let r="";n?r+=g4(e,s):r+=yc(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=qQ(e,t):r+=XQ(e,t)),r}function mQ(e,t,n){switch(e.length){case 0:return y4();case 1:return IQ(e,t,n);case 2:return DQ(e,t,n);case 3:return TQ(e,t,n);default:return EQ(e,t,n)}}function gQ(e,t,n){switch(e.length){case 0:return y4();case 1:return CQ(e,t,n);case 2:return PQ(e,t,n);case 3:return NQ(e,t,n);case 4:return RQ(e,t,n);case 5:return _Q(e,t);case 6:return $Q(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function yQ(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function AQ(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function xQ(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function bQ(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${vQ}
|
|
${wQ}
|
|
${kQ}
|
|
`}var vQ=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,wQ=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,kQ=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,SQ=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function y4(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function IQ(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${s[1]}.0);
|
|
}
|
|
`:s[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${s[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
|
|
}
|
|
`}function CQ(e,t,n){return t[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function TQ(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function NQ(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${l0(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let s=Nl(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function EQ(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),o=a,i="",l="b, r, c";for(let u=2;u<e.length-1;u++)o*=e[e.length-u-1],i=`
|
|
int b${u} = index / ${o};
|
|
index -= b${u} * ${o};
|
|
`+i,l=`b${u}, `+l;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${l});
|
|
}
|
|
`}function RQ(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${l0(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let s=Nl(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function _Q(e,t){let n=Nl(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function $Q(e,t){let n=Nl(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function DQ(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function PQ(e,t,n){return v.arraysEqual(e,t)?n?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function El(e){return`offset${e}`}function FQ(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=jn();return`
|
|
vec4 ${n}() {
|
|
return ${s.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function OQ(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
|
|
float ${s}() {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let o=El(n);if(t)return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let[i,l]=e.shapeInfo.texShape;return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${i}, ${l}, ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function MQ(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=jn();if(t)return`
|
|
vec4 ${s}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`;let o=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
|
|
vec4 ${s}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${o[0]}, ${o[1]}, index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`}function zQ(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int index) {
|
|
${Ac(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,a=r[0],o=r[1];if(o===1&&a===1)return`
|
|
float ${s}(int index) {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let i=El(n);return o===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:a===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${o}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${a}, ${o}, index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function LQ(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=jn();if(a!=null&&v.arraysEqual(n,a))return t?`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${o}.0);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${r}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;let u=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],c=Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${c}, ${u[0]}, ${u[1]}, row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`}function BQ(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&v.arraysEqual(n,a)){if(t)return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let d=a[0],h=a[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}let{newShape:o,keptDims:i}=v.squeezeShape(n),l=o;if(l.length<n.length){let d=xc(e,l),h=["row","col"];return`
|
|
${yc(d,t)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${bc(h,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
|
|
${Ac(e)}
|
|
}
|
|
`;let u=a[0],c=a[1],p=El(s);return c===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${s}TexShape[0]));
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:u===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${s}TexShape[1]), 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s}Shape[1] + col + ${p};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n[1]} + col + ${p};
|
|
vec2 uv = uvFromFlat(${u}, ${c}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function WQ(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let d=n.slice(1),h=[1,2],f=xc(e,d),m=["b","row","col"];return`
|
|
${g4(f,t)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${bc(m,h)});
|
|
}
|
|
`}let i=jn();if(t)return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`;let l=o[0],u=o[1],c=Math.ceil(n[2]/2),p=c*Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${l}, ${u}, ${p}, ${c}, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`}function VQ(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[1]*n[2],o=n[2],{newShape:i,keptDims:l}=v.squeezeShape(n),u=i;if(u.length<n.length){let m=xc(e,u),g=["row","col","depth"];return`
|
|
${yc(m,t)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${bc(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${a}, ${o}, 1)));
|
|
${Ac(e)}
|
|
}
|
|
`;let c=e.shapeInfo.texShape,p=c[0],d=c[1],h=e.shapeInfo.flatOffset;if(d===a&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
int stride1 = ${s}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${o}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(d===o&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${s}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${d}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let f=El(s);return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${s}Shape[1] * ${s}Shape[2];
|
|
int stride1 = ${s}Shape[2];
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${p}, ${d}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function UQ(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=jn();if(t)return`
|
|
vec4 ${s}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${n}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`;let a=e.shapeInfo.logicalShape,o=a.length,i=e.shapeInfo.texShape,l=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],u=l[0],c=l[1],p=Math.ceil(a[o-1]/2),d=p*Math.ceil(a[o-2]/2),h="int b, int row, int col",f=`b * ${d} + (row / 2) * ${p} + (col / 2)`;for(let m=2;m<o-1;m++)h=`int b${m}, `+h,d*=a[o-m-1],f=`b${m} * ${d} + `+f;return`
|
|
vec4 ${s}(${h}) {
|
|
int index = ${f};
|
|
int texR = index / ${c};
|
|
int texC = index - texR * ${c};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}, ${u});
|
|
return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`}function GQ(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[3],o=n[2]*a,i=n[1]*o,{newShape:l,keptDims:u}=v.squeezeShape(n);if(l.length<n.length){let x=xc(e,l),A=["row","col","depth","depth2"];return`
|
|
${yc(x,t)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${bc(A,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, 1)));
|
|
${Ac(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,d=p[0],h=p[1],f=`int stride2 = ${s}Shape[3];`,m=`int stride1 = ${s}Shape[2] * stride2;`,g=`int stride0 = ${s}Shape[1] * stride1;`;if(h===i&&c==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
${f}
|
|
${m}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${o}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(h===a&&c==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${s}Shape[1] * ${s}Shape[2], ${s}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n[1]*n[2]}, ${n[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let y=El(s);return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${f}
|
|
${m}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index + ${y});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} +
|
|
depth * ${a} + depth2;
|
|
vec2 uv = uvFromFlat(${d}, ${h}, index + ${y});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function HQ(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],a=t[3]*r,o=t[2]*a,i=t[1]*o,{newShape:l,keptDims:u}=v.squeezeShape(t);if(l.length<t.length){let m=xc(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${yc(m)}
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${s}(${bc(g,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, ${r})) +
|
|
depth3;
|
|
${Ac(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,d=p[0],h=p[1];if(h===i&&c==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${o}, ${a}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&c==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=El(n);return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} + depth * ${a} +
|
|
depth2 * ${r} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${d}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function jQ(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:a}=v.squeezeShape(t);if(r.length<t.length){let g=xc(e,r),y=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${yc(g)}
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${s}(${bc(y,a)});
|
|
}
|
|
`}let o=t[5],i=t[4]*o,l=t[3]*i,u=t[2]*l,c=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${c}, ${u}, ${l}, ${i})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${o}, 1)));
|
|
${Ac(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,h=d[0],f=d[1];if(f===c&&p==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${i}, ${o})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(f===o&&p==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=El(n);return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${c} + col * ${u} + depth * ${l} +
|
|
depth2 * ${i} + depth3 * ${o} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${h}, ${f}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Ac(e){let t=e.name,n=v.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function qQ(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=m4(e.shapeInfo.logicalShape,t.logicalShape),l=gt(o),u=o-a,c,p=["x","y","z","w","u","v"];a===0?c="":o<2&&i.length>=1?c="coords = 0;":c=i.map(x=>`coords.${p[x+u]} = 0;`).join(`
|
|
`);let d="";o<2&&a>0?d="coords":d=e.shapeInfo.logicalShape.map((x,A)=>`coords.${p[A+u]}`).join(", ");let h="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,y=v.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!y)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!y)o===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(i.length){let x=a-2,A=a-1;i.indexOf(x)>-1&&i.indexOf(A)>-1?h="return vec4(outputValue.x);":i.indexOf(x)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(A)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${c}
|
|
vec4 outputValue = get${s}(${d});
|
|
${h}
|
|
}
|
|
`}function XQ(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(o,a))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let u=gt(l),c=m4(e.shapeInfo.logicalShape,t.logicalShape),p=l-i,d,h=["x","y","z","w","u","v"];i===0?d="":l<2&&c.length>=1?d="coords = 0;":d=c.map(m=>`coords.${h[m+p]} = 0;`).join(`
|
|
`);let f="";return l<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+p]}`).join(", "),`
|
|
float ${r}() {
|
|
${u} coords = getOutputCoords();
|
|
${d}
|
|
return get${s}(${f});
|
|
}
|
|
`}function gt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function tb(e,t,n){let{newShape:s,keptDims:r}=v.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):s,l=!e&&a>1&&!v.arraysEqual(t,n)&&s.length<a||o;return{useSqueezeShape:l,uniformShape:l?i:t,keptDims:r}}function xc(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function bc(e,t){return t.map(n=>e[n]).join(", ")}function KQ(e,t,n,s){let r=n.map((c,p)=>{let d={logicalShape:c.shape,texShape:c.isUniform?null:c.texData.texShape,isUniform:c.isUniform,isPacked:c.isUniform?!1:c.texData.isPacked,flatOffset:null};return c.texData!=null&&c.texData.slice!=null&&c.texData.slice.flatOffset>0&&(d.flatOffset=c.texData.slice.flatOffset),{name:t.variableNames[p],shapeInfo:d}}),a=r.map(c=>c.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=hQ(r,o,t),l=qC(e.gl,i),u=e.createProgram(l);return J().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:i,webGLProgram:u,inShapeInfos:a,outShapeInfo:o,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:{program:t,fragmentShader:l,source:i,webGLProgram:u,inShapeInfos:a,outShapeInfo:o,...A4(e,t,u)}}function A4(e,t,n){let s={},r={},a={},o=[],i,l,u,c=null,p=null;p=e.getUniformLocation(n,"NAN",!1),J().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(n,"INFINITY",!1));let d=!1;for(let h=0;h<t.variableNames.length;h++){let f=t.variableNames[h];s[f]=e.getUniformLocation(n,f,d),s[`offset${f}`]=e.getUniformLocation(n,`offset${f}`,d),t.enableShapeUniforms&&(r[`${f}Shape`]=e.getUniformLocation(n,`${f}Shape`,d),a[`${f}TexShape`]=e.getUniformLocation(n,`${f}TexShape`,d))}return t.enableShapeUniforms&&(i=e.getUniformLocation(n,"outShape",d),u=e.getUniformLocation(n,"outShapeStrides",d),l=e.getUniformLocation(n,"outTexShape",d)),t.customUniforms&&t.customUniforms.forEach((h,f)=>{o[f]=e.getUniformLocation(n,h.name,d)}),{uniformLocations:s,customUniformLocations:o,infLoc:c,nanLoc:p,inShapesLocations:r,inTexShapesLocations:a,outShapeLocation:i,outShapeStridesLocation:u,outTexShapeLocation:l}}function kv(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!v.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!v.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function ZQ(e,t,n,s,r){t.program.enableShapeUniforms||(kv(t.inShapeInfos,n),kv([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a.texture,o[0],o[1]):e.setOutputMatrixTexture(a.texture,o[0],o[1]),e.setProgram(t.webGLProgram),J().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let c=t.program.variableNames[u],p=t.uniformLocations[c],d=t.uniformLocations[`offset${c}`],h=t.inShapesLocations[`${c}Shape`],f=t.inTexShapesLocations[`${c}TexShape`];if(h){let{uniformShape:m}=tb(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),p!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(p,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(p,m)}return}l.texData.slice!=null&&d!=null&&e.gl.uniform1i(d,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture.texture,p,u)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let c=t.customUniformLocations[u],p=r[u];if(l.type==="float")e.gl.uniform1fv(c,p);else if(l.type==="vec2")e.gl.uniform2fv(c,p);else if(l.type==="vec3")e.gl.uniform3fv(c,p);else if(l.type==="vec4")e.gl.uniform4fv(c,p);else if(l.type==="int")e.gl.uniform1iv(c,p);else if(l.type==="ivec2")e.gl.uniform2iv(c,p);else if(l.type==="ivec3")e.gl.uniform3iv(c,p);else if(l.type==="ivec4")e.gl.uniform4iv(c,p);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function YQ(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:u,uniformShape:c,keptDims:p}=tb(e.packedInputs,o.shape,l),d="",h="",f="";if(c.length===1&&e.packedInputs){let w=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];d=`${w[0]>1}_${w[1]>1}`}else if(c.length===2&&!e.packedInputs)h=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!e.packedInputs){let w=v.computeStrides(c);f=`${w[0]===l[1]}_${w[w.length-1]===l[1]}`}let m=o.shape.length,g=c.length===2&&v.arraysEqual(o.shape,l),y=v.sizeFromShape(o.shape)===1,x=C.getBroadcastDims(o.shape,n.shape),A=!e.packedInputs&&m===n.shape.length&&v.arraysEqual(l,n.texData.texShape),b=e.packedInputs||c.length>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${m}_${A}_${u?p:""}_${c.length}_${y}_${x}_${g}_${d}_${h}_${f}_${b}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${J().getNumber("WEBGL_VERSION")}`,a}function os(e){return J().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var JQ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=jn();this.outputShape=e,this.enableShapeUniforms=os(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?l0(["r","c","d"],e):Nl(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},QQ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=jn();this.outputShape=e,this.enableShapeUniforms=os(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?l0(["r","c","d"],e):Nl(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},eee=class{constructor(e){this.variableNames=["A"],this.outTexUsage=3;let t=jn();this.outputShape=e,this.userCode=`
|
|
${f4}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},tee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=3;let t=jn();this.outputShape=e,this.userCode=`
|
|
${f4}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},nee=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=jn();this.outputShape=e,this.enableShapeUniforms=os(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?eb():Qx(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${n.output} = vec4(${s}, 0., 0., 0.);
|
|
}
|
|
`}},see=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=jn();this.outputShape=e,this.enableShapeUniforms=os(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;s+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${o};
|
|
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${a};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${i}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${i}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${i}] = values[2];
|
|
} else {
|
|
result[${i}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?eb():Qx(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${s}
|
|
|
|
${n.output} = ${r};
|
|
}
|
|
`}},x4={};Le(x4,{bindVertexProgramAttributeStreams:()=>N4,createBufferFromOutputTexture:()=>_4,createFloat16MatrixTexture:()=>S4,createFloat16PackedMatrixTexture:()=>T4,createFloat32MatrixTexture:()=>k4,createIndexBuffer:()=>w4,createPackedMatrixTexture:()=>C4,createUnsignedBytesMatrixTexture:()=>I4,createVertexBuffer:()=>v4,createVertexShader:()=>b4,downloadByteEncodedFloatMatrixFromOutputTexture:()=>D4,downloadFloat32MatrixFromBuffer:()=>$4,downloadMatrixFromPackedOutputTexture:()=>F4,downloadPackedMatrixFromBuffer:()=>P4,getInternalFormatForFloat16MatrixTexture:()=>sb,getInternalFormatForFloat16PackedMatrixTexture:()=>ob,getInternalFormatForFloat32MatrixTexture:()=>nb,getInternalFormatForPackedMatrixTexture:()=>ab,getInternalFormatForUnsignedBytesMatrixTexture:()=>rb,uploadDenseMatrixToTexture:()=>E4,uploadPixelDataToTexture:()=>R4});function b4(e){let t=jn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return jC(e,n)}function v4(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return ZC(e,t)}function w4(e){let t=new Uint16Array([0,1,2,2,1,3]);return YC(e,t)}function Np(e,t,n,s,r,a){QC(t,n);let o=JC(e),i=e.TEXTURE_2D;return we(e,()=>e.bindTexture(i,o)),we(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),we(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),we(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),we(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),J().getNumber("WEBGL_VERSION")===1?we(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)):we(e,()=>e.texStorage2D(i,1,s,t,n)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:o,texShape:[n,t]}}function nb(e){return e.internalFormatFloat}function k4(e,t,n,s){let[r,a]=Tp(t,n);return Np(e,r,a,nb(s),s.textureFormatFloat,e.FLOAT)}function sb(e){return e.internalFormatHalfFloat}function S4(e,t,n,s){let[r,a]=Tp(t,n);return Np(e,r,a,sb(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function rb(e){return e.downloadTextureFormat}function I4(e,t,n,s){let[r,a]=Tp(t,n);return Np(e,r,a,rb(s),e.RGBA,e.UNSIGNED_BYTE)}function ab(e){return e.internalFormatPackedFloat}function C4(e,t,n,s){let[r,a]=mc(t,n);return Np(e,r,a,ab(s),e.RGBA,e.FLOAT)}function ob(e){return e.internalFormatPackedHalfFloat}function T4(e,t,n,s){let[r,a]=mc(t,n);return Np(e,r,a,ob(s),e.RGBA,s.textureTypeHalfFloat)}function N4(e,t,n){return we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Ly(e,t,"clipSpacePos",n,3,20,0)&&Ly(e,t,"uv",n,2,20,12)}function E4(e,t,n,s,r,a){we(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),J().getNumber("WEBGL_VERSION")===2?we(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,s,e.RGBA,i,o)):we(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function R4(e,t,n){we(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?J().getNumber("WEBGL_VERSION")===2?we(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)):we(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):J().getNumber("WEBGL_VERSION")===2?we(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)):we(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function _4(e,t,n,s){let r=e.createBuffer();we(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return we(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),we(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),we(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function $4(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function D4(e,t,n,s){let[r,a]=Tp(t,n),o=4,i=new Uint8Array(QJ(t*n,o));return we(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function P4(e,t,n,s,r,a,o,i){let l=e,u=new Float32Array(eQ(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function F4(e,t,n){let s=new Float32Array(t*n*4);return we(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var hu=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=J().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,i0(t,e)):this.gl=mr(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),J().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=gd(this.gl,r),Ts(this.gl,a))this.textureHalfFloatExtension=gd(this.gl,a);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Ts(this.gl,s))this.colorBufferHalfFloatExtension=gd(this.gl,s);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Ts(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Ts(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=v4(this.gl),this.indexBuffer=w4(this.gl),this.framebuffer=e4(this.gl),this.textureConfig=Yx(this.gl,this.textureHalfFloatExtension)}get debug(){return J().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;we(e,()=>e.finish()),we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),we(e,()=>e.deleteFramebuffer(this.framebuffer)),we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),we(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),we(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),k4(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),S4(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),I4(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),R4(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),E4(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),T4(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),C4(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(By(this.gl,this.framebuffer),this.outputTexture=null),we(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>D4(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return P4(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return $4(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=_4(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(J().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>F4(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=b4(t));let n=XC(t);return we(t,()=>t.attachShader(n,this.vertexShader)),we(t,()=>t.attachShader(n,e)),KC(t,n),this.debug&&Zh(t,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=N4(t,this.program,this.vertexBuffer)),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&we(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Zh(this.gl,this.program),we(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?n4(this.gl,e,t):s4(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),we(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),r4(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=mc(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Zh(this.gl,this.program),yd(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),we(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),we(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=gd(this.gl,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=ree(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Yh(this.gl,e,this.framebuffer),this.debug&&yd(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Yh(this.gl,this.outputTexture,this.framebuffer),this.debug&&yd(this.gl)):By(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;Yh(s,e,this.framebuffer),this.debug&&yd(s),this.outputTexture=e,we(s,()=>s.viewport(0,0,t,n)),we(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),we(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function ree(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:aee,bincountImpl:O4,bincountReduceImpl:oee,ceilImpl:iee,concatImpl:lee,equalImpl:uee,expImpl:cee,expm1Impl:dee,floorImpl:pee,gatherNdImpl:hee,gatherV2Impl:fee,greaterImpl:mee,greaterEqualImpl:gee,lessImpl:yee,lessEqualImpl:Aee,linSpaceImpl:xee,logImpl:bee,maxImpl:vee,maximumImpl:wee,minimumImpl:kee,multiplyImpl:See,negImpl:Iee,notEqualImpl:Cee,prodImpl:Tee,rangeImpl:Nee,rsqrtImpl:Eee,sigmoidImpl:Ree,simpleAbsImpl:M4,sliceImpl:_ee,sparseFillEmptyRowsImpl:$ee,sparseReshapeImpl:Dee,sparseSegmentReductionImpl:z4,sqrtImpl:Pee,stridedSliceImpl:Fee,stringNGramsImpl:Oee,stringSplitImpl:Mee,stringToHashBucketFastImpl:zee,subImpl:Lee,tileImpl:Bee,topKImpl:Wee,transposeImpl:ib,uniqueImpl:Vee}=a0;function L4(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function Wn(e,t){return t===1?[e]:L4(e,t)}function Uee(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}var Gee=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=os(this.outputShape.length),this.rank===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let t=Wn("rc",this.rank),n=gt(this.rank),s=this.getOutOfBoundsCondition(t),r=this.getSetup(t),a=this.getOutput(t);this.userCode=`
|
|
void main() {
|
|
${n} rc = getOutputCoords();
|
|
|
|
if(${s}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${r}
|
|
|
|
setOutput(vec4(${a}));
|
|
}
|
|
}
|
|
`}}getSourceCoordsArr(e){let t=[];for(let n=0;n<=1;n++)for(let s=0;s<=1;s++){let r=`${n===0?"r":"rp1"}, ${s===0?"c":"cp1"}`;for(let a=2;a<this.rank;a++)r=`${e[e.length-1-a]},`+r;t.push(r)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let n=this.rank-2;n<this.rank;n++)t+=`${e[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],s=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
|
|
int r = ${t[0]};
|
|
int c = ${t[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${n};
|
|
bool rEdge = rp1 >= ${s};
|
|
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
|
|
cEdge ? 0. : getA(${t[1]}),
|
|
rEdge ? 0. : getA(${t[2]}),
|
|
rEdge || cEdge ? 0. : getA(${t[3]})`}},B4=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=os(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2===1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${s}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${s>0?"}":""}
|
|
`}this.userCode=`
|
|
${Hee(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?eb():Qx(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Hee(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?pQ(["r","c","d"],"inputShape"):Nl(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var jee=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=Iv(t,n),r=Cv(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=Sv(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===3?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===4?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===1?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===0?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===2&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=Iv(n,s),a=Cv(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=Sv(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=J().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function qee(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function Sv(e,t,n,s,r){let a=Xee(t,s),o;if(r){let[l,u]=mc(e[0],e[1]);o=l*u}else{let[l,u]=Tp(e[0],e[1]);o=l*u}let i=qee(n,a);return o*i}function Xee(e,t){switch(e){case 3:return ab(t);case 4:return ob(t);case 1:return nb(t);case 0:return sb(t);case 2:return rb(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function Kee(e){return J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?3:1:e?4:0}function Iv(e,t){if(e===1)return 3;if(e===0||e==null)return Kee(t);if(e===3||e===2)return 2;throw new Error(`Unknown logical texture type ${e}`)}function Cv(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var jr=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=os(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},Xs="if (isnan(x)) return x;",Zee="return x;",Tv="return abs(x);",Yee="return (x >= 0.0) ? x : (exp(x) - 1.0);",Jee=Xs+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,Qee=Xs+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,nu="return x;",ete="return 1.0 / (1.0 + exp(-1.0 * x));",tte="return x;",nte=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,ste=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,rte=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,ate="return 1.0 / (1.0 + exp(-1.0 * x));",gi=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=os(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},ote=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=os(this.outputShape.length);let t=e.length,n=Wn("rc",t),s=gt(t),r=Uee(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${o}));
|
|
}
|
|
`}},ite=js.whereImpl,lte=1e-7,ute=1e-4,Gh={};function cte(e){return e in Gh||(Gh[e]={}),Gh[e]}var dte=J().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),pte=600;function hte(){return J().global.screen==null?1024:J().global.screen.height*J().global.screen.width*window.devicePixelRatio*pte/1024/1024}var W4=class extends Tu{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!J().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof hu)t=e;else{let n=mr(J().getNumber("WEBGL_VERSION"),e);t=new hu(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=mr(J().getNumber("WEBGL_VERSION"));t=new hu(n),this.binaryCache=cte(J().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new jee(this.gpgpu),this.numMBBeforeWarning=hte(),this.texData=new zd(this,yn())}nextDataId(){return W4.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((J().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||J().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:1,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(J().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:1,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let p;i?p=new gi(o,nu):p=new jr(o,nu);let d=this.runWebGLProgram(p,[{dataId:e,shape:o,dtype:s}],s),h=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,u;l&&(u=v.now());let c;if(s==="complex64"){let p=this.readSync(r.real.dataId),d=this.readSync(r.imag.dataId);c=C.mergeRealAndImagArrays(p,d)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let h;i?h=new gi(s,nu):h=new jr(s,nu);let f=this.runWebGLProgram(h,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(J().getBool("DEBUG")&&!J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&J().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(a!=="complex64"&&J().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture.texture,...Vh(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=h[0],m=h[1];c=C.mergeRealAndImagArrays(f,m)}else if(l==null)c=this.getValuesFromTexture(e);else{let h=v.sizeFromShape(s);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;we(h,()=>h.deleteBuffer(l))}let p=this.convertAndCacheOnCPU(e,c),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&yn().removeDataId(e,this),this.pendingDeletes--),p}readToGPU(e,t={}){let n=this.texData.get(e),{values:s,shape:r,slice:a,dtype:o,isPacked:i,texture:l}=n;if(o==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(a!=null){let d;i?d=new gi(r,nu):d=new jr(r,nu);let h=this.runWebGLProgram(d,[{dataId:e,shape:r,dtype:o}],o),f=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),f}if(l==null)throw s!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),c=yn().makeTensorFromDataId(u.dataId,u.shape,u.dtype),p=this.texData.get(u.dataId);return{tensorRef:c,...p.texture}}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>v.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!GC(n))throw J().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:s}=this.texData.get(e),r=v.sizeFromShape(t);if(J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let p=this.decode(e),d=this.texData.get(p.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(d.texture.texture,...Vh(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(p),h}let a=J().getBool("WEBGL_PACK")&&s===!0,o=a?Jh(t):t,i=a?new tee(o):new eee(o),l=this.runWebGLProgram(i,[{shape:o,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),c=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),c}timerAvailable(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=v.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=dte){return J().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&v.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){C.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return ite(e.shape,t)}packedUnaryOp(e,t,n){let s=new gi(e.shape,t),r=this.compileAndRun(s,[e],n);return yn().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let s=M4(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(J().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Tv,e.dtype);let t=new jr(e.shape,Tv),n=this.compileAndRun(t,[e]);return yn().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:s}=this.makeTensorInfo(e,t,n);return yn().makeTensorFromDataId(s,e,t,this)}unpackTensor(e){let t=new ote(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new Gee(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Ei(e.shape),...Ri(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[Ei(t),...Ri(t)],a=new B4(r,n),o=!0,i=[n],l=this.runWebGLProgram(a,[s],e.dtype,i,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let n=this.texData.get(e),{isPacked:s,shape:r,dtype:a}=n;if(t!=null){let p=v.sizeFromShape(r),d=t[0]*t[1]*4;v.assert(p<=d,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let o=Jh(r),i;s?i=new QQ(o):i=new JQ(o);let l=!0,u=[t!=null?t:Vh(o)],c=this.runWebGLProgram(i,[{shape:o,dtype:a,dataId:e}],a,u,l,t);return{dtype:a,shape:r,dataId:c.dataId}}runWebGLProgram(e,t,n,s,r=!1,a){let o=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(o.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===0){let g=a!=null?a:Vh(e.outputShape);i.texShape=g.map(y=>y*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),v.sizeFromShape(o.shape)===0)return i.values=v.getTypedArrayFromDType(o.dtype,0),o;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let y=this.texData.get(g.dataId);if(y.texture==null){if(!e.packedInputs&&v.sizeFromShape(g.shape)<=J().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:y.values};e.packedInputs&&(y.isPacked=!0,y.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!y.isPacked!=!!e.packedInputs)g=y.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),y=this.texData.get(g.dataId);else if(y.isPacked&&!Od(y.shape,g.shape)){let x=g,A=g.shape;g.shape=y.shape,g=this.packedReshape(g,A),l.push(g),y=this.texData.get(g.dataId),x.shape=A}return{shape:g.shape,texData:y,isUniform:!1}});this.uploadToGPU(o.dataId);let c={shape:o.shape,texData:i,isUniform:!1},p=YQ(e,u,c),d=this.getAndSaveBinary(p,()=>KQ(this.gpgpu,e,u,c)),h=this.activeTimers!=null,f;h&&(f=this.startTimer()),J().get("ENGINE_COMPILE_ONLY")||ZQ(this.gpgpu,d,u,c,s),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(f=this.endTimer(f),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(f)}));let m=J().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let g=v.now();g-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!J().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&r===!1){let g=this.unpackTensor(o);return this.disposeIntermediateTensorInfo(o),g}return o}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(J().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=X(()=>{if(!J().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=J().getBool("DEBUG");J().set("DEBUG",!1);let t=this.abs(Ie(1e-8)).dataSync()[0];if(J().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?lte:ute}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let c=t.texShape;if(c==null&&(c=i4(n,i),t.texShape=c),r!=null){let p=Jh(n),d,h=c[1],f=c[0],m=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(i||!m)&&([h,f]=mc(c[0],c[1])),i?d=new see(p,m):d=new nee(p,m);let g=m?[f,h]:c,y=this.makeTensorInfo(g,s),x=this.texData.get(y.dataId);m?x.usage=2:x.usage=1,x.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(y.dataId),h,f,r);let A=[[f,h]],b=!0,w=this.runWebGLProgram(d,[y],s,A,b),S=this.texData.get(w.dataId);t.texShape=S.texShape,t.isPacked=S.isPacked,t.usage=S.usage,J().get("ENGINE_COMPILE_ONLY")?this.disposeData(w.dataId):(t.texture=S.texture,t.values=null,this.texData.delete(w.dataId)),this.disposeIntermediateTensorInfo(y),l&&(this.uploadWaitMs+=v.now()-u)}else{let p=this.acquireTexture(c,o,s,i);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=fte(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let n=new Promise(s=>{try{this.checkCompletion_(t),s(!0)}catch(r){throw r}});e.push(n)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await aA(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(Jx(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:n,infLoc:s,nanLoc:r,inShapesLocations:a,inTexShapesLocations:o,outShapeLocation:i,outShapeStridesLocation:l,outTexShapeLocation:u}=A4(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=n,e.infLoc=s,e.nanLoc=r,e.inShapesLocations=a,e.inTexShapesLocations=o,e.outShapeLocation=i,e.outShapeStridesLocation=l,e.outTexShapeLocation=u}}},Ep=W4;Ep.nextDataId=0;function fte(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}var mte="0.0.0";function V4(){J().set("WEBGL_FORCE_F16_TEXTURES",!0)}ap.isBrowser()&&vl("webgl",()=>new Ep,2);var gte={forceHalfFloat:V4},U4=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Cu=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=os(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},u0=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,Rp=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=os(r);let a="";if(s)if(r===0||v.sizeFromShape(this.outputShape)===1)a=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(a=`
|
|
${gt(r)} coords = getOutputCoords();
|
|
`,r===1)this.enableShapeUniforms?a+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:a+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=Wn("coords",r);this.enableShapeUniforms?a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= outShape[${r} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= outShape[${r} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${a}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function ss(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var yte={kernelName:uo,backendName:"webgl",kernelFunc:ss};function Wo(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=ss({inputs:{x:s},backend:n}),l=ss({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var Ate={kernelName:Bd,backendName:"webgl",kernelFunc:Wo},G4="return (a < 0.) ? b * a : a;",H4=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function xte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",v.createScalarValue(a,"float32")),i=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Rp(H4,r.shape,o.shape):new Cu(G4,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],"float32");return n.disposeIntermediateTensorInfo(o),l}var bte={kernelName:co,backendName:"webgl",kernelFunc:xte},j4="return (a < 0.) ? b * a : a;",q4=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function vte(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Rp(q4,s.shape,r.shape):new Cu(j4,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],"float32")}var wte={kernelName:ko,backendName:"webgl",kernelFunc:vte},vc="if (isnan(x)) return x;",kte=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Ste=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function ot({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let p=i.texData.get(o.dataId),d=n(p.values,l);return i.makeTensorInfo(o.shape,l,d)}let u=J().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new gi(o.shape,t):c=new jr(o.shape,e),i.runWebGLProgram(c,[o],l)}}function xn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:u}=o,c=i;if(s&&l.dtype==="complex64"){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[g,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(A=>{let[b,w]=A,S={dataId:b.dataId,dtype:b.dtype,shape:l.shape},I={dataId:w.dataId,dtype:w.dtype,shape:u.shape},E=new Cu(e,l.shape,u.shape);return c.runWebGLProgram(E,[S,I],Tn(b.dtype,w.dtype))}),x=Wo({inputs:{real:g,imag:y},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(y),x}let p=a||Tn(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||c.shouldExecuteOnCPU([l,u]))&&r!=null){let f=c.texData.get(l.dataId).values,m=c.texData.get(u.dataId).values,g=l.dtype==="string"?C.fromUint8ToStringArray(f):f,y=l.dtype==="string"?C.fromUint8ToStringArray(m):m,[x,A]=r(l.shape,u.shape,g,y,p),b=c.makeTensorInfo(A,p),w=c.texData.get(b.dataId);return w.values=x,b}let d=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return d?h=new Rp(t,l.shape,u.shape,n):h=new Cu(e,l.shape,u.shape),c.runWebGLProgram(h,[l,u],p)}}function c0(e,t=!1){if(e==="linear")return t?tte:Zee;if(e==="relu")return t?ste:Jee;if(e==="elu")return t?nte:Yee;if(e==="relu6")return t?rte:Qee;if(e==="prelu")return t?q4:j4;if(e==="leakyrelu")return t?H4:G4;if(e==="sigmoid")return t?ate:ete;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var X4=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=os(this.outputShape.length);let u=s?e[1]:e[2],c=Math.ceil(u/2),p=s?"i * 2, rc.y":"rc.y, i * 2",d=r?"rc.z, i * 2":"i * 2, rc.z",h=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${o}
|
|
}`:l?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${o}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${o}
|
|
}`,g="result = activation(result);");let y=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let x="rc.x",A="rc.x";e[0]<t[0]?x=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(A=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${m}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${c}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${c}; i++) {
|
|
int batchA = ${x};
|
|
int batchB = ${A};
|
|
vec4 a = getMatrixA(batchA, ${p});
|
|
vec4 b = getMatrixB(batchB, ${d});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${f[0]});
|
|
result += (${h[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${y}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},Nv={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},Ev=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},Rv="return a * b;";function lb(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=C.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),u=new Ev(Nv.REAL,s.shape,r.shape),c=new Ev(Nv.IMAG,s.shape,r.shape),p=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:s.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],d=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(c,p,"float32"),f=Wo({inputs:{real:d,imag:h},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([s,r])){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),[u,c]=See(s.shape,r.shape,i.values,l.values,a),p=n.makeTensorInfo(c,a),d=n.texData.get(p.dataId);return d.values=u,p}let o;return J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new Rp(Rv,s.shape,r.shape):o=new Cu(Rv,s.shape,r.shape),n.runWebGLProgram(o,[s,r],a)}var Ite={kernelName:bo,backendName:"webgl",kernelFunc:lb};function Cte(e,t,n){let s=[Ei(e.shape),...Ri(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[Ei(t),...Ri(t)],o=new B4(a,s),i=!0,l=[s],u=n.runWebGLProgram(o,[r],e.dtype,l,i);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function ve(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=n,i=v.sizeFromShape(r.shape),l=v.inferFromImplicitShape(a,i),u=v.sizeFromShape(l);v.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=o.texData.get(r.dataId);return c.isPacked&&!Od(r.shape,l)&&!(c.texture!==null&&Od(c.shape,l))?Cte(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var Tte={kernelName:rl,backendName:"webgl",kernelFunc:ve},_v=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${v.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";r%n>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${o}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${o};
|
|
if (${i===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},Nte=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,p=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,d="vec4";t==="all"?(o="1.0",p=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,d="bvec4"):t==="any"&&(o="0.0",p=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,d="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${o});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===2}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===3}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function Ete(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=C.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function Rl(e,t,n,s){let r=Ete(e.shape),a=e;for(let o=0;o<r.length;o++){let{inSize:i,windowSize:l,outSize:u}=r[o],c,p;n==="mean"?c=o===0?new _v({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u},i):new _v({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u}):c=new Nte({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u},n),p=a,a=s.runWebGLProgram(c,[a],t),p.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(p)}return a}var Rte=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let s=gt(this.rank),r=_te(t);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function _te(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r<e.length;r++)s[e[r]]=n[r];return s.join()}var $te=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=gt(this.rank),r=L4("rc",this.rank),a=new Array(this.rank);for(let u=0;u<t.length;u++)a[t[u]]=r[u];let o=`vec2(${a.slice(-2).join()})`,i=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${a.join()}), ${o})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${i}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${i}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function d0(e,t,n){let s=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new $te(e.shape,t):new Rte(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function Dte(e,t,n,s){let r=t,a=e.shape.length,o=v.parseAxisParam(r,e.shape),i=o,l=C.getAxesPermutation(i,a),u=l!=null,c=e;u&&(c=d0(e,l,s),i=C.getInnerMostAxes(i.length,a)),C.assertAxesAreInnerMostDims("sum",i,a);let[p,d]=C.computeOutAndReduceShapes(c.shape,i),h=p;n&&(h=C.expandShapeToKeepDim(p,o));let f=v.sizeFromShape(d),g=v.sizeFromShape(e.shape)/f,y=ve({inputs:{x:c},attrs:{shape:[g,f]},backend:s}),x=rp(e.dtype),A=Rl(y,x,"sum",s),b=ve({inputs:{x:A},attrs:{shape:h},backend:s});return s.disposeIntermediateTensorInfo(y),s.disposeIntermediateTensorInfo(A),u&&s.disposeIntermediateTensorInfo(c),b}function p0(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Dte(r,a,o,n)}var Pte={kernelName:_o,backendName:"webgl",kernelFunc:p0};function An(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=r.shape[a[c]];let u;if(o.shouldExecuteOnCPU([r])){let p=o.texData.get(r.dataId).values,d=ib(p,r.shape,r.dtype,a,l);u=o.makeTensorInfo(l,r.dtype);let h=o.texData.get(u.dataId);h.values=d}else u=d0(r,a,o);return u}var Fte={kernelName:Oo,backendName:"webgl",kernelFunc:An},K4=1e3;function Ef({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,p=n?e.shape[u-2]:e.shape[u-1],d=s?t.shape[c-1]:t.shape[c-2],h=n?e.shape[u-1]:e.shape[u-2],f=s?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(m),x=v.sizeFromShape(g),b=bl.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let w=n?[y,p,h]:[y,h,p],S=s?[x,f,d]:[x,d,f],I=ve({inputs:{x:e},backend:r,attrs:{shape:w}}),E=ve({inputs:{x:t},backend:r,attrs:{shape:S}}),R=[I,E],P=Math.max(y,x),_=n?I.shape[1]:I.shape[2],D=a!=null,T=o!=null,O=l==="leakyrelu",U=l!=null?c0(l,!0):null,K=D||T||O||U!=null,z;if((h===1||f===1)&&_>K4&&K===!1){let W=I,ee=E;n&&(W=An({inputs:{x:I},backend:r,attrs:{perm:[0,2,1]}}),R.push(W)),s&&(ee=An({inputs:{x:E},backend:r,attrs:{perm:[0,2,1]}}),R.push(ee));let Q=f!==1,ae=f===1,Y=W;Q&&(Y=ve({inputs:{x:W},backend:r,attrs:{shape:[P,_,1]}}),R.push(Y));let re=f===1?2:1,ie=ee;ae&&(ie=ve({inputs:{x:ee},backend:r,attrs:{shape:[P,1,_]}}),R.push(ie));let me=lb({inputs:{a:Y,b:ie},backend:r});z=p0({inputs:{x:me},backend:r,attrs:{axis:re,keepDims:!0}}),R.push(me)}else{let W=Tn(e.dtype,t.dtype),ee=new X4(w,S,[P,h,f],n,s,D,U,T,O),Q=[I,E];if(a!=null&&Q.push(a),T&&Q.push(o),O){let ae=r.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));Q.push(ae),R.push(ae)}z=r.runWebGLProgram(ee,Q,W)}let Z=ve({inputs:{x:z},backend:r,attrs:{shape:b}});R.push(z);for(let W of R)r.disposeIntermediateTensorInfo(W);return Z}function Ote(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s;return Ef({a:r,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var Mte={kernelName:Ea,backendName:"webgl",kernelFunc:Ote},$v="return abs(x);";function zte(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=M4(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new gi(s.shape,$v):r=new jr(s.shape,$v),n.runWebGLProgram(r,[s],s.dtype)}var Lte={kernelName:Pi,backendName:"webgl",kernelFunc:zte},Bte=Xs+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,Wte=ot({opSnippet:Bte}),Vte={kernelName:Eu,backendName:"webgl",kernelFunc:Wte},Ute=Xs+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,Gte=ot({opSnippet:Ute}),Hte={kernelName:Ru,backendName:"webgl",kernelFunc:Gte},Dv="return a + b;",jte=xn({opSnippet:Dv,packedOpSnippet:Dv,supportsComplex:!0,cpuKernelImpl:aee}),qte={kernelName:Kr,backendName:"webgl",kernelFunc:jte},Xte=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}},Kte=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}};function tf(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return ss({inputs:{x:s[0]},backend:n});if(s.length>J().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),u=tf({inputs:s.slice(0,l),backend:n}),c=tf({inputs:s.slice(l),backend:n});return tf({inputs:[u,c],backend:n})}let r=s.map(l=>l.dtype).reduce((l,u)=>Tn(l,u)),a=s.map(l=>l.shape),i=J().getBool("WEBGL_PACK")?new Kte(s[0].shape,a):new Xte(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var Zte={kernelName:Ha,backendName:"webgl",kernelFunc:tf};function Yte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=C.getAxesPermutation(u,i),p=r;c!=null&&(p=An({inputs:{x:r},backend:n,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,i)),C.assertAxesAreInnerMostDims("all",u,i);let[d,h]=C.computeOutAndReduceShapes(p.shape,u),f=v.sizeFromShape(h),m=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=Rl(m,m.dtype,"all",n),y;if(o){let x=C.expandShapeToKeepDim(d,l);y=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else y=ve({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),y}var Jte={kernelName:_u,backendName:"webgl",kernelFunc:Yte};function Qte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=C.getAxesPermutation(u,i),p=r;c!=null&&(p=An({inputs:{x:r},backend:n,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,i)),C.assertAxesAreInnerMostDims("any",u,i);let[d,h]=C.computeOutAndReduceShapes(p.shape,u),f=v.sizeFromShape(h),m=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=Rl(m,m.dtype,"any",n),y;if(o){let x=C.expandShapeToKeepDim(d,l);y=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else y=ve({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),y}var ene={kernelName:$u,backendName:"webgl",kernelFunc:Qte},tne=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${s};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
int inIdx = ${i};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${o} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},nne=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=gt(i),u=Wn("coords",i),c,p;if(a===1){p=i+1;let I=gt(p);c=`
|
|
${I} sourceLocR = ${I}(${u.join()}, 0);
|
|
++${u[i-1]};
|
|
${I} sourceLocG = ${I}(${u.join()}, 0);
|
|
++${u[i-2]};
|
|
${I} sourceLocA = ${I}(${u.join()}, 0);
|
|
--${u[i-1]};
|
|
${I} sourceLocB = ${I}(${u.join()}, 0);
|
|
--${u[i-2]};`}else p=i,c=`
|
|
${l} sourceLocR = coords;
|
|
++${u[i-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[i-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[i-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[i-2]};`;let d=["x","y","z","w","u","v"].slice(0,p),h="."+d[p-1],f=d.map(I=>"int "+I),m=Wn("sourceLocR",p-1).concat("inIdx.r"),g=Wn("sourceLocG",p-1).concat("inIdx.g"),y=Wn("sourceLocB",p-1).concat("inIdx.b"),x=Wn("sourceLocA",p-1).concat("inIdx.a"),A=n==="max"?"greaterThan":"lessThan",b=s?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${x.join()})));`,w=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${x.join()}) : 0.)`,S=s?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}
|
|
${S}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[i-1]} < ${o[i-1]-1};
|
|
bool hasNextRow = ${u[i-2]} < ${o[i-2]-1};
|
|
${c}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${w};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${b}
|
|
vec4 candidate = ${w};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${A}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function Z4(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=C.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new tne(i,n,s==null),u=[t];s!=null&&u.push(s);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let p=Z4(e,t,n,c);return e.disposeIntermediateTensorInfo(c),p}function Y4(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=C.computeOptimalWindowSize(a),i=new nne(r,o,n,s==null),l=s==null?[t]:[t,s],u=e.runWebGLProgram(i,l,"int32");if(u.shape.length===t.shape.length){let c=Y4(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function J4(e,t,n,s){let r=[n];if(C.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!J().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,l=t;i&&(l=e.unpackTensor(t),a.push(l));let[u,c]=C.computeOutAndReduceShapes(l.shape,r),p=v.sizeFromShape(c),d=ve({inputs:{x:l},backend:e,attrs:{shape:[-1,p]}});a.push(d);let h=Z4(e,d,s);a.push(h);let f=ve({inputs:{x:h},backend:e,attrs:{shape:u}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return Y4(e,t,s)}function sne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=C.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=An({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=C.getInnerMostAxes(o.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let c=J4(n,l,o[0],"max");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),c}var rne={kernelName:ja,backendName:"webgl",kernelFunc:sne};function ane(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=C.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=An({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=C.getInnerMostAxes(o.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=J4(n,l,o[0],"min");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),c}var one={kernelName:Du,backendName:"webgl",kernelFunc:ane},ine=Xs+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,lne=ot({opSnippet:ine}),une={kernelName:Pu,backendName:"webgl",kernelFunc:lne},cne=Xs+"return log(x + sqrt(x * x + 1.0));",dne=ot({opSnippet:cne}),pne={kernelName:Fu,backendName:"webgl",kernelFunc:dne},hne=Xs+`
|
|
return atan(x);
|
|
`,fne=ot({opSnippet:hne}),mne={kernelName:Ou,backendName:"webgl",kernelFunc:fne},gne=kte+`
|
|
return atan(a, b);
|
|
`,yne=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Ste+`
|
|
return result;
|
|
`,Ane=xn({opSnippet:gne,packedOpSnippet:yne}),xne={kernelName:zu,backendName:"webgl",kernelFunc:Ane},bne=Xs+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vne=ot({opSnippet:bne}),wne={kernelName:Mu,backendName:"webgl",kernelFunc:vne},Md=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,p=e.effectiveFilterWidth,d=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),n){let I=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${d}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${I} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?m:g:`wR * ${p} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let x="max",A=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(A="avgValue / count");let b=Math.floor(a/4)*4,w=a%4,S=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${x}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${d}, ${h});
|
|
const float initializationValue = ${y};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${y});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${b}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${S}
|
|
}
|
|
|
|
int xC = xCCorner + ${b};
|
|
if (${w===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${S}
|
|
} else if (${w===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${S}
|
|
} else if (${w===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${S}
|
|
}
|
|
}
|
|
setOutput(${A});
|
|
}
|
|
`}},ub=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,p=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let x=t==="avg",A="0.0";if(x||(A="-1.0 / 1e-20"),n){let R=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${p}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${R} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let S=Math.floor(a/4)*4,I=a%4,E=`
|
|
if (${x}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${y});
|
|
const float initializationValue = ${A};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${A});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${S}; wC += 4) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${p}, ch)
|
|
);
|
|
|
|
${E}
|
|
}
|
|
|
|
int xC = xCCorner + ${S};
|
|
if (${I===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${I===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${I===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
}
|
|
}
|
|
setOutput(${w});
|
|
}
|
|
}
|
|
`}};function kne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;gc(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(C.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=C.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return ss({inputs:{x:r},backend:n});let p=new Md(c,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var Sne={kernelName:qa,backendName:"webgl",kernelFunc:kne};function Ine(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s,c=[1,1,1],p=C.computePool3DInfo(r.shape,a,o,c,i,l,u),d=new ub(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var Cne={kernelName:Ld,backendName:"webgl",kernelFunc:Ine},Tne=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=i-1-e.padInfo.top,c=l-1-e.padInfo.left,p=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${c});
|
|
const float avgMultiplier = float(${p});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${i};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Nne=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=c-1-e.padInfo.front,f=p-1-e.padInfo.top,m=d-1-e.padInfo.left,g=1/(t*n*s);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${f}, ${m});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${i}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Ene(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,p=[1,1,1],d=C.computePool3DInfo(o.shape,i,l,p,u,c),h=new Nne(d);return n.runWebGLProgram(h,[r],o.dtype)}var Rne={kernelName:zf,backendName:"webgl",kernelFunc:Ene};function _ne(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;gc([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=C.computePool2DInfo(o.shape,i,l,1,u),p=new Tne(c);return n.runWebGLProgram(p,[r],o.dtype)}var $ne={kernelName:Mf,backendName:"webgl",kernelFunc:_ne};function Dne(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return Ef({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var Pne={kernelName:Xa,backendName:"webgl",kernelFunc:Dne},Fne=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&(C.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${o};
|
|
float scale = ${i};
|
|
float inv = scale * inversesqrt(variance + float(${a}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},One=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&(C.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${o};
|
|
vec4 scale = ${i};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},Mne=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;v.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[s,r,a],c=null;o!=null&&(c=o.shape,u.push(o));let p=null;i!=null&&(p=i.shape,u.push(i));let d=J().getBool("WEBGL_PACK_NORMALIZATION")?new One(s.shape,r.shape,a.shape,c,p,l):new Fne(s.shape,r.shape,a.shape,c,p,l);return t.runWebGLProgram(d,u,u[0].dtype)},zne={kernelName:io,backendName:"webgl",kernelFunc:Mne},Lne=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=gt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=Bne(this.rank),s,r=e.map((a,o)=>`sourceLoc.${Uy[o]} = start[${o}] + coords.${Uy[o]};`);s=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${r.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${s}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},Uy=["x","y","z","w","u","v"];function Bne(e){if(e===1)return"sourceLoc";if(e<=6)return Uy.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var Wne=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=gt(this.rank),n=Wn("coords",this.rank),s=Wn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=`
|
|
result.x = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.y = ${a};
|
|
--${s[this.rank-1]};
|
|
}
|
|
`,i=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${s[this.rank-2]};
|
|
result.z = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.w = ${a};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,c)=>`start[${c}]`).join()});`:e.map((u,c)=>`${s[c]} = ${n[c]} + start[${c}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${o}
|
|
${i}
|
|
setOutput(result);
|
|
}
|
|
`}};function Vne(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=Ft.computeFlatOffset(t,v.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function wc(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Ft.parseSliceParams(r,a,o);if(Ft.assertParamsValid(r,i,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),d=_ee(p.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}let{isPacked:u}=n.texData.get(r.dataId),c=Ft.isSliceContinous(r.shape,i,l);if(u||!c){let p=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Wne(l):new Lne(l),d=[i];return n.runWebGLProgram(p,[r],r.dtype,d)}return n.uploadToGPU(r.dataId),Vne(r,i,l,n)}var Une={kernelName:ul,backendName:"webgl",kernelFunc:wc},Gne=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((x,A)=>x*A),l=C.getReshaped(r.shape,a,i),u=C.getPermuted(l.length,a.length),c=C.getReshapedPermuted(r.shape,a,i),p=C.getSliceBeginCoords(o,a.length),d=C.getSliceSize(c,o,a.length),h=[],f=ve({inputs:{x:r},backend:n,attrs:{shape:l}}),m=An({inputs:{x:f},backend:n,attrs:{perm:u}}),g=ve({inputs:{x:m},backend:n,attrs:{shape:c}}),y=wc({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(x=>n.disposeIntermediateTensorInfo(x)),y},Hne={kernelName:Fi,backendName:"webgl",kernelFunc:Gne};function jne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),u=O4(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var qne={kernelName:Lf,backendName:"webgl",kernelFunc:jne};function Xne(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.readSync(s.dataId),o=n.readSync(r.dataId),i=C.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var Kne={kernelName:Bf,backendName:"webgl",kernelFunc:Xne},Zne="return float(a != b);",Q4=xn({opSnippet:Zne,cpuKernelImpl:Cee,dtype:"bool"}),Yne={kernelName:Yi,backendName:"webgl",kernelFunc:Q4};function _p(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return ss({inputs:{x:r.complexTensorInfos.real},backend:n})}var Jne={kernelName:Kd,backendName:"webgl",kernelFunc:_p},Qne="return float(int(x));";function ese(e,t){let n=new jr(e.shape,Qne),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function Gy(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return ss({inputs:{x:r},backend:n});let o=Wt(r.shape),i=Gy({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Wo({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=_p({inputs:{input:r},backend:n}),i=Gy({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=ss({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return ese(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=Q4({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var tse={kernelName:Ka,backendName:"webgl",kernelFunc:Gy},Pv="return ceil(x);",nse=ot({opSnippet:Pv,packedOpSnippet:Pv,cpuKernelImpl:iee}),sse={kernelName:Za,backendName:"webgl",kernelFunc:nse},rse=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},ase=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function ose(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;J().getBool("WEBGL_PACK_CLIP")?i=new ase(r.shape):i=new rse(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var ise={kernelName:Zr,backendName:"webgl",kernelFunc:ose},lse=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function Fv(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function use(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new lse(s.shape),o=[Fv(s,r.complexTensorInfos.real),Fv(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var cse={kernelName:Wd,backendName:"webgl",kernelFunc:use},dse=class{constructor(e){this.outputShape=[],this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let o=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${o}));`)}let s=t.length,r=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},pse=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=C.computeOutShape(e,t);let n=this.outputShape,s=n.length,r=gt(s),a=Wn("coords",s),o=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((f,m)=>`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f<i.length;f++)i[f]=i[f-1]+e[f][t];let l=o[t],u=o.slice(-2),c=o.join(),p=`if (${l} < ${i[0]}) {
|
|
return getChannel(
|
|
getT0(${c}), vec2(${u.join()}));
|
|
}`;for(let f=1;f<i.length;f++){let m=i[f-1];p+=`
|
|
if (${l} < ${i[f]} && ${l} >= ${i[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${Hh(o,l,m)}),
|
|
vec2(${Hh(u,l,m)}));
|
|
}`}let d=i.length,h=i[i.length-1];p+=`
|
|
return getChannel(
|
|
getT${d}(${Hh(o,l,h)}),
|
|
vec2(${Hh(u,l,h)}));`,this.userCode=`
|
|
float getValue(${o.map(f=>"int "+f)}) {
|
|
${p}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
|
|
|
|
${a[s-1]} = ${a[s-1]} + 1;
|
|
if (${a[s-1]} < ${n[s-1]}) {
|
|
result.g = getValue(${a});
|
|
}
|
|
|
|
${a[s-2]} = ${a[s-2]} + 1;
|
|
if (${a[s-2]} < ${n[s-2]}) {
|
|
result.a = getValue(${a});
|
|
}
|
|
|
|
${a[s-1]} = ${a[s-1]} - 1;
|
|
if (${a[s-2]} < ${n[s-2]} &&
|
|
${a[s-1]} < ${n[s-1]}) {
|
|
result.b = getValue(${a});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Hh(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function h0(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return ss({inputs:{x:r.complexTensorInfos.imag},backend:n})}var hse={kernelName:Hd,backendName:"webgl",kernelFunc:h0};function lu(e,t,n){let s=e[0].dtype;if(s==="complex64"){let c=e.map(m=>_p({inputs:{input:m},backend:n})),p=e.map(m=>h0({inputs:{input:m},backend:n})),d=lu(c,t,n),h=lu(p,t,n),f=Wo({inputs:{real:d,imag:h},backend:n});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),p.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let c=e.map(y=>{let x=v.sizeFromShape(y.shape.slice(t));return ve({inputs:{x:y},backend:n,attrs:{shape:[-1,x]}})}),p=c.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),d=C.computeOutShape(c.map(y=>y.shape),1),h=c[0].shape[0]===1,f=lee(p,d,s,h),m=C.computeOutShape(e.map(y=>y.shape),t),g=n.makeTensorInfo(m,s,f);return c.forEach(y=>n.disposeIntermediateTensorInfo(y)),g}if(e.length>J().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),p=lu(e.slice(0,c),t,n),d=lu(e.slice(c),t,n),h=lu([p,d],t,n);return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),h}if(J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new pse(e.map(p=>p.shape),t);return n.runWebGLProgram(c,e,s)}let{tensors2D:a,outShape:o}=fse(e,t,n),i=new dse(a.map(c=>c.shape)),l=n.runWebGLProgram(i,a,s);a.forEach(c=>n.disposeIntermediateTensorInfo(c));let u=ve({inputs:{x:l},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(l),u}function fse(e,t,n){let s=C.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ve({inputs:{x:a},attrs:{shape:[-1,v.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function e6(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=C.computeOutShape(t.map(u=>u.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>v.sizeFromShape(u.shape)>0);if(i.length===1)return ss({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return C.assertParamsConsistent(l,a),lu(i,a,n)}var mse={kernelName:Oi,backendName:"webgl",kernelFunc:e6},t6=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,y=m?2:3,x=m?3:1,A="",b="";n&&(s?A=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?A=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:A=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${A}
|
|
|
|
const ivec2 strides = ivec2(${i}, ${l});
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${x}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${y}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${w}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}},gse=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${a}, ${o});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${s});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${c}; wF++) {
|
|
int xF = xFCorner + wF * ${i};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},yse=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=os(this.outputShape.length);let{dataFormat:n}=t,s=jn(),r=n==="channelsLast",a=r?0:1,o=r?1:2,i=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let u=0;u<=1;u++)for(let c=0;c<=1;c++)l+=`
|
|
blockIndex = rc.y + ${c};
|
|
pos = rc.x + ${u};
|
|
|
|
${i}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${a}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${o}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${r}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${u*2+c}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${u*2+c}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${l}
|
|
|
|
${s.output} = result;
|
|
}
|
|
`}};function n6({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,u=s.texData.get(e.dataId),c=n.inChannels,p=l[0]*l[1]*l[2],d=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,y=[];if(!((p===1||d===1)&&c>K4)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!==0&&v.arraysEqual(u.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),w={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},S=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(Od(u.shape,w.shape),()=>`packed reshape ${u.shape} to ${w.shape} isn't free`);let I=ve({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(I);let E=Ef({a:w,b:I,backend:s,transposeA:f,transposeB:m,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),R=s.texData.get(E.dataId);v.assert(R.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=S,R.shape=n.outShape,g=ss({inputs:{x:E},backend:s}),g.shape=n.outShape,y.push(E)}else{let b=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],w=ve({inputs:{x:e},backend:s,attrs:{shape:[1,b,n.inChannels]}}),S=ve({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),I=Ef({a:w,b:S,transposeA:f,transposeB:m,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=ve({inputs:{x:I},backend:s,attrs:{shape:n.outShape}}),y.push(w),y.push(S),y.push(I)}for(let b of y)s.disposeIntermediateTensorInfo(b);return g}function s6({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:p,outHeight:d,dataFormat:h}=n,f=h==="channelsLast",m=l*u*c,g=d*p,y=[m,g],x=!0,A=!1,b=[],w=ve({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),S=ve({inputs:{x:t},backend:s,attrs:{shape:[1,m,v.sizeFromShape(t.shape)/m]}});b.push(w),b.push(S);let I=new yse(y,n),E=[w.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],R=s.runWebGLProgram(I,[w],"float32",E),P=ve({inputs:{x:R},backend:s,attrs:{shape:[1,y[0],y[1]]}});b.push(R),b.push(P);let _=r!=null,D=a!=null,T=i==="leakyrelu",O=i?c0(i,!0):null,U=new X4(P.shape,S.shape,[1,g,n.outChannels],x,A,_,O,D,T),K=[P,S];if(r&&K.push(r),D&&K.push(a),T){let ee=s.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));K.push(ee),b.push(ee)}let z=s.runWebGLProgram(U,K,"float32"),Z=f?[1,d,p,n.outChannels]:[1,n.outChannels,d,p],W=ve({inputs:{x:z},backend:s,attrs:{shape:Z}});b.push(z);for(let ee of b)s.disposeIntermediateTensorInfo(ee);return W}function Ase(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s,p=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,p),h;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))h=n6({x:r,filter:a,convInfo:d,backend:n});else if(J().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=s6({x:r,filter:a,convInfo:d,backend:n});else{let m=new t6(d);h=n.runWebGLProgram(m,[r,a],"float32")}let f=ve({inputs:{x:h},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(h),f}var xse={kernelName:Ya,backendName:"webgl",kernelFunc:Ase},bse=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${a}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},vse=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,u=a?2:3,c=a?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${c}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${a}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},wse=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${s} - ${o};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},kse=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=s-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${i}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${s} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Sse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s,p=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(r.shape,c,o,1,i,u,!1,p),h=new bse(d);return n.runWebGLProgram(h,[r,a],"float32")}var Ise={kernelName:Wf,backendName:"webgl",kernelFunc:Sse};function Cse(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s,p=C.convertConv2DDataFormat(u),d=C.computeConv2DInfo(o,a.shape,i,1,l,c,!1,p),h=new vse(d);return n.runWebGLProgram(h,[r,a],"float32")}var Tse={kernelName:Ja,backendName:"webgl",kernelFunc:Cse};function Nse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=C.computeConv3DInfo(r.shape,a.shape,o,l,i),c=new gse(u);return n.runWebGLProgram(c,[r,a],"float32")}var Ese={kernelName:Vd,backendName:"webgl",kernelFunc:Nse};function Rse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,u=C.computeConv3DInfo(r.shape,l,o,1,i),c=new wse(u);return n.runWebGLProgram(c,[r,a],"float32")}var _se={kernelName:Vf,backendName:"webgl",kernelFunc:Rse};function $se(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,u=C.computeConv3DInfo(l,a.shape,i,1,o),c=new kse(u);return n.runWebGLProgram(c,[r,a],"float32")}var Dse={kernelName:Uf,backendName:"webgl",kernelFunc:$se},Pse=vc+`
|
|
return cos(x);
|
|
`,Fse=ot({opSnippet:Pse}),Ose={kernelName:Qa,backendName:"webgl",kernelFunc:Fse},Mse=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,zse=ot({opSnippet:Mse}),Lse={kernelName:eo,backendName:"webgl",kernelFunc:zse},Bse=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[u]=t,[c,p]=n;this.outputShape=[u,c,p,l];let d=s==="bilinear"?1:0,[h,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,y]=c>1?[`${(o-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[x,A,b]=p>1?[`${(i-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${x});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${a}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${A};
|
|
|
|
float in_y = ${y};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${b};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${d} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},Wse=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,c=new Bse(r.shape,a.shape,i,l,u);return n.runWebGLProgram(c,[r,a,o],"float32")},Vse={kernelName:zi,backendName:"webgl",kernelFunc:Wse},Ov=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let s=e.length,r=t?"1.0":`getX(${Mv(s,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${gt(s)} coords = getOutputCoords();
|
|
int end = ${zv(s,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${o}) {
|
|
int idx = ${i};
|
|
${zv(s,"coords")} = idx;
|
|
val *= getX(${Mv(s,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function Mv(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative product for rank ${e} is not yet supported`)}function zv(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative product for rank ${e} is not yet supported`)}function Use(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length,u=C.getAxesPermutation([a],l),c=r;u!=null&&(c=An({inputs:{x:r},backend:n,attrs:{perm:u}}));let p=C.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${r.shape.length-1} but got axis=${a}`);let d=c.shape[p],h=ss({inputs:{x:c},backend:n});for(let f=0;f<=Math.ceil(Math.log2(d))-1;f++){let m=new Ov(c.shape,!1,i),g=[[f]],y=h;h=n.runWebGLProgram(m,[h],h.dtype,g),n.disposeIntermediateTensorInfo(y)}if(o){let f=new Ov(c.shape,o,i),m=h;h=n.runWebGLProgram(f,[h],h.dtype),n.disposeIntermediateTensorInfo(m)}if(u!=null){let f=C.getUndoAxesPermutation(u),m=An({inputs:{x:h},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(c),m}return h}var Gse={kernelName:Lu,backendName:"webgl",kernelFunc:Use},Lv=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let s=e.length,r=t?"0.0":`getX(${Bv(s,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${gt(s)} coords = getOutputCoords();
|
|
int end = ${Wv(s,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${o}) {
|
|
int idx = ${i};
|
|
${Wv(s,"coords")} = idx;
|
|
val += getX(${Bv(s,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function Bv(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Wv(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Hse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length,u=C.getAxesPermutation([a],l),c=r;u!=null&&(c=An({inputs:{x:r},backend:n,attrs:{perm:u}}));let p=C.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${a}`);let d=c.shape[p],h=ss({inputs:{x:c},backend:n});for(let f=0;f<=Math.ceil(Math.log2(d))-1;f++){let m=new Lv(c.shape,!1,i),g=[[f]],y=h;h=n.runWebGLProgram(m,[h],h.dtype,g),n.disposeIntermediateTensorInfo(y)}if(o){let f=new Lv(c.shape,o,i),m=h;h=n.runWebGLProgram(f,[h],h.dtype),n.disposeIntermediateTensorInfo(m)}if(u!=null){let f=C.getUndoAxesPermutation(u),m=An({inputs:{x:h},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(c),m}return h}var jse={kernelName:Mi,backendName:"webgl",kernelFunc:Hse};function qse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=O4(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=oee(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Xse={kernelName:Gf,backendName:"webgl",kernelFunc:qse},Kse=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Zse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],p=l*a,d=u*a,h=c/(a*a),f=o==="NHWC"?[i,p,d,h]:[i,h,p,d],m=new Kse(f,a,o);return n.runWebGLProgram(m,[r],r.dtype)}var Yse={kernelName:Li,backendName:"webgl",kernelFunc:Zse},r6=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=os(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,l="",u="";n&&(s?l=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?l=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:l=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,u="result = activation(result);");let c=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${l}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${i};
|
|
int q = d2 - d1 * ${i};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${a}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${o}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${c}
|
|
${u}
|
|
setOutput(result);
|
|
}
|
|
`}},a6=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=os(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,c=e.filterWidth,p=c,d=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<c;g++)d+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;d+=`
|
|
for (int r = 0; r < ${u}; r++) {
|
|
`;for(let g=0;g<c;g++)d+=`
|
|
xTexelC${g*2} = vec4(0.0);
|
|
xTexelC${g*2}Ready = 0;
|
|
xTexelC${g*2+1} = vec4(0.0);
|
|
xTexelC${g*2+1}Ready = 0;
|
|
xC${g} = vec4(0.0);`;d+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let g=0;g<(p+1)/2;g++){let y=g*2;if(d+=`
|
|
xC = xCCorner + ${y*l};
|
|
`,i===1){if(y<c&&(o%2===1?(d+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
`,l===1&&y>0?d+=`
|
|
xC${y} = vec4(xTexelC${y-2}.zw, xTexelC${y}.xy);
|
|
`:d+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${y} = vec4(previous.zw, xTexelC${y}.xy);
|
|
} else {
|
|
xC${y} = vec4(0.0, 0.0, xTexelC${y}.xy);
|
|
}
|
|
`):d+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xC${y} = xTexelC${y};
|
|
`,y+1<c)){let x=o%2===0?v.nearestLargerEven(l):l;l%2===0&&o%2===1||l%2!==0&&o%2!==1?(d+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${x};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
`,l>1&&(d+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
`),d+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.xy);
|
|
`):x===1?d+=`
|
|
xC${y+1} = xTexelC${y};
|
|
`:d+=`
|
|
xCOffset = xC + ${x};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y+1} = xTexelC${y+1};
|
|
`}}else y<c&&(o%2===1?(d+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`,y+1<c&&(d+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${y+1} = vec4(xTexelC${y+1}.xy, final.xy);
|
|
`)):(d+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(
|
|
xTexelC${y}.xy, xTexelC${y+1}.xy);
|
|
`,y+1<c&&(d+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`)));y<c&&(d+=`
|
|
wTexel = getW(r, ${y}, d1, q);
|
|
dotProd += xC${y} * vec4(wTexel.xz, wTexel.xz);
|
|
`,y+1<c&&(d+=`
|
|
wTexel = getW(r, ${y+1}, d1, q);
|
|
dotProd += xC${y+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}d+=`
|
|
}
|
|
`,d+=`
|
|
}
|
|
`;let h="",f="";n&&(s?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:h=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${h}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${a};
|
|
int q = d2 - d1 * ${a};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${d}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${m}
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};function Jse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s,c=l;c==null&&(c=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(o,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let p=C.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!0),d;J().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels===1?d=new a6(p):d=new r6(p);let h=[[p.padInfo.top,p.padInfo.left],[p.strideHeight,p.strideWidth],[p.dilationHeight,p.dilationWidth],[p.inHeight,p.inWidth]];return n.runWebGLProgram(d,[r,a],"float32",h)}var Qse={kernelName:to,backendName:"webgl",kernelFunc:Jse},ere=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${a} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},tre=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${i}; dm++) {
|
|
int d2 = d1 * ${i} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function nre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s,p=C.computeConv2DInfo(r.shape,c,o,i,l,u,!0),d=new ere(p);return n.runWebGLProgram(d,[r,a],"float32")}var sre={kernelName:Hf,backendName:"webgl",kernelFunc:nre};function rre(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s,p=C.computeConv2DInfo(c,a.shape,o,i,l,u,!0),d=new tre(p);return n.runWebGLProgram(d,[r,a],"float32")}var are={kernelName:jf,backendName:"webgl",kernelFunc:rre},ore=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function ire(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=v.sizeFromShape(s.shape),o=ve({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new ore(a),l=n.runWebGLProgram(i,[o],o.dtype),u=ve({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var lre={kernelName:qf,backendName:"webgl",kernelFunc:ire},ure=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:u}=e,{top:c,left:p}=s;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${a});
|
|
const ivec2 pads = ivec2(${c}, ${p});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${o}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${i}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function cre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=C.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),c,p=new ure(u);c=n.runWebGLProgram(p,[r,a],"float32");let d=ve({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),d}var dre={kernelName:Ud,backendName:"webgl",kernelFunc:cre};function pre(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=C.decodeEinsumEquation(r,a.length);C.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=C.getEinsumComputePath(i,l),p=c.length,d=null,h=o.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:y,expandDims:x}=C.getEinsumPermutation(h,l[g]),A;C.isIdentityPermutation(y)?A=a[g]:(A=An({inputs:{x:a[g]},backend:n,attrs:{perm:y}}),f.push(A));let b=A.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(A.shape,b)||(A=ve({inputs:{x:A},backend:n,attrs:{shape:b}}),f.push(A)),d===null?d=A:(d=lb({inputs:{a:A,b:d},backend:n}),f.push(d))}m<p-1&&(u[m]>=0&&(d=p0({inputs:{x:d},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var hre={kernelName:Gd,backendName:"webgl",kernelFunc:pre},fre="return (x >= 0.0) ? x : (exp(x) - 1.0);",mre=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,gre=ot({opSnippet:fre,packedOpSnippet:mre}),yre={kernelName:so,backendName:"webgl",kernelFunc:gre},Are="return (b >= 1.0) ? a : a * (b + 1.0);",xre=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,bre=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Rp(xre,s.shape,r.shape):new Cu(Are,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},vre={kernelName:Xf,backendName:"webgl",kernelFunc:bre},wre=`
|
|
return vec4(equal(a, b));
|
|
`,kre="return float(a == b);",Sre=xn({opSnippet:kre,packedOpSnippet:wre,dtype:"bool",cpuKernelImpl:uee}),Ire={kernelName:Bi,backendName:"webgl",kernelFunc:Sre},Cre=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${C.ERF_P};
|
|
float a1 = ${C.ERF_A1};
|
|
float a2 = ${C.ERF_A2};
|
|
float a3 = ${C.ERF_A3};
|
|
float a4 = ${C.ERF_A4};
|
|
float a5 = ${C.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,Tre=ot({opSnippet:Cre}),Nre={kernelName:Bu,backendName:"webgl",kernelFunc:Tre},Ere=vc+`
|
|
return exp(x);
|
|
`,Rre=`
|
|
vec4 result = exp(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,o6=ot({opSnippet:Ere,packedOpSnippet:Rre,cpuKernelImpl:cee,dtype:"float32"}),_re={kernelName:ro,backendName:"webgl",kernelFunc:o6};function Hy(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),ve({inputs:{x:a},backend:s,attrs:{shape:i}})}var $re={kernelName:Wi,backendName:"webgl",kernelFunc:Hy},Vv="return exp(x) - 1.0;",Dre=ot({opSnippet:Vv,packedOpSnippet:Vv,cpuKernelImpl:dee}),Pre={kernelName:Vi,backendName:"webgl",kernelFunc:Dre},Uv=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${o}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${s});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${a};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function i6(e,t,n){let s=n.texData.get(e.dataId),r=v.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=ve({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,u=new Uv("real",l,t),c=new Uv("imag",l,t),p=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(c,p,"float32"),f=Wo({inputs:{real:d,imag:h},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h);let m=ve({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function Fre(e){let{inputs:t,backend:n}=e,{input:s}=t;return i6(s,!1,n)}var Ore={kernelName:Kf,backendName:"webgl",kernelFunc:Fre},Mre=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function $p(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new Mre(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var zre={kernelName:Wu,backendName:"webgl",kernelFunc:$p},Lre=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Bre={kernelName:Ui,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new Lre(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},Gv="return floor(x);",Wre=ot({opSnippet:Gv,packedOpSnippet:Gv,cpuKernelImpl:pee}),Vre={kernelName:ao,backendName:"webgl",kernelFunc:Wre},Ure=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,Gre=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,Hre=xn({opSnippet:Ure,packedOpSnippet:Gre,dtype:"int32"}),jre={kernelName:oo,backendName:"webgl",kernelFunc:Hre},qre=class{constructor(e){this.variableNames=["A"];let t=jn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},Xre=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=jn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},Kre={kernelName:Id,backendName:"webgl",kernelFunc:Zre},su;function Zre(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],c=[u,l],p=[u,l,a];(i||o)&&(su==null&&(su=document.createElement("canvas").getContext("2d")),su.canvas.width=l,su.canvas.height=u,su.drawImage(r,0,0,l,u),r=su.canvas);let d=n.makeTensorInfo(c,"int32");n.texData.get(d.dataId).usage=2,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),r);let h=J().getBool("WEBGL_PACK")?new Xre(p):new qre(p),f=n.runWebGLProgram(h,[d],"int32");return n.disposeData(d.dataId),f}function Yre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=C.convertConv2DDataFormat(c),g=C.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!1,m),y,x=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=n6({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else if(J().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)y=s6({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else{let b=o!=null,w=i!=null,S=h==="leakyrelu",I=h?c0(h,!1):null,E=new t6(g,b,I,w,S),R=[r,a];if(o&&R.push(o),i&&R.push(i),S){let P=n.makeTensorInfo([],"float32",v.createScalarValue(f,"float32"));R.push(P),x.push(P)}y=n.runWebGLProgram(E,R,"float32")}let A=ve({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return x.push(y),x.forEach(b=>n.disposeIntermediateTensorInfo(b)),A}var Jre={kernelName:Ra,backendName:"webgl",kernelFunc:Yre};function Qre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=s,f=[],m=c;m==null&&(m=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=C.computeConv2DInfo(r.shape,a.shape,l,m,u,p,!0),y=J().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,x=d?c0(d,y):null,A=[r,a],b=o!=null,w=i!=null,S=d==="leakyrelu";if(b&&A.push(o),w&&A.push(i),S){let P=n.makeTensorInfo([],"float32",v.createScalarValue(h,"float32"));A.push(P),f.push(P)}let I;y?I=new a6(g,b,x,w,S):I=new r6(g,b,x,w,S);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],R=n.runWebGLProgram(I,A,"float32",E);return f.forEach(P=>n.disposeIntermediateTensorInfo(P)),R}var eae={kernelName:_a,backendName:"webgl",kernelFunc:Qre},tae=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let s=gt(t.length),r=gt(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${s} strides = ${s}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${a};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function nae(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,u,c,p]=C.prepareAndValidate(s,r),d=ve({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),h=ve({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let y=n.readSync(r.dataId),x=n.bufferSync(s),A=hee(y,x,s.dtype,u,o,c,p,s.shape,i);return n.makeTensorInfo(l,s.dtype,A.values)}let f=new tae(o,p,[u,c]),m=n.runWebGLProgram(f,[h,d],h.dtype),g=ve({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var sae={kernelName:Hi,backendName:"webgl",kernelFunc:nae},rae=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=gt(this.rank),s=aae(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
int index = int(getIndices(resRC.x, resRC.z));
|
|
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
|
|
setOutput(inBounds * getA(${s}));
|
|
}
|
|
`}};function aae(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push("index"):s.push(`${n[r]}`);return s.join()}function l6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0];if(J().get("DEBUG")){let x=n.readSync(a.dataId),A=r.shape[l];for(let b=0;b<x.length;++b){let w=x[b];v.assert(w<=A-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${A-1}]`)}}let u=C.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=v.sizeFromShape(a.shape),p=[],d=ve({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=ve({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});p.push(d),p.push(h);let f=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let x=n.bufferSync(h),A=n.bufferSync(d),b=fee(A,x,f);return p.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.makeTensorInfo(u.outputShape,b.dtype,b.values)}let m=new rae(d.shape,f),g=n.runWebGLProgram(m,[d,h],d.dtype);p.push(g);let y=ve({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return p.forEach(x=>n.disposeIntermediateTensorInfo(x)),y}var oae={kernelName:Gi,backendName:"webgl",kernelFunc:l6},iae="return float(a > b);",lae=`
|
|
return vec4(greaterThan(a, b));
|
|
`,uae=xn({opSnippet:iae,packedOpSnippet:lae,cpuKernelImpl:mee,dtype:"bool"}),cae={kernelName:ji,backendName:"webgl",kernelFunc:uae},dae="return float(a >= b);",pae=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,hae=xn({opSnippet:dae,packedOpSnippet:pae,dtype:"bool",cpuKernelImpl:gee}),fae={kernelName:lo,backendName:"webgl",kernelFunc:hae};function mae(e){let{inputs:t,backend:n}=e,{input:s}=t;return i6(s,!0,n)}var gae={kernelName:Zf,backendName:"webgl",kernelFunc:mae},yae="return float(!isnan(x) && !isinf(x));",Aae=ot({opSnippet:yae,dtype:"bool"}),xae={kernelName:Vu,backendName:"webgl",kernelFunc:Aae},bae="return float(isinf(x));",vae=ot({opSnippet:bae,dtype:"bool"}),wae={kernelName:Uu,backendName:"webgl",kernelFunc:vae},kae="return float(isnan(x));",Sae=ot({opSnippet:kae,dtype:"bool"}),Iae={kernelName:Gu,backendName:"webgl",kernelFunc:Sae},Cae="return float(a < b);",Tae=`
|
|
return vec4(lessThan(a, b));
|
|
`,Nae=xn({opSnippet:Cae,packedOpSnippet:Tae,cpuKernelImpl:yee,dtype:"bool"}),Eae={kernelName:qi,backendName:"webgl",kernelFunc:Nae},Rae="return float(a <= b);",_ae=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,$ae=xn({opSnippet:Rae,packedOpSnippet:_ae,cpuKernelImpl:Aee,dtype:"bool"}),Dae={kernelName:Xi,backendName:"webgl",kernelFunc:$ae};function Pae(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=xee(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var Fae={kernelName:Yf,backendName:"webgl",kernelFunc:Pae},Oae=vc+`
|
|
return x < 0.0 ? 0./0. : log(x);
|
|
`,Mae=`
|
|
vec4 result = log(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
|
|
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
|
|
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
|
|
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
|
|
return result;
|
|
`,zae=ot({opSnippet:Oae,packedOpSnippet:Mae,cpuKernelImpl:bee}),Lae={kernelName:po,backendName:"webgl",kernelFunc:zae},Bae=vc+`
|
|
return log(1.0 + x);
|
|
`,Wae=ot({opSnippet:Bae}),Vae={kernelName:Hu,backendName:"webgl",kernelFunc:Wae},Uae="return float(a >= 1.0 && b >= 1.0);",Gae=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,Hae=xn({opSnippet:Uae,packedOpSnippet:Gae,dtype:"bool"}),jae={kernelName:Ki,backendName:"webgl",kernelFunc:Hae},qae="return float(!(x >= 1.0));",Xae=ot({opSnippet:qae}),Kae={kernelName:ju,backendName:"webgl",kernelFunc:Xae},Zae="return float(a >= 1.0 || b >= 1.0);",Yae=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,Jae=xn({opSnippet:Zae,packedOpSnippet:Yae,dtype:"bool"}),Qae={kernelName:jd,backendName:"webgl",kernelFunc:Jae},eoe=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${a}; j <= ${a}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${o}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${i};
|
|
setOutput(val);
|
|
}
|
|
`}},toe=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${a};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${a}; j <= ${a}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${i};
|
|
setOutput(result);
|
|
}
|
|
`}},noe=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,u=J().getBool("WEBGL_PACK_NORMALIZATION")?new toe(r.shape,a,o,i,l):new eoe(r.shape,a,o,i,l);return n.runWebGLProgram(u,[r],r.dtype)},soe={kernelName:qd,backendName:"webgl",kernelFunc:noe},roe=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${s}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${s})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},aoe=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s,p=new roe(r.shape,i,l,u,c);return n.runWebGLProgram(p,[r,a,o],r.dtype)},ooe={kernelName:Jf,backendName:"webgl",kernelFunc:aoe};function ioe(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=ve({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=Rl(i,e.dtype,"max",s),u=ve({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}function u6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=C.getAxesPermutation(u,i),p=c!=null,d=n.shouldExecuteOnCPU([r]),h=r;if(p){if(d){let A=n.texData.get(h.dataId).values,b=new Array(i);for(let I=0;I<b.length;I++)b[I]=r.shape[c[I]];let w=ib(A,r.shape,r.dtype,c,b);h=n.makeTensorInfo(b,r.dtype);let S=n.texData.get(h.dataId);S.values=w}else h=d0(r,c,n);u=C.getInnerMostAxes(u.length,i)}C.assertAxesAreInnerMostDims("max",u,i);let[f,m]=C.computeOutAndReduceShapes(h.shape,u),g=f;o&&(g=C.expandShapeToKeepDim(f,l));let y;if(d){let A=n.texData.get(h.dataId).values,b=vee(A,v.sizeFromShape(m),g,r.dtype);y=n.makeTensorInfo(g,r.dtype);let w=n.texData.get(y.dataId);w.values=b}else y=ioe(h,m,g,n);return p&&n.disposeIntermediateTensorInfo(h),y}var loe={kernelName:ho,backendName:"webgl",kernelFunc:u6},uoe=U4+`
|
|
return max(a, b);
|
|
`,coe=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+u0+`
|
|
return result;
|
|
`,doe=xn({opSnippet:uoe,packedOpSnippet:coe,cpuKernelImpl:wee}),poe={kernelName:fo,backendName:"webgl",kernelFunc:doe};function hoe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;gc(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(C.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=C.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return ss({inputs:{x:r},backend:n});let p=new Md(c,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var foe={kernelName:mo,backendName:"webgl",kernelFunc:hoe};function moe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:u}=s,c=[1,1,1],p=C.computePool3DInfo(r.shape,a,o,c,i,u,l),d=new ub(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var goe={kernelName:Xd,backendName:"webgl",kernelFunc:moe},yoe=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${a} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Aoe=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=i-1-e.padInfo.front,p=l-1-e.padInfo.top,d=u-1-e.padInfo.left,h=i*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${c}, ${p}, ${d});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${i};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function xoe(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,p=[1,1,1],d=C.computePool3DInfo(o.shape,i,l,p,u,c),h=new ub(d,"max",!0),f=n.runWebGLProgram(h,[o],o.dtype),m=new Aoe(d),g=n.runWebGLProgram(m,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var boe={kernelName:em,backendName:"webgl",kernelFunc:xoe};function voe(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;gc([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=s,d=C.computePool2DInfo(i.shape,l,u,1,c,p),h=!0,f=new Md(d,"max",h),m=n.runWebGLProgram(f,[i],i.dtype),g=new yoe(d),y=n.runWebGLProgram(g,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),y}var woe={kernelName:Qf,backendName:"webgl",kernelFunc:voe};function koe(e,t,n,s){let r=new Md(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new Md(n,"max",!0,!0,t);let o=s.runWebGLProgram(r,[e],"float32");return[a,o]}var Soe={kernelName:tm,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;v.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let u=[1,1];v.assert(C.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=C.computePool2DInfo(s.shape,r,a,u,o),[p,d]=koe(s,i,c,l);return[p,d]}};function Ioe(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=ve({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=Rl(i,"float32","mean",s),u=ve({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}var Coe={kernelName:go,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=v.parseAxisParam(a,s.shape),u=l,c=C.getAxesPermutation(u,i),p=c!=null,d=o.shouldExecuteOnCPU([s]),h=[],f=s;if(p){if(d){let b=o.texData.get(f.dataId).values,w=new Array(i);for(let E=0;E<w.length;E++)w[E]=s.shape[c[E]];let S=ib(b,s.shape,s.dtype,c,w);f=o.makeTensorInfo(w,s.dtype);let I=o.texData.get(f.dataId);I.values=S}else f=d0(s,c,o);h.push(f),u=C.getInnerMostAxes(u.length,i)}C.assertAxesAreInnerMostDims("sum",u,i);let[m,g]=C.computeOutAndReduceShapes(f.shape,u),y=m;r&&(y=C.expandShapeToKeepDim(m,l));let x=Ioe(f,g,y,o);for(let A of h)o.disposeIntermediateTensorInfo(A);return x}};function Toe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=C.getAxesPermutation(u,i),p=r;c!=null&&(p=An({inputs:{x:r},backend:n,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,r.shape.length)),C.assertAxesAreInnerMostDims("min",u,i);let[d,h]=C.computeOutAndReduceShapes(p.shape,u),f=v.sizeFromShape(h),m=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=Rl(m,m.dtype,"min",n),y;if(o){let x=C.expandShapeToKeepDim(d,l);y=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else y=ve({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),y}var Noe={kernelName:yo,backendName:"webgl",kernelFunc:Toe},Eoe=U4+`
|
|
return min(a, b);
|
|
`,Roe=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+u0+`
|
|
return result;
|
|
`,_oe=xn({opSnippet:Eoe,packedOpSnippet:Roe,cpuKernelImpl:kee}),$oe={kernelName:Ao,backendName:"webgl",kernelFunc:_oe},Doe=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let s=e.length,r=gt(s),a=t.map(u=>u[0]).join(","),o=t.map((u,c)=>u[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${s}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}},Poe=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let s=e.length,r=gt(s),a=t.map(h=>h[0]).join(","),o=t.map((h,f)=>h[0]+e[f]).join(","),i=Wn("rc",s),l=Wn("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,p=n==="reflect"?0:1,d="";if(s===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${p};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${p};
|
|
}
|
|
source -= start;
|
|
`;d=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${i[s-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${p}) +
|
|
gte * ((end - 1) * 2 - source + ${p});
|
|
source -= start;
|
|
`;d=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${i[s-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${c});
|
|
${i[s-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${d}
|
|
setOutput(result);
|
|
}
|
|
`}},Foe=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Poe(s.shape,r,a):new Doe(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},Ooe={kernelName:xo,backendName:"webgl",kernelFunc:Foe},Moe=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,zoe=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+u0+`
|
|
return result;
|
|
`,Loe=xn({opSnippet:Moe,packedOpSnippet:zoe}),Boe={kernelName:qu,backendName:"webgl",kernelFunc:Loe},Woe=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},Voe=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,Uoe=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,c6=xn({opSnippet:Voe,packedOpSnippet:Uoe,checkOutOfBounds:!0}),Goe={kernelName:no,backendName:"webgl",kernelFunc:c6},Hv="return a - b;",d6=xn({opSnippet:Hv,packedOpSnippet:Hv,supportsComplex:!0,cpuKernelImpl:Lee}),Hoe={kernelName:Po,backendName:"webgl",kernelFunc:d6};function p6(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=u6({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=C.expandShapeToKeepDim(i.shape,o),u=ve({inputs:{x:i},backend:n,attrs:{shape:l}}),c=d6({inputs:{a:r,b:u},backend:n}),p=o6({inputs:{x:c},backend:n}),d=p0({inputs:{x:p},backend:n,attrs:{axis:o,keepDims:!1}}),h=ve({inputs:{x:d},backend:n,attrs:{shape:l}}),f=c6({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}var joe={kernelName:$o,backendName:"webgl",kernelFunc:p6};function qoe(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:p6({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],c=l.shape[1],p=new Woe(u,c,a),d=[[o]],h=n.runWebGLProgram(p,[l],"int32",d);return i||n.disposeIntermediateTensorInfo(l),h}var Xoe={kernelName:nm,backendName:"webgl",kernelFunc:qoe},Koe=Xs+`
|
|
return -x;
|
|
`,Zoe=`
|
|
vec4 result = -x;
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`;function Yoe(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=Iee(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new gi(s.shape,Zoe):r=new jr(s.shape,Koe),n.runWebGLProgram(r,[s],s.dtype)}var Joe={kernelName:Zi,backendName:"webgl",kernelFunc:Yoe},Qoe=js.nonMaxSuppressionV3Impl;function eie(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:p}=Qoe(u,c,o,i,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var tie={kernelName:Ji,backendName:"webgl",kernelFunc:eie},nie=js.nonMaxSuppressionV4Impl;function sie(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),{selectedIndices:d,validOutputs:h}=nie(c,p,o,i,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var rie={kernelName:Xu,backendName:"webgl",kernelFunc:sie},aie=js.nonMaxSuppressionV5Impl;function oie(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),d=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:y}=aie(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var iie={kernelName:Qi,backendName:"webgl",kernelFunc:oie},lie=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${s}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},uie=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=v.sizeFromShape(r.shape),u=new lie(l,a,o,i),c=ve({inputs:{x:r},backend:n,attrs:{shape:[l]}}),p=n.runWebGLProgram(u,[c],r.dtype);n.disposeIntermediateTensorInfo(c);let d=[...r.shape,a],h=ve({inputs:{x:p},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(p),h},cie={kernelName:tl,backendName:"webgl",kernelFunc:uie};function Rf(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=_p({inputs:{input:s},backend:n}),a=Rf({inputs:{x:r},backend:n}),o=h0({inputs:{input:s},backend:n}),i=Rf({inputs:{x:o},backend:n}),l=Wo({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return $p({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var die={kernelName:Al,backendName:"webgl",kernelFunc:Rf};function h6(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=_p({inputs:{input:s},backend:n}),a=h6({inputs:{x:r},backend:n}),o=h0({inputs:{input:s},backend:n}),i=Rf({inputs:{x:o},backend:n}),l=Wo({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return $p({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var pie={kernelName:el,backendName:"webgl",kernelFunc:h6};function hie(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Hy({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=Hy({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=e6({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var fie={kernelName:nl,backendName:"webgl",kernelFunc:hie},mie=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let s=e.length,r=gt(s),a=t.map(l=>l[0]).join(","),o=t.map((l,u)=>l[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
}
|
|
`}},gie=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=gt(s),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=Wn("rc",s),l=Wn("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${i[s-1]} += 1;
|
|
if(${u}) {
|
|
`,s===1?"":`}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${i[s-1]} += 1;
|
|
if(${u}) {`],d=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=s===1?2:4;f<m;f++)h+=`
|
|
${p[f]}
|
|
if (${d}) {
|
|
result[${f}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${f}] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`;h+=s===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},f6=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(v.sizeFromShape(r.shape)===0){let u=a.map((c,p)=>c[0]+r.shape[p]+c[1]);return $p({backend:n,attrs:{shape:u,value:o,dtype:r.dtype}})}let i=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new gie(r.shape,a,o):new mie(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},yie={kernelName:vo,backendName:"webgl",kernelFunc:f6},Aie=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,xie=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+u0+`
|
|
return result;
|
|
`,bie=xn({opSnippet:Aie,packedOpSnippet:xie}),vie={kernelName:wo,backendName:"webgl",kernelFunc:bie};function wie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],u=v.parseAxisParam(a,r.shape),c=u,p=C.getAxesPermutation(c,i),d=r;p!=null&&(d=An({inputs:{x:r},backend:n,attrs:{perm:p}}),c=C.getInnerMostAxes(c.length,i),l.push(d)),C.assertAxesAreInnerMostDims("prod",c,i);let h;if(n.shouldExecuteOnCPU([d])){let f=n.texData.get(d.dataId).values,{outVals:m,outShape:g,outDtype:y}=Tee(d.shape,d.dtype,f,c);h=n.makeTensorInfo(g,y,m)}else{let[f,m]=C.computeOutAndReduceShapes(d.shape,c),g=v.sizeFromShape(m),y=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,g]}}),x=rp(r.dtype),A=Rl(y,x,"prod",n);h=ve({inputs:{x:A},backend:n,attrs:{shape:f}}),l.push(y),l.push(A)}if(o){l.push(h);let f=C.expandShapeToKeepDim(h.shape,u);h=ve({inputs:{x:h},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var kie={kernelName:sl,backendName:"webgl",kernelFunc:wie},m6=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=Nee(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},Sie={kernelName:Ku,backendName:"webgl",kernelFunc:m6},Iie="return 1.0 / x;",Cie=ot({opSnippet:Iie}),Tie={kernelName:Zu,backendName:"webgl",kernelFunc:Cie},Nie=Xs+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,Eie=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Rie=ot({opSnippet:Nie,packedOpSnippet:Eie}),_ie={kernelName:So,backendName:"webgl",kernelFunc:Rie},$ie=Xs+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Die=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Pie=ot({opSnippet:$ie,packedOpSnippet:Die}),Fie={kernelName:Co,backendName:"webgl",kernelFunc:Pie},Oie=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Mie=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]},
|
|
${u[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function zie(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Mie(r.shape,l,u,a,o):new Oie(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],"float32")}var Lie={kernelName:Io,backendName:"webgl",kernelFunc:zie},Bie=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],p=1/u,d=1/c,h=Math.ceil(p)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Wie(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Bie(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Vie={kernelName:rm,backendName:"webgl",kernelFunc:Wie},Uie=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p=s?"0.5":"0.0",d;r?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Gie=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p=s?"0.5":"0.0",d;r?d="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]},
|
|
${u[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Hie(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Gie(r.shape,l,u,a,o):new Uie(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],r.dtype)}var jie={kernelName:Yu,backendName:"webgl",kernelFunc:Hie},qie=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],p=1/u,d=1/c,h=Math.ceil(p)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${i[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${i[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${s}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Xie(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new qie(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Kie={kernelName:sm,backendName:"webgl",kernelFunc:Xie},Zie=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let s=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,r=e.map((o,i)=>s(i)).join(","),a=gt(n);this.userCode=`
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},Yie=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=Wn("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=gt(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${i(s.slice())};
|
|
if(${r}){
|
|
result.g = ${l(s.slice())};
|
|
}
|
|
if(${a}) {
|
|
result.b = ${u(s.slice())};
|
|
if(${r}) {
|
|
result.a = ${c(s.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function i(h){return p(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function c(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let f=e.map((y,x)=>d(x,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function d(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function Jie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return ss({inputs:{x:r},backend:n});let l=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Yie(r.shape,i):new Zie(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var Qie={kernelName:al,backendName:"webgl",kernelFunc:Jie},ele=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},tle={kernelName:xl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new ele(s.shape,a),[u,c]=C.getImageCenter(o,s.shape[1],s.shape[2]),p=[[u,c,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,p)}},nle=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,sle=ot({opSnippet:nle}),rle={kernelName:ol,backendName:"webgl",kernelFunc:sle},ale="return inversesqrt(x);",ole=ot({opSnippet:ale,cpuKernelImpl:Eee}),ile={kernelName:To,backendName:"webgl",kernelFunc:ole},g6=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=gt(r.length),l=gt(a.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,p="";s===1?p="i":s===2&&(p="i, coords[1]");let d=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${i} strides = ${i}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${c});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${d};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function lle(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=C.calculateShapes(a,r,o),d=[p/u,u];if(p===0)return n.makeTensorInfo(o,r.dtype);let h=ve({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=ve({inputs:{x:a},backend:n,attrs:{shape:[l,u]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new g6(l,i,h.shape.length,f.shape.length,c,d),y=n.runWebGLProgram(g,[f,h,m],f.dtype),x=ve({inputs:{x:y},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(m),x}var ule={kernelName:il,backendName:"webgl",kernelFunc:lle},cle=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let u=0;u<t.length;u++)l.push(`${o[u]}`),u<e&&i.push(`${o[u]}`);s=i.join(),r=l.join()}let a=gt(n);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
float cVal = getC(${s});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function dle(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new cle(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(o,[s,r,a],Tn(r.dtype,a.dtype))}var ple={kernelName:ll,backendName:"webgl",kernelFunc:dle},hle=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${C.SELU_SCALEALPHA};
|
|
float scale = ${C.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,fle=ot({opSnippet:hle}),mle={kernelName:Ju,backendName:"webgl",kernelFunc:fle},gle=vc+`
|
|
return 1.0 / (1.0 + exp(-1.0 * x));
|
|
`,yle=`
|
|
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Ale=ot({opSnippet:gle,packedOpSnippet:yle,cpuKernelImpl:Ree}),xle={kernelName:Eo,backendName:"webgl",kernelFunc:Ale},ble=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,vle=ot({opSnippet:ble}),wle={kernelName:Qu,backendName:"webgl",kernelFunc:vle},kle=vc+`
|
|
return sin(x);
|
|
`,Sle=ot({opSnippet:kle}),Ile={kernelName:No,backendName:"webgl",kernelFunc:Sle},Cle=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,Tle=ot({opSnippet:Cle}),Nle={kernelName:cl,backendName:"webgl",kernelFunc:Tle},Ele=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,Rle=ot({opSnippet:Ele}),_le={kernelName:ec,backendName:"webgl",kernelFunc:Rle},$le=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=[[0,0]];l.push(...o);for(let y=1+a.length;y<r.shape.length;++y)l.push([0,0]);let u=[],c=f6({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=C.getReshaped(c.shape,a,i,!1),d=C.getPermuted(p.length,a.length,!1),h=C.getReshapedPermuted(c.shape,a,i,!1),f=ve({inputs:{x:c},backend:n,attrs:{shape:p}}),m=An({inputs:{x:f},backend:n,attrs:{perm:d}}),g=ve({inputs:{x:m},backend:n,attrs:{shape:h}});return u.push(c),u.push(f),u.push(m),u.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},Dle={kernelName:dl,backendName:"webgl",kernelFunc:$le};function Ple(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=n.readSync(o.dataId)[0],[p,d,h,f,m]=$ee(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(d,s.dtype,p),n.makeTensorInfo([d[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var Fle={kernelName:Zd,backendName:"webgl",kernelFunc:Ple};function Ole(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[u,c,p]=Dee(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([p.length],a.dtype,new Int32Array(p))]}var Mle={kernelName:tc,backendName:"webgl",kernelFunc:Ole};function zle(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=z4(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var Lle={kernelName:Yd,backendName:"webgl",kernelFunc:zle};function Ble(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=z4(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var Wle={kernelName:Jd,backendName:"webgl",kernelFunc:Ble};function Vle(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,strides:c,outputSize:p}=C.calculateShapes(a,r,i),d=!1,h=new g6(u,l,r.shape.length,a.shape.length,c,[p,1],d),f=n.runWebGLProgram(h,[a,r,o],a.dtype),m=ve({inputs:{x:f},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(f),m}var Ule={kernelName:Qd,backendName:"webgl",kernelFunc:Vle};function Gle(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=C.prepareSplitSize(r,a,i),u=r.shape.length,c=new Array(u).fill(0),p=r.shape.slice();return l.map(d=>{let h=[...p];h[i]=d;let f=wc({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[i]+=d,f})}var Hle={kernelName:pl,backendName:"webgl",kernelFunc:Gle},jv="return sqrt(x);",jle=ot({opSnippet:jv,packedOpSnippet:jv,cpuKernelImpl:Pee}),qle={kernelName:Ro,backendName:"webgl",kernelFunc:jle},Xle="return x * x;",Kle=ot({opSnippet:Xle}),Zle={kernelName:nc,backendName:"webgl",kernelFunc:Kle},qv="return (a - b) * (a - b);",Yle=xn({opSnippet:qv,packedOpSnippet:qv}),Jle={kernelName:Do,backendName:"webgl",kernelFunc:Yle};function Qle({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=Xs+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,a=new jr(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var eue={kernelName:Mo,backendName:"webgl",kernelFunc:Qle},tue=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=gt(n.length),a=gt(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,u)=>(i++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${i-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}};function nue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Ft.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=ve({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let I=Ft.computeOutShape(x,A,b),E=wc({inputs:{x:r},backend:n,attrs:{begin:x,size:I}});w=ve({inputs:{x:E},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(E)}else if(n.shouldExecuteOnCPU([r])){let E=n.readSync(r.dataId),R=We(r.shape,r.dtype,E),P=Fee(h,R,b,x);w=n.makeTensorInfo(f,r.dtype,P.values)}else{let E=new tue(x,b,h);w=n.runWebGLProgram(E,[r],r.dtype)}let S=ve({inputs:{x:w},backend:n,attrs:{shape:f}});return n.disposeIntermediateTensorInfo(w),S}var sue={kernelName:hl,backendName:"webgl",kernelFunc:nue};function rue(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:p}=t,d=n.readSync(c.dataId),h=n.readSync(p.dataId),[f,m]=Oee(d,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var aue={kernelName:ep,backendName:"webgl",kernelFunc:rue};function oue(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[u,c,p]=Mee(i,l,r),d=c.length;return[n.makeTensorInfo([d,2],"int32",u),n.makeTensorInfo([d],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var iue={kernelName:am,backendName:"webgl",kernelFunc:oue};function lue(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=zee(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var uue={kernelName:om,backendName:"webgl",kernelFunc:lue},cue="return tan(x);",due=ot({opSnippet:cue}),pue={kernelName:fl,backendName:"webgl",kernelFunc:due},hue=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,fue=ot({opSnippet:hue}),mue={kernelName:Fo,backendName:"webgl",kernelFunc:fue},gue=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let s=gt(this.rank),r=yue(e);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function yue(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r<e.length;r++)s.push(`imod(${n[r]}, ${e[r]})`);return s.join()}function y6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(r.dtype==="string"||r.shape.length>5){let l=n.readSync(r.dataId),u=r.dtype==="string"?l.map(d=>v.decodeString(d)):l,c=We(r.shape,r.dtype,u),p=Bee(c,a);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let o=new gue(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var Aue={kernelName:Yr,backendName:"webgl",kernelFunc:y6},xue=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},bue=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function oi(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function Xv(e){let t=1;for(;t<e;)t*=2;return t}function vue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=J().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=J().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,c=u[u.length-1];if(n.shouldExecuteOnCPU([r])||c<i||a>l){let P=n.readSync(r.dataId),[_,D]=Wee(P,u,r.dtype,a,o);return[n.makeTensorInfo(_.shape,_.dtype,_.values),n.makeTensorInfo(D.shape,D.dtype,D.values)]}if(a===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(c===1)return[r,$p({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let p=n.texData.get(r.dataId),d=p!==null&&p.isPacked,h=d?n.unpackTensor(r):r,m=v.sizeFromShape(u)/c,g=ve({inputs:{x:h},attrs:{shape:[m,c]},backend:n});d&&oi(n,h);let y=Xv(a),x=Xv(c),A=null,b=()=>A===null?[g,g]:[g,A],w=(P,_,D)=>{let T=b(),O=new xue(D),K=[[c],[A===null?1:0],[Number.NEGATIVE_INFINITY],[P],[_]],z=A;A=n.runWebGLProgram(O,T,"int32",K),oi(n,z)};for(let P=1;P<y;P*=2){let _=P*2;for(let D=P;D>=1;D/=2)w(_,D,[m,x])}for(let P=x;P>y;P/=2){let _=b(),D=new bue([m,P/2]),O=[[c],[A===null?1:0],[y]],U=A;A=n.runWebGLProgram(D,_,"int32",O),oi(n,U);let K=y/2,z=K*2;for(let Z=K;Z>=1;Z/=2)w(z,Z,A.shape)}let S=A;A=wc({inputs:{x:A},backend:n,attrs:{begin:0,size:[m,a]}}),oi(n,S);let I=l6({inputs:{x:g,indices:A},backend:n,attrs:{axis:1,batchDims:1}});oi(n,g);let E=u.slice(0,-1);E.push(a),S=A,A=ve({inputs:{x:A},attrs:{shape:E},backend:n}),oi(n,S);let R=I;return I=ve({inputs:{x:I},attrs:{shape:E},backend:n}),oi(n,R),[I,A]}var wue={kernelName:ml,backendName:"webgl",kernelFunc:vue},kue=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${i} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${o} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function Sue(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=new kue(p,d,o,i,l,g);return n.runWebGLProgram(y,[r,a],"float32")}var Iue={kernelName:gl,backendName:"webgl",kernelFunc:Sue};function Cue(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;gc(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:u}=Vee(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var Tue={kernelName:im,backendName:"webgl",kernelFunc:Cue};function Nue(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],u=new Array(i-1),c=0;for(let m=0;m<i;m++)m!==a&&(u[c++]=o.shape[m]);let p=[],d=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){d[a]=m;let g=wc({inputs:{x:o},backend:n,attrs:{begin:d,size:h}}),y=ve({inputs:{x:g},backend:n,attrs:{shape:u}});f[m]=y,p.push(g)}return p.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var Eue={kernelName:yl,backendName:"webgl",kernelFunc:Nue},Rue=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,p=`
|
|
sumValue += dot(values, segFilter);
|
|
`,d="";r%n>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${d}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${a})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${a})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function _ue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s,i=r.shape.length,l=[],u=0,c=C.getAxesPermutation([u],i),p=r;c!=null&&(p=An({inputs:{x:r},backend:n,attrs:{perm:c}}),l.push(p),u=C.getInnerMostAxes(1,i)[0]);let d=C.segment_util.computeOutShape(p.shape,u,o),h=v.sizeFromShape([p.shape[u]]),f=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});l.push(f);let m=rp(r.dtype),g=(b,w,S,I,E)=>{let R=b.shape[0],P=b.shape[1],_=C.segment_util.segOpComputeOptimalWindowSize(P,E),D={windowSize:_,inSize:P,batchSize:R,numSegments:E},T=new Rue(D,w),O=n.compileAndRun(T,[b,S],I);if(l.push(O),O.shape[1]===E)return O;let U=m6({backend:n,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),K=y6({inputs:{x:U},backend:n,attrs:{reps:[P/_]}});return l.push(U),l.push(K),g(O,w,K,I,E)},y=g(f,"unsortedSegmentSum",a,m,o),x=ve({inputs:{x:y},backend:n,attrs:{shape:d}}),A=x;if(c!=null){l.push(x);let b=C.getUndoAxesPermutation(c);A=An({inputs:{x:A},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),A}var $ue={kernelName:tp,backendName:"webgl",kernelFunc:_ue},Due=[Mte,Lte,Vte,Hte,qte,Zte,Jte,ene,rne,one,une,pne,mne,xne,wne,Sne,Cne,Rne,$ne,Pne,zne,Hne,qne,Kne,tse,sse,ise,Ate,cse,mse,xse,Ise,Tse,Ese,_se,Dse,Ose,Lse,Vse,Gse,jse,Xse,Yse,Qse,sre,are,lre,dre,hre,yre,vre,Ire,Nre,_re,$re,Pre,Ore,zre,Bre,Vre,jre,Kre,Jre,eae,sae,oae,cae,fae,yte,gae,hse,xae,wae,Iae,bte,Eae,Dae,Fae,Lae,Vae,jae,Kae,Qae,soe,ooe,loe,poe,foe,goe,boe,woe,Soe,Coe,Noe,$oe,Ooe,Boe,Xoe,Ite,Joe,tie,rie,iie,Yne,cie,pie,fie,yie,vie,wte,kie,Sie,Jne,Goe,Tie,_ie,Fie,Tte,Lie,Vie,jie,Kie,Qie,tle,rle,ile,ule,ple,mle,xle,wle,Ile,Nle,Une,joe,_le,Dle,Fle,Mle,Lle,Wle,Ule,Hle,qle,Zle,Jle,eue,sue,aue,iue,uue,Hoe,Pte,pue,mue,Aue,wue,Iue,Fte,Tue,Eue,$ue,die];for(let e of Due)Us(e);var Pr=J();Pr.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);Pr.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);Pr.registerFlag("WEBGPU_MATMUL_WORK_PER_THREAD",()=>4);Pr.registerFlag("WEBGPU_USE_NAIVE_CONV2D",()=>!1);Pr.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);Pr.registerFlag("WEBGPU_CONV_SEPARATE_IM2COL_SHADER",()=>!1);Pr.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);Pr.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);Pr.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);Pr.registerFlag("WEBGPU_USE_IMPORT",()=>!1);var Pue="return a + b;",Fue="return areal * breal - aimag * bimag;",Oue="return areal * bimag + aimag * breal;",Mue="return a / b;",zue="return a * b;",Lue="return (a - b) * (a - b);",Bue="return a - b;",Wue="return f32(a == b);",Vue="return vec4<f32>(a == b);",Uue="return f32(a > b);",Gue="return vec4<f32>(a > b);",Hue="return f32(a >= b);",jue="return vec4<f32>(a >= b);",que="return f32(a < b);",Xue="return vec4<f32>(a < b);",Kue="return f32(a <= b);",Zue="return vec4<f32>(a <= b);",Yue="return f32(f32(a) >= 1.0 && f32(b) >= 1.0);",Jue=`return (vec4<f32>(a >= vec4<f32>(1.0)) *
|
|
vec4<f32>(b >= vec4<f32>(1.0)));`,Que=`
|
|
if (isnan(a)) { return a; }
|
|
if (isnan(b)) { return b; }
|
|
`,A6=`
|
|
if (isNaN.r) {
|
|
resultTemp.r = uniforms.NAN;
|
|
}
|
|
if (isNaN.g) {
|
|
resultTemp.g = uniforms.NAN;
|
|
}
|
|
if (isNaN.b) {
|
|
resultTemp.b = uniforms.NAN;
|
|
}
|
|
if (isNaN.a) {
|
|
resultTemp.a = uniforms.NAN;
|
|
}
|
|
`,ece=`
|
|
let s = sign(a) * sign(b);
|
|
let ia = i32(round(a));
|
|
let ib = i32(round(b));
|
|
return f32(idiv(ia, ib, s));
|
|
`,tce=`
|
|
let ia = vec4<i32>(round(a));
|
|
let ib = vec4<i32>(round(b));
|
|
let cond = ib != vec4<i32>(0);
|
|
var resultTemp = vec4<i32>(0);
|
|
let s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
resultTemp[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
resultTemp[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
resultTemp[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
resultTemp[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4<f32>(resultTemp);
|
|
`,nce="return f32(a != b);",sce="return vec4<f32>(a != b);",rce=`
|
|
if(a < 0.0 && floor(b) < b) {
|
|
return uniforms.NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
if (round(abs(b) % 2.0) != 1.0) {
|
|
return pow(abs(a), b);
|
|
}
|
|
return sign(a) * pow(abs(a), b);
|
|
`,ace=`
|
|
let isModRound1Bool = vec4<i32>(round(abs(b) % vec4<f32>(2.0))) == vec4<i32>(1);
|
|
let isModRound1 = vec4<f32>(isModRound1Bool);
|
|
let multiplier = sign(a) * isModRound1 + (vec4<f32>(1.0) - isModRound1);
|
|
var resultTemp = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
let isExpZero = b == vec4<f32>(0.0);
|
|
if (isExpZero.r) {
|
|
resultTemp.r = 1.0;
|
|
}
|
|
if (isExpZero.g) {
|
|
resultTemp.g = 1.0;
|
|
}
|
|
if (isExpZero.b) {
|
|
resultTemp.b = 1.0;
|
|
}
|
|
if (isExpZero.a) {
|
|
resultTemp.a = 1.0;
|
|
}
|
|
let isNaN = a < vec4<f32>(0.0) & floor(b) < b;
|
|
${A6}
|
|
return resultTemp;
|
|
`,oce="if (a < 0.0) { return b * a; } return a;",ice=`
|
|
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
|
|
return (aLessThanZero * (b * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
|
|
`;function Kv(e,t){let n=t?A6:Que;return t?`
|
|
var resultTemp = vec4<f32>(${e}(a, b));
|
|
let isNaN = isnanVec4(a) | isnanVec4(b);
|
|
`+n+`
|
|
return resultTemp;
|
|
`:n+`
|
|
return ${e}(a, b);
|
|
`}function Dp(e,t){switch(e){case 0:return zue;case 1:return Pue;case 2:return Bue;case 3:return Mue;case 4:return t?Vue:Wue;case 5:return t?Gue:Uue;case 6:return t?jue:Hue;case 7:return t?Xue:que;case 8:return t?Zue:Kue;case 9:return t?Jue:Yue;case 10:return t?sce:nce;case 11:return Lue;case 12:return t?tce:ece;case 14:return t?ice:oce;case 15:return Kv("max",t);case 16:return Kv("min",t);case 13:return t?ace:rce;case 17:return Fue;case 18:return Oue;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var lce="return abs(a);",uce="return ceil(a);",cce="return cos(a);",dce=`
|
|
let e2x = exp(-a);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,pce="return exp(a) - 1.0;",hce="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",fce=`
|
|
var resFloat = exp(a) - vec4<f32>(1.0);
|
|
if (a.r >= 0.0) {
|
|
resFloat.r = a.r;
|
|
}
|
|
if (a.g >= 0.0) {
|
|
resFloat.g = a.g;
|
|
}
|
|
if (a.b >= 0.0) {
|
|
resFloat.b = a.b;
|
|
}
|
|
if (a.a >= 0.0) {
|
|
resFloat.a = a.a;
|
|
}
|
|
return resFloat;
|
|
`,mce="return exp(a);",gce="return floor(a);",yce="return a;",Ace=`if (a < 0.0) { return 1.0/0.0; }
|
|
return log(a);`,xce="return f32(!(a >= 1.0));",bce="return -a;",vce="if (a < 0.0) { return uniforms.alpha * a; } return a;",wce="if(a < 0.0) { return 0.0; } return a;",kce="return clamp(a, 0.0, 6.0);",Sce="return clamp(a, vec4<f32>(0.0, 0.0, 0.0, 0.0), vec4<f32>(6.0, 6.0, 6.0, 6.0));",Ice=`
|
|
var resFloat = a * vec4<f32>(a >= vec4<f32>(0.0));
|
|
let isNaN = isnanVec4(a);
|
|
|
|
if (isNaN.r) {
|
|
resFloat.r = a.r;
|
|
}
|
|
if (isNaN.g) {
|
|
resFloat.g = a.g;
|
|
}
|
|
if (isNaN.b) {
|
|
resFloat.b = a.b;
|
|
}
|
|
if (isNaN.a) {
|
|
resFloat.a = a.a;
|
|
}
|
|
return resFloat;
|
|
`,Cce="return 1.0/sqrt(a);",Tce="return 1.0 / (1.0 + exp(-1.0 * a));",Nce="return sin(a);",Ece=`
|
|
let e2x = exp(a);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,Rce="return sqrt(a);",_ce="return a * a;",$ce=`
|
|
let e2x = exp(-2.0 * abs(a));
|
|
return sign(a) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,Dce="return f32(i32((a)));";function ui(e,t){switch(e){case 0:return lce;case 2:return cce;case 3:return dce;case 1:return uce;case 4:return t?fce:hce;case 5:return mce;case 6:return pce;case 7:return gce;case 8:return yce;case 9:return Ace;case 10:return xce;case 11:return bce;case 14:return vce;case 12:return t?Ice:wce;case 13:return t?Sce:kce;case 15:return Cce;case 18:return Tce;case 16:return Nce;case 17:return Ece;case 19:return Rce;case 20:return _ce;case 21:return $ce;case 22:return Dce;default:throw new Error(`BinaryType ${e} is not implemented!`)}}function sa(e,t=!1){if(e===null)return null;if(e==="linear")return ui(8);if(e==="relu")return ui(12,t);if(e==="elu")return ui(4,t);if(e==="relu6")return ui(13,t);if(e==="prelu")return Dp(14,t);if(e==="sigmoid")return ui(18);if(e==="leakyrelu")return ui(14);throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`)}function Pce(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function fn(e){if(e<=1)return"i32";if(e===2)return"vec2<i32>";if(e===3)return"vec3<i32>";if(e===4)return"vec4<i32>";throw Error(`GPU for rank ${e} is not yet supported`)}function nf(e,t){return e==="float32"?t?"vec4<f32>":"f32":e==="int32"||e==="bool"?t?"vec4<i32>":"i32":e}function cb(){return`
|
|
@stage(compute) @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)
|
|
`}function Vo(){return`
|
|
${cb()}
|
|
fn main(@builtin(local_invocation_id) LocalId : vec3<u32>,
|
|
@builtin(global_invocation_id) GlobalId : vec3<u32>,
|
|
@builtin(num_workgroups) NumWorkgroups: vec3<u32>) {
|
|
localId = LocalId;
|
|
globalId = GlobalId;
|
|
numWorkgroups = NumWorkgroups;
|
|
`}function et(){return`
|
|
${Vo()}
|
|
let index = getGlobalIndex();
|
|
`}function Fce(e,t,n,s=!1){let r=[];if(r.push(`
|
|
let workGroupSizeX = ${n.workGroupSize[0]}u;
|
|
let workGroupSizeY = ${n.workGroupSize[1]}u;
|
|
let workGroupSizeZ = ${n.workGroupSize[2]}u;
|
|
|
|
var<private> localId: vec3<u32>;
|
|
var<private> globalId: vec3<u32>;
|
|
var<private> numWorkgroups: vec3<u32>;
|
|
|
|
// Only used when the y/z dimension of workgroup size is 1.
|
|
fn getGlobalIndex() -> i32 {
|
|
if (numWorkgroups.y == 1u && numWorkgroups.z == 1u) {
|
|
return i32(globalId.x);
|
|
}
|
|
|
|
let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY +
|
|
localId.y * workGroupSizeX + localId.x;
|
|
let workGroupID = (globalId - localId)/vec3<u32>(
|
|
workGroupSizeX, workGroupSizeY, workGroupSizeZ);
|
|
|
|
return i32((workGroupID.z * numWorkgroups.x * numWorkgroups.y +
|
|
workGroupID.y * numWorkgroups.x + workGroupID.x) *
|
|
(workGroupSizeX * workGroupSizeY * workGroupSizeZ) +
|
|
localInvocationIndex);
|
|
}
|
|
`),s===!0)return r.push(`
|
|
struct Uniform {
|
|
size : i32,
|
|
numChannels : i32,
|
|
outShapeStrides : vec2<i32>,
|
|
dispatchSize : vec3<u32>,
|
|
};
|
|
|
|
@group(0) @binding(0) var<storage, write> result: array<${nf(t.dtype,n.isVec4)}>;
|
|
@group(0) @binding(2) var<uniform> uniforms: Uniform;
|
|
`),[Zv,r.join(`
|
|
`),Yv(t.shape),n.getUserCode()].join(`
|
|
`);let a="struct Uniforms { NAN : f32, ";n.variableNames.forEach((p,d)=>{a+=`${p.charAt(0).toLowerCase()+p.slice(1)}Shape : ${fn(e[d].shape.length)}, `}),a+=`outShape : ${fn(t.shape.length)}, `;let o=t.shape.length-1;a+=`
|
|
outShapeStrides: ${fn(o)}, `,n.size&&(a+="size : i32, "),n.uniforms&&(a+=n.uniforms),a+="};",r.push(a),n.atomic?r.push(`
|
|
@group(0) @binding(0) var<storage, read_write> result: array<atomic<i32>>;
|
|
`):r.push(`
|
|
@group(0) @binding(0) var<storage, write> result: array<${nf(t.dtype,n.isVec4)}>;
|
|
`),n.variableNames.forEach((p,d)=>{r.push(`
|
|
@group(0) @binding(${1+d}) var<storage, read> ${p}: array<${nf(e[d].dtype,n.isVec4)}>;
|
|
`)}),a!==""&&r.push(`
|
|
@group(0) @binding(${1+n.variableNames.length}) var<uniform> uniforms: Uniforms;
|
|
`);let[i,l]=Wce(t.shape,n.dispatchLayout),u=[Zv,r.join(`
|
|
`),Yv(t.shape),i,Oce(t.shape.length)];if(n.atomic||u.push(Mce(t.shape,t.dtype,n.isVec4)),l===t.shape.length){let p=e.map(d=>zce(d,t.shape,n.isVec4,n.dispatchLayout.x.length===t.shape.length)).join(`
|
|
`);u.push(p)}return u.push(n.getUserCode()),u.join(`
|
|
`)}var Zv=`
|
|
// Checks whether coordinates lie within the bounds of the shape.
|
|
fn coordsInBounds2D(coord : vec2<i32>, shape : vec2<i32>) -> bool {
|
|
return all(coord >= vec2<i32>(0)) && all(coord < shape);
|
|
}
|
|
fn coordsInBounds3D(coord : vec3<i32>, shape : vec3<i32>) -> bool {
|
|
return all(coord >= vec3<i32>(0)) && all(coord < shape);
|
|
}
|
|
fn coordsInBounds4D(coord : vec4<i32>, shape : vec4<i32>) -> bool {
|
|
return all(coord >= vec4<i32>(0)) && all(coord < shape);
|
|
}
|
|
|
|
fn getIndexFromCoords1D(coord : i32, shape : i32) -> i32 {
|
|
return coord;
|
|
}
|
|
fn getIndexFromCoords2D(coords : vec2<i32>, shape : vec2<i32>) -> i32 {
|
|
return dot(coords, vec2<i32>(shape.y, 1));
|
|
}
|
|
fn getIndexFromCoords3D(coords : vec3<i32>, shape : vec3<i32>) -> i32 {
|
|
return dot(coords, vec3<i32>(shape.y * shape.z, shape.z, 1));
|
|
}
|
|
fn getIndexFromCoords4D(coords : vec4<i32>, shape : vec4<i32>) -> i32 {
|
|
return dot(coords, vec4<i32>(
|
|
shape.y * shape.z * shape.w, shape.z * shape.w, shape.w, 1));
|
|
}
|
|
|
|
fn idiv(a: i32, b: i32, sign: f32) -> i32 {
|
|
var res: i32 = a / b;
|
|
let mod: i32 = a % b;
|
|
if (sign < 0. && mod != 0) {
|
|
res = res - 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// NaN defination in IEEE 754-1985 is :
|
|
// - sign = either 0 or 1.
|
|
// - biased exponent = all 1 bits.
|
|
// - fraction = anything except all 0 bits (since all 0 bits represents infinity).
|
|
// https://en.wikipedia.org/wiki/IEEE_754-1985#Representation_of_non-numbers
|
|
fn isnan(val: f32) -> bool {
|
|
let floatToUint: u32 = bitcast<u32>(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
fn isnanVec4(val : vec4<f32>) -> vec4<bool> {
|
|
return vec4<bool>(isnan(val[0]), isnan(val[1]), isnan(val[2]), isnan(val[3]));
|
|
}
|
|
`;function Oce(e){let t="";switch(e){case 0:case 1:t+=`
|
|
fn getOutputIndexFromCoords(coords : i32) -> i32 {
|
|
return coords;
|
|
}
|
|
`;break;case 2:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec2<i32>) -> i32 {
|
|
return dot(coords, vec2<i32>(uniforms.outShapeStrides, 1));
|
|
}
|
|
`;break;case 3:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec3<i32>) -> i32 {
|
|
return dot(coords, vec3<i32>(uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, 1));
|
|
}
|
|
`;break;case 4:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec4<i32>) -> i32 {
|
|
return dot(coords, vec4<i32>(
|
|
uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, uniforms.outShapeStrides.z, 1));
|
|
}
|
|
`;break;default:v.assert(!1,()=>`Unsupported ${e}D shape`);break}return t}function Mce(e,t,n){let s=e.length,r=nf(t,n),a;if(n?a=`fn setOutputAtIndex(flatIndex : i32, value : vec4<f32>) {
|
|
result[flatIndex] = ${r}(value);
|
|
}
|
|
fn setOutputAtIndexI32(flatIndex : i32, value : vec4<i32>) {
|
|
result[flatIndex] = ${r}(value);
|
|
}`:a=`fn setOutputAtIndex(flatIndex : i32, value : f32) {
|
|
result[flatIndex] = ${r}(value);
|
|
}
|
|
fn setOutputAtIndexI32(flatIndex : i32, value : i32) {
|
|
result[flatIndex] = ${r}(value);
|
|
}`,s>=2){let o=["d0","d1","d2","d3"].slice(0,s),i=fn(s);n?a+=`
|
|
fn setOutputAtCoords(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4<f32>) {
|
|
let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")}));
|
|
setOutputAtIndex(flatIndex / 4, value);
|
|
}
|
|
fn setOutputAtCoordsI32(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4<i32>) {
|
|
let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")}));
|
|
setOutputAtIndexI32(flatIndex / 4, value);
|
|
}
|
|
`:a+=`
|
|
fn setOutputAtCoords(${o.map(l=>`${l} : i32`).join(", ")}, value : f32) {
|
|
let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")}));
|
|
setOutputAtIndex(flatIndex, value);
|
|
}
|
|
fn setOutputAtCoordsI32(${o.map(l=>`${l} : i32`).join(", ")}, value : i32) {
|
|
let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")}));
|
|
setOutputAtIndexI32(flatIndex, value);
|
|
}
|
|
`}return a}function zce(e,t,n,s){let r=Lce(e,n);return e.shape.length<=t.length&&(r+=Bce(e,t,n,s)),r}function Lce(e,t){let n=e.name,s=e.shape.length,r=fn(s),a="get"+n.charAt(0).toUpperCase()+n.slice(1),o=["d0","d1","d2","d3"].slice(0,s),i=o.map(c=>`${c} : i32`).join(", ");if(s<1)return t?`
|
|
fn ${a}() -> vec4<f32> {
|
|
return vec4<f32>(${n}[0]);
|
|
}
|
|
`:`
|
|
fn ${a}() ->f32 {
|
|
return f32(${n}[0]);
|
|
}
|
|
`;let l=`uniforms.${n.charAt(0).toLowerCase()+n.slice(1)}Shape`,u=`${s}D`;return s===0&&(u="1D"),t?`
|
|
fn ${a}(${i}) -> vec4<f32> {
|
|
return vec4<f32>(${n}[getIndexFromCoords${u}(${r}(${o.join(",")}),
|
|
${l}) / 4]);
|
|
}
|
|
`:`
|
|
fn ${a}(${i}) -> f32 {
|
|
return f32(${n}[getIndexFromCoords${u}(${r}(${o.join(",")}),
|
|
${l})]);
|
|
}
|
|
`}function Bce(e,t,n,s){let r=e.name,a=r.charAt(0).toUpperCase()+r.slice(1),o="get"+a+"ByOutput",i=e.shape.length,l=t.length,u=fn(l);if(v.arraysEqual(e.shape,t)&&s)return n?`
|
|
fn ${o}Index(globalIndex : i32) -> vec4<f32> {
|
|
return vec4<f32>(${r}[globalIndex]);
|
|
}
|
|
|
|
fn ${o}Coords(coords : ${u}) -> vec4<f32> {
|
|
return vec4<f32>(${r}[${l>1?"getOutputIndexFromCoords(coords)":"coords"} / 4]);
|
|
}
|
|
`:`
|
|
fn ${o}Index(globalIndex : i32) -> f32 {
|
|
return f32(${r}[globalIndex]);
|
|
}
|
|
|
|
fn ${o}Coords(coords : ${u}) -> f32 {
|
|
return f32(${r}[${l>1?"getOutputIndexFromCoords(coords)":"coords"}]);
|
|
}
|
|
`;let c=C.getBroadcastDims(e.shape,t),p=l-i,d="";if(i===0)return n?`
|
|
fn ${o}Index(globalIndex : i32) -> vec4<f32> {
|
|
return get${a}();
|
|
}
|
|
|
|
fn ${o}Coords(coords : ${u}) -> vec4<f32> {
|
|
return get${a}();
|
|
}
|
|
`:`
|
|
fn ${o}Index(globalIndex : i32) -> f32{
|
|
return get${a}();
|
|
}
|
|
|
|
fn ${o}Coords(coords : ${u}) -> f32{
|
|
return get${a}();
|
|
}
|
|
`;l<2&&c.length>=1?d="coords = 0;":d=c.map(g=>`coords[${g+p}] = 0;`).join(`
|
|
`);let h="";if(l<2&&i>0)h="coords";else if(l>1){let g=fn(i),y=e.shape.map((x,A)=>`coords[${A+p}]`).join(", ");h=`${g}(${y})`}else h="coords";let f=`uniforms.${r.charAt(0).toLowerCase()+r.slice(1)}Shape`,m=`${i}D`;return n?`
|
|
fn ${o}Index(globalIndex : i32) -> vec4<f32> {
|
|
var coords = getCoordsFromIndex(globalIndex);
|
|
${d}
|
|
return ${r}[getIndexFromCoords${m}(${h}, ${f}) / 4];
|
|
}
|
|
|
|
fn ${o}Coords(coordsIn : ${u}) -> vec4<f32> {
|
|
var coords = coordsIn;
|
|
${d}
|
|
return ${r}[getIndexFromCoords${m}(${h}, ${f}) / 4];
|
|
}
|
|
`:`
|
|
fn ${o}Index(globalIndex : i32) -> f32 {
|
|
var coords = getCoordsFromIndex(globalIndex);
|
|
${d}
|
|
return f32(${r}[getIndexFromCoords${m}(${h}, ${f})]);
|
|
}
|
|
|
|
fn ${o}Coords(coordsIn : ${u}) -> f32 {
|
|
var coords = coordsIn;
|
|
${d}
|
|
return f32(${r}[getIndexFromCoords${m}(${h}, ${f})]);
|
|
}
|
|
`}function Wce(e,t){let{x:n,y:s=[],z:r=[]}=t,a=e.length;if(n.length===a)return[`fn getOutputCoords() -> ${fn(a)}{
|
|
let globalIndex = getGlobalIndex();
|
|
return getCoordsFromIndex(globalIndex);
|
|
}
|
|
`,a];let o="",i=[n,s,r],l=0;for(let d=0;d<i.length;d++){let h=i[d];if(h.length!==0)if(l+=h.length,h.length===1)o+=`let d${h[0]} = i32(globalId[${d}]);`;else{let f=Pce(h,"uniforms.outShape");o+=`var index${d} = i32(globalId[${d}]);`;for(let m=0;m<f.length;m++)o+=`let d${h[m]} = index${d} / ${f[m]};`,m===f.length-1?o+=`let d${h[m+1]} = index${d} - d${h[m]} * ${f[m]};`:o+=`index${d} = index${d} - d${h[m]} * ${f[m]};`}}let u=[];for(let d=0;d<l;d++)u.push(`d${d}`);let c=fn(l),p=`fn getOutputCoords() -> ${c} {
|
|
${o}
|
|
`;return u.length===0?p+=`return ${c}(0); }`:p+=`return ${c}(${u.join(",")}); }`,[p,l]}function Yv(e){let t=e.length;if(t<=1)return"fn getCoordsFromIndex(index : i32) -> i32 { return index; }";let n=v.computeStrides(e),s=fn(t),r=[];for(let o=0;o<t;o++)r.push(`d${o}`);if(n.length===1)return` fn getCoordsFromIndex(index : i32) -> vec2<i32> {
|
|
let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides;
|
|
return vec2<i32>(d0, d1);
|
|
}`;let a="var index2 = index;"+n.map((o,i)=>{let l=`let ${r[i]} = index2 / uniforms.outShapeStrides[${i}]`,u=i===n.length-1?`let ${r[i+1]} = index2 - ${r[i]} * uniforms.outShapeStrides[${i}]`:`index2 = index2 - ${r[i]} * uniforms.outShapeStrides[${i}]`;return`${l}; ${u};`}).join("");return`
|
|
fn getCoordsFromIndex(index : i32) -> ${s} {
|
|
${a}
|
|
return ${s}(${r.join(",")});
|
|
}
|
|
`}var x6={};Le(x6,{ArrayBufferToTypedArray:()=>v6,GPUBytesPerElement:()=>jy,computeDispatch:()=>Me,computeWorkGroupSizeForConv2d:()=>db,computeWorkGroupSizeForMatMul:()=>b6,computeWorkPerThreadForConv2d:()=>pb,flatDispatchLayout:()=>Ke,isWebGPUSupported:()=>hb,tilesFitEvenlyIntoShape:()=>Xr});var bi=e=>{let t=1;for(let n=0;n<e.length;n++)t*=e[n];return t};function Xr(e,t){if(e.length!==t.length)throw new Error(`Cannot compute whether rank ${e.length} tiles fit evenly into rank ${t.length} shape - ranks must match.`);return t.every((n,s)=>n%e[s]===0)}function Me(e,t,n=[1,1,1],s=[1,1,1]){let[r,a,o]=[Math.ceil(bi(e.x.map(i=>t[i]))/(n[0]*s[0])),e.y?Math.ceil(bi(e.y.map(i=>t[i]))/(n[1]*s[1])):1,e.z?Math.ceil(bi(e.z.map(i=>t[i]))/(n[2]*s[2])):1];return[r,a,o]}function db(e,t){let n=bi(e.x.map(r=>t[r])),s=bi(e.y.map(r=>t[r]));return n<=4?[4,16,1]:s<=4?[16,4,1]:[16,16,1]}function b6(e,t,n){return e===1?[32,1,1]:n===1?[1,32,1]:[8,8,1]}function pb(e,t){let n=bi(e.x.map(r=>t[r])),s=bi(e.y.map(r=>t[r]));return n<=4?[1,2,1]:s<=4?[2,1,1]:[2,2,1]}function Ke(e){return{x:e.map((t,n)=>n)}}function jy(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function v6(e,t){if(t==="float32")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"||t==="string")return Uint8Array.from(new Int32Array(e));throw new Error(`Unknown dtype ${t}`)}function hb(){return(typeof window!="undefined"||typeof WorkerGlobalScope!="undefined")&&!!navigator.gpu}function w6(e,t,n,s){return v.assert(s%4===0&&e[0]===4,()=>"tileInner must be divisible by 4. And ColPerThread must be 4"),`
|
|
var<workgroup> mm_Asub : array<array<vec4<f32>, ${s/e[0]}>, ${t}>;
|
|
var<workgroup> mm_Bsub : array<array<vec4<f32>, ${n/e[0]}>, ${s}>;
|
|
|
|
let RowPerThread = ${e[1]};
|
|
let ColPerThread = ${e[0]};
|
|
let TileInner = ${s};
|
|
|
|
${Vo()}
|
|
|
|
let tileRow = ${t===1?"0":"i32(localId.y) * RowPerThread"};
|
|
let tileCol = i32(localId.x);
|
|
|
|
let globalRow = ${t===1?"0":"i32(globalId.y) * RowPerThread"};
|
|
let globalCol = i32(globalId.x);
|
|
let numTiles = (uniforms.dimInner - 1) / TileInner + 1;
|
|
|
|
var acc: array<vec4<f32>, RowPerThread>;
|
|
var ACached : vec4<f32>;
|
|
var BCached : array<vec4<f32>, 4>;
|
|
|
|
// Loop over shared dimension.
|
|
var globalColA = tileCol;
|
|
let RowPerThreadB = TileInner / i32(workGroupSizeY);
|
|
let tileRowB = i32(localId.y) * RowPerThreadB;
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
let inputRow = tileRow + innerRow;
|
|
let inputCol = tileCol;
|
|
mm_Asub[inputRow][inputCol] = mm_readA(globalRow + innerRow, globalColA, globalId);
|
|
}
|
|
globalColA = globalColA + TileInner / ColPerThread;
|
|
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol;
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(t * TileInner + inputRow, globalCol, globalId);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < TileInner / ColPerThread; k = k + 1) {
|
|
BCached[0] = mm_Bsub[k * ColPerThread][tileCol];
|
|
BCached[1] = mm_Bsub[k * ColPerThread + 1][tileCol];
|
|
BCached[2] = mm_Bsub[k * ColPerThread + 2][tileCol];
|
|
BCached[3] = mm_Bsub[k * ColPerThread + 3][tileCol];
|
|
|
|
for (var i = 0; i < RowPerThread; i = i + 1) {
|
|
ACached = mm_Asub[tileRow + i][k];
|
|
acc[i] = BCached[0] * ACached.x + acc[i];
|
|
acc[i] = BCached[1] * ACached.y + acc[i];
|
|
acc[i] = BCached[2] * ACached.z + acc[i];
|
|
acc[i] = BCached[3] * ACached.w + acc[i];
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
mm_write(globalRow + innerRow,
|
|
globalCol,
|
|
acc[innerRow], globalId);
|
|
}
|
|
}`}var Vce=class{constructor(e,t,n,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,8,1],this.isVec4=!0,this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]},t[1]===1?this.elementsPerThread=[4,1,1]:this.elementsPerThread=[4,4,1],this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread);let o=s!=null,i=a!=null;o&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),this.tileAOuter=t[1]===1?1:this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=this.tileBOuter,this.aShape=e,this.addBias=o,this.activation=r,this.hasPreluActivationWeights=i,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`matMulPackedVec4_${this.activation}_${this.fitA}_${this.fitB}_${this.elementsPerThread}`}getShapeFit(){let e=this.aShape[2],t=this.outputShape[2],n=[this.outputShape[0],e,t],s=[this.tileAOuter,this.tileInner],r=[this.tileInner,this.tileBOuter];return[Xr(s,this.aShape.slice(1)),Xr(r,n.slice(1))]}getUserCode(){let e=this.fitA?"return A[batch * batchASize + row * uniforms.dimInner / 4 + col]":`if (coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch * batchASize + row * uniforms.dimInner / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0)`,t=this.fitB?"return B[batch * batchBSize + row * uniforms.dimBOuter / 4 + col]":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + row * uniforms.dimBOuter / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0)`,n="",s="";if(this.activation){let o=sa(this.activation,this.isVec4);this.hasPreluActivationWeights?n=`fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${o}
|
|
}`:n=`
|
|
fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
|
|
${o}
|
|
}`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${n}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2] / 4;
|
|
let batch = i32(globalId.z);
|
|
${e};
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2] / 4;
|
|
let batch = i32(globalId.z);
|
|
${t};
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueIn : vec4<f32>, globalId : vec3<u32>) {
|
|
if (row < uniforms.aShape[1] && col * 4 < uniforms.bShape[2])
|
|
{
|
|
var value = valueIn;
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col * 4);
|
|
${r}
|
|
${s}
|
|
setOutputAtCoords(outCoord[0], outCoord[1], outCoord[2], value);
|
|
}
|
|
}
|
|
${w6(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner)}
|
|
`}};function fb(e,t){let n=t[1]*e[1],s=t[0]*e[0],r=n>s?n:s;return`
|
|
var<workgroup> mm_Asub : array<array<f32, ${r}>, ${n}>;
|
|
var<workgroup> mm_Bsub : array<array<f32, ${s}>, ${r}>;
|
|
${Vo()}
|
|
let tileRow = i32(localId.y) * ${e[1]};
|
|
let tileCol = i32(localId.x) * ${e[0]};
|
|
|
|
let globalRow = i32(globalId.y) * ${e[1]};
|
|
let globalCol = i32(globalId.x) * ${e[0]};
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / ${r} + 1;
|
|
|
|
var acc : array<array<f32, ${e[0]}>, ${e[1]}>;
|
|
var ACached : f32;
|
|
var BCached : array<f32, ${e[0]}>;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
acc[innerRow][innerCol] = 0.0;
|
|
}
|
|
}
|
|
|
|
let ColPerThreadA = ${r} / ${t[0]};
|
|
let tileColA = i32(localId.x) * ColPerThreadA;
|
|
let RowPerThreadB = ${r} / ${t[1]};
|
|
let tileRowB = i32(localId.y) * RowPerThreadB;
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ColPerThreadA; innerCol = innerCol + 1) {
|
|
let inputRow = tileRow + innerRow;
|
|
let inputCol = tileColA + innerCol;
|
|
|
|
mm_Asub[inputRow][inputCol] = mm_readA(
|
|
globalRow + innerRow,
|
|
t * ${r} + inputCol, globalId);
|
|
}
|
|
}
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol + innerCol;
|
|
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(
|
|
t * ${r} + inputRow,
|
|
globalCol + innerCol, globalId);
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${r}; k = k + 1) {
|
|
for (var inner = 0; inner < ${e[0]}; inner = inner + 1) {
|
|
BCached[inner] = mm_Bsub[k][tileCol + inner];
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
ACached = mm_Asub[tileRow + innerRow][k];
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];
|
|
}
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
|
|
if ((globalCol + innerCol) < uniforms.dimBOuter &&
|
|
(globalRow + innerRow) < uniforms.dimAOuter) {
|
|
mm_write(globalRow + innerRow,
|
|
globalCol + innerCol,
|
|
acc[innerRow][innerCol], globalId);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`}function Uce(e){return`
|
|
let TileSize = ${e[0]*4};
|
|
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
|
|
|
|
${Vo()}
|
|
let tileCol = i32(localId.x);
|
|
let globalCol = i32(globalId.x);
|
|
let globalRow = i32(globalId.y);
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / TileSize + 1;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
var acc = 0.0;
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
let colA = t * TileSize + tileCol * 4;
|
|
mm_Asub[tileCol] = vec4<f32>(mm_readA(globalRow, colA, globalId),
|
|
mm_readA(globalRow, colA + 1, globalId),
|
|
mm_readA(globalRow, colA + 2, globalId),
|
|
mm_readA(globalRow, colA + 3, globalId));
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < TileSize / 4; k = k + 1) {
|
|
let rowB = t * TileSize + k * 4;
|
|
let BCached = vec4<f32>(mm_readB(rowB, globalCol, globalId),
|
|
mm_readB(rowB + 1, globalCol, globalId),
|
|
mm_readB(rowB + 2, globalCol, globalId),
|
|
mm_readB(rowB + 3, globalCol, globalId));
|
|
|
|
let ACached = mm_Asub[k];
|
|
acc = acc + dot(ACached, BCached);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) {
|
|
mm_write(globalRow, globalCol, acc, globalId);
|
|
}
|
|
}
|
|
`}var k6=class{constructor(e,t,n,s=!1,r=!1,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[16,16,1],this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let l=s?e[1]:e[2];this.workGroupSize=b6(t[1],l,t[2]),(t[1]===1||t[2]===1)&&(n=1),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]),v.arraysEqual(this.dispatch,[1,1,1])&&(n=1,this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]));let u=a!=null,c=i!=null;u&&this.variableNames.push("bias"),c&&this.variableNames.push("preluActivationWeights"),this.workPerThread=n,this.aShape=e,this.transposeA=s,this.transposeB=r,this.addBias=u,this.activation=o,this.hasPreluActivationWeights=c;let p=this.outputShape[2],d=this.transposeB?[this.outputShape[0],p,l]:[this.outputShape[0],l,p];[this.fitA,this.fitB]=this.getShapeFit(d),this.shaderKey=`matMulPacked_${this.workPerThread}_${s}_${r}_${this.activation}_${this.fitA}_${this.fitB}_${this.outputShape[1]>1}`}getShapeFit(e){let t=this.workGroupSize[1]*this.workPerThread,n=this.workGroupSize[0]*this.workPerThread,s=t>n?t:n;this.outputShape[1]===1&&(s*=4),v.assert(s%this.workGroupSize[0]===0&&s%this.workGroupSize[1]===0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let r=[t,s],a=[s,n];return[Xr(r,this.aShape.slice(1)),Xr(a,e.slice(1))]}getUserCode(){let e;this.transposeA===!1?e=this.fitA?"return A[batch * batchASize + row * uniforms.dimInner + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch * batchASize + row * uniforms.dimInner + col];
|
|
}
|
|
return 0.0;`:e=this.fitA?"return A[batch * batchASize + col * uniforms.dimAOuter + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch* batchASize + col * uniforms.dimAOuter + row];
|
|
}
|
|
return 0.0;`;let t;this.transposeB===!1?t=this.fitB?"return B[batch * batchBSize + row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;`:t=this.fitB?"return B[batch * batchBSize + col * uniforms.dimInner + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + col * uniforms.dimInner + row];
|
|
}
|
|
return 0.0;`;let n="",s="";if(this.activation){let o=sa(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${o}
|
|
}`:n=`
|
|
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${o}
|
|
}
|
|
`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${n}
|
|
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
let batch = i32(globalId.z);
|
|
${e}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batch = i32(globalId.z);
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
${t}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
|
|
var value = valueIn;
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
${r}
|
|
${s}
|
|
setOutputAtCoords(batch, row, col, value);
|
|
}
|
|
${this.outputShape[1]>1?fb([this.workPerThread,this.workPerThread,1],this.workGroupSize):Uce(this.workGroupSize)}
|
|
`}};function Gce(){return`
|
|
var<workgroup> sumValues : array<f32, workGroupSizeX>;
|
|
${Vo()}
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let row = coords[1];
|
|
let col = coords[2];
|
|
var sum = 0.0;
|
|
let Length = uniforms.dimInner;
|
|
for (var k = i32(localId.x); k < Length; k = k + i32(workGroupSizeX)) {
|
|
let dataA = mm_readA(batch, row, k);
|
|
let dataB = mm_readB(batch, k, col);
|
|
sum = sum + dataA * dataB;
|
|
}
|
|
sumValues[localId.x] = sum;
|
|
workgroupBarrier();
|
|
|
|
for(var currentSize = workGroupSizeX / 2u; currentSize > 1u;
|
|
currentSize = currentSize / 2u) {
|
|
if (localId.x < currentSize)
|
|
{
|
|
sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize];
|
|
}
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u) {
|
|
sum = sumValues[0] + sumValues[1];
|
|
mm_write(batch, row, col, sum);
|
|
}
|
|
}
|
|
`}var Hce=class{constructor(e,t=!1,n=!1,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout={x:[],y:[1,2],z:[0]},this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize);let o=s!=null,i=a!=null;o&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),this.transposeA=t,this.transposeB=n,this.addBias=o,this.activation=r,this.hasPreluActivationWeights=i,this.shaderKey=`matMulReduce_${this.activation}_${t}_${n}`}getUserCode(){let e;this.transposeA===!1?e="return A[batch * batchASize + row * uniforms.dimInner + col];":e="return A[batch * batchASize + col * uniforms.dimAOuter + row];";let t;this.transposeB===!1?t="return B[batch * batchBSize + row * uniforms.dimBOuter + col];":t="return B[batch * batchBSize + col * uniforms.dimInner + row];";let n="",s="";if(this.activation){let o=sa(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${o}
|
|
}`:n=`
|
|
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${o}
|
|
}
|
|
`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${n}
|
|
|
|
fn mm_readA(batch: i32, row : i32, col : i32) -> f32 {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
${e}
|
|
}
|
|
|
|
fn mm_readB(batch: i32, row : i32, col : i32) -> f32 {
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
${t}
|
|
}
|
|
|
|
fn mm_write(batch: i32, row : i32, col : i32, valueIn : f32) {
|
|
var value = valueIn;
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
${r}
|
|
${s}
|
|
setOutputAtCoords(batch, row, col, value);
|
|
}
|
|
${Gce()}
|
|
`}};function jce(e){let t=e[1]/2,n=e[0],s=t>n?t:n;return`
|
|
var<workgroup> mm_Asub1 : array<array<f32, ${s}>, ${t}>;
|
|
var<workgroup> mm_Bsub1 : array<array<f32, ${n}>, ${s}>;
|
|
var<workgroup> mm_Asub2 : array<array<f32, ${s}>, ${t}>;
|
|
var<workgroup> mm_Bsub2 : array<array<f32, ${n}>, ${s}>;
|
|
|
|
// If the output size is small for matrix multiplication, avoid to use vec4
|
|
// and handle some elements per thread to optimally utilize the ALU.
|
|
// Introduces two shared memory buffers, some logical threads could handle
|
|
// arithmetic operations and others handle IO operations between barrier api,
|
|
// makes ALUs and load/store units work simultaneously, could improves
|
|
// the performance.
|
|
${Vo()}
|
|
let tileRow = i32(localId.y);
|
|
let tileCol = i32(localId.x);
|
|
let globalRow = i32(globalId.y);
|
|
let globalCol = i32(globalId.x);
|
|
|
|
// uniforms.dimInner should be greater than 0.
|
|
let numTiles = (uniforms.dimInner - 1) / ${s} + 1;
|
|
var acc = 0.0;
|
|
|
|
var globalColA = tileCol;
|
|
var globalRowB = tileRow;
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
if (t == 0) {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub1[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${s};
|
|
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${s};
|
|
}
|
|
} else {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub1[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${s};
|
|
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${s};
|
|
} else {
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${s}; k = k + 1) {
|
|
let subRow = tileRow - ${t};
|
|
if (subRow < 0) {
|
|
continue;
|
|
}
|
|
acc = acc + mm_Asub2[subRow][k] * mm_Bsub2[k][tileCol];
|
|
}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
if (t != 0) {
|
|
t = t + 1;
|
|
}
|
|
|
|
if (t < numTiles) {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub2[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${s};
|
|
mm_Bsub2[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${s};
|
|
} else {
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${s}; k = k + 1) {
|
|
let subRow = tileRow - ${t};
|
|
if (subRow < 0) {
|
|
continue;
|
|
}
|
|
acc = acc + mm_Asub1[subRow][k] * mm_Bsub1[k][tileCol];
|
|
}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
}
|
|
let writeCol = (globalRow - tileRow) / 2 + tileRow - ${t};
|
|
if (tileRow >= ${t} && writeCol >= 0) {
|
|
mm_write(writeCol, globalCol, acc, globalId);
|
|
}
|
|
}
|
|
`}var qce=class{constructor(e,t,n,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,16,1],v.assert(e[1]<=16||t[2]<=16,()=>"This program can be only used when A width or B Height are small"),this.outputShape=n,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(n[2]/this.workGroupSize[0]),Math.ceil(n[1]*2/this.workGroupSize[1]),n[0]];let o=s!=null;o&&this.variableNames.push("bias");let i=a!=null;i&&this.variableNames.push("preluActivationWeights"),this.addBias=o,this.activation=r,this.hasPreluActivationWeights=i,this.shaderKey=`matMulSmallOutputSize_${this.activation}`}getUserCode(){let e=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch * batchASize + row * uniforms.dimInner + col];
|
|
}
|
|
return 0.0;`,t=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;`,n="",s="";if(this.activation){let o=sa(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${o}
|
|
}`:n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${o}
|
|
}`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${n}
|
|
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
let batch = i32(globalId.z);
|
|
${e}
|
|
}
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batch = i32(globalId.z);
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
${t}
|
|
}
|
|
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
|
|
if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimBOuter))) {
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
var value = valueIn;
|
|
${r}
|
|
${s}
|
|
setOutputAtCoords(batch, row, col, value);
|
|
}
|
|
}
|
|
${jce(this.workGroupSize)}
|
|
`}};function qe(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a),i=v.sizeFromShape(o);return v.assert(a===i,()=>`The new shape (${o}) has ${i} elements and the old shape (${s.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var Xce={kernelName:rl,backendName:"webgpu",kernelFunc:qe};function mb({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,p=n?e.shape[u-2]:e.shape[u-1],d=s?t.shape[c-1]:t.shape[c-2],h=n?e.shape[u-1]:e.shape[u-2],f=s?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(m),x=v.sizeFromShape(g),b=bl.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let w=n?[y,p,h]:[y,h,p],S=s?[x,f,d]:[x,d,f],I=qe({inputs:{x:e},backend:r,attrs:{shape:w}}),E=qe({inputs:{x:t},backend:r,attrs:{shape:S}}),R=[I,E],P=Math.max(y,x),_=p%4===0&&f%4===0&&!n&&!s&&f>=32,D;h*f<=32?D=new Hce([P,h,f],n,s,a,l,o):!n&&!s&&(h<=16&&(f<=512||d>=2*f)||f<=16&&(h<=512||p>=2*h))?D=new qce(w,S,[P,h,f],a,l,o):_?D=new Vce(w,[P,h,f],J().get("WEBGPU_MATMUL_WORK_PER_THREAD"),a,l,o):D=new k6(w,[P,h,f],J().get("WEBGPU_MATMUL_WORK_PER_THREAD"),n,s,a,l,o);let T=[I,E];a&&T.push(a),o&&T.push(o);let O=[{type:"int32",data:[h]},{type:"int32",data:[f]},{type:"int32",data:[p]}];l==="leakyrelu"&&(O.push({type:"float32",data:[i]}),D.uniforms+=" alpha : f32,");let U=r.runWebGPUProgram(D,T,e.dtype,O),K=qe({inputs:{x:U},backend:r,attrs:{shape:b}});R.push(U);for(let z of R)r.disposeData(z.dataId);return K}function Kce(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s;return mb({a:r,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var Zce={kernelName:Ea,backendName:"webgpu",kernelFunc:Kce},Jv=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n),this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e}getUserCode(){return`
|
|
fn binaryOpComplex(
|
|
areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {
|
|
${Dp(this.op,!1)}
|
|
}
|
|
|
|
${et()}
|
|
if(index < uniforms.size) {
|
|
let areal = getARealByOutputIndex(index);
|
|
let aimag = getAImagByOutputIndex(index);
|
|
let breal = getBRealByOutputIndex(index);
|
|
let bimag = getBImagByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
}
|
|
`}},Yce=class{constructor(e,t,n,s){this.variableNames=["A","B"],this.size=!0;let r=256;this.workGroupSize=[r,1,1],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.dispatchLayout=Ke(this.outputShape),this.lastDimensionSize=s?n[0]:t[0],this.lastDimensionSize<256?this.workPerThread=1:this.lastDimensionSize<512?this.workPerThread=2:this.workPerThread=4,this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.useSharedMemoryWithB=s,this.op=e,this.shaderKey=`binaryShared_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`}getUserCode(){let e=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",t=this.useSharedMemoryWithB?`let a = getAByOutputCoords(coords);
|
|
let b = sharedBuf[${e}];`:`let a = sharedBuf[${e}];
|
|
let b = getBByOutputCoords(coords);`;return`
|
|
fn binaryOperation(a : f32, b : f32) -> f32 {
|
|
${Dp(this.op,!1)}
|
|
}
|
|
var<workgroup> sharedBuf : array<f32, ${this.lastDimensionSize}>;
|
|
${et()}
|
|
|
|
// Fill in the shared memory buffer. Here we need a loop to make sure
|
|
// that all data in A|B are uploaded when |sharedMemorySize| is larger
|
|
// than work group size.
|
|
for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) {
|
|
sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB?"B":"A"}[localIndex]);
|
|
}
|
|
workgroupBarrier();
|
|
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
|
|
${t}
|
|
setOutputAtIndex(flatIndex, binaryOperation(a, b));
|
|
}
|
|
}
|
|
}
|
|
`}},Jce=class{constructor(e,t,n){this.variableNames=["A","B"],this.workPerThread=4,this.isVec4=!0,this.size=!0;let s=128;this.workGroupSize=[s,1,1],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.op=e,this.shaderKey=`binaryVec4_${e}`}getUserCode(){return`
|
|
fn binaryOperation(a : vec4<f32>, b : vec4<f32>) -> vec4<f32> {
|
|
${Dp(this.op,this.isVec4)}
|
|
}
|
|
${et()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
let b = getBByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOperation(a, b));
|
|
}
|
|
}
|
|
`}},S6=class{constructor(e,t,n){this.variableNames=["A","B"],this.size=!0;let s=128;this.workGroupSize=[s,1,1],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binary_${e}`,this.op=e}getUserCode(){return`
|
|
fn binaryOperation(a : f32, b : f32) -> f32 {
|
|
${Dp(this.op,!1)}
|
|
}
|
|
${et()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
let b = getBByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOperation(a, b));
|
|
}
|
|
}
|
|
`}};function Qv(e,t,n){if(v.arraysEqual(t,n)&&v.sizeFromShape(t)%4===0)return new Jce(e,t,n);let r=t.length===1&&n.length>1&&t[0]<1024,a=n.length===1&&t.length>1&&n[0]<1024;return r||a?new Yce(e,t,n,a):new S6(e,t,n)}function Ws(e){let{inputs:t}=e,{x:n}=t;return e.backend.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var Qce={kernelName:uo,backendName:"webgpu",kernelFunc:Ws};function kc(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.tensorMap.get(a.dataId),i=Ws({inputs:{x:s},backend:n}),l=Ws({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var ede={kernelName:Bd,backendName:"webgpu",kernelFunc:kc},Pp=class{constructor(e,t){this.variableNames=["A"],this.size=!0;let n=128;this.workGroupSize=[n,1,1],this.outputShape=e,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.op=t,this.shaderKey=`unary_${t}`}getUserCode(){return`
|
|
fn unaryOperation(a : f32) -> f32 {
|
|
${ui(this.op,!1)}
|
|
}
|
|
${et()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
setOutputAtIndex(index, unaryOperation(a));
|
|
}
|
|
}
|
|
`}};function bn({opType:e,cpuKernelImpl:t,dtype:n}){return({inputs:s,backend:r})=>{let{x:a}=s,o=r,i=n||a.dtype;if(o.shouldExecuteOnCPU([a])&&t!=null){let u=o.tensorMap.get(a.dataId),c=t(u.values,i);return o.makeTensorInfo(a.shape,i,c)}let l=new Pp(a.shape,e);return o.runWebGPUProgram(l,[a],i)}}function qn({opSnippet:e,cpuKernelImpl:t,supportsComplex:n=!1,dtype:s}){return({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(n&&o.dtype==="complex64"){let p=l.tensorMap.get(o.dataId),d=l.tensorMap.get(i.dataId),h,f;if(e!==0)[h,f]=[[p.complexTensorInfos.real,d.complexTensorInfos.real],[p.complexTensorInfos.imag,d.complexTensorInfos.imag]].map(g=>{let[y,x]=g,A={dataId:y.dataId,dtype:y.dtype,shape:o.shape},b={dataId:x.dataId,dtype:x.dtype,shape:i.shape},w=Qv(e,o.shape,i.shape);return l.runWebGPUProgram(w,[A,b],Tn(y.dtype,x.dtype))});else{let g=new Jv(17,o.shape,i.shape),y=new Jv(18,o.shape,i.shape),x=[{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:o.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:o.shape},{dataId:d.complexTensorInfos.real.dataId,dtype:d.complexTensorInfos.real.dtype,shape:i.shape},{dataId:d.complexTensorInfos.imag.dataId,dtype:d.complexTensorInfos.imag.dtype,shape:i.shape}];h=l.runWebGPUProgram(g,x,"float32"),f=l.runWebGPUProgram(y,x,"float32")}let m=kc({inputs:{real:h,imag:f},backend:l});return l.disposeData(h.dataId),l.disposeData(f.dataId),m}let u=s||Tn(o.dtype,i.dtype);if((o.dtype==="string"||i.dtype==="string"||l.shouldExecuteOnCPU([o,i]))&&t!=null){let p=l.tensorMap.get(o.dataId).values,d=l.tensorMap.get(i.dataId).values,h=o.dtype==="string"?C.fromUint8ToStringArray(p):p,f=o.dtype==="string"?C.fromUint8ToStringArray(d):d,[m,g]=t(o.shape,i.shape,h,f,u);return l.makeTensorInfo(g,u,m)}let c=Qv(e,o.shape,i.shape);return l.runWebGPUProgram(c,[o,i],u)}}var{addImpl:tde,ceilImpl:nde,concatImpl:sde,equalImpl:rde,expImpl:ade,expm1Impl:ode,floorImpl:ide,gatherNdImpl:lde,gatherV2Impl:ude,greaterEqualImpl:cde,greaterImpl:dde,lessEqualImpl:pde,lessImpl:hde,logImpl:fde,maxImpl:mde,maximumImpl:gde,minimumImpl:yde,multiplyImpl:Ade,negImpl:xde,notEqualImpl:bde,prodImpl:vde,rangeImpl:wde,rsqrtImpl:kde,simpleAbsImpl:Sde,sliceImpl:Ide,stridedSliceImpl:Cde,stringNGramsImpl:Tde,subImpl:Nde,tileImpl:Ede,topKImpl:Rde,transposeImpl:_de,uniqueImpl:FAe}=a0,$de=bn({opType:0,cpuKernelImpl:Sde}),Dde={kernelName:Pi,backendName:"webgpu",kernelFunc:$de},Pde=qn({opSnippet:1,cpuKernelImpl:tde,supportsComplex:!0}),Fde={kernelName:Kr,backendName:"webgpu",kernelFunc:Pde},Ode=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e[0],this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="addN"}getUserCode(){let e=[];this.variableNames.forEach(s=>{e.push(`let v${s} = get${s}ByOutputCoords(coords);`)});let t=this.variableNames.map(s=>`v${s}`).join(" + ");return`
|
|
${et()}
|
|
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if (flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
${e.join(`
|
|
`)}
|
|
setOutputAtIndex(flatIndex, ${t});
|
|
}
|
|
}
|
|
}
|
|
`}};function Mde(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return Ws({inputs:{x:s[0]},backend:n});let r=s.map(i=>i.dtype).reduce((i,l)=>Tn(i,l)),a=s.map(i=>i.shape),o=new Ode(a);return n.runWebGPUProgram(o,s,r)}var zde={kernelName:Ha,backendName:"webgpu",kernelFunc:Mde},I6=class{constructor(e,t,n){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="axis : i32, infinityValue : f32,",this.size=!0;let s=[t];C.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),s,e.length),this.op=n==="min"?"<":">";let[r]=C.computeOutAndReduceShapes(e,s);this.outputShape=r.length===0?[1]:r,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,[1,1,1]),this.inputShape=e,this.shaderKey=`argMinMax${this.op}`}getUserCode(){let e=`
|
|
var<workgroup> xBestIndices : array<i32, ${this.workGroupSize[0]}>;
|
|
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
|
|
`,t=(r,a)=>this.outputShape.length===1?r:`${r}[${a}]`,n=r=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape[${r}]`;return`
|
|
fn DIV_CEIL(a : u32, b : u32) -> u32 {
|
|
return ((a - 1u) / b + 1u);
|
|
}
|
|
|
|
${e}
|
|
|
|
// In order to get a flattened index into the input tensor, we need to
|
|
// add back the index along the reduced dimension to |outputCoords|.
|
|
// This function outputs the offset to the first value along
|
|
// |axis| and the stride to get the next value of the input along |axis|.
|
|
fn getInputCoordInfo(outputIndex : i32) -> vec2<i32>{
|
|
let outputCoords = getCoordsFromIndex(outputIndex);
|
|
var i = ${this.outputShape.length-1};
|
|
|
|
var stride = 1;
|
|
var inputStride = 1;
|
|
var offset = 0;
|
|
|
|
for (var r = 1; r <= ${this.inputShape.length}; r = r + 1) {
|
|
let length = ${n(`${this.inputShape.length} - r`)};
|
|
if (${this.inputShape.length} - r == uniforms.axis) {
|
|
inputStride = stride;
|
|
} else {
|
|
offset = offset + ${t("outputCoords","i")} * stride;
|
|
i = i - 1;
|
|
}
|
|
stride = stride * length;
|
|
}
|
|
|
|
return vec2<i32>(offset, inputStride);
|
|
}
|
|
|
|
fn getInputIndex(coordInfo : vec2<i32>, index : i32) -> i32{
|
|
return coordInfo[0] + coordInfo[1] * index;
|
|
}
|
|
|
|
${et()}
|
|
let outputIndex = index / i32(workGroupSizeX);
|
|
let coordInfo = getInputCoordInfo(outputIndex);
|
|
let Length = ${n("uniforms.axis")};
|
|
|
|
var bestIndex = i32(localId.x);
|
|
var bestValue = uniforms.infinityValue;
|
|
|
|
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
|
|
k = k + i32(workGroupSizeX)) {
|
|
let candidate = f32(x[getInputIndex(coordInfo, k)]);
|
|
if (!isnan(candidate) && candidate ${this.op} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = k;
|
|
}
|
|
}
|
|
xBestValues[localId.x] = bestValue;
|
|
xBestIndices[localId.x] = bestIndex;
|
|
workgroupBarrier();
|
|
|
|
var reduceSize = min(u32(Length), workGroupSizeX);
|
|
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
|
|
currentSize = reduceSize / 2u) {
|
|
let interval = DIV_CEIL(reduceSize, 2u);
|
|
if (localId.x < currentSize) {
|
|
let candidate = xBestValues[localId.x + interval];
|
|
if (candidate ${this.op} bestValue) {
|
|
bestValue = candidate;
|
|
xBestValues[localId.x] = bestValue;
|
|
xBestIndices[localId.x] = xBestIndices[localId.x + interval];
|
|
}
|
|
}
|
|
reduceSize = interval;
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u && outputIndex < uniforms.size) {
|
|
setOutputAtIndexI32(outputIndex, xBestIndices[localId.x]);
|
|
}
|
|
}
|
|
`}},Lde=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[16,16,1];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout={x:[0],y:[1]},this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,1,1]),this.shaderKey="transposeShared"}getUserCode(){return`
|
|
let TILE_DIM = ${this.workGroupSize[0]};
|
|
var<workgroup> tile : array<array<f32, ${this.workGroupSize[0]+1}>, ${this.workGroupSize[0]}>;
|
|
${cb()}
|
|
fn main(@builtin(local_invocation_id) localId : vec3<u32>,
|
|
@builtin(workgroup_id) workgroupId : vec3<u32>) {
|
|
var x = i32(workgroupId.x) * TILE_DIM + i32(localId.x);
|
|
var y = i32(workgroupId.y) * TILE_DIM + i32(localId.y);
|
|
let width = uniforms.outShape[0];
|
|
let height = uniforms.outShape[1];
|
|
if (x < width && y < height) {
|
|
tile[localId.y][localId.x] = A[y * width + x];
|
|
}
|
|
workgroupBarrier();
|
|
|
|
x = i32(workgroupId.y) * TILE_DIM + i32(localId.x);
|
|
y = i32(workgroupId.x) * TILE_DIM + i32(localId.y);
|
|
if (x < height && y < width) {
|
|
setOutputAtIndex((y * height + x), tile[localId.x]
|
|
[localId.y]);
|
|
}
|
|
}
|
|
`}},Bde=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.newDim=t,this.shaderKey=`transpose_${t}`}getUserCode(){let e=fn(this.outputShape.length),t=Wde(this.newDim);return`
|
|
${et()}
|
|
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(flatIndex);
|
|
setOutputAtIndex(flatIndex, A[getIndexFromCoords${this.outputShape.length}D(
|
|
${e}(${t}), uniforms.aShape)]);
|
|
}
|
|
}
|
|
}
|
|
`}};function Wde(e){let t=e.length;if(t>4)throw Error(`Transpose for rank ${t} is not yet supported`);let n=new Array(t);for(let s=0;s<e.length;s++)n[e[s]]=`resRC[${s}]`;return n.join()}function _l(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=r.shape[a[c]];if(n.shouldExecuteOnCPU([r])){let p=o.tensorMap.get(r.dataId).values,d=_de(p,r.shape,r.dtype,a,l);return n.makeTensorInfo(l,r.dtype,d)}if(r.shape.length===2&&v.arraysEqual(a,[1,0])){let c=new Lde(r.shape,a);return o.runWebGPUProgram(c,[r],r.dtype)}let u=new Bde(r.shape,a);return o.runWebGPUProgram(u,[r],r.dtype)}var Vde={kernelName:Oo,backendName:"webgpu",kernelFunc:_l};function Ude(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=C.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=_l({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=C.getInnerMostAxes(o.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let c=new I6(l.shape,o[0],"max"),p=[{type:"int32",data:[o[0]]},{type:"float32",data:[Number.NEGATIVE_INFINITY]}],d=n.runWebGPUProgram(c,[l],"int32",p);return u.forEach(h=>n.disposeData(h.dataId)),d}var Gde={kernelName:ja,backendName:"webgpu",kernelFunc:Ude};function Hde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=C.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=_l({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=C.getInnerMostAxes(o.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=new I6(l.shape,o[0],"min"),p=[{type:"int32",data:[o[0]]},{type:"float32",data:[Number.POSITIVE_INFINITY]}],d=n.runWebGPUProgram(c,[l],"int32",p);return u.forEach(h=>n.disposeData(h.dataId)),d}var jde={kernelName:Du,backendName:"webgpu",kernelFunc:Hde},C6=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2<i32>, pad : vec2<i32>, dilation : vec2<i32>, convDims : vec2<i32>, filterDims : vec2<i32>,",this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / count"),`
|
|
${et()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"};
|
|
var count = 0.0;
|
|
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) {
|
|
let xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= uniforms.convDims.x) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) {
|
|
let xC = xCCorner + wC;
|
|
if (xC < 0 || xC >= uniforms.convDims.y) {
|
|
continue;
|
|
}
|
|
|
|
let value = getX(batch, xR, xC, coords[3]);
|
|
${e}
|
|
}
|
|
}
|
|
|
|
setOutputAtIndex(index, ${t});
|
|
}
|
|
}
|
|
`}},T6=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2<i32>,",this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return`
|
|
${et()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let d = coords[3];
|
|
|
|
let xRCCorner = coords.yz * uniforms.stride;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
let value = getX(batch, xRCorner, xCCorner, d);
|
|
setOutputAtIndex(index, value);
|
|
}
|
|
}
|
|
`}};function qde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1,c=C.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return Ws({inputs:{x:r},backend:n});let p,d=[{type:"int32",data:[c.strideHeight,c.strideWidth]}];return c.filterHeight===1&&c.filterWidth===1?p=new T6(c):(p=new C6(c,"avg"),d.push({type:"int32",data:[c.padInfo.top,c.padInfo.left]},{type:"int32",data:[c.dilationHeight,c.dilationWidth]},{type:"int32",data:[c.inHeight,c.inWidth]},{type:"int32",data:[c.effectiveFilterHeight,c.effectiveFilterWidth]})),n.runWebGPUProgram(p,[r],r.dtype,d)}var Xde={kernelName:qa,backendName:"webgpu",kernelFunc:qde};function Kde(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return mb({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var Zde={kernelName:Xa,backendName:"webgpu",kernelFunc:Kde},Yde=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.rank=t.length,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${fn(e.length)}, `,this.shaderKey="slice"}getUserCode(){let e=fn(this.rank),t=Jde(this.rank),n;return this.start.length===1?n=this.outputShape.map((r,a)=>"sourceLoc = uniforms.start + coords;"):n=this.outputShape.map((r,a)=>`sourceLoc.${qy[a]} = uniforms.start[${a}] + coords.${qy[a]};`),`
|
|
${et()}
|
|
if (index < uniforms.size) {
|
|
var sourceLoc : ${e};
|
|
let coords = getCoordsFromIndex(index);
|
|
${n.join(`
|
|
`)}
|
|
setOutputAtIndex(index, getSource(${t}));
|
|
}
|
|
}
|
|
`}},qy=["x","y","z","w","u","v"];function Jde(e){if(e===1)return"sourceLoc";if(e<=6)return qy.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function Sc(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Ft.parseSliceParams(r,a,o);if(Ft.assertParamsValid(r,i,l),n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.tensorMap.get(r.dataId),d=Ide(p.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}if(v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);let u=new Yde(i,l),c=[{type:"int32",data:i}];return n.runWebGPUProgram(u,[r],r.dtype,c)}var Qde={kernelName:ul,backendName:"webgpu",kernelFunc:Sc},epe=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((x,A)=>x*A),l=C.getReshaped(r.shape,a,i),u=C.getPermuted(l.length,a.length),c=C.getReshapedPermuted(r.shape,a,i),p=C.getSliceBeginCoords(o,a.length),d=C.getSliceSize(c,o,a.length),h=[],f=qe({inputs:{x:r},backend:n,attrs:{shape:l}}),m=_l({inputs:{x:f},backend:n,attrs:{perm:u}}),g=qe({inputs:{x:m},backend:n,attrs:{shape:c}}),y=Sc({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(x=>n.disposeData(x.dataId)),y},tpe={kernelName:Fi,backendName:"webgpu",kernelFunc:epe},N6=qn({opSnippet:10,dtype:"bool",cpuKernelImpl:bde}),npe={kernelName:Yi,backendName:"webgpu",kernelFunc:N6};function Fp(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return Ws({inputs:{x:r.complexTensorInfos.real},backend:n})}var spe={kernelName:Kd,backendName:"webgpu",kernelFunc:Fp};function rpe(e,t){let n=new Pp(e.shape,22),s=t.runWebGPUProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function Xy(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Ws({inputs:{x:r},backend:n});let o=Wt(r.shape),i=Xy({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=kc({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeData(i.dataId),l}if(r.dtype==="complex64"){let o=Fp({inputs:{input:r},backend:n}),i=Xy({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeData(o.dataId),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=Ws({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return rpe(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=N6({inputs:{a:r,b:o},backend:n});return n.disposeData(o.dataId),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var ape={kernelName:Ka,backendName:"webgpu",kernelFunc:Xy},ope=bn({opType:1,cpuKernelImpl:nde}),ipe={kernelName:Za,backendName:"webgpu",kernelFunc:ope},lpe=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workPerThread=4,this.workGroupSize=[64,1,1],this.isVec4=!0,this.size=!0,this.outputShape=e,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4"}getUserCode(){return`
|
|
${et()}
|
|
if(index < uniforms.size) {
|
|
let value = getAByOutputIndex(index);
|
|
var clampedValue : vec4<f32>;
|
|
for (var i = 0; i < 4; i = i + 1) {
|
|
if (isnan(value[i])) {
|
|
clampedValue[i] = value[i];
|
|
} else {
|
|
clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal);
|
|
}
|
|
}
|
|
|
|
setOutputAtIndex(index, clampedValue);
|
|
}
|
|
}
|
|
`}},upe=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="clip"}getUserCode(){return`
|
|
${et()}
|
|
if(index < uniforms.size) {
|
|
let value = getAByOutputIndex(index);
|
|
if (isnan(value)) {
|
|
setOutputAtIndex(index, value);
|
|
return;
|
|
}
|
|
setOutputAtIndex(index, clamp(value, uniforms.minVal, uniforms.maxVal));
|
|
}
|
|
}
|
|
`}};function cpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i,l=[{type:"float32",data:[a]},{type:"float32",data:[o]}];return v.sizeFromShape(r.shape)%4===0?i=new lpe(r.shape):i=new upe(r.shape),n.runWebGPUProgram(i,[r],r.dtype,l)}var dpe={kernelName:Zr,backendName:"webgpu",kernelFunc:cpe},ppe=class{constructor(e){this.uniforms="",this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.offsetLength=e.length-1;for(let t=0;t<this.offsetLength;t++)this.uniforms+=`offset${t} : i32,`;this.shaderKey="concat"}getUserCode(){let e=[];if(this.offsetLength>0){e.push("if (yC < uniforms.offset0){ setOutputAtCoords(coords.x, coords.y, getT0(yR, yC)); }");for(let r=1;r<this.offsetLength;r++)e.push(`else if (yC < uniforms.offset${[r]}){ setOutputAtCoords(coords.x, coords.y, getT${r}(yR, yC - uniforms.offset${r-1})); }`);let n=this.offsetLength,s=this.offsetLength-1;e.push(`else { setOutputAtCoords(coords.x, coords.y, getT${n}(yR, yC - uniforms.offset${s})); }`)}else e.push("setOutputAtCoords(coords.x, coords.y, getT0(yR, yC));");return`
|
|
${et()}
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
let yR = coords.x;
|
|
let yC = coords.y;
|
|
|
|
${e.join(`
|
|
`)}
|
|
}
|
|
}
|
|
}
|
|
`}};function f0(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return Ws({inputs:{x:r.complexTensorInfos.imag},backend:n})}var hpe={kernelName:Hd,backendName:"webgpu",kernelFunc:f0};function Ky(e,t,n){let s=e[0].dtype;if(s==="complex64"){let h=e.map(x=>Fp({inputs:{input:x},backend:n})),f=e.map(x=>f0({inputs:{input:x},backend:n})),m=Ky(h,t,n),g=Ky(f,t,n),y=kc({inputs:{real:m,imag:g},backend:n});return h.forEach(x=>n.disposeData(x.dataId)),f.forEach(x=>n.disposeData(x.dataId)),n.disposeData(m.dataId),n.disposeData(g.dataId),y}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let h=e.map(b=>{let w=v.sizeFromShape(b.shape.slice(t));return qe({inputs:{x:b},backend:n,attrs:{shape:[-1,w]}})}),f=h.map(b=>({vals:n.readSync(b.dataId),shape:b.shape})),m=C.computeOutShape(h.map(b=>b.shape),1),g=h[0].shape[0]===1,y=sde(f,m,s,g),x=C.computeOutShape(e.map(b=>b.shape),t),A=n.makeTensorInfo(x,s,y);return h.forEach(b=>n.disposeData(b.dataId)),A}let{tensors2D:a,outShape:o}=fpe(e,t,n),i=a.map(h=>h.shape),l=new ppe(i),u=[],c=new Array(i.length-1);if(c.length>0){c[0]=i[0][1],u.push({type:"int32",data:[c[0]]});for(let h=1;h<c.length;h++)c[h]=c[h-1]+i[h][1],u.push({type:"int32",data:[c[h]]})}let p=n.runWebGPUProgram(l,a,a[0].dtype,u);a.forEach(h=>n.disposeData(h.dataId));let d=qe({inputs:{x:p},backend:n,attrs:{shape:o}});return n.disposeData(p.dataId),d}function fpe(e,t,n){let s=C.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>qe({inputs:{x:a},backend:n,attrs:{shape:[v.sizeFromShape(a.shape.slice(0,t)),v.sizeFromShape(a.shape.slice(t))]}})),outShape:s}}function E6(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=C.computeOutShape(t.map(u=>u.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>v.sizeFromShape(u.shape)>0);if(i.length===1)return Ws({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return C.assertParamsConsistent(l,a),Ky(i,a,n)}var mpe={kernelName:Oi,backendName:"webgpu",kernelFunc:E6},gpe=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.uniforms=`filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>,
|
|
dimAOuter : i32, dimBOuter : i32, dimInner : i32,`,this.workGroupSize=[8,8,1],this.isVec4=!0,this.outputShape=e.outShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.outputShape[1]===1?this.elementsPerThread=[4,1,1]:this.elementsPerThread=[4,4,1],this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,this.hasLeakyreluAlpha=r,this.addBias&&this.variableNames.push("bias"),this.hasPreluActivationWeights&&this.variableNames.push("preluActivationWeights"),this.hasLeakyreluAlpha&&this.variableNames.push("leakyreluAlpha"),this.tileAOuter=this.outputShape[1]===1?1:this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=this.tileBOuter,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`conv2DMMVec4_${this.activation}_${this.fitA}_${this.fitB}_${this.elementsPerThread}`}getShapeFit(){let e=[this.tileAOuter,this.tileInner],t=[this.tileInner,this.tileBOuter],n=this.outputShape[1]*this.outputShape[2],s=this.outputShape[3],r=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[Xr(e,[n,r]),Xr(t,[r,s])]}getSampleAWithRemainder(e){return`let flatIndex${e} = getIndexFromCoords4D(coord, uniforms.xShape);
|
|
let divBy4Remainder${e} = flatIndex${e} % 4;
|
|
let divBy4Index${e} = flatIndex${e} / 4;
|
|
let curData${e} = x[divBy4Index${e}];
|
|
if (divBy4Remainder${e} == 0) {
|
|
temp = curData${e};
|
|
} else {
|
|
// TODO: This could end up being a redundant load with another one in
|
|
// the same shader invocation. Perhaps there's an opportunity for
|
|
// optimization
|
|
let nextData${e} = x[divBy4Index${e} + 1];
|
|
if (divBy4Remainder${e} == 1) {
|
|
temp = vec4<f32>(curData${e}.yzw, nextData${e}.x);
|
|
} else if (divBy4Remainder${e} == 2) {
|
|
temp = vec4<f32>(curData${e}.zw, nextData${e}.xy);
|
|
} else if (divBy4Remainder${e} == 3) {
|
|
temp = vec4<f32>(curData${e}.w, nextData${e}.xyz);
|
|
}
|
|
}
|
|
`}getUserCode(){let e=w6(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner),s=`let outRow = r / uniforms.outShape[2];
|
|
let outCol = r % uniforms.outShape[2];
|
|
let WRow = c / (uniforms.filterDims[1] * uniforms.xShape[3]);
|
|
let WCol = c / uniforms.xShape[3] % uniforms.filterDims[1];
|
|
let inChCoord = c % uniforms.xShape[3];
|
|
var coord = vec4<i32>(
|
|
batch,
|
|
outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0],
|
|
outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1],
|
|
inChCoord);
|
|
var resData = vec4<f32>(0.0);
|
|
${this.convInfo.inChannels%4===0?`// The bounds checking is always needed since we use it to pad zero for
|
|
// the 'same' padding type.
|
|
if (coordsInBounds4D(coord, uniforms.xShape)) {
|
|
resData = x[getIndexFromCoords4D(coord, uniforms.xShape) / 4];
|
|
} else {
|
|
resData = vec4<f32>(0.0); }`:`var temp = vec4<f32>(0.0);
|
|
${this.getSampleAWithRemainder(1)}
|
|
resData = temp;
|
|
if (WCol == (uniforms.filterDims[1] - 1)) {
|
|
coord = vec4<i32>(
|
|
coord.x, coord.y + 1, coord.z + 1 - uniforms.filterDims[1], 0);
|
|
${this.getSampleAWithRemainder(2)}
|
|
if (inChCoord == 0) {
|
|
resData = vec4<f32>(resData.xyz, temp.x);
|
|
} else if (inChCoord == 1) {
|
|
resData = vec4<f32>(resData.xy, temp.xy);
|
|
} else {
|
|
resData = vec4<f32>(resData.x, temp.xyz);
|
|
}
|
|
}
|
|
`}
|
|
return resData;`,r=this.fitA?`${s}`:`if (r < uniforms.dimAOuter && c < uniforms.dimInner) {
|
|
${s}
|
|
}
|
|
return vec4<f32>(0.0);
|
|
`,a=this.fitB?"return W[row * uniforms.dimBOuter / 4 + col];":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return W[row * uniforms.dimBOuter / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0);
|
|
`,o="",i="";if(this.activation){let c=sa(this.activation,this.isVec4);if(this.hasPreluActivationWeights)o=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${c}
|
|
}`;else{if(this.hasLeakyreluAlpha)throw o=`fn activation(outCoord: vec4<f32>) -> vec4<f32> {
|
|
let b = getLeakyreluAlphaByOutputCoords(outCoord);
|
|
${c}
|
|
}`,new Error("Leakyrelu is not supported.");o=`
|
|
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
${c}
|
|
}`}i="value = activation(value, outCoord);"}let l=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${o}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
let r = row;
|
|
let c = col * 4;
|
|
var batch = i32(globalId.z);
|
|
${r}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
${a}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : vec4<f32>, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
if (row < uniforms.dimAOuter && col * 4 < uniforms.dimBOuter)
|
|
{
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col * 4);
|
|
${l}
|
|
${i}
|
|
setOutputAtCoords(outCoord[0], outCoord[1], outCoord[2], outCoord[3],
|
|
value);
|
|
}
|
|
}
|
|
${e}
|
|
`}},ype=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.outShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=db(this.dispatchLayout,this.outputShape),this.elementsPerThread=pb(this.dispatchLayout,this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}_${this.fitA}_${this.fitB}`}getShapeFit(){let e=this.workGroupSize[1]*this.elementsPerThread[1],t=this.workGroupSize[0]*this.elementsPerThread[0],n=e>t?e:t;v.assert(n%this.workGroupSize[0]===0&&n%this.workGroupSize[1]===0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let s=[e,n],r=[n,t],a=this.outputShape[1]*this.outputShape[2],o=this.outputShape[3],i=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[Xr(s,[a,i]),Xr(r,[i,o])]}getUserCode(){let e=fb(this.elementsPerThread,this.workGroupSize),t=`
|
|
let outRow = row / uniforms.outShape[2];
|
|
let outCol = row % uniforms.outShape[2];
|
|
|
|
let WRow = col / (uniforms.filterDims[1] * uniforms.xShape[3]);
|
|
let WCol = col / uniforms.xShape[3] % uniforms.filterDims[1];
|
|
let coord = vec4<i32>(
|
|
batch,
|
|
outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0],
|
|
outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1],
|
|
col % uniforms.xShape[3]);
|
|
// The bounds checking is always needed since we use it to pad zero for the
|
|
// 'same' padding type.
|
|
if(coordsInBounds4D(coord, uniforms.xShape)) {
|
|
return x[getIndexFromCoords4D(coord, uniforms.xShape)];
|
|
}
|
|
return 0.0;`,n=this.fitA?`${t}`:`if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
${t}
|
|
}
|
|
return 0.0;
|
|
`,s=this.fitB?"return W[row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return W[row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;
|
|
`,r="",a="";if(this.activation){let l=sa(this.activation,!1);this.hasPreluActivationWeights?r=`fn activation(a: f32, outCoord : vec4<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${l}
|
|
}`:r=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
${l}
|
|
}
|
|
`,a="value = activation(value, outCoord);"}let o=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${r}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
var batch = i32(globalId.z);
|
|
${n}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
${s}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col);
|
|
${o}
|
|
${a}
|
|
result[getIndexFromCoords4D(outCoord, uniforms.outShape)] = value;
|
|
}
|
|
${e}
|
|
`}},Ape=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>,",this.workGroupSize=[128,1,1],this.outputShape=e.outShape,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,this.shaderKey=`conv2DNaive_${this.activation}`}getUserCode(){let e="",t="";if(this.activation){let r=sa(this.activation);this.hasPreluActivationWeights?e=`fn activation(a : f32, outCoord : vec4<i32>) -> f32{
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${r}
|
|
}`:e=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32{
|
|
${r}
|
|
}
|
|
`,t="value = activation(value, outCoord);"}let n=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${e}
|
|
fn readInp(batch : i32, row : i32, col : i32, chan : i32) -> f32 {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if(coordsInBounds4D(coord, uniforms.xShape)) {
|
|
return getX(batch, row, col, chan);
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn readFilt(row : i32, col : i32, xChannel : i32, outChannel : i32) -> f32{
|
|
let coord = vec4<i32>(row, col, xChannel, outChannel);
|
|
if(coordsInBounds4D(coord, uniforms.wShape)) {
|
|
return getW(row, col, xChannel, outChannel);
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn writeResult(batch : i32, row : i32, col : i32, chan : i32, value : f32) {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if (coordsInBounds4D(coord, uniforms.outShape)) {
|
|
${n}
|
|
${t}
|
|
setOutputAtCoords(batch, row, col, chan, value);
|
|
}
|
|
}
|
|
|
|
${Vo()}
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let outChannel = coords[3];
|
|
|
|
var acc = 0.0;
|
|
|
|
for (var row = 0; row < uniforms.filterDims[0]; row = row + 1) {
|
|
for (var col = 0; col < uniforms.filterDims[1]; col = col + 1) {
|
|
for (var xChannel = 0; xChannel < uniforms.xShape[3]; xChannel = xChannel + 1) {
|
|
let coordRow = coords[1] * uniforms.stride[0] + uniforms.dilation[0] * row - uniforms.pad[0];
|
|
let coordCol = coords[2] * uniforms.stride[1] + uniforms.dilation[1] * col - uniforms.pad[1];
|
|
let v = readInp(batch, coordRow, coordCol, xChannel);
|
|
let f = readFilt(row, col, xChannel, outChannel);
|
|
acc = acc + v * f;
|
|
}
|
|
}
|
|
}
|
|
|
|
writeResult(batch, coords[1], coords[2], outChannel, acc);
|
|
}
|
|
`}},xpe=class{constructor(e,t){this.variableNames=["A"],this.uniforms=`pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, outWidth : i32, itemsPerBlockRow : i32,
|
|
inChannels : i32,`,this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.isChannelsLast=t,this.shaderKey=`im2col_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?0:1,t=this.isChannelsLast?1:2;return`
|
|
${et()}
|
|
|
|
for(var i = 0; i<${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
|
|
let rc = getCoordsFromIndex(flatIndex);
|
|
|
|
if(flatIndex < uniforms.size) {
|
|
let blockIndex = rc[0];
|
|
let pos = rc[1];
|
|
|
|
let offsetY = blockIndex / uniforms.outWidth * uniforms.stride[1] - uniforms.pad[1];
|
|
let d0 = offsetY + uniforms.dilation[1] * pos / uniforms.itemsPerBlockRow;
|
|
var value = 0.0;
|
|
if(d0 < uniforms.aShape[${e}] && d0 >= 0) {
|
|
let offsetX = (blockIndex % uniforms.outWidth) * uniforms.stride[0] -
|
|
uniforms.pad[0];
|
|
let d1 = offsetX + uniforms.dilation[0] * ((pos %
|
|
uniforms.itemsPerBlockRow) / uniforms.inChannels);
|
|
let ch = pos % uniforms.inChannels;
|
|
if(d1 < uniforms.aShape[${t}] && d1 >= 0) {
|
|
value = getA(d0, d1, ch);
|
|
}
|
|
}
|
|
setOutputAtIndex(flatIndex, value);
|
|
}
|
|
}
|
|
}
|
|
`}};function bpe({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,u=n.dataFormat==="channelsLast",c=!1,p=!1,d=n.filterHeight===n.inHeight&&n.filterWidth===n.inWidth&&n.padInfo.type==="VALID",h,f;if(d){let y=n.inHeight*n.inWidth*n.inChannels;h=qe({inputs:{x:e},backend:s,attrs:{shape:[1,n.batchSize,y]}}),f=qe({inputs:{x:t},backend:s,attrs:{shape:[1,y,n.outChannels]}})}else{let y=u?l[0]*l[1]*l[2]:l[0]*l[2]*l[3];h=qe({inputs:{x:e},backend:s,attrs:{shape:[1,y,n.inChannels]}}),f=qe({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}})}let m=mb({a:h,b:f,transposeA:c,transposeB:p,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),g=qe({inputs:{x:m},backend:s,attrs:{shape:n.outShape}});return s.disposeData(h.dataId),s.disposeData(f.dataId),s.disposeData(m.dataId),g}function vpe({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,strideWidth:p,strideHeight:d,padInfo:h,outWidth:f,outHeight:m,dilationWidth:g,dilationHeight:y,dataFormat:x}=n,A=x==="channelsLast",b=l*u*c,w=m*f,S=[w,b],I=!1,E=!1,R=[],P=qe({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),_=qe({inputs:{x:t},backend:s,attrs:{shape:[1,b,-1]}});R.push(P),R.push(_);let D=new xpe(S,A),T=[{type:"int32",data:[h.left,h.top]},{type:"int32",data:[p,d]},{type:"int32",data:[g,y]},{type:"int32",data:[f]},{type:"int32",data:[c*l]},{type:"int32",data:[c]}],O=s.runWebGPUProgram(D,[P],P.dtype,T),U=qe({inputs:{x:O},backend:s,attrs:{shape:[1,S[0],S[1]]}});R.push(O),R.push(U);let K=[1,S[0],S[1]],z=new k6(K,[1,w,n.outChannels],J().get("WEBGPU_MATMUL_WORK_PER_THREAD"),I,E,r,i,a),Z=K[1],W=K[2],ee=n.outChannels,Q=[{type:"int32",data:[Z]},{type:"int32",data:[ee]},{type:"int32",data:[W]}],ae=[U,_];r&&ae.push(r),a&&ae.push(a),i==="leakyrelu"&&(T.push({type:"float32",data:[o]}),z.uniforms+=" alpha : f32,");let Y=s.runWebGPUProgram(z,ae,U.dtype,Q),re=A?[1,m,f,n.outChannels]:[1,n.outChannels,m,f],ie=qe({inputs:{x:Y},backend:s,attrs:{shape:re}});R.push(Y);for(let me of R)s.disposeData(me.dataId);return ie}function R6({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=r!=null,u=a!=null,c;if(n.filterHeight===n.inHeight&&n.filterWidth===n.inWidth&&n.padInfo.type==="VALID"||n.filterHeight===1&&n.filterWidth===1&&n.dilationHeight===1&&n.dilationWidth===1&&n.strideHeight===1&&n.strideWidth===1&&(n.padInfo.type==="SAME"||n.padInfo.type==="VALID"))return bpe({x:e,filter:t,convInfo:n,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});if(J().getBool("WEBGPU_CONV_SEPARATE_IM2COL_SHADER")&&e.shape[0]===1)return vpe({x:e,filter:t,convInfo:n,backend:s,bias:r,preluActivationWeights:a,leakyreluAlpha:o,activation:i});let d=J().getBool("WEBGPU_USE_NAIVE_CONV2D"),h=(n.inChannels%4===0||n.inChannels===3&&n.padInfo.type==="VALID")&&n.outChannels%4===0&&n.outChannels>=32,f=[n.padInfo.top,n.padInfo.left],m=[{type:"int32",data:[n.filterHeight,n.filterWidth]},{type:"int32",data:[...f]},{type:"int32",data:[n.strideHeight,n.strideWidth]},{type:"int32",data:[n.dilationHeight,n.dilationWidth]}];if(d)c=new Ape(n,l,i,u);else{h?c=new gpe(n,l,i,u):c=new ype(n,l,i,u);let y=n.outShape[1]*n.outShape[2],x=n.outShape[3],A=n.filterHeight*n.filterWidth*n.inShape[3];m.push({type:"int32",data:[y]},{type:"int32",data:[x]},{type:"int32",data:[A]})}let g=[e,t];return l&&g.push(r),u&&g.push(a),i==="leakyrelu"&&(m.push({type:"float32",data:[o]}),c.uniforms+=" alpha : f32,"),s.runWebGPUProgram(c,g,e.dtype,m)}function wpe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=n,p=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,p);return R6({x:r,filter:a,convInfo:d,backend:s})}var kpe={kernelName:Ya,backendName:"webgpu",kernelFunc:wpe},Spe=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.inShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=db(this.dispatchLayout,this.outputShape),this.elementsPerThread=pb(this.dispatchLayout,this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.shaderKey=`conv2DDerInputMM_${this.elementsPerThread}`}getUserCode(){return`
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
var batch = i32(globalId.z);
|
|
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
|
|
let outRow = row / uniforms.outShape[2];
|
|
let outCol = row % uniforms.outShape[2];
|
|
|
|
let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];
|
|
let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]);
|
|
let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]);
|
|
if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {
|
|
return 0.0;
|
|
}
|
|
if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {
|
|
return 0.0;
|
|
}
|
|
let coord = vec4<i32>(
|
|
batch,
|
|
i32(xR),
|
|
i32(xC),
|
|
col % uniforms.outBackprop[3]);
|
|
return x[getIndexFromCoords4D(coord, uniforms.xShape)];
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let coordX = uniforms.filterDims.x - 1 -
|
|
row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let coordY = uniforms.filterDims.y - 1 -
|
|
(row / uniforms.outBackprop[3]) % uniforms.filterDims[1];
|
|
if (row < uniforms.dimInner && col < uniforms.dimBOuter &&
|
|
coordX >= 0 && coordY >= 0) {
|
|
let coord = vec4<i32>(coordX, coordY, col,
|
|
row % uniforms.outBackprop[3]);
|
|
return W[getIndexFromCoords4D(coord, uniforms.wShape)];
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col);
|
|
result[getIndexFromCoords4D(outCoord, uniforms.outShape)] = value;
|
|
}
|
|
|
|
${fb(this.elementsPerThread,this.workGroupSize)}
|
|
`}},Ipe=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,n=this.isChannelsLast?3:1;return`
|
|
${et()} {
|
|
if(index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let d1 = coords[${n}];
|
|
|
|
let dyCorner = vec2<i32>(coords[${e}]), coords[${t}]) - uniforms.pads;
|
|
let dyRCorner = dyCorner.x;
|
|
let dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {
|
|
let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x);
|
|
let wRPerm = uniforms.filterDims.x - 1 - wR;
|
|
if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||
|
|
wRPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyR = dyR;
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {
|
|
let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y);
|
|
let wCPerm = uniforms.filterDims.y - 1 - wC;
|
|
if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||
|
|
fract(dyC) > 0.0 || wCPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyC = dyC;
|
|
|
|
for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {
|
|
if (${this.isChannelsLast}) {
|
|
let xValue = getDy(batch, idyR, idyC, d2);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
} else {
|
|
let xValue = getDy(batch, d2, idyR, idyC);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutputAtIndex(index, dotProd);
|
|
}
|
|
}
|
|
`}};function Cpe(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s,p=C.convertConv2DDataFormat(u),d=C.computeConv2DInfo(o,a.shape,i,1,l,c,!1,p),h=[{type:"int32",data:[d.filterHeight,d.filterWidth]},{type:"int32",data:[d.filterHeight-1-d.padInfo.top,d.filterWidth-1-d.padInfo.left]},{type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.batchSize,d.outHeight,d.outWidth,d.outChannels]}],f;if(J().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE"))f=new Ipe(d);else{f=new Spe(d);let m=d.inShape[1]*d.inShape[2],g=d.inShape[3],y=d.filterHeight*d.filterWidth*d.outChannels;h.push({type:"uint32",data:[m]},{type:"uint32",data:[g]},{type:"uint32",data:[y]})}return n.runWebGPUProgram(f,[r,a],"float32",h)}var Tpe={kernelName:Ja,backendName:"webgpu",kernelFunc:Cpe},Npe=bn({opType:2}),Epe={kernelName:Qa,backendName:"webgpu",kernelFunc:Npe},Rpe=bn({opType:3}),_pe={kernelName:eo,backendName:"webgpu",kernelFunc:Rpe},$pe=class{constructor(e,t,n,s){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32,",this.workGroupSize=[64,1,1],this.size=!0;let[r]=t;this.outputShape=[r,n[0],n[1],e],this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.methodId=s==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[n,s,r]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[a,o,i]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return`
|
|
${et()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let height_ratio = f32(${n});
|
|
let width_ratio = f32(${a});
|
|
let b = coords[0];
|
|
let y = coords[1];
|
|
let x = coords[2];
|
|
let d = coords[3];
|
|
// get box vals
|
|
let y1 = getBoxes(b, 0);
|
|
let x1 = getBoxes(b, 1);
|
|
let y2 = getBoxes(b, 2);
|
|
let x2 = getBoxes(b, 3);
|
|
// get image in batch index
|
|
let bInd = i32(round(getBoxInd(b)));
|
|
if(bInd < 0 || bInd >= uniforms.outShape[0]) {
|
|
return;
|
|
}
|
|
let height_scale = ${s};
|
|
let width_scale = ${o};
|
|
let in_y = ${r};
|
|
if( in_y < 0.0 || in_y > ${e} ) {
|
|
setOutputAtIndex(index, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let in_x = ${i};
|
|
if( in_x < 0.0 || in_x > ${t} ) {
|
|
setOutputAtIndex(index, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let sourceFracIndexCR = vec2<f32>(in_x,in_y);
|
|
if(${this.methodId} == 1) {
|
|
// Compute the four integer indices.
|
|
let sourceFloorCR = vec2<i32>(sourceFracIndexCR);
|
|
let sourceCeilCR = vec2<i32>(ceil(sourceFracIndexCR));
|
|
let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
let fracCR = sourceFracIndexCR - vec2<f32>(sourceFloorCR);
|
|
let top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
let newValue = top + (bottom - top) * fracCR.y;
|
|
setOutputAtIndex(index, newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let sourceNearestCR = vec2<i32>(floor(
|
|
sourceFracIndexCR + vec2<f32>(0.5,0.5)));
|
|
let newValue = getImage(
|
|
bInd, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
}
|
|
`}},Dpe=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,c=new $pe(r.shape[3],a.shape,i,l),p=[{type:"float32",data:[u]}];return n.runWebGPUProgram(c,[r,a,o],"float32",p)},Ppe={kernelName:zi,backendName:"webgpu",kernelFunc:Dpe},Fpe=class{constructor(e,t){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.uniforms="blockSize : i32,",this.outputShape=e,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`depthToSpace_${t}`,this.dataFormat=t}getUserCode(){return`
|
|
${et()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let h = ${this.getHeightCoordString()};
|
|
let w = ${this.getWidthCoordString()};
|
|
let d = ${this.getDepthCoordString()};
|
|
|
|
let in_h = h / uniforms.blockSize;
|
|
let offset_h = h % uniforms.blockSize;
|
|
let in_w = w / uniforms.blockSize;
|
|
let offset_w = w % uniforms.blockSize;
|
|
let offset_d = (offset_h * uniforms.blockSize + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
let in_d = d + offset_d;
|
|
|
|
let rlt = ${this.getInputSamplingString()};
|
|
setOutputAtIndex(index, rlt);
|
|
}
|
|
}`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Ope(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],p=l*a,d=u*a,h=c/(a*a),f=o==="NHWC"?[i,p,d,h]:[i,h,p,d],m=[{type:"int32",data:[a]}],g=new Fpe(f,o);return n.runWebGPUProgram(g,[r],r.dtype,m)}var Mpe={kernelName:Li,backendName:"webgpu",kernelFunc:Ope},_6=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, inDims : vec2<i32>,",this.workGroupSize=[4,4,4],this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[0,1],y:[2],z:[3]},this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,4,4]),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise3x3_${n}`}getUserCode(){let e="",t="";if(this.activation){let r=sa(this.activation,this.isVec4);this.hasPreluActivation?e=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${r}
|
|
}`:e=`
|
|
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
${r}
|
|
}
|
|
`,t="dotProd[i] = activation(dotProd[i], coords);"}let n=this.addBias?"dotProd[i] = dotProd[i] + getBiasByOutputCoords(coords);":"";return`
|
|
${e}
|
|
|
|
${cb()}
|
|
fn main(@builtin(global_invocation_id) globalId: vec3<u32>) {
|
|
let batch = 0;
|
|
let r = i32(globalId.x);
|
|
let c = i32(globalId.y) * 4;
|
|
let d2 = i32(globalId.z) * 4;
|
|
let xRCCorner = vec2<i32>(r, c) * uniforms.stride - uniforms.pad;
|
|
let d1 = d2;
|
|
let q = 0;
|
|
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
var wVals : array<vec4<f32>, 9>;
|
|
wVals[0] = getW(0, 0, d1, q);
|
|
wVals[1] = getW(0, 1, d1, q);
|
|
wVals[2] = getW(0, 2, d1, q);
|
|
wVals[3] = getW(1, 0, d1, q);
|
|
wVals[4] = getW(1, 1, d1, q);
|
|
wVals[5] = getW(1, 2, d1, q);
|
|
wVals[6] = getW(2, 0, d1, q);
|
|
wVals[7] = getW(2, 1, d1, q);
|
|
wVals[8] = getW(2, 2, d1, q);
|
|
|
|
var xVals : array<array<vec4<f32>, 6>, 3>;
|
|
for (var wR = 0; wR < 3; wR = wR + 1) {
|
|
let xR = xRCorner + wR * uniforms.dilation[0];
|
|
for (var wC = 0; wC < 6; wC = wC + 1) {
|
|
let xC = xCCorner + wC * uniforms.dilation[1];
|
|
if (xR < 0 || xR >= uniforms.inDims[0] || xC < 0 || xC >= uniforms.inDims[1]) {
|
|
xVals[wR][wC] = vec4<f32>(0.0);
|
|
} else {
|
|
xVals[wR][wC] = getX(batch, xR, xC, d1);
|
|
}
|
|
}
|
|
}
|
|
|
|
var dotProd : array<vec4<f32>, 4>;
|
|
dotProd[0] = vec4<f32>(0.0);
|
|
dotProd[1] = vec4<f32>(0.0);
|
|
dotProd[2] = vec4<f32>(0.0);
|
|
dotProd[3] = vec4<f32>(0.0);
|
|
|
|
for (var wR = 0; wR < 3; wR = wR + 1) {
|
|
for (var wC = 0; wC < 3; wC = wC + 1) {
|
|
let indexW = wR * 3 + wC;
|
|
dotProd[0] = dotProd[0] + xVals[wR][0 + wC] * wVals[indexW];
|
|
dotProd[1] = dotProd[1] + xVals[wR][1 + wC] * wVals[indexW];
|
|
dotProd[2] = dotProd[2] + xVals[wR][2 + wC] * wVals[indexW];
|
|
dotProd[3] = dotProd[3] + xVals[wR][3 + wC] * wVals[indexW];
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < 4; i = i + 1) {
|
|
let coords = vec4<i32>(batch, r, c + i, d2);
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
${n}
|
|
${t}
|
|
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], dotProd[i]);
|
|
}
|
|
}
|
|
}
|
|
`}},$6=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms=`pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>,
|
|
inDims : vec2<i32>, filterHeight : i32, filterWidth : i32,
|
|
channelMul : i32,`,this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise_${this.activation}`}getUserCode(){let e="",t="";if(this.activation){let r=sa(this.activation,!1);this.hasPreluActivation?e=`fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${r}
|
|
}`:e=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
${r}
|
|
}
|
|
`,t="dotProd = activation(dotProd, coords);"}let n=this.addBias?"dotProd = dotProd + getBiasByOutputCoords(coords);":"";return`
|
|
${e}
|
|
|
|
fn writeResult(batch : i32, row : i32, col : i32, chan : i32,
|
|
value : f32) {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if (coordsInBounds4D(coord, uniforms.outShape)) {
|
|
setOutputAtCoords(batch, row, col, chan, value);
|
|
}
|
|
}
|
|
|
|
${Vo()}
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
|
|
let d2 = coords[3];
|
|
let d1 = d2 / uniforms.channelMul;
|
|
let q = d2 - d1 * uniforms.channelMul;
|
|
|
|
let inputRowStart = xRCCorner.x;
|
|
let inputColStart = xRCCorner.y;
|
|
let inputRowEnd = inputRowStart + uniforms.filterHeight *
|
|
uniforms.dilation[0];
|
|
let inputColEnd = inputColStart + uniforms.filterWidth *
|
|
uniforms.dilation[1];
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
|
|
// Extract if checking out of for loop for performance.
|
|
if (inputRowStart >= 0 && inputColStart >= 0 &&
|
|
inputRowEnd < uniforms.inDims[0] &&
|
|
inputColEnd < uniforms.inDims[1]) {
|
|
// Here using a constant value |this.convInfo.filterHeight| instead
|
|
// of uniform value is in order to loop unrolling.
|
|
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
let xVal = getX(batch, xR, xC, d1);
|
|
let wVal = getW(wR, wC, d1, q);
|
|
dotProd = dotProd + xVal * wVal;
|
|
}
|
|
}
|
|
} else {
|
|
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
if (xR < 0 || xR >= uniforms.inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
if (xC < 0 || xC >= uniforms.inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
let xVal = getX(batch, xR, xC, d1);
|
|
let wVal = getW(wR, wC, d1, q);
|
|
dotProd = dotProd + xVal * wVal;
|
|
}
|
|
}
|
|
}
|
|
|
|
${n}
|
|
${t}
|
|
writeResult(batch, coords[1], coords[2], d2, dotProd);
|
|
}
|
|
`}};function zpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s,c=l;c==null&&(c=[1,1]);let p=C.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!0),d=[{type:"int32",data:[p.padInfo.top,p.padInfo.left]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.dilationHeight,p.dilationWidth]},{type:"int32",data:[p.inHeight,p.inWidth]}],h;return p.batchSize===1&&p.inHeight===p.outHeight&&p.inWidth===p.outWidth&&p.strideHeight===1&&p.strideWidth===1&&p.filterHeight===p.filterWidth&&p.inChannels===p.outChannels&&p.dilationHeight===1&&p.dilationWidth===1&&p.filterHeight===3&&p.inChannels%4===0?h=new _6(p):(h=new $6(p),d.push({type:"int32",data:[p.filterHeight]},{type:"int32",data:[p.filterWidth]},{type:"int32",data:[p.outChannels/p.inChannels]})),n.runWebGPUProgram(h,[r,a],r.dtype,d)}var Lpe={kernelName:to,backendName:"webgpu",kernelFunc:zpe},D6=qn({opSnippet:0,cpuKernelImpl:Ade,supportsComplex:!0}),Bpe={kernelName:bo,backendName:"webgpu",kernelFunc:D6},Wpe=class{constructor(e,t){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="reduceSize : i32,",this.size=!0,this.inputShape=[e.batchSize,e.inSize];let[n]=C.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=n.length===0?[1]:n,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,[1,1,1]),this.reduceType=t,this.shaderKey=`reduce_${t}`}getUserCode(){let e="",t="0.0";this.reduceType==="min"||this.reduceType==="max"?(e=`
|
|
if (isnan(candidate)) {
|
|
bestValue = uniforms.NAN;
|
|
} else if (!isnan(bestValue) && candidate ${this.reduceType==="min"?"<":">"} bestValue)
|
|
{ bestValue = candidate; }`,t="f32(x[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?e=" bestValue = bestValue + candidate; ":this.reduceType==="prod"&&(e=" bestValue = bestValue * candidate; ",t="1.0");let n=this.reduceType==="mean"?"setOutputAtIndex(outputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputAtIndex(outputIndex, bestValue);";return`
|
|
fn DIV_CEIL(a : u32, b : u32) -> u32 {
|
|
return ((a - 1u) / b + 1u);
|
|
}
|
|
|
|
${`
|
|
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
|
|
`}
|
|
fn getOffset(outputIndex : i32) -> i32 {
|
|
let outputCoords = getCoordsFromIndex(outputIndex);
|
|
let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize;
|
|
return offset;
|
|
}
|
|
${et()}
|
|
let outputIndex = index / i32(workGroupSizeX);
|
|
let offset = getOffset(outputIndex);
|
|
var bestValue = ${t};
|
|
let Length = uniforms.reduceSize;
|
|
let WorkPerThread = DIV_CEIL(u32(Length), workGroupSizeX);
|
|
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
|
|
k = k + i32(workGroupSizeX)) {
|
|
let candidate = f32(x[offset + k]);
|
|
${e}
|
|
}
|
|
xBestValues[localId.x] = bestValue;
|
|
workgroupBarrier();
|
|
|
|
var reduceSize = min(u32(Length), workGroupSizeX);
|
|
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
|
|
currentSize = reduceSize / 2u) {
|
|
let interval = DIV_CEIL(reduceSize, 2u);
|
|
if (localId.x < currentSize) {
|
|
let candidate = xBestValues[localId.x + interval];
|
|
${e}
|
|
xBestValues[localId.x] = bestValue;
|
|
}
|
|
reduceSize = interval;
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u && outputIndex < uniforms.size) {
|
|
${n}
|
|
}
|
|
}
|
|
`}};function Op(e,t,n,s,r){let a=e.shape.length,o=[],i=v.parseAxisParam(t,e.shape),l=i,u=C.getAxesPermutation(l,a),c=e;u!=null&&(c=_l({inputs:{x:e},attrs:{perm:u},backend:r}),l=C.getInnerMostAxes(l.length,a),o.push(c)),C.assertAxesAreInnerMostDims(s,l,a);let[p,d]=C.computeOutAndReduceShapes(c.shape,l),h=p;n&&(h=C.expandShapeToKeepDim(p,i));let f;if((s==="max"||s==="prod")&&r.shouldExecuteOnCPU([c])){let m=r.tensorMap.get(c.dataId).values;switch(s){case"max":let g=mde(m,v.sizeFromShape(d),h,e.dtype);f=r.makeTensorInfo(h,e.dtype,g);break;case"prod":let{outVals:y,outShape:x,outDtype:A}=vde(c.shape,c.dtype,m,l);f=r.makeTensorInfo(x,A,y);break;default:throw new Error(`${s} CPU implementation is not yet supported.`)}}else{let m=v.sizeFromShape(d),y=v.sizeFromShape(c.shape)/m,x={windowSize:m,inSize:m,batchSize:y,outSize:1},A=s==="mean"?"float32":rp(e.dtype),b=[{type:"int32",data:[m]}],w=new Wpe(x,s),S=r.runWebGPUProgram(w,[c],A,b);o.push(S),f=qe({inputs:{x:S},attrs:{shape:h},backend:r})}return o.forEach(m=>r.disposeData(m.dataId)),f}function gb(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Op(r,a,o,"sum",n)}var Vpe={kernelName:_o,backendName:"webgpu",kernelFunc:gb};function Upe(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=C.decodeEinsumEquation(r,a.length);C.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=C.getEinsumComputePath(i,l),p=c.length,d=null,h=o.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:y,expandDims:x}=C.getEinsumPermutation(h,l[g]),A;C.isIdentityPermutation(y)?A=a[g]:(A=_l({inputs:{x:a[g]},backend:n,attrs:{perm:y}}),f.push(A));let b=A.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(A.shape,b)||(A=qe({inputs:{x:A},backend:n,attrs:{shape:b}}),f.push(A)),d===null?d=A:(d=D6({inputs:{a:A,b:d},backend:n}),f.push(d))}m<p-1&&(u[m]>=0&&(d=gb({inputs:{x:d},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeData(m.dataId);return d}var Gpe={kernelName:Gd,backendName:"webgpu",kernelFunc:Upe},Hpe=bn({opType:4}),jpe={kernelName:so,backendName:"webgpu",kernelFunc:Hpe},qpe=qn({opSnippet:4,dtype:"bool",cpuKernelImpl:rde}),Xpe={kernelName:Bi,backendName:"webgpu",kernelFunc:qpe},P6=bn({opType:5,cpuKernelImpl:ade,dtype:"float32"}),Kpe={kernelName:ro,backendName:"webgpu",kernelFunc:P6};function Zy(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),qe({inputs:{x:a},backend:s,attrs:{shape:i}})}var Zpe={kernelName:Wi,backendName:"webgpu",kernelFunc:Zy},Ype=bn({opType:6,cpuKernelImpl:ode}),Jpe={kernelName:Vi,backendName:"webgpu",kernelFunc:Ype},Qpe=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="fill"}getUserCode(){return`
|
|
${et()}
|
|
if (index < uniforms.size) {
|
|
setOutputAtIndex(index, uniforms.value);
|
|
}
|
|
}
|
|
`}};function Ic(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new Qpe(s),i=[{type:"float32",data:[r]}];return t.runWebGPUProgram(o,[],a,i)}}var ehe={kernelName:Wu,backendName:"webgpu",kernelFunc:Ic},the=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="flipLeftRight"}getUserCode(){return`
|
|
${et()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let coordX = uniforms.xShape[2] - coords[2] - 1;
|
|
let outputValue = getX(coords[0], coords[1], coordX, coords[3]);
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}},nhe={kernelName:Ui,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new the(n.shape);return s.runWebGPUProgram(r,[n],n.dtype)}},she=bn({opType:7,cpuKernelImpl:ide}),rhe={kernelName:ao,backendName:"webgpu",kernelFunc:she},ahe=qn({opSnippet:12,dtype:"int32"}),ohe={kernelName:oo,backendName:"webgpu",kernelFunc:ahe},ihe=(e,t,n,s,r)=>{let a=[s,...n];return r&&a.push(r),e.createBindGroup({layout:t,entries:a.map((o,i)=>({binding:i,resource:o}))})},F6=(e,t,n,s,r,a=!1)=>{let o={dtype:r.dtype,shape:r.shape},i=Fce(s,o,t,a),l=e.createShaderModule({code:i,label:t.constructor.name});return e.createComputePipeline({layout:n,compute:{module:l,entryPoint:"main"},label:t.constructor.name})};function O6(e,t,n,s="",r=""){return e.shaderKey+"_"+(e.workGroupSize?e.workGroupSize.join(","):"")+t.map(o=>o.length).join(",")+n.join(",")+e.variableNames.join(",")+s+r}function ew(e){let{externalImage:t,backend:n,attrs:s,outShape:r,useImport:a}=e,{numChannels:o}=s,i=v.sizeFromShape(r),l=v.computeStrides(r),u=n.makeTensorInfo(r,"int32"),c=n.getFromPixelsProgram(a?"import":"copyExternal");c.updateOutputShape(r);let p=[u.shape],d=[u.dtype,a?"import":"copyExternal"],h=O6(c,p,d),f=c.getLayout(n.device),m=n.getAndSavePipeline(h,()=>F6(n.device,c,f.pipelineLayout,[],u,!0));c.setPipeline(m),a||n.queue.copyExternalImageToTexture({source:t,origin:{x:0,y:0}},{texture:c.makeInputTexture(n.device,r[1],r[0])},[r[1],r[0]]);let g=n.tensorMap.get(u.dataId);g.bufferInfo.buffer=n.acquireBuffer(g.bufferInfo.byteSize);let y=[i,o,...l,...c.dispatch];c.setUniform(n.device,y);let x;if(a){let A={source:t};x=n.device.importExternalTexture(A)}else x=c.inputTexture.createView();return n.runFromPixelsProgram(c,g.bufferInfo.buffer,f,x,u.dataId),u}var lhe={kernelName:Id,backendName:"webgpu",kernelFunc:uhe},ru;function uhe(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s;if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,l=typeof HTMLCanvasElement!="undefined"&&r instanceof HTMLCanvasElement||typeof OffscreenCanvas!="undefined"&&r instanceof OffscreenCanvas,u=typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap,[c,p]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],d=[p,c,a];if(J().getBool("WEBGPU_USE_IMPORT")&&o)return ew({externalImage:r,backend:n,attrs:s,outShape:d,useImport:!0});if((o||i)&&(ru==null&&(ru=document.createElement("canvas").getContext("2d")),ru.canvas.width=c,ru.canvas.height=p,ru.drawImage(r,0,0,c,p),r=ru.canvas),u||l||o||i)return ew({externalImage:r,backend:n,attrs:s,outShape:d,useImport:!1});let h=r.data,f=h;if(a!=null&&a!==4){f=new Uint8Array(r.width*r.height*a);let y=h.length,x=0;for(let A=0;A<y;A++)A%4<a&&(f[x++]=h[A])}let m=n.makeTensorInfo(d,"int32"),g=n.tensorMap.get(m.dataId);return g.values=new Int32Array(f),n.maybeReleaseBuffer(m.dataId),n.uploadToGPU(m.dataId),m}var che=class{constructor(e,t,n,s,r){this.uniforms="varianceEpsilon : f32,",this.workGroupSize=[128,1,1],this.size=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n),this.outputShape=e,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),s!=null&&(C.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset")),r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale")),this.offsetShape=s,this.scaleShape=r,this.shaderKey="batchNorm"}getUserCode(){let e="0.0";this.offsetShape!=null&&(e="getOffsetByOutputIndex(index)");let t="1.0";return this.scaleShape!=null&&(t="getScaleByOutputIndex(index)"),`
|
|
${et()}
|
|
if (index < uniforms.size)
|
|
{
|
|
let xValue = getXByOutputIndex(index);
|
|
let meanValue = getMeanByOutputIndex(index);
|
|
let varianValue = getVarianceByOutputIndex(index);
|
|
let offsetValue = ${e};
|
|
let scaleValue = ${t};
|
|
let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));
|
|
setOutputAtIndex(index,dot(vec3<f32>(xValue, -meanValue, offsetValue), vec3<f32>(inv, inv, 1.0)));
|
|
}
|
|
}
|
|
`}},dhe={kernelName:io,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s,scale:r,offset:a,mean:o,variance:i}=e,{varianceEpsilon:l}=t,u=n,c=[s,o,i],p=null;a!=null&&(p=a.shape,c.push(a));let d=null;r!=null&&(d=r.shape,c.push(r));let h=new che(s.shape,o.shape,i.shape,p,d),f=[{type:"float32",data:[l]}];return u.runWebGPUProgram(h,c,s.dtype,f)}};function phe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=C.convertConv2DDataFormat(c),g=C.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!1,m);return R6({x:r,filter:a,convInfo:g,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:f,activation:h})}var hhe={kernelName:Ra,backendName:"webgpu",kernelFunc:phe};function fhe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=s,f=c;f==null&&(f=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let m=C.computeConv2DInfo(r.shape,a.shape,l,f,u,p,!0),g=[r,a],y=o!=null,x=i!=null;y&&g.push(o),x&&g.push(i);let A=[{type:"int32",data:[m.padInfo.top,m.padInfo.left]},{type:"int32",data:[m.strideHeight,m.strideWidth]},{type:"int32",data:[m.dilationHeight,m.dilationWidth]},{type:"int32",data:[m.inHeight,m.inWidth]}],b;return m.batchSize===1&&m.inHeight===m.outHeight&&m.inWidth===m.outWidth&&m.strideHeight===1&&m.strideWidth===1&&m.filterHeight===m.filterWidth&&m.inChannels===m.outChannels&&m.dilationHeight===1&&m.dilationWidth===1&&m.filterHeight===3&&m.inChannels%4===0?b=new _6(m,y,d,x):(b=new $6(m,y,d,x),A.push({type:"int32",data:[m.filterHeight]},{type:"int32",data:[m.filterWidth]},{type:"int32",data:[m.outChannels/m.inChannels]})),d==="leakyrelu"&&(A.push({type:"float32",data:[h]}),b.uniforms+=" alpha : f32,"),n.runWebGPUProgram(b,g,"float32",A)}var mhe={kernelName:_a,backendName:"webgpu",kernelFunc:fhe},ghe=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`gathernd_${e}`,this.sliceDim=e,this.uniforms=`sliceDim : i32, strides : ${fn(e)},`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",`
|
|
${et()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
var flattenIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexTemp = i32(round(getIndices(coords[0], j)));
|
|
let strideNum = ${e};
|
|
flattenIndex = flattenIndex + indexTemp * strideNum;
|
|
}
|
|
|
|
setOutputAtIndex(index, getA(flattenIndex, coords[1]));
|
|
}
|
|
}
|
|
`}};function yhe(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,u,c,p]=C.prepareAndValidate(s,r),d=qe({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),h=qe({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let x=n.readSync(r.dataId),A=n.bufferSync(s),b=lde(x,A,s.dtype,u,o,c,p,s.shape,i);return n.makeTensorInfo(l,s.dtype,b.values)}let f=new ghe(o,[u,c]),m=[{type:"int32",data:[o]},{type:"int32",data:p}],g=n.runWebGPUProgram(f,[h,d],h.dtype,m),y=qe({inputs:{x:g},backend:n,attrs:{shape:l}});return n.disposeData(d.dataId),n.disposeData(h.dataId),n.disposeData(g.dataId),y}var Ahe={kernelName:Hi,backendName:"webgpu",kernelFunc:yhe},xhe=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="gather"}getUserCode(){let e=bhe(this.aShape);return`
|
|
${et()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
let indexZ = i32(getIndices(resRC.x, resRC.z));
|
|
let inBounds = select(0.0, 1.0, indexZ >= 0 && indexZ < uniforms.aShape[2]);
|
|
setOutputAtIndex(index, inBounds * getA(${e}));
|
|
}
|
|
}
|
|
`}};function bhe(e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let s=0;s<e.length;s++)s===2?n.push("indexZ"):n.push(`${t[s]}`);return n.join()}function M6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],u=C.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=v.sizeFromShape(a.shape),p=[],d=qe({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=qe({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});p.push(d),p.push(h);let f=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,a])){let A=n.tensorMap.get(h.dataId).values,b=We(h.shape,h.dtype,A),S=n.tensorMap.get(d.dataId).values,I=We(d.shape,d.dtype,S),E=ude(I,b,f);return p.forEach(R=>n.disposeData(R.dataId)),n.makeTensorInfo(u.outputShape,E.dtype,E.values)}let m=new xhe(d.shape,f),g=n.runWebGPUProgram(m,[d,h],d.dtype);p.push(g);let y=qe({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return p.forEach(x=>n.disposeData(x.dataId)),y}var vhe={kernelName:Gi,backendName:"webgpu",kernelFunc:M6},whe=qn({opSnippet:5,cpuKernelImpl:dde,dtype:"bool"}),khe={kernelName:ji,backendName:"webgpu",kernelFunc:whe},She=qn({opSnippet:6,dtype:"bool",cpuKernelImpl:cde}),Ihe={kernelName:lo,backendName:"webgpu",kernelFunc:She};function Che(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=[{type:"float32",data:[a]}],i=new Pp(r.shape,14);return i.uniforms="alpha : f32,",n.runWebGPUProgram(i,[r],"float32",o)}var The={kernelName:co,backendName:"webgpu",kernelFunc:Che},Nhe=qn({opSnippet:7,dtype:"bool",cpuKernelImpl:hde}),Ehe={kernelName:qi,backendName:"webgpu",kernelFunc:Nhe},Rhe=qn({opSnippet:8,dtype:"bool",cpuKernelImpl:pde}),_he={kernelName:Xi,backendName:"webgpu",kernelFunc:Rhe},$he=bn({opType:9,cpuKernelImpl:fde}),Dhe={kernelName:po,backendName:"webgpu",kernelFunc:$he},Phe=qn({opSnippet:9,dtype:"bool"}),Fhe={kernelName:Ki,backendName:"webgpu",kernelFunc:Phe},Ohe=bn({opType:10}),Mhe={kernelName:ju,backendName:"webgpu",kernelFunc:Ohe};function z6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s;return Op(r,a,o,"max",n)}var zhe={kernelName:ho,backendName:"webgpu",kernelFunc:z6},Lhe=qn({opSnippet:15,cpuKernelImpl:gde}),Bhe={kernelName:fo,backendName:"webgpu",kernelFunc:Lhe};function Whe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1,c=C.computePool2DInfo(r.shape,a,o,u,i,l),p,d=[];if(c.filterHeight===1&&c.filterWidth===1){if(v.arraysEqual(c.inShape,c.outShape))return Ws({inputs:{x:r},backend:n});p=new T6(c),d.push({type:"int32",data:[c.strideHeight,c.strideWidth]})}else p=new C6(c,"max"),d.push({type:"int32",data:[c.strideHeight,c.strideWidth]},{type:"int32",data:[c.padInfo.top,c.padInfo.left]},{type:"int32",data:[c.dilationHeight,c.dilationWidth]},{type:"int32",data:[c.inHeight,c.inWidth]},{type:"int32",data:[c.effectiveFilterHeight,c.effectiveFilterWidth]});return n.runWebGPUProgram(p,[r],r.dtype,d)}var Vhe={kernelName:mo,backendName:"webgpu",kernelFunc:Whe};function Uhe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{keepDims:a,axis:o}=s;return Op(r,o,a,"mean",n)}var Ghe={kernelName:go,backendName:"webgpu",kernelFunc:Uhe};function Hhe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Op(r,a,o,"min",n)}var jhe={kernelName:yo,backendName:"webgpu",kernelFunc:Hhe},qhe=qn({opSnippet:16,cpuKernelImpl:yde}),Xhe={kernelName:Ao,backendName:"webgpu",kernelFunc:qhe},Khe=class{constructor(e,t,n){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((s,r)=>s[0]+e[r]+s[1]),this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.xShape=e,t.map((s,r)=>{this.uniforms+=` pad${r} : vec2<i32>,`}),this.offset=n==="reflect"?0:1,this.shaderKey=`mirrorPad_${n}`}getUserCode(){let e=this.xShape.length,t=this.xShape.map((l,u)=>`uniforms.pad${u}[0]`).join(","),n=this.xShape.map((l,u)=>`uniforms.pad${u}[0] + uniforms.xShape${e>1?`[${u}]`:""}`).join(","),s=e===1?"start":"start[i]",r=e===1?"end":"end[i]",a=e===1?"outC":"outC[i]",o=fn(e),i=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${et()}
|
|
if (index < uniforms.size) {
|
|
let start = ${o}(${t});
|
|
let end = ${o}(${n});
|
|
var outC = getCoordsFromIndex(index);
|
|
for (var i = 0; i < ${e}; i = i + 1) {
|
|
if (${a} < ${s}) {
|
|
${a} = ${s} * 2 - ${a} - ${this.offset};
|
|
} else if(${a} >= ${r}) {
|
|
${a} = (${r} - 1) * 2 - ${a} + ${this.offset};
|
|
}
|
|
}
|
|
let coords = outC - start;
|
|
setOutputAtIndex(index, getX(${i}));
|
|
}
|
|
}
|
|
`}},Zhe={kernelName:xo,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{paddings:r,mode:a}=t,o=n,i=r.map(c=>({type:"int32",data:[c[0],c[1]]})),l=new Khe(s.shape,r,a);return o.runWebGPUProgram(l,[s],s.dtype,i)}};function Yhe(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.tensorMap.get(s.dataId),[o,i]=xde(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r=new Pp(s.shape,11);return n.runWebGPUProgram(r,[s],s.dtype)}var Jhe={kernelName:Zi,backendName:"webgpu",kernelFunc:Yhe};function Qhe(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:p}=js.nonMaxSuppressionV3Impl(u,c,o,i,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var efe={kernelName:Ji,backendName:"webgpu",kernelFunc:Qhe};function tfe(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),d=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:y}=js.nonMaxSuppressionV5Impl(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var nfe={kernelName:Qi,backendName:"webgpu",kernelFunc:tfe};function _f(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=Fp({inputs:{input:s},backend:n}),a=_f({inputs:{x:r},backend:n}),o=f0({inputs:{input:s},backend:n}),i=_f({inputs:{x:o},backend:n}),l=kc({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return Ic({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var sfe={kernelName:Al,backendName:"webgpu",kernelFunc:_f};function L6(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=Fp({inputs:{input:s},backend:n}),a=L6({inputs:{x:r},backend:n}),o=f0({inputs:{input:s},backend:n}),i=_f({inputs:{x:o},backend:n}),l=kc({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return Ic({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var rfe={kernelName:el,backendName:"webgpu",kernelFunc:L6};function afe(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Zy({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=Zy({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=E6({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeData(c.dataId)),u}var ofe={kernelName:nl,backendName:"webgpu",kernelFunc:afe},ife=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((n,s)=>n[0]+e[s]+n[1]),this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),t.map((n,s)=>{this.uniforms+=` pad${s} : vec2<i32>,`}),this.xShape=e,this.shaderKey="pad"}getUserCode(){let e=this.xShape.length,t=fn(e),n=this.xShape.map((c,p)=>`uniforms.pad${p}[0]`).join(","),s=this.xShape.map((c,p)=>`uniforms.pad${p}[0] + uniforms.xShape${e>1?`[${p}]`:""}`).join(","),r=e>1?`${t}(${n})`:`${n}`,a=e>1?`${t}(${s})`:`${s}`,o=e>1?"any(outC < start)":"outC < start",i=e>1?"any(outC >= end)":"outC >= end",l=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${et()}
|
|
if (index < uniforms.size) {
|
|
let start = ${r};
|
|
let end = ${a};
|
|
let outC = getCoordsFromIndex(index);
|
|
|
|
if (${o} || ${i}) {
|
|
setOutputAtIndex(index, uniforms.constantValue);
|
|
} else {
|
|
let coords = outC - start;
|
|
setOutputAtIndex(index, getX(${l}));
|
|
}
|
|
}
|
|
}
|
|
`}},B6=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(a.every(u=>v.arraysEqual(u,[0,0])))return Ws({inputs:{x:r},backend:n});if(v.sizeFromShape(r.shape)===0){let u=a.map((c,p)=>c[0]+r.shape[p]+c[1]);return Ic({backend:n,attrs:{shape:u,value:o,dtype:r.dtype}})}let i=[{type:"float32",data:[o]}];a.map(u=>i.push({type:"int32",data:[u[0],u[1]]}));let l=new ife(r.shape,a);return n.runWebGPUProgram(l,[r],r.dtype,i)},lfe={kernelName:vo,backendName:"webgpu",kernelFunc:B6},ufe=qn({opSnippet:13}),cfe={kernelName:wo,backendName:"webgpu",kernelFunc:ufe};function dfe(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=new S6(14,s.shape,r.shape);return n.runWebGPUProgram(a,[s,r],"float32")}var pfe={kernelName:ko,backendName:"webgpu",kernelFunc:dfe};function hfe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Op(r,a,o,"prod",n)}var ffe={kernelName:sl,backendName:"webgpu",kernelFunc:hfe},mfe=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=wde(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},gfe={kernelName:Ku,backendName:"webgpu",kernelFunc:mfe},W6=qn({opSnippet:3}),yfe={kernelName:no,backendName:"webgpu",kernelFunc:W6},Afe=bn({opType:12}),xfe={kernelName:So,backendName:"webgpu",kernelFunc:Afe},bfe=bn({opType:13}),vfe={kernelName:Co,backendName:"webgpu",kernelFunc:bfe},wfe=class{constructor(e,t,n){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, halfPixelCenters : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="resizeBilinear"}getUserCode(){return`
|
|
${et()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC =
|
|
(vec2<f32>(rc) + vec2<f32>(uniforms.halfPixelCenters)) *
|
|
effectiveInputOverOutputRatioRC - vec2<f32>(uniforms.halfPixelCenters);
|
|
|
|
// Compute the four integer indices.
|
|
let sourceFloorRC = vec2<i32>(sourceFracIndexRC);
|
|
let sourceCeilRC = vec2<i32>(
|
|
min(vec2<f32>(uniforms.xShape.yz) - vec2<f32>(1.0), ceil(sourceFracIndexRC)));
|
|
|
|
let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
let fracRC = sourceFracIndexRC - vec2<f32>(sourceFloorRC);
|
|
|
|
let top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
let newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
`}};function kfe(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,size:o,halfPixelCenters:i}=s,[l,u]=o,c=a&&l>1?1:0,p=a&&u>1?1:0,h=[{type:"float32",data:[c,p]},{type:"float32",data:[i?.5:0]}],f=new wfe(r.shape,l,u);return n.runWebGPUProgram(f,[r],"float32",h)}var Sfe={kernelName:Io,backendName:"webgpu",kernelFunc:kfe},Ife=class{constructor(e,t,n,s){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, roundBase : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.halfPixelCenters=s,this.shaderKey=`resizeNearest_${s}`}getUserCode(){let e;return this.halfPixelCenters?e="max((vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC, vec2<f32>(0.0))":e="vec2<f32>(rc) * effectiveInputOverOutputRatioRC",`
|
|
${et()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC = ${e};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let inputShapeRC = vec2<f32>(f32(uniforms.xShape.y), f32(uniforms.xShape.z));
|
|
let sourceNearestRC = vec2<i32>(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + uniforms.roundBase)));
|
|
let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
`}};function Cfe(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=a&&l>1?1:0,p=a&&u>1?1:0,h=[{type:"float32",data:[c,p]},{type:"float32",data:[a?.5:0]}],f=new Ife(r.shape,l,u,o);return n.runWebGPUProgram(f,[r],r.dtype,h)}var Tfe={kernelName:Yu,backendName:"webgpu",kernelFunc:Cfe},Nfe=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`centerX : f32, centerY : f32, sinRadians : f32,
|
|
cosRadians : f32,`,this.shaderKey="rotate",this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32,",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3<f32>,",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return`
|
|
${et()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let coordXFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.sinRadians;
|
|
let coordYFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.cosRadians;
|
|
let coordX = i32(round(coordXFloat + uniforms.centerX));
|
|
let coordY = i32(round(coordYFloat + uniforms.centerY));
|
|
${this.fillSnippet}
|
|
if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&
|
|
coordY < uniforms.xShape[1]) {
|
|
outputValue = getX(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}},Efe={kernelName:xl,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new Nfe(s.shape,a),[u,c]=C.getImageCenter(o,s.shape[1],s.shape[2]),p=[{type:"float32",data:[u]},{type:"float32",data:[c]},{type:"float32",data:[Math.sin(r)]},{type:"float32",data:[Math.cos(r)]}];return typeof a=="number"?p.push({type:"float32",data:[Number.parseFloat(a.toFixed(2))]}):p.push({type:"float32",data:a}),i.runWebGPUProgram(l,[s],s.dtype,p)}},Rfe=bn({opType:15,cpuKernelImpl:kde}),_fe={kernelName:To,backendName:"webgpu",kernelFunc:Rfe},$fe=class{constructor(e,t,n,s,r,a,o){this.variableNames=["updates","indices"],this.workGroupSize=[64,1,1],this.atomic=!0,this.outputShape=a,this.type=o,this.dispatchLayout=Ke(e),this.dispatch=Me(this.dispatchLayout,e,this.workGroupSize),this.sliceDimGreaterThanOne=t>1,this.shaderKey=`scatter_${n}_${s}_${this.sliceDimGreaterThanOne}_${o}`;let i=fn(r.length);this.uniforms=`sliceDim : i32, strides: ${i}, size: i32,`,this.updatesRank=s,this.indicesRank=n}getUserCode(){let e="";this.indicesRank===1?e="coords[0]":this.indicesRank===2&&(e="coords[0], j");let t=`getIndices(${e})`,n=this.sliceDimGreaterThanOne?"uniforms.strides[j]":"uniforms.strides",s="",r="",a="";this.updatesRank===1?(s="coords[0]",r="flattenedIndex",a=`
|
|
fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 {
|
|
return index;
|
|
}
|
|
`):this.updatesRank===2&&(s="coords[0], coords[1]",r="vec2<i32>(flattenedIndex, coords[1])",a=`
|
|
fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2<i32> {
|
|
let d0 = index / uniforms.updatesShape[1];
|
|
let d1 = index - d0 * uniforms.updatesShape[1];
|
|
return vec2<i32>(d0, d1);
|
|
}
|
|
`);let o=`getUpdates(${s})`,i=this.type==="int32"?"atomicAdd(&(result[flatIndex]), i32(updateValue));":`
|
|
var assumed = atomicLoad(&(result[flatIndex]));
|
|
var success = 0;
|
|
for (; success == 0;) {
|
|
let new = bitcast<f32>(assumed) + updateValue;
|
|
let newI32 = bitcast<i32>(new);
|
|
let resValue = atomicCompareExchangeWeak(&(result[flatIndex]), assumed, newI32);
|
|
assumed = resValue[0];
|
|
success = resValue[1];
|
|
}
|
|
`;return`
|
|
${a}
|
|
|
|
${et()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getUpdatesCoordsFromFlatIndex(index);
|
|
var flattenedIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexInside = i32(round(${t}));
|
|
flattenedIndex = flattenedIndex + indexInside * ${n};
|
|
}
|
|
let updateValue = ${o};
|
|
let flatIndex = getOutputIndexFromCoords(${r});
|
|
|
|
${i}
|
|
}
|
|
}`}};function Dfe(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=C.calculateShapes(a,r,o),d=[p/u,u];if(p===0)return n.makeTensorInfo(o,r.dtype);let h=qe({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=qe({inputs:{x:a},backend:n,attrs:{shape:[l,u]}}),m=f.dtype,g=Ic({backend:n,attrs:{shape:d,value:0,dtype:m}}),y=v.sizeFromShape(f.shape),x=[{type:"int32",data:[i]},{type:"int32",data:c},{type:"int32",data:[y]}],A=new $fe(f.shape,i,h.shape.length,f.shape.length,c,d,m),b=n.runWebGPUProgram(A,[f,h],m,x,g),w=qe({inputs:{x:b},backend:n,attrs:{shape:o}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(b.dataId),w}var Pfe={kernelName:il,backendName:"webgpu",kernelFunc:Dfe},Ffe=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.cRank=e,this.rank=n,this.shaderKey="select"}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let s=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[],a=[];for(let o=0;o<this.outputShape.length;o++)a.push(`${s[o]}`),o<this.cRank&&r.push(`${s[o]}`);e=r.join(),t=a.join()}return`
|
|
${et()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
let cVal = getC(${e});
|
|
if (cVal >= 1.0) {
|
|
setOutputAtIndex(index, getA(${t}));
|
|
} else {
|
|
setOutputAtIndex(index, getB(${t}));
|
|
}
|
|
}
|
|
}
|
|
`}};function Ofe(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new Ffe(s.shape.length,r.shape,r.shape.length);return n.runWebGPUProgram(o,[s,r,a],Tn(r.dtype,a.dtype))}var Mfe={kernelName:ll,backendName:"webgpu",kernelFunc:Ofe},zfe=bn({opType:18}),Lfe={kernelName:Eo,backendName:"webgpu",kernelFunc:zfe},Bfe=bn({opType:16}),Wfe={kernelName:No,backendName:"webgpu",kernelFunc:Bfe},Vfe=bn({opType:17}),Ufe={kernelName:cl,backendName:"webgpu",kernelFunc:Vfe},V6=qn({opSnippet:2,cpuKernelImpl:Nde,supportsComplex:!0}),Gfe={kernelName:Po,backendName:"webgpu",kernelFunc:V6};function Hfe(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=z6({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=C.expandShapeToKeepDim(i.shape,o),u=qe({inputs:{x:i},backend:n,attrs:{shape:l}}),c=V6({inputs:{a:r,b:u},backend:n}),p=P6({inputs:{x:c},backend:n}),d=gb({inputs:{x:p},backend:n,attrs:{axis:o,keepDims:!1}}),h=qe({inputs:{x:d},backend:n,attrs:{shape:l}}),f=W6({inputs:{a:p,b:h},backend:n});return n.disposeData(i.dataId),n.disposeData(u.dataId),n.disposeData(c.dataId),n.disposeData(p.dataId),n.disposeData(d.dataId),n.disposeData(h.dataId),f}var jfe={kernelName:$o,backendName:"webgpu",kernelFunc:Hfe},qfe=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=[[0,0]];l.push(...o);for(let y=1+a.length;y<r.shape.length;++y)l.push([0,0]);let u=[],c=B6({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=C.getReshaped(c.shape,a,i,!1),d=C.getPermuted(p.length,a.length,!1),h=C.getReshapedPermuted(c.shape,a,i,!1),f=qe({inputs:{x:c},backend:n,attrs:{shape:p}}),m=_l({inputs:{x:f},backend:n,attrs:{perm:d}}),g=qe({inputs:{x:m},backend:n,attrs:{shape:h}});return u.push(c),u.push(f),u.push(m),u.forEach(y=>n.disposeData(y.dataId)),g},Xfe={kernelName:dl,backendName:"webgpu",kernelFunc:qfe},Kfe=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.workGroupSize=[64,1,1],this.workPerThread=4,this.size=!0,this.outputShape=a,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let i=t>1;this.shaderKey=`scatter_${n}_${s}_${i}`;let l=fn(r.length);this.uniforms=`updateSize : i32, sliceDim : i32, strides: ${l},`;let u="";n===1?u="i":n===2&&(u="i, j"),this.indicesSnippet=`getIndices(${u})`;let c="";s===1?c="i":s===2&&(c="i, coords[1]"),this.updatesSnippet=`getUpdates(${c})`,this.strideString=i?"uniforms.strides[j]":"uniforms.strides"}getUserCode(){return`
|
|
${et()}
|
|
|
|
let globalIndex = index * ${this.workPerThread};
|
|
if (globalIndex < uniforms.size) {
|
|
var sum = vec4<f32>(0.0);
|
|
var found = vec4<bool>(false);
|
|
for (var i = 0; i < uniforms.updateSize; i = i + 1) {
|
|
var flattenedIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexInside = i32(round(${this.indicesSnippet}));
|
|
flattenedIndex = flattenedIndex + indexInside * ${this.strideString};
|
|
}
|
|
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
|
|
let curIndex = globalIndex + innerIndex;
|
|
let coords = getCoordsFromIndex(curIndex);
|
|
if (flattenedIndex == coords[0]) {
|
|
sum[innerIndex] = sum[innerIndex] + ${this.updatesSnippet};
|
|
found[innerIndex] = true;
|
|
}
|
|
}
|
|
}
|
|
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
|
|
let curIndex = globalIndex + innerIndex;
|
|
if (curIndex < uniforms.size)
|
|
{
|
|
setOutputAtIndex(curIndex, mix(getDefaultValue(), sum[innerIndex], f32(found[innerIndex])));
|
|
}
|
|
}
|
|
}
|
|
}`}};function Zfe(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,strides:c,outputSize:p}=C.calculateShapes(a,r,i),d=!1,h=[{type:"int32",data:[u]},{type:"int32",data:[l]},{type:"int32",data:c}],f=new Kfe(u,l,r.shape.length,a.shape.length,c,[p,1],d),m=n.runWebGPUProgram(f,[a,r,o],a.dtype,h),g=qe({inputs:{x:m},backend:n,attrs:{shape:i}});return n.disposeData(m.dataId),g}var Yfe={kernelName:Qd,backendName:"webgpu",kernelFunc:Zfe};function Jfe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=C.prepareSplitSize(r,a,i),u=r.shape.length,c=new Array(u).fill(0),p=r.shape.slice();return l.map(d=>{let h=[...p];h[i]=d;let f=Sc({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[i]+=d,f})}var Qfe={kernelName:pl,backendName:"webgpu",kernelFunc:Jfe},eme=bn({opType:19}),tme={kernelName:Ro,backendName:"webgpu",kernelFunc:eme},nme={kernelName:nc,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t,r=new Pp(n.shape,20);return s.runWebGPUProgram(r,[n],n.dtype)}},sme=qn({opSnippet:11}),rme={kernelName:Do,backendName:"webgpu",kernelFunc:sme},ame=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let t=fn(this.outputShape.length);this.uniforms=`begin : ${t}, strides : ${t}, `,this.shaderKey="stridedSlice"}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let s=0;t=this.outputShape.map((r,a)=>(s++,this.outputShape.length===1?`coords * uniforms.strides[${a}] + uniforms.begin[${a}]`:`coords[${s-1}] * uniforms.strides[${a}] + uniforms.begin[${a}]`)).join(",")}return`
|
|
${et()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
setOutputAtIndex(index, getX(${t}));
|
|
}
|
|
}
|
|
`}};function ome(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Ft.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=qe({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let S=Ft.computeOutShape(x,A,b),I=Sc({inputs:{x:r},backend:n,attrs:{begin:x,size:S}});w=qe({inputs:{x:I},backend:n,attrs:{shape:f}}),n.disposeData(I.dataId)}else if(n.shouldExecuteOnCPU([r])){let I=n.readSync(r.dataId),E=We(r.shape,r.dtype,I),R=Cde(h,E,b,x);w=n.makeTensorInfo(f,r.dtype,R.values)}else{let I=new ame(h),E=[{type:"int32",data:x},{type:"int32",data:b}],R=n.runWebGPUProgram(I,[r],r.dtype,E);w=qe({inputs:{x:R},backend:n,attrs:{shape:f}}),n.disposeData(R.dataId)}return w}var ime={kernelName:hl,backendName:"webgpu",kernelFunc:ome};function lme(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:p}=t,d=n.readSync(c.dataId),h=n.readSync(p.dataId),[f,m]=Tde(d,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var ume={kernelName:ep,backendName:"webgpu",kernelFunc:lme},cme=bn({opType:21}),dme={kernelName:Fo,backendName:"webgpu",kernelFunc:cme},pme=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.rank=this.outputShape.length,this.shaderKey="tile"}getUserCode(){let e=hme(this.rank,"uniforms.");return`
|
|
${et()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
setOutputAtIndex(index, getA(${e}));
|
|
}
|
|
}
|
|
`}};function hme(e,t=""){if(e>=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e;r++)s.push(`(${n[r]} % ${t}aShape[${r}])`);return s.join()}function fme(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(n.shouldExecuteOnCPU([r])||r.dtype==="string"||r.shape.length>=5){let l=n.readSync(r.dataId),u=r.dtype==="string"?l.map(d=>v.decodeString(d)):l,c=We(r.shape,r.dtype,u),p=Ede(c,a);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let o=new pme(r.shape,a);return n.runWebGPUProgram(o,[r],r.dtype)}var mme={kernelName:Yr,backendName:"webgpu",kernelFunc:fme},gme=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`inputSize : i32, firstPass : i32, negativeInf : f32,
|
|
dir : i32, inc : i32,`,this.shaderKey="swap"}getUserCode(){return`
|
|
${et()}
|
|
if (index < uniforms.size) {
|
|
let outC = getCoordsFromIndex(index);
|
|
let batch = outC[0];
|
|
let elemIdx = outC[1];
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced
|
|
// above, Figure5(a) shows that element[1] is in the second half of
|
|
// the group when group size is 2, but it is in the first half of
|
|
// the group when group size is 4.
|
|
let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc;
|
|
var i = 0;
|
|
if (isFirstInPair) {
|
|
i = elemIdx;
|
|
} else {
|
|
i = elemIdx - uniforms.inc;
|
|
}
|
|
|
|
var i0 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i0 = i;
|
|
} else {
|
|
i0 = i32(getIndices(batch, i));
|
|
}
|
|
|
|
var i1 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i1 = i + uniforms.inc;
|
|
} else {
|
|
i1 = i32(getIndices(batch, i + uniforms.inc));
|
|
}
|
|
|
|
var x0 = f32(0.0);
|
|
var x1 = f32(0.0);
|
|
if (i0 < uniforms.inputSize) {
|
|
x0 = getX(batch, i0);
|
|
} else {
|
|
x0 = uniforms.negativeInf;
|
|
}
|
|
if (i1 < uniforms.inputSize) {
|
|
x1 = getX(batch, i1);
|
|
} else {
|
|
x1 = uniforms.negativeInf;
|
|
}
|
|
|
|
let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir;
|
|
let isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) {
|
|
// Elements in opposite order of direction
|
|
let iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutputAtIndex(index, f32(i0));
|
|
} else {
|
|
setOutputAtIndex(index, f32(i1));
|
|
}
|
|
}
|
|
}
|
|
`}},yme=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms="inputSize : i32, firstPass : i32, k : i32,",this.shaderKey="merge"}getUserCode(){return`
|
|
${et()}
|
|
if (index < uniforms.size) {
|
|
let outC = getCoordsFromIndex(index);
|
|
let batch = outC[0];
|
|
let elemIdx = outC[1];
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _
|
|
// (k=4), we only need to output the indices at positions |, the
|
|
// indices at positions _ can be thrown away, see Figure5(b) After
|
|
// Phase 2 (Merge phase) in the Bitonic Top K paper referenced
|
|
// above.
|
|
// For example, the paper shows we only need to output the orange
|
|
// bars. The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back to
|
|
// the previous sequence to find the corresponding value, we need
|
|
// to double the index. When we double the index, we basically
|
|
// interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k
|
|
// position of each 2k positions by - elemIdx % k. E.g. for output
|
|
// at index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
var i = 0;
|
|
if (elemIdx < uniforms.k) {
|
|
i = elemIdx;
|
|
} else {
|
|
i = elemIdx * 2 - elemIdx % uniforms.k;
|
|
}
|
|
var i0 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i0 = i;
|
|
} else {
|
|
i0 = i32(getIndices(batch, i));
|
|
}
|
|
var i1 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i1 = i + uniforms.k;
|
|
} else {
|
|
i1 = i32(getIndices(batch, i + uniforms.k));
|
|
}
|
|
|
|
let x0 = getX(batch, i0);
|
|
var x1 = f32(0.0);
|
|
if (i1 < uniforms.inputSize) {
|
|
x1 = getX(batch, i1);
|
|
} else {
|
|
x1 = x0;
|
|
}
|
|
|
|
if (x0 >= x1) {
|
|
setOutputAtIndex(index, f32(i0));
|
|
} else {
|
|
setOutputAtIndex(index, f32(i1));
|
|
}
|
|
}
|
|
}
|
|
`}};function au(e,t){t!==null&&e.disposeData(t.dataId)}function tw(e){let t=1;for(;t<e;)t*=2;return t}function Ame(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=r.shape,l=i[i.length-1];if(n.shouldExecuteOnCPU([r])){let w=n.readSync(r.dataId),[S,I]=Rde(w,i,r.dtype,a,o);return[n.makeTensorInfo(S.shape,S.dtype,S.values),n.makeTensorInfo(I.shape,I.dtype,I.values)]}if(a===0)return i[i.length-1]=0,[n.makeTensorInfo(i,r.dtype,[]),n.makeTensorInfo(i,"int32",[])];if(l===1)return[r,Ic({attrs:{shape:i,dtype:"int32",value:0},backend:n})];let c=v.sizeFromShape(i)/l,p=qe({inputs:{x:r},attrs:{shape:[c,l]},backend:n}),d=tw(a),h=tw(l),f=null,m=()=>f===null?[p,p]:[p,f],g=(w,S,I)=>{let E=m(),R=new gme(I),_=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"float32",data:[Number.NEGATIVE_INFINITY]},{type:"int32",data:[w]},{type:"int32",data:[S]}],D=f;f=n.runWebGPUProgram(R,E,"int32",_),au(n,D)};for(let w=1;w<d;w*=2){let S=w*2;for(let I=w;I>=1;I/=2)g(S,I,[c,h])}for(let w=h;w>d;w/=2){let S=m(),I=new yme([c,w/2]),R=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"int32",data:[d]}],P=f;f=n.runWebGPUProgram(I,S,"int32",R),au(n,P);let _=d/2,D=_*2;for(let T=_;T>=1;T/=2)g(D,T,f.shape)}let y=f;f=Sc({inputs:{x:f},backend:n,attrs:{begin:0,size:[c,a]}}),au(n,y);let x=M6({inputs:{x:p,indices:f},backend:n,attrs:{axis:1,batchDims:1}});au(n,p);let A=i.slice(0,-1);A.push(a),y=f,f=qe({inputs:{x:f},attrs:{shape:A},backend:n}),au(n,y);let b=x;return x=qe({inputs:{x},attrs:{shape:A},backend:n}),au(n,b),[x,f]}var xme={kernelName:ml,backendName:"webgpu",kernelFunc:Ame},bme=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32, fillModeId : i32, fillValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="transform"}getUserCode(){return`
|
|
fn mapCoord(outCoord : f32, len : f32) -> f32{
|
|
var inCoord = outCoord;
|
|
if(uniforms.fillModeId == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
if (inCoord < -len) {
|
|
inCoord = inCoord + sz2;
|
|
} else {
|
|
inCoord = -inCoord - 1.0;
|
|
}
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (uniforms.fillModeId == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (uniforms.fillModeId == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
}
|
|
return outCoord;
|
|
}
|
|
fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,
|
|
channel : i32) -> f32 {
|
|
var outputValue : f32;
|
|
if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = uniforms.fillValue;
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
${et()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
var outputValue : f32;
|
|
let batch = coords[0];
|
|
let x = coords[2];
|
|
let y = coords[1];
|
|
let channel = coords[3];
|
|
let xf = f32(x);
|
|
let yf = f32(y);
|
|
let a1 = getTransforms(batch, 0);
|
|
let a2 = getTransforms(batch, 1);
|
|
let a3 = getTransforms(batch, 2);
|
|
let b1 = getTransforms(batch, 3);
|
|
let b2 = getTransforms(batch, 4);
|
|
let b3 = getTransforms(batch, 5);
|
|
let c1 = getTransforms(batch, 6);
|
|
let c2 = getTransforms(batch, 7);
|
|
let projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = uniforms.fillValue;
|
|
} else {
|
|
let inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
let inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));
|
|
let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));
|
|
|
|
if (uniforms.interpolationModeId == 1) {
|
|
let coordY = i32(round(mapY));
|
|
let coordX = i32(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
let yFloor = floor(mapY);
|
|
let xFloor = floor(mapX);
|
|
let yCeil = yFloor + 1.0;
|
|
let xCeil = xFloor + 1.0;
|
|
let valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);
|
|
let valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}};function vme(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=new bme(g),x=o==="nearest"?1:2,A;switch(i){case"constant":A=1;break;case"reflect":A=2;break;case"wrap":A=3;break;case"nearest":A=4;break;default:A=1;break}let b=[{type:"int32",data:[x]},{type:"int32",data:[A]},{type:"float32",data:[l]}];return n.runWebGPUProgram(y,[r,a],"float32",b)}var wme={kernelName:gl,backendName:"webgpu",kernelFunc:vme};function kme(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],u=new Array(i-1),c=0;for(let m=0;m<i;m++)m!==a&&(u[c++]=o.shape[m]);let p=[],d=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){d[a]=m;let g=Sc({inputs:{x:o},backend:n,attrs:{begin:d,size:h}}),y=qe({inputs:{x:g},backend:n,attrs:{shape:u}});f[m]=y,p.push(g)}return p.forEach(m=>n.disposeData(m.dataId)),f}var Sme={kernelName:yl,backendName:"webgpu",kernelFunc:kme},Ime=[Zce,Dde,Fde,zde,Gde,jde,Xde,Zde,tpe,ape,ipe,dpe,ede,mpe,kpe,Tpe,Epe,_pe,Ppe,Mpe,Lpe,Gpe,jpe,Xpe,Kpe,Zpe,Jpe,ehe,nhe,lhe,rhe,ohe,dhe,hhe,mhe,Ahe,vhe,khe,Ihe,Qce,hpe,The,Ehe,_he,Dhe,Fhe,Mhe,zhe,Bhe,Vhe,Ghe,jhe,Xhe,Zhe,Bpe,Jhe,efe,nfe,npe,rfe,ofe,lfe,cfe,pfe,ffe,gfe,spe,yfe,xfe,vfe,Xce,Sfe,Tfe,Efe,_fe,Pfe,Mfe,Lfe,Wfe,Ufe,Qde,ime,ume,jfe,Xfe,Yfe,Qfe,tme,nme,rme,Gfe,Vpe,dme,mme,xme,wme,Vde,Sme,sfe];for(let e of Ime)Us(e);var Cme=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireUploadBuffer(e,t){return this.acquireBuffer(e,t,!0)}acquireBuffer(e,t,n=!1){let s=nw(e,t);if(this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.usedBuffers.has(s)||this.usedBuffers.set(s,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(s).length>0){this.numFreeBuffers--;let a=this.freeBuffers.get(s).shift();return this.usedBuffers.get(s).push(a),a}this.numBytesAllocated+=e;let r=this.device.createBuffer({mappedAtCreation:n,size:e,usage:t});return this.usedBuffers.get(s).push(r),r}releaseBuffer(e,t,n){if(this.freeBuffers.size===0)return;let s=nw(t,n);this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.freeBuffers.get(s).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let r=this.usedBuffers.get(s),a=r.indexOf(e);if(a<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");r.splice(a,1),this.numBytesUsed-=t}releaseUploadBuffer(e,t,n){e.mapAsync(GPUMapMode.WRITE).then(()=>{this.releaseBuffer(e,t,n)},s=>{})}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}dispose(){this.freeBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function nw(e,t){return`${e}_${t}`}var U6=class{constructor(){this.outputShape=[0],this.variableNames=[],this.workGroupSize=[256,1,1],this.lastUniformData=[],this.inputTexture=null,this.layout=null,this.lastPixelSize={width:0,height:0},this.disposed=!1,this.shaderKey="fromPixels",this.useImport=!1}updateOutputShape(e){v.arraysEqual(this.outputShape,e)||(this.outputShape=e,this.workPerThread=e[2],this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]))}makeFromPixelsSource(){let e=this.useImport?"textureLoad(src, vec2<i32>(coords.yx));":"textureLoad(src, vec2<i32>(coords.yx), 0)";return`
|
|
@binding(1) @group(0) var src: ${this.useImport?"texture_external":"texture_2d<f32>"};
|
|
|
|
${et()}
|
|
let flatIndexBase = index * uniforms.numChannels;
|
|
for (var i = 0; i < uniforms.numChannels; i = i + 1) {
|
|
let flatIndex = flatIndexBase + i;
|
|
if (flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndexBase);
|
|
let values = ${e};
|
|
result[flatIndex] = i32(floor(255.0 * values[i]));
|
|
}
|
|
}
|
|
}
|
|
`}getUserCode(){return this.makeFromPixelsSource()}setPipeline(e){this.pipeline=e}setUniform(e,t){if(!this.uniform){let n=e.createBuffer({size:t.length*4,usage:GPUBufferUsage.UNIFORM|GPUBufferUsage.COPY_DST});this.uniform=n}!t||t.length===this.lastUniformData.length&&t.every((n,s)=>n===this.lastUniformData[s])||(e.queue.writeBuffer(this.uniform,0,new Uint32Array(t)),this.lastUniformData=t)}makeInputTexture(e,t,n){return(!this.inputTexture||this.lastPixelSize.width!==t||this.lastPixelSize.height!==n)&&(this.inputTexture&&this.inputTexture.destroy(),this.inputTexture=e.createTexture({size:[t,n],format:"rgba8unorm",usage:GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING}),this.lastPixelSize.width=t,this.lastPixelSize.height=n),this.inputTexture}dispose(){this.disposed||(this.uniform&&this.uniform.destroy(),this.inputTexture&&this.inputTexture.destroy(),this.disposed=!0)}getLayout(e){return this.layout===null&&(this.layout=this.createTextureLayout(e)),this.layout}createTextureLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,texture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let n=e.createBindGroupLayout({entries:t}),s=e.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}},Tme=class extends U6{constructor(){super(...arguments);this.layout=null,this.useImport=!0}getUserCode(){return this.makeFromPixelsSource()}getLayout(e){return this.layout===null&&(this.layout=this.createTextureImportLayout(e)),this.layout}createTextureImportLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,externalTexture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let n=e.createBindGroupLayout({entries:t}),s=e.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}},Nme=J().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),sw=(e,t)=>{let n=e.limits.maxComputeWorkgroupsPerDimension,s=t.dispatchLayout,r=t.dispatch;if(r.every(o=>o<=n))return r;v.assert(r[0]>n&&s.y===void 0&&s.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let a=Math.ceil(Math.sqrt(r[0]));return a>n?(a=Math.ceil(Math.cbrt(r[0])),v.assert(a<=n,()=>"Total dispatch size exceeds WebGPU maximum."),[a,a,a]):[a,a,1]},G6=class extends Tu{constructor(e,t=!1){super();if(this.commandQueueOwnedIds=new WeakSet,this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.stagingDisposalQueue=[],this.disposed=!1,this.uploadWaitMs=0,this.downloadWaitMs=0,this.dispatchNumberInEncoder=0,!hb())throw new Error("WebGPU is not supported on this device");this.layoutCache={},this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=t,this.bufferManager=new Cme(this.device),this.tensorMap=new zd(this,yn()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),J().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return G6.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}flushDisposalQueue(){this.tensorDisposalQueue.forEach(e=>{this.maybeReleaseBuffer(e),this.tensorMap.delete(e)}),this.uniformDisposalQueue.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.byteSize,e.usage)),this.stagingDisposalQueue.forEach(e=>this.bufferManager.releaseUploadBuffer(e.buffer,e.byteSize,e.usage)),this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.stagingDisposalQueue=[]}disposeData(e,t=!1){if(this.tensorMap.has(e)){let n=this.tensorMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDisposalQueue.push(e),!1;this.maybeReleaseBuffer(e);let{complexTensorInfos:s}=this.tensorMap.get(e);s!=null&&(this.disposeData(s.real.dataId,!0),this.disposeData(s.imag.dataId,!0)),this.tensorMap.delete(e)}return!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}getBufferManager(){return this.bufferManager}acquireBuffer(e,t=this.defaultGpuBufferUsage()){return this.bufferManager.acquireBuffer(e,t)}maybeReleaseBuffer(e){let t=this.tensorMap.get(e);t!=null&&t.bufferInfo.buffer!=null&&(this.bufferManager.releaseBuffer(t.bufferInfo.buffer,t.bufferInfo.byteSize,t.bufferInfo.usage),t.bufferInfo.buffer=null)}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,n){if(n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()},r=v.sizeFromShape(t)*jy(n);return this.tensorMap.set(s,{dtype:n,values:e,bufferInfo:{byteSize:r,usage:this.defaultGpuBufferUsage()},refCount:1}),s}move(e,t,n,s,r){if(s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a=v.sizeFromShape(n)*jy(s);this.tensorMap.set(e,{dtype:s,values:t,bufferInfo:{byteSize:a,usage:this.defaultGpuBufferUsage()},refCount:r})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.flushDisposalQueue()}getBuffer(e){return this.uploadToGPU(e),this.tensorMap.get(e).bufferInfo.buffer}getFromPixelsProgram(e){switch(e){case"copyExternal":return this.fromPixelProgram||(this.fromPixelProgram=new U6),this.fromPixelProgram;case"import":return this.fromPixelImportProgram||(this.fromPixelImportProgram=new Tme),this.fromPixelImportProgram;default:v.assert(!1,()=>"Unsupported fromPixels shape");return}}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.endPass(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e){if(e.values!=null)return e.values;let t=this.acquireBuffer(e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e.bufferInfo.buffer,0,t,0,e.bufferInfo.byteSize),this.submitQueue(),await t.mapAsync(GPUMapMode.READ);let n=t.getMappedRange().slice(0);return t.unmap(),t!=null&&this.bufferManager.releaseBuffer(t,e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),J().getBool("WEBGPU_USE_PROFILE_TOOL")&&(v.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),n}convertAndCacheOnCPU(e,t){let n=this.tensorMap.get(e);return this.maybeReleaseBuffer(e),n.values=t,n.values}readSync(e){let t=this.tensorMap.get(e),{values:n}=t;if(n==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return n}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:n}=t;if(n!=null)return this.convertAndCacheOnCPU(e,n);let s;if(t.dtype==="complex64"){let r=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),a=r[0],o=r[1];s=C.mergeRealAndImagArrays(a,o)}else{let r=await this.getBufferData(t);s=v6(r,t.dtype)}return this.convertAndCacheOnCPU(e,s),s}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>v.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),a=v.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},i=await Promise.all(r);return o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,o}getAndSavePipeline(e,t){return e in this.pipelineCache||(this.pipelineCache[e]=t()),this.pipelineCache[e]}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);return{offset:0,size:t.bufferInfo.byteSize,buffer:t.bufferInfo.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);if(t.bufferInfo.buffer==null&&(t.bufferInfo.buffer=this.acquireBuffer(t.bufferInfo.byteSize),t.values)){let n=this.bufferManager.acquireUploadBuffer(t.bufferInfo.byteSize,GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC),s=n.getMappedRange();t.dtype==="int32"||t.dtype==="bool"?new Int32Array(s).set(t.values):new Float32Array(s).set(t.values),n.unmap(),this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(n,0,t.bufferInfo.buffer,0,t.bufferInfo.byteSize);let r={byteSize:t.bufferInfo.byteSize,usage:GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC,buffer:n};this.stagingDisposalQueue.push(r)}}makeUniforms(e){let t=0,n=[];e.forEach(a=>{a.data.length===0&&(a.data=[1]);let o;switch(a.data.length){case 1:o=4;break;case 2:o=8;break;case 3:o=16;break;case 4:o=16;break;default:v.assert(!1,()=>`Unsupported ${a.data.length}D shape`)}t=Math.ceil(t/o)*o,n.push(t),t+=a.data.length*4});let s=new ArrayBuffer(t);e.forEach((a,o)=>{let i=n[o];a.type==="int32"?new Int32Array(s,i,a.data.length).set(a.data):a.type==="uint32"?new Uint32Array(s,i,a.data.length).set(a.data):new Float32Array(s,i,a.data.length).set(a.data)});let r=this.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);return this.queue.writeBuffer(r,0,s,0,t),{offset:0,size:t,buffer:r}}createLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}});for(let r=0;r<e;r++)t.push({binding:r+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"read-only-storage"}});t.push({binding:e+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"uniform"}});let n=this.device.createBindGroupLayout({entries:t}),s=this.device.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}getCachedOrCreateLayout(e){return e in this.layoutCache||(this.layoutCache[e]=this.createLayout(e)),this.layoutCache[e]}runWebGPUProgram(e,t,n,s,r){if(!r){if(r=this.makeTensorInfo(e.outputShape,n),v.sizeFromShape(r.shape)===0){let I=this.tensorMap.get(r.dataId);return I.values=v.getTypedArrayFromDType(r.dtype,0),r}this.uploadToGPU(r.dataId)}e.dispatch=sw(this.device,e);let a=[{type:"float32",data:[NaN]}],o=t.concat(r).map(I=>I.shape),i="int32";o.map(I=>{a.push({type:i,data:I})});let l=v.computeStrides(r.shape);if(a.push({type:i,data:l}),e.size){let I=v.sizeFromShape(e.outputShape);a.push({type:i,data:[e.isVec4?I/4:I]})}s&&(a=[...a,...s]);let u=this.makeUniforms(a),c=t.map((I,E)=>{if(I.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU(I.dataId),{dtype:this.tensorMap.get(I.dataId).dtype,shape:I.shape,name:e.variableNames[E]}}),p=c.map(I=>I.dtype).concat(r.dtype),d=c.map(I=>C.getBroadcastDims(I.shape,r.shape)),h=c.map(I=>v.arraysEqual(I.shape,r.shape)).join("_"),f=d.map(I=>I.join("_")).join(";"),m=O6(e,o,p,f,h),{bindGroupLayout:g,pipelineLayout:y}=this.getCachedOrCreateLayout(e.variableNames.length),x=this.getAndSavePipeline(m,()=>F6(this.device,e,y,c,r)),A=this.activeTimers!=null,b=ihe(this.device,g,t.map(I=>this.tensorToBinding(I)),this.tensorToBinding(r),u);this.ensureCommandEncoderReady();let w=this.getComputePass();A&&this.supportTimeQuery&&w.writeTimestamp(this.querySet,0),w.setPipeline(x),w.setBindGroup(0,b),w.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),A&&this.supportTimeQuery&&w.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach(I=>{this.commandQueueOwnedIds.add(I.dataId)}),this.commandQueueOwnedIds.add(r.dataId);let S={byteSize:u.size,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:u.buffer};return this.uniformDisposalQueue.push(S),J().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),A&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),r}runFromPixelsProgram(e,t,n,s,r){e.dispatch=sw(this.device,e);let a=this.device.createBindGroup({layout:n.bindGroupLayout,entries:[{binding:0,resource:{buffer:t}},{binding:1,resource:s},{binding:2,resource:{buffer:e.uniform}}]});this.ensureCommandEncoderReady();let o=this.getComputePass(),i=this.activeTimers!=null;i&&this.supportTimeQuery&&o.writeTimestamp(this.querySet,0),o.setPipeline(e.pipeline),o.setBindGroup(0,a),o.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),i&&this.supportTimeQuery&&o.writeTimestamp(this.querySet,1),this.commandQueueOwnedIds.add(r),this.submitQueue(),i&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)})}async getTimeFromQuerySet(e){let t=this.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),n=this.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,n,0,16),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=new BigUint64Array(n.getMappedRange()),r=Number(s[1]-s[0]);return n.unmap(),this.bufferManager.releaseBuffer(n,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),r/1e6}shouldExecuteOnCPU(e,t=Nme){return J().getBool("WEBGPU_CPU_FORWARD")&&e.every(n=>this.tensorMap.get(n.dataId).bufferInfo.buffer==null&&v.sizeFromShape(n.shape)<t)}numDataIds(){return this.tensorMap.numDataIds()-this.tensorDisposalQueue.length}dispose(){this.disposed||(this.bufferManager.dispose(),this.fromPixelProgram&&this.fromPixelProgram.dispose(),this.fromPixelImportProgram&&this.fromPixelImportProgram.dispose(),this.disposed=!0)}},yb=G6;yb.nextDataId=0;var H6={};Le(H6,{WebGPUBackend:()=>yb,webgpu_util:()=>x6});hb()&&vl("webgpu",async()=>{J().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:J().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),n=t.limits,s={},r=t.features.has("timestamp-query");s.requiredLimits={maxComputeWorkgroupStorageSize:n.maxComputeWorkgroupStorageSize,maxComputeWorkgroupsPerDimension:n.maxComputeWorkgroupsPerDimension},r?s.requiredFeatures=["timestamp-query"]:console.warn("This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Or zero will shown for the kernel time when profiling mode isenabled. Using performance.now is not workable for webgpu sinceit doesn't support synchronously to read data from GPU.");let a=await t.requestDevice(s);return new yb(a,r)},3);var Vt=(e=>(e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64",e))(Vt||{}),m0=(e=>(e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu",e))(m0||{}),j6;function Eme(e){j6=e.wasm.cwrap(Ea,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Rme(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s,d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let E=n.dataIdMap.get(o.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);f=E.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=m0[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],x=u?a.shape[1]:a.shape[2],A=bl.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)),b=n.makeOutput([...A,y,x],r.dtype),w=n.dataIdMap.get(b.dataId).id,S=new Uint8Array(new Int32Array(r.shape).buffer),I=new Uint8Array(new Int32Array(a.shape).buffer);return j6(d,S,r.shape.length,h,I,a.shape.length,l,u,g,f,m,p||0,w),b}var _me={kernelName:Ea,backendName:"wasm",setupFunc:Eme,kernelFunc:Rme};function vn(e,t){let n;function s(a){n=a.wasm.cwrap(e,null,["number","number","number"])}function r(a){let{backend:o,inputs:{x:i}}=a,l=o.dataIdMap.get(i.dataId).id,u=o.makeOutput(i.shape,t||i.dtype),c=o.dataIdMap.get(u.dataId).id;return v.sizeFromShape(u.shape)===0||n(l,Vt[i.dtype],c),u}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:r}}var $me=vn(Pi);function Xn(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:u,b:c}=l,p=i.dataIdMap.get(u.dataId).id,d=i.dataIdMap.get(c.dataId).id,h=n!=null?n:u.dtype,f=C.assertAndGetBroadcastShape(u.shape,c.shape),m=i.makeOutput(f,h);if(v.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(c.shape).buffer),x=i.dataIdMap.get(m.dataId).id;return(()=>s(p,g,u.shape.length,d,y,c.shape.length,Vt[u.dtype],x))(),m}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var Dme=!0,Pme=Xn(Kr,Dme),q6;function Fme(e){q6=e.wasm.cwrap(Ha,null,["array","number","number","number"])}function Ome(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return q6(a,r.length,Vt[s.dtype],o),s}var Mme={kernelName:Ha,backendName:"wasm",setupFunc:Fme,kernelFunc:Ome};function g0(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var zme={kernelName:uo,backendName:"wasm",kernelFunc:g0},X6;function Lme(e){X6=e.wasm.cwrap(Oo,null,["number","array","number","number","number","array","number"])}function Ua(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=Wme(t.x.shape,s.perm),o=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(o=!1);let i=Bme(t.x.shape,s.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(o){let f=g0({inputs:t,backend:n});return f.shape=i,f}let u=n.makeOutput(i,l.dtype),c=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(u.dataId).id,d=new Uint8Array(new Int32Array(a).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return X6(c,h,l.shape.length,Vt[l.dtype],p,d,a.length),u}function Bme(e,t){let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];return n}function Wme(e,t){let n=[],s=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&s.push(t[r]);for(let r=0;r<s.length;++r){let a=-1;for(let o=0;o<s.length;++o)s[o]>=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var Vme={kernelName:Oo,backendName:"wasm",kernelFunc:Ua,setupFunc:Lme};function Uo(e,t,n){let s=e.shape,r=e.shape.length,a=v.parseAxisParam(t,s),o=a,i=C.getAxesPermutation(o,r),l=null,u=!1;if(i!=null){let c=new Array(r);for(let h=0;h<c.length;h++)c[h]=s[i[h]];o=C.getInnerMostAxes(o.length,r),l=Ua({inputs:{x:e},attrs:{perm:i},backend:n});let p=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==p&&(u=!0)}return{transposed:l,originalAxes:a,axes:o,inputWasTransposed:u}}var K6;function Ume(e){K6=e.wasm.cwrap(_u,null,["number, number, number"])}function Gme(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Uo(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;u=c,l=A}let f=u.shape.length;C.assertAxesAreInnerMostDims("all",p,f);let[m,g]=C.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;K6(l,y,A)}if(h&&t.disposeData(c.dataId),a){let A=C.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Hme={kernelName:_u,backendName:"wasm",setupFunc:Ume,kernelFunc:Gme},Z6;function jme(e){Z6=e.wasm.cwrap($u,null,["number, number, number"])}function qme(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Uo(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;u=c,l=A}let f=u.shape.length;C.assertAxesAreInnerMostDims("any",p,f);let[m,g]=C.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;Z6(l,y,A)}if(h&&t.disposeData(c.dataId),a){let A=C.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Xme={kernelName:$u,backendName:"wasm",setupFunc:jme,kernelFunc:qme},Y6;function Kme(e){Y6=e.wasm.cwrap(ja,null,["number","number","number","number","number"])}function Zme(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=o,l=a,{transposed:u,axes:c,inputWasTransposed:p}=Uo(a,r,t);if(p){let y=t.dataIdMap.get(u.dataId).id;y!==o&&(l=u,i=y)}let d=l.shape.slice(0,-1),h=t.makeOutput(d,"int32"),f=t.dataIdMap.get(h.dataId).id,m=v.sizeFromShape(h.shape),g=l.shape[c[0]];return Y6(i,Vt[l.dtype],m,g,f),p&&t.disposeData(u.dataId),h}var Yme={kernelName:ja,backendName:"wasm",kernelFunc:Zme,setupFunc:Kme},J6;function Jme(e){J6=e.wasm.cwrap(qa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Qme(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=C.computePool2DInfo(r.shape,o,i,1,l,u),p=c.filterHeight,d=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,y=c.strideHeight,x=c.strideWidth,A=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let b=s.makeOutput(c.outShape,"float32"),w=s.dataIdMap.get(b.dataId).id;return J6(a,r.shape[0],r.shape[1],r.shape[2],p,d,h,f,m,g,y,x,A,w),b}var e0e={kernelName:qa,backendName:"wasm",setupFunc:Jme,kernelFunc:Qme};function Qn(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a);return v.assert(a===v.sizeFromShape(o),()=>`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var t0e={kernelName:rl,backendName:"wasm",kernelFunc:Qn},Q6;function n0e(e){Q6=e.wasm.cwrap(Xa,null,["number","array","number","number","array","number","number","number","number"])}function s0e(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],p=i?a.shape[u-1]:a.shape[u-2],d=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),y=v.sizeFromShape(m),A=bl.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([d,h]);v.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let b=o?[g,c,d]:[g,d,c],w=i?[y,h,p]:[y,p,h],S=Qn({inputs:{x:r},backend:n,attrs:{shape:b}}),I=Qn({inputs:{x:a},backend:n,attrs:{shape:w}}),E=n.dataIdMap.get(S.dataId).id,R=n.dataIdMap.get(I.dataId).id,P=o?S.shape[2]:S.shape[1],_=i?I.shape[1]:I.shape[2],D=Math.max(g,y),T=n.makeOutput([D,P,_],S.dtype),O=n.dataIdMap.get(T.dataId).id,U=new Uint8Array(new Int32Array(S.shape).buffer),K=new Uint8Array(new Int32Array(I.shape).buffer);return Q6(E,U,S.shape.length,R,K,I.shape.length,o,i,O),n.disposeData(S.dataId),n.disposeData(I.dataId),T.shape=A,T}var r0e={kernelName:Xa,backendName:"wasm",setupFunc:n0e,kernelFunc:s0e};function _i(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=Ft.parseSliceParams(t,n,s),i=Ft.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),u=r.makeOutput(o,t.dtype),c=v.computeStrides(t.shape),p=r.dataIdMap.get(u.dataId);if(i){let f=Ft.computeFlatOffset(a,c);return t.dtype==="string"?p.stringBytes=l.slice(f,f+v.sizeFromShape(o)):r.typedArrayFromHeap(u).set(l.subarray(f,f+v.sizeFromShape(o))),u}if(t.dtype==="string"){let f=Cf(l,a,o,t.shape,t.dtype);return p.stringBytes=f,u}let d=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)a0e(l,c[0],d,a,o);else if(h===3)o0e(l,c[0],c[1],d,a,o);else if(h===4)i0e(l,c[0],c[1],c[2],d,a,o);else{let f=Cf(l,a,o,t.shape,t.dtype);d.set(f)}return u}function a0e(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let u=o;u<l;u++){let c=u*t+i;n.set(e.subarray(c,c+r[1]),a),a+=r[1]}}function o0e(e,t,n,s,r,a){let o=0,i=r[0],l=r[1],u=r[2],c=i+a[0],p=l+a[1];for(let d=i;d<c;d++)for(let h=l;h<p;h++){let f=d*t+h*n+u;s.set(e.subarray(f,f+a[2]),o),o+=a[2]}}function i0e(e,t,n,s,r,a,o){let i=0,l=a[0],u=a[1],c=a[2],p=l+o[0],d=u+o[1],h=c+o[2],f=a[3];for(let m=l;m<p;m++)for(let g=u;g<d;g++)for(let y=c;y<h;y++){let x=m*t+g*n+y*s+f;r.set(e.subarray(x,x+o[3]),i),i+=o[3]}}var l0e={kernelName:ul,backendName:"wasm",kernelFunc:_i};function u0e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s,i=a.reduce((y,x)=>y*x),l=C.getReshaped(r.shape,a,i),u=C.getPermuted(l.length,a.length),c=C.getReshapedPermuted(r.shape,a,i),p=C.getSliceBeginCoords(o,a.length),d=C.getSliceSize(c,o,a.length),h=Qn({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Ua({inputs:{x:h},backend:n,attrs:{perm:u}}),m=Qn({inputs:{x:f},backend:n,attrs:{shape:c}}),g=_i({inputs:{x:m},backend:n,attrs:{begin:p,size:d}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var c0e={kernelName:Fi,backendName:"wasm",kernelFunc:u0e};function Mp(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var d0e={kernelName:Ka,backendName:"wasm",kernelFunc:Mp},p0e=vn(Za),e8;function h0e(e){e8=e.wasm.cwrap(Zr,null,["number","number","number","number"])}function f0e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return e8(i,a,o,u),l}var m0e={kernelName:Zr,backendName:"wasm",setupFunc:h0e,kernelFunc:f0e};function t8(e){let{inputs:t,backend:n}=e,s=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=C.computeOutShape(t.map(h=>h.shape),s),a=t.filter(h=>v.sizeFromShape(h.shape)>0);if(a.length===1)return g0({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(v.sizeFromShape(r)===0)return o;let i=a.map(h=>h.shape);if(C.assertParamsConsistent(i,s),a[0].dtype==="string"){let h=a.map(A=>{let b=v.sizeFromShape(A.shape.slice(s));return Qn({inputs:{x:A},backend:n,attrs:{shape:[-1,b]}})}),f=h.map(A=>({vals:n.readSync(A.dataId),shape:A.shape}));r=C.computeOutShape(h.map(A=>A.shape),1);let m=h[0].shape[0]===1,g=Wx(f,r,t[0].dtype,m),y=C.computeOutShape(a.map(A=>A.shape),s);o.shape=y;let x=n.dataIdMap.get(o.dataId);return x.stringBytes=C.fromStringArrayToUint8(g),h.forEach(A=>n.disposeData(A.dataId)),o}let l=v.sizeFromShape(a[0].shape.slice(0,s)),u=0,c=a.map(h=>{let f=v.sizeFromShape(h.shape.slice(s));return u+=f,f}),p=a.map(h=>n.typedArrayFromHeap(h)),d=n.typedArrayFromHeap(o);for(let h=0;h<l;h++){let f=h*u;for(let m=0;m<p.length;m++){let g=c[m],y=h*g,x=p[m].subarray(y,y+g);d.set(x,f),f+=g}}return o}var g0e={kernelName:Oi,backendName:"wasm",kernelFunc:t8},n8;function y0e(e){n8=e.wasm.cwrap(Ya,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function A0e(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p,dataFormat:d}=n,h=C.convertConv2DDataFormat(d),f=C.computeConv2DInfo(r.shape,a.shape,l,u,c,p,!1,h),m=f.filterHeight,g=f.filterWidth,y=f.padInfo.top,x=f.padInfo.right,A=f.padInfo.bottom,b=f.padInfo.left,w=f.dilationHeight,S=f.dilationWidth,I=f.strideHeight,E=f.strideWidth,R=f.inChannels,P=f.outChannels,_=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let D=s.makeOutput(f.outShape,"float32"),T=s.dataIdMap.get(D.dataId).id;return n8(o,r.shape[0],r.shape[1],r.shape[2],i,m,g,y,x,A,b,_,w,S,I,E,R,P,T),D}var x0e={kernelName:Ya,backendName:"wasm",setupFunc:y0e,kernelFunc:A0e},s8;function b0e(e){s8=e.wasm.cwrap(Ja,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function v0e(e){let{backend:t,inputs:n,attrs:s}=e,{dy:r,filter:a}=n,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,inputShape:c}=s,p=1,d=C.convertConv2DDataFormat(l),h=C.computeConv2DInfo(c,a.shape,o,p,i,u,!1,d),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:y,inHeight:x,inWidth:A,outChannels:b,outHeight:w,outWidth:S,strideHeight:I,strideWidth:E}=h,R=m-1-h.padInfo.top,P=g-1-h.padInfo.left,_=h.dataFormat==="channelsLast",D=v.computeStrides(h.inShape),T=v.computeStrides(r.shape),[O,U,K]=v.computeStrides(a.shape),z=D[0],Z=_?D[1]:D[2],W=_?D[2]:1,ee=_?1:D[1],Q=T[0],ae=_?T[1]:T[2],Y=_?T[2]:1,re=_?1:T[1],ie=t.makeOutput(h.inShape,"float32"),me=t.dataIdMap.get(ie.dataId).id,be=t.dataIdMap.get(r.dataId).id,Ee=t.dataIdMap.get(a.dataId).id;return s8(be,Ee,f,m,g,x,A,y,w,S,b,I,E,R,P,O,U,K,z,Z,W,ee,Q,ae,Y,re,me),ie}var w0e={kernelName:Ja,backendName:"wasm",setupFunc:b0e,kernelFunc:v0e},k0e=vn(Qa),S0e=vn(eo),r8=(e=>(e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest",e))(r8||{}),a8;function I0e(e){a8=e.wasm.cwrap(zi,null,["number","number","number","number","array","number","number","number","number","number"])}function C0e(e){let{backend:t,inputs:n,attrs:s}=e,{method:r,extrapolationValue:a,cropSize:o}=s,{image:i,boxes:l,boxInd:u}=n,c=l.shape[0],[p,d]=o,h=[c,p,d,i.shape[3]],f=t.dataIdMap.get(i.dataId),m;i.dtype!=="float32"&&(m=Mp({backend:t,inputs:{x:i},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,y=t.dataIdMap.get(l.dataId).id,x=t.dataIdMap.get(u.dataId).id,A=t.makeOutput(h,"float32"),b=t.dataIdMap.get(A.dataId).id,w=new Uint8Array(new Int32Array(i.shape).buffer);return a8(g,y,x,c,w,p,d,r8[r],a,b),m!=null&&t.disposeData(m.dataId),A}var T0e={kernelName:zi,backendName:"wasm",setupFunc:I0e,kernelFunc:C0e},o8;function N0e(e){o8=e.wasm.cwrap(Lu,null,["number","number","number","number","number","number"])}function E0e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumprod does not support ${r.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([a],l),c=r;u!==null&&(c=Ua({inputs:{x:r},attrs:{perm:u},backend:n}));let p=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumprod",[p],l);let d=n.makeOutput(c.shape,c.dtype),h=c.shape[p],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;o8(f,o?1:0,i?1:0,h,m,Vt[r.dtype]);let g=d;if(u!==null){let y=C.getUndoAxesPermutation(u);g=Ua({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return g}var R0e={kernelName:Lu,backendName:"wasm",setupFunc:N0e,kernelFunc:E0e},i8;function _0e(e){i8=e.wasm.cwrap(Mi,null,["number","number","number","number","number","number"])}function $0e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([a],l),c=r;u!==null&&(c=Ua({inputs:{x:r},attrs:{perm:u},backend:n}));let p=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumsum",[p],l);let d=n.makeOutput(c.shape,c.dtype),h=c.shape[p],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;i8(f,o?1:0,i?1:0,h,m,Vt[r.dtype]);let g=d;if(u!==null){let y=C.getUndoAxesPermutation(u);g=Ua({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return g}var D0e={kernelName:Mi,backendName:"wasm",setupFunc:_0e,kernelFunc:$0e},l8;function P0e(e){l8=e.wasm.cwrap(Li,null,["number","number","number","array","number","array","array","number","number"])}function F0e(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],p=l*a,d=u*a,h=c/(a*a),f=o==="NHWC"?[i,p,d,h]:[i,h,p,d],m=t.makeOutput(f,"float32"),y=t.dataIdMap.get(r.dataId).id,x=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),A=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer),w=t.dataIdMap.get(m.dataId).id;return l8(y,a,o==="NHWC"?1:0,x,r.shape.length-1,A,b,f.length,w),m}var O0e={kernelName:Li,backendName:"wasm",setupFunc:P0e,kernelFunc:F0e},u8;function M0e(e){u8=e.wasm.cwrap(to,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function z0e(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p}=n,d=u==null?[1,1]:u,h=C.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,x=h.padInfo.bottom,A=h.padInfo.left,b=h.dilationHeight,w=h.dilationWidth,S=h.strideHeight,I=h.strideWidth,E=h.inChannels,R=h.outChannels,P=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let _=s.makeOutput(h.outShape,"float32"),D=s.dataIdMap.get(_.dataId).id;return u8(o,r.shape[0],r.shape[1],r.shape[2],i,f,m,g,y,x,A,P,b,w,S,I,E,R,D),_}var L0e={kernelName:to,backendName:"wasm",setupFunc:M0e,kernelFunc:z0e},B0e=vn(so),W0e=!1,V0e=Xn(Bi,W0e,"bool"),U0e=vn(ro,"float32");function Yy(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),Qn({inputs:{x:r},backend:s,attrs:{shape:i}})}var G0e={kernelName:Wi,backendName:"wasm",kernelFunc:Yy};function c8(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var H0e={kernelName:Wu,backendName:"wasm",kernelFunc:c8},d8;function j0e(e){d8=e.wasm.cwrap(Ui,null,["number","number","number","number","number","number"])}function q0e(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,u,c]=s.shape;return d8(a,i,l,u,c,o),r}var X0e={kernelName:Ui,backendName:"wasm",kernelFunc:q0e,setupFunc:j0e},K0e=vn(ao),Z0e=!1,Y0e=Xn(oo,Z0e),p8;function J0e(e){p8=e.wasm.cwrap(io,null,["number","number","number","number","number","number","number"])}function Q0e(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:u}=n,c=t.dataIdMap.get(a.dataId).id,p=t.dataIdMap.get(o.dataId).id,d=t.dataIdMap.get(i.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(v.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return p8(c,p,d,h,f,r,g),m}var ege={kernelName:io,backendName:"wasm",setupFunc:J0e,kernelFunc:Q0e},h8;function tge(e){h8=e.wasm.cwrap(Ra,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function nge(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=C.computeConv2DInfo(r.shape,a.shape,l,c,u,d),g=m0[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,A=m.outChannels,b=0;if(o!=null){let Y=s.dataIdMap.get(o.dataId);if(Y.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Y.shape.length}.`);if(Y.shape[0]!==A)throw new Error(`FusedConv2D bias shape (${Y.shape}) does not match the number of output channels (${A})`);b=Y.id}let w=m.filterHeight,S=m.filterWidth,I=m.padInfo.top,E=m.padInfo.right,R=m.padInfo.bottom,P=m.padInfo.left,_=m.dilationHeight,D=m.dilationWidth,T=m.strideHeight,O=m.strideWidth,U=m.inChannels,K=m.padInfo.type==="SAME"?1:0,z=m.batchSize,Z=m.inHeight,W=m.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ee=s.makeOutput(m.outShape,"float32"),Q=s.dataIdMap.get(ee.dataId).id,ae=i==null?0:s.dataIdMap.get(i.dataId).id;return h8(y,z,Z,W,x,w,S,b,I,E,R,P,K,_,D,T,O,U,A,g,ae,f||0,Q),ee}var sge={kernelName:Ra,backendName:"wasm",setupFunc:tge,kernelFunc:nge},f8;function rge(e){f8=e.wasm.cwrap(_a,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function age(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=C.computeConv2DInfo(r.shape,a.shape,l,c,u,d,!0),g=m0[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,A=m.outChannels,b=0;if(o!=null){let Y=s.dataIdMap.get(o.dataId);if(Y.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Y.shape.length}.`);if(Y.shape[0]!==A)throw new Error(`FusedDepthwiseConv2D bias shape (${Y.shape}) does not match the number of output channels (${A})`);b=Y.id}let w=m.filterHeight,S=m.filterWidth,I=m.padInfo.top,E=m.padInfo.right,R=m.padInfo.bottom,P=m.padInfo.left,_=m.dilationHeight,D=m.dilationWidth,T=m.strideHeight,O=m.strideWidth,U=m.inChannels,K=m.padInfo.type==="SAME"?1:0,z=m.batchSize,Z=m.inHeight,W=m.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ee=s.makeOutput(m.outShape,"float32"),Q=s.dataIdMap.get(ee.dataId).id,ae=i==null?0:s.dataIdMap.get(i.dataId).id;return f8(y,z,Z,W,x,w,S,b,I,E,R,P,K,_,D,T,O,U,A,g,ae,f||0,Q),ee}var oge={kernelName:_a,backendName:"wasm",setupFunc:rge,kernelFunc:age},m8;function ige(e){m8=e.wasm.cwrap(Hi,null,["number","number","number","number","number","number","array","number"])}function lge(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=h1.prepareAndValidate(s,r),u=t.makeOutput(a,s.dtype);if(o===0)return u;let c=r.shape,p=c[c.length-1],h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),y=t.dataIdMap.get(u.dataId).id;return m8(h,Vt[s.dtype],m,o,p,i,g,y),u}var uge={kernelName:Hi,backendName:"wasm",setupFunc:ige,kernelFunc:lge},g8;function cge(e){g8=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function dge(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],u=t.readSync(a.dataId),c=r.shape[l];for(let R=0;R<u.length;++R){let P=u[R];v.assert(P<=c-1&&P>=0,()=>`GatherV2: the index value ${P} is not in [0, ${c-1}]`)}let p=C.segment_util.collectGatherOpShapeInfo(r,a,l,i),d=Qn({inputs:{x:r},attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]},backend:t}),h=v.sizeFromShape(a.shape),f=Qn({inputs:{x:a},attrs:{shape:[p.batchSize,h/p.batchSize]},backend:t}),m=[p.batchSize,p.outerSize,h/p.batchSize,p.sliceSize],g=t.makeOutput(m,r.dtype);if(v.sizeFromShape(r.shape)===0)return g;let y=d.shape.length-1,A=t.dataIdMap.get(d.dataId).id,w=t.dataIdMap.get(f.dataId).id,S=t.dataIdMap.get(g.dataId).id,I=new Uint8Array(new Int32Array(v.computeStrides(d.shape)).buffer),E=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer);return g8(A,Vt[r.dtype],I,y,w,p.batchSize,E,S),t.disposeData(d.dataId),t.disposeData(f.dataId),g.shape=p.outputShape,g}var pge={kernelName:Gi,backendName:"wasm",setupFunc:cge,kernelFunc:dge},hge=!1,fge=Xn(ji,hge,"bool"),mge=!1,gge=Xn(lo,mge,"bool"),y8;function yge(e){y8=e.wasm.cwrap(co,null,["number","number","number","number"])}function Age(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;y8(r,Vt[t.dtype],n,o)}return a}var xge={kernelName:co,backendName:"wasm",setupFunc:yge,kernelFunc:Age},bge=!1,vge=Xn(qi,bge,"bool"),wge=!1,kge=Xn(Xi,wge,"bool"),Sge=vn(po),Ige=!1,Cge=Xn(Ki,Ige,"bool"),A8;function Tge(e){A8=e.wasm.cwrap(ho,null,["number","number","number","number"])}function Nge(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Uo(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;u=c,l=A}let f=u.shape.length;C.assertAxesAreInnerMostDims("max",p,f);let[m,g]=C.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;A8(l,Vt[o.dtype],y,A)}if(h&&t.disposeData(c.dataId),a){let A=C.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Ege={kernelName:ho,backendName:"wasm",setupFunc:Tge,kernelFunc:Nge},Rge=!1,_ge=Xn(fo,Rge),x8;function $ge(e){x8=e.wasm.cwrap(mo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Dge(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id;v.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=C.computePool2DInfo(r.shape,o,i,1,l,u),p=c.filterHeight,d=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,y=c.dilationHeight,x=c.dilationWidth,A=c.strideHeight,b=c.strideWidth,w=c.inChannels,S=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let I=s.makeOutput(c.outShape,"float32"),E=s.dataIdMap.get(I.dataId).id;return x8(a,r.shape[0],r.shape[1],r.shape[2],p,d,h,f,m,g,y,x,A,b,w,S,E),I}var Pge={kernelName:mo,backendName:"wasm",setupFunc:$ge,kernelFunc:Dge},b8;function Fge(e){b8=e.wasm.cwrap(go,null,["number, number, number"])}function Oge(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Uo(o,r,t),f=p;if(h){let b=t.dataIdMap.get(c.dataId).id;b!==i&&(u=c,l=b,f=C.getInnerMostAxes(f.length,u.shape.length))}C.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,g]=C.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),x=u;u.dtype!=="float32"&&(x=Mp({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(x.dataId).id);let A=t.makeOutput(m,"float32");if(v.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(A.dataId).id;b8(l,y,b)}if(h&&t.disposeData(c.dataId),a){let b=C.expandShapeToKeepDim(A.shape,d);A.shape=b}return u.dtype!=="float32"&&t.disposeData(x.dataId),A}var Mge={kernelName:go,backendName:"wasm",setupFunc:Fge,kernelFunc:Oge},v8;function zge(e){v8=e.wasm.cwrap(yo,null,["number","number","number","number"])}function Lge(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Uo(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;A!==i&&(u=c,l=A)}let f=u.shape.length;C.assertAxesAreInnerMostDims("min",p,f);let[m,g]=C.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;v8(l,Vt[o.dtype],y,A)}if(h&&t.disposeData(c.dataId),a){let A=C.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Bge={kernelName:yo,backendName:"wasm",setupFunc:zge,kernelFunc:Lge},Wge=!1,Vge=Xn(Ao,Wge),w8=(e=>(e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric",e))(w8||{}),k8;function Uge(e){k8=e.wasm.cwrap(xo,null,["number","array","number","number","array","array","number","number"])}function Gge(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=s.map(f=>f[0]),p=s.map(f=>f[1]),d=new Uint8Array(new Int32Array(c).buffer),h=new Uint8Array(new Int32Array(p).buffer);return k8(o,u,t.shape.length,Vt[t.dtype],d,h,w8[r],l),i}var Hge={kernelName:xo,backendName:"wasm",kernelFunc:Gge,setupFunc:Uge},jge=!0,qge=Xn(bo,jge),Xge=vn(Zi);function Ab(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var S8;function Kge(e){S8=e.wasm.cwrap(Ji,"number",["number","number","number","number","number"])}function Zge(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,u=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(l.dataId).id,p=S8(u,c,a,r,o),{pSelectedIndices:d,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=Ab(t,p);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",d)}var Yge={kernelName:Ji,backendName:"wasm",setupFunc:Kge,kernelFunc:Zge},I8;function Jge(e){I8=e.wasm.cwrap(Xu,"number",["number","number","number","number","number","bool"])}function Qge(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,d=I8(c,p,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Ab(t,d);t.wasm._free(m);let y=t.makeOutput([f],"int32",h),x=t.makeOutput([],"int32",g);return[y,x]}var e2e={kernelName:Xu,backendName:"wasm",setupFunc:Jge,kernelFunc:Qge},C8;function t2e(e){C8=e.wasm.cwrap(Qi,"number",["number","number","number","number","number","number"])}function n2e(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,d=C8(c,p,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Ab(t,d);t.wasm._free(g);let y=t.makeOutput([f],"int32",h),x=t.makeOutput([f],"float32",m);return[y,x]}var s2e={kernelName:Qi,backendName:"wasm",setupFunc:t2e,kernelFunc:n2e},r2e=!1,a2e=Xn(Yi,r2e,"bool"),T8;function o2e(e){T8=e.wasm.cwrap(tl,null,["number","number","number","number","number"])}function i2e(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=n.makeOutput([...r.shape,a],"int32"),u=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(r.dataId).id;return T8(p,a,o,i,u),l}var l2e={kernelName:tl,backendName:"wasm",setupFunc:o2e,kernelFunc:i2e};function u2e(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var c2e={kernelName:el,backendName:"wasm",kernelFunc:u2e};function d2e(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Yy({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=Yy({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=t8({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeData(c.dataId)),u}var p2e={kernelName:nl,backendName:"wasm",kernelFunc:d2e},N8;function h2e(e){N8=e.wasm.cwrap(vo,null,["number","array","number","number","array","array","number","number"])}function f2e(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,g)=>m[0]+t.shape[g]+m[1]);if(v.sizeFromShape(t.shape)===0)return c8({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),p=s.map(m=>m[0]),d=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(p).buffer),f=new Uint8Array(new Int32Array(d).buffer);return N8(o,c,t.shape.length,Vt[t.dtype],h,f,r,u),i}var E8={kernelName:vo,backendName:"wasm",kernelFunc:f2e,setupFunc:h2e},m2e=!1,g2e=Xn(wo,m2e),R8;function y2e(e){R8=e.wasm.cwrap(ko,null,["number","number","number"])}function A2e(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=a,l=s,u=l;l.dtype!=="float32"&&(u=Mp({backend:n,inputs:{x:s},attrs:{dtype:"float32"}}),i=n.dataIdMap.get(u.dataId).id);let c=n.makeOutput(s.shape,"float32"),p=n.dataIdMap.get(c.dataId).id;return R8(i,o,p),l.dtype!=="float32"&&n.disposeData(u.dataId),c}var x2e={kernelName:ko,backendName:"wasm",setupFunc:y2e,kernelFunc:A2e},_8;function b2e(e){_8=e.wasm.cwrap(sl,null,["number","number","number","number"])}function v2e(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Uo(o,r,t),f=p;if(h){let A=t.dataIdMap.get(c.dataId).id;A!==i&&(u=c,l=A,f=C.getInnerMostAxes(f.length,u.shape.length))}C.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,g]=C.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),x=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;_8(l,y,Vt[x.dtype],A)}if(h&&t.disposeData(c.dataId),a){let A=C.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var w2e={kernelName:sl,backendName:"wasm",setupFunc:b2e,kernelFunc:v2e},k2e=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=Gx(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},S2e={kernelName:Ku,backendName:"wasm",kernelFunc:k2e},I2e=!0,C2e=Xn(no,I2e),T2e=vn(So),N2e=vn(Co),$8;function E2e(e){$8=e.wasm.cwrap(Io,null,["number","number","number","number","number","number","number","number","number","number"])}function R2e(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,[c,p,d,h]=r.shape,f=[c,l,u,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=Mp({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let y=m.id,x=t.makeOutput(f,"float32");if(v.sizeFromShape(r.shape)===0)return x;let A=t.dataIdMap.get(x.dataId).id;return $8(y,c,p,d,h,l,u,a?1:0,o?1:0,A),g!=null&&t.disposeData(g.dataId),x}var _2e={kernelName:Io,backendName:"wasm",setupFunc:E2e,kernelFunc:R2e},D8;function $2e(e){D8=e.wasm.cwrap(al,null,["number","array","number","array","number","number"])}function D2e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=v.parseAxisParam(a,r.shape);if(r.shape.length===0)return g0({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(o).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);D8(l,c,o.length,p,r.shape.length,u);let d=Qn({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),d}var P2e={kernelName:al,backendName:"wasm",kernelFunc:D2e,setupFunc:$2e},P8;function F2e(e){P8=e.wasm.cwrap(xl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function O2e(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(l.dataId).id,[p,d,h,f]=r.shape,[m,g]=C.getImageCenter(i,d,h),y=o===0,x=255,A=typeof o=="number"?[o,o,o,y?0:x]:[...o,x],b=new Uint8Array(new Int32Array(A).buffer);return P8(u,p,d,h,f,a,m,g,b,A.length,c),l}var M2e={kernelName:xl,backendName:"wasm",kernelFunc:O2e,setupFunc:F2e},z2e=vn(ol),L2e=vn(To),F8;function B2e(e){F8=e.wasm.cwrap(il,null,["number","number","number","number","number","number","array","number","number"])}function W2e(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(v.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=f1.calculateShapes(a,r,o),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(p).buffer),x=t.dataIdMap.get(i.dataId).id;return F8(f,g,Vt[a.dtype],l,u,c,y,d,x),i}var V2e={kernelName:il,backendName:"wasm",setupFunc:B2e,kernelFunc:W2e},O8;function U2e(e){O8=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function G2e(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,u=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(u.dataId).id,p=s.shape.length,d=r.shape.length,h=p===0||p>1||d===1?1:v.sizeFromShape(r.shape.slice(1));return O8(o,i,l,h,c),u}var H2e={kernelName:ll,backendName:"wasm",kernelFunc:G2e,setupFunc:U2e},M8;function j2e(e){M8=e.wasm.cwrap(Eo,null,["number","number"])}function q2e(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return v.sizeFromShape(r.shape)===0||M8(s,a),r}var X2e={kernelName:"Sigmoid",backendName:"wasm",setupFunc:j2e,kernelFunc:q2e},K2e=vn(No),z8;function Z2e(e){z8=e.wasm.cwrap($o,null,["number","number","number","number"])}function Y2e(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=v.sizeFromShape(n.shape)/i;return v.sizeFromShape(a.shape)===0||z8(r,o,i,l),a}var J2e={kernelName:$o,backendName:"wasm",setupFunc:Z2e,kernelFunc:Y2e};function Q2e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let S=1+a.length;S<r.shape.length;++S)l.push([0,0]);let u=E8.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),c=C.getReshaped(u.shape,a,i,!1),p=C.getPermuted(c.length,a.length,!1),d=C.getReshapedPermuted(u.shape,a,i,!1),m=Qn({inputs:{x:u},backend:n,attrs:{shape:c}}),x=Ua({inputs:{x:m},backend:n,attrs:{perm:p}}),w=Qn({inputs:{x},backend:n,attrs:{shape:d}});return n.disposeData(u.dataId),n.disposeData(m.dataId),n.disposeData(x.dataId),w}var eye={kernelName:dl,backendName:"wasm",kernelFunc:Q2e},L8;function tye(e){L8=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function nye(e){let{backend:t,inputs:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=n,i=s.shape[0],l=s.shape[1],u=t.readSync(a.dataId)[0],c=[i+u,l],p=t.dataIdMap.get(s.dataId).id,d=t.dataIdMap.get(r.dataId).id,h=t.dataIdMap.get(o.dataId).id,f=t.makeOutput(c,s.dtype),m=t.dataIdMap.get(f.dataId).id,g=t.makeOutput(c.slice(0,1),r.dtype),y=t.dataIdMap.get(g.dataId).id,x=t.makeOutput([u],"bool"),A=t.dataIdMap.get(x.dataId).id,b=t.makeOutput([i],s.dtype),w=t.dataIdMap.get(b.dataId).id,S=t.makeOutput([4],"int32"),I=t.dataIdMap.get(S.dataId).id,E=L8(p,d,Vt[r.dtype],i,u,l,h,m,y,A,w,I),R=t.readSync(S.dataId),P;switch(R[0]){case 1:{P=C.getSparseFillEmptyRowsIndicesDenseShapeMismatch(R[1]);break}case 2:{P=C.getSparseFillEmptyRowsNegativeIndexErrorMessage(R[1],R[2]);break}case 3:P=C.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(R[1],R[2],R[3]);break;default:P=""}if(t.disposeData(S.dataId),P)throw t.disposeData(f.dataId),t.disposeData(g.dataId),t.disposeData(x.dataId),t.disposeData(b.dataId),new Error(P);let _=f,D=g;return E!==c[0]&&(_=_i({inputs:{x:f},attrs:{begin:0,size:[E,l]},backend:t}),D=_i({inputs:{x:g},attrs:{begin:0,size:E},backend:t}),t.disposeData(f.dataId),t.disposeData(g.dataId)),[_,D,x,b]}var sye={kernelName:Zd,backendName:"wasm",setupFunc:tye,kernelFunc:nye},B8;function rye(e){B8=e.wasm.cwrap(tc,null,["number","number","number","number","number","number","number"])}function aye(e){let{backend:t,inputs:n}=e,{inputIndices:s,inputShape:r,newShape:a}=n;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=t.dataIdMap.get(s.dataId).id,i=t.dataIdMap.get(r.dataId).id,l=t.dataIdMap.get(a.dataId).id,u=s.shape[0],c=v.sizeFromShape(a.shape),p=t.makeOutput([u,c],s.dtype),d=t.dataIdMap.get(p.dataId).id,h=t.makeOutput([c],a.dtype),f=t.dataIdMap.get(h.dataId).id,m=t.makeOutput([3],"int32"),g=t.dataIdMap.get(m.dataId).id;B8(o,i,l,u,d,f,g);let y=t.readSync(m.dataId),x;switch(y[0]){case 0:{x=C.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(y[1],y[2]);break}case 1:{x=C.getSparseReshapeNegativeOutputDimErrorMessage(y[1],y[2]);break}case 2:x=C.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let A=Array.from(t.readSync(r.dataId)),b=Array.from(t.readSync(h.dataId));x=C.getSparseReshapeInputOutputMultipleErrorMessage(A,b);break}case 4:{let A=Array.from(t.readSync(r.dataId)),b=Array.from(t.readSync(h.dataId));x=C.getSparseReshapeInputOutputMismatchErrorMessage(A,b);break}default:x=""}if(t.disposeData(m.dataId),x)throw t.disposeData(p.dataId),t.disposeData(h.dataId),new Error(x);return[p,h]}var oye={kernelName:tc,backendName:"wasm",setupFunc:rye,kernelFunc:aye},W8;function V8(e){W8=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function U8(e,t){let{backend:n,inputs:s}=e,{data:r,indices:a,segmentIds:o}=s,i=a.shape[0],l=n.readSync(o.dataId,i-1,i)[0],c=i>0?l+1:0;if(c<0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=c;let d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=n.dataIdMap.get(o.dataId).id,m=n.makeOutput(p,r.dtype),g=n.dataIdMap.get(m.dataId).id,y=n.makeOutput([4],"int32"),x=n.dataIdMap.get(y.dataId).id;W8(d,Vt[r.dtype],r.shape[0],h,f,g,x,t,0);let A=n.readSync(y.dataId),b;switch(A[0]){case 0:{b=C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{b=C.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:b=C.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(A[1],A[2]);break;case 3:b=C.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(A[1],A[2],A[3]);break;default:b=""}if(n.disposeData(y.dataId),b)throw n.disposeData(m.dataId),new Error(b);return m}function iye(e){return U8(e,!0)}var lye={kernelName:Yd,backendName:"wasm",setupFunc:V8,kernelFunc:iye};function uye(e){return U8(e,!1)}var cye={kernelName:Jd,backendName:"wasm",setupFunc:V8,kernelFunc:uye};function dye(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=n,i=v.parseAxisParam(o,r.shape)[0],l=C.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(p=>{let d=[...c];d[i]=p;let h=_i({inputs:{x:r},attrs:{begin:u,size:d},backend:s});return u[i]+=p,h})}var pye={kernelName:pl,backendName:"wasm",kernelFunc:dye},hye=vn(Ro),fye=vn(nc),mye=!0,gye=Xn(Do,mye),G8;function yye(e){G8=e.wasm.cwrap(Mo,null,["number","number","number","number"])}function Aye(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return G8(o,r,Vt[a.dtype],l),i}var xye={kernelName:Mo,backendName:"wasm",setupFunc:yye,kernelFunc:Aye},H8;function bye(e){H8=e.wasm.cwrap(hl,null,["number","array","number","array","array","array","array","array","number","number"])}function vye(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Ft.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=Qn({inputs:{x:r},backend:t,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let S=Ft.computeOutShape(x,A,b),I=_i({inputs:{x:r},backend:t,attrs:{begin:x,size:S}});w=Qn({inputs:{x:I},backend:t,attrs:{shape:f}}),t.disposeData(I.dataId)}else{let S=t.makeOutput(h,"float32"),I=t.dataIdMap.get(r.dataId).id,E=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),R=new Uint8Array(new Int32Array(x).buffer),P=new Uint8Array(new Int32Array(A).buffer),_=new Uint8Array(new Int32Array(b).buffer),D=new Uint8Array(new Int32Array(h).buffer),T=new Uint8Array(new Int32Array(v.computeStrides(h)).buffer),O=t.dataIdMap.get(S.dataId).id;H8(I,E,r.shape.length,R,P,_,D,T,h.length,O),w=Qn({inputs:{x:S},backend:t,attrs:{shape:f}}),t.disposeData(S.dataId)}return w}var wye={kernelName:hl,backendName:"wasm",setupFunc:bye,kernelFunc:vye},kye=!0,Sye=Xn(Po,kye),j8;function Iye(e){j8=e.wasm.cwrap(_o,null,["number","number","number","number"])}function Cye(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Uo(o,r,t),f=p;if(h){let A=t.dataIdMap.get(c.dataId).id;A!==i&&(u=c,l=A,f=C.getInnerMostAxes(f.length,u.shape.length))}C.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,g]=C.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),x=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;j8(l,y,Vt[x.dtype],A)}if(h&&t.disposeData(c.dataId),a){let A=C.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Tye={kernelName:_o,backendName:"wasm",setupFunc:Iye,kernelFunc:Cye},Nye=vn(fl),Eye=vn(Fo),q8;function Rye(e){q8=e.wasm.cwrap(Yr,null,["number","array","number","array","number","number"])}function _ye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let d=0;d<i.length;d++)i[d]=r.shape[d]*o[d];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(i).buffer),c=n.makeOutput(i,r.dtype),p=n.dataIdMap.get(c.dataId).id;return q8(a,l,r.shape.length,u,i.length,Vt[c.dtype],p),c}var $ye={kernelName:Yr,backendName:"wasm",setupFunc:Rye,kernelFunc:_ye},X8;function Dye(e){X8=e.wasm.cwrap(ml,null,["number","array","number","number","number","bool","number","number"])}var Pye=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,s.dtype),c=t.dataIdMap.get(u.dataId).id,p=t.makeOutput(l,"int32"),d=t.dataIdMap.get(p.dataId).id;return X8(o,i,s.shape.length,Vt[s.dtype],r,a,c,d),[u,p]},Fye={kernelName:ml,backendName:"wasm",setupFunc:Dye,kernelFunc:Pye},K8;function Oye(e){K8=e.wasm.cwrap(gl,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function Mye(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),x=t.makeOutput(g,r.dtype),A=t.dataIdMap.get(x.dataId).id,w=t.dataIdMap.get(r.dataId).id,I=t.dataIdMap.get(a.dataId).id,E=o==="nearest"?1:2,R;switch(i){case"constant":R=1;break;case"reflect":R=2;break;case"wrap":R=3;break;case"nearest":R=4;break;default:R=1;break}return K8(w,I,a.shape[0]>1,c,f,m,h,d,p,y,r.shape.length-1,E,R,l,A),x}var zye={kernelName:gl,backendName:"wasm",setupFunc:Oye,kernelFunc:Mye};function Lye(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==a&&(l[u++]=r.shape[h]);let c=new Array(o),p=new Array(i).fill(0),d=r.shape.slice();d[a]=1;for(let h=0;h<c.length;h++)p[a]=h,c[h]=_i({inputs:{x:r},attrs:{begin:p,size:d},backend:n});return c.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:l}))}var Bye={kernelName:yl,backendName:"wasm",kernelFunc:Lye};function Wye(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var Vye={kernelName:Al,backendName:"wasm",kernelFunc:Wye},Uye=[_me,$me,Pme,Mme,Hme,Xme,Yme,e0e,r0e,c0e,d0e,p0e,m0e,g0e,x0e,w0e,k0e,S0e,T0e,R0e,D0e,O0e,L0e,B0e,V0e,U0e,G0e,H0e,X0e,K0e,Y0e,ege,sge,oge,uge,pge,fge,gge,zme,xge,vge,kge,Sge,Cge,Ege,_ge,Pge,Mge,Bge,Vge,Hge,qge,Xge,Yge,e2e,s2e,a2e,l2e,c2e,p2e,E8,g2e,x2e,w2e,S2e,C2e,T2e,N2e,t0e,_2e,P2e,M2e,z2e,L2e,V2e,H2e,X2e,K2e,l0e,J2e,eye,sye,oye,lye,cye,pye,hye,fye,gye,xye,wye,Sye,Tye,Nye,Eye,$ye,Fye,zye,Vme,Bye,Vye];for(let e of Uye)Us(e);var Jy=J();Jy.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Jy.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Jy.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var rw=$i(tR()),Gye=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
|
|
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`,Hye=$i(nR()),Z8=class extends Tu{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(Y8),Qy=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new zd(this,yn())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let u=t;this.dataIdMap.set(e,{id:a,stringBytes:u,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=v.sizeFromShape(n),i=o*v.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:s,dtype:r,shape:a,stringBytes:o}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=o.length)?o:o.slice(t,n);t=t||0,n=n||v.sizeFromShape(a);let i=v.bytesPerElement(r),l=this.wasm.HEAPU8.slice(s+t*i,s+n*i);return Xye(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function jye(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function aw(e,t,n){if($f!=null)return $f;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),wd!=null&&wd[s]!=null?wd[s]:n+s}async function qye(){let[e,t]=await Promise.all([J().getAsync("WASM_HAS_SIMD_SUPPORT"),J().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let u=Gye.replace(/\n/g,"\\n"),c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?aw(e,t,Ad!=null?Ad:l):l+i},xb&&(r.instantiateWasm=jye(aw(e,t,Ad!=null?Ad:"")));let a=!1;r.onAbort=()=>{if(a||kd)return;kd=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&$f==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+rw.default.toString()],{type:"text/javascript"}),o=(0,rw.default)(r)):o=(0,Hye.default)(r),o.then(i=>{a=!0,kd=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),initWithThreadsCount:i.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:i.cwrap("get_threads_count","number",[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})})})}function Xye(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Kye=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],$f=null,Ad=null,wd={},kd=!1,xb=!1;function Zye(e,t=!1){if(v1("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),kd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");$f=e,xb=t}function bb(e,t=!1){if(kd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Ad=e;else{wd=e;let n=Kye.filter(s=>wd[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}xb=t}var Y8=-1,Qy=-1;function Yye(e){Y8=e}function Jye(){if(Qy===-1)throw new Error("WASM backend not initialized.");return Qy}var Qye="0.0.0",e1e=2;vl("wasm",async()=>{let{wasm:e}=await qye();return new Z8(e)},e1e);var xa="3.15.0-20220401",zp={tfjs:xa,"tfjs-core":xa,"tfjs-data":xa,"tfjs-layers":xa,"tfjs-converter":xa,"tfjs-backend-cpu":xa,"tfjs-backend-webgl":xa,"tfjs-backend-wasm":xa};var J8=`
|
|
precision highp float;
|
|
attribute vec2 pos;
|
|
attribute vec2 uv;
|
|
varying vec2 vUv;
|
|
uniform float flipY;
|
|
void main(void) {
|
|
vUv = uv;
|
|
gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);
|
|
}
|
|
`;var Q8=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];
|
|
gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];
|
|
}
|
|
`,eT=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];
|
|
gl_FragColor.a = c.a;
|
|
}
|
|
`,tT=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform vec2 size;
|
|
uniform sampler2D texture;
|
|
vec2 pixelate(vec2 coord, vec2 size) {
|
|
return floor( coord / size ) * size;
|
|
}
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
vec2 coord = pixelate(vUv, size);
|
|
gl_FragColor += texture2D(texture, coord);
|
|
}
|
|
`,nT=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv )*0.159576912161;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;
|
|
}
|
|
`,sT=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
uniform float m[9];
|
|
void main(void) {
|
|
vec4 c11 = texture2D(texture, vUv - px); // top left
|
|
vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center
|
|
vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right
|
|
vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left
|
|
vec4 c22 = texture2D(texture, vUv); // mid center
|
|
vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right
|
|
vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left
|
|
vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center
|
|
vec4 c33 = texture2D(texture, vUv + px ); // bottom right
|
|
gl_FragColor =
|
|
c11 * m[0] + c12 * m[1] + c22 * m[2] +
|
|
c21 * m[3] + c22 * m[4] + c23 * m[5] +
|
|
c31 * m[6] + c32 * m[7] + c33 * m[8];
|
|
gl_FragColor.a = c22.a;
|
|
}
|
|
`;var vb=(e,t,n)=>{let s=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(s,(r,a)=>(n[a]=0,r))},rT=class{constructor(t,n,s){fe(this,"uniform",{});fe(this,"attribute",{});fe(this,"gl");fe(this,"id");fe(this,"compile",(t,n)=>{let s=this.gl.createShader(n);return s?(this.gl.shaderSource(s,t),this.gl.compileShader(s),this.gl.getShaderParameter(s,this.gl.COMPILE_STATUS)?s:(oe(`filter: gl compile failed: ${this.gl.getShaderInfoLog(s)}`),null)):(oe("filter: could not create shader"),null)});this.gl=t;let r=this.compile(n,this.gl.VERTEX_SHADER),a=this.compile(s,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),!(!r||!a)){if(!this.id){oe("filter: could not create webgl program");return}if(this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,a),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS)){oe(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)}`);return}this.gl.useProgram(this.id),vb(n,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=this.gl.getAttribLocation(this.id,o);vb(n,"uniform",this.uniform),vb(s,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=this.gl.getUniformLocation(this.id,o)}}};function aT(){let e=0,t=null,n=!1,s=-1,r=[null,null],a=[],o=null,i=null,l=Kn(100,100),u={},c={INTERMEDIATE:1},p=l.getContext("webgl");if(this.gl=p,!p){oe("filter: cannot get webgl context");return}function d(x,A){if(!(x===l.width&&A===l.height)){if(l.width=x,l.height=A,!o){let b=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);o=p.createBuffer(),p.bindBuffer(p.ARRAY_BUFFER,o),p.bufferData(p.ARRAY_BUFFER,b,p.STATIC_DRAW),p.pixelStorei(p.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}p.viewport(0,0,l.width,l.height),r=[null,null]}}function h(x,A){let b=p.createFramebuffer();p.bindFramebuffer(p.FRAMEBUFFER,b);let w=p.createRenderbuffer();p.bindRenderbuffer(p.RENDERBUFFER,w);let S=p.createTexture();return p.bindTexture(p.TEXTURE_2D,S),p.texImage2D(p.TEXTURE_2D,0,p.RGBA,x,A,0,p.RGBA,p.UNSIGNED_BYTE,null),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MAG_FILTER,p.LINEAR),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MIN_FILTER,p.LINEAR),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_S,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_T,p.CLAMP_TO_EDGE),p.framebufferTexture2D(p.FRAMEBUFFER,p.COLOR_ATTACHMENT0,p.TEXTURE_2D,S,0),p.bindTexture(p.TEXTURE_2D,null),p.bindFramebuffer(p.FRAMEBUFFER,null),{fbo:b,texture:S}}function f(x){return r[x]=r[x]||h(l.width,l.height),r[x]}function m(x=0){if(!i)return;let A=null,b=null,w=!1;e===0?A=t:A=f(s).texture||null,e++,n&&!(x&c.INTERMEDIATE)?(b=null,w=e%2===0):(s=(s+1)%2,b=f(s).fbo||null),p.bindTexture(p.TEXTURE_2D,A),p.bindFramebuffer(p.FRAMEBUFFER,b),p.uniform1f(i.uniform.flipY,w?-1:1),p.drawArrays(p.TRIANGLES,0,6)}function g(x){if(u[x])return i=u[x],p.useProgram((i?i.id:null)||null),i;if(i=new rT(p,J8,x),!i)return oe("filter: could not get webgl program"),null;let A=Float32Array.BYTES_PER_ELEMENT,b=4*A;return p.enableVertexAttribArray(i.attribute.pos),p.vertexAttribPointer(i.attribute.pos,2,p.FLOAT,!1,b,0*A),p.enableVertexAttribArray(i.attribute.uv),p.vertexAttribPointer(i.attribute.uv,2,p.FLOAT,!1,b,2*A),u[x]=i,i}let y={colorMatrix:x=>{let A=new Float32Array(x);A[4]/=255,A[9]/=255,A[14]/=255,A[19]/=255;let b=A[18]===1&&A[3]===0&&A[8]===0&&A[13]===0&&A[15]===0&&A[16]===0&&A[17]===0&&A[19]===0?eT:Q8,w=g(b);!w||(p.uniform1fv(w.uniform.m,A),m())},brightness:x=>{let A=(x||0)+1;y.colorMatrix([A,0,0,0,0,0,A,0,0,0,0,0,A,0,0,0,0,0,1,0])},saturation:x=>{let A=(x||0)*2/3+1,b=(A-1)*-.5;y.colorMatrix([A,b,b,0,0,b,A,b,0,0,b,b,A,0,0,0,0,0,1,0])},desaturate:()=>{y.saturation(-1)},contrast:x=>{let A=(x||0)+1,b=-128*(A-1);y.colorMatrix([A,0,0,0,b,0,A,0,0,b,0,0,A,0,b,0,0,0,1,0])},negative:()=>{y.contrast(-2)},hue:x=>{x=(x||0)/180*Math.PI;let A=Math.cos(x),b=Math.sin(x),w=.213,S=.715,I=.072;y.colorMatrix([w+A*(1-w)+b*-w,S+A*-S+b*-S,I+A*-I+b*(1-I),0,0,w+A*-w+b*.143,S+A*(1-S)+b*.14,I+A*-I+b*-.283,0,0,w+A*-w+b*-(1-w),S+A*-S+b*S,I+A*(1-I)+b*I,0,0,0,0,0,1,0])},desaturateLuminance:()=>{y.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{y.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{y.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{y.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{y.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{y.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{y.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{y.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:x=>{let A=new Float32Array(x),b=1/l.width,w=1/l.height,S=g(sT);!S||(p.uniform1fv(S.uniform.m,A),p.uniform2f(S.uniform.px,b,w),m())},detectEdges:()=>{y.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{y.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{y.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:x=>{let A=x||1;y.convolution.call(this,[0,-1*A,0,-1*A,1+4*A,-1*A,0,-1*A,0])},emboss:x=>{let A=x||1;y.convolution.call(this,[-2*A,-1*A,0,-1*A,1,1*A,0,1*A,2*A])},blur:x=>{let A=x/7/l.width,b=x/7/l.height,w=g(nT);!w||(p.uniform2f(w.uniform.px,0,b),m(c.INTERMEDIATE),p.uniform2f(w.uniform.px,A,0),m())},pixelate:x=>{let A=x/l.width,b=x/l.height,w=g(tT);!w||(p.uniform2f(w.uniform.size,A,b),m())}};this.add=function(x){let A=Array.prototype.slice.call(arguments,1),b=y[x];a.push({func:b,args:A})},this.reset=function(){a=[]},this.get=function(){return a},this.apply=function(x){d(x.width,x.height),e=0,t||(t=p.createTexture()),p.bindTexture(p.TEXTURE_2D,t),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_S,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_T,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MIN_FILTER,p.NEAREST),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MAG_FILTER,p.NEAREST),p.texImage2D(p.TEXTURE_2D,0,p.RGBA,p.RGBA,p.UNSIGNED_BYTE,x);for(let A=0;A<a.length;A++){n=A===a.length-1;let b=a[A];b.func.apply(this,b.args||[])}return l},this.draw=function(x){return this.add("brightness",0),this.apply(x)}}async function y0(e){let t=e.shape.length===4?Qe(e):e,n=Kt(t,3,2),s=[Fa(n[0]),Fa(n[1]),Fa(n[2])],r=[hn(n[0]),hn(n[1]),hn(n[2])],a=await Promise.all(r.map(h=>h.data())),o=.99*Math.max(a[0][0],a[1][0],a[2][0]),i=[pe(n[0],s[0]),pe(n[1],s[1]),pe(n[2],s[2])],l=[pe(r[0],s[0]),pe(r[1],s[1]),pe(r[2],s[2])],u=[de(o,l[0]),de(o,l[1]),de(o,l[2])],c=[L(i[0],u[0]),L(i[1],u[1]),L(i[2],u[2])],p=an([c[0],c[1],c[2]],2),d=H(p,[1,t.shape[0],t.shape[1],3]);return ne([...n,...s,...r,...i,...l,...u,...c,p,t]),d}var A0=2048,ct=null,ln=null,Cc=null,Tt,ra={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function Kn(e,t){let n;if(he.browser)if(he.worker){if(typeof OffscreenCanvas=="undefined")throw new Error("canvas error: attempted to run in web worker but OffscreenCanvas is not supported");n=new OffscreenCanvas(e,t)}else{if(typeof document=="undefined")throw new Error("canvas error: attempted to run in browser but DOM is not defined");n=document.createElement("canvas"),n.width=e,n.height=t}else typeof he.Canvas!="undefined"?n=new he.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(n=new globalThis.Canvas(e,t));return n}function wb(e,t){let n=t||Kn(e.width,e.height);return n.getContext("2d").drawImage(e,0,0),n}async function Tc(e,t,n=!0){if(!e)return t.debug&&oe("input error: input is missing"),{tensor:null,canvas:null};if(!(e instanceof nt)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof he.Canvas!="undefined"&&e instanceof he.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input error: type is not recognized");if(e instanceof nt){let s=null;if(e.isDisposedInternal)throw new Error("input error: attempted to use tensor but it is disposed");if(!e.shape)throw new Error("input error: attempted to use tensor without a shape");if(e.shape.length===3){if(e.shape[2]===3)s=qt(e,0);else if(e.shape[2]===4){let r=Sl(e,[0,0,0],[-1,-1,3]);s=qt(r,0),ne(r)}}else e.shape.length===4&&(e.shape[3]===3?s=Vn(e):e.shape[3]===4&&(s=Ii(e,[0,0,0,0],[-1,-1,-1,3])));if(s==null||s.shape.length!==4||s.shape[0]!==1||s.shape[3]!==3)throw new Error(`input error: attempted to use tensor with unrecognized shape: ${e.shape}`);if(s.dtype==="int32"){let r=ge(s,"float32");ne(s),s=r}return{tensor:s,canvas:t.filter.return?ln:null}}else{if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&oe("input stream is not ready"),{tensor:null,canvas:ct};let s=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!s||!r)return t.debug&&oe("cannot determine input dimensions"),{tensor:null,canvas:ct};let a=s,o=r;if(a>A0&&(a=A0,o=Math.trunc(a*r/s)),o>A0&&(o=A0,a=Math.trunc(o*s/r)),(t.filter.width||0)>0?a=t.filter.width:(t.filter.height||0)>0&&(a=s*((t.filter.height||0)/r)),(t.filter.height||0)>0?o=t.filter.height:(t.filter.width||0)>0&&(o=r*((t.filter.width||0)/s)),!a||!o)throw new Error("input error: cannot determine dimension");(!ct||(ct==null?void 0:ct.width)!==a||(ct==null?void 0:ct.height)!==o)&&(ct=Kn(a,o));let i=ct.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?i.putImageData(e,0,0):t.filter.flip&&typeof i.translate!="undefined"?(i.translate(s,0),i.scale(-1,1),i.drawImage(e,0,0,s,r,0,0,ct==null?void 0:ct.width,ct==null?void 0:ct.height),i.setTransform(1,0,0,1,0,0)):i.drawImage(e,0,0,s,r,0,0,ct==null?void 0:ct.width,ct==null?void 0:ct.height),(!ln||ct.width!==ln.width||(ct==null?void 0:ct.height)!==(ln==null?void 0:ln.height))&&(ln=Kn(ct.width,ct.height)),t.filter.enabled&&he.webgl.supported){if(Tt||(Tt=he.browser?new aT:null),he.filter=!!Tt,!Tt||!Tt.add)return t.debug&&oe("input process error: cannot initialize filters"),{tensor:null,canvas:ct};Tt.reset(),t.filter.brightness!==0&&Tt.add("brightness",t.filter.brightness),t.filter.contrast!==0&&Tt.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&Tt.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&Tt.add("blur",t.filter.blur),t.filter.saturation!==0&&Tt.add("saturation",t.filter.saturation),t.filter.hue!==0&&Tt.add("hue",t.filter.hue),t.filter.negative&&Tt.add("negative"),t.filter.sepia&&Tt.add("sepia"),t.filter.vintage&&Tt.add("brownie"),t.filter.sepia&&Tt.add("sepia"),t.filter.kodachrome&&Tt.add("kodachrome"),t.filter.technicolor&&Tt.add("technicolor"),t.filter.polaroid&&Tt.add("polaroid"),t.filter.pixelate!==0&&Tt.add("pixelate",t.filter.pixelate),Tt.get()>0?ln=Tt.apply(ct):ln=Tt.draw(ct)}else wb(ct,ln),Tt&&(Tt=null),he.filter=!!Tt;if(!n)return{tensor:null,canvas:ln};if(!ln)throw new Error("canvas error: cannot create output");let l,u=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(he.browser&&Ps)l=Ps?Ps.fromPixels(e):null;else{u=e.data.length/e.height/e.width;let d=new Uint8Array(e.data.buffer);l=pt(d,[e.height,e.width,u],"int32")}else if((!Cc||ln.width!==Cc.width||ln.height!==Cc.height)&&(Cc=Kn(ln.width,ln.height)),Ps&&he.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=Ps.fromPixels(ln):(Cc=wb(ln),l=Ps.fromPixels(Cc));else{let f=wb(ln).getContext("2d").getImageData(0,0,a,o);u=f.data.length/a/o;let m=new Uint8Array(f.data.buffer);l=pt(m,[a,o,u])}if(u===4){let d=Sl(l,[0,0,0],[-1,-1,3]);ne(l),l=d}if(!l)throw new Error("input error: cannot create tensor");let c=ge(l,"float32"),p=t.filter.equalization?await y0(c):qt(c,0);return ne([l,c]),{tensor:p,canvas:t.filter.return?ln:null}}}async function oT(e,t){let n=!1;if(e.cacheSensitivity===0||!t.shape||t.shape.length!==4||t.shape[1]>2048||t.shape[2]>2048)return n;if(!ra.inputTensor)ra.inputTensor=Vn(t);else if(ra.inputTensor.shape[1]!==t.shape[1]||ra.inputTensor.shape[2]!==t.shape[2])ne(ra.inputTensor),ra.inputTensor=Vn(t);else{let s={};s.diff=pe(t,ra.inputTensor),s.squared=L(s.diff,s.diff),s.sum=ke(s.squared);let a=(await s.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;ne([ra.inputTensor,s.diff,s.squared,s.sum]),ra.inputTensor=Vn(t),n=a<=(e.cacheSensitivity||0)}return n}async function iT(e,t,n){let s={};if(!t||!n||t.shape.length!==4||t.shape.length!==n.shape.length)return e.debug||oe("invalid input tensor or tensor shapes do not match:",t.shape,n.shape),0;if(t.shape[0]!==1||n.shape[0]!==1||t.shape[3]!==3||n.shape[3]!==3)return e.debug||oe("input tensors must be of shape [1, height, width, 3]:",t.shape,n.shape),0;s.input1=Vn(t),s.input2=t.shape[1]!==n.shape[1]||t.shape[2]!==n.shape[2]?Se.resizeBilinear(n,[t.shape[1],t.shape[2]]):Vn(n),s.diff=pe(s.input1,s.input2),s.squared=L(s.diff,s.diff),s.sum=ke(s.squared);let a=(await s.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return ne([s.input1,s.input2,s.diff,s.squared,s.sum]),a}var lT=class{constructor(){fe(this,"browser");fe(this,"node");fe(this,"worker");fe(this,"platform","");fe(this,"agent","");fe(this,"backends",[]);fe(this,"initial");fe(this,"filter");fe(this,"tfjs");fe(this,"offscreen");fe(this,"perfadd",!1);fe(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});fe(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});fe(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});fe(this,"cpu",{model:void 0,flags:[]});fe(this,"kernels",[]);fe(this,"Canvas");fe(this,"Image");fe(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined",this.tfjs={version:zp["tfjs-core"]},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t&&t[0]){let n=t[0].match(/\(([^()]+)\)/g);this.platform=n&&n[0]?n[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(yn().registryFactory),this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&rs()==="wasm"&&(this.wasm.simd=await J().getAsync("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=await J().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"));let t=Kn(100,100),n=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof n!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(rs()==="webgl"||rs()==="humangl")){let s=Gs().gpgpu!=="undefined"?await Gs().getGPGPUContext().gl:null;s&&(this.webgl.version=s.getParameter(s.VERSION),this.webgl.renderer=s.getParameter(s.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu");try{this.webgpu.supported&&(this.webgpu.adapter=(await navigator.gpu.requestAdapter()).name)}catch(s){this.webgpu.supported=!1}try{this.kernels=Nr(rs()).map(s=>s.kernelName.toLowerCase())}catch(s){}}async updateCPU(){let t={model:"",flags:[]};this.node&&this.platform.startsWith("linux"),this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},he=new lT;var aa={cacheModels:!1,verbose:!0,debug:!1,modelBasePath:""};async function r1e(e,t){return aa.debug&&oe("load model fetch:",e,t),fetch(e,t)}function uT(e){aa.cacheModels=e.cacheModels,aa.verbose=e.debug,aa.modelBasePath=e.modelBasePath}async function He(e){let t=v3(aa.modelBasePath,e||""),n=t.split("/"),s="indexeddb://"+n[n.length-1].replace(".json",""),r=await In.listModels(),a=aa.cacheModels&&Object.keys(r).includes(s),o=typeof fetch=="undefined"?{}:{fetchFunc:(l,u)=>r1e(l,u)},i=new r0(a?s:t,o);try{i.findIOHandler(),aa.debug&&oe("model load handler:",i.handler);let l=await i.handler.load();i.loadSync(l),aa.verbose&&oe("load model:",i.modelUrl)}catch(l){oe("error loading model:",t,l)}if(aa.cacheModels&&!a)try{let l=await i.save(s);oe("model saved:",s,l)}catch(l){oe("error saving model:",t,l)}return i}var kb="2.6.4";var Y0={};ya(Y0,{Models:()=>K0,load:()=>L5,reset:()=>Z0,validate:()=>B5});var Ks,Sb=[],i1e=["white","black","asian","indian","other"],l1e=[15,23,28,35.5,45.5,55.5,65],cT=0,dT=0,Ib=Number.MAX_SAFE_INTEGER;async function pT(e){return he.initial&&(Ks=null),Ks?e.debug&&oe("cached model:",Ks.modelUrl):Ks=await He(e.face.gear),Ks}async function Cb(e,t,n,s){var o,i;if(!Ks)return{age:0,gender:"unknown",genderScore:0,race:[]};let r=Ib<(((o=t.face.gear)==null?void 0:o.skipFrames)||0),a=(((i=t.face.gear)==null?void 0:i.skipTime)||0)>le()-dT;return t.skipAllowed&&a&&r&&cT===s&&Sb[n]?(Ib++,Sb[n]):(Ib=0,new Promise(async l=>{var y,x;if(!(Ks!=null&&Ks.inputs[0].shape))return;let u={},c=[[0,.1,.9,.9]];u.resize=Se.cropAndResize(e,c,[0],[Ks.inputs[0].shape[2],Ks.inputs[0].shape[1]]);let p={age:0,gender:"unknown",genderScore:0,race:[]};(y=t.face.gear)!=null&&y.enabled&&([u.age,u.gender,u.race]=Ks.execute(u.resize,["age_output","gender_output","race_output"]));let d=await u.gender.data();p.gender=d[0]>d[1]?"male":"female",p.genderScore=Math.round(100*(d[0]>d[1]?d[0]:d[1]))/100;let h=await u.race.data();for(let A=0;A<h.length;A++)h[A]>(((x=t.face.gear)==null?void 0:x.minConfidence)||.2)&&p.race.push({score:Math.round(100*h[A])/100,race:i1e[A]});p.race.sort((A,b)=>b.score-A.score);let m=Array.from(await u.age.data()).map((A,b)=>[l1e[b],A]).sort((A,b)=>b[1]-A[1]),g=m[0][0];for(let A=1;A<m.length;A++)g+=m[A][1]*(m[A][0]-g);p.age=Math.round(10*g)/10,Object.keys(u).forEach(A=>ne(u[A])),Sb[n]=p,cT=s,dT=le(),l(p)}))}var Je={tf255:255,tf1:1,tf2:2,tf05:.5,tf127:127.5,rgb:[.2989,.587,.114]};function fT(){Je.tf255=Ie(255,"float32"),Je.tf1=Ie(1,"float32"),Je.tf2=Ie(2,"float32"),Je.tf05=Ie(.5,"float32"),Je.tf127=Ie(127.5,"float32"),Je.rgb=It([.2989,.587,.114],"float32")}var ys,x0=[],mT=0,gT=0,Tb=Number.MAX_SAFE_INTEGER;async function yT(e){return he.initial&&(ys=null),ys?e.debug&&oe("cached model:",ys.modelUrl):ys=await He(e.face.ssrnet.modelPathAge),ys}async function Nb(e,t,n,s){var o,i,l,u;if(!ys)return{age:0};let r=Tb<(((o=t.face.ssrnet)==null?void 0:o.skipFrames)||0),a=(((i=t.face.ssrnet)==null?void 0:i.skipTime)||0)>le()-gT;return t.skipAllowed&&r&&a&&mT===s&&((l=x0[n])==null?void 0:l.age)&&((u=x0[n])==null?void 0:u.age)>0?(Tb++,x0[n]):(Tb=0,new Promise(async c=>{if(!(ys!=null&&ys.inputs)||!ys.inputs[0]||!ys.inputs[0].shape)return;let p={};p.resize=Se.resizeBilinear(e,[ys.inputs[0].shape[2],ys.inputs[0].shape[1]],!1),p.enhance=L(p.resize,Je.tf255);let d={age:0};if(t.face.ssrnet.enabled&&(p.age=ys.execute(p.enhance)),p.age){let h=await p.age.data();d.age=Math.trunc(10*h[0])/10}Object.keys(p).forEach(h=>ne(p[h])),x0[n]=d,mT=s,gT=le(),c(d)}))}var Zs,b0=[],xT=0,bT=0,Eb=Number.MAX_SAFE_INTEGER,Rb=[.2989,.587,.114];async function vT(e){return he.initial&&(Zs=null),Zs?e.debug&&oe("cached model:",Zs.modelUrl):Zs=await He(e.face.ssrnet.modelPathGender),Zs}async function _b(e,t,n,s){var o,i,l,u;if(!Zs)return{gender:"unknown",genderScore:0};let r=Eb<(((o=t.face.ssrnet)==null?void 0:o.skipFrames)||0),a=(((i=t.face.ssrnet)==null?void 0:i.skipTime)||0)>le()-bT;return t.skipAllowed&&r&&a&&xT===s&&((l=b0[n])==null?void 0:l.gender)&&((u=b0[n])==null?void 0:u.genderScore)>0?(Eb++,b0[n]):(Eb=0,new Promise(async c=>{if(!(Zs!=null&&Zs.inputs[0].shape))return;let p={};p.resize=Se.resizeBilinear(e,[Zs.inputs[0].shape[2],Zs.inputs[0].shape[1]],!1),p.enhance=X(()=>{let[f,m,g]=Kt(p.resize,3,3),y=L(f,Rb[0]),x=L(m,Rb[1]),A=L(g,Rb[2]),b=um([y,x,A]);return L(pe(b,Je.tf05),2)});let d={gender:"unknown",genderScore:0};t.face.ssrnet.enabled&&(p.gender=Zs.execute(p.enhance));let h=await p.gender.data();d.gender=h[0]>h[1]?"female":"male",d.genderScore=h[0]>h[1]?Math.trunc(100*h[0])/100:Math.trunc(100*h[1])/100,Object.keys(p).forEach(f=>ne(p[f])),b0[n]=d,xT=s,bT=le(),c(d)}))}var En,v0=[],$b=Number.MAX_SAFE_INTEGER,kT=0,ST=0;async function IT(e){var t;return he.initial&&(En=null),En?e.debug&&oe("cached model:",En.modelUrl):En=await He((t=e.face.antispoof)==null?void 0:t.modelPath),En}async function Db(e,t,n,s){var o,i;if(!En)return 0;let r=(((o=t.face.antispoof)==null?void 0:o.skipTime)||0)>le()-ST,a=$b<(((i=t.face.antispoof)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&a&&kT===s&&v0[n]?($b++,v0[n]):($b=0,new Promise(async l=>{let u=Se.resizeBilinear(e,[En!=null&&En.inputs[0].shape?En.inputs[0].shape[2]:0,En!=null&&En.inputs[0].shape?En.inputs[0].shape[1]:0],!1),c=En==null?void 0:En.execute(u),p=(await c.data())[0];v0[n]=Math.round(100*p)/100,kT=s,ST=le(),ne([u,c]),l(v0[n])}))}var Ys={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},Pb={count:468,mouth:13,symmetryLine:[13,Ys.midwayBetweenEyes[0]]},Bp={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Fb=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],Wp=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],$l=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var c1e=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],d1e=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],p1e=[33,133,362,263,1,78,308],sxe=c1e.map(e=>Wp[e]),rxe=d1e.map(e=>Wp[e]),axe=p1e.map(e=>Wp[e]);var Nc=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],w0=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2,1],Lb=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],Bb=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],ET=(e,t)=>{let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s,landmarks:e.landmarks,confidence:e.confidence}},Mb=(e,t,n)=>{let s=t.shape[1],r=t.shape[2],a=[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r],o=Se.cropAndResize(t,[a],[0],n),i=de(o,Je.tf255);return ne(o),i},k0=(e,t)=>{let n=w0(e),s=Nc(e),r=[t*s[0]/2,t*s[1]/2];return{startPoint:[n[0]-r[0],n[1]-r[1]],endPoint:[n[0]+r[0],n[1]+r[1]],landmarks:e.landmarks,confidence:e.confidence}},S0=e=>{let t=w0(e),n=Nc(e),s=Math.max(...n)/2;return{startPoint:[Math.round(t[0]-s),Math.round(t[1]-s)],endPoint:[Math.round(t[0]+s),Math.round(t[1]+s)],landmarks:e.landmarks,confidence:e.confidence}},RT=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return{startPoint:[Math.min(...t),Math.min(...n)],endPoint:[Math.max(...t),Math.max(...n)],landmarks:e}},zb=[[1,0,0],[0,1,0],[0,0,1]],h1e=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),f1e=(e,t)=>h1e(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var TT=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],Dl=(e,t)=>{let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n},m1e=(e,t)=>{let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n},NT=(e,t)=>{let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(Dl(e[r],m1e(t,a)))}return n},_T=(e,t)=>{let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=TT(t[0],t[1]),o=NT(a,r),i=TT(-t[0],-t[1]);return NT(o,i)},g1e=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-Dl(t[0],n),-Dl(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]},y1e=(e,t)=>[Dl(e,t[0]),Dl(e,t[1])];function $T(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let s=0;s<t.strides.length;s++){let r=t.strides[s],a=Math.floor((e+r-1)/r),o=Math.floor((e+r-1)/r),i=t.anchors[s];for(let l=0;l<a;l++){let u=r*(l+.5);for(let c=0;c<o;c++){let p=r*(c+.5);for(let d=0;d<i;d++)n.push([p,u])}}}return n}function DT(e,t,n,s,r){let a=Nc(t),o=e.map(h=>[a[0]/r*(h[0]-r/2),a[1]/r*(h[1]-r/2),h[2]||0]),i=n&&n!==0&&Math.abs(n)>.2,l=i?_T(n,[0,0]):zb,u=i?o.map(h=>[...y1e(h,l),h[2]]):o,c=i?g1e(s):zb,p=w0(t),d=[Dl(p,c[0]),Dl(p,c[1])];return u.map(h=>[Math.trunc(h[0]+d[0]),Math.trunc(h[1]+d[1]),Math.trunc(h[2]||0)])}function PT(e,t,n,s){let r=t.landmarks.length>=Pb.count?Pb.symmetryLine:Bp.symmetryLine,a=0,o=zb,i;if(e&&he.kernels.includes("rotatewithoffset"))if(a=f1e(t.landmarks[r[0]],t.landmarks[r[1]]),a&&a!==0&&Math.abs(a)>.2){let u=w0(t),c=[u[0]/n.shape[2],u[1]/n.shape[1]],p=Se.rotateWithOffset(n,a,0,c);o=_T(-a,u),i=Mb(t,p,[s,s]),ne(p)}else i=Mb(t,n,[s,s]);else i=Mb(t,n,[s,s]);return[a,o,i]}var A1e=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return[Math.min(...t)+(Math.max(...t)-Math.min(...t))/2,Math.min(...n)+(Math.max(...n)-Math.min(...n))/2]},FT=(e,t)=>{let n=A1e(e),s=Nc(t);return{startPoint:[n[0]-s[0]/2,n[1]-s[1]/2],endPoint:[n[0]+s[0]/2,n[1]+s[1]/2]}};var OT=6,x1e=1.2,Fr,MT=null,Go=0,Vp=null,I0=()=>Go;async function zT(e){var t;return he.initial&&(Fr=null),Fr?e.debug&&oe("cached model:",Fr.modelUrl):Fr=await He((t=e.face.detector)==null?void 0:t.modelPath),Go=Fr.inputs[0].shape?Fr.inputs[0].shape[2]:0,Vp=Ie(Go,"int32"),MT=ur($T(Go)),Fr}function b1e(e){let t={};t.boxStarts=Pe(e,[0,1],[-1,2]),t.centers=ue(t.boxStarts,MT),t.boxSizes=Pe(e,[0,3],[-1,2]),t.boxSizesNormalized=de(t.boxSizes,Vp),t.centersNormalized=de(t.centers,Vp),t.halfBoxSize=de(t.boxSizesNormalized,Je.tf2),t.starts=pe(t.centersNormalized,t.halfBoxSize),t.ends=ue(t.centersNormalized,t.halfBoxSize),t.startNormalized=L(t.starts,Vp),t.endNormalized=L(t.ends,Vp);let n=rc([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(s=>ne(t[s])),n}async function LT(e,t){var i,l,u,c;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return[];let n={};n.resized=Se.resizeBilinear(e,[Go,Go]),n.div=de(n.resized,Je.tf127),n.normalized=pe(n.div,Je.tf05);let s=Fr==null?void 0:Fr.execute(n.normalized);if(Array.isArray(s)){let p=s.sort((d,h)=>d.size-h.size);n.concat384=kt([p[0],p[2]],2),n.concat512=kt([p[1],p[3]],2),n.concat=kt([n.concat512,n.concat384],1),n.batch=Qe(n.concat,0)}else n.batch=Qe(s);ne(s),n.boxes=b1e(n.batch),n.logits=Pe(n.batch,[0,0],[-1,1]),n.sigmoid=Cn(n.logits),n.scores=Qe(n.sigmoid),n.nms=await Se.nonMaxSuppressionAsync(n.boxes,n.scores,((i=t.face.detector)==null?void 0:i.maxDetected)||0,((l=t.face.detector)==null?void 0:l.iouThreshold)||0,((u=t.face.detector)==null?void 0:u.minConfidence)||0);let r=await n.nms.array(),a=[],o=await n.scores.data();for(let p=0;p<r.length;p++){let d=o[r[p]];if(d>(((c=t.face.detector)==null?void 0:c.minConfidence)||0)){let h={};h.bbox=Pe(n.boxes,[r[p],0],[1,-1]),h.slice=Pe(n.batch,[r[p],OT-1],[1,-1]),h.squeeze=Qe(h.slice),h.landmarks=H(h.squeeze,[OT,-1]);let f=await h.bbox.data(),m={startPoint:[f[0],f[1]],endPoint:[f[2],f[3]],landmarks:await h.landmarks.array(),confidence:d},g=ET(m,[(e.shape[2]||0)/Go,(e.shape[1]||0)/Go]),y=k0(g,t.face.scale||x1e),x=S0(y);a.push(x),Object.keys(h).forEach(A=>ne(h[A]))}}return Object.keys(n).forEach(p=>ne(n[p])),a}var C0={};ya(C0,{connected:()=>Ub,kpt:()=>Vb});var Vb=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPinky","rightPinky","leftIndex","rightIndex","leftThumb","rightThumb","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftPalm","leftHand","rightPalm","rightHand"],Ub={shoulders:["leftShoulder","rightShoulder"],hips:["rightHip","leftHip"],mouth:["leftMouth","rightMouth"],leftLegUpper:["leftHip","leftKnee"],leftLegLower:["leftKnee","leftAnkle"],leftFoot:["leftAnkle","leftHeel","leftFoot"],leftTorso:["leftShoulder","leftHip"],leftArmUpper:["leftShoulder","leftElbow"],leftArmLower:["leftElbow","leftWrist"],leftHand:["leftWrist","leftPalm"],leftHandPinky:["leftPalm","leftPinky"],leftHandIndex:["leftPalm","leftIndex"],leftHandThumb:["leftPalm","leftThumb"],leftEyeOutline:["leftEyeInside","leftEyeOutside"],rightLegUpper:["rightHip","rightKnee"],rightLegLower:["rightKnee","rightAnkle"],rightFoot:["rightAnkle","rightHeel","rightFoot"],rightTorso:["rightShoulder","rightHip"],rightArmUpper:["rightShoulder","rightElbow"],rightArmLower:["rightElbow","rightWrist"],rightHand:["rightWrist","rightPalm"],rightHandPinky:["rightPalm","rightPinky"],rightHandIndex:["rightPalm","rightIndex"],rightHandThumb:["rightPalm","rightThumb"],rightEyeOutline:["rightEyeInside","rightEyeOutside"]};var WT=224,v1e,w1e=5,T0=[8,16,32,32,32];async function VT(){let e=[],t=0;for(;t<w1e;){let n=0,s=t;for(;s<T0.length&&T0[s]===T0[t];)n+=2,s++;let r=T0[t],a=Math.ceil(WT/r),o=Math.ceil(WT/r);for(let i=0;i<a;++i)for(let l=0;l<o;++l)for(let u=0;u<n;++u)e.push({x:(l+.5)/o,y:(i+.5)/a});t=s}v1e={x:It(e.map(n=>n.x)),y:It(e.map(n=>n.y))}}function oa(e,t=[1,1]){let n=[e.map(i=>i[0]),e.map(i=>i[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[s[0],s[1],r[0]-s[0],r[1]-s[1]],o=[a[0]/t[0],a[1]/t[1],a[2]/t[0],a[3]/t[1]];return{box:a,boxRaw:o}}function UT(e,t=[1,1]){let n=[e.map(u=>u[0]),e.map(u=>u[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[(s[0]+r[0])/2,(s[1]+r[1])/2],o=Math.max(a[0]-s[0],a[1]-s[1],-a[0]+r[0],-a[1]+r[1]),i=[Math.trunc(a[0]-o),Math.trunc(a[1]-o),Math.trunc(2*o),Math.trunc(2*o)],l=[i[0]/t[0],i[1]/t[1],i[2]/t[0],i[3]/t[1]];return{box:i,boxRaw:l}}function N0(e,t){let n=[e[2]*t,e[3]*t];return[e[0]-(n[0]-e[2])/2,e[1]-(n[1]-e[3])/2,n[0],n[1]]}var jT={initial:!0},As={detector:null,landmarks:null},Ec={detector:[224,224],landmarks:[256,256]},Gb=Number.MAX_SAFE_INTEGER,S1e={landmarks:["ld_3d","activation_segmentation","activation_heatmap","world_3d","output_poseflag"],detector:[]},R0=null,Up,Ho=[[0,0],[0,0],[0,0],[0,0]],GT=0,HT=e=>1-1/(1+Math.exp(e));async function qT(e){if(jT.initial&&(As.detector=null),!As.detector&&e.body.detector&&e.body.detector.modelPath){As.detector=await He(e.body.detector.modelPath);let t=Object.values(As.detector.modelSignature.inputs);Ec.detector[0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,Ec.detector[1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}else e.debug&&As.detector&&oe("cached model:",As.detector.modelUrl);return await VT(),As.detector}async function XT(e){if(jT.initial&&(As.landmarks=null),As.landmarks)e.debug&&oe("cached model:",As.landmarks.modelUrl);else{As.landmarks=await He(e.body.modelPath);let t=Object.values(As.landmarks.modelSignature.inputs);Ec.landmarks[0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,Ec.landmarks[1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return As.landmarks}async function I1e(e,t){let n={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;let s;if(Up&&(n.cropped=Se.cropAndResize(e,[Up],[0],[e.shape[1],e.shape[2]])),e.shape[1]!==e.shape[2]){let r=[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],a=[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0];Ho=[[0,0],r,a,[0,0]],n.pad=Hs(n.cropped||e,Ho),n.resize=Se.resizeBilinear(n.pad,[t,t]),s=de(n.resize,Je.tf255)}else e.shape[1]!==t?(n.resize=Se.resizeBilinear(n.cropped||e,[t,t]),s=de(n.resize,Je.tf255)):s=de(n.cropped||e,Je.tf255);return Object.keys(n).forEach(r=>ne(n[r])),s}function C1e(e,t){for(let n of e)n.position=[Math.trunc(n.position[0]*(t[0]+Ho[2][0]+Ho[2][1])/t[0]-Ho[2][0]),Math.trunc(n.position[1]*(t[1]+Ho[1][0]+Ho[1][1])/t[1]-Ho[1][0]),n.position[2]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1],2*n.position[2]/(t[0]+t[1])];if(Up)for(let n of e)n.positionRaw=[n.positionRaw[0]+Up[1],n.positionRaw[1]+Up[0],n.positionRaw[2]],n.position=[Math.trunc(n.positionRaw[0]*t[0]),Math.trunc(n.positionRaw[1]*t[1]),n.positionRaw[2]];return e}async function T1e(e){let t=e.find(i=>i.part==="leftPalm"),n=e.find(i=>i.part==="leftWrist"),s=e.find(i=>i.part==="leftIndex");t.position[2]=((n.position[2]||0)+(s.position[2]||0))/2;let r=e.find(i=>i.part==="rightPalm"),a=e.find(i=>i.part==="rightWrist"),o=e.find(i=>i.part==="rightIndex");r.position[2]=((a.position[2]||0)+(o.position[2]||0))/2}async function N1e(e,t,n){var f;let s={};[s.ld,s.segmentation,s.heatmap,s.world,s.poseflag]=(f=As.landmarks)==null?void 0:f.execute(e,S1e.landmarks);let r=(await s.poseflag.data())[0],a=await s.ld.data(),o=await s.world.data();Object.keys(s).forEach(m=>ne(s[m]));let i=[],l=5;for(let m=0;m<a.length/l;m++){let g=HT(a[l*m+3]),y=HT(a[l*m+4]),x=Math.trunc(100*g*y*r)/100,A=[a[l*m+0]/Ec.landmarks[0],a[l*m+1]/Ec.landmarks[1],a[l*m+2]+0],b=[Math.trunc(n[0]*A[0]),Math.trunc(n[1]*A[1]),A[2]],w=[o[l*m+0],o[l*m+1],o[l*m+2]+0];i.push({part:Vb[m],positionRaw:A,position:b,distance:w,score:x})}if(r<(t.body.minConfidence||0))return null;T1e(i);let u=C1e(i,n),c=u.map(m=>m.position),p=oa(c,[n[0],n[1]]),d={};for(let[m,g]of Object.entries(Ub)){let y=[];for(let x=0;x<g.length-1;x++){let A=u.find(w=>w.part===g[x]),b=u.find(w=>w.part===g[x+1]);A&&b&&y.push([A.position,b.position])}d[m]=y}return{id:0,score:Math.trunc(100*r)/100,box:p.box,boxRaw:p.boxRaw,keypoints:u,annotations:d}}async function Hb(e,t){let n=[e.shape[2]||0,e.shape[1]||0],s=(t.body.skipTime||0)>le()-GT,r=Gb<(t.body.skipFrames||0);if(t.skipAllowed&&s&&r&&R0!==null)Gb++;else{let a={};a.landmarks=await I1e(e,256),R0=await N1e(a.landmarks,t,n),Object.keys(a).forEach(o=>ne(a[o])),GT=le(),Gb=0}return R0?[R0]:[]}var Rc=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var ia,Pl=0,jb=[],ZT=0,qb=Number.MAX_SAFE_INTEGER;async function YT(e){if(he.initial&&(ia=null),ia)e.debug&&oe("cached model:",ia.modelUrl);else{ia=await He(e.object.modelPath);let t=Object.values(ia.modelSignature.inputs);Pl=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return ia}async function E1e(e,t,n){if(!e)return[];let s={},r=[],a=await e.array();s.squeeze=Qe(e);let o=Kt(s.squeeze,6,1);s.stack=an([o[1],o[0],o[3],o[2]],1),s.boxes=Qe(s.stack),s.scores=Qe(o[4]),s.classes=Qe(o[5]),ne([e,...o]),s.nms=await Se.nonMaxSuppressionAsync(s.boxes,s.scores,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence||0);let i=await s.nms.data(),l=0;for(let u of Array.from(i)){let c=Math.trunc(100*a[0][u][4])/100,p=a[0][u][5],d=Rc[p].label,[h,f]=[a[0][u][0]/Pl,a[0][u][1]/Pl],m=[h,f,a[0][u][2]/Pl-h,a[0][u][3]/Pl-f],g=[Math.trunc(m[0]*t[0]),Math.trunc(m[1]*t[1]),Math.trunc(m[2]*t[0]),Math.trunc(m[3]*t[1])];r.push({id:l++,score:c,class:p,label:d,box:g,boxRaw:m})}return Object.keys(s).forEach(u=>ne(s[u])),r}async function Xb(e,t){let n=(t.object.skipTime||0)>le()-ZT,s=qb<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&jb.length>0?(qb++,jb):(qb=0,new Promise(async r=>{let a=[e.shape[2]||0,e.shape[1]||0],o=Se.resizeBilinear(e,[Pl,Pl]),i=t.object.enabled?ia==null?void 0:ia.execute(o,["tower_0/detections"]):null;ZT=le(),ne(o);let l=await E1e(i,a,t);jb=l,r(l)}))}var _0={};ya(_0,{connected:()=>Zb,kpt:()=>Kb});var Kb=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],Zb={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var Rn,QT=0,Zn={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},Yb=Number.MAX_SAFE_INTEGER;async function eN(e){return he.initial&&(Rn=null),Rn?e.debug&&oe("cached model:",Rn.modelUrl):Rn=await He(e.body.modelPath),Rn}async function R1e(e,t){let[n,s]=e.shape,r=H(e,[s*n]),a=hn(r,0),o=(await a.data())[0];if(ne([r,a]),o>t){let i=Ns(r,0),l=ic(i,n),u=(await l.data())[0],c=de(i,Ie(n,"int32")),p=(await c.data())[0];return ne([l,c]),[u,p,o]}return[0,0,o]}async function Jb(e,t){let n=(t.body.skipTime||0)>le()-QT,s=Yb<(t.body.skipFrames||0);return t.skipAllowed&&n&&s&&Object.keys(Zn.keypoints).length>0?(Yb++,[Zn]):(Yb=0,new Promise(async r=>{var p;let a=X(()=>{if(!(Rn!=null&&Rn.inputs[0].shape))return null;let d=Se.resizeBilinear(e,[Rn.inputs[0].shape[2],Rn.inputs[0].shape[1]],!1),h=L(d,Je.tf2);return pe(h,Je.tf1)}),o;if(t.body.enabled&&(o=Rn==null?void 0:Rn.execute(a)),QT=le(),ne(a),o){Zn.keypoints.length=0;let d=o.squeeze();ne(o);let h=d.unstack(2);ne(d);for(let f=0;f<h.length;f++){let[m,g,y]=await R1e(h[f],t.body.minConfidence);y>(((p=t.body)==null?void 0:p.minConfidence)||0)&&Zn.keypoints.push({score:Math.round(100*y)/100,part:Kb[f],positionRaw:[m/Rn.inputs[0].shape[2],g/Rn.inputs[0].shape[1]],position:[Math.round(e.shape[2]*m/Rn.inputs[0].shape[2]),Math.round(e.shape[1]*g/Rn.inputs[0].shape[1])]})}h.forEach(f=>ne(f))}Zn.score=Zn.keypoints.reduce((d,h)=>h.score>d?h.score:d,0);let i=Zn.keypoints.map(d=>d.position[0]),l=Zn.keypoints.map(d=>d.position[1]);Zn.box=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)];let u=Zn.keypoints.map(d=>d.positionRaw[0]),c=Zn.keypoints.map(d=>d.positionRaw[1]);Zn.boxRaw=[Math.min(...u),Math.min(...c),Math.max(...u)-Math.min(...u),Math.max(...c)-Math.min(...c)];for(let[d,h]of Object.entries(Zb)){let f=[];for(let m=0;m<h.length-1;m++){let g=Zn.keypoints.find(x=>x.part===h[m]),y=Zn.keypoints.find(x=>x.part===h[m+1]);g&&y&&g.score>(t.body.minConfidence||0)&&y.score>(t.body.minConfidence||0)&&f.push([g.position,y.position])}Zn.annotations[d]=f}r([Zn])}))}var _1e=["angry","disgust","fear","happy","sad","surprise","neutral"],Os,$0=[],nN=0,sN=0,Qb=Number.MAX_SAFE_INTEGER;async function rN(e){var t;return he.initial&&(Os=null),Os?e.debug&&oe("cached model:",Os.modelUrl):Os=await He((t=e.face.emotion)==null?void 0:t.modelPath),Os}async function e5(e,t,n,s){var o,i;if(!Os)return[];let r=Qb<(((o=t.face.emotion)==null?void 0:o.skipFrames)||0),a=(((i=t.face.emotion)==null?void 0:i.skipTime)||0)>le()-sN;return t.skipAllowed&&a&&r&&nN===s&&$0[n]&&$0[n].length>0?(Qb++,$0[n]):(Qb=0,new Promise(async l=>{var c,p;let u=[];if((c=t.face.emotion)!=null&&c.enabled){let d={},h=Os!=null&&Os.inputs[0].shape?Os.inputs[0].shape[2]:0;d.resize=Se.resizeBilinear(e,[h,h],!1),d.channels=L(d.resize,Je.rgb),d.grayscale=ke(d.channels,3,!0),d.grayscaleSub=pe(d.grayscale,Je.tf05),d.grayscaleMul=L(d.grayscaleSub,Je.tf2),d.emotion=Os==null?void 0:Os.execute(d.grayscaleMul),sN=le();let f=await d.emotion.data();for(let m=0;m<f.length;m++)f[m]>(((p=t.face.emotion)==null?void 0:p.minConfidence)||0)&&u.push({score:Math.min(.99,Math.trunc(100*f[m])/100),emotion:_1e[m]});u.sort((m,g)=>g.score-m.score),Object.keys(d).forEach(m=>ne(d[m]))}$0[n]=u,nN=s,l(u)}))}var xs,t5=[],oN=0,iN=0,lN=Number.MAX_SAFE_INTEGER;async function uN(e){return he.initial&&(xs=null),xs?e.debug&&oe("cached model:",xs.modelUrl):xs=await He(e.face.mobilefacenet.modelPath),xs}async function n5(e,t,n,s){var o,i;if(!xs)return[];let r=lN<(((o=t.face.embedding)==null?void 0:o.skipFrames)||0),a=(((i=t.face.embedding)==null?void 0:i.skipTime)||0)>le()-iN;return t.skipAllowed&&a&&r&&oN===s&&t5[n]?(lN++,t5[n]):new Promise(async l=>{var c;let u=[];if(((c=t.face.embedding)==null?void 0:c.enabled)&&(xs==null?void 0:xs.inputs[0].shape)){let p={};p.crop=Se.resizeBilinear(e,[xs.inputs[0].shape[2],xs.inputs[0].shape[1]],!1),p.data=xs==null?void 0:xs.execute(p.crop);let d=await p.data.data();u=Array.from(d)}t5[n]=u,oN=s,iN=le(),l(u)})}var la,jo=0,$1e=2.3,s5=Ys.leftEyeLower0,r5=Ys.rightEyeLower0,_c={leftBounds:[s5[0],s5[s5.length-1]],rightBounds:[r5[0],r5[r5.length-1]]},$c={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function fN(e){var t;return he.initial&&(la=null),la?e.debug&&oe("cached model:",la.modelUrl):la=await He((t=e.face.iris)==null?void 0:t.modelPath),jo=la.inputs[0].shape?la.inputs[0].shape[2]:0,jo===-1&&(jo=64),la}function D0(e,t,n,s){for(let r=0;r<Fb.length;r++){let{key:a,indices:o}=Fb[r],i=Ys[`${n}${a}`];if(!s||s.includes(a))for(let l=0;l<o.length;l++){let u=o[l];e[i[l]]=[t[u][0],t[u][1],(t[u][2]+e[i[l]][2])/2]}}}var D1e=e=>{let t=e[_c.leftBounds[0]][2],n=e[_c.rightBounds[0]][2];return t-n},dN=(e,t,n,s,r,a=!1)=>{let o=S0(k0(RT([e[n],e[s]]),$1e)),i=Nc(o),l=Se.cropAndResize(t,[[o.startPoint[1]/r,o.startPoint[0]/r,o.endPoint[1]/r,o.endPoint[0]/r]],[0],[jo,jo]);if(a&&he.kernels.includes("flipleftright")){let u=Se.flipLeftRight(l);ne(l),l=u}return{box:o,boxSize:i,crop:l}},pN=(e,t,n,s=!1)=>{let r=[];for(let a=0;a<$c.numCoordinates;a++){let o=e[a*3],i=e[a*3+1],l=e[a*3+2];r.push([(s?1-o/jo:o/jo)*n[0]+t.startPoint[0],i/jo*n[1]+t.startPoint[1],l])}return{rawCoords:r,iris:r.slice($c.index)}},hN=(e,t,n)=>{let s=e[Ys[`${n}EyeUpper0`][$c.upperCenter]][2],r=e[Ys[`${n}EyeLower0`][$c.lowerCenter]][2],a=(s+r)/2;return t.map((o,i)=>{let l=a;return i===2?l=s:i===4&&(l=r),[o[0],o[1],l]})};async function mN(e,t,n,s){if(!la)return n.debug&&oe("face mesh iris detection requested, but model is not loaded"),e;let{box:r,boxSize:a,crop:o}=dN(e,t,_c.leftBounds[0],_c.leftBounds[1],s,!0),{box:i,boxSize:l,crop:u}=dN(e,t,_c.rightBounds[0],_c.rightBounds[1],s,!0),c=kt([o,u]);ne(o),ne(u);let p=la.execute(c);ne(c);let d=await p.data();ne(p);let h=d.slice(0,$c.numCoordinates*3),{rawCoords:f,iris:m}=pN(h,r,a,!0),g=d.slice($c.numCoordinates*3),{rawCoords:y,iris:x}=pN(g,i,l),A=D1e(e);Math.abs(A)<30?(D0(e,f,"left",null),D0(e,y,"right",null)):A<1?D0(e,f,"left",["EyeUpper0","EyeLower0"]):D0(e,y,"right",["EyeUpper0","EyeLower0"]);let b=hN(e,m,"left"),w=hN(e,x,"right");return e.concat(b).concat(w)}var Or={boxes:[],skipped:Number.MAX_SAFE_INTEGER,timestamp:0},ua=null,Dc=0;async function yN(e,t){var i,l,u,c,p,d,h,f,m;let n=(((i=t.face.detector)==null?void 0:i.skipTime)||0)>le()-Or.timestamp,s=Or.skipped<(((l=t.face.detector)==null?void 0:l.skipFrames)||0);!t.skipAllowed||!n||!s||Or.boxes.length===0?(Or.boxes=await LT(e,t),Or.timestamp=le(),Or.skipped=0):Or.skipped++;let r=[],a=[],o=0;for(let g=0;g<Or.boxes.length;g++){let y=Or.boxes[g],x=0,A,b={id:o++,mesh:[],meshRaw:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,boxScore:0,faceScore:0,annotations:{}};if([x,A,b.tensor]=PT((u=t.face.detector)==null?void 0:u.rotation,y,e,(c=t.face.mesh)!=null&&c.enabled?Dc:I0()),(p=t==null?void 0:t.filter)!=null&&p.equalization){let w=await y0(b.tensor);ne(b.tensor),b.tensor=w}if(b.boxScore=Math.round(100*y.confidence)/100,(d=t.face.mesh)!=null&&d.enabled)if(!ua)t.debug&&oe("face mesh detection requested, but model is not loaded");else{let[w,S,I]=ua.execute(b.tensor),E=await S.data();b.faceScore=Math.round(100*E[0])/100;let R=H(I,[-1,3]),P=await R.array();if(ne([I,R,S,w]),b.faceScore<(((h=t.face.detector)==null?void 0:h.minConfidence)||1))y.confidence=b.faceScore;else{(f=t.face.iris)!=null&&f.enabled&&(P=await mN(P,b.tensor,t,Dc)),b.mesh=DT(P,y,x,A,Dc),b.meshRaw=b.mesh.map(D=>[D[0]/(e.shape[2]||0),D[1]/(e.shape[1]||0),(D[2]||0)/Dc]);for(let D of Object.keys(Ys))b.annotations[D]=Ys[D].map(T=>b.mesh[T]);b.score=b.faceScore;let _={...FT(b.mesh,y),confidence:y.confidence,landmarks:y.landmarks};b.box=Lb(_,e),b.boxRaw=Bb(_,e),a.push(_)}}else{b.box=Lb(y,e),b.boxRaw=Bb(y,e),b.score=b.boxScore,b.mesh=y.landmarks.map(w=>[(y.startPoint[0]+y.endPoint[0])/2+(y.endPoint[0]+y.startPoint[0])*w[0]/I0(),(y.startPoint[1]+y.endPoint[1])/2+(y.endPoint[1]+y.startPoint[1])*w[1]/I0()]),b.meshRaw=b.mesh.map(w=>[w[0]/(e.shape[2]||0),w[1]/(e.shape[1]||0),(w[2]||0)/Dc]);for(let w of Object.keys(Bp))b.annotations[w]=[b.mesh[Bp[w]]]}b.score>(((m=t.face.detector)==null?void 0:m.minConfidence)||1)?r.push(b):ne(b.tensor)}return Or.boxes=a,r}async function AN(e){var t;return he.initial&&(ua=null),ua?e.debug&&oe("cached model:",ua.modelUrl):ua=await He((t=e.face.mesh)==null?void 0:t.modelPath),Dc=ua.inputs[0].shape?ua.inputs[0].shape[2]:0,ua}var xN=$l,bN=Wp;var bs,P0=[],vN=0,wN=0,o5=Number.MAX_SAFE_INTEGER;async function kN(e){var t;return he.initial&&(bs=null),bs?e.debug&&oe("cached model:",bs.modelUrl):bs=await He((t=e.face.description)==null?void 0:t.modelPath),bs}function i5(e){let t=e.image||e.tensor||e;if(!(bs!=null&&bs.inputs[0].shape))return t;let n=Se.resizeBilinear(t,[bs.inputs[0].shape[2],bs.inputs[0].shape[1]],!1),s=L(n,Je.tf255);return ne(n),s}async function l5(e,t,n,s){var o,i,l,u;if(!bs)return{age:0,gender:"unknown",genderScore:0,descriptor:[]};let r=o5<(((o=t.face.description)==null?void 0:o.skipFrames)||0),a=(((i=t.face.description)==null?void 0:i.skipTime)||0)>le()-vN;return t.skipAllowed&&r&&a&&wN===s&&((l=P0[n])==null?void 0:l.age)&&((u=P0[n])==null?void 0:u.age)>0?(o5++,P0[n]):(o5=0,new Promise(async c=>{var d,h;let p={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((d=t.face.description)!=null&&d.enabled){let f=i5(e),m=bs==null?void 0:bs.execute(f);vN=le(),ne(f);let y=await(await m.find(R=>R.shape[1]===1)).data(),x=Math.trunc(200*Math.abs(y[0]-.5))/100;x>(((h=t.face.description)==null?void 0:h.minConfidence)||0)&&(p.gender=y[0]<=.5?"female":"male",p.genderScore=Math.min(.99,x));let A=Ns(m.find(R=>R.shape[1]===100),1),b=(await A.data())[0];ne(A);let S=await m.find(R=>R.shape[1]===100).data();p.age=Math.round(S[b-1]>S[b+1]?10*b-100*S[b-1]:10*b+100*S[b+1])/10;let I=m.find(R=>R.shape[1]===1024),E=I?await I.data():[];p.descriptor=Array.from(E),m.forEach(R=>ne(R))}P0[n]=p,wN=s,c(p)}))}function F0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Gp(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function CN(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return Se.cropAndResize(t,a,[0],n)}function TN(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function O0(e,t=1.5){let n=Gp(e),s=F0(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function M0(e){let t=Gp(e),n=F0(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function P1e(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function NN(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return P1e(n)}var SN=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function qo(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function F1e(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function IN(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(qo(e[r],F1e(t,a)))}return n}function c5(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=SN(t[0],t[1]),o=IN(a,r),i=SN(-t[0],-t[1]);return IN(o,i)}function EN(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-qo(t[0],n),-qo(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function d5(e,t){return[qo(e,t[0]),qo(e,t[1])]}var _N=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var p5=class{constructor(t){fe(this,"model");fe(this,"anchors");fe(this,"anchorsTensor");fe(this,"inputSize");fe(this,"inputSizeTensor");fe(this,"doubleInputSizeTensor");this.model=t,this.anchors=_N.map(n=>[n.x,n.y]),this.anchorsTensor=ur(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=It([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=It([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let n={};n.boxOffsets=Pe(t,[0,0],[-1,2]),n.boxSizes=Pe(t,[0,2],[-1,2]),n.div=de(n.boxOffsets,this.inputSizeTensor),n.boxCenterPoints=ue(n.div,this.anchorsTensor),n.halfBoxSizes=de(n.boxSizes,this.doubleInputSizeTensor),n.sub=pe(n.boxCenterPoints,n.halfBoxSizes),n.startPoints=L(n.sub,this.inputSizeTensor),n.add=ue(n.boxCenterPoints,n.halfBoxSizes),n.endPoints=L(n.add,this.inputSizeTensor);let s=rc([n.startPoints,n.endPoints],1);return Object.keys(n).forEach(r=>ne(n[r])),s}normalizeLandmarks(t,n){let s={};s.reshape=H(t,[-1,7,2]),s.div=de(s.reshape,this.inputSizeTensor),s.landmarks=ue(s.div,this.anchors[n]);let r=L(s.landmarks,this.inputSizeTensor);return Object.keys(s).forEach(a=>ne(s[a])),r}async predict(t,n){let s={};s.resize=Se.resizeBilinear(t,[this.inputSize,this.inputSize]),s.div=de(s.resize,Je.tf127),s.image=pe(s.div,Je.tf1),s.batched=this.model.execute(s.image),s.predictions=Qe(s.batched),s.slice=Pe(s.predictions,[0,0],[-1,1]),s.sigmoid=Cn(s.slice),s.scores=Qe(s.sigmoid);let r=await s.scores.data();s.boxes=Pe(s.predictions,[0,1],[-1,4]),s.norm=this.normalizeBoxes(s.boxes),s.nms=await Se.nonMaxSuppressionAsync(s.norm,s.scores,3*n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence);let a=await s.nms.array(),o=[];for(let i of a){let l={};l.box=Pe(s.norm,[i,0],[1,-1]),l.slice=Pe(s.predictions,[i,5],[1,14]),l.norm=this.normalizeLandmarks(l.slice,i),l.palmLandmarks=H(l.norm,[-1,2]);let u=await l.box.data(),c=u.slice(0,2),p=u.slice(2,4),d=await l.palmLandmarks.array(),h={startPoint:c,endPoint:p,palmLandmarks:d,confidence:r[i]},f=TN(h,[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]);o.push(f),Object.keys(l).forEach(m=>ne(l[m]))}return Object.keys(s).forEach(i=>ne(s[i])),o}};var z1e=5,$N=1.65,DN=[0,5,9,13,17,1,2],L1e=0,B1e=2,PN=0,h5=class{constructor(t,n){fe(this,"handDetector");fe(this,"handPoseModel");fe(this,"inputSize");fe(this,"storedBoxes");fe(this,"skipped");fe(this,"detectedHands");this.handDetector=t,this.handPoseModel=n,this.inputSize=this.handPoseModel&&this.handPoseModel.inputs[0].shape?this.handPoseModel.inputs[0].shape[2]:0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(o=>o[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>d5([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return O0(M0(r),z1e)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=O0(M0(n),$N);s.palmLandmarks=[];for(let r=0;r<DN.length;r++)s.palmLandmarks.push(t[DN[r]].slice(0,2));return s}transformRawCoords(t,n,s,r){let a=F0(n),o=[a[0]/this.inputSize,a[1]/this.inputSize,(a[0]+a[1])/this.inputSize/2],i=t.map(h=>[o[0]*(h[0]-this.inputSize/2),o[1]*(h[1]-this.inputSize/2),o[2]*h[2]]),l=c5(s,[0,0]),u=i.map(h=>[...d5(h,l),h[2]]),c=EN(r),p=[...Gp(n),1],d=[qo(p,c[0]),qo(p,c[1])];return u.map(h=>[Math.trunc(h[0]+d[0]),Math.trunc(h[1]+d[1]),Math.trunc(h[2])])}async estimateHands(t,n){let s=!1,r,a=(n.hand.skipTime||0)>le()-PN,o=this.skipped<(n.hand.skipFrames||0);n.skipAllowed&&a&&o&&(r=await this.handDetector.predict(t,n),this.skipped=0),n.skipAllowed&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let i=[];for(let l=0;l<this.storedBoxes.length;l++){let u=this.storedBoxes[l];if(!!u)if(n.hand.landmarks){let c=n.hand.rotation?NN(u.palmLandmarks[L1e],u.palmLandmarks[B1e]):0,p=Gp(u),d=[p[0]/t.shape[2],p[1]/t.shape[1]],h=n.hand.rotation&&he.kernels.includes("rotatewithoffset")?Se.rotateWithOffset(t,c,0,d):t.clone(),f=c5(-c,p),m=s?this.getBoxForPalmLandmarks(u.palmLandmarks,f):u,g=CN(m,h,[this.inputSize,this.inputSize]),y=de(g,Je.tf255);ne(g),ne(h);let[x,A]=this.handPoseModel.execute(y);PN=le(),ne(y);let b=(await x.data())[0];if(ne(x),b>=n.hand.minConfidence/4){let w=H(A,[-1,3]),S=await w.array();ne(A),ne(w);let I=this.transformRawCoords(S,m,c,f),E=this.getBoxForHandLandmarks(I);this.storedBoxes[l]={...E,confidence:b};let R={landmarks:I,confidence:b,boxConfidence:u.confidence,fingerConfidence:b,box:{topLeft:E.startPoint,bottomRight:E.endPoint}};i.push(R)}else this.storedBoxes[l]=null;ne(A)}else{let c=O0(M0(u),$N),p={confidence:u.confidence,boxConfidence:u.confidence,fingerConfidence:0,box:{topLeft:c.startPoint,bottomRight:c.endPoint},landmarks:[]};i.push(p)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=i.length,i.length>n.hand.maxDetected&&(i.length=n.hand.maxDetected),i}};var Yn={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>Yn.nameMapping[e],getPoints:e=>Yn.pointsMapping[e]},Xo={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>Xo.nameMapping[e]},zt={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>zt.nameMapping[e]},Fl=class{constructor(t){fe(this,"name");fe(this,"curls");fe(this,"directions");fe(this,"weights");fe(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,n,s){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([n,s])}direction(t,n,s){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([n,s])}weight(t,n){this.weights[t]=n;let s=this.weights.reduce((r,a)=>r+a,0);this.weightsRelative=this.weights.map(r=>r*5/s)}matchAgainst(t,n){let s=0;for(let r in t){let a=t[r],o=this.curls[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}for(let r in n){let a=n[r],o=this.directions[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}return s/10}};var{thumb:Ar,index:ca,middle:da,ring:Ol,pinky:Ml}=Yn,{none:xr,half:V1e,full:br}=Xo,{verticalUp:Pc,verticalDown:Xxe,horizontalLeft:f5,horizontalRight:U1e,diagonalUpRight:G1e,diagonalUpLeft:Fc,diagonalDownRight:Kxe,diagonalDownLeft:Zxe}=zt,Ko=new Fl("thumbs up");Ko.curl(Ar,xr,1);Ko.direction(Ar,Pc,1);Ko.direction(Ar,Fc,.25);Ko.direction(Ar,G1e,.25);for(let e of[Yn.index,Yn.middle,Yn.ring,Yn.pinky])Ko.curl(e,br,1),Ko.direction(e,f5,1),Ko.direction(e,U1e,1);var Jt=new Fl("victory");Jt.curl(Ar,V1e,.5);Jt.curl(Ar,xr,.5);Jt.direction(Ar,Pc,1);Jt.direction(Ar,Fc,1);Jt.curl(ca,xr,1);Jt.direction(ca,Pc,.75);Jt.direction(ca,Fc,1);Jt.curl(da,xr,1);Jt.direction(da,Pc,1);Jt.direction(da,Fc,.75);Jt.curl(Ol,br,1);Jt.direction(Ol,Pc,.2);Jt.direction(Ol,Fc,1);Jt.direction(Ol,f5,.2);Jt.curl(Ml,br,1);Jt.direction(Ml,Pc,.2);Jt.direction(Ml,Fc,1);Jt.direction(Ml,f5,.2);Jt.weight(ca,2);Jt.weight(da,2);var Zo=new Fl("point");Zo.curl(Ar,br,1);Zo.curl(ca,xr,.5);Zo.curl(da,br,.5);Zo.curl(Ol,br,.5);Zo.curl(Ml,br,.5);Zo.weight(ca,2);Zo.weight(da,2);var Yo=new Fl("middle finger");Yo.curl(Ar,xr,1);Yo.curl(ca,br,.5);Yo.curl(da,br,.5);Yo.curl(Ol,br,.5);Yo.curl(Ml,br,.5);Yo.weight(ca,2);Yo.weight(da,2);var Oc=new Fl("open palm");Oc.curl(Ar,xr,.75);Oc.curl(ca,xr,.75);Oc.curl(da,xr,.75);Oc.curl(Ol,xr,.75);Oc.curl(Ml,xr,.75);var FN=[Ko,Jt,Zo,Yo,Oc];var H1e=.7,zl={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function ON(e,t,n,s){let r=(t-s)/(e-n),a=Math.atan(r)*180/Math.PI;return a<=0?a=-a:a>0&&(a=180-a),a}function zN(e,t){if(!e||!t)return[0,0];let n=ON(e[0],e[1],t[0],t[1]);if(e.length===2)return n;let s=ON(e[1],e[2],t[1],t[2]);return[n,s]}function MN(e,t=1){let n=0,s=0,r=0;return e>=75&&e<=105?n=1*t:e>=25&&e<=155?s=1*t:r=1*t,[n,s,r]}function j1e(e,t,n){let s=e[0]-t[0],r=e[0]-n[0],a=t[0]-n[0],o=e[1]-t[1],i=e[1]-n[1],l=t[1]-n[1],u=e[2]-t[2],c=e[2]-n[2],p=t[2]-n[2],d=Math.sqrt(s*s+o*o+u*u),h=Math.sqrt(r*r+i*i+c*c),f=Math.sqrt(a*a+l*l+p*p),m=(f*f+d*d-h*h)/(2*f*d);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let y;return g>zl.NO_CURL_START_LIMIT?y=Xo.none:g>zl.HALF_CURL_START_LIMIT?y=Xo.half:y=Xo.full,y}function LN(e,t,n,s){let r;return s===Math.abs(e)?e>0?r=zt.horizontalLeft:r=zt.horizontalRight:s===Math.abs(t)?t>0?r=zt.horizontalLeft:r=zt.horizontalRight:n>0?r=zt.horizontalLeft:r=zt.horizontalRight,r}function BN(e,t,n,s){let r;return s===Math.abs(e)?e<0?r=zt.verticalDown:r=zt.verticalUp:s===Math.abs(t)?t<0?r=zt.verticalDown:r=zt.verticalUp:n<0?r=zt.verticalDown:r=zt.verticalUp,r}function q1e(e,t,n,s,r,a,o,i){let l,u=BN(e,t,n,s),c=LN(r,a,o,i);return u===zt.verticalUp?c===zt.horizontalLeft?l=zt.diagonalUpLeft:l=zt.diagonalUpRight:c===zt.horizontalLeft?l=zt.diagonalDownLeft:l=zt.diagonalDownRight,l}function X1e(e,t,n,s){let r=e[0]-t[0],a=e[0]-n[0],o=t[0]-n[0],i=e[1]-t[1],l=e[1]-n[1],u=t[1]-n[1],c=Math.max(Math.abs(r),Math.abs(a),Math.abs(o)),p=Math.max(Math.abs(i),Math.abs(l),Math.abs(u)),d=0,h=0,f=0,m=p/(c+1e-5);m>1.5?d+=zl.DISTANCE_VOTE_POWER:m>.66?h+=zl.DISTANCE_VOTE_POWER:f+=zl.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+i*i),y=Math.sqrt(a*a+l*l),x=Math.sqrt(o*o+u*u),A=Math.max(g,y,x),b=e[0],w=e[1],S=n[0],I=n[1];A===g?(S=n[0],I=n[1]):A===x&&(b=t[0],w=t[1]);let P=zN([b,w],[S,I]),_=MN(P,zl.TOTAL_ANGLE_VOTE_POWER);d+=_[0],h+=_[1],f+=_[2];for(let T of s){let O=MN(T,zl.SINGLE_ANGLE_VOTE_POWER);d+=O[0],h+=O[1],f+=O[2]}let D;return d===Math.max(d,h,f)?D=BN(l,i,u,p):f===Math.max(h,f)?D=LN(a,r,o,c):D=q1e(l,i,u,p,a,r,o,c),D}function WN(e){let t=[],n=[],s=[],r=[];if(!e)return{curls:s,directions:r};for(let a of Yn.all){let o=Yn.getPoints(a),i=[],l=[];for(let u of o){let c=e[u[0]],p=e[u[1]],d=zN(c,p),h=d[0],f=d[1];i.push(h),l.push(f)}t.push(i),n.push(l)}for(let a of Yn.all){let o=a===Yn.thumb?1:0,i=Yn.getPoints(a),l=e[i[o][0]],u=e[i[o+1][1]],c=e[i[3][1]],p=j1e(l,u,c),d=X1e(l,u,c,t[a].slice(o));s[a]=p,r[a]=d}return{curls:s,directions:r}}function z0(e){if(!e||e.length===0)return null;let t=WN(e),n={};for(let s of Yn.all)n[Yn.getName(s)]={curl:Xo.getName(t.curls[s]),direction:zt.getName(t.directions[s])};return n}function VN(e){let t=[];if(!e||e.length===0)return t;let n=WN(e);for(let s of FN){let r=s.matchAgainst(n.curls,n.directions);r>=H1e&&t.push({name:s.name,confidence:r})}return t}var UN={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},Mc,zc,GN;async function g5(e,t){let n=await GN.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;r<n.length;r++){let a={};if(n[r].landmarks)for(let c of Object.keys(UN))a[c]=UN[c].map(p=>n[r].landmarks[p]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let c of o)c[0]<i[0]&&(i[0]=c[0]),c[1]<i[1]&&(i[1]=c[1]),c[0]>i[2]&&(i[2]=c[0]),c[1]>i[3]&&(i[3]=c[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];let u=z0(o);s.push({id:r,score:Math.round(100*n[r].confidence)/100,boxScore:Math.round(100*n[r].boxConfidence)/100,fingerScore:Math.round(100*n[r].fingerConfidence)/100,label:"hand",box:i,boxRaw:l,keypoints:o,annotations:a,landmarks:u})}return s}async function y5(e){var n,s;he.initial&&(Mc=null,zc=null),!Mc||!zc?[Mc,zc]=await Promise.all([e.hand.enabled?He((n=e.hand.detector)==null?void 0:n.modelPath):null,e.hand.landmarks?He((s=e.hand.skeleton)==null?void 0:s.modelPath):null]):(e.debug&&oe("cached model:",Mc.modelUrl),e.debug&&oe("cached model:",zc.modelUrl));let t=new p5(Mc);return GN=new h5(t,zc),[Mc,zc]}var un=[null,null],K1e=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],Jo=[[0,0],[0,0]],Z1e=["hand","fist","pinch","point","face","tip","pinchtip"],jN=4,qN=1.6,Y1e=512,J1e=1.4,L0=Number.MAX_SAFE_INTEGER,A5=0,pa=[0,0],Gt={boxes:[],hands:[]},XN={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],base:[0],palm:[0,17,13,9,5,1,0]};async function KN(e){var t;if(he.initial&&(un[0]=null),un[0])e.debug&&oe("cached model:",un[0].modelUrl);else{B0(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),un[0]=await He((t=e.hand.detector)==null?void 0:t.modelPath);let n=Object.values(un[0].modelSignature.inputs);Jo[0][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,Jo[0][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0}return un[0]}async function ZN(e){var t;if(he.initial&&(un[1]=null),un[1])e.debug&&oe("cached model:",un[1].modelUrl);else{un[1]=await He((t=e.hand.skeleton)==null?void 0:t.modelPath);let n=Object.values(un[1].modelSignature.inputs);Jo[1][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,Jo[1][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0}return un[1]}async function Q1e(e,t){let n=[];if(!e||!un[0])return n;let s={},r=(e.shape[2]||1)/(e.shape[1]||1),a=Math.min(Math.round((e.shape[1]||0)/8)*8,Y1e),o=Math.round(a*r/8)*8;s.resize=Se.resizeBilinear(e,[a,o]),s.cast=ge(s.resize,"int32"),[s.rawScores,s.rawBoxes]=await un[0].executeAsync(s.cast,K1e),s.boxes=Qe(s.rawBoxes,[0,2]),s.scores=Qe(s.rawScores,[0]);let i=es(s.scores,1);ne(i[jN]),i.splice(jN,1),s.filtered=an(i,1),ne(i),s.max=hn(s.filtered,1),s.argmax=Ns(s.filtered,1);let l=0;s.nms=await Se.nonMaxSuppressionAsync(s.boxes,s.max,(t.hand.maxDetected||0)+1,t.hand.iouThreshold||0,t.hand.minConfidence||1);let u=await s.nms.data(),c=await s.max.data(),p=await s.argmax.data();for(let d of Array.from(u)){let h=Pe(s.boxes,d,1),f=await h.data();ne(h);let m=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=N0(m,J1e),y=[Math.trunc(m[0]*pa[0]),Math.trunc(m[1]*pa[1]),Math.trunc(m[2]*pa[0]),Math.trunc(m[3]*pa[1])],x=c[d],A=Z1e[p[d]],b={id:l++,score:x,box:y,boxRaw:g,label:A};n.push(b)}return Object.keys(s).forEach(d=>ne(s[d])),n.sort((d,h)=>h.score-d.score),n.length>(t.hand.maxDetected||1)&&(n.length=t.hand.maxDetected||1),n}async function x5(e,t,n){let s={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&un[1]&&n.hand.landmarks&&t.score>(n.hand.minConfidence||0)){let r={},a=[t.boxRaw[1],t.boxRaw[0],t.boxRaw[3]+t.boxRaw[1],t.boxRaw[2]+t.boxRaw[0]];r.crop=Se.cropAndResize(e,[a],[0],[Jo[1][0],Jo[1][1]],"bilinear"),r.div=de(r.crop,Je.tf255),[r.score,r.keypoints]=un[1].execute(r.div,["Identity_1","Identity"]);let o=(await r.score.data())[0],i=(100-Math.trunc(100/(1+Math.exp(o))))/100;if(i>=(n.hand.minConfidence||0)){s.fingerScore=i,r.reshaped=H(r.keypoints,[-1,3]);let c=(await r.reshaped.array()).map(p=>[p[0]/Jo[1][1],p[1]/Jo[1][0],p[2]||0]).map(p=>[p[0]*t.boxRaw[2],p[1]*t.boxRaw[3],p[2]||0]);s.keypoints=c.map(p=>[pa[0]*(p[0]+t.boxRaw[0]),pa[1]*(p[1]+t.boxRaw[1]),p[2]||0]),s.landmarks=z0(s.keypoints);for(let p of Object.keys(XN))s.annotations[p]=XN[p].map(d=>s.landmarks&&s.keypoints[d]?s.keypoints[d]:null)}Object.keys(r).forEach(l=>ne(r[l]))}return s}async function b5(e,t){var r,a;if(!un[0]||!un[1]||!((r=un[0])!=null&&r.inputs[0].shape)||!((a=un[1])!=null&&a.inputs[0].shape))return[];pa=[e.shape[2]||0,e.shape[1]||0],L0++;let n=(t.hand.skipTime||0)>le()-A5,s=L0<(t.hand.skipFrames||0);return t.skipAllowed&&n&&s?Gt.hands:new Promise(async o=>{let i=3*(t.hand.skipTime||0)>le()-A5,l=L0<3*(t.hand.skipFrames||0);t.skipAllowed&&Gt.hands.length===t.hand.maxDetected?Gt.hands=await Promise.all(Gt.boxes.map(c=>x5(e,c,t))):t.skipAllowed&&i&&l&&Gt.hands.length>0?Gt.hands=await Promise.all(Gt.boxes.map(c=>x5(e,c,t))):(Gt.boxes=await Q1e(e,t),A5=le(),Gt.hands=await Promise.all(Gt.boxes.map(c=>x5(e,c,t))),L0=0);let u=[...Gt.boxes];if(Gt.boxes.length=0,t.cacheSensitivity>0)for(let c=0;c<Gt.hands.length;c++){let p=UT(Gt.hands[c].keypoints,pa);if(p.box[2]/(e.shape[2]||1)>.05&&p.box[3]/(e.shape[1]||1)>.05&&Gt.hands[c].fingerScore&&Gt.hands[c].fingerScore>(t.hand.minConfidence||0)){let d=N0(p.box,qN),h=N0(p.boxRaw,qN);Gt.boxes.push({...u[c],box:d,boxRaw:h})}}for(let c=0;c<Gt.hands.length;c++){let p=oa(Gt.hands[c].keypoints,pa);Gt.hands[c].box=p.box,Gt.hands[c].boxRaw=p.boxRaw}o(Gt.hands)})}var _n,W0=[],v5=Number.MAX_SAFE_INTEGER,JN=0,QN=0;async function eE(e){var t;return he.initial&&(_n=null),_n?e.debug&&oe("cached model:",_n.modelUrl):_n=await He((t=e.face.liveness)==null?void 0:t.modelPath),_n}async function w5(e,t,n,s){var o,i;if(!_n)return 0;let r=(((o=t.face.liveness)==null?void 0:o.skipTime)||0)>le()-QN,a=v5<(((i=t.face.liveness)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&a&&JN===s&&W0[n]?(v5++,W0[n]):(v5=0,new Promise(async l=>{let u=Se.resizeBilinear(e,[_n!=null&&_n.inputs[0].shape?_n.inputs[0].shape[2]:0,_n!=null&&_n.inputs[0].shape?_n.inputs[0].shape[1]:0],!1),c=_n==null?void 0:_n.execute(u),p=(await c.data())[0];W0[n]=Math.round(100*p)/100,JN=s,QN=le(),ne([u,c]),l(W0[n])}))}var Hp={};ya(Hp,{connected:()=>U0,horizontal:()=>k5,kpt:()=>V0,relative:()=>I5,vertical:()=>S5});var V0=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],k5=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],S5=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],I5=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],U0={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var nE=.005,vs={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function C5(e){for(let t of k5){let n=e.keypoints.findIndex(r=>r.part===t[0]),s=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[0]<e.keypoints[s].position[0]){let r=e.keypoints[n];e.keypoints[n]=e.keypoints[s],e.keypoints[s]=r}}for(let t of S5){let n=e.keypoints.findIndex(r=>r&&r.part===t[0]),s=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[1]<e.keypoints[s].position[1]&&e.keypoints.splice(n,1)}for(let[t,n]of I5){let s=e.keypoints.findIndex(u=>u&&u.part===t[0]),r=e.keypoints.findIndex(u=>u&&u.part===t[1]),a=e.keypoints.findIndex(u=>u&&u.part===n[0]),o=e.keypoints.findIndex(u=>u&&u.part===n[1]);if(!e.keypoints[a]||!e.keypoints[o])continue;let i=e.keypoints[s]?[Math.abs(e.keypoints[a].position[0]-e.keypoints[s].position[0]),Math.abs(e.keypoints[o].position[0]-e.keypoints[s].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[o].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[a].position[0]-e.keypoints[r].position[0])]:[0,0];if(i[0]>i[1]||l[0]>l[1]){let u=e.keypoints[s];e.keypoints[s]=e.keypoints[r],e.keypoints[r]=u}}}function sE(e){for(let t=0;t<e.length;t++)if(e[t]&&vs.keypoints[t]){let n=[Math.abs(e[t].positionRaw[0]-vs.keypoints[t].positionRaw[0]),Math.abs(e[t].positionRaw[1]-vs.keypoints[t].positionRaw[1])];n[0]<nE&&n[1]<nE?e[t]=vs.keypoints[t]:vs.keypoints[t]=e[t]}else vs.keypoints[t]=e[t];return e}function rE(e,t){let n={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;vs.padding=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],n.pad=Hs(e,vs.padding),n.resize=Se.resizeBilinear(n.pad,[t,t]);let s=ge(n.resize,"int32");return Object.keys(n).forEach(r=>ne(n[r])),s}function aE(e,t){e.keypoints=e.keypoints.filter(s=>s&&s.position);for(let s of e.keypoints)s.position=[s.position[0]*(t[0]+vs.padding[2][0]+vs.padding[2][1])/t[0]-vs.padding[2][0],s.position[1]*(t[1]+vs.padding[1][0]+vs.padding[1][1])/t[1]-vs.padding[1][0]],s.positionRaw=[s.position[0]/t[0],s.position[1]/t[1]];let n=oa(e.keypoints.map(s=>s.position),t);return e.box=n.box,e.boxRaw=n.boxRaw,e}var ws,G0=0,T5=Number.MAX_SAFE_INTEGER,Ll={boxes:[],bodies:[],last:0};async function oE(e){return he.initial&&(ws=null),ws?e.debug&&oe("cached model:",ws.modelUrl):(B0(["size"],e),ws=await He(e.body.modelPath)),G0=ws.inputs[0].shape?ws.inputs[0].shape[2]:0,G0<64&&(G0=256),ws}async function tAe(e,t,n){let s=e[0][0],r=[],a=0;for(let c=0;c<s.length;c++)if(a=s[c][2],a>t.body.minConfidence){let p=[s[c][1],s[c][0]];r.push({score:Math.round(100*a)/100,part:V0[c],positionRaw:p,position:[Math.round((n.shape[2]||0)*p[0]),Math.round((n.shape[1]||0)*p[1])]})}a=r.reduce((c,p)=>p.score>c?p.score:c,0);let o=[],i=oa(r.map(c=>c.position),[n.shape[2],n.shape[1]]),l={};for(let[c,p]of Object.entries(U0)){let d=[];for(let h=0;h<p.length-1;h++){let f=r.find(g=>g.part===p[h]),m=r.find(g=>g.part===p[h+1]);f&&m&&f.score>(t.body.minConfidence||0)&&m.score>(t.body.minConfidence||0)&&d.push([f.position,m.position])}l[c]=d}let u={id:0,score:a,box:i.box,boxRaw:i.boxRaw,keypoints:r,annotations:l};return C5(u),o.push(u),o}async function nAe(e,t,n){let s=[];for(let r=0;r<e[0].length;r++){let a=e[0][r],o=Math.round(100*a[51+4])/100;if(o>t.body.minConfidence){let i=[];for(let p=0;p<17;p++){let d=a[3*p+2];if(d>t.body.minConfidence){let h=[a[3*p+1],a[3*p+0]];i.push({part:V0[p],score:Math.round(100*d)/100,positionRaw:h,position:[Math.round((n.shape[2]||0)*h[0]),Math.round((n.shape[1]||0)*h[1])]})}}let l=oa(i.map(p=>p.position),[n.shape[2],n.shape[1]]),u={};for(let[p,d]of Object.entries(U0)){let h=[];for(let f=0;f<d.length-1;f++){let m=i.find(y=>y.part===d[f]),g=i.find(y=>y.part===d[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}u[p]=h}let c={id:r,score:o,box:l.box,boxRaw:l.boxRaw,keypoints:[...i],annotations:u};C5(c),s.push(c)}}return s.sort((r,a)=>a.score-r.score),s.length>t.body.maxDetected&&(s.length=t.body.maxDetected),s}async function N5(e,t){if(!ws||!(ws!=null&&ws.inputs[0].shape))return[];t.skipAllowed||(Ll.boxes.length=0),T5++;let n=(t.body.skipTime||0)>le()-Ll.last,s=T5<(t.body.skipFrames||0);return t.skipAllowed&&n&&s?Ll.bodies:new Promise(async r=>{let a={};T5=0,a.input=rE(e,G0),a.res=ws==null?void 0:ws.execute(a.input),Ll.last=le();let o=await a.res.array();Ll.bodies=a.res.shape[2]===17?await tAe(o,t,e):await nAe(o,t,e);for(let i of Ll.bodies)aE(i,[e.shape[2]||1,e.shape[1]||1]),sE(i.keypoints);Object.keys(a).forEach(i=>ne(a[i])),r(Ll.bodies)})}var Lc,H0=[],lE=0,E5=Number.MAX_SAFE_INTEGER,q0=0,j0=2.5;async function uE(e){if(!Lc||he.initial){Lc=await He(e.object.modelPath);let t=Object.values(Lc.modelSignature.inputs);q0=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}else e.debug&&oe("cached model:",Lc.modelUrl);return Lc}async function sAe(e,t,n){let s=0,r=[];for(let l of[1,2,4])X(async()=>{let u=l*13,c=Qe(e.find(m=>m.shape[1]===u**2&&(m.shape[2]||0)===Rc.length)),p=Qe(e.find(m=>m.shape[1]===u**2&&(m.shape[2]||0)<Rc.length)),h=await p.reshape([-1,4,p.shape[1]/4]).argMax(2).array(),f=await c.array();for(let m=0;m<c.shape[0];m++)for(let g=0;g<c.shape[1];g++){let y=f[m][g];if(y>(n.object.minConfidence||0)&&g!==61){let x=(.5+Math.trunc(m%u))/u,A=(.5+Math.trunc(m/u))/u,b=h[m].map(D=>D*(u/l/q0)),[w,S]=[x-j0/l*b[0],A-j0/l*b[1]],[I,E]=[x+j0/l*b[2]-w,A+j0/l*b[3]-S],R=[w,S,I,E];R=R.map(D=>Math.max(0,Math.min(D,1)));let P=[R[0]*t[0],R[1]*t[1],R[2]*t[0],R[3]*t[1]],_={id:s++,score:Math.round(100*y)/100,class:g+1,label:Rc[g].label,box:P.map(D=>Math.trunc(D)),boxRaw:R};r.push(_)}}});e.forEach(l=>ne(l));let a=r.map(l=>[l.boxRaw[1],l.boxRaw[0],l.boxRaw[3],l.boxRaw[2]]),o=r.map(l=>l.score),i=[];if(a&&a.length>0){let l=await Se.nonMaxSuppressionAsync(a,o,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence);i=await l.data(),ne(l)}return r=r.filter((l,u)=>i.includes(u)).sort((l,u)=>u.score-l.score),r}async function R5(e,t){let n=(t.object.skipTime||0)>le()-lE,s=E5<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&H0.length>0?(E5++,H0):(E5=0,!he.kernels.includes("mod")||!he.kernels.includes("sparsetodense")?H0:new Promise(async r=>{let a=[e.shape[2]||0,e.shape[1]||0],o=Se.resizeBilinear(e,[q0,q0],!1),i=de(o,Je.tf255),l=i.transpose([0,3,1,2]);ne(i),ne(o);let u;t.object.enabled&&(u=Lc.execute(l)),lE=le(),ne(l);let c=await sAe(u,a,t);H0=c,r(c)}))}var qp=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],rAe=qp.length,jp=qp.reduce((e,t,n)=>(e[t]=n,e),{}),aAe=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],bbe=aAe.map(([e,t])=>[jp[e],jp[t]]),dE=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function pE(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function hE(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(u,c)=>({id:c,score:u.score,boxRaw:[u.box[0]/r,u.box[1]/s,u.box[2]/r,u.box[3]/s],box:[Math.trunc(u.box[0]*o),Math.trunc(u.box[1]*a),Math.trunc(u.box[2]*o),Math.trunc(u.box[3]*a)],keypoints:u.keypoints.map(({score:p,part:d,position:h})=>({score:p,part:d,position:[Math.trunc(h.x*o),Math.trunc(h.y*a)],positionRaw:[h.x/s,h.y/s]})),annotations:{}});return e.map((u,c)=>i(u,c))}var _5=class{constructor(t,n){fe(this,"priorityQueue");fe(this,"numberOfElements");fe(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let s=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=s}};function $5(e,t,n,s){return{y:s.get(e,t,n),x:s.get(e,t,n+rAe)}}function D5(e,t,n){let{heatmapY:s,heatmapX:r,id:a}=e,{y:o,x:i}=$5(s,r,a,n);return{x:e.heatmapX*t+i,y:e.heatmapY*t+o}}function P5(e,t,n){return e<t?t:e>n?n:e}function fE(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function F5(e,t){return{x:e.x+t.x,y:e.y+t.y}}var vr,iAe=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],X0=1,Bc=16,lAe=50**2;function mE(e,t,n,s,r,a,o=2){let i=y=>({y:a.get(y.y,y.x,e),x:a.get(y.y,y.x,a.shape[2]/2+e)}),l=(y,x,A)=>({y:P5(Math.round(y.y/Bc),0,x-1),x:P5(Math.round(y.x/Bc),0,A-1)}),[u,c]=s.shape,p=l(t.position,u,c),d=i(p),f=F5(t.position,d);for(let y=0;y<o;y++){let x=l(f,u,c),A=$5(x.y,x.x,n,r);f=F5({x:x.x*Bc,y:x.y*Bc},{x:A.x,y:A.y})}let m=l(f,u,c),g=s.get(m.y,m.x,n);return{position:f,part:qp[n],score:g}}function uAe(e,t,n,s,r){let a=dE.map(([d,h])=>[jp[d],jp[h]]),o=a.map(([,d])=>d),i=a.map(([d])=>d),l=t.shape[2],u=o.length,c=new Array(l),p=D5(e.part,Bc,n);c[e.part.id]={score:e.score,part:qp[e.part.id],position:p};for(let d=u-1;d>=0;--d){let h=o[d],f=i[d];c[h]&&!c[f]&&(c[f]=mE(d,c[h],f,t,n,r))}for(let d=0;d<u;++d){let h=i[d],f=o[d];c[h]&&!c[f]&&(c[f]=mE(d,c[h],f,t,n,s))}return c}function cAe(e,t,n,s,r){let[a,o]=r.shape,i=!0,l=Math.max(n-X0,0),u=Math.min(n+X0+1,a);for(let c=l;c<u;++c){let p=Math.max(s-X0,0),d=Math.min(s+X0+1,o);for(let h=p;h<d;++h)if(r.get(c,h,e)>t){i=!1;break}if(!i)break}return i}function dAe(e,t){let[n,s,r]=t.shape,a=new _5(n*s*r,({score:o})=>o);for(let o=0;o<n;++o)for(let i=0;i<s;++i)for(let l=0;l<r;++l){let u=t.get(o,i,l);u<e||cAe(l,u,o,i,t)&&a.enqueue({score:u,part:{heatmapY:o,heatmapX:i,id:l}})}return a}function gE(e,{x:t,y:n},s){return e.some(({keypoints:r})=>{var o;let a=(o=r[s])==null?void 0:o.position;return a?fE(n,t,a.y,a.x)<=lAe:!1})}function pAe(e,t){return t.reduce((s,{position:r,score:a},o)=>(gE(e,r,o)||(s+=a),s),0)/t.length}function hAe(e,t,n,s,r,a){let o=[],i=dAe(a,t);for(;o.length<r&&!i.empty();){let l=i.dequeue(),u=D5(l.part,Bc,e);if(gE(o,u,l.part.id))continue;let c=uAe(l,t,e,n,s);c=c.filter(h=>h.score>a);let p=pAe(o,c),d=pE(c);p>a&&o.push({keypoints:c,box:d,score:Math.round(100*p)/100})}return o}async function O5(e,t){let n=X(()=>{if(!vr.inputs[0].shape)return[];let o=Se.resizeBilinear(e,[vr.inputs[0].shape[2],vr.inputs[0].shape[1]]),i=pe(de(ge(o,"float32"),127.5),1),u=vr.execute(i,iAe).map(c=>Qe(c,[0]));return u[1]=Cn(u[1]),u}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)ne(o);let r=await hAe(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return vr.inputs[0].shape?hE(r,[e.shape[1],e.shape[2]],[vr.inputs[0].shape[2],vr.inputs[0].shape[1]]):[]}async function yE(e){return!vr||he.initial?vr=await He(e.body.modelPath):e.debug&&oe("cached model:",vr.modelUrl),vr}var Mr,M5=!1;async function z5(e){return!Mr||he.initial?Mr=await He(e.segmentation.modelPath):e.debug&&oe("cached model:",Mr.modelUrl),Mr}async function xE(e,t,n){var m,g;if(M5)return{data:[],canvas:null,alpha:null};M5=!0,Mr||await z5(n);let s=await Tc(e,n),r=((m=s.tensor)==null?void 0:m.shape[2])||0,a=((g=s.tensor)==null?void 0:g.shape[1])||0;if(!s.tensor)return{data:[],canvas:null,alpha:null};let o={};o.resize=Se.resizeBilinear(s.tensor,[Mr.inputs[0].shape?Mr.inputs[0].shape[1]:0,Mr.inputs[0].shape?Mr.inputs[0].shape[2]:0],!1),ne(s.tensor),o.norm=de(o.resize,Je.tf255),o.res=Mr.execute(o.norm),o.squeeze=Qe(o.res,0),o.squeeze.shape[2]===2?(o.softmax=uc(o.squeeze),[o.bg,o.fg]=es(o.softmax,2),o.expand=qt(o.fg,2),o.pad=qt(o.expand,0),o.crop=Se.cropAndResize(o.pad,[[0,0,.5,.5]],[0],[r,a]),o.data=Qe(o.crop,0)):o.data=Se.resizeBilinear(o.squeeze,[a,r]);let i=Array.from(await o.data.data());if(he.node&&!he.Canvas&&typeof ImageData=="undefined")return n.debug&&oe("canvas support missing"),Object.keys(o).forEach(y=>ne(o[y])),{data:i,canvas:null,alpha:null};let l=Kn(r,a);Ps&&await Ps.toPixels(o.data,l);let u=l.getContext("2d");n.segmentation.blur&&n.segmentation.blur>0&&(u.filter=`blur(${n.segmentation.blur}px)`);let c=u.getImageData(0,0,r,a),p=Kn(r,a),d=p.getContext("2d");s.canvas&&d.drawImage(s.canvas,0,0),d.globalCompositeOperation="darken",n.segmentation.blur&&n.segmentation.blur>0&&(d.filter=`blur(${n.segmentation.blur}px)`),d.drawImage(l,0,0),d.globalCompositeOperation="source-over",d.filter="none";let h=d.getImageData(0,0,r,a);for(let y=0;y<r*a;y++)h.data[4*y+3]=c.data[4*y+0];d.putImageData(h,0,0);let f=null;if(t&&p){f=Kn(r,a);let y=await Tc(t,n);ne(y.tensor);let x=f.getContext("2d");x.drawImage(y.canvas,0,0,f.width,f.height),x.drawImage(p,0,0)}return Object.keys(o).forEach(y=>ne(o[y])),M5=!1,{data:i,canvas:p,alpha:l}}var K0=class{constructor(){fe(this,"ssrnetage",null);fe(this,"gear",null);fe(this,"blazeposedetect",null);fe(this,"blazepose",null);fe(this,"centernet",null);fe(this,"efficientpose",null);fe(this,"mobilefacenet",null);fe(this,"emotion",null);fe(this,"facedetect",null);fe(this,"faceiris",null);fe(this,"facemesh",null);fe(this,"faceres",null);fe(this,"ssrnetgender",null);fe(this,"handpose",null);fe(this,"handskeleton",null);fe(this,"handtrack",null);fe(this,"liveness",null);fe(this,"movenet",null);fe(this,"nanodet",null);fe(this,"posenet",null);fe(this,"segmentation",null);fe(this,"antispoof",null)}};function Z0(e){for(let t of Object.keys(e.models))e.models[t]=null}async function L5(e){var t,n,s,r,a,o,i,l,u,c,p,d,h,f,m,g,y,x,A,b,w,S,I,E,R,P,_,D,T,O;he.initial&&Z0(e),e.config.hand.enabled&&(!e.models.handpose&&((n=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:n.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await y5(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(s=e.config.hand.detector)==null?void 0:s.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await y5(e.config))),e.config.body.enabled&&!e.models.blazepose&&((o=(a=e.config.body)==null?void 0:a.modelPath)==null?void 0:o.includes("blazepose"))&&(e.models.blazepose=XT(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&e.config.body.detector&&e.config.body.detector.modelPath&&(e.models.blazeposedetect=qT(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((l=(i=e.config.body)==null?void 0:i.modelPath)==null?void 0:l.includes("efficientpose"))&&(e.models.efficientpose=eN(e.config)),e.config.body.enabled&&!e.models.movenet&&((c=(u=e.config.body)==null?void 0:u.modelPath)==null?void 0:c.includes("movenet"))&&(e.models.movenet=oE(e.config)),e.config.body.enabled&&!e.models.posenet&&((d=(p=e.config.body)==null?void 0:p.modelPath)==null?void 0:d.includes("posenet"))&&(e.models.posenet=yE(e.config)),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=zT(e.config)),e.config.face.enabled&&((h=e.config.face.antispoof)==null?void 0:h.enabled)&&!e.models.antispoof&&(e.models.antispoof=IT(e.config)),e.config.face.enabled&&((f=e.config.face.liveness)==null?void 0:f.enabled)&&!e.models.liveness&&(e.models.liveness=eE(e.config)),e.config.face.enabled&&((m=e.config.face.description)==null?void 0:m.enabled)&&!e.models.faceres&&(e.models.faceres=kN(e.config)),e.config.face.enabled&&((g=e.config.face.emotion)==null?void 0:g.enabled)&&!e.models.emotion&&(e.models.emotion=rN(e.config)),e.config.face.enabled&&((y=e.config.face.iris)==null?void 0:y.enabled)&&!e.models.faceiris&&(e.models.faceiris=fN(e.config)),e.config.face.enabled&&((x=e.config.face.mesh)==null?void 0:x.enabled)&&!e.models.facemesh&&(e.models.facemesh=AN(e.config)),e.config.face.enabled&&((A=e.config.face.gear)==null?void 0:A.enabled)&&!e.models.gear&&(e.models.gear=pT(e.config)),e.config.face.enabled&&((b=e.config.face.ssrnet)==null?void 0:b.enabled)&&!e.models.ssrnetage&&(e.models.ssrnetage=yT(e.config)),e.config.face.enabled&&((w=e.config.face.ssrnet)==null?void 0:w.enabled)&&!e.models.ssrnetgender&&(e.models.ssrnetgender=vT(e.config)),e.config.face.enabled&&((S=e.config.face.mobilefacenet)==null?void 0:S.enabled)&&!e.models.mobilefacenet&&(e.models.mobilefacenet=uN(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((E=(I=e.config.hand.detector)==null?void 0:I.modelPath)==null?void 0:E.includes("handtrack"))&&(e.models.handtrack=KN(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((P=(R=e.config.hand.detector)==null?void 0:R.modelPath)==null?void 0:P.includes("handtrack"))&&(e.models.handskeleton=ZN(e.config)),e.config.object.enabled&&!e.models.centernet&&((D=(_=e.config.object)==null?void 0:_.modelPath)==null?void 0:D.includes("centernet"))&&(e.models.centernet=YT(e.config)),e.config.object.enabled&&!e.models.nanodet&&((O=(T=e.config.object)==null?void 0:T.modelPath)==null?void 0:O.includes("nanodet"))&&(e.models.nanodet=uE(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=z5(e.config));for await(let U of Object.keys(e.models))e.models[U]&&typeof e.models[U]!="undefined"&&(e.models[U]=await e.models[U])}async function B5(e){let t=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"];for(let n of Object.keys(e.models)){let s=e.models[n];if(!s)continue;let r=[],a=s==null?void 0:s.executor;if(a&&a.graph.nodes)for(let i of Object.values(a.graph.nodes)){let l=i.op.toLowerCase();r.includes(l)||r.push(l)}else!a&&e.config.debug&&oe("model signature not determined:",n);let o=[];for(let i of r)!t.includes(i)&&!e.env.kernels.includes(i)&&!e.env.kernels.includes(i.replace("_",""))&&!e.env.kernels.includes(i.replace("native",""))&&!e.env.kernels.includes(i.replace("v2",""))&&o.push(i);e.config.debug&&o.length>0&&oe("model validation failed:",n,o)}}var Nt={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function fAe(){let e=Nt.gl;!e||(Nt.extensions=e.getSupportedExtensions())}async function vE(e){var t;if(e.config.backend==="humangl"&&(Nt.name in yn().registry&&(!Nt.gl||!Nt.gl.getParameter(Nt.gl.VERSION))&&(oe("error: humangl backend invalid context"),Z0(e)),!k1(Nt.name))){try{Nt.canvas=await Kn(100,100)}catch(s){oe("error: cannot create canvas:",s);return}try{if(Nt.gl=(t=Nt.canvas)==null?void 0:t.getContext("webgl2",Nt.webGLattr),!Nt.gl.getParameter(Nt.gl.VERSION).includes("2.0")){oe("override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}Nt.canvas&&(Nt.canvas.addEventListener("webglcontextlost",async r=>{throw oe("error: humangl:",r.type),oe("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("backend error: webgl context lost")}),Nt.canvas.addEventListener("webglcontextrestored",r=>{oe("error: humangl context restored:",r)}),Nt.canvas.addEventListener("webglcontextcreationerror",r=>{oe("error: humangl context create:",r)}))}catch(s){oe("error: cannot get WebGL context:",s);return}try{i0(2,Nt.gl)}catch(s){oe("error: cannot set WebGL context:",s);return}try{let s=new hu(Nt.gl);vl(Nt.name,()=>new Ep(s),Nt.priority)}catch(s){oe("error: cannot register WebGL backend:",s);return}try{Nr("webgl").forEach(r=>{let a={...r,backendName:Nt.name};Us(a)})}catch(s){oe("error: cannot update WebGL backend registration:",s);return}let n=Gs().getGPGPUContext?Gs().getGPGPUContext().gl:null;if(n)oe(`humangl webgl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`);else{oe("error: no current gl context:",n,Nt.gl);return}try{gr.set("WEBGL_VERSION",2)}catch(s){oe("error: cannot set WebGL backend flags:",s);return}fAe(),oe("backend registered:",Nt.name)}}function mAe(){if(!he.kernels.includes("mod")){let e={kernelName:"Mod",backendName:rs(),kernelFunc:t=>X(()=>pe(t.inputs.a,L(de(t.inputs.a,t.inputs.b),t.inputs.b)))};Us(e),he.kernels.push("mod")}if(!he.kernels.includes("floormod")){let e={kernelName:"FloorMod",backendName:rs(),kernelFunc:t=>X(()=>ip(t.inputs.a/t.inputs.b)*t.inputs.b+ic(t.inputs.a,t.inputs.b))};Us(e),he.kernels.push("floormod")}}async function J0(e,t=!1){if(e.state="backend",t||he.initial||e.config.backend&&e.config.backend.length>0&&rs()!==e.config.backend){let n=le();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&oe("running inside web worker"),he.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&oe("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),he.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&oe(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),he.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")oe("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();e.config.debug&&oe("enumerated webgpu adapter:",r)}e.config.backend==="humangl"&&await vE(e);let s=Object.keys(yn().registryFactory);if(e.config.debug&&oe("available backends:",s),s.includes(e.config.backend)||(oe(`error: backend ${e.config.backend} not found in registry`),e.config.backend=he.node?"tensorflow":"webgl",e.config.debug&&oe(`override: setting backend ${e.config.backend}`)),e.config.debug&&oe("setting backend:",e.config.backend),e.config.backend==="wasm"){if(e.config.debug&&oe("wasm path:",e.config.wasmPath),typeof(Ue==null?void 0:Ue.setWasmPaths)!="undefined")await bb(e.config.wasmPath,e.config.wasmPlatformFetch);else throw new Error("backend error: attempting to use wasm backend but wasm path is not set");let r=await J().getAsync("WASM_HAS_SIMD_SUPPORT"),a=await J().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");e.config.debug&&oe(`wasm execution: ${r?"SIMD":"no SIMD"} ${a?"multithreaded":"singlethreaded"}`),e.config.debug&&!r&&oe("warning: wasm simd support is not enabled")}try{await w1(e.config.backend),await sc(),fT()}catch(r){return oe("error: cannot set backend:",e.config.backend,r),!1}}if(rs()==="humangl"&&(gr.set("CHECK_COMPUTATION_FOR_ERRORS",!1),gr.set("WEBGL_CPU_FORWARD",!0),gr.set("WEBGL_USE_SHAPES_UNIFORMS",!0),gr.set("CPU_HANDOFF_SIZE_THRESHOLD",256),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(oe("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),gr.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),Gs().getGPGPUContext)){let s=await Gs().getGPGPUContext().gl;e.config.debug&&oe(`gl version:${s.getParameter(s.VERSION)} renderer:${s.getParameter(s.RENDERER)}`)}rs(),b1(),await sc(),e.performance.initBackend=Math.trunc(le()-n),e.config.backend=rs(),await he.updateBackend(),mAe()}return!0}function B0(e,t){for(let n of e){let s={kernelName:n,backendName:t.backend,kernelFunc:()=>{t.debug&&oe("kernelFunc",n,t.backend)}};Us(s)}he.kernels=Nr(rs()).map(n=>n.kernelName.toLowerCase())}var j5={};ya(j5,{all:()=>H5,body:()=>tg,canvas:()=>G5,face:()=>eg,gesture:()=>Q0,hand:()=>ng,object:()=>sg,options:()=>zr,person:()=>U5});var zr={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawGestures:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1},W5=0,Bl=e=>{if(!e)oe("draw error: invalid canvas");else if(!e.getContext)oe("draw error: canvas context not defined");else{let t=e.getContext("2d");if(!t)oe("draw error: cannot get canvas context");else return t}return null},Wc=e=>Math.round(e*180/Math.PI);function V5(e,t,n,s,r){s=s||0,e.fillStyle=r.useDepth&&s?`rgba(${127.5+2*s}, ${127.5-2*s}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function Xp(e,t,n,s,r,a){if(e.beginPath(),e.lineWidth=a.lineWidth,a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function SE(e,t,n){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t){let r=s[2]||0;e.strokeStyle=n.useDepth&&r!==0?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r!==0?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(s[0],Math.round(s[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function yAe(e,t,n){if(!(t.length<2)){if(e.lineWidth=n.lineWidth,!n.useCurves||t.length<=2){SE(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s<t.length-2;s++){let r=(t[s][0]+t[s+1][0])/2,a=(t[s][1]+t[s+1][1])/2;e.quadraticCurveTo(t[s][0],t[s][1],r,a)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function kE(e,t,n,s=5){let r,a,o;e.beginPath(),e.moveTo(t[0],t[1]),e.lineTo(n[0],n[1]),r=Math.atan2(n[1]-t[1],n[0]-t[0]),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.moveTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),e.closePath(),e.stroke(),e.fill()}async function Q0(e,t,n){let s=kn(zr,n);if(!(!t||!e)&&s.drawGestures){let r=Bl(e);if(!r)return;r.font=s.font,r.fillStyle=s.color;let a=1;for(let o=0;o<t.length;o++){let i=[],l=[];if([i,l]=Object.entries(t[o]),l.length>1&&l[1].length>0){let u=i[1]>0?`#${i[1]}`:"",c=`${i[0]} ${u}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(c,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(c,6,0+a*s.lineHeight),a+=1}}}}async function eg(e,t,n){var a,o,i,l,u;let s=kn(zr,n);if(!t||!e)return;let r=Bl(e);if(!!r)for(let c of t){if(r.font=s.font,r.strokeStyle=s.color,r.fillStyle=s.color,s.drawBoxes&&Xp(r,c.box[0],c.box[1],c.box[2],c.box[3],s),s.drawLabels){let p=[];if(p.push(`face: ${Math.trunc(100*c.score)}%`),c.genderScore&&p.push(`${c.gender||""} ${Math.trunc(100*c.genderScore)}%`),c.age&&p.push(`age: ${c.age||""}`),c.iris&&p.push(`distance: ${c.iris}`),c.real&&p.push(`real: ${Math.trunc(100*c.real)}%`),c.live&&p.push(`live: ${Math.trunc(100*c.live)}%`),c.emotion&&c.emotion.length>0){let d=c.emotion.map(h=>`${Math.trunc(100*h.score)}% ${h.emotion}`);d.length>3&&(d.length=3),p.push(d.join(" "))}c.rotation&&c.rotation.angle&&c.rotation.gaze&&(c.rotation.angle.roll&&p.push(`roll: ${Wc(c.rotation.angle.roll)}\xB0 yaw:${Wc(c.rotation.angle.yaw)}\xB0 pitch:${Wc(c.rotation.angle.pitch)}\xB0`),c.rotation.gaze.bearing&&p.push(`gaze: ${Wc(c.rotation.gaze.bearing)}\xB0`)),p.length===0&&p.push("face"),r.fillStyle=s.color;for(let d=p.length-1;d>=0;d--){let h=Math.max(c.box[0],0),f=d*s.lineHeight+c.box[1];s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(p[d],h+5,f+16)),r.fillStyle=s.labelColor,r.fillText(p[d],h+4,f+15)}}if(r.lineWidth=2,c.mesh&&c.mesh.length>0){if(s.drawPoints)for(let p of c.mesh)V5(r,p[0],p[1],p[2],s);if(s.drawPolygons){if(c.mesh.length>450)for(let p=0;p<$l.length/3;p++){let d=[$l[p*3+0],$l[p*3+1],$l[p*3+2]].map(h=>c.mesh[h]);SE(r,d,s)}if(c.annotations&&c.annotations.leftEyeIris&&c.annotations.leftEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let p=Math.abs(c.annotations.leftEyeIris[3][0]-c.annotations.leftEyeIris[1][0])/2,d=Math.abs(c.annotations.leftEyeIris[4][1]-c.annotations.leftEyeIris[2][1])/2;r.ellipse(c.annotations.leftEyeIris[0][0],c.annotations.leftEyeIris[0][1],p,d,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(c.annotations&&c.annotations.rightEyeIris&&c.annotations.rightEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let p=Math.abs(c.annotations.rightEyeIris[3][0]-c.annotations.rightEyeIris[1][0])/2,d=Math.abs(c.annotations.rightEyeIris[4][1]-c.annotations.rightEyeIris[2][1])/2;r.ellipse(c.annotations.rightEyeIris[0][0],c.annotations.rightEyeIris[0][1],p,d,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(s.drawGaze&&((a=c.rotation)==null?void 0:a.angle)&&typeof Path2D!="undefined"){r.strokeStyle="pink";let p=c.box[0]+c.box[2]/2-c.box[3]*Wc(c.rotation.angle.yaw)/90,d=c.box[1]+c.box[3]/2+c.box[2]*Wc(c.rotation.angle.pitch)/90,h=new Path2D(`
|
|
M ${c.box[0]+c.box[2]/2} ${c.box[1]}
|
|
C
|
|
${p} ${c.box[1]},
|
|
${p} ${c.box[1]+c.box[3]},
|
|
${c.box[0]+c.box[2]/2} ${c.box[1]+c.box[3]}
|
|
`),f=new Path2D(`
|
|
M ${c.box[0]} ${c.box[1]+c.box[3]/2}
|
|
C
|
|
${c.box[0]} ${d},
|
|
${c.box[0]+c.box[2]} ${d},
|
|
${c.box[0]+c.box[2]} ${c.box[1]+c.box[3]/2}
|
|
`);r.stroke(f),r.stroke(h)}if(s.drawGaze&&((i=(o=c.rotation)==null?void 0:o.gaze)==null?void 0:i.strength)&&((u=(l=c.rotation)==null?void 0:l.gaze)==null?void 0:u.bearing)&&c.annotations.leftEyeIris&&c.annotations.rightEyeIris&&c.annotations.leftEyeIris[0]&&c.annotations.rightEyeIris[0]){r.strokeStyle="pink",r.fillStyle="pink";let p=[c.annotations.leftEyeIris[0][0]+Math.sin(c.rotation.gaze.bearing)*c.rotation.gaze.strength*c.box[3],c.annotations.leftEyeIris[0][1]+Math.cos(c.rotation.gaze.bearing)*c.rotation.gaze.strength*c.box[2]];kE(r,[c.annotations.leftEyeIris[0][0],c.annotations.leftEyeIris[0][1]],[p[0],p[1]],4);let d=[c.annotations.rightEyeIris[0][0]+Math.sin(c.rotation.gaze.bearing)*c.rotation.gaze.strength*c.box[3],c.annotations.rightEyeIris[0][1]+Math.cos(c.rotation.gaze.bearing)*c.rotation.gaze.strength*c.box[2]];kE(r,[c.annotations.rightEyeIris[0][0],c.annotations.rightEyeIris[0][1]],[d[0],d[1]],4)}}}}}async function tg(e,t,n){var a;let s=kn(zr,n);if(!t||!e)return;let r=Bl(e);if(!!r){r.lineJoin="round";for(let o=0;o<t.length;o++){if(r.strokeStyle=s.color,r.fillStyle=s.color,r.lineWidth=s.lineWidth,r.font=s.font,s.drawBoxes&&t[o].box&&((a=t[o].box)==null?void 0:a.length)===4&&(Xp(r,t[o].box[0],t[o].box[1],t[o].box[2],t[o].box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+3,1+t[o].box[1]+s.lineHeight,t[o].box[2])),r.fillStyle=s.labelColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+2,0+t[o].box[1]+s.lineHeight,t[o].box[2]))),s.drawPoints&&t[o].keypoints)for(let i=0;i<t[o].keypoints.length;i++)!t[o].keypoints[i].score||t[o].keypoints[i].score===0||(r.fillStyle=s.useDepth&&t[o].keypoints[i].position[2]?`rgba(${127.5+2*(t[o].keypoints[i].position[2]||0)}, ${127.5-2*(t[o].keypoints[i].position[2]||0)}, 255, 0.5)`:s.color,V5(r,t[o].keypoints[i].position[0],t[o].keypoints[i].position[1],0,s));if(s.drawLabels&&t[o].keypoints){r.font=s.font;for(let i of t[o].keypoints)!i.score||i.score===0||(r.fillStyle=s.useDepth&&i.position[2]?`rgba(${127.5+2*i.position[2]}, ${127.5-2*i.position[2]}, 255, 0.5)`:s.color,r.fillText(`${i.part} ${Math.trunc(100*i.score)}%`,i.position[0]+4,i.position[1]+4))}if(s.drawPolygons&&t[o].keypoints&&t[o].annotations)for(let i of Object.values(t[o].annotations))for(let l of i)yAe(r,l,s)}}}async function ng(e,t,n){let s=kn(zr,n);if(!t||!e)return;let r=Bl(e);if(!!r){r.lineJoin="round",r.font=s.font;for(let a of t){if(s.drawBoxes&&(r.strokeStyle=s.color,r.fillStyle=s.color,Xp(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])),r.stroke()),s.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)r.fillStyle=s.useDepth?`rgba(${127.5+2*(o[2]||0)}, ${127.5-2*(o[2]||0)}, 255, 0.5)`:s.color,V5(r,o[0],o[1],0,s);if(s.drawLabels&&a.annotations){let o=(i,l)=>{if(!i||i.length===0||!i[0])return;let u=i[i.length-1][2]||0;r.fillStyle=s.useDepth?`rgba(${127.5+2*u}, ${127.5-2*u}, 255, 0.5)`:s.color,r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4)};r.font=s.font,o(a.annotations.index,"index"),o(a.annotations.middle,"middle"),o(a.annotations.ring,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palm,"palm")}if(s.drawPolygons&&a.annotations){let o=i=>{if(!(!i||i.length===0||!i[0]))for(let l=0;l<i.length;l++){r.beginPath();let u=i[l][2]||0;r.strokeStyle=s.useDepth?`rgba(${127.5+l*u}, ${127.5-l*u}, 255, 0.5)`:s.color,r.moveTo(i[l>0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()}};r.lineWidth=s.lineWidth,o(a.annotations.index),o(a.annotations.middle),o(a.annotations.ring),o(a.annotations.pinky),o(a.annotations.thumb)}}}}async function sg(e,t,n){let s=kn(zr,n);if(!t||!e)return;let r=Bl(e);if(!!r){r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,Xp(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}}async function U5(e,t,n){let s=kn(zr,n);if(!t||!e)return;let r=Bl(e);if(!!r){r.lineJoin="round",r.font=s.font;for(let a=0;a<t.length;a++)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,Xp(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels){let o=`person #${a}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(o,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2])}r.stroke()}}}async function G5(e,t){if(!e||!t)return;let n=Bl(t);!n||n.drawImage(e,0,0)}async function H5(e,t,n){if(!t||!t.performance||!t||!e)return null;let s=le(),r=kn(zr,n),a=Promise.all([eg(e,t.face,r),tg(e,t.body,r),ng(e,t.hand,r),sg(e,t.object,r),Q0(e,t.gesture,r)]);return W5=he.perfadd?W5+Math.round(le()-s):Math.round(le()-s),t.performance.draw=W5,a}var Vc=.1,q5=.5;function AAe(e,t,n){let s=!1,r=n.length-1;for(let a=0;a<n.length;r=a++)n[a].y>t!=n[r].y>t&&e<(n[r].x-n[a].x)*(t-n[a].y)/(n[r].y-n[a].y)+n[a].x&&(s=!s);return s}async function IE(e){if(!e.tensor||!e.mesh||e.mesh.length<100)return e.tensor;let t=e.tensor.shape[2]||0,n=e.tensor.shape[1]||0,s=await e.tensor.buffer(),r=[];for(let o of Ys.silhouette)r.push({x:(e.mesh[o][0]-e.box[0])/e.box[2],y:(e.mesh[o][1]-e.box[1])/e.box[3]});Vc&&Vc>0&&(r=r.map(o=>({x:o.x>.5?o.x+Vc:o.x-Vc,y:o.y>.5?o.y+Vc:o.y-Vc})));for(let o=0;o<t;o++)for(let i=0;i<n;i++)AAe(o/t,i/t,r)||(s.set(q5*s.get(0,i,o,0),0,i,o,0),s.set(q5*s.get(0,i,o,1),0,i,o,1),s.set(q5*s.get(0,i,o,2),0,i,o,2));let a=s.toTensor();return ne(s),a}var bAe=e=>{let t=(p,d)=>Math.atan2(p[1]-d[1],p[0]-d[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=(e.mesh[33][2]||0)>(e.mesh[263][2]||0),a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],u=Math.sqrt(l[0]*l[0]+l[1]*l[1]);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},CE=(e,t)=>{let n=m=>{let g=Math.sqrt(m[0]*m[0]+m[1]*m[1]+m[2]*m[2]);return m[0]/=g,m[1]/=g,m[2]/=g,m},s=(m,g)=>{let y=m[0]-g[0],x=m[1]-g[1],A=m[2]-g[2];return[y,x,A]},r=(m,g)=>{let y=m[1]*g[2]-m[2]*g[1],x=m[2]*g[0]-m[0]*g[2],A=m[0]*g[1]-m[1]*g[0];return[y,x,A]},a=m=>{let[g,y,x,A,b,w,S,I,E]=m,R,P,_;return A<1?A>-1?(_=Math.asin(A),P=Math.atan2(-S,g),R=Math.atan2(-w,b)):(_=-Math.PI/2,P=-Math.atan2(I,E),R=0):(_=Math.PI/2,P=Math.atan2(I,E),R=0),isNaN(R)&&(R=0),isNaN(P)&&(P=0),isNaN(_)&&(_=0),{pitch:2*-R,yaw:2*-P,roll:2*-_}},o=e.meshRaw;if(!o||o.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let i=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,l=[o[10],o[152],o[234],o[454]].map(m=>[m[0]*t[0]/i,m[1]*t[1]/i,m[2]]),u=n(s(l[1],l[0])),c=n(s(l[3],l[2])),p=n(r(c,u));c=r(u,p);let d=[c[0],c[1],c[2],u[0],u[1],u[2],p[0],p[1],p[2]],h=a(d),f=o.length===478?bAe(e):{bearing:0,strength:0};return{angle:h,matrix:d,gaze:f}};var X5=async(e,t)=>{var h,f,m,g,y,x,A,b,w,S,I,E,R,P,_,D,T,O,U,K,z,Z;let n=le(),s,r,a,o,i,l,u,c,p=[];e.state="run:face";let d=await yN(t,e.config);if(e.performance.face=he.perfadd?(e.performance.face||0)+Math.trunc(le()-n):Math.trunc(le()-n),!t.shape||t.shape.length!==4)return[];if(!d)return[];for(let W=0;W<d.length;W++){if(e.analyze("Get Face"),!d[W].tensor||d[W].tensor.isDisposedInternal){oe("Face object is disposed:",d[W].tensor);continue}if((h=e.config.face.detector)!=null&&h.mask){let re=await IE(d[W]);ne(d[W].tensor),d[W].tensor=re}let ee=d[W].mesh&&d[W].mesh.length>200?CE(d[W],[t.shape[2],t.shape[1]]):null;e.analyze("Start Emotion:"),e.config.async?o=(f=e.config.face.emotion)!=null&&f.enabled?e5(d[W].tensor||pt([]),e.config,W,d.length):[]:(e.state="run:emotion",n=le(),o=(m=e.config.face.emotion)!=null&&m.enabled?await e5(d[W].tensor||pt([]),e.config,W,d.length):[],e.performance.emotion=he.perfadd?(e.performance.emotion||0)+Math.trunc(le()-n):Math.trunc(le()-n)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?l=(g=e.config.face.antispoof)!=null&&g.enabled?Db(d[W].tensor||pt([]),e.config,W,d.length):0:(e.state="run:antispoof",n=le(),l=(y=e.config.face.antispoof)!=null&&y.enabled?await Db(d[W].tensor||pt([]),e.config,W,d.length):0,e.performance.antispoof=he.perfadd?(e.performance.antispoof||0)+Math.trunc(le()-n):Math.trunc(le()-n)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?u=(x=e.config.face.liveness)!=null&&x.enabled?w5(d[W].tensor||pt([]),e.config,W,d.length):0:(e.state="run:liveness",n=le(),u=(A=e.config.face.liveness)!=null&&A.enabled?await w5(d[W].tensor||pt([]),e.config,W,d.length):0,e.performance.liveness=he.perfadd?(e.performance.antispoof||0)+Math.trunc(le()-n):Math.trunc(le()-n)),e.analyze("End Liveness:"),e.analyze("Start GEAR:"),e.config.async?r=(b=e.config.face.gear)!=null&&b.enabled?Cb(d[W].tensor||pt([]),e.config,W,d.length):null:(e.state="run:gear",n=le(),r=(w=e.config.face.gear)!=null&&w.enabled?await Cb(d[W].tensor||pt([]),e.config,W,d.length):null,e.performance.gear=Math.trunc(le()-n)),e.analyze("End GEAR:"),e.analyze("Start SSRNet:"),e.config.async?(s=(S=e.config.face.ssrnet)!=null&&S.enabled?Nb(d[W].tensor||pt([]),e.config,W,d.length):null,a=(I=e.config.face.ssrnet)!=null&&I.enabled?_b(d[W].tensor||pt([]),e.config,W,d.length):null):(e.state="run:ssrnet",n=le(),s=(E=e.config.face.ssrnet)!=null&&E.enabled?await Nb(d[W].tensor||pt([]),e.config,W,d.length):null,a=(R=e.config.face.ssrnet)!=null&&R.enabled?await _b(d[W].tensor||pt([]),e.config,W,d.length):null,e.performance.ssrnet=Math.trunc(le()-n)),e.analyze("End SSRNet:"),e.analyze("Start MobileFaceNet:"),e.config.async?i=(P=e.config.face.mobilefacenet)!=null&&P.enabled?n5(d[W].tensor||pt([]),e.config,W,d.length):null:(e.state="run:mobilefacenet",n=le(),i=(_=e.config.face.mobilefacenet)!=null&&_.enabled?await n5(d[W].tensor||pt([]),e.config,W,d.length):null,e.performance.mobilefacenet=Math.trunc(le()-n)),e.analyze("End MobileFaceNet:"),e.analyze("Start Description:"),e.config.async?c=(D=e.config.face.description)!=null&&D.enabled?l5(d[W].tensor||pt([]),e.config,W,d.length):null:(e.state="run:description",n=le(),c=(T=e.config.face.description)!=null&&T.enabled?await l5(d[W].tensor||pt([]),e.config,W,d.length):null,e.performance.description=he.perfadd?(e.performance.description||0)+Math.trunc(le()-n):Math.trunc(le()-n)),e.analyze("End Description:"),e.config.async&&([s,a,o,i,c,r,l,u]=await Promise.all([s,a,o,i,c,r,l,u])),e.analyze("Finish Face:"),((O=e.config.face.ssrnet)==null?void 0:O.enabled)&&s&&a&&(c={...c,age:s.age,gender:a.gender,genderScore:a.genderScore}),((U=e.config.face.gear)==null?void 0:U.enabled)&&r&&(c={...c,age:r.age,gender:r.gender,genderScore:r.genderScore,race:r.race}),((K=e.config.face.mobilefacenet)==null?void 0:K.enabled)&&i&&(c.descriptor=i),(z=e.config.face.iris)!=null&&z.enabled;let Q=d[W].annotations&&d[W].annotations.leftEyeIris&&d[W].annotations.leftEyeIris[0]&&d[W].annotations.rightEyeIris&&d[W].annotations.rightEyeIris[0]&&d[W].annotations.leftEyeIris.length>0&&d[W].annotations.rightEyeIris.length>0&&d[W].annotations.leftEyeIris[0]!==null&&d[W].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(d[W].annotations.leftEyeIris[3][0]-d[W].annotations.leftEyeIris[1][0]),Math.abs(d[W].annotations.rightEyeIris[4][1]-d[W].annotations.rightEyeIris[2][1]))/t.shape[2]:0,ae=(Z=e.config.face.detector)!=null&&Z.return?Qe(d[W].tensor):null;ne(d[W].tensor),d[W].tensor&&delete d[W].tensor;let Y={...d[W],id:W};c!=null&&c.age&&(Y.age=c.age),c!=null&&c.gender&&(Y.gender=c.gender),c!=null&&c.genderScore&&(Y.genderScore=c==null?void 0:c.genderScore),c!=null&&c.descriptor&&(Y.embedding=c==null?void 0:c.descriptor),c!=null&&c.race&&(Y.race=c==null?void 0:c.race),o&&(Y.emotion=o),l&&(Y.real=l),u&&(Y.live=u),Q&&Q!==0&&(Y.iris=Math.trunc(500/Q/11.7)/100),ee&&(Y.rotation=ee),ae&&(Y.tensor=ae),p.push(Y),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),p};var TE=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position[1]<a.position[1]&&r.position[1]<a.position[1]?t.push({body:n,gesture:"i give up"}):a&&s&&s.position[1]<a.position[1]?t.push({body:n,gesture:"raise left hand"}):a&&r&&r.position[1]<a.position[1]&&t.push({body:n,gesture:"raise right hand"});let o=e[n].keypoints.find(l=>l.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&Math.abs(o.positionRaw[1]-i.positionRaw[1])>.1&&t.push({body:n,gesture:`leaning ${o.position[1]>i.position[1]?"left":"right"}`})}return t},NE=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>450){let s=(e[n].mesh[33][2]||0)-(e[n].mesh[263][2]||0),r=e[n].mesh[33][0]-e[n].mesh[263][0];Math.abs(s/r)<=.15?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let l=e[n].mesh[152][2]||0;Math.abs(l)>10&&t.push({face:n,gesture:`head ${l<0?"up":"down"}`})}return t},EE=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.leftEyeIris[0]||!e[n].annotations.rightEyeIris||!e[n].annotations.rightEyeIris[0])continue;let s=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],a=Math.abs(s*r),o=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],i=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(o*i),u=!1;Math.abs(a-l)/Math.max(a,l)<.25&&(u=!0,t.push({iris:n,gesture:"facing center"}));let p=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].box[2],d=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].box[2];(p>.06||d>.06)&&(u=!1),p>d?p>.05&&t.push({iris:n,gesture:"looking right"}):d>.05&&t.push({iris:n,gesture:"looking left"});let h=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],f=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(f<.01||h<.01||f>.022||h>.022)&&(u=!1),(f<.01||h<.01)&&t.push({iris:n,gesture:"looking down"}),(f>.022||h>.022)&&t.push({iris:n,gesture:"looking up"}),u&&t.push({iris:n,gesture:"looking center"})}return t},RE=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=[];if(e[n].annotations)for(let[r,a]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(a)&&a[0]&&s.push({name:r.toLowerCase(),position:a[0]});if(s&&s.length>0){let r=s.reduce((o,i)=>(o.position[2]||0)<(i.position[2]||0)?o:i);t.push({hand:n,gesture:`${r.name} forward`});let a=s.reduce((o,i)=>o.position[1]<i.position[1]?o:i);t.push({hand:n,gesture:`${a.name} up`})}if(e[n].keypoints){let r=VN(e[n].keypoints);for(let a of r)t.push({hand:n,gesture:a.name})}}return t};var Ne={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,error:null},K5=0;function _E(e,t){var o,i,l,u,c,p,d,h,f,m,g,y,x,A,b,w,S,I,E,R,P,_,D,T,O,U,K;let n=le();if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,error:null};let s=Date.now()-e.timestamp,r=s<1e3?8-Math.log(s+1):1;if(e.canvas&&(Ne.canvas=e.canvas),e.error&&(Ne.error=e.error),!Ne.body||e.body.length!==Ne.body.length)Ne.body=JSON.parse(JSON.stringify(e.body));else for(let z=0;z<e.body.length;z++){let Z=e.body[z].box.map((Y,re)=>((r-1)*Ne.body[z].box[re]+Y)/r),W=e.body[z].boxRaw.map((Y,re)=>((r-1)*Ne.body[z].boxRaw[re]+Y)/r),ee=e.body[z].keypoints.map((Y,re)=>{var ie,me,be,Ee,Re,ze,Be,tt,it;return{score:Y.score,part:Y.part,position:[Ne.body[z].keypoints[re]?((r-1)*(Ne.body[z].keypoints[re].position[0]||0)+(Y.position[0]||0))/r:Y.position[0],Ne.body[z].keypoints[re]?((r-1)*(Ne.body[z].keypoints[re].position[1]||0)+(Y.position[1]||0))/r:Y.position[1],Ne.body[z].keypoints[re]?((r-1)*(Ne.body[z].keypoints[re].position[2]||0)+(Y.position[2]||0))/r:Y.position[2]],positionRaw:[Ne.body[z].keypoints[re]?((r-1)*(Ne.body[z].keypoints[re].positionRaw[0]||0)+(Y.positionRaw[0]||0))/r:Y.positionRaw[0],Ne.body[z].keypoints[re]?((r-1)*(Ne.body[z].keypoints[re].positionRaw[1]||0)+(Y.positionRaw[1]||0))/r:Y.positionRaw[1],Ne.body[z].keypoints[re]?((r-1)*(Ne.body[z].keypoints[re].positionRaw[2]||0)+(Y.positionRaw[2]||0))/r:Y.positionRaw[2]],distance:[Ne.body[z].keypoints[re]?((r-1)*(((ie=Ne.body[z].keypoints[re].distance)==null?void 0:ie[0])||0)+(((me=Y.distance)==null?void 0:me[0])||0))/r:(be=Y.distance)==null?void 0:be[0],Ne.body[z].keypoints[re]?((r-1)*(((Ee=Ne.body[z].keypoints[re].distance)==null?void 0:Ee[1])||0)+(((Re=Y.distance)==null?void 0:Re[1])||0))/r:(ze=Y.distance)==null?void 0:ze[1],Ne.body[z].keypoints[re]?((r-1)*(((Be=Ne.body[z].keypoints[re].distance)==null?void 0:Be[2])||0)+(((tt=Y.distance)==null?void 0:tt[2])||0))/r:(it=Y.distance)==null?void 0:it[2]]}}),Q={},ae={connected:{}};(i=(o=t.body)==null?void 0:o.modelPath)!=null&&i.includes("efficientpose")?ae=_0:(u=(l=t.body)==null?void 0:l.modelPath)!=null&&u.includes("blazepose")?ae=C0:(p=(c=t.body)==null?void 0:c.modelPath)!=null&&p.includes("movenet")&&(ae=Hp);for(let[Y,re]of Object.entries(ae.connected)){let ie=[];for(let me=0;me<re.length-1;me++){let be=ee.find(Re=>Re.part===re[me]),Ee=ee.find(Re=>Re.part===re[me+1]);be&&Ee&&ie.push([be.position,Ee.position])}Q[Y]=ie}Ne.body[z]={...e.body[z],box:Z,boxRaw:W,keypoints:ee,annotations:Q}}if(!Ne.hand||e.hand.length!==Ne.hand.length)Ne.hand=JSON.parse(JSON.stringify(e.hand));else for(let z=0;z<e.hand.length;z++){let Z=e.hand[z].box.map((ae,Y)=>((r-1)*Ne.hand[z].box[Y]+ae)/r),W=e.hand[z].boxRaw.map((ae,Y)=>((r-1)*Ne.hand[z].boxRaw[Y]+ae)/r);Ne.hand[z].keypoints.length!==e.hand[z].keypoints.length&&(Ne.hand[z].keypoints=e.hand[z].keypoints);let ee=e.hand[z].keypoints&&e.hand[z].keypoints.length>0?e.hand[z].keypoints.map((ae,Y)=>ae.map((re,ie)=>((r-1)*(Ne.hand[z].keypoints[Y][ie]||1)+(re||0))/r)):[],Q={};if(Object.keys(Ne.hand[z].annotations).length!==Object.keys(e.hand[z].annotations).length)Ne.hand[z].annotations=e.hand[z].annotations,Q=Ne.hand[z].annotations;else if(e.hand[z].annotations)for(let ae of Object.keys(e.hand[z].annotations))Q[ae]=e.hand[z].annotations[ae]&&e.hand[z].annotations[ae][0]?e.hand[z].annotations[ae].map((Y,re)=>Y.map((ie,me)=>((r-1)*Ne.hand[z].annotations[ae][re][me]+ie)/r)):null;Ne.hand[z]={...e.hand[z],box:Z,boxRaw:W,keypoints:ee,annotations:Q}}if(!Ne.face||e.face.length!==Ne.face.length)Ne.face=JSON.parse(JSON.stringify(e.face));else for(let z=0;z<e.face.length;z++){let Z=e.face[z].box.map((ee,Q)=>((r-1)*Ne.face[z].box[Q]+ee)/r),W=e.face[z].boxRaw.map((ee,Q)=>((r-1)*Ne.face[z].boxRaw[Q]+ee)/r);if(e.face[z].rotation){let ee={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};ee.matrix=(d=e.face[z].rotation)==null?void 0:d.matrix,ee.angle={roll:((r-1)*(((f=(h=Ne.face[z].rotation)==null?void 0:h.angle)==null?void 0:f.roll)||0)+(((g=(m=e.face[z].rotation)==null?void 0:m.angle)==null?void 0:g.roll)||0))/r,yaw:((r-1)*(((x=(y=Ne.face[z].rotation)==null?void 0:y.angle)==null?void 0:x.yaw)||0)+(((b=(A=e.face[z].rotation)==null?void 0:A.angle)==null?void 0:b.yaw)||0))/r,pitch:((r-1)*(((S=(w=Ne.face[z].rotation)==null?void 0:w.angle)==null?void 0:S.pitch)||0)+(((E=(I=e.face[z].rotation)==null?void 0:I.angle)==null?void 0:E.pitch)||0))/r},ee.gaze={bearing:((r-1)*(((P=(R=Ne.face[z].rotation)==null?void 0:R.gaze)==null?void 0:P.bearing)||0)+(((D=(_=e.face[z].rotation)==null?void 0:_.gaze)==null?void 0:D.bearing)||0))/r,strength:((r-1)*(((O=(T=Ne.face[z].rotation)==null?void 0:T.gaze)==null?void 0:O.strength)||0)+(((K=(U=e.face[z].rotation)==null?void 0:U.gaze)==null?void 0:K.strength)||0))/r},Ne.face[z]={...e.face[z],rotation:ee,box:Z,boxRaw:W}}Ne.face[z]={...e.face[z],box:Z,boxRaw:W}}if(!Ne.object||e.object.length!==Ne.object.length)Ne.object=JSON.parse(JSON.stringify(e.object));else for(let z=0;z<e.object.length;z++){let Z=e.object[z].box.map((ee,Q)=>((r-1)*Ne.object[z].box[Q]+ee)/r),W=e.object[z].boxRaw.map((ee,Q)=>((r-1)*Ne.object[z].boxRaw[Q]+ee)/r);Ne.object[z]={...e.object[z],box:Z,boxRaw:W}}if(e.persons){let z=e.persons;if(!Ne.persons||z.length!==Ne.persons.length)Ne.persons=JSON.parse(JSON.stringify(z));else for(let Z=0;Z<z.length;Z++)Ne.persons[Z].box=z[Z].box.map((W,ee)=>((r-1)*Ne.persons[Z].box[ee]+W)/r)}e.gesture&&(Ne.gesture=e.gesture);let a=le();return K5=he.perfadd?K5+Math.round(a-n):Math.round(a-n),e.performance&&(Ne.performance={...e.performance,interpolate:K5}),Ne}var J5={};ya(J5,{distance:()=>Kp,match:()=>Y5,similarity:()=>Z5});function Kp(e,t,n={order:2,multiplier:25}){let s=0;for(let r=0;r<e.length;r++){let a=!n.order||n.order===2?e[r]-t[r]:Math.abs(e[r]-t[r]);s+=!n.order||n.order===2?a*a:a**n.order}return(n.multiplier||20)*s}var $E=(e,t,n,s)=>{if(e===0)return 1;let r=t===2?Math.sqrt(e):e**(1/t),a=(1-r/100-n)/(s-n);return Math.max(Math.min(a,1),0)};function Z5(e,t,n={order:2,multiplier:25,min:.2,max:.8}){let s=Kp(e,t,n);return $E(s,n.order||2,n.min||0,n.max||1)}function Y5(e,t,n={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0||e.length!==t[0].length)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let s=Number.MAX_SAFE_INTEGER,r=-1;for(let o=0;o<t.length;o++){let i=Kp(e,t[o],n);if(i<s&&(s=i,r=o),s<(n.threshold||0))break}let a=$E(s,n.order||2,n.min||0,n.max||1);return{index:r,distance:s,similarity:a}}function DE(e,t,n,s,r){var i,l,u,c,p,d,h,f,m,g,y,x,A,b,w,S;let a=0,o=[];for(let I of e){let E={id:a++,face:I,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let O of t)I.box[0]>O.box[0]&&I.box[0]<O.box[0]+O.box[2]&&I.box[1]+I.box[3]>O.box[1]&&I.box[1]+I.box[3]<O.box[1]+O.box[3]&&(E.body=O);if(E.body)for(let O of n)O.box[0]+O.box[2]>E.body.box[0]&&O.box[0]+O.box[2]<E.body.box[0]+E.body.box[2]&&O.box[1]+O.box[3]>E.body.box[1]&&O.box[1]+O.box[3]<E.body.box[1]+E.body.box[3]&&E.hands&&(E.hands.left=O),O.box[0]<E.body.box[0]+E.body.box[2]&&O.box[0]>E.body.box[0]&&O.box[1]+O.box[3]>E.body.box[1]&&O.box[1]+O.box[3]<E.body.box[1]+E.body.box[3]&&E.hands&&(E.hands.right=O);for(let O of s)O.face!==void 0&&O.face===I.id?(i=E.gestures)==null||i.push(O):O.iris!==void 0&&O.iris===I.id?(l=E.gestures)==null||l.push(O):O.body!==void 0&&O.body===((u=E.body)==null?void 0:u.id)?(c=E.gestures)==null||c.push(O):O.hand!==void 0&&O.hand===((d=(p=E.hands)==null?void 0:p.left)==null?void 0:d.id)?(h=E.gestures)==null||h.push(O):O.hand!==void 0&&O.hand===((m=(f=E.hands)==null?void 0:f.right)==null?void 0:m.id)&&((g=E.gestures)==null||g.push(O));let R=[],P=[],_=O=>{O&&O.length===4&&(R.push(O[0],O[0]+O[2]),P.push(O[1],O[1]+O[3]))};_((y=E.face)==null?void 0:y.box),_((x=E.body)==null?void 0:x.box),_((b=(A=E.hands)==null?void 0:A.left)==null?void 0:b.box),_((S=(w=E.hands)==null?void 0:w.right)==null?void 0:S.box);let D=Math.min(...R),T=Math.min(...P);E.box=[D,T,Math.max(...R)-D,Math.max(...P)-T],r&&r[1]&&r[2]&&(E.boxRaw=[E.box[0]/r[2],E.box[1]/r[1],E.box[2]/r[2],E.box[3]/r[1]]),o.push(E)}return o}var rg=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,ag=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;async function CAe(e){let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(e.config.warmup){case"face":n=await t(rg);break;case"body":case"full":n=await t(ag);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await e.detect(r,e.config),r.close()}return s}async function TAe(e){return new Promise(t=>{let n;switch(e.config.warmup){case"face":n="data:image/jpeg;base64,"+rg;break;case"full":case"body":n="data:image/jpeg;base64,"+ag;break;default:n=null}let s;if(typeof Image!="undefined")s=new Image;else if(he.Image)s=new he.Image;else return;s.onload=async()=>{let r=Kn(s.naturalWidth,s.naturalHeight);if(!r)oe("Warmup: Canvas not found"),t(void 0);else{let a=r.getContext("2d");a&&a.drawImage(s,0,0);let o=await e.image(r),i=await e.detect(o.tensor,e.config);t(i)}},n?s.src=n:t(void 0)})}async function NAe(e){let t=r=>Buffer.from(r,"base64"),n;e.config.warmup==="face"?n=t(rg):n=t(ag);let s;if("node"in Ue){let r=(void 0).decodeJpeg(n),a=r.expandDims(0);e.tf.dispose(r),s=await e.detect(a,e.config),e.tf.dispose(a)}else e.config.debug&&oe("Warmup tfjs-node not loaded");return s}async function EAe(e){let t;return typeof createImageBitmap=="function"?t=await CAe(e):typeof Image!="undefined"||he.Canvas!==void 0?t=await TAe(e):t=await NAe(e),t}async function PE(e,t){let n=le();return e.state="warmup",t&&(e.config=kn(e.config,t)),!e.config.warmup||e.config.warmup.length===0||e.config.warmup==="none"?{face:[],body:[],hand:[],gesture:[],object:[],performance:e.performance,timestamp:le(),persons:[],error:null}:new Promise(async s=>{let r=await EAe(e),a=le();e.config.debug&&oe("warmup",e.config.warmup,Math.round(a-n),"ms"),e.emit("warmup"),s(r)})}var Uc,Zp,Yp,og,FE=class{constructor(t){fe(this,"version");fe(this,"config");fe(this,"result");fe(this,"state");fe(this,"process");fe(this,"tf");fe(this,"env");fe(this,"draw");fe(this,"models");fe(this,"events");fe(this,"faceTriangulation");fe(this,"faceUVMap");fe(this,"performance");sd(this,Uc,void 0);sd(this,Zp,void 0);sd(this,Yp,void 0);fe(this,"gl");fe(this,"analyze",(...t)=>{if(!nd(this,Zp))return;let n=this.tf.engine().state.numTensors,s=nd(this,Uc);rd(this,Uc,n);let r=n-s;r!==0&&oe(...t,r)});sd(this,og,t=>{if(!nd(this,Yp))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof nt))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});fe(this,"similarity",Z5);fe(this,"distance",Kp);fe(this,"match",Y5);fe(this,"emit",t=>{var n;this.events&&this.events.dispatchEvent&&((n=this.events)==null||n.dispatchEvent(new Event(t)))});this.env=he,Aa.wasmPath=zp["tfjs-core"].includes("-")?"https://vladmandic.github.io/tfjs/dist/":`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${x1}/dist/`,Aa.modelBasePath=he.browser?"../models/":"file://models/",Aa.backend=he.browser?"humangl":"tensorflow",this.version=kb,Object.defineProperty(this,"version",{value:kb}),this.config=JSON.parse(JSON.stringify(Aa)),Object.seal(this.config),this.config.cacheModels=typeof indexedDB!="undefined",t&&(this.config=kn(this.config,t)),uT(this.config),this.tf=Ue,this.state="idle",rd(this,Uc,0),rd(this,Zp,!1),rd(this,Yp,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new K0,this.draw={options:zr,canvas:(n,s)=>G5(n,s),face:(n,s,r)=>eg(n,s,r),body:(n,s,r)=>tg(n,s,r),hand:(n,s,r)=>ng(n,s,r),gesture:(n,s,r)=>Q0(n,s,r),object:(n,s,r)=>sg(n,s,r),person:(n,s,r)=>U5(n,s,r),all:(n,s,r)=>H5(n,s,r)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[],error:null},this.process={tensor:null,canvas:null},this.faceTriangulation=xN,this.faceUVMap=bN,this.gl=Nt,this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(Aa)),this.config.backend=t}validate(t){return z2(Aa,t||this.config)}now(){return le()}image(t,n=!0){return Tc(t,this.config,n)}async segmentation(t,n){return xE(t,n,this.config)}enhance(t){return i5(t)}compare(t,n){return iT(this.config,t,n)}async init(){await J0(this,!0),await this.tf.ready()}async load(t){this.state="load";let n=le(),s=Object.values(this.models).filter(o=>o).length;t&&(this.config=kn(this.config,t)),this.env.initial&&(this.config.debug&&oe(`version: ${this.version}`),this.config.debug&&oe(`tfjs version: ${this.tf.version["tfjs-core"]}`),await J0(this)||oe("error: backend check failed"),await sc(),this.env.browser&&(this.config.debug&&oe("configuration:",this.config),this.config.debug&&oe("environment:",this.env),this.config.debug&&oe("tf flags:",this.tf.ENV.flags))),await L5(this),this.env.initial&&this.config.debug&&oe("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(o=>o).length!==s&&(await B5(this),this.emit("load"));let a=Math.trunc(le()-n);a>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+a:a)}next(t=this.result){return _E(t,this.config)}async warmup(t){let n=le(),s=await PE(this,t),r=le();return this.performance.warmup=Math.trunc(r-n),s}async profile(t,n){let s=await this.tf.profile(()=>this.detect(t,n)),r={};for(let i of s.kernels)r[i.name]?r[i.name]+=i.kernelTimeMs:r[i.name]=i.kernelTimeMs;let a=[];Object.entries(r).forEach(i=>a.push({name:i[0],ms:i[1]})),a.sort((i,l)=>l.ms-i.ms),a.length=20;let o={};for(let i of a)o[i.name]=i.ms;return o}async detect(t,n){return this.state="detect",new Promise(async s=>{var g,y,x,A,b,w,S,I,E,R,P,_,D,T,O,U,K,z,Z,W,ee,Q;this.state="config";let r;this.config=kn(this.config,n),this.state="check";let a=nd(this,og).call(this,t);a&&(oe(a,t),this.emit("error"),s({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:le(),persons:[],error:a}));let o=le();await J0(this),await this.load(),r=le(),this.state="image";let i=await Tc(t,this.config);if(this.process=i,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(le()-r):Math.trunc(le()-r),this.analyze("Get Image:"),!i.tensor){this.config.debug&&oe("could not convert input to tensor"),this.emit("error"),s({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:le(),persons:[],error:"could not convert input to tensor"});return}this.emit("image"),r=le(),this.config.skipAllowed=await oT(this.config,i.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(le()-r):Math.trunc(le()-r),this.analyze("Check Changed:");let l=[],u=[],c=[],p=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?X5(this,i.tensor):[],this.performance.face&&delete this.performance.face):(r=le(),l=this.config.face.enabled?await X5(this,i.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let d=this.config.body.maxDetected===-1?kn(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?((g=this.config.body.modelPath)!=null&&g.includes("posenet")?u=this.config.body.enabled?O5(i.tensor,d):[]:(y=this.config.body.modelPath)!=null&&y.includes("blazepose")?u=this.config.body.enabled?Hb(i.tensor,d):[]:(x=this.config.body.modelPath)!=null&&x.includes("efficientpose")?u=this.config.body.enabled?Jb(i.tensor,d):[]:(A=this.config.body.modelPath)!=null&&A.includes("movenet")&&(u=this.config.body.enabled?N5(i.tensor,d):[]),this.performance.body&&delete this.performance.body):(r=le(),(b=this.config.body.modelPath)!=null&&b.includes("posenet")?u=this.config.body.enabled?await O5(i.tensor,d):[]:(w=this.config.body.modelPath)!=null&&w.includes("blazepose")?u=this.config.body.enabled?await Hb(i.tensor,d):[]:(S=this.config.body.modelPath)!=null&&S.includes("efficientpose")?u=this.config.body.enabled?await Jb(i.tensor,d):[]:(I=this.config.body.modelPath)!=null&&I.includes("movenet")&&(u=this.config.body.enabled?await N5(i.tensor,d):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let h=this.config.hand.maxDetected===-1?kn(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?((R=(E=this.config.hand.detector)==null?void 0:E.modelPath)!=null&&R.includes("handdetect")?c=this.config.hand.enabled?g5(i.tensor,h):[]:(_=(P=this.config.hand.detector)==null?void 0:P.modelPath)!=null&&_.includes("handtrack")&&(c=this.config.hand.enabled?b5(i.tensor,h):[]),this.performance.hand&&delete this.performance.hand):(r=le(),(T=(D=this.config.hand.detector)==null?void 0:D.modelPath)!=null&&T.includes("handdetect")?c=this.config.hand.enabled?await g5(i.tensor,h):[]:(U=(O=this.config.hand.detector)==null?void 0:O.modelPath)!=null&&U.includes("handtrack")&&(c=this.config.hand.enabled?await b5(i.tensor,h):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?((K=this.config.object.modelPath)!=null&&K.includes("nanodet")?p=this.config.object.enabled?R5(i.tensor,this.config):[]:(z=this.config.object.modelPath)!=null&&z.includes("centernet")&&(p=this.config.object.enabled?Xb(i.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=le(),(Z=this.config.object.modelPath)!=null&&Z.includes("nanodet")?p=this.config.object.enabled?await R5(i.tensor,this.config):[]:(W=this.config.object.modelPath)!=null&&W.includes("centernet")&&(p=this.config.object.enabled?await Xb(i.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,u,c,p]=await Promise.all([l,u,c,p])),this.state="detect:gesture";let f=[];this.config.gesture.enabled&&(r=le(),f=[...NE(l),...TE(u),...RE(c),...EE(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(le()-o):Math.trunc(le()-o);let m=((Q=(ee=this.process)==null?void 0:ee.tensor)==null?void 0:Q.shape)||[];this.result={face:l,body:u,hand:c,gesture:f,object:p,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),error:null,get persons(){return DE(l,u,c,f,m)}},ne(i.tensor),this.emit("detect"),this.state="idle",s(this.result)})}};Uc=new WeakMap,Zp=new WeakMap,Yp=new WeakMap,og=new WeakMap;return P9(_Ae);})();
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use backend file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the 'License');
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an 'AS IS' BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* Human main module
|
|
* @default Human Library
|
|
* @summary <https://github.com/vladmandic/human>
|
|
* @author <https://github.com/vladmandic>
|
|
* @copyright <https://github.com/vladmandic>
|
|
* @license MIT
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|