human/src/hand/handdetector.js

82 lines
3.5 KiB
JavaScript

import * as tf from '../../dist/tfjs.esm.js';
import * as box from './box';
class HandDetector {
constructor(model, inputSize, anchorsAnnotated) {
this.model = model;
this.anchors = anchorsAnnotated.map((anchor) => [anchor.x_center, anchor.y_center]);
this.anchorsTensor = tf.tensor2d(this.anchors);
this.inputSizeTensor = tf.tensor1d([inputSize, inputSize]);
this.doubleInputSizeTensor = tf.tensor1d([inputSize * 2, inputSize * 2]);
}
normalizeBoxes(boxes) {
return tf.tidy(() => {
const boxOffsets = tf.slice(boxes, [0, 0], [-1, 2]);
const boxSizes = tf.slice(boxes, [0, 2], [-1, 2]);
const boxCenterPoints = tf.add(tf.div(boxOffsets, this.inputSizeTensor), this.anchorsTensor);
const halfBoxSizes = tf.div(boxSizes, this.doubleInputSizeTensor);
const startPoints = tf.mul(tf.sub(boxCenterPoints, halfBoxSizes), this.inputSizeTensor);
const endPoints = tf.mul(tf.add(boxCenterPoints, halfBoxSizes), this.inputSizeTensor);
return tf.concat2d([startPoints, endPoints], 1);
});
}
normalizeLandmarks(rawPalmLandmarks, index) {
return tf.tidy(() => {
const landmarks = tf.add(tf.div(rawPalmLandmarks.reshape([-1, 7, 2]), this.inputSizeTensor), this.anchors[index]);
return tf.mul(landmarks, this.inputSizeTensor);
});
}
async getBoxes(input, config) {
const batched = this.model.predict(input);
const predictions = batched.squeeze();
batched.dispose();
const scoresT = tf.tidy(() => tf.sigmoid(tf.slice(predictions, [0, 0], [-1, 1])).squeeze());
const scores = scoresT.dataSync();
const rawBoxes = tf.slice(predictions, [0, 1], [-1, 4]);
const boxes = this.normalizeBoxes(rawBoxes);
rawBoxes.dispose();
const filteredT = await tf.image.nonMaxSuppressionAsync(boxes, scores, config.hand.maxHands, config.hand.iouThreshold, config.hand.scoreThreshold);
const filtered = filteredT.arraySync();
scoresT.dispose();
filteredT.dispose();
const hands = [];
for (const index of filtered) {
if (scores[index] >= config.hand.minConfidence) {
const matchingBox = tf.slice(boxes, [index, 0], [1, -1]);
const rawPalmLandmarks = tf.slice(predictions, [index, 5], [1, 14]);
const palmLandmarks = tf.tidy(() => this.normalizeLandmarks(rawPalmLandmarks, index).reshape([-1, 2]));
rawPalmLandmarks.dispose();
hands.push({ box: matchingBox, palmLandmarks, confidence: scores[index] });
}
}
predictions.dispose();
boxes.dispose();
return hands;
}
async estimateHandBounds(input, config) {
const inputHeight = input.shape[1];
const inputWidth = input.shape[2];
const image = tf.tidy(() => input.resizeBilinear([config.hand.inputSize, config.hand.inputSize]).div(127.5).sub(1));
const predictions = await this.getBoxes(image, config);
image.dispose();
const hands = [];
if (!predictions || predictions.length === 0) return hands;
for (const prediction of predictions) {
const boxes = prediction.box.dataSync();
const startPoint = boxes.slice(0, 2);
const endPoint = boxes.slice(2, 4);
const palmLandmarks = prediction.palmLandmarks.arraySync();
prediction.box.dispose();
prediction.palmLandmarks.dispose();
hands.push(box.scaleBoxCoordinates({ startPoint, endPoint, palmLandmarks, confidence: prediction.confidence }, [inputWidth / config.hand.inputSize, inputHeight / config.hand.inputSize]));
}
return hands;
}
}
exports.HandDetector = HandDetector;